Linux Audio

Check our new training course

Loading...
v3.15
 
 
 
 
 
 
 
   1#include <linux/kernel.h>
   2#include <linux/module.h>
   3#include <linux/backing-dev.h>
   4#include <linux/bio.h>
   5#include <linux/blkdev.h>
 
   6#include <linux/mm.h>
   7#include <linux/init.h>
   8#include <linux/slab.h>
   9#include <linux/workqueue.h>
  10#include <linux/smp.h>
  11#include <linux/llist.h>
  12#include <linux/list_sort.h>
  13#include <linux/cpu.h>
  14#include <linux/cache.h>
  15#include <linux/sched/sysctl.h>
 
 
  16#include <linux/delay.h>
 
 
 
  17
  18#include <trace/events/block.h>
  19
  20#include <linux/blk-mq.h>
 
  21#include "blk.h"
  22#include "blk-mq.h"
 
  23#include "blk-mq-tag.h"
 
 
 
 
  24
  25static DEFINE_MUTEX(all_q_mutex);
  26static LIST_HEAD(all_q_list);
  27
  28static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx);
 
  29
  30static struct blk_mq_ctx *__blk_mq_get_ctx(struct request_queue *q,
  31					   unsigned int cpu)
  32{
  33	return per_cpu_ptr(q->queue_ctx, cpu);
  34}
  35
  36/*
  37 * This assumes per-cpu software queueing queues. They could be per-node
  38 * as well, for instance. For now this is hardcoded as-is. Note that we don't
  39 * care about preemption, since we know the ctx's are persistent. This does
  40 * mean that we can't rely on ctx always matching the currently running CPU.
  41 */
  42static struct blk_mq_ctx *blk_mq_get_ctx(struct request_queue *q)
  43{
  44	return __blk_mq_get_ctx(q, get_cpu());
  45}
  46
  47static void blk_mq_put_ctx(struct blk_mq_ctx *ctx)
  48{
  49	put_cpu();
 
 
 
 
 
  50}
  51
  52/*
  53 * Check if any of the ctx's have pending work in this hardware queue
 
  54 */
  55static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
  56{
  57	unsigned int i;
  58
  59	for (i = 0; i < hctx->nr_ctx_map; i++)
  60		if (hctx->ctx_map[i])
  61			return true;
  62
  63	return false;
  64}
  65
  66/*
  67 * Mark this ctx as having pending work in this hardware queue
  68 */
  69static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
  70				     struct blk_mq_ctx *ctx)
  71{
  72	if (!test_bit(ctx->index_hw, hctx->ctx_map))
  73		set_bit(ctx->index_hw, hctx->ctx_map);
 
 
  74}
  75
  76static struct request *__blk_mq_alloc_request(struct blk_mq_hw_ctx *hctx,
  77					      gfp_t gfp, bool reserved)
  78{
  79	struct request *rq;
  80	unsigned int tag;
  81
  82	tag = blk_mq_get_tag(hctx->tags, gfp, reserved);
  83	if (tag != BLK_MQ_TAG_FAIL) {
  84		rq = hctx->rqs[tag];
  85		rq->tag = tag;
  86
  87		return rq;
  88	}
 
 
  89
  90	return NULL;
 
 
 
 
 
 
 
 
 
  91}
  92
  93static int blk_mq_queue_enter(struct request_queue *q)
  94{
  95	int ret;
  96
  97	__percpu_counter_add(&q->mq_usage_counter, 1, 1000000);
  98	smp_wmb();
  99	/* we have problems to freeze the queue if it's initializing */
 100	if (!blk_queue_bypass(q) || !blk_queue_init_done(q))
 101		return 0;
 102
 103	__percpu_counter_add(&q->mq_usage_counter, -1, 1000000);
 
 104
 105	spin_lock_irq(q->queue_lock);
 106	ret = wait_event_interruptible_lock_irq(q->mq_freeze_wq,
 107		!blk_queue_bypass(q) || blk_queue_dying(q),
 108		*q->queue_lock);
 109	/* inc usage with lock hold to avoid freeze_queue runs here */
 110	if (!ret && !blk_queue_dying(q))
 111		__percpu_counter_add(&q->mq_usage_counter, 1, 1000000);
 112	else if (blk_queue_dying(q))
 113		ret = -ENODEV;
 114	spin_unlock_irq(q->queue_lock);
 115
 116	return ret;
 
 
 117}
 118
 119static void blk_mq_queue_exit(struct request_queue *q)
 120{
 121	__percpu_counter_add(&q->mq_usage_counter, -1, 1000000);
 
 
 
 
 
 
 
 
 122}
 
 123
 124static void __blk_mq_drain_queue(struct request_queue *q)
 125{
 126	while (true) {
 127		s64 count;
 128
 129		spin_lock_irq(q->queue_lock);
 130		count = percpu_counter_sum(&q->mq_usage_counter);
 131		spin_unlock_irq(q->queue_lock);
 132
 133		if (count == 0)
 134			break;
 135		blk_mq_run_queues(q, false);
 136		msleep(10);
 137	}
 
 138}
 
 139
 140/*
 141 * Guarantee no request is in use, so we can change any data structure of
 142 * the queue afterward.
 143 */
 144static void blk_mq_freeze_queue(struct request_queue *q)
 145{
 146	bool drain;
 
 
 
 
 
 
 
 
 
 147
 148	spin_lock_irq(q->queue_lock);
 149	drain = !q->bypass_depth++;
 150	queue_flag_set(QUEUE_FLAG_BYPASS, q);
 151	spin_unlock_irq(q->queue_lock);
 
 
 
 
 
 152
 153	if (drain)
 154		__blk_mq_drain_queue(q);
 
 
 
 
 
 
 
 
 155}
 
 156
 157void blk_mq_drain_queue(struct request_queue *q)
 
 
 
 
 158{
 159	__blk_mq_drain_queue(q);
 160}
 
 161
 162static void blk_mq_unfreeze_queue(struct request_queue *q)
 
 
 
 
 
 
 
 
 
 163{
 164	bool wake = false;
 
 
 
 
 165
 166	spin_lock_irq(q->queue_lock);
 167	if (!--q->bypass_depth) {
 168		queue_flag_clear(QUEUE_FLAG_BYPASS, q);
 169		wake = true;
 
 170	}
 171	WARN_ON_ONCE(q->bypass_depth < 0);
 172	spin_unlock_irq(q->queue_lock);
 173	if (wake)
 174		wake_up_all(&q->mq_freeze_wq);
 175}
 
 176
 177bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
 
 
 
 
 
 
 
 178{
 179	return blk_mq_has_free_tags(hctx->tags);
 
 
 
 180}
 181EXPORT_SYMBOL(blk_mq_can_queue);
 182
 183static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
 184			       struct request *rq, unsigned int rw_flags)
 185{
 186	if (blk_queue_io_stat(q))
 187		rw_flags |= REQ_IO_STAT;
 188
 189	rq->mq_ctx = ctx;
 190	rq->cmd_flags = rw_flags;
 191	rq->start_time = jiffies;
 192	set_start_time_ns(rq);
 193	ctx->rq_dispatched[rw_is_sync(rw_flags)]++;
 194}
 195
 196static struct request *blk_mq_alloc_request_pinned(struct request_queue *q,
 197						   int rw, gfp_t gfp,
 198						   bool reserved)
 
 
 199{
 200	struct request *rq;
 
 201
 202	do {
 203		struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
 204		struct blk_mq_hw_ctx *hctx = q->mq_ops->map_queue(q, ctx->cpu);
 
 
 205
 206		rq = __blk_mq_alloc_request(hctx, gfp & ~__GFP_WAIT, reserved);
 207		if (rq) {
 208			blk_mq_rq_ctx_init(q, ctx, rq, rw);
 209			break;
 210		}
 
 
 211
 212		blk_mq_put_ctx(ctx);
 213		if (!(gfp & __GFP_WAIT))
 214			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 215
 216		__blk_mq_run_hw_queue(hctx);
 217		blk_mq_wait_for_tags(hctx->tags);
 218	} while (1);
 
 219
 
 220	return rq;
 221}
 222
 223struct request *blk_mq_alloc_request(struct request_queue *q, int rw, gfp_t gfp)
 224{
 225	struct request *rq;
 
 
 
 226
 227	if (blk_mq_queue_enter(q))
 228		return NULL;
 
 229
 230	rq = blk_mq_alloc_request_pinned(q, rw, gfp, false);
 231	if (rq)
 232		blk_mq_put_ctx(rq->mq_ctx);
 233	return rq;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 234}
 235
 236struct request *blk_mq_alloc_reserved_request(struct request_queue *q, int rw,
 237					      gfp_t gfp)
 238{
 
 
 
 
 
 239	struct request *rq;
 
 240
 241	if (blk_mq_queue_enter(q))
 242		return NULL;
 243
 244	rq = blk_mq_alloc_request_pinned(q, rw, gfp, true);
 245	if (rq)
 246		blk_mq_put_ctx(rq->mq_ctx);
 
 
 
 
 247	return rq;
 248}
 249EXPORT_SYMBOL(blk_mq_alloc_reserved_request);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 250
 251/*
 252 * Re-init and set pdu, if we have it
 253 */
 254void blk_mq_rq_init(struct blk_mq_hw_ctx *hctx, struct request *rq)
 255{
 256	blk_rq_init(hctx->queue, rq);
 
 
 
 
 
 
 
 
 
 
 
 
 
 257
 258	if (hctx->cmd_size)
 259		rq->special = blk_mq_rq_to_pdu(rq);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 260}
 
 261
 262static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
 263				  struct blk_mq_ctx *ctx, struct request *rq)
 264{
 265	const int tag = rq->tag;
 266	struct request_queue *q = rq->q;
 
 
 
 267
 268	blk_mq_rq_init(hctx, rq);
 269	blk_mq_put_tag(hctx->tags, tag);
 270
 271	blk_mq_queue_exit(q);
 
 
 
 
 
 272}
 273
 274void blk_mq_free_request(struct request *rq)
 275{
 276	struct blk_mq_ctx *ctx = rq->mq_ctx;
 277	struct blk_mq_hw_ctx *hctx;
 278	struct request_queue *q = rq->q;
 
 
 
 
 
 
 
 
 
 
 
 
 279
 280	ctx->rq_completed[rq_is_sync(rq)]++;
 
 
 
 
 
 281
 282	hctx = q->mq_ops->map_queue(q, ctx->cpu);
 283	__blk_mq_free_request(hctx, ctx, rq);
 
 
 
 284}
 
 285
 286bool blk_mq_end_io_partial(struct request *rq, int error, unsigned int nr_bytes)
 287{
 288	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
 289		return true;
 
 
 
 
 
 
 
 
 
 290
 291	blk_account_io_done(rq);
 292
 293	if (rq->end_io)
 
 294		rq->end_io(rq, error);
 295	else
 296		blk_mq_free_request(rq);
 297	return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 298}
 299EXPORT_SYMBOL(blk_mq_end_io_partial);
 300
 301static void __blk_mq_complete_request_remote(void *data)
 302{
 303	struct request *rq = data;
 304
 305	rq->q->softirq_done_fn(rq);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 306}
 307
 308void __blk_mq_complete_request(struct request *rq)
 309{
 310	struct blk_mq_ctx *ctx = rq->mq_ctx;
 311	int cpu;
 312
 313	if (!ctx->ipi_redirect) {
 314		rq->q->softirq_done_fn(rq);
 315		return;
 316	}
 
 
 317
 318	cpu = get_cpu();
 319	if (cpu != ctx->cpu && cpu_online(ctx->cpu)) {
 320		rq->csd.func = __blk_mq_complete_request_remote;
 321		rq->csd.info = rq;
 322		rq->csd.flags = 0;
 323		smp_call_function_single_async(ctx->cpu, &rq->csd);
 324	} else {
 325		rq->q->softirq_done_fn(rq);
 
 
 326	}
 327	put_cpu();
 
 328}
 
 329
 330/**
 331 * blk_mq_complete_request - end I/O on a request
 332 * @rq:		the request being processed
 333 *
 334 * Description:
 335 *	Ends all I/O on a request. It does not handle partial completions.
 336 *	The actual completion happens out-of-order, through a IPI handler.
 337 **/
 338void blk_mq_complete_request(struct request *rq)
 339{
 340	if (unlikely(blk_should_fake_timeout(rq->q)))
 341		return;
 342	if (!blk_mark_rq_complete(rq))
 343		__blk_mq_complete_request(rq);
 344}
 345EXPORT_SYMBOL(blk_mq_complete_request);
 346
 347static void blk_mq_start_request(struct request *rq, bool last)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 348{
 349	struct request_queue *q = rq->q;
 350
 351	trace_block_rq_issue(q, rq);
 352
 353	/*
 354	 * Just mark start time and set the started bit. Due to memory
 355	 * ordering, we know we'll see the correct deadline as long as
 356	 * REQ_ATOMIC_STARTED is seen.
 357	 */
 358	rq->deadline = jiffies + q->rq_timeout;
 359	set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
 
 360
 361	if (q->dma_drain_size && blk_rq_bytes(rq)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 362		/*
 363		 * Make sure space for the drain appears.  We know we can do
 364		 * this because max_hw_segments has been adjusted to be one
 365		 * fewer than the device can handle.
 366		 */
 367		rq->nr_phys_segments++;
 
 
 
 368	}
 369
 370	/*
 371	 * Flag the last request in the series so that drivers know when IO
 372	 * should be kicked off, if they don't do it on a per-request basis.
 373	 *
 374	 * Note: the flag isn't the only condition drivers should do kick off.
 375	 * If drive is busy, the last request might not have the bit set.
 376	 */
 377	if (last)
 378		rq->cmd_flags |= REQ_END;
 379}
 380
 381static void blk_mq_requeue_request(struct request *rq)
 
 382{
 383	struct request_queue *q = rq->q;
 
 384
 385	trace_block_rq_requeue(q, rq);
 386	clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
 
 
 
 387
 388	rq->cmd_flags &= ~REQ_END;
 
 
 
 
 
 
 
 389
 390	if (q->dma_drain_size && blk_rq_bytes(rq))
 391		rq->nr_phys_segments--;
 392}
 393
 394struct blk_mq_timeout_data {
 395	struct blk_mq_hw_ctx *hctx;
 396	unsigned long *next;
 397	unsigned int *next_set;
 398};
 399
 400static void blk_mq_timeout_check(void *__data, unsigned long *free_tags)
 
 401{
 402	struct blk_mq_timeout_data *data = __data;
 403	struct blk_mq_hw_ctx *hctx = data->hctx;
 404	unsigned int tag;
 
 
 
 
 
 
 
 
 
 
 
 
 405
 406	 /* It may not be in flight yet (this is where
 407	 * the REQ_ATOMIC_STARTED flag comes in). The requests are
 408	 * statically allocated, so we know it's always safe to access the
 409	 * memory associated with a bit offset into ->rqs[].
 
 
 410	 */
 411	tag = 0;
 412	do {
 413		struct request *rq;
 414
 415		tag = find_next_zero_bit(free_tags, hctx->queue_depth, tag);
 416		if (tag >= hctx->queue_depth)
 417			break;
 418
 419		rq = hctx->rqs[tag++];
 
 420
 421		if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
 422			continue;
 
 423
 424		blk_rq_check_expired(rq, data->next, data->next_set);
 425	} while (1);
 426}
 
 427
 428static void blk_mq_hw_ctx_check_timeout(struct blk_mq_hw_ctx *hctx,
 429					unsigned long *next,
 430					unsigned int *next_set)
 431{
 432	struct blk_mq_timeout_data data = {
 433		.hctx		= hctx,
 434		.next		= next,
 435		.next_set	= next_set,
 436	};
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 437
 438	/*
 439	 * Ask the tagging code to iterate busy requests, so we can
 440	 * check them for timeout.
 
 
 441	 */
 442	blk_mq_tag_busy_iter(hctx->tags, blk_mq_timeout_check, &data);
 
 
 
 
 
 
 
 
 443}
 444
 445static void blk_mq_rq_timer(unsigned long data)
 446{
 447	struct request_queue *q = (struct request_queue *) data;
 448	struct blk_mq_hw_ctx *hctx;
 449	unsigned long next = 0;
 450	int i, next_set = 0;
 
 451
 452	queue_for_each_hw_ctx(q, hctx, i)
 453		blk_mq_hw_ctx_check_timeout(hctx, &next, &next_set);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 454
 455	if (next_set)
 456		mod_timer(&q->timeout, round_jiffies_up(next));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 457}
 458
 459/*
 460 * Reverse check our software queue for entries that we could potentially
 461 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
 462 * too much time checking for merges.
 463 */
 464static bool blk_mq_attempt_merge(struct request_queue *q,
 465				 struct blk_mq_ctx *ctx, struct bio *bio)
 466{
 
 
 
 
 
 
 
 
 
 
 
 467	struct request *rq;
 468	int checked = 8;
 469
 470	list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
 471		int el_ret;
 
 
 
 
 
 472
 473		if (!checked--)
 474			break;
 
 
 
 
 
 
 475
 476		if (!blk_rq_merge_ok(rq, bio))
 477			continue;
 478
 479		el_ret = blk_try_merge(rq, bio);
 480		if (el_ret == ELEVATOR_BACK_MERGE) {
 481			if (bio_attempt_back_merge(q, rq, bio)) {
 482				ctx->rq_merged++;
 483				return true;
 484			}
 485			break;
 486		} else if (el_ret == ELEVATOR_FRONT_MERGE) {
 487			if (bio_attempt_front_merge(q, rq, bio)) {
 488				ctx->rq_merged++;
 489				return true;
 490			}
 491			break;
 492		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 493	}
 494
 495	return false;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 496}
 497
 498void blk_mq_add_timer(struct request *rq)
 
 499{
 500	__blk_add_timer(rq, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 501}
 502
 503/*
 504 * Run this hardware queue, pulling any software queues mapped to it in.
 505 * Note that this function currently has various problems around ordering
 506 * of IO. In particular, we'd like FIFO behaviour on handling existing
 507 * items on the hctx->dispatch list. Ignore that for now.
 508 */
 509static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
 
 510{
 511	struct request_queue *q = hctx->queue;
 512	struct blk_mq_ctx *ctx;
 513	struct request *rq;
 514	LIST_HEAD(rq_list);
 515	int bit, queued;
 516
 517	if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
 518		return;
 
 
 
 
 
 
 
 
 
 
 
 519
 520	hctx->run++;
 
 
 521
 522	/*
 523	 * Touch any software queue that has pending entries.
 524	 */
 525	for_each_set_bit(bit, hctx->ctx_map, hctx->nr_ctx) {
 526		clear_bit(bit, hctx->ctx_map);
 527		ctx = hctx->ctxs[bit];
 528		BUG_ON(bit != ctx->index_hw);
 529
 530		spin_lock(&ctx->lock);
 531		list_splice_tail_init(&ctx->rq_list, &rq_list);
 532		spin_unlock(&ctx->lock);
 
 
 
 533	}
 534
 
 
 
 
 535	/*
 536	 * If we have previous entries on our dispatch list, grab them
 537	 * and stuff them at the front for more fair dispatch.
 
 538	 */
 539	if (!list_empty_careful(&hctx->dispatch)) {
 540		spin_lock(&hctx->lock);
 541		if (!list_empty(&hctx->dispatch))
 542			list_splice_init(&hctx->dispatch, &rq_list);
 543		spin_unlock(&hctx->lock);
 544	}
 545
 546	/*
 547	 * Delete and return all entries from our dispatch list
 
 548	 */
 549	queued = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 550
 551	/*
 552	 * Now process all the entries, sending them to the driver.
 553	 */
 554	while (!list_empty(&rq_list)) {
 555		int ret;
 
 
 
 
 
 
 
 
 556
 557		rq = list_first_entry(&rq_list, struct request, queuelist);
 558		list_del_init(&rq->queuelist);
 559
 560		blk_mq_start_request(rq, list_empty(&rq_list));
 561
 562		ret = q->mq_ops->queue_rq(hctx, rq);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 563		switch (ret) {
 564		case BLK_MQ_RQ_QUEUE_OK:
 565			queued++;
 566			continue;
 567		case BLK_MQ_RQ_QUEUE_BUSY:
 
 
 
 
 568			/*
 569			 * FIXME: we should have a mechanism to stop the queue
 570			 * like blk_stop_queue, otherwise we will waste cpu
 571			 * time
 572			 */
 573			list_add(&rq->queuelist, &rq_list);
 574			blk_mq_requeue_request(rq);
 575			break;
 576		default:
 577			pr_err("blk-mq: bad return on queue: %d\n", ret);
 578		case BLK_MQ_RQ_QUEUE_ERROR:
 579			rq->errors = -EIO;
 580			blk_mq_end_io(rq, rq->errors);
 581			break;
 582		}
 
 
 
 
 583
 584		if (ret == BLK_MQ_RQ_QUEUE_BUSY)
 585			break;
 586	}
 587
 588	if (!queued)
 589		hctx->dispatched[0]++;
 590	else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1)))
 591		hctx->dispatched[ilog2(queued) + 1]++;
 592
 
 
 
 
 
 593	/*
 594	 * Any items that need requeuing? Stuff them into hctx->dispatch,
 595	 * that is where we will continue on next queue run.
 596	 */
 597	if (!list_empty(&rq_list)) {
 
 
 
 
 
 
 
 
 598		spin_lock(&hctx->lock);
 599		list_splice(&rq_list, &hctx->dispatch);
 600		spin_unlock(&hctx->lock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 601	}
 
 
 
 
 
 
 
 
 
 
 
 
 602}
 603
 604void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
 605{
 606	if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 607		return;
 608
 609	if (!async)
 610		__blk_mq_run_hw_queue(hctx);
 611	else {
 612		struct request_queue *q = hctx->queue;
 
 
 
 613
 614		kblockd_schedule_delayed_work(q, &hctx->delayed_work, 0);
 615	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 616}
 
 617
 618void blk_mq_run_queues(struct request_queue *q, bool async)
 
 
 
 
 
 619{
 620	struct blk_mq_hw_ctx *hctx;
 621	int i;
 622
 623	queue_for_each_hw_ctx(q, hctx, i) {
 624		if ((!blk_mq_hctx_has_pending(hctx) &&
 625		    list_empty_careful(&hctx->dispatch)) ||
 626		    test_bit(BLK_MQ_S_STOPPED, &hctx->state))
 627			continue;
 628
 629		blk_mq_run_hw_queue(hctx, async);
 630	}
 631}
 632EXPORT_SYMBOL(blk_mq_run_queues);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 633
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 634void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
 635{
 636	cancel_delayed_work(&hctx->delayed_work);
 
 637	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
 638}
 639EXPORT_SYMBOL(blk_mq_stop_hw_queue);
 640
 
 
 
 
 
 
 
 
 
 641void blk_mq_stop_hw_queues(struct request_queue *q)
 642{
 643	struct blk_mq_hw_ctx *hctx;
 644	int i;
 645
 646	queue_for_each_hw_ctx(q, hctx, i)
 647		blk_mq_stop_hw_queue(hctx);
 648}
 649EXPORT_SYMBOL(blk_mq_stop_hw_queues);
 650
 651void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
 652{
 653	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
 654	__blk_mq_run_hw_queue(hctx);
 
 655}
 656EXPORT_SYMBOL(blk_mq_start_hw_queue);
 657
 658void blk_mq_start_stopped_hw_queues(struct request_queue *q)
 659{
 660	struct blk_mq_hw_ctx *hctx;
 661	int i;
 662
 663	queue_for_each_hw_ctx(q, hctx, i) {
 664		if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state))
 665			continue;
 
 666
 667		clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
 668		blk_mq_run_hw_queue(hctx, true);
 669	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 670}
 671EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
 672
 673static void blk_mq_work_fn(struct work_struct *work)
 674{
 675	struct blk_mq_hw_ctx *hctx;
 676
 677	hctx = container_of(work, struct blk_mq_hw_ctx, delayed_work.work);
 
 
 
 
 
 
 
 678	__blk_mq_run_hw_queue(hctx);
 679}
 680
 681static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
 682				    struct request *rq, bool at_head)
 
 683{
 684	struct blk_mq_ctx *ctx = rq->mq_ctx;
 
 
 
 685
 686	trace_block_rq_insert(hctx->queue, rq);
 687
 688	if (at_head)
 689		list_add(&rq->queuelist, &ctx->rq_list);
 690	else
 691		list_add_tail(&rq->queuelist, &ctx->rq_list);
 692	blk_mq_hctx_mark_pending(hctx, ctx);
 693
 694	/*
 695	 * We do this early, to ensure we are on the right CPU.
 696	 */
 697	blk_mq_add_timer(rq);
 698}
 699
 700void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
 701		bool async)
 702{
 703	struct request_queue *q = rq->q;
 704	struct blk_mq_hw_ctx *hctx;
 705	struct blk_mq_ctx *ctx = rq->mq_ctx, *current_ctx;
 706
 707	current_ctx = blk_mq_get_ctx(q);
 708	if (!cpu_online(ctx->cpu))
 709		rq->mq_ctx = ctx = current_ctx;
 710
 711	hctx = q->mq_ops->map_queue(q, ctx->cpu);
 
 
 712
 713	if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA) &&
 714	    !(rq->cmd_flags & (REQ_FLUSH_SEQ))) {
 715		blk_insert_flush(rq);
 716	} else {
 717		spin_lock(&ctx->lock);
 718		__blk_mq_insert_request(hctx, rq, at_head);
 719		spin_unlock(&ctx->lock);
 720	}
 
 
 
 
 
 721
 722	blk_mq_put_ctx(current_ctx);
 
 
 
 
 
 723
 724	if (run_queue)
 725		blk_mq_run_hw_queue(hctx, async);
 726}
 727
 728static void blk_mq_insert_requests(struct request_queue *q,
 729				     struct blk_mq_ctx *ctx,
 730				     struct list_head *list,
 731				     int depth,
 732				     bool from_schedule)
 733
 734{
 735	struct blk_mq_hw_ctx *hctx;
 736	struct blk_mq_ctx *current_ctx;
 737
 738	trace_block_unplug(q, depth, !from_schedule);
 739
 740	current_ctx = blk_mq_get_ctx(q);
 741
 742	if (!cpu_online(ctx->cpu))
 743		ctx = current_ctx;
 744	hctx = q->mq_ops->map_queue(q, ctx->cpu);
 745
 746	/*
 747	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
 748	 * offline now
 749	 */
 750	spin_lock(&ctx->lock);
 751	while (!list_empty(list)) {
 752		struct request *rq;
 753
 754		rq = list_first_entry(list, struct request, queuelist);
 755		list_del_init(&rq->queuelist);
 756		rq->mq_ctx = ctx;
 757		__blk_mq_insert_request(hctx, rq, false);
 758	}
 759	spin_unlock(&ctx->lock);
 760
 761	blk_mq_put_ctx(current_ctx);
 762
 763	blk_mq_run_hw_queue(hctx, from_schedule);
 
 764}
 765
 766static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
 767{
 768	struct request *rqa = container_of(a, struct request, queuelist);
 769	struct request *rqb = container_of(b, struct request, queuelist);
 770
 771	return !(rqa->mq_ctx < rqb->mq_ctx ||
 772		 (rqa->mq_ctx == rqb->mq_ctx &&
 773		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
 
 
 
 774}
 775
 776void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
 777{
 778	struct blk_mq_ctx *this_ctx;
 779	struct request_queue *this_q;
 780	struct request *rq;
 781	LIST_HEAD(list);
 782	LIST_HEAD(ctx_list);
 783	unsigned int depth;
 784
 
 
 785	list_splice_init(&plug->mq_list, &list);
 786
 787	list_sort(NULL, &list, plug_ctx_cmp);
 
 788
 789	this_q = NULL;
 790	this_ctx = NULL;
 791	depth = 0;
 792
 793	while (!list_empty(&list)) {
 794		rq = list_entry_rq(list.next);
 795		list_del_init(&rq->queuelist);
 796		BUG_ON(!rq->q);
 797		if (rq->mq_ctx != this_ctx) {
 798			if (this_ctx) {
 799				blk_mq_insert_requests(this_q, this_ctx,
 800							&ctx_list, depth,
 801							from_schedule);
 802			}
 803
 804			this_ctx = rq->mq_ctx;
 805			this_q = rq->q;
 806			depth = 0;
 
 
 
 
 
 
 
 
 
 
 
 807		}
 808
 809		depth++;
 810		list_add_tail(&rq->queuelist, &ctx_list);
 811	}
 812
 813	/*
 814	 * If 'this_ctx' is set, we know we have entries to complete
 815	 * on 'ctx_list'. Do those.
 816	 */
 817	if (this_ctx) {
 818		blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
 819				       from_schedule);
 820	}
 821}
 822
 823static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
 
 824{
 825	init_request_from_bio(rq, bio);
 826	blk_account_io_start(rq, 1);
 827}
 828
 829static void blk_mq_make_request(struct request_queue *q, struct bio *bio)
 830{
 831	struct blk_mq_hw_ctx *hctx;
 832	struct blk_mq_ctx *ctx;
 833	const int is_sync = rw_is_sync(bio->bi_rw);
 834	const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
 835	int rw = bio_data_dir(bio);
 836	struct request *rq;
 837	unsigned int use_plug, request_count = 0;
 838
 839	/*
 840	 * If we have multiple hardware queues, just go directly to
 841	 * one of those for sync IO.
 842	 */
 843	use_plug = !is_flush_fua && ((q->nr_hw_queues == 1) || !is_sync);
 844
 845	blk_queue_bounce(q, &bio);
 846
 847	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
 848		bio_endio(bio, -EIO);
 849		return;
 850	}
 851
 852	if (use_plug && blk_attempt_plug_merge(q, bio, &request_count))
 853		return;
 854
 855	if (blk_mq_queue_enter(q)) {
 856		bio_endio(bio, -EIO);
 857		return;
 858	}
 
 
 
 
 
 
 
 859
 860	ctx = blk_mq_get_ctx(q);
 861	hctx = q->mq_ops->map_queue(q, ctx->cpu);
 862
 863	if (is_sync)
 864		rw |= REQ_SYNC;
 865	trace_block_getrq(q, bio, rw);
 866	rq = __blk_mq_alloc_request(hctx, GFP_ATOMIC, false);
 867	if (likely(rq))
 868		blk_mq_rq_ctx_init(q, ctx, rq, rw);
 869	else {
 870		blk_mq_put_ctx(ctx);
 871		trace_block_sleeprq(q, bio, rw);
 872		rq = blk_mq_alloc_request_pinned(q, rw, __GFP_WAIT|GFP_ATOMIC,
 873							false);
 874		ctx = rq->mq_ctx;
 875		hctx = q->mq_ops->map_queue(q, ctx->cpu);
 
 
 
 
 
 
 
 876	}
 877
 878	hctx->queued++;
 
 879
 880	if (unlikely(is_flush_fua)) {
 881		blk_mq_bio_to_request(rq, bio);
 882		blk_mq_put_ctx(ctx);
 883		blk_insert_flush(rq);
 884		goto run_queue;
 885	}
 
 886
 887	/*
 888	 * A task plug currently exists. Since this is completely lockless,
 889	 * utilize that to temporarily store requests until the task is
 890	 * either done or scheduled away.
 
 
 891	 */
 892	if (use_plug) {
 893		struct blk_plug *plug = current->plug;
 894
 895		if (plug) {
 896			blk_mq_bio_to_request(rq, bio);
 897			if (list_empty(&plug->mq_list))
 898				trace_block_plug(q);
 899			else if (request_count >= BLK_MAX_REQUEST_COUNT) {
 900				blk_flush_plug_list(plug, false);
 901				trace_block_plug(q);
 902			}
 903			list_add_tail(&rq->queuelist, &plug->mq_list);
 904			blk_mq_put_ctx(ctx);
 905			return;
 906		}
 907	}
 908
 909	spin_lock(&ctx->lock);
 
 910
 911	if ((hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
 912	    blk_mq_attempt_merge(q, ctx, bio))
 913		__blk_mq_free_request(hctx, ctx, rq);
 914	else {
 915		blk_mq_bio_to_request(rq, bio);
 916		__blk_mq_insert_request(hctx, rq, false);
 917	}
 918
 919	spin_unlock(&ctx->lock);
 920	blk_mq_put_ctx(ctx);
 
 
 921
 922	/*
 923	 * For a SYNC request, send it to the hardware immediately. For an
 924	 * ASYNC request, just ensure that we run it later on. The latter
 925	 * allows for merging opportunities and more efficient dispatching.
 926	 */
 927run_queue:
 928	blk_mq_run_hw_queue(hctx, !is_sync || is_flush_fua);
 929}
 930
 931/*
 932 * Default mapping to a software queue, since we use one per CPU.
 
 
 
 
 
 
 
 
 933 */
 934struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu)
 
 935{
 936	return q->queue_hw_ctx[q->mq_map[cpu]];
 937}
 938EXPORT_SYMBOL(blk_mq_map_queue);
 939
 940struct blk_mq_hw_ctx *blk_mq_alloc_single_hw_queue(struct blk_mq_reg *reg,
 941						   unsigned int hctx_index)
 942{
 943	return kmalloc_node(sizeof(struct blk_mq_hw_ctx),
 944				GFP_KERNEL | __GFP_ZERO, reg->numa_node);
 
 
 
 
 
 
 945}
 946EXPORT_SYMBOL(blk_mq_alloc_single_hw_queue);
 947
 948void blk_mq_free_single_hw_queue(struct blk_mq_hw_ctx *hctx,
 949				 unsigned int hctx_index)
 950{
 951	kfree(hctx);
 
 
 
 
 
 
 
 
 
 952}
 953EXPORT_SYMBOL(blk_mq_free_single_hw_queue);
 954
 955static void blk_mq_hctx_notify(void *data, unsigned long action,
 956			       unsigned int cpu)
 957{
 958	struct blk_mq_hw_ctx *hctx = data;
 959	struct request_queue *q = hctx->queue;
 960	struct blk_mq_ctx *ctx;
 961	LIST_HEAD(tmp);
 962
 963	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
 964		return;
 
 
 965
 966	/*
 967	 * Move ctx entries to new CPU, if this one is going away.
 968	 */
 969	ctx = __blk_mq_get_ctx(q, cpu);
 
 
 
 
 
 
 
 
 
 
 970
 971	spin_lock(&ctx->lock);
 972	if (!list_empty(&ctx->rq_list)) {
 973		list_splice_init(&ctx->rq_list, &tmp);
 974		clear_bit(ctx->index_hw, hctx->ctx_map);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 975	}
 976	spin_unlock(&ctx->lock);
 977
 978	if (list_empty(&tmp))
 979		return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 980
 981	ctx = blk_mq_get_ctx(q);
 982	spin_lock(&ctx->lock);
 983
 984	while (!list_empty(&tmp)) {
 985		struct request *rq;
 986
 987		rq = list_first_entry(&tmp, struct request, queuelist);
 988		rq->mq_ctx = ctx;
 989		list_move_tail(&rq->queuelist, &ctx->rq_list);
 990	}
 991
 992	hctx = q->mq_ops->map_queue(q, ctx->cpu);
 993	blk_mq_hctx_mark_pending(hctx, ctx);
 994
 995	spin_unlock(&ctx->lock);
 996	blk_mq_put_ctx(ctx);
 997
 998	blk_mq_run_hw_queue(hctx, true);
 999}
 
 
 
 
 
 
1000
1001static int blk_mq_init_hw_commands(struct blk_mq_hw_ctx *hctx,
1002				   int (*init)(void *, struct blk_mq_hw_ctx *,
1003					struct request *, unsigned int),
1004				   void *data)
1005{
1006	unsigned int i;
1007	int ret = 0;
1008
1009	for (i = 0; i < hctx->queue_depth; i++) {
1010		struct request *rq = hctx->rqs[i];
1011
1012		ret = init(data, hctx, rq, i);
1013		if (ret)
1014			break;
 
 
 
 
 
 
 
1015	}
1016
1017	return ret;
1018}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1019
1020int blk_mq_init_commands(struct request_queue *q,
1021			 int (*init)(void *, struct blk_mq_hw_ctx *,
1022					struct request *, unsigned int),
1023			 void *data)
1024{
1025	struct blk_mq_hw_ctx *hctx;
1026	unsigned int i;
1027	int ret = 0;
 
 
1028
1029	queue_for_each_hw_ctx(q, hctx, i) {
1030		ret = blk_mq_init_hw_commands(hctx, init, data);
1031		if (ret)
1032			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1033	}
1034
1035	return ret;
 
 
 
1036}
1037EXPORT_SYMBOL(blk_mq_init_commands);
1038
1039static void blk_mq_free_hw_commands(struct blk_mq_hw_ctx *hctx,
1040				    void (*free)(void *, struct blk_mq_hw_ctx *,
1041					struct request *, unsigned int),
1042				    void *data)
1043{
1044	unsigned int i;
 
 
 
 
 
 
1045
1046	for (i = 0; i < hctx->queue_depth; i++) {
1047		struct request *rq = hctx->rqs[i];
 
 
 
 
1048
1049		free(data, hctx, rq, i);
 
 
 
 
 
 
 
 
1050	}
1051}
1052
1053void blk_mq_free_commands(struct request_queue *q,
1054			  void (*free)(void *, struct blk_mq_hw_ctx *,
1055					struct request *, unsigned int),
1056			  void *data)
1057{
1058	struct blk_mq_hw_ctx *hctx;
1059	unsigned int i;
 
 
1060
1061	queue_for_each_hw_ctx(q, hctx, i)
1062		blk_mq_free_hw_commands(hctx, free, data);
1063}
1064EXPORT_SYMBOL(blk_mq_free_commands);
1065
1066static void blk_mq_free_rq_map(struct blk_mq_hw_ctx *hctx)
 
 
 
1067{
1068	struct page *page;
 
1069
1070	while (!list_empty(&hctx->page_list)) {
1071		page = list_first_entry(&hctx->page_list, struct page, lru);
1072		list_del_init(&page->lru);
1073		__free_pages(page, page->private);
 
 
 
 
 
 
 
 
 
 
 
1074	}
1075
1076	kfree(hctx->rqs);
 
 
 
 
 
 
 
1077
1078	if (hctx->tags)
1079		blk_mq_free_tags(hctx->tags);
1080}
1081
1082static size_t order_to_size(unsigned int order)
1083{
1084	size_t ret = PAGE_SIZE;
 
1085
1086	while (order--)
1087		ret *= 2;
 
 
1088
1089	return ret;
 
 
 
 
 
 
 
1090}
1091
1092static int blk_mq_init_rq_map(struct blk_mq_hw_ctx *hctx,
1093			      unsigned int reserved_tags, int node)
1094{
1095	unsigned int i, j, entries_per_page, max_order = 4;
1096	size_t rq_size, left;
 
1097
1098	INIT_LIST_HEAD(&hctx->page_list);
 
 
1099
1100	hctx->rqs = kmalloc_node(hctx->queue_depth * sizeof(struct request *),
1101					GFP_KERNEL, node);
1102	if (!hctx->rqs)
1103		return -ENOMEM;
1104
1105	/*
1106	 * rq_size is the size of the request plus driver payload, rounded
1107	 * to the cacheline size
1108	 */
1109	rq_size = round_up(sizeof(struct request) + hctx->cmd_size,
1110				cache_line_size());
1111	left = rq_size * hctx->queue_depth;
1112
1113	for (i = 0; i < hctx->queue_depth;) {
1114		int this_order = max_order;
1115		struct page *page;
1116		int to_do;
1117		void *p;
1118
1119		while (left < order_to_size(this_order - 1) && this_order)
1120			this_order--;
1121
1122		do {
1123			page = alloc_pages_node(node, GFP_KERNEL, this_order);
 
 
1124			if (page)
1125				break;
1126			if (!this_order--)
1127				break;
1128			if (order_to_size(this_order) < rq_size)
1129				break;
1130		} while (1);
1131
1132		if (!page)
1133			break;
1134
1135		page->private = this_order;
1136		list_add_tail(&page->lru, &hctx->page_list);
1137
1138		p = page_address(page);
 
 
 
 
 
1139		entries_per_page = order_to_size(this_order) / rq_size;
1140		to_do = min(entries_per_page, hctx->queue_depth - i);
1141		left -= to_do * rq_size;
1142		for (j = 0; j < to_do; j++) {
1143			hctx->rqs[i] = p;
1144			blk_mq_rq_init(hctx, hctx->rqs[i]);
 
 
 
 
 
 
1145			p += rq_size;
1146			i++;
1147		}
1148	}
 
1149
1150	if (i < (reserved_tags + BLK_MQ_TAG_MIN))
1151		goto err_rq_map;
1152	else if (i != hctx->queue_depth) {
1153		hctx->queue_depth = i;
1154		pr_warn("%s: queue depth set to %u because of low memory\n",
1155					__func__, i);
1156	}
1157
1158	hctx->tags = blk_mq_init_tags(hctx->queue_depth, reserved_tags, node);
1159	if (!hctx->tags) {
1160err_rq_map:
1161		blk_mq_free_rq_map(hctx);
1162		return -ENOMEM;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1163	}
1164
1165	return 0;
1166}
1167
1168static int blk_mq_init_hw_queues(struct request_queue *q,
1169				 struct blk_mq_reg *reg, void *driver_data)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1170{
1171	struct blk_mq_hw_ctx *hctx;
1172	unsigned int i, j;
 
 
1173
1174	/*
1175	 * Initialize hardware queues
1176	 */
1177	queue_for_each_hw_ctx(q, hctx, i) {
1178		unsigned int num_maps;
1179		int node;
1180
1181		node = hctx->numa_node;
1182		if (node == NUMA_NO_NODE)
1183			node = hctx->numa_node = reg->numa_node;
1184
1185		INIT_DELAYED_WORK(&hctx->delayed_work, blk_mq_work_fn);
1186		spin_lock_init(&hctx->lock);
1187		INIT_LIST_HEAD(&hctx->dispatch);
1188		hctx->queue = q;
1189		hctx->queue_num = i;
1190		hctx->flags = reg->flags;
1191		hctx->queue_depth = reg->queue_depth;
1192		hctx->cmd_size = reg->cmd_size;
1193
1194		blk_mq_init_cpu_notifier(&hctx->cpu_notifier,
1195						blk_mq_hctx_notify, hctx);
1196		blk_mq_register_cpu_notifier(&hctx->cpu_notifier);
1197
1198		if (blk_mq_init_rq_map(hctx, reg->reserved_tags, node))
1199			break;
 
 
 
 
1200
1201		/*
1202		 * Allocate space for all possible cpus to avoid allocation in
1203		 * runtime
1204		 */
1205		hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1206						GFP_KERNEL, node);
1207		if (!hctx->ctxs)
1208			break;
1209
1210		num_maps = ALIGN(nr_cpu_ids, BITS_PER_LONG) / BITS_PER_LONG;
1211		hctx->ctx_map = kzalloc_node(num_maps * sizeof(unsigned long),
1212						GFP_KERNEL, node);
1213		if (!hctx->ctx_map)
1214			break;
1215
1216		hctx->nr_ctx_map = num_maps;
1217		hctx->nr_ctx = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1218
1219		if (reg->ops->init_hctx &&
1220		    reg->ops->init_hctx(hctx, driver_data, i))
 
 
 
 
 
 
1221			break;
 
 
1222	}
 
1223
1224	if (i == q->nr_hw_queues)
1225		return 0;
 
1226
1227	/*
1228	 * Init failed
1229	 */
1230	queue_for_each_hw_ctx(q, hctx, j) {
1231		if (i == j)
1232			break;
1233
1234		if (reg->ops->exit_hctx)
1235			reg->ops->exit_hctx(hctx, j);
1236
1237		blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1238		blk_mq_free_rq_map(hctx);
1239		kfree(hctx->ctxs);
1240	}
1241
1242	return 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1243}
1244
1245static void blk_mq_init_cpu_queues(struct request_queue *q,
1246				   unsigned int nr_hw_queues)
1247{
1248	unsigned int i;
 
1249
1250	for_each_possible_cpu(i) {
1251		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1252		struct blk_mq_hw_ctx *hctx;
 
1253
1254		memset(__ctx, 0, sizeof(*__ctx));
1255		__ctx->cpu = i;
1256		spin_lock_init(&__ctx->lock);
1257		INIT_LIST_HEAD(&__ctx->rq_list);
1258		__ctx->queue = q;
1259
1260		/* If the cpu isn't online, the cpu is mapped to first hctx */
1261		hctx = q->mq_ops->map_queue(q, i);
1262		hctx->nr_ctx++;
1263
1264		if (!cpu_online(i))
1265			continue;
1266
1267		/*
1268		 * Set local node, IFF we have more than one hw queue. If
1269		 * not, we remain on the home node of the device
1270		 */
1271		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1272			hctx->numa_node = cpu_to_node(i);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1273	}
1274}
1275
1276static void blk_mq_map_swqueue(struct request_queue *q)
1277{
1278	unsigned int i;
1279	struct blk_mq_hw_ctx *hctx;
1280	struct blk_mq_ctx *ctx;
 
1281
1282	queue_for_each_hw_ctx(q, hctx, i) {
 
1283		hctx->nr_ctx = 0;
 
1284	}
1285
1286	/*
1287	 * Map software to hardware queues
 
 
1288	 */
1289	queue_for_each_ctx(q, ctx, i) {
1290		/* If the cpu isn't online, the cpu is mapped to first hctx */
1291		hctx = q->mq_ops->map_queue(q, i);
1292		ctx->index_hw = hctx->nr_ctx;
1293		hctx->ctxs[hctx->nr_ctx++] = ctx;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1294	}
1295}
1296
1297struct request_queue *blk_mq_init_queue(struct blk_mq_reg *reg,
1298					void *driver_data)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1299{
1300	struct blk_mq_hw_ctx **hctxs;
1301	struct blk_mq_ctx *ctx;
1302	struct request_queue *q;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1303	int i;
1304
1305	if (!reg->nr_hw_queues ||
1306	    !reg->ops->queue_rq || !reg->ops->map_queue ||
1307	    !reg->ops->alloc_hctx || !reg->ops->free_hctx)
1308		return ERR_PTR(-EINVAL);
1309
1310	if (!reg->queue_depth)
1311		reg->queue_depth = BLK_MQ_MAX_DEPTH;
1312	else if (reg->queue_depth > BLK_MQ_MAX_DEPTH) {
1313		pr_err("blk-mq: queuedepth too large (%u)\n", reg->queue_depth);
1314		reg->queue_depth = BLK_MQ_MAX_DEPTH;
1315	}
1316
1317	if (reg->queue_depth < (reg->reserved_tags + BLK_MQ_TAG_MIN))
1318		return ERR_PTR(-EINVAL);
 
 
 
 
 
 
 
 
 
 
 
1319
1320	ctx = alloc_percpu(struct blk_mq_ctx);
1321	if (!ctx)
1322		return ERR_PTR(-ENOMEM);
 
1323
1324	hctxs = kmalloc_node(reg->nr_hw_queues * sizeof(*hctxs), GFP_KERNEL,
1325			reg->numa_node);
 
 
 
 
 
1326
1327	if (!hctxs)
1328		goto err_percpu;
 
1329
1330	for (i = 0; i < reg->nr_hw_queues; i++) {
1331		hctxs[i] = reg->ops->alloc_hctx(reg, i);
1332		if (!hctxs[i])
1333			goto err_hctxs;
 
 
 
 
 
 
 
 
 
 
 
 
 
1334
1335		hctxs[i]->numa_node = NUMA_NO_NODE;
1336		hctxs[i]->queue_num = i;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1337	}
1338
1339	q = blk_alloc_queue_node(GFP_KERNEL, reg->numa_node);
1340	if (!q)
1341		goto err_hctxs;
1342
1343	q->mq_map = blk_mq_make_queue_map(reg);
1344	if (!q->mq_map)
1345		goto err_map;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1346
1347	setup_timer(&q->timeout, blk_mq_rq_timer, (unsigned long) q);
1348	blk_queue_rq_timeout(q, 30000);
 
 
 
1349
1350	q->nr_queues = nr_cpu_ids;
1351	q->nr_hw_queues = reg->nr_hw_queues;
1352
1353	q->queue_ctx = ctx;
1354	q->queue_hw_ctx = hctxs;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1355
1356	q->mq_ops = reg->ops;
1357	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
 
 
 
1358
1359	q->sg_reserved_size = INT_MAX;
1360
1361	blk_queue_make_request(q, blk_mq_make_request);
1362	blk_queue_rq_timed_out(q, reg->ops->timeout);
1363	if (reg->timeout)
1364		blk_queue_rq_timeout(q, reg->timeout);
1365
1366	if (reg->ops->complete)
1367		blk_queue_softirq_done(q, reg->ops->complete);
1368
1369	blk_mq_init_flush(q);
1370	blk_mq_init_cpu_queues(q, reg->nr_hw_queues);
1371
1372	q->flush_rq = kzalloc(round_up(sizeof(struct request) + reg->cmd_size,
1373				cache_line_size()), GFP_KERNEL);
1374	if (!q->flush_rq)
1375		goto err_hw;
1376
1377	if (blk_mq_init_hw_queues(q, reg, driver_data))
1378		goto err_flush_rq;
 
 
1379
 
 
1380	blk_mq_map_swqueue(q);
1381
1382	mutex_lock(&all_q_mutex);
1383	list_add_tail(&q->all_q_node, &all_q_list);
1384	mutex_unlock(&all_q_mutex);
1385
1386	return q;
1387
1388err_flush_rq:
1389	kfree(q->flush_rq);
1390err_hw:
1391	kfree(q->mq_map);
1392err_map:
1393	blk_cleanup_queue(q);
1394err_hctxs:
1395	for (i = 0; i < reg->nr_hw_queues; i++) {
1396		if (!hctxs[i])
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1397			break;
1398		reg->ops->free_hctx(hctxs[i], i);
 
 
 
 
 
 
 
 
 
 
1399	}
1400	kfree(hctxs);
1401err_percpu:
1402	free_percpu(ctx);
1403	return ERR_PTR(-ENOMEM);
 
 
1404}
1405EXPORT_SYMBOL(blk_mq_init_queue);
1406
1407void blk_mq_free_queue(struct request_queue *q)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1408{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1409	struct blk_mq_hw_ctx *hctx;
1410	int i;
 
 
 
1411
 
 
 
 
 
 
 
1412	queue_for_each_hw_ctx(q, hctx, i) {
1413		kfree(hctx->ctx_map);
1414		kfree(hctx->ctxs);
1415		blk_mq_free_rq_map(hctx);
1416		blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1417		if (q->mq_ops->exit_hctx)
1418			q->mq_ops->exit_hctx(hctx, i);
1419		q->mq_ops->free_hctx(hctx, i);
 
 
 
 
 
 
 
 
 
 
1420	}
1421
1422	free_percpu(q->queue_ctx);
1423	kfree(q->queue_hw_ctx);
1424	kfree(q->mq_map);
1425
1426	q->queue_ctx = NULL;
1427	q->queue_hw_ctx = NULL;
1428	q->mq_map = NULL;
1429
1430	mutex_lock(&all_q_mutex);
1431	list_del_init(&q->all_q_node);
1432	mutex_unlock(&all_q_mutex);
1433}
1434
1435/* Basically redo blk_mq_init_queue with queue frozen */
1436static void blk_mq_queue_reinit(struct request_queue *q)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1437{
1438	blk_mq_freeze_queue(q);
 
 
 
1439
1440	blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues);
 
 
1441
 
 
 
 
 
 
1442	/*
1443	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
1444	 * we should change hctx numa_node according to new topology (this
1445	 * involves free and re-allocate memory, worthy doing?)
 
 
1446	 */
 
 
 
1447
1448	blk_mq_map_swqueue(q);
 
1449
1450	blk_mq_unfreeze_queue(q);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1451}
1452
1453static int blk_mq_queue_reinit_notify(struct notifier_block *nb,
1454				      unsigned long action, void *hcpu)
1455{
1456	struct request_queue *q;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1457
 
 
1458	/*
1459	 * Before new mapping is established, hotadded cpu might already start
1460	 * handling requests. This doesn't break anything as we map offline
1461	 * CPUs to first hardware queue. We will re-init queue below to get
1462	 * optimal settings.
1463	 */
1464	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN &&
1465	    action != CPU_ONLINE && action != CPU_ONLINE_FROZEN)
1466		return NOTIFY_OK;
1467
1468	mutex_lock(&all_q_mutex);
1469	list_for_each_entry(q, &all_q_list, all_q_node)
1470		blk_mq_queue_reinit(q);
1471	mutex_unlock(&all_q_mutex);
1472	return NOTIFY_OK;
1473}
1474
1475void blk_mq_disable_hotplug(void)
1476{
1477	mutex_lock(&all_q_mutex);
 
 
 
 
 
 
1478}
1479
1480void blk_mq_enable_hotplug(void)
 
1481{
1482	mutex_unlock(&all_q_mutex);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1483}
1484
1485static int __init blk_mq_init(void)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1486{
1487	blk_mq_cpu_init();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1488
1489	/* Must be called after percpu_counter_hotcpu_callback() */
1490	hotcpu_notifier(blk_mq_queue_reinit_notify, -10);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1491
 
 
 
 
 
 
 
 
 
 
 
 
1492	return 0;
1493}
1494subsys_initcall(blk_mq_init);
v5.9
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Block multiqueue core code
   4 *
   5 * Copyright (C) 2013-2014 Jens Axboe
   6 * Copyright (C) 2013-2014 Christoph Hellwig
   7 */
   8#include <linux/kernel.h>
   9#include <linux/module.h>
  10#include <linux/backing-dev.h>
  11#include <linux/bio.h>
  12#include <linux/blkdev.h>
  13#include <linux/kmemleak.h>
  14#include <linux/mm.h>
  15#include <linux/init.h>
  16#include <linux/slab.h>
  17#include <linux/workqueue.h>
  18#include <linux/smp.h>
  19#include <linux/llist.h>
  20#include <linux/list_sort.h>
  21#include <linux/cpu.h>
  22#include <linux/cache.h>
  23#include <linux/sched/sysctl.h>
  24#include <linux/sched/topology.h>
  25#include <linux/sched/signal.h>
  26#include <linux/delay.h>
  27#include <linux/crash_dump.h>
  28#include <linux/prefetch.h>
  29#include <linux/blk-crypto.h>
  30
  31#include <trace/events/block.h>
  32
  33#include <linux/blk-mq.h>
  34#include <linux/t10-pi.h>
  35#include "blk.h"
  36#include "blk-mq.h"
  37#include "blk-mq-debugfs.h"
  38#include "blk-mq-tag.h"
  39#include "blk-pm.h"
  40#include "blk-stat.h"
  41#include "blk-mq-sched.h"
  42#include "blk-rq-qos.h"
  43
  44static DEFINE_PER_CPU(struct list_head, blk_cpu_done);
 
  45
  46static void blk_mq_poll_stats_start(struct request_queue *q);
  47static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb);
  48
  49static int blk_mq_poll_stats_bkt(const struct request *rq)
 
  50{
  51	int ddir, sectors, bucket;
 
  52
  53	ddir = rq_data_dir(rq);
  54	sectors = blk_rq_stats_sectors(rq);
 
 
 
 
 
 
 
 
  55
  56	bucket = ddir + 2 * ilog2(sectors);
  57
  58	if (bucket < 0)
  59		return -1;
  60	else if (bucket >= BLK_MQ_POLL_STATS_BKTS)
  61		return ddir + BLK_MQ_POLL_STATS_BKTS - 2;
  62
  63	return bucket;
  64}
  65
  66/*
  67 * Check if any of the ctx, dispatch list or elevator
  68 * have pending work in this hardware queue.
  69 */
  70static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
  71{
  72	return !list_empty_careful(&hctx->dispatch) ||
  73		sbitmap_any_bit_set(&hctx->ctx_map) ||
  74			blk_mq_sched_has_work(hctx);
 
 
 
 
  75}
  76
  77/*
  78 * Mark this ctx as having pending work in this hardware queue
  79 */
  80static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
  81				     struct blk_mq_ctx *ctx)
  82{
  83	const int bit = ctx->index_hw[hctx->type];
  84
  85	if (!sbitmap_test_bit(&hctx->ctx_map, bit))
  86		sbitmap_set_bit(&hctx->ctx_map, bit);
  87}
  88
  89static void blk_mq_hctx_clear_pending(struct blk_mq_hw_ctx *hctx,
  90				      struct blk_mq_ctx *ctx)
  91{
  92	const int bit = ctx->index_hw[hctx->type];
 
  93
  94	sbitmap_clear_bit(&hctx->ctx_map, bit);
  95}
 
 
  96
  97struct mq_inflight {
  98	struct hd_struct *part;
  99	unsigned int inflight[2];
 100};
 101
 102static bool blk_mq_check_inflight(struct blk_mq_hw_ctx *hctx,
 103				  struct request *rq, void *priv,
 104				  bool reserved)
 105{
 106	struct mq_inflight *mi = priv;
 107
 108	if (rq->part == mi->part)
 109		mi->inflight[rq_data_dir(rq)]++;
 110
 111	return true;
 112}
 113
 114unsigned int blk_mq_in_flight(struct request_queue *q, struct hd_struct *part)
 115{
 116	struct mq_inflight mi = { .part = part };
 117
 118	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
 
 
 
 
 119
 120	return mi.inflight[0] + mi.inflight[1];
 121}
 122
 123void blk_mq_in_flight_rw(struct request_queue *q, struct hd_struct *part,
 124			 unsigned int inflight[2])
 125{
 126	struct mq_inflight mi = { .part = part };
 
 
 
 
 
 
 127
 128	blk_mq_queue_tag_busy_iter(q, blk_mq_check_inflight, &mi);
 129	inflight[0] = mi.inflight[0];
 130	inflight[1] = mi.inflight[1];
 131}
 132
 133void blk_freeze_queue_start(struct request_queue *q)
 134{
 135	mutex_lock(&q->mq_freeze_lock);
 136	if (++q->mq_freeze_depth == 1) {
 137		percpu_ref_kill(&q->q_usage_counter);
 138		mutex_unlock(&q->mq_freeze_lock);
 139		if (queue_is_mq(q))
 140			blk_mq_run_hw_queues(q, false);
 141	} else {
 142		mutex_unlock(&q->mq_freeze_lock);
 143	}
 144}
 145EXPORT_SYMBOL_GPL(blk_freeze_queue_start);
 146
 147void blk_mq_freeze_queue_wait(struct request_queue *q)
 148{
 149	wait_event(q->mq_freeze_wq, percpu_ref_is_zero(&q->q_usage_counter));
 150}
 151EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait);
 
 
 
 152
 153int blk_mq_freeze_queue_wait_timeout(struct request_queue *q,
 154				     unsigned long timeout)
 155{
 156	return wait_event_timeout(q->mq_freeze_wq,
 157					percpu_ref_is_zero(&q->q_usage_counter),
 158					timeout);
 159}
 160EXPORT_SYMBOL_GPL(blk_mq_freeze_queue_wait_timeout);
 161
 162/*
 163 * Guarantee no request is in use, so we can change any data structure of
 164 * the queue afterward.
 165 */
 166void blk_freeze_queue(struct request_queue *q)
 167{
 168	/*
 169	 * In the !blk_mq case we are only calling this to kill the
 170	 * q_usage_counter, otherwise this increases the freeze depth
 171	 * and waits for it to return to zero.  For this reason there is
 172	 * no blk_unfreeze_queue(), and blk_freeze_queue() is not
 173	 * exported to drivers as the only user for unfreeze is blk_mq.
 174	 */
 175	blk_freeze_queue_start(q);
 176	blk_mq_freeze_queue_wait(q);
 177}
 178
 179void blk_mq_freeze_queue(struct request_queue *q)
 180{
 181	/*
 182	 * ...just an alias to keep freeze and unfreeze actions balanced
 183	 * in the blk_mq_* namespace
 184	 */
 185	blk_freeze_queue(q);
 186}
 187EXPORT_SYMBOL_GPL(blk_mq_freeze_queue);
 188
 189void blk_mq_unfreeze_queue(struct request_queue *q)
 190{
 191	mutex_lock(&q->mq_freeze_lock);
 192	q->mq_freeze_depth--;
 193	WARN_ON_ONCE(q->mq_freeze_depth < 0);
 194	if (!q->mq_freeze_depth) {
 195		percpu_ref_resurrect(&q->q_usage_counter);
 196		wake_up_all(&q->mq_freeze_wq);
 197	}
 198	mutex_unlock(&q->mq_freeze_lock);
 199}
 200EXPORT_SYMBOL_GPL(blk_mq_unfreeze_queue);
 201
 202/*
 203 * FIXME: replace the scsi_internal_device_*block_nowait() calls in the
 204 * mpt3sas driver such that this function can be removed.
 205 */
 206void blk_mq_quiesce_queue_nowait(struct request_queue *q)
 207{
 208	blk_queue_flag_set(QUEUE_FLAG_QUIESCED, q);
 209}
 210EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue_nowait);
 211
 212/**
 213 * blk_mq_quiesce_queue() - wait until all ongoing dispatches have finished
 214 * @q: request queue.
 215 *
 216 * Note: this function does not prevent that the struct request end_io()
 217 * callback function is invoked. Once this function is returned, we make
 218 * sure no dispatch can happen until the queue is unquiesced via
 219 * blk_mq_unquiesce_queue().
 220 */
 221void blk_mq_quiesce_queue(struct request_queue *q)
 222{
 223	struct blk_mq_hw_ctx *hctx;
 224	unsigned int i;
 225	bool rcu = false;
 226
 227	blk_mq_quiesce_queue_nowait(q);
 228
 229	queue_for_each_hw_ctx(q, hctx, i) {
 230		if (hctx->flags & BLK_MQ_F_BLOCKING)
 231			synchronize_srcu(hctx->srcu);
 232		else
 233			rcu = true;
 234	}
 235	if (rcu)
 236		synchronize_rcu();
 
 
 237}
 238EXPORT_SYMBOL_GPL(blk_mq_quiesce_queue);
 239
 240/*
 241 * blk_mq_unquiesce_queue() - counterpart of blk_mq_quiesce_queue()
 242 * @q: request queue.
 243 *
 244 * This function recovers queue into the state before quiescing
 245 * which is done by blk_mq_quiesce_queue.
 246 */
 247void blk_mq_unquiesce_queue(struct request_queue *q)
 248{
 249	blk_queue_flag_clear(QUEUE_FLAG_QUIESCED, q);
 250
 251	/* dispatch requests which are inserted during quiescing */
 252	blk_mq_run_hw_queues(q, true);
 253}
 254EXPORT_SYMBOL_GPL(blk_mq_unquiesce_queue);
 255
 256void blk_mq_wake_waiters(struct request_queue *q)
 
 257{
 258	struct blk_mq_hw_ctx *hctx;
 259	unsigned int i;
 260
 261	queue_for_each_hw_ctx(q, hctx, i)
 262		if (blk_mq_hw_queue_mapped(hctx))
 263			blk_mq_tag_wakeup_all(hctx->tags, true);
 
 
 264}
 265
 266/*
 267 * Only need start/end time stamping if we have iostat or
 268 * blk stats enabled, or using an IO scheduler.
 269 */
 270static inline bool blk_mq_need_time_stamp(struct request *rq)
 271{
 272	return (rq->rq_flags & (RQF_IO_STAT | RQF_STATS)) || rq->q->elevator;
 273}
 274
 275static struct request *blk_mq_rq_ctx_init(struct blk_mq_alloc_data *data,
 276		unsigned int tag, u64 alloc_time_ns)
 277{
 278	struct blk_mq_tags *tags = blk_mq_tags_from_data(data);
 279	struct request *rq = tags->static_rqs[tag];
 280
 281	if (data->q->elevator) {
 282		rq->tag = BLK_MQ_NO_TAG;
 283		rq->internal_tag = tag;
 284	} else {
 285		rq->tag = tag;
 286		rq->internal_tag = BLK_MQ_NO_TAG;
 287	}
 288
 289	/* csd/requeue_work/fifo_time is initialized before use */
 290	rq->q = data->q;
 291	rq->mq_ctx = data->ctx;
 292	rq->mq_hctx = data->hctx;
 293	rq->rq_flags = 0;
 294	rq->cmd_flags = data->cmd_flags;
 295	if (data->flags & BLK_MQ_REQ_PREEMPT)
 296		rq->rq_flags |= RQF_PREEMPT;
 297	if (blk_queue_io_stat(data->q))
 298		rq->rq_flags |= RQF_IO_STAT;
 299	INIT_LIST_HEAD(&rq->queuelist);
 300	INIT_HLIST_NODE(&rq->hash);
 301	RB_CLEAR_NODE(&rq->rb_node);
 302	rq->rq_disk = NULL;
 303	rq->part = NULL;
 304#ifdef CONFIG_BLK_RQ_ALLOC_TIME
 305	rq->alloc_time_ns = alloc_time_ns;
 306#endif
 307	if (blk_mq_need_time_stamp(rq))
 308		rq->start_time_ns = ktime_get_ns();
 309	else
 310		rq->start_time_ns = 0;
 311	rq->io_start_time_ns = 0;
 312	rq->stats_sectors = 0;
 313	rq->nr_phys_segments = 0;
 314#if defined(CONFIG_BLK_DEV_INTEGRITY)
 315	rq->nr_integrity_segments = 0;
 316#endif
 317	blk_crypto_rq_set_defaults(rq);
 318	/* tag was already set */
 319	WRITE_ONCE(rq->deadline, 0);
 320
 321	rq->timeout = 0;
 322
 323	rq->end_io = NULL;
 324	rq->end_io_data = NULL;
 325
 326	data->ctx->rq_dispatched[op_is_sync(data->cmd_flags)]++;
 327	refcount_set(&rq->ref, 1);
 328
 329	if (!op_is_flush(data->cmd_flags)) {
 330		struct elevator_queue *e = data->q->elevator;
 331
 332		rq->elv.icq = NULL;
 333		if (e && e->type->ops.prepare_request) {
 334			if (e->type->icq_cache)
 335				blk_mq_sched_assign_ioc(rq);
 336
 337			e->type->ops.prepare_request(rq);
 338			rq->rq_flags |= RQF_ELVPRIV;
 339		}
 340	}
 341
 342	data->hctx->queued++;
 343	return rq;
 344}
 345
 346static struct request *__blk_mq_alloc_request(struct blk_mq_alloc_data *data)
 347{
 348	struct request_queue *q = data->q;
 349	struct elevator_queue *e = q->elevator;
 350	u64 alloc_time_ns = 0;
 351	unsigned int tag;
 352
 353	/* alloc_time includes depth and tag waits */
 354	if (blk_queue_rq_alloc_time(q))
 355		alloc_time_ns = ktime_get_ns();
 356
 357	if (data->cmd_flags & REQ_NOWAIT)
 358		data->flags |= BLK_MQ_REQ_NOWAIT;
 359
 360	if (e) {
 361		/*
 362		 * Flush requests are special and go directly to the
 363		 * dispatch list. Don't include reserved tags in the
 364		 * limiting, as it isn't useful.
 365		 */
 366		if (!op_is_flush(data->cmd_flags) &&
 367		    e->type->ops.limit_depth &&
 368		    !(data->flags & BLK_MQ_REQ_RESERVED))
 369			e->type->ops.limit_depth(data->cmd_flags, data);
 370	}
 371
 372retry:
 373	data->ctx = blk_mq_get_ctx(q);
 374	data->hctx = blk_mq_map_queue(q, data->cmd_flags, data->ctx);
 375	if (!e)
 376		blk_mq_tag_busy(data->hctx);
 377
 378	/*
 379	 * Waiting allocations only fail because of an inactive hctx.  In that
 380	 * case just retry the hctx assignment and tag allocation as CPU hotplug
 381	 * should have migrated us to an online CPU by now.
 382	 */
 383	tag = blk_mq_get_tag(data);
 384	if (tag == BLK_MQ_NO_TAG) {
 385		if (data->flags & BLK_MQ_REQ_NOWAIT)
 386			return NULL;
 387
 388		/*
 389		 * Give up the CPU and sleep for a random short time to ensure
 390		 * that thread using a realtime scheduling class are migrated
 391		 * off the CPU, and thus off the hctx that is going away.
 392		 */
 393		msleep(3);
 394		goto retry;
 395	}
 396	return blk_mq_rq_ctx_init(data, tag, alloc_time_ns);
 397}
 398
 399struct request *blk_mq_alloc_request(struct request_queue *q, unsigned int op,
 400		blk_mq_req_flags_t flags)
 401{
 402	struct blk_mq_alloc_data data = {
 403		.q		= q,
 404		.flags		= flags,
 405		.cmd_flags	= op,
 406	};
 407	struct request *rq;
 408	int ret;
 409
 410	ret = blk_queue_enter(q, flags);
 411	if (ret)
 412		return ERR_PTR(ret);
 413
 414	rq = __blk_mq_alloc_request(&data);
 415	if (!rq)
 416		goto out_queue_exit;
 417	rq->__data_len = 0;
 418	rq->__sector = (sector_t) -1;
 419	rq->bio = rq->biotail = NULL;
 420	return rq;
 421out_queue_exit:
 422	blk_queue_exit(q);
 423	return ERR_PTR(-EWOULDBLOCK);
 424}
 425EXPORT_SYMBOL(blk_mq_alloc_request);
 426
 427struct request *blk_mq_alloc_request_hctx(struct request_queue *q,
 428	unsigned int op, blk_mq_req_flags_t flags, unsigned int hctx_idx)
 429{
 430	struct blk_mq_alloc_data data = {
 431		.q		= q,
 432		.flags		= flags,
 433		.cmd_flags	= op,
 434	};
 435	u64 alloc_time_ns = 0;
 436	unsigned int cpu;
 437	unsigned int tag;
 438	int ret;
 439
 440	/* alloc_time includes depth and tag waits */
 441	if (blk_queue_rq_alloc_time(q))
 442		alloc_time_ns = ktime_get_ns();
 443
 444	/*
 445	 * If the tag allocator sleeps we could get an allocation for a
 446	 * different hardware context.  No need to complicate the low level
 447	 * allocator for this for the rare use case of a command tied to
 448	 * a specific queue.
 449	 */
 450	if (WARN_ON_ONCE(!(flags & (BLK_MQ_REQ_NOWAIT | BLK_MQ_REQ_RESERVED))))
 451		return ERR_PTR(-EINVAL);
 452
 453	if (hctx_idx >= q->nr_hw_queues)
 454		return ERR_PTR(-EIO);
 455
 456	ret = blk_queue_enter(q, flags);
 457	if (ret)
 458		return ERR_PTR(ret);
 459
 460	/*
 461	 * Check if the hardware context is actually mapped to anything.
 462	 * If not tell the caller that it should skip this queue.
 463	 */
 464	ret = -EXDEV;
 465	data.hctx = q->queue_hw_ctx[hctx_idx];
 466	if (!blk_mq_hw_queue_mapped(data.hctx))
 467		goto out_queue_exit;
 468	cpu = cpumask_first_and(data.hctx->cpumask, cpu_online_mask);
 469	data.ctx = __blk_mq_get_ctx(q, cpu);
 470
 471	if (!q->elevator)
 472		blk_mq_tag_busy(data.hctx);
 473
 474	ret = -EWOULDBLOCK;
 475	tag = blk_mq_get_tag(&data);
 476	if (tag == BLK_MQ_NO_TAG)
 477		goto out_queue_exit;
 478	return blk_mq_rq_ctx_init(&data, tag, alloc_time_ns);
 479
 480out_queue_exit:
 481	blk_queue_exit(q);
 482	return ERR_PTR(ret);
 483}
 484EXPORT_SYMBOL_GPL(blk_mq_alloc_request_hctx);
 485
 486static void __blk_mq_free_request(struct request *rq)
 
 487{
 
 488	struct request_queue *q = rq->q;
 489	struct blk_mq_ctx *ctx = rq->mq_ctx;
 490	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
 491	const int sched_tag = rq->internal_tag;
 492
 493	blk_crypto_free_request(rq);
 494	blk_pm_mark_last_busy(rq);
 495	rq->mq_hctx = NULL;
 496	if (rq->tag != BLK_MQ_NO_TAG)
 497		blk_mq_put_tag(hctx->tags, ctx, rq->tag);
 498	if (sched_tag != BLK_MQ_NO_TAG)
 499		blk_mq_put_tag(hctx->sched_tags, ctx, sched_tag);
 500	blk_mq_sched_restart(hctx);
 501	blk_queue_exit(q);
 502}
 503
 504void blk_mq_free_request(struct request *rq)
 505{
 
 
 506	struct request_queue *q = rq->q;
 507	struct elevator_queue *e = q->elevator;
 508	struct blk_mq_ctx *ctx = rq->mq_ctx;
 509	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
 510
 511	if (rq->rq_flags & RQF_ELVPRIV) {
 512		if (e && e->type->ops.finish_request)
 513			e->type->ops.finish_request(rq);
 514		if (rq->elv.icq) {
 515			put_io_context(rq->elv.icq->ioc);
 516			rq->elv.icq = NULL;
 517		}
 518	}
 519
 520	ctx->rq_completed[rq_is_sync(rq)]++;
 521	if (rq->rq_flags & RQF_MQ_INFLIGHT)
 522		atomic_dec(&hctx->nr_active);
 523
 524	if (unlikely(laptop_mode && !blk_rq_is_passthrough(rq)))
 525		laptop_io_completion(q->backing_dev_info);
 526
 527	rq_qos_done(q, rq);
 528
 529	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
 530	if (refcount_dec_and_test(&rq->ref))
 531		__blk_mq_free_request(rq);
 532}
 533EXPORT_SYMBOL_GPL(blk_mq_free_request);
 534
 535inline void __blk_mq_end_request(struct request *rq, blk_status_t error)
 536{
 537	u64 now = 0;
 538
 539	if (blk_mq_need_time_stamp(rq))
 540		now = ktime_get_ns();
 541
 542	if (rq->rq_flags & RQF_STATS) {
 543		blk_mq_poll_stats_start(rq->q);
 544		blk_stat_add(rq, now);
 545	}
 546
 547	blk_mq_sched_completed_request(rq, now);
 548
 549	blk_account_io_done(rq, now);
 550
 551	if (rq->end_io) {
 552		rq_qos_done(rq->q, rq);
 553		rq->end_io(rq, error);
 554	} else {
 555		blk_mq_free_request(rq);
 556	}
 557}
 558EXPORT_SYMBOL(__blk_mq_end_request);
 559
 560void blk_mq_end_request(struct request *rq, blk_status_t error)
 561{
 562	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
 563		BUG();
 564	__blk_mq_end_request(rq, error);
 565}
 566EXPORT_SYMBOL(blk_mq_end_request);
 567
 568/*
 569 * Softirq action handler - move entries to local list and loop over them
 570 * while passing them to the queue registered handler.
 571 */
 572static __latent_entropy void blk_done_softirq(struct softirq_action *h)
 573{
 574	struct list_head *cpu_list, local_list;
 575
 576	local_irq_disable();
 577	cpu_list = this_cpu_ptr(&blk_cpu_done);
 578	list_replace_init(cpu_list, &local_list);
 579	local_irq_enable();
 580
 581	while (!list_empty(&local_list)) {
 582		struct request *rq;
 583
 584		rq = list_entry(local_list.next, struct request, ipi_list);
 585		list_del_init(&rq->ipi_list);
 586		rq->q->mq_ops->complete(rq);
 587	}
 588}
 589
 590static void blk_mq_trigger_softirq(struct request *rq)
 591{
 592	struct list_head *list;
 593	unsigned long flags;
 594
 595	local_irq_save(flags);
 596	list = this_cpu_ptr(&blk_cpu_done);
 597	list_add_tail(&rq->ipi_list, list);
 598
 599	/*
 600	 * If the list only contains our just added request, signal a raise of
 601	 * the softirq.  If there are already entries there, someone already
 602	 * raised the irq but it hasn't run yet.
 603	 */
 604	if (list->next == &rq->ipi_list)
 605		raise_softirq_irqoff(BLOCK_SOFTIRQ);
 606	local_irq_restore(flags);
 607}
 608
 609static int blk_softirq_cpu_dead(unsigned int cpu)
 610{
 611	/*
 612	 * If a CPU goes away, splice its entries to the current CPU
 613	 * and trigger a run of the softirq
 614	 */
 615	local_irq_disable();
 616	list_splice_init(&per_cpu(blk_cpu_done, cpu),
 617			 this_cpu_ptr(&blk_cpu_done));
 618	raise_softirq_irqoff(BLOCK_SOFTIRQ);
 619	local_irq_enable();
 620
 621	return 0;
 622}
 623
 624
 625static void __blk_mq_complete_request_remote(void *data)
 626{
 627	struct request *rq = data;
 628
 629	/*
 630	 * For most of single queue controllers, there is only one irq vector
 631	 * for handling I/O completion, and the only irq's affinity is set
 632	 * to all possible CPUs.  On most of ARCHs, this affinity means the irq
 633	 * is handled on one specific CPU.
 634	 *
 635	 * So complete I/O requests in softirq context in case of single queue
 636	 * devices to avoid degrading I/O performance due to irqsoff latency.
 637	 */
 638	if (rq->q->nr_hw_queues == 1)
 639		blk_mq_trigger_softirq(rq);
 640	else
 641		rq->q->mq_ops->complete(rq);
 642}
 643
 644static inline bool blk_mq_complete_need_ipi(struct request *rq)
 645{
 646	int cpu = raw_smp_processor_id();
 647
 648	if (!IS_ENABLED(CONFIG_SMP) ||
 649	    !test_bit(QUEUE_FLAG_SAME_COMP, &rq->q->queue_flags))
 650		return false;
 651
 652	/* same CPU or cache domain?  Complete locally */
 653	if (cpu == rq->mq_ctx->cpu ||
 654	    (!test_bit(QUEUE_FLAG_SAME_FORCE, &rq->q->queue_flags) &&
 655	     cpus_share_cache(cpu, rq->mq_ctx->cpu)))
 656		return false;
 657
 658	/* don't try to IPI to an offline CPU */
 659	return cpu_online(rq->mq_ctx->cpu);
 660}
 661
 662bool blk_mq_complete_request_remote(struct request *rq)
 663{
 664	WRITE_ONCE(rq->state, MQ_RQ_COMPLETE);
 
 665
 666	/*
 667	 * For a polled request, always complete locallly, it's pointless
 668	 * to redirect the completion.
 669	 */
 670	if (rq->cmd_flags & REQ_HIPRI)
 671		return false;
 672
 673	if (blk_mq_complete_need_ipi(rq)) {
 
 674		rq->csd.func = __blk_mq_complete_request_remote;
 675		rq->csd.info = rq;
 676		rq->csd.flags = 0;
 677		smp_call_function_single_async(rq->mq_ctx->cpu, &rq->csd);
 678	} else {
 679		if (rq->q->nr_hw_queues > 1)
 680			return false;
 681		blk_mq_trigger_softirq(rq);
 682	}
 683
 684	return true;
 685}
 686EXPORT_SYMBOL_GPL(blk_mq_complete_request_remote);
 687
 688/**
 689 * blk_mq_complete_request - end I/O on a request
 690 * @rq:		the request being processed
 691 *
 692 * Description:
 693 *	Complete a request by scheduling the ->complete_rq operation.
 
 694 **/
 695void blk_mq_complete_request(struct request *rq)
 696{
 697	if (!blk_mq_complete_request_remote(rq))
 698		rq->q->mq_ops->complete(rq);
 
 
 699}
 700EXPORT_SYMBOL(blk_mq_complete_request);
 701
 702static void hctx_unlock(struct blk_mq_hw_ctx *hctx, int srcu_idx)
 703	__releases(hctx->srcu)
 704{
 705	if (!(hctx->flags & BLK_MQ_F_BLOCKING))
 706		rcu_read_unlock();
 707	else
 708		srcu_read_unlock(hctx->srcu, srcu_idx);
 709}
 710
 711static void hctx_lock(struct blk_mq_hw_ctx *hctx, int *srcu_idx)
 712	__acquires(hctx->srcu)
 713{
 714	if (!(hctx->flags & BLK_MQ_F_BLOCKING)) {
 715		/* shut up gcc false positive */
 716		*srcu_idx = 0;
 717		rcu_read_lock();
 718	} else
 719		*srcu_idx = srcu_read_lock(hctx->srcu);
 720}
 721
 722/**
 723 * blk_mq_start_request - Start processing a request
 724 * @rq: Pointer to request to be started
 725 *
 726 * Function used by device drivers to notify the block layer that a request
 727 * is going to be processed now, so blk layer can do proper initializations
 728 * such as starting the timeout timer.
 729 */
 730void blk_mq_start_request(struct request *rq)
 731{
 732	struct request_queue *q = rq->q;
 733
 734	trace_block_rq_issue(q, rq);
 735
 736	if (test_bit(QUEUE_FLAG_STATS, &q->queue_flags)) {
 737		rq->io_start_time_ns = ktime_get_ns();
 738		rq->stats_sectors = blk_rq_sectors(rq);
 739		rq->rq_flags |= RQF_STATS;
 740		rq_qos_issue(q, rq);
 741	}
 742
 743	WARN_ON_ONCE(blk_mq_rq_state(rq) != MQ_RQ_IDLE);
 744
 745	blk_add_timer(rq);
 746	WRITE_ONCE(rq->state, MQ_RQ_IN_FLIGHT);
 747
 748#ifdef CONFIG_BLK_DEV_INTEGRITY
 749	if (blk_integrity_rq(rq) && req_op(rq) == REQ_OP_WRITE)
 750		q->integrity.profile->prepare_fn(rq);
 751#endif
 752}
 753EXPORT_SYMBOL(blk_mq_start_request);
 754
 755static void __blk_mq_requeue_request(struct request *rq)
 756{
 757	struct request_queue *q = rq->q;
 758
 759	blk_mq_put_driver_tag(rq);
 760
 761	trace_block_rq_requeue(q, rq);
 762	rq_qos_requeue(q, rq);
 763
 764	if (blk_mq_request_started(rq)) {
 765		WRITE_ONCE(rq->state, MQ_RQ_IDLE);
 766		rq->rq_flags &= ~RQF_TIMED_OUT;
 767	}
 768}
 769
 770void blk_mq_requeue_request(struct request *rq, bool kick_requeue_list)
 771{
 772	__blk_mq_requeue_request(rq);
 773
 774	/* this request will be re-inserted to io scheduler queue */
 775	blk_mq_sched_requeue_request(rq);
 776
 777	BUG_ON(!list_empty(&rq->queuelist));
 778	blk_mq_add_to_requeue_list(rq, true, kick_requeue_list);
 779}
 780EXPORT_SYMBOL(blk_mq_requeue_request);
 781
 782static void blk_mq_requeue_work(struct work_struct *work)
 783{
 784	struct request_queue *q =
 785		container_of(work, struct request_queue, requeue_work.work);
 786	LIST_HEAD(rq_list);
 787	struct request *rq, *next;
 788
 789	spin_lock_irq(&q->requeue_lock);
 790	list_splice_init(&q->requeue_list, &rq_list);
 791	spin_unlock_irq(&q->requeue_lock);
 792
 793	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
 794		if (!(rq->rq_flags & (RQF_SOFTBARRIER | RQF_DONTPREP)))
 795			continue;
 796
 797		rq->rq_flags &= ~RQF_SOFTBARRIER;
 798		list_del_init(&rq->queuelist);
 799		/*
 800		 * If RQF_DONTPREP, rq has contained some driver specific
 801		 * data, so insert it to hctx dispatch list to avoid any
 802		 * merge.
 803		 */
 804		if (rq->rq_flags & RQF_DONTPREP)
 805			blk_mq_request_bypass_insert(rq, false, false);
 806		else
 807			blk_mq_sched_insert_request(rq, true, false, false);
 808	}
 809
 810	while (!list_empty(&rq_list)) {
 811		rq = list_entry(rq_list.next, struct request, queuelist);
 812		list_del_init(&rq->queuelist);
 813		blk_mq_sched_insert_request(rq, false, false, false);
 814	}
 815
 816	blk_mq_run_hw_queues(q, false);
 
 
 817}
 818
 819void blk_mq_add_to_requeue_list(struct request *rq, bool at_head,
 820				bool kick_requeue_list)
 821{
 822	struct request_queue *q = rq->q;
 823	unsigned long flags;
 824
 825	/*
 826	 * We abuse this flag that is otherwise used by the I/O scheduler to
 827	 * request head insertion from the workqueue.
 828	 */
 829	BUG_ON(rq->rq_flags & RQF_SOFTBARRIER);
 830
 831	spin_lock_irqsave(&q->requeue_lock, flags);
 832	if (at_head) {
 833		rq->rq_flags |= RQF_SOFTBARRIER;
 834		list_add(&rq->queuelist, &q->requeue_list);
 835	} else {
 836		list_add_tail(&rq->queuelist, &q->requeue_list);
 837	}
 838	spin_unlock_irqrestore(&q->requeue_lock, flags);
 839
 840	if (kick_requeue_list)
 841		blk_mq_kick_requeue_list(q);
 842}
 843
 844void blk_mq_kick_requeue_list(struct request_queue *q)
 845{
 846	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work, 0);
 847}
 848EXPORT_SYMBOL(blk_mq_kick_requeue_list);
 849
 850void blk_mq_delay_kick_requeue_list(struct request_queue *q,
 851				    unsigned long msecs)
 852{
 853	kblockd_mod_delayed_work_on(WORK_CPU_UNBOUND, &q->requeue_work,
 854				    msecs_to_jiffies(msecs));
 855}
 856EXPORT_SYMBOL(blk_mq_delay_kick_requeue_list);
 857
 858struct request *blk_mq_tag_to_rq(struct blk_mq_tags *tags, unsigned int tag)
 859{
 860	if (tag < tags->nr_tags) {
 861		prefetch(tags->rqs[tag]);
 862		return tags->rqs[tag];
 863	}
 864
 865	return NULL;
 866}
 867EXPORT_SYMBOL(blk_mq_tag_to_rq);
 868
 869static bool blk_mq_rq_inflight(struct blk_mq_hw_ctx *hctx, struct request *rq,
 870			       void *priv, bool reserved)
 871{
 872	/*
 873	 * If we find a request that isn't idle and the queue matches,
 874	 * we know the queue is busy. Return false to stop the iteration.
 875	 */
 876	if (blk_mq_request_started(rq) && rq->q == hctx->queue) {
 877		bool *busy = priv;
 
 878
 879		*busy = true;
 880		return false;
 881	}
 882
 883	return true;
 884}
 885
 886bool blk_mq_queue_inflight(struct request_queue *q)
 887{
 888	bool busy = false;
 889
 890	blk_mq_queue_tag_busy_iter(q, blk_mq_rq_inflight, &busy);
 891	return busy;
 892}
 893EXPORT_SYMBOL_GPL(blk_mq_queue_inflight);
 894
 895static void blk_mq_rq_timed_out(struct request *req, bool reserved)
 896{
 897	req->rq_flags |= RQF_TIMED_OUT;
 898	if (req->q->mq_ops->timeout) {
 899		enum blk_eh_timer_return ret;
 900
 901		ret = req->q->mq_ops->timeout(req, reserved);
 902		if (ret == BLK_EH_DONE)
 903			return;
 904		WARN_ON_ONCE(ret != BLK_EH_RESET_TIMER);
 905	}
 906
 907	blk_add_timer(req);
 908}
 909
 910static bool blk_mq_req_expired(struct request *rq, unsigned long *next)
 911{
 912	unsigned long deadline;
 913
 914	if (blk_mq_rq_state(rq) != MQ_RQ_IN_FLIGHT)
 915		return false;
 916	if (rq->rq_flags & RQF_TIMED_OUT)
 917		return false;
 918
 919	deadline = READ_ONCE(rq->deadline);
 920	if (time_after_eq(jiffies, deadline))
 921		return true;
 922
 923	if (*next == 0)
 924		*next = deadline;
 925	else if (time_after(*next, deadline))
 926		*next = deadline;
 927	return false;
 928}
 929
 930static bool blk_mq_check_expired(struct blk_mq_hw_ctx *hctx,
 931		struct request *rq, void *priv, bool reserved)
 932{
 933	unsigned long *next = priv;
 934
 935	/*
 936	 * Just do a quick check if it is expired before locking the request in
 937	 * so we're not unnecessarilly synchronizing across CPUs.
 938	 */
 939	if (!blk_mq_req_expired(rq, next))
 940		return true;
 941
 942	/*
 943	 * We have reason to believe the request may be expired. Take a
 944	 * reference on the request to lock this request lifetime into its
 945	 * currently allocated context to prevent it from being reallocated in
 946	 * the event the completion by-passes this timeout handler.
 947	 *
 948	 * If the reference was already released, then the driver beat the
 949	 * timeout handler to posting a natural completion.
 950	 */
 951	if (!refcount_inc_not_zero(&rq->ref))
 952		return true;
 953
 954	/*
 955	 * The request is now locked and cannot be reallocated underneath the
 956	 * timeout handler's processing. Re-verify this exact request is truly
 957	 * expired; if it is not expired, then the request was completed and
 958	 * reallocated as a new request.
 959	 */
 960	if (blk_mq_req_expired(rq, next))
 961		blk_mq_rq_timed_out(rq, reserved);
 962
 963	if (is_flush_rq(rq, hctx))
 964		rq->end_io(rq, 0);
 965	else if (refcount_dec_and_test(&rq->ref))
 966		__blk_mq_free_request(rq);
 967
 968	return true;
 969}
 970
 971static void blk_mq_timeout_work(struct work_struct *work)
 972{
 973	struct request_queue *q =
 974		container_of(work, struct request_queue, timeout_work);
 975	unsigned long next = 0;
 976	struct blk_mq_hw_ctx *hctx;
 977	int i;
 978
 979	/* A deadlock might occur if a request is stuck requiring a
 980	 * timeout at the same time a queue freeze is waiting
 981	 * completion, since the timeout code would not be able to
 982	 * acquire the queue reference here.
 983	 *
 984	 * That's why we don't use blk_queue_enter here; instead, we use
 985	 * percpu_ref_tryget directly, because we need to be able to
 986	 * obtain a reference even in the short window between the queue
 987	 * starting to freeze, by dropping the first reference in
 988	 * blk_freeze_queue_start, and the moment the last request is
 989	 * consumed, marked by the instant q_usage_counter reaches
 990	 * zero.
 991	 */
 992	if (!percpu_ref_tryget(&q->q_usage_counter))
 993		return;
 994
 995	blk_mq_queue_tag_busy_iter(q, blk_mq_check_expired, &next);
 996
 997	if (next != 0) {
 998		mod_timer(&q->timeout, next);
 999	} else {
1000		/*
1001		 * Request timeouts are handled as a forward rolling timer. If
1002		 * we end up here it means that no requests are pending and
1003		 * also that no request has been pending for a while. Mark
1004		 * each hctx as idle.
1005		 */
1006		queue_for_each_hw_ctx(q, hctx, i) {
1007			/* the hctx may be unmapped, so check it here */
1008			if (blk_mq_hw_queue_mapped(hctx))
1009				blk_mq_tag_idle(hctx);
1010		}
1011	}
1012	blk_queue_exit(q);
1013}
1014
1015struct flush_busy_ctx_data {
1016	struct blk_mq_hw_ctx *hctx;
1017	struct list_head *list;
1018};
1019
1020static bool flush_busy_ctx(struct sbitmap *sb, unsigned int bitnr, void *data)
1021{
1022	struct flush_busy_ctx_data *flush_data = data;
1023	struct blk_mq_hw_ctx *hctx = flush_data->hctx;
1024	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1025	enum hctx_type type = hctx->type;
1026
1027	spin_lock(&ctx->lock);
1028	list_splice_tail_init(&ctx->rq_lists[type], flush_data->list);
1029	sbitmap_clear_bit(sb, bitnr);
1030	spin_unlock(&ctx->lock);
1031	return true;
1032}
1033
1034/*
1035 * Process software queues that have been marked busy, splicing them
1036 * to the for-dispatch
 
1037 */
1038void blk_mq_flush_busy_ctxs(struct blk_mq_hw_ctx *hctx, struct list_head *list)
 
1039{
1040	struct flush_busy_ctx_data data = {
1041		.hctx = hctx,
1042		.list = list,
1043	};
1044
1045	sbitmap_for_each_set(&hctx->ctx_map, flush_busy_ctx, &data);
1046}
1047EXPORT_SYMBOL_GPL(blk_mq_flush_busy_ctxs);
1048
1049struct dispatch_rq_data {
1050	struct blk_mq_hw_ctx *hctx;
1051	struct request *rq;
1052};
1053
1054static bool dispatch_rq_from_ctx(struct sbitmap *sb, unsigned int bitnr,
1055		void *data)
1056{
1057	struct dispatch_rq_data *dispatch_data = data;
1058	struct blk_mq_hw_ctx *hctx = dispatch_data->hctx;
1059	struct blk_mq_ctx *ctx = hctx->ctxs[bitnr];
1060	enum hctx_type type = hctx->type;
1061
1062	spin_lock(&ctx->lock);
1063	if (!list_empty(&ctx->rq_lists[type])) {
1064		dispatch_data->rq = list_entry_rq(ctx->rq_lists[type].next);
1065		list_del_init(&dispatch_data->rq->queuelist);
1066		if (list_empty(&ctx->rq_lists[type]))
1067			sbitmap_clear_bit(sb, bitnr);
1068	}
1069	spin_unlock(&ctx->lock);
1070
1071	return !dispatch_data->rq;
1072}
1073
1074struct request *blk_mq_dequeue_from_ctx(struct blk_mq_hw_ctx *hctx,
1075					struct blk_mq_ctx *start)
1076{
1077	unsigned off = start ? start->index_hw[hctx->type] : 0;
1078	struct dispatch_rq_data data = {
1079		.hctx = hctx,
1080		.rq   = NULL,
1081	};
1082
1083	__sbitmap_for_each_set(&hctx->ctx_map, off,
1084			       dispatch_rq_from_ctx, &data);
1085
1086	return data.rq;
1087}
1088
1089static inline unsigned int queued_to_index(unsigned int queued)
1090{
1091	if (!queued)
1092		return 0;
1093
1094	return min(BLK_MQ_MAX_DISPATCH_ORDER - 1, ilog2(queued) + 1);
1095}
1096
1097static bool __blk_mq_get_driver_tag(struct request *rq)
1098{
1099	struct sbitmap_queue *bt = &rq->mq_hctx->tags->bitmap_tags;
1100	unsigned int tag_offset = rq->mq_hctx->tags->nr_reserved_tags;
1101	int tag;
1102
1103	blk_mq_tag_busy(rq->mq_hctx);
1104
1105	if (blk_mq_tag_is_reserved(rq->mq_hctx->sched_tags, rq->internal_tag)) {
1106		bt = &rq->mq_hctx->tags->breserved_tags;
1107		tag_offset = 0;
1108	}
1109
1110	if (!hctx_may_queue(rq->mq_hctx, bt))
1111		return false;
1112	tag = __sbitmap_queue_get(bt);
1113	if (tag == BLK_MQ_NO_TAG)
1114		return false;
1115
1116	rq->tag = tag + tag_offset;
1117	return true;
1118}
1119
1120static bool blk_mq_get_driver_tag(struct request *rq)
1121{
1122	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1123
1124	if (rq->tag == BLK_MQ_NO_TAG && !__blk_mq_get_driver_tag(rq))
1125		return false;
1126
1127	if ((hctx->flags & BLK_MQ_F_TAG_SHARED) &&
1128			!(rq->rq_flags & RQF_MQ_INFLIGHT)) {
1129		rq->rq_flags |= RQF_MQ_INFLIGHT;
1130		atomic_inc(&hctx->nr_active);
1131	}
1132	hctx->tags->rqs[rq->tag] = rq;
1133	return true;
1134}
1135
1136static int blk_mq_dispatch_wake(wait_queue_entry_t *wait, unsigned mode,
1137				int flags, void *key)
1138{
1139	struct blk_mq_hw_ctx *hctx;
1140
1141	hctx = container_of(wait, struct blk_mq_hw_ctx, dispatch_wait);
1142
1143	spin_lock(&hctx->dispatch_wait_lock);
1144	if (!list_empty(&wait->entry)) {
1145		struct sbitmap_queue *sbq;
1146
1147		list_del_init(&wait->entry);
1148		sbq = &hctx->tags->bitmap_tags;
1149		atomic_dec(&sbq->ws_active);
1150	}
1151	spin_unlock(&hctx->dispatch_wait_lock);
1152
1153	blk_mq_run_hw_queue(hctx, true);
1154	return 1;
1155}
1156
1157/*
1158 * Mark us waiting for a tag. For shared tags, this involves hooking us into
1159 * the tag wakeups. For non-shared tags, we can simply mark us needing a
1160 * restart. For both cases, take care to check the condition again after
1161 * marking us as waiting.
1162 */
1163static bool blk_mq_mark_tag_wait(struct blk_mq_hw_ctx *hctx,
1164				 struct request *rq)
1165{
1166	struct sbitmap_queue *sbq = &hctx->tags->bitmap_tags;
1167	struct wait_queue_head *wq;
1168	wait_queue_entry_t *wait;
1169	bool ret;
 
1170
1171	if (!(hctx->flags & BLK_MQ_F_TAG_SHARED)) {
1172		blk_mq_sched_mark_restart_hctx(hctx);
1173
1174		/*
1175		 * It's possible that a tag was freed in the window between the
1176		 * allocation failure and adding the hardware queue to the wait
1177		 * queue.
1178		 *
1179		 * Don't clear RESTART here, someone else could have set it.
1180		 * At most this will cost an extra queue run.
1181		 */
1182		return blk_mq_get_driver_tag(rq);
1183	}
1184
1185	wait = &hctx->dispatch_wait;
1186	if (!list_empty_careful(&wait->entry))
1187		return false;
1188
1189	wq = &bt_wait_ptr(sbq, hctx)->wait;
 
 
 
 
 
 
1190
1191	spin_lock_irq(&wq->lock);
1192	spin_lock(&hctx->dispatch_wait_lock);
1193	if (!list_empty(&wait->entry)) {
1194		spin_unlock(&hctx->dispatch_wait_lock);
1195		spin_unlock_irq(&wq->lock);
1196		return false;
1197	}
1198
1199	atomic_inc(&sbq->ws_active);
1200	wait->flags &= ~WQ_FLAG_EXCLUSIVE;
1201	__add_wait_queue(wq, wait);
1202
1203	/*
1204	 * It's possible that a tag was freed in the window between the
1205	 * allocation failure and adding the hardware queue to the wait
1206	 * queue.
1207	 */
1208	ret = blk_mq_get_driver_tag(rq);
1209	if (!ret) {
1210		spin_unlock(&hctx->dispatch_wait_lock);
1211		spin_unlock_irq(&wq->lock);
1212		return false;
1213	}
1214
1215	/*
1216	 * We got a tag, remove ourselves from the wait queue to ensure
1217	 * someone else gets the wakeup.
1218	 */
1219	list_del_init(&wait->entry);
1220	atomic_dec(&sbq->ws_active);
1221	spin_unlock(&hctx->dispatch_wait_lock);
1222	spin_unlock_irq(&wq->lock);
1223
1224	return true;
1225}
1226
1227#define BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT  8
1228#define BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR  4
1229/*
1230 * Update dispatch busy with the Exponential Weighted Moving Average(EWMA):
1231 * - EWMA is one simple way to compute running average value
1232 * - weight(7/8 and 1/8) is applied so that it can decrease exponentially
1233 * - take 4 as factor for avoiding to get too small(0) result, and this
1234 *   factor doesn't matter because EWMA decreases exponentially
1235 */
1236static void blk_mq_update_dispatch_busy(struct blk_mq_hw_ctx *hctx, bool busy)
1237{
1238	unsigned int ewma;
1239
1240	if (hctx->queue->elevator)
1241		return;
1242
1243	ewma = hctx->dispatch_busy;
1244
1245	if (!ewma && !busy)
1246		return;
1247
1248	ewma *= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT - 1;
1249	if (busy)
1250		ewma += 1 << BLK_MQ_DISPATCH_BUSY_EWMA_FACTOR;
1251	ewma /= BLK_MQ_DISPATCH_BUSY_EWMA_WEIGHT;
1252
1253	hctx->dispatch_busy = ewma;
1254}
1255
1256#define BLK_MQ_RESOURCE_DELAY	3		/* ms units */
1257
1258static void blk_mq_handle_dev_resource(struct request *rq,
1259				       struct list_head *list)
1260{
1261	struct request *next =
1262		list_first_entry_or_null(list, struct request, queuelist);
1263
1264	/*
1265	 * If an I/O scheduler has been configured and we got a driver tag for
1266	 * the next request already, free it.
1267	 */
1268	if (next)
1269		blk_mq_put_driver_tag(next);
1270
1271	list_add(&rq->queuelist, list);
1272	__blk_mq_requeue_request(rq);
1273}
1274
1275static void blk_mq_handle_zone_resource(struct request *rq,
1276					struct list_head *zone_list)
1277{
1278	/*
1279	 * If we end up here it is because we cannot dispatch a request to a
1280	 * specific zone due to LLD level zone-write locking or other zone
1281	 * related resource not being available. In this case, set the request
1282	 * aside in zone_list for retrying it later.
1283	 */
1284	list_add(&rq->queuelist, zone_list);
1285	__blk_mq_requeue_request(rq);
1286}
1287
1288enum prep_dispatch {
1289	PREP_DISPATCH_OK,
1290	PREP_DISPATCH_NO_TAG,
1291	PREP_DISPATCH_NO_BUDGET,
1292};
1293
1294static enum prep_dispatch blk_mq_prep_dispatch_rq(struct request *rq,
1295						  bool need_budget)
1296{
1297	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1298
1299	if (need_budget && !blk_mq_get_dispatch_budget(rq->q)) {
1300		blk_mq_put_driver_tag(rq);
1301		return PREP_DISPATCH_NO_BUDGET;
1302	}
1303
1304	if (!blk_mq_get_driver_tag(rq)) {
1305		/*
1306		 * The initial allocation attempt failed, so we need to
1307		 * rerun the hardware queue when a tag is freed. The
1308		 * waitqueue takes care of that. If the queue is run
1309		 * before we add this entry back on the dispatch list,
1310		 * we'll re-run it below.
1311		 */
1312		if (!blk_mq_mark_tag_wait(hctx, rq)) {
1313			/*
1314			 * All budgets not got from this function will be put
1315			 * together during handling partial dispatch
1316			 */
1317			if (need_budget)
1318				blk_mq_put_dispatch_budget(rq->q);
1319			return PREP_DISPATCH_NO_TAG;
1320		}
1321	}
1322
1323	return PREP_DISPATCH_OK;
1324}
1325
1326/* release all allocated budgets before calling to blk_mq_dispatch_rq_list */
1327static void blk_mq_release_budgets(struct request_queue *q,
1328		unsigned int nr_budgets)
1329{
1330	int i;
1331
1332	for (i = 0; i < nr_budgets; i++)
1333		blk_mq_put_dispatch_budget(q);
1334}
1335
1336/*
1337 * Returns true if we did some work AND can potentially do more.
1338 */
1339bool blk_mq_dispatch_rq_list(struct blk_mq_hw_ctx *hctx, struct list_head *list,
1340			     unsigned int nr_budgets)
1341{
1342	enum prep_dispatch prep;
1343	struct request_queue *q = hctx->queue;
1344	struct request *rq, *nxt;
1345	int errors, queued;
1346	blk_status_t ret = BLK_STS_OK;
1347	LIST_HEAD(zone_list);
1348
1349	if (list_empty(list))
1350		return false;
1351
1352	/*
1353	 * Now process all the entries, sending them to the driver.
1354	 */
1355	errors = queued = 0;
1356	do {
1357		struct blk_mq_queue_data bd;
1358
1359		rq = list_first_entry(list, struct request, queuelist);
1360
1361		WARN_ON_ONCE(hctx != rq->mq_hctx);
1362		prep = blk_mq_prep_dispatch_rq(rq, !nr_budgets);
1363		if (prep != PREP_DISPATCH_OK)
1364			break;
1365
 
1366		list_del_init(&rq->queuelist);
1367
1368		bd.rq = rq;
1369
1370		/*
1371		 * Flag last if we have no more requests, or if we have more
1372		 * but can't assign a driver tag to it.
1373		 */
1374		if (list_empty(list))
1375			bd.last = true;
1376		else {
1377			nxt = list_first_entry(list, struct request, queuelist);
1378			bd.last = !blk_mq_get_driver_tag(nxt);
1379		}
1380
1381		/*
1382		 * once the request is queued to lld, no need to cover the
1383		 * budget any more
1384		 */
1385		if (nr_budgets)
1386			nr_budgets--;
1387		ret = q->mq_ops->queue_rq(hctx, &bd);
1388		switch (ret) {
1389		case BLK_STS_OK:
1390			queued++;
1391			break;
1392		case BLK_STS_RESOURCE:
1393		case BLK_STS_DEV_RESOURCE:
1394			blk_mq_handle_dev_resource(rq, list);
1395			goto out;
1396		case BLK_STS_ZONE_RESOURCE:
1397			/*
1398			 * Move the request to zone_list and keep going through
1399			 * the dispatch list to find more requests the drive can
1400			 * accept.
1401			 */
1402			blk_mq_handle_zone_resource(rq, &zone_list);
 
1403			break;
1404		default:
1405			errors++;
1406			blk_mq_end_request(rq, BLK_STS_IOERR);
 
 
 
1407		}
1408	} while (!list_empty(list));
1409out:
1410	if (!list_empty(&zone_list))
1411		list_splice_tail_init(&zone_list, list);
1412
1413	hctx->dispatched[queued_to_index(queued)]++;
 
 
 
 
 
 
 
1414
1415	/* If we didn't flush the entire list, we could have told the driver
1416	 * there was more coming, but that turned out to be a lie.
1417	 */
1418	if ((!list_empty(list) || errors) && q->mq_ops->commit_rqs && queued)
1419		q->mq_ops->commit_rqs(hctx);
1420	/*
1421	 * Any items that need requeuing? Stuff them into hctx->dispatch,
1422	 * that is where we will continue on next queue run.
1423	 */
1424	if (!list_empty(list)) {
1425		bool needs_restart;
1426		/* For non-shared tags, the RESTART check will suffice */
1427		bool no_tag = prep == PREP_DISPATCH_NO_TAG &&
1428                        (hctx->flags & BLK_MQ_F_TAG_SHARED);
1429		bool no_budget_avail = prep == PREP_DISPATCH_NO_BUDGET;
1430
1431		blk_mq_release_budgets(q, nr_budgets);
1432
1433		spin_lock(&hctx->lock);
1434		list_splice_tail_init(list, &hctx->dispatch);
1435		spin_unlock(&hctx->lock);
1436
1437		/*
1438		 * Order adding requests to hctx->dispatch and checking
1439		 * SCHED_RESTART flag. The pair of this smp_mb() is the one
1440		 * in blk_mq_sched_restart(). Avoid restart code path to
1441		 * miss the new added requests to hctx->dispatch, meantime
1442		 * SCHED_RESTART is observed here.
1443		 */
1444		smp_mb();
1445
1446		/*
1447		 * If SCHED_RESTART was set by the caller of this function and
1448		 * it is no longer set that means that it was cleared by another
1449		 * thread and hence that a queue rerun is needed.
1450		 *
1451		 * If 'no_tag' is set, that means that we failed getting
1452		 * a driver tag with an I/O scheduler attached. If our dispatch
1453		 * waitqueue is no longer active, ensure that we run the queue
1454		 * AFTER adding our entries back to the list.
1455		 *
1456		 * If no I/O scheduler has been configured it is possible that
1457		 * the hardware queue got stopped and restarted before requests
1458		 * were pushed back onto the dispatch list. Rerun the queue to
1459		 * avoid starvation. Notes:
1460		 * - blk_mq_run_hw_queue() checks whether or not a queue has
1461		 *   been stopped before rerunning a queue.
1462		 * - Some but not all block drivers stop a queue before
1463		 *   returning BLK_STS_RESOURCE. Two exceptions are scsi-mq
1464		 *   and dm-rq.
1465		 *
1466		 * If driver returns BLK_STS_RESOURCE and SCHED_RESTART
1467		 * bit is set, run queue after a delay to avoid IO stalls
1468		 * that could otherwise occur if the queue is idle.  We'll do
1469		 * similar if we couldn't get budget and SCHED_RESTART is set.
1470		 */
1471		needs_restart = blk_mq_sched_needs_restart(hctx);
1472		if (!needs_restart ||
1473		    (no_tag && list_empty_careful(&hctx->dispatch_wait.entry)))
1474			blk_mq_run_hw_queue(hctx, true);
1475		else if (needs_restart && (ret == BLK_STS_RESOURCE ||
1476					   no_budget_avail))
1477			blk_mq_delay_run_hw_queue(hctx, BLK_MQ_RESOURCE_DELAY);
1478
1479		blk_mq_update_dispatch_busy(hctx, true);
1480		return false;
1481	} else
1482		blk_mq_update_dispatch_busy(hctx, false);
1483
1484	return (queued + errors) != 0;
1485}
1486
1487/**
1488 * __blk_mq_run_hw_queue - Run a hardware queue.
1489 * @hctx: Pointer to the hardware queue to run.
1490 *
1491 * Send pending requests to the hardware.
1492 */
1493static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
1494{
1495	int srcu_idx;
1496
1497	/*
1498	 * We should be running this queue from one of the CPUs that
1499	 * are mapped to it.
1500	 *
1501	 * There are at least two related races now between setting
1502	 * hctx->next_cpu from blk_mq_hctx_next_cpu() and running
1503	 * __blk_mq_run_hw_queue():
1504	 *
1505	 * - hctx->next_cpu is found offline in blk_mq_hctx_next_cpu(),
1506	 *   but later it becomes online, then this warning is harmless
1507	 *   at all
1508	 *
1509	 * - hctx->next_cpu is found online in blk_mq_hctx_next_cpu(),
1510	 *   but later it becomes offline, then the warning can't be
1511	 *   triggered, and we depend on blk-mq timeout handler to
1512	 *   handle dispatched requests to this hctx
1513	 */
1514	if (!cpumask_test_cpu(raw_smp_processor_id(), hctx->cpumask) &&
1515		cpu_online(hctx->next_cpu)) {
1516		printk(KERN_WARNING "run queue from wrong CPU %d, hctx %s\n",
1517			raw_smp_processor_id(),
1518			cpumask_empty(hctx->cpumask) ? "inactive": "active");
1519		dump_stack();
1520	}
1521
1522	/*
1523	 * We can't run the queue inline with ints disabled. Ensure that
1524	 * we catch bad users of this early.
1525	 */
1526	WARN_ON_ONCE(in_interrupt());
1527
1528	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
1529
1530	hctx_lock(hctx, &srcu_idx);
1531	blk_mq_sched_dispatch_requests(hctx);
1532	hctx_unlock(hctx, srcu_idx);
1533}
1534
1535static inline int blk_mq_first_mapped_cpu(struct blk_mq_hw_ctx *hctx)
1536{
1537	int cpu = cpumask_first_and(hctx->cpumask, cpu_online_mask);
1538
1539	if (cpu >= nr_cpu_ids)
1540		cpu = cpumask_first(hctx->cpumask);
1541	return cpu;
1542}
1543
1544/*
1545 * It'd be great if the workqueue API had a way to pass
1546 * in a mask and had some smarts for more clever placement.
1547 * For now we just round-robin here, switching for every
1548 * BLK_MQ_CPU_WORK_BATCH queued items.
1549 */
1550static int blk_mq_hctx_next_cpu(struct blk_mq_hw_ctx *hctx)
1551{
1552	bool tried = false;
1553	int next_cpu = hctx->next_cpu;
1554
1555	if (hctx->queue->nr_hw_queues == 1)
1556		return WORK_CPU_UNBOUND;
1557
1558	if (--hctx->next_cpu_batch <= 0) {
1559select_cpu:
1560		next_cpu = cpumask_next_and(next_cpu, hctx->cpumask,
1561				cpu_online_mask);
1562		if (next_cpu >= nr_cpu_ids)
1563			next_cpu = blk_mq_first_mapped_cpu(hctx);
1564		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
1565	}
1566
1567	/*
1568	 * Do unbound schedule if we can't find a online CPU for this hctx,
1569	 * and it should only happen in the path of handling CPU DEAD.
1570	 */
1571	if (!cpu_online(next_cpu)) {
1572		if (!tried) {
1573			tried = true;
1574			goto select_cpu;
1575		}
1576
1577		/*
1578		 * Make sure to re-select CPU next time once after CPUs
1579		 * in hctx->cpumask become online again.
1580		 */
1581		hctx->next_cpu = next_cpu;
1582		hctx->next_cpu_batch = 1;
1583		return WORK_CPU_UNBOUND;
1584	}
1585
1586	hctx->next_cpu = next_cpu;
1587	return next_cpu;
1588}
1589
1590/**
1591 * __blk_mq_delay_run_hw_queue - Run (or schedule to run) a hardware queue.
1592 * @hctx: Pointer to the hardware queue to run.
1593 * @async: If we want to run the queue asynchronously.
1594 * @msecs: Microseconds of delay to wait before running the queue.
1595 *
1596 * If !@async, try to run the queue now. Else, run the queue asynchronously and
1597 * with a delay of @msecs.
1598 */
1599static void __blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async,
1600					unsigned long msecs)
1601{
1602	if (unlikely(blk_mq_hctx_stopped(hctx)))
1603		return;
1604
1605	if (!async && !(hctx->flags & BLK_MQ_F_BLOCKING)) {
1606		int cpu = get_cpu();
1607		if (cpumask_test_cpu(cpu, hctx->cpumask)) {
1608			__blk_mq_run_hw_queue(hctx);
1609			put_cpu();
1610			return;
1611		}
1612
1613		put_cpu();
1614	}
1615
1616	kblockd_mod_delayed_work_on(blk_mq_hctx_next_cpu(hctx), &hctx->run_work,
1617				    msecs_to_jiffies(msecs));
1618}
1619
1620/**
1621 * blk_mq_delay_run_hw_queue - Run a hardware queue asynchronously.
1622 * @hctx: Pointer to the hardware queue to run.
1623 * @msecs: Microseconds of delay to wait before running the queue.
1624 *
1625 * Run a hardware queue asynchronously with a delay of @msecs.
1626 */
1627void blk_mq_delay_run_hw_queue(struct blk_mq_hw_ctx *hctx, unsigned long msecs)
1628{
1629	__blk_mq_delay_run_hw_queue(hctx, true, msecs);
1630}
1631EXPORT_SYMBOL(blk_mq_delay_run_hw_queue);
1632
1633/**
1634 * blk_mq_run_hw_queue - Start to run a hardware queue.
1635 * @hctx: Pointer to the hardware queue to run.
1636 * @async: If we want to run the queue asynchronously.
1637 *
1638 * Check if the request queue is not in a quiesced state and if there are
1639 * pending requests to be sent. If this is true, run the queue to send requests
1640 * to hardware.
1641 */
1642void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1643{
1644	int srcu_idx;
1645	bool need_run;
1646
1647	/*
1648	 * When queue is quiesced, we may be switching io scheduler, or
1649	 * updating nr_hw_queues, or other things, and we can't run queue
1650	 * any more, even __blk_mq_hctx_has_pending() can't be called safely.
1651	 *
1652	 * And queue will be rerun in blk_mq_unquiesce_queue() if it is
1653	 * quiesced.
1654	 */
1655	hctx_lock(hctx, &srcu_idx);
1656	need_run = !blk_queue_quiesced(hctx->queue) &&
1657		blk_mq_hctx_has_pending(hctx);
1658	hctx_unlock(hctx, srcu_idx);
1659
1660	if (need_run)
1661		__blk_mq_delay_run_hw_queue(hctx, async, 0);
1662}
1663EXPORT_SYMBOL(blk_mq_run_hw_queue);
1664
1665/**
1666 * blk_mq_run_hw_queue - Run all hardware queues in a request queue.
1667 * @q: Pointer to the request queue to run.
1668 * @async: If we want to run the queue asynchronously.
1669 */
1670void blk_mq_run_hw_queues(struct request_queue *q, bool async)
1671{
1672	struct blk_mq_hw_ctx *hctx;
1673	int i;
1674
1675	queue_for_each_hw_ctx(q, hctx, i) {
1676		if (blk_mq_hctx_stopped(hctx))
 
 
1677			continue;
1678
1679		blk_mq_run_hw_queue(hctx, async);
1680	}
1681}
1682EXPORT_SYMBOL(blk_mq_run_hw_queues);
1683
1684/**
1685 * blk_mq_delay_run_hw_queues - Run all hardware queues asynchronously.
1686 * @q: Pointer to the request queue to run.
1687 * @msecs: Microseconds of delay to wait before running the queues.
1688 */
1689void blk_mq_delay_run_hw_queues(struct request_queue *q, unsigned long msecs)
1690{
1691	struct blk_mq_hw_ctx *hctx;
1692	int i;
1693
1694	queue_for_each_hw_ctx(q, hctx, i) {
1695		if (blk_mq_hctx_stopped(hctx))
1696			continue;
1697
1698		blk_mq_delay_run_hw_queue(hctx, msecs);
1699	}
1700}
1701EXPORT_SYMBOL(blk_mq_delay_run_hw_queues);
1702
1703/**
1704 * blk_mq_queue_stopped() - check whether one or more hctxs have been stopped
1705 * @q: request queue.
1706 *
1707 * The caller is responsible for serializing this function against
1708 * blk_mq_{start,stop}_hw_queue().
1709 */
1710bool blk_mq_queue_stopped(struct request_queue *q)
1711{
1712	struct blk_mq_hw_ctx *hctx;
1713	int i;
1714
1715	queue_for_each_hw_ctx(q, hctx, i)
1716		if (blk_mq_hctx_stopped(hctx))
1717			return true;
1718
1719	return false;
1720}
1721EXPORT_SYMBOL(blk_mq_queue_stopped);
1722
1723/*
1724 * This function is often used for pausing .queue_rq() by driver when
1725 * there isn't enough resource or some conditions aren't satisfied, and
1726 * BLK_STS_RESOURCE is usually returned.
1727 *
1728 * We do not guarantee that dispatch can be drained or blocked
1729 * after blk_mq_stop_hw_queue() returns. Please use
1730 * blk_mq_quiesce_queue() for that requirement.
1731 */
1732void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
1733{
1734	cancel_delayed_work(&hctx->run_work);
1735
1736	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
1737}
1738EXPORT_SYMBOL(blk_mq_stop_hw_queue);
1739
1740/*
1741 * This function is often used for pausing .queue_rq() by driver when
1742 * there isn't enough resource or some conditions aren't satisfied, and
1743 * BLK_STS_RESOURCE is usually returned.
1744 *
1745 * We do not guarantee that dispatch can be drained or blocked
1746 * after blk_mq_stop_hw_queues() returns. Please use
1747 * blk_mq_quiesce_queue() for that requirement.
1748 */
1749void blk_mq_stop_hw_queues(struct request_queue *q)
1750{
1751	struct blk_mq_hw_ctx *hctx;
1752	int i;
1753
1754	queue_for_each_hw_ctx(q, hctx, i)
1755		blk_mq_stop_hw_queue(hctx);
1756}
1757EXPORT_SYMBOL(blk_mq_stop_hw_queues);
1758
1759void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
1760{
1761	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1762
1763	blk_mq_run_hw_queue(hctx, false);
1764}
1765EXPORT_SYMBOL(blk_mq_start_hw_queue);
1766
1767void blk_mq_start_hw_queues(struct request_queue *q)
1768{
1769	struct blk_mq_hw_ctx *hctx;
1770	int i;
1771
1772	queue_for_each_hw_ctx(q, hctx, i)
1773		blk_mq_start_hw_queue(hctx);
1774}
1775EXPORT_SYMBOL(blk_mq_start_hw_queues);
1776
1777void blk_mq_start_stopped_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
1778{
1779	if (!blk_mq_hctx_stopped(hctx))
1780		return;
1781
1782	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
1783	blk_mq_run_hw_queue(hctx, async);
1784}
1785EXPORT_SYMBOL_GPL(blk_mq_start_stopped_hw_queue);
1786
1787void blk_mq_start_stopped_hw_queues(struct request_queue *q, bool async)
1788{
1789	struct blk_mq_hw_ctx *hctx;
1790	int i;
1791
1792	queue_for_each_hw_ctx(q, hctx, i)
1793		blk_mq_start_stopped_hw_queue(hctx, async);
1794}
1795EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
1796
1797static void blk_mq_run_work_fn(struct work_struct *work)
1798{
1799	struct blk_mq_hw_ctx *hctx;
1800
1801	hctx = container_of(work, struct blk_mq_hw_ctx, run_work.work);
1802
1803	/*
1804	 * If we are stopped, don't run the queue.
1805	 */
1806	if (test_bit(BLK_MQ_S_STOPPED, &hctx->state))
1807		return;
1808
1809	__blk_mq_run_hw_queue(hctx);
1810}
1811
1812static inline void __blk_mq_insert_req_list(struct blk_mq_hw_ctx *hctx,
1813					    struct request *rq,
1814					    bool at_head)
1815{
1816	struct blk_mq_ctx *ctx = rq->mq_ctx;
1817	enum hctx_type type = hctx->type;
1818
1819	lockdep_assert_held(&ctx->lock);
1820
1821	trace_block_rq_insert(hctx->queue, rq);
1822
1823	if (at_head)
1824		list_add(&rq->queuelist, &ctx->rq_lists[type]);
1825	else
1826		list_add_tail(&rq->queuelist, &ctx->rq_lists[type]);
 
 
 
 
 
 
1827}
1828
1829void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx, struct request *rq,
1830			     bool at_head)
1831{
1832	struct blk_mq_ctx *ctx = rq->mq_ctx;
 
 
1833
1834	lockdep_assert_held(&ctx->lock);
 
 
1835
1836	__blk_mq_insert_req_list(hctx, rq, at_head);
1837	blk_mq_hctx_mark_pending(hctx, ctx);
1838}
1839
1840/**
1841 * blk_mq_request_bypass_insert - Insert a request at dispatch list.
1842 * @rq: Pointer to request to be inserted.
1843 * @at_head: true if the request should be inserted at the head of the list.
1844 * @run_queue: If we should run the hardware queue after inserting the request.
1845 *
1846 * Should only be used carefully, when the caller knows we want to
1847 * bypass a potential IO scheduler on the target device.
1848 */
1849void blk_mq_request_bypass_insert(struct request *rq, bool at_head,
1850				  bool run_queue)
1851{
1852	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
1853
1854	spin_lock(&hctx->lock);
1855	if (at_head)
1856		list_add(&rq->queuelist, &hctx->dispatch);
1857	else
1858		list_add_tail(&rq->queuelist, &hctx->dispatch);
1859	spin_unlock(&hctx->lock);
1860
1861	if (run_queue)
1862		blk_mq_run_hw_queue(hctx, false);
1863}
1864
1865void blk_mq_insert_requests(struct blk_mq_hw_ctx *hctx, struct blk_mq_ctx *ctx,
1866			    struct list_head *list)
 
 
 
1867
1868{
1869	struct request *rq;
1870	enum hctx_type type = hctx->type;
 
 
 
 
 
 
 
 
1871
1872	/*
1873	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
1874	 * offline now
1875	 */
1876	list_for_each_entry(rq, list, queuelist) {
1877		BUG_ON(rq->mq_ctx != ctx);
1878		trace_block_rq_insert(hctx->queue, rq);
 
 
 
 
 
1879	}
 
1880
1881	spin_lock(&ctx->lock);
1882	list_splice_tail_init(list, &ctx->rq_lists[type]);
1883	blk_mq_hctx_mark_pending(hctx, ctx);
1884	spin_unlock(&ctx->lock);
1885}
1886
1887static int plug_rq_cmp(void *priv, struct list_head *a, struct list_head *b)
1888{
1889	struct request *rqa = container_of(a, struct request, queuelist);
1890	struct request *rqb = container_of(b, struct request, queuelist);
1891
1892	if (rqa->mq_ctx != rqb->mq_ctx)
1893		return rqa->mq_ctx > rqb->mq_ctx;
1894	if (rqa->mq_hctx != rqb->mq_hctx)
1895		return rqa->mq_hctx > rqb->mq_hctx;
1896
1897	return blk_rq_pos(rqa) > blk_rq_pos(rqb);
1898}
1899
1900void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
1901{
 
 
 
1902	LIST_HEAD(list);
 
 
1903
1904	if (list_empty(&plug->mq_list))
1905		return;
1906	list_splice_init(&plug->mq_list, &list);
1907
1908	if (plug->rq_count > 2 && plug->multiple_queues)
1909		list_sort(NULL, &list, plug_rq_cmp);
1910
1911	plug->rq_count = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
1912
1913	do {
1914		struct list_head rq_list;
1915		struct request *rq, *head_rq = list_entry_rq(list.next);
1916		struct list_head *pos = &head_rq->queuelist; /* skip first */
1917		struct blk_mq_hw_ctx *this_hctx = head_rq->mq_hctx;
1918		struct blk_mq_ctx *this_ctx = head_rq->mq_ctx;
1919		unsigned int depth = 1;
1920
1921		list_for_each_continue(pos, &list) {
1922			rq = list_entry_rq(pos);
1923			BUG_ON(!rq->q);
1924			if (rq->mq_hctx != this_hctx || rq->mq_ctx != this_ctx)
1925				break;
1926			depth++;
1927		}
1928
1929		list_cut_before(&rq_list, &list, pos);
1930		trace_block_unplug(head_rq->q, depth, !from_schedule);
1931		blk_mq_sched_insert_requests(this_hctx, this_ctx, &rq_list,
1932						from_schedule);
1933	} while(!list_empty(&list));
 
 
 
 
 
 
 
1934}
1935
1936static void blk_mq_bio_to_request(struct request *rq, struct bio *bio,
1937		unsigned int nr_segs)
1938{
1939	if (bio->bi_opf & REQ_RAHEAD)
1940		rq->cmd_flags |= REQ_FAILFAST_MASK;
 
 
 
 
 
 
 
 
 
 
 
1941
1942	rq->__sector = bio->bi_iter.bi_sector;
1943	rq->write_hint = bio->bi_write_hint;
1944	blk_rq_bio_prep(rq, bio, nr_segs);
1945	blk_crypto_rq_bio_prep(rq, bio, GFP_NOIO);
 
 
 
 
 
 
 
 
1946
1947	blk_account_io_start(rq);
1948}
1949
1950static blk_status_t __blk_mq_issue_directly(struct blk_mq_hw_ctx *hctx,
1951					    struct request *rq,
1952					    blk_qc_t *cookie, bool last)
1953{
1954	struct request_queue *q = rq->q;
1955	struct blk_mq_queue_data bd = {
1956		.rq = rq,
1957		.last = last,
1958	};
1959	blk_qc_t new_cookie;
1960	blk_status_t ret;
1961
1962	new_cookie = request_to_qc_t(hctx, rq);
 
1963
1964	/*
1965	 * For OK queue, we are done. For error, caller may kill it.
1966	 * Any other error (busy), just add it to our list as we
1967	 * previously would have done.
1968	 */
1969	ret = q->mq_ops->queue_rq(hctx, &bd);
1970	switch (ret) {
1971	case BLK_STS_OK:
1972		blk_mq_update_dispatch_busy(hctx, false);
1973		*cookie = new_cookie;
1974		break;
1975	case BLK_STS_RESOURCE:
1976	case BLK_STS_DEV_RESOURCE:
1977		blk_mq_update_dispatch_busy(hctx, true);
1978		__blk_mq_requeue_request(rq);
1979		break;
1980	default:
1981		blk_mq_update_dispatch_busy(hctx, false);
1982		*cookie = BLK_QC_T_NONE;
1983		break;
1984	}
1985
1986	return ret;
1987}
1988
1989static blk_status_t __blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
1990						struct request *rq,
1991						blk_qc_t *cookie,
1992						bool bypass_insert, bool last)
1993{
1994	struct request_queue *q = rq->q;
1995	bool run_queue = true;
1996
1997	/*
1998	 * RCU or SRCU read lock is needed before checking quiesced flag.
1999	 *
2000	 * When queue is stopped or quiesced, ignore 'bypass_insert' from
2001	 * blk_mq_request_issue_directly(), and return BLK_STS_OK to caller,
2002	 * and avoid driver to try to dispatch again.
2003	 */
2004	if (blk_mq_hctx_stopped(hctx) || blk_queue_quiesced(q)) {
2005		run_queue = false;
2006		bypass_insert = false;
2007		goto insert;
 
 
 
 
 
 
 
 
 
 
 
2008	}
2009
2010	if (q->elevator && !bypass_insert)
2011		goto insert;
2012
2013	if (!blk_mq_get_dispatch_budget(q))
2014		goto insert;
2015
2016	if (!blk_mq_get_driver_tag(rq)) {
2017		blk_mq_put_dispatch_budget(q);
2018		goto insert;
2019	}
2020
2021	return __blk_mq_issue_directly(hctx, rq, cookie, last);
2022insert:
2023	if (bypass_insert)
2024		return BLK_STS_RESOURCE;
2025
2026	blk_mq_sched_insert_request(rq, false, run_queue, false);
2027
2028	return BLK_STS_OK;
 
 
 
 
2029}
2030
2031/**
2032 * blk_mq_try_issue_directly - Try to send a request directly to device driver.
2033 * @hctx: Pointer of the associated hardware queue.
2034 * @rq: Pointer to request to be sent.
2035 * @cookie: Request queue cookie.
2036 *
2037 * If the device has enough resources to accept a new request now, send the
2038 * request directly to device driver. Else, insert at hctx->dispatch queue, so
2039 * we can try send it another time in the future. Requests inserted at this
2040 * queue have higher priority.
2041 */
2042static void blk_mq_try_issue_directly(struct blk_mq_hw_ctx *hctx,
2043		struct request *rq, blk_qc_t *cookie)
2044{
2045	blk_status_t ret;
2046	int srcu_idx;
 
2047
2048	might_sleep_if(hctx->flags & BLK_MQ_F_BLOCKING);
2049
2050	hctx_lock(hctx, &srcu_idx);
2051
2052	ret = __blk_mq_try_issue_directly(hctx, rq, cookie, false, true);
2053	if (ret == BLK_STS_RESOURCE || ret == BLK_STS_DEV_RESOURCE)
2054		blk_mq_request_bypass_insert(rq, false, true);
2055	else if (ret != BLK_STS_OK)
2056		blk_mq_end_request(rq, ret);
2057
2058	hctx_unlock(hctx, srcu_idx);
2059}
 
2060
2061blk_status_t blk_mq_request_issue_directly(struct request *rq, bool last)
 
2062{
2063	blk_status_t ret;
2064	int srcu_idx;
2065	blk_qc_t unused_cookie;
2066	struct blk_mq_hw_ctx *hctx = rq->mq_hctx;
2067
2068	hctx_lock(hctx, &srcu_idx);
2069	ret = __blk_mq_try_issue_directly(hctx, rq, &unused_cookie, true, last);
2070	hctx_unlock(hctx, srcu_idx);
2071
2072	return ret;
2073}
 
2074
2075void blk_mq_try_issue_list_directly(struct blk_mq_hw_ctx *hctx,
2076		struct list_head *list)
2077{
2078	int queued = 0;
2079	int errors = 0;
 
 
2080
2081	while (!list_empty(list)) {
2082		blk_status_t ret;
2083		struct request *rq = list_first_entry(list, struct request,
2084				queuelist);
2085
2086		list_del_init(&rq->queuelist);
2087		ret = blk_mq_request_issue_directly(rq, list_empty(list));
2088		if (ret != BLK_STS_OK) {
2089			if (ret == BLK_STS_RESOURCE ||
2090					ret == BLK_STS_DEV_RESOURCE) {
2091				blk_mq_request_bypass_insert(rq, false,
2092							list_empty(list));
2093				break;
2094			}
2095			blk_mq_end_request(rq, ret);
2096			errors++;
2097		} else
2098			queued++;
2099	}
2100
2101	/*
2102	 * If we didn't flush the entire list, we could have told
2103	 * the driver there was more coming, but that turned out to
2104	 * be a lie.
2105	 */
2106	if ((!list_empty(list) || errors) &&
2107	     hctx->queue->mq_ops->commit_rqs && queued)
2108		hctx->queue->mq_ops->commit_rqs(hctx);
2109}
2110
2111static void blk_add_rq_to_plug(struct blk_plug *plug, struct request *rq)
2112{
2113	list_add_tail(&rq->queuelist, &plug->mq_list);
2114	plug->rq_count++;
2115	if (!plug->multiple_queues && !list_is_singular(&plug->mq_list)) {
2116		struct request *tmp;
2117
2118		tmp = list_first_entry(&plug->mq_list, struct request,
2119						queuelist);
2120		if (tmp->q != rq->q)
2121			plug->multiple_queues = true;
2122	}
2123}
2124
2125/**
2126 * blk_mq_submit_bio - Create and send a request to block device.
2127 * @bio: Bio pointer.
2128 *
2129 * Builds up a request structure from @q and @bio and send to the device. The
2130 * request may not be queued directly to hardware if:
2131 * * This request can be merged with another one
2132 * * We want to place request at plug queue for possible future merging
2133 * * There is an IO scheduler active at this queue
2134 *
2135 * It will not queue the request if there is an error with the bio, or at the
2136 * request creation.
2137 *
2138 * Returns: Request queue cookie.
2139 */
2140blk_qc_t blk_mq_submit_bio(struct bio *bio)
2141{
2142	struct request_queue *q = bio->bi_disk->queue;
2143	const int is_sync = op_is_sync(bio->bi_opf);
2144	const int is_flush_fua = op_is_flush(bio->bi_opf);
2145	struct blk_mq_alloc_data data = {
2146		.q		= q,
2147	};
2148	struct request *rq;
2149	struct blk_plug *plug;
2150	struct request *same_queue_rq = NULL;
2151	unsigned int nr_segs;
2152	blk_qc_t cookie;
2153	blk_status_t ret;
2154
2155	blk_queue_bounce(q, &bio);
2156	__blk_queue_split(&bio, &nr_segs);
2157
2158	if (!bio_integrity_prep(bio))
2159		goto queue_exit;
2160
2161	if (!is_flush_fua && !blk_queue_nomerges(q) &&
2162	    blk_attempt_plug_merge(q, bio, nr_segs, &same_queue_rq))
2163		goto queue_exit;
 
2164
2165	if (blk_mq_sched_bio_merge(q, bio, nr_segs))
2166		goto queue_exit;
2167
2168	rq_qos_throttle(q, bio);
 
2169
2170	data.cmd_flags = bio->bi_opf;
2171	rq = __blk_mq_alloc_request(&data);
2172	if (unlikely(!rq)) {
2173		rq_qos_cleanup(q, bio);
2174		if (bio->bi_opf & REQ_NOWAIT)
2175			bio_wouldblock_error(bio);
2176		goto queue_exit;
2177	}
2178
2179	trace_block_getrq(q, bio, bio->bi_opf);
 
 
 
 
 
 
2180
2181	rq_qos_track(q, rq, bio);
 
2182
2183	cookie = request_to_qc_t(data.hctx, rq);
2184
2185	blk_mq_bio_to_request(rq, bio, nr_segs);
2186
2187	ret = blk_crypto_init_request(rq);
2188	if (ret != BLK_STS_OK) {
2189		bio->bi_status = ret;
2190		bio_endio(bio);
2191		blk_mq_free_request(rq);
2192		return BLK_QC_T_NONE;
2193	}
2194
2195	plug = blk_mq_plug(q, bio);
2196	if (unlikely(is_flush_fua)) {
2197		/* Bypass scheduler for flush requests */
2198		blk_insert_flush(rq);
2199		blk_mq_run_hw_queue(data.hctx, true);
2200	} else if (plug && (q->nr_hw_queues == 1 || q->mq_ops->commit_rqs ||
2201				!blk_queue_nonrot(q))) {
2202		/*
2203		 * Use plugging if we have a ->commit_rqs() hook as well, as
2204		 * we know the driver uses bd->last in a smart fashion.
2205		 *
2206		 * Use normal plugging if this disk is slow HDD, as sequential
2207		 * IO may benefit a lot from plug merging.
2208		 */
2209		unsigned int request_count = plug->rq_count;
2210		struct request *last = NULL;
2211
2212		if (!request_count)
2213			trace_block_plug(q);
2214		else
2215			last = list_entry_rq(plug->mq_list.prev);
2216
2217		if (request_count >= BLK_MAX_REQUEST_COUNT || (last &&
2218		    blk_rq_bytes(last) >= BLK_PLUG_FLUSH_SIZE)) {
2219			blk_flush_plug_list(plug, false);
2220			trace_block_plug(q);
2221		}
2222
2223		blk_add_rq_to_plug(plug, rq);
2224	} else if (q->elevator) {
2225		/* Insert the request at the IO scheduler queue */
2226		blk_mq_sched_insert_request(rq, false, true, true);
2227	} else if (plug && !blk_queue_nomerges(q)) {
2228		/*
2229		 * We do limited plugging. If the bio can be merged, do that.
2230		 * Otherwise the existing request in the plug list will be
2231		 * issued. So the plug list will have one request at most
2232		 * The plug list might get flushed before this. If that happens,
2233		 * the plug list is empty, and same_queue_rq is invalid.
2234		 */
2235		if (list_empty(&plug->mq_list))
2236			same_queue_rq = NULL;
2237		if (same_queue_rq) {
2238			list_del_init(&same_queue_rq->queuelist);
2239			plug->rq_count--;
2240		}
2241		blk_add_rq_to_plug(plug, rq);
2242		trace_block_plug(q);
2243
2244		if (same_queue_rq) {
2245			data.hctx = same_queue_rq->mq_hctx;
2246			trace_block_unplug(q, 1, true);
2247			blk_mq_try_issue_directly(data.hctx, same_queue_rq,
2248					&cookie);
2249		}
2250	} else if ((q->nr_hw_queues > 1 && is_sync) ||
2251			!data.hctx->dispatch_busy) {
2252		/*
2253		 * There is no scheduler and we can try to send directly
2254		 * to the hardware.
2255		 */
2256		blk_mq_try_issue_directly(data.hctx, rq, &cookie);
2257	} else {
2258		/* Default case. */
2259		blk_mq_sched_insert_request(rq, false, true, true);
2260	}
2261
2262	return cookie;
2263queue_exit:
2264	blk_queue_exit(q);
2265	return BLK_QC_T_NONE;
2266}
2267EXPORT_SYMBOL_GPL(blk_mq_submit_bio); /* only for request based dm */
2268
2269void blk_mq_free_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2270		     unsigned int hctx_idx)
 
 
2271{
2272	struct page *page;
2273
2274	if (tags->rqs && set->ops->exit_request) {
2275		int i;
2276
2277		for (i = 0; i < tags->nr_tags; i++) {
2278			struct request *rq = tags->static_rqs[i];
2279
2280			if (!rq)
2281				continue;
2282			set->ops->exit_request(set, rq, hctx_idx);
2283			tags->static_rqs[i] = NULL;
2284		}
2285	}
2286
2287	while (!list_empty(&tags->page_list)) {
2288		page = list_first_entry(&tags->page_list, struct page, lru);
2289		list_del_init(&page->lru);
2290		/*
2291		 * Remove kmemleak object previously allocated in
2292		 * blk_mq_alloc_rqs().
2293		 */
2294		kmemleak_free(page_address(page));
2295		__free_pages(page, page->private);
2296	}
2297}
2298
2299void blk_mq_free_rq_map(struct blk_mq_tags *tags)
 
 
 
2300{
2301	kfree(tags->rqs);
2302	tags->rqs = NULL;
2303	kfree(tags->static_rqs);
2304	tags->static_rqs = NULL;
2305
2306	blk_mq_free_tags(tags);
 
2307}
 
2308
2309struct blk_mq_tags *blk_mq_alloc_rq_map(struct blk_mq_tag_set *set,
2310					unsigned int hctx_idx,
2311					unsigned int nr_tags,
2312					unsigned int reserved_tags)
2313{
2314	struct blk_mq_tags *tags;
2315	int node;
2316
2317	node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2318	if (node == NUMA_NO_NODE)
2319		node = set->numa_node;
2320
2321	tags = blk_mq_init_tags(nr_tags, reserved_tags, node,
2322				BLK_MQ_FLAG_TO_ALLOC_POLICY(set->flags));
2323	if (!tags)
2324		return NULL;
2325
2326	tags->rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2327				 GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2328				 node);
2329	if (!tags->rqs) {
2330		blk_mq_free_tags(tags);
2331		return NULL;
2332	}
2333
2334	tags->static_rqs = kcalloc_node(nr_tags, sizeof(struct request *),
2335					GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY,
2336					node);
2337	if (!tags->static_rqs) {
2338		kfree(tags->rqs);
2339		blk_mq_free_tags(tags);
2340		return NULL;
2341	}
2342
2343	return tags;
 
2344}
2345
2346static size_t order_to_size(unsigned int order)
2347{
2348	return (size_t)PAGE_SIZE << order;
2349}
2350
2351static int blk_mq_init_request(struct blk_mq_tag_set *set, struct request *rq,
2352			       unsigned int hctx_idx, int node)
2353{
2354	int ret;
2355
2356	if (set->ops->init_request) {
2357		ret = set->ops->init_request(set, rq, hctx_idx, node);
2358		if (ret)
2359			return ret;
2360	}
2361
2362	WRITE_ONCE(rq->state, MQ_RQ_IDLE);
2363	return 0;
2364}
2365
2366int blk_mq_alloc_rqs(struct blk_mq_tag_set *set, struct blk_mq_tags *tags,
2367		     unsigned int hctx_idx, unsigned int depth)
2368{
2369	unsigned int i, j, entries_per_page, max_order = 4;
2370	size_t rq_size, left;
2371	int node;
2372
2373	node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], hctx_idx);
2374	if (node == NUMA_NO_NODE)
2375		node = set->numa_node;
2376
2377	INIT_LIST_HEAD(&tags->page_list);
 
 
 
2378
2379	/*
2380	 * rq_size is the size of the request plus driver payload, rounded
2381	 * to the cacheline size
2382	 */
2383	rq_size = round_up(sizeof(struct request) + set->cmd_size,
2384				cache_line_size());
2385	left = rq_size * depth;
2386
2387	for (i = 0; i < depth; ) {
2388		int this_order = max_order;
2389		struct page *page;
2390		int to_do;
2391		void *p;
2392
2393		while (this_order && left < order_to_size(this_order - 1))
2394			this_order--;
2395
2396		do {
2397			page = alloc_pages_node(node,
2398				GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY | __GFP_ZERO,
2399				this_order);
2400			if (page)
2401				break;
2402			if (!this_order--)
2403				break;
2404			if (order_to_size(this_order) < rq_size)
2405				break;
2406		} while (1);
2407
2408		if (!page)
2409			goto fail;
2410
2411		page->private = this_order;
2412		list_add_tail(&page->lru, &tags->page_list);
2413
2414		p = page_address(page);
2415		/*
2416		 * Allow kmemleak to scan these pages as they contain pointers
2417		 * to additional allocations like via ops->init_request().
2418		 */
2419		kmemleak_alloc(p, order_to_size(this_order), 1, GFP_NOIO);
2420		entries_per_page = order_to_size(this_order) / rq_size;
2421		to_do = min(entries_per_page, depth - i);
2422		left -= to_do * rq_size;
2423		for (j = 0; j < to_do; j++) {
2424			struct request *rq = p;
2425
2426			tags->static_rqs[i] = rq;
2427			if (blk_mq_init_request(set, rq, hctx_idx, node)) {
2428				tags->static_rqs[i] = NULL;
2429				goto fail;
2430			}
2431
2432			p += rq_size;
2433			i++;
2434		}
2435	}
2436	return 0;
2437
2438fail:
2439	blk_mq_free_rqs(set, tags, hctx_idx);
2440	return -ENOMEM;
2441}
 
 
 
2442
2443struct rq_iter_data {
2444	struct blk_mq_hw_ctx *hctx;
2445	bool has_rq;
2446};
2447
2448static bool blk_mq_has_request(struct request *rq, void *data, bool reserved)
2449{
2450	struct rq_iter_data *iter_data = data;
2451
2452	if (rq->mq_hctx != iter_data->hctx)
2453		return true;
2454	iter_data->has_rq = true;
2455	return false;
2456}
2457
2458static bool blk_mq_hctx_has_requests(struct blk_mq_hw_ctx *hctx)
2459{
2460	struct blk_mq_tags *tags = hctx->sched_tags ?
2461			hctx->sched_tags : hctx->tags;
2462	struct rq_iter_data data = {
2463		.hctx	= hctx,
2464	};
2465
2466	blk_mq_all_tag_iter(tags, blk_mq_has_request, &data);
2467	return data.has_rq;
2468}
2469
2470static inline bool blk_mq_last_cpu_in_hctx(unsigned int cpu,
2471		struct blk_mq_hw_ctx *hctx)
2472{
2473	if (cpumask_next_and(-1, hctx->cpumask, cpu_online_mask) != cpu)
2474		return false;
2475	if (cpumask_next_and(cpu, hctx->cpumask, cpu_online_mask) < nr_cpu_ids)
2476		return false;
2477	return true;
2478}
2479
2480static int blk_mq_hctx_notify_offline(unsigned int cpu, struct hlist_node *node)
2481{
2482	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
2483			struct blk_mq_hw_ctx, cpuhp_online);
2484
2485	if (!cpumask_test_cpu(cpu, hctx->cpumask) ||
2486	    !blk_mq_last_cpu_in_hctx(cpu, hctx))
2487		return 0;
2488
2489	/*
2490	 * Prevent new request from being allocated on the current hctx.
2491	 *
2492	 * The smp_mb__after_atomic() Pairs with the implied barrier in
2493	 * test_and_set_bit_lock in sbitmap_get().  Ensures the inactive flag is
2494	 * seen once we return from the tag allocator.
2495	 */
2496	set_bit(BLK_MQ_S_INACTIVE, &hctx->state);
2497	smp_mb__after_atomic();
2498
2499	/*
2500	 * Try to grab a reference to the queue and wait for any outstanding
2501	 * requests.  If we could not grab a reference the queue has been
2502	 * frozen and there are no requests.
2503	 */
2504	if (percpu_ref_tryget(&hctx->queue->q_usage_counter)) {
2505		while (blk_mq_hctx_has_requests(hctx))
2506			msleep(5);
2507		percpu_ref_put(&hctx->queue->q_usage_counter);
2508	}
2509
2510	return 0;
2511}
2512
2513static int blk_mq_hctx_notify_online(unsigned int cpu, struct hlist_node *node)
2514{
2515	struct blk_mq_hw_ctx *hctx = hlist_entry_safe(node,
2516			struct blk_mq_hw_ctx, cpuhp_online);
2517
2518	if (cpumask_test_cpu(cpu, hctx->cpumask))
2519		clear_bit(BLK_MQ_S_INACTIVE, &hctx->state);
2520	return 0;
2521}
2522
2523/*
2524 * 'cpu' is going away. splice any existing rq_list entries from this
2525 * software queue to the hw queue dispatch list, and ensure that it
2526 * gets run.
2527 */
2528static int blk_mq_hctx_notify_dead(unsigned int cpu, struct hlist_node *node)
2529{
2530	struct blk_mq_hw_ctx *hctx;
2531	struct blk_mq_ctx *ctx;
2532	LIST_HEAD(tmp);
2533	enum hctx_type type;
2534
2535	hctx = hlist_entry_safe(node, struct blk_mq_hw_ctx, cpuhp_dead);
2536	if (!cpumask_test_cpu(cpu, hctx->cpumask))
2537		return 0;
 
 
 
2538
2539	ctx = __blk_mq_get_ctx(hctx->queue, cpu);
2540	type = hctx->type;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2541
2542	spin_lock(&ctx->lock);
2543	if (!list_empty(&ctx->rq_lists[type])) {
2544		list_splice_init(&ctx->rq_lists[type], &tmp);
2545		blk_mq_hctx_clear_pending(hctx, ctx);
2546	}
2547	spin_unlock(&ctx->lock);
2548
2549	if (list_empty(&tmp))
2550		return 0;
 
 
 
 
 
 
2551
2552	spin_lock(&hctx->lock);
2553	list_splice_tail_init(&tmp, &hctx->dispatch);
2554	spin_unlock(&hctx->lock);
 
 
2555
2556	blk_mq_run_hw_queue(hctx, true);
2557	return 0;
2558}
2559
2560static void blk_mq_remove_cpuhp(struct blk_mq_hw_ctx *hctx)
2561{
2562	if (!(hctx->flags & BLK_MQ_F_STACKING))
2563		cpuhp_state_remove_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
2564						    &hctx->cpuhp_online);
2565	cpuhp_state_remove_instance_nocalls(CPUHP_BLK_MQ_DEAD,
2566					    &hctx->cpuhp_dead);
2567}
2568
2569/* hctx->ctxs will be freed in queue's release handler */
2570static void blk_mq_exit_hctx(struct request_queue *q,
2571		struct blk_mq_tag_set *set,
2572		struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
2573{
2574	if (blk_mq_hw_queue_mapped(hctx))
2575		blk_mq_tag_idle(hctx);
2576
2577	if (set->ops->exit_request)
2578		set->ops->exit_request(set, hctx->fq->flush_rq, hctx_idx);
2579
2580	if (set->ops->exit_hctx)
2581		set->ops->exit_hctx(hctx, hctx_idx);
2582
2583	blk_mq_remove_cpuhp(hctx);
2584
2585	spin_lock(&q->unused_hctx_lock);
2586	list_add(&hctx->hctx_list, &q->unused_hctx_list);
2587	spin_unlock(&q->unused_hctx_lock);
2588}
2589
2590static void blk_mq_exit_hw_queues(struct request_queue *q,
2591		struct blk_mq_tag_set *set, int nr_queue)
2592{
2593	struct blk_mq_hw_ctx *hctx;
2594	unsigned int i;
2595
2596	queue_for_each_hw_ctx(q, hctx, i) {
2597		if (i == nr_queue)
2598			break;
2599		blk_mq_debugfs_unregister_hctx(hctx);
2600		blk_mq_exit_hctx(q, set, hctx, i);
2601	}
2602}
2603
2604static int blk_mq_hw_ctx_size(struct blk_mq_tag_set *tag_set)
2605{
2606	int hw_ctx_size = sizeof(struct blk_mq_hw_ctx);
2607
2608	BUILD_BUG_ON(ALIGN(offsetof(struct blk_mq_hw_ctx, srcu),
2609			   __alignof__(struct blk_mq_hw_ctx)) !=
2610		     sizeof(struct blk_mq_hw_ctx));
 
 
 
2611
2612	if (tag_set->flags & BLK_MQ_F_BLOCKING)
2613		hw_ctx_size += sizeof(struct srcu_struct);
2614
2615	return hw_ctx_size;
2616}
 
 
2617
2618static int blk_mq_init_hctx(struct request_queue *q,
2619		struct blk_mq_tag_set *set,
2620		struct blk_mq_hw_ctx *hctx, unsigned hctx_idx)
2621{
2622	hctx->queue_num = hctx_idx;
2623
2624	if (!(hctx->flags & BLK_MQ_F_STACKING))
2625		cpuhp_state_add_instance_nocalls(CPUHP_AP_BLK_MQ_ONLINE,
2626				&hctx->cpuhp_online);
2627	cpuhp_state_add_instance_nocalls(CPUHP_BLK_MQ_DEAD, &hctx->cpuhp_dead);
2628
2629	hctx->tags = set->tags[hctx_idx];
2630
2631	if (set->ops->init_hctx &&
2632	    set->ops->init_hctx(hctx, set->driver_data, hctx_idx))
2633		goto unregister_cpu_notifier;
2634
2635	if (blk_mq_init_request(set, hctx->fq->flush_rq, hctx_idx,
2636				hctx->numa_node))
2637		goto exit_hctx;
2638	return 0;
2639
2640 exit_hctx:
2641	if (set->ops->exit_hctx)
2642		set->ops->exit_hctx(hctx, hctx_idx);
2643 unregister_cpu_notifier:
2644	blk_mq_remove_cpuhp(hctx);
2645	return -1;
2646}
2647
2648static struct blk_mq_hw_ctx *
2649blk_mq_alloc_hctx(struct request_queue *q, struct blk_mq_tag_set *set,
2650		int node)
2651{
2652	struct blk_mq_hw_ctx *hctx;
2653	gfp_t gfp = GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY;
2654
2655	hctx = kzalloc_node(blk_mq_hw_ctx_size(set), gfp, node);
2656	if (!hctx)
2657		goto fail_alloc_hctx;
2658
2659	if (!zalloc_cpumask_var_node(&hctx->cpumask, gfp, node))
2660		goto free_hctx;
2661
2662	atomic_set(&hctx->nr_active, 0);
2663	if (node == NUMA_NO_NODE)
2664		node = set->numa_node;
2665	hctx->numa_node = node;
2666
2667	INIT_DELAYED_WORK(&hctx->run_work, blk_mq_run_work_fn);
2668	spin_lock_init(&hctx->lock);
2669	INIT_LIST_HEAD(&hctx->dispatch);
2670	hctx->queue = q;
2671	hctx->flags = set->flags & ~BLK_MQ_F_TAG_SHARED;
2672
2673	INIT_LIST_HEAD(&hctx->hctx_list);
2674
2675	/*
2676	 * Allocate space for all possible cpus to avoid allocation at
2677	 * runtime
2678	 */
2679	hctx->ctxs = kmalloc_array_node(nr_cpu_ids, sizeof(void *),
2680			gfp, node);
2681	if (!hctx->ctxs)
2682		goto free_cpumask;
2683
2684	if (sbitmap_init_node(&hctx->ctx_map, nr_cpu_ids, ilog2(8),
2685				gfp, node))
2686		goto free_ctxs;
2687	hctx->nr_ctx = 0;
2688
2689	spin_lock_init(&hctx->dispatch_wait_lock);
2690	init_waitqueue_func_entry(&hctx->dispatch_wait, blk_mq_dispatch_wake);
2691	INIT_LIST_HEAD(&hctx->dispatch_wait.entry);
2692
2693	hctx->fq = blk_alloc_flush_queue(hctx->numa_node, set->cmd_size, gfp);
2694	if (!hctx->fq)
2695		goto free_bitmap;
2696
2697	if (hctx->flags & BLK_MQ_F_BLOCKING)
2698		init_srcu_struct(hctx->srcu);
2699	blk_mq_hctx_kobj_init(hctx);
2700
2701	return hctx;
2702
2703 free_bitmap:
2704	sbitmap_free(&hctx->ctx_map);
2705 free_ctxs:
2706	kfree(hctx->ctxs);
2707 free_cpumask:
2708	free_cpumask_var(hctx->cpumask);
2709 free_hctx:
2710	kfree(hctx);
2711 fail_alloc_hctx:
2712	return NULL;
2713}
2714
2715static void blk_mq_init_cpu_queues(struct request_queue *q,
2716				   unsigned int nr_hw_queues)
2717{
2718	struct blk_mq_tag_set *set = q->tag_set;
2719	unsigned int i, j;
2720
2721	for_each_possible_cpu(i) {
2722		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
2723		struct blk_mq_hw_ctx *hctx;
2724		int k;
2725
 
2726		__ctx->cpu = i;
2727		spin_lock_init(&__ctx->lock);
2728		for (k = HCTX_TYPE_DEFAULT; k < HCTX_MAX_TYPES; k++)
2729			INIT_LIST_HEAD(&__ctx->rq_lists[k]);
 
 
 
 
2730
2731		__ctx->queue = q;
 
2732
2733		/*
2734		 * Set local node, IFF we have more than one hw queue. If
2735		 * not, we remain on the home node of the device
2736		 */
2737		for (j = 0; j < set->nr_maps; j++) {
2738			hctx = blk_mq_map_queue_type(q, j, i);
2739			if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
2740				hctx->numa_node = local_memory_node(cpu_to_node(i));
2741		}
2742	}
2743}
2744
2745static bool __blk_mq_alloc_map_and_request(struct blk_mq_tag_set *set,
2746					int hctx_idx)
2747{
2748	int ret = 0;
2749
2750	set->tags[hctx_idx] = blk_mq_alloc_rq_map(set, hctx_idx,
2751					set->queue_depth, set->reserved_tags);
2752	if (!set->tags[hctx_idx])
2753		return false;
2754
2755	ret = blk_mq_alloc_rqs(set, set->tags[hctx_idx], hctx_idx,
2756				set->queue_depth);
2757	if (!ret)
2758		return true;
2759
2760	blk_mq_free_rq_map(set->tags[hctx_idx]);
2761	set->tags[hctx_idx] = NULL;
2762	return false;
2763}
2764
2765static void blk_mq_free_map_and_requests(struct blk_mq_tag_set *set,
2766					 unsigned int hctx_idx)
2767{
2768	if (set->tags && set->tags[hctx_idx]) {
2769		blk_mq_free_rqs(set, set->tags[hctx_idx], hctx_idx);
2770		blk_mq_free_rq_map(set->tags[hctx_idx]);
2771		set->tags[hctx_idx] = NULL;
2772	}
2773}
2774
2775static void blk_mq_map_swqueue(struct request_queue *q)
2776{
2777	unsigned int i, j, hctx_idx;
2778	struct blk_mq_hw_ctx *hctx;
2779	struct blk_mq_ctx *ctx;
2780	struct blk_mq_tag_set *set = q->tag_set;
2781
2782	queue_for_each_hw_ctx(q, hctx, i) {
2783		cpumask_clear(hctx->cpumask);
2784		hctx->nr_ctx = 0;
2785		hctx->dispatch_from = NULL;
2786	}
2787
2788	/*
2789	 * Map software to hardware queues.
2790	 *
2791	 * If the cpu isn't present, the cpu is mapped to first hctx.
2792	 */
2793	for_each_possible_cpu(i) {
2794
2795		ctx = per_cpu_ptr(q->queue_ctx, i);
2796		for (j = 0; j < set->nr_maps; j++) {
2797			if (!set->map[j].nr_queues) {
2798				ctx->hctxs[j] = blk_mq_map_queue_type(q,
2799						HCTX_TYPE_DEFAULT, i);
2800				continue;
2801			}
2802			hctx_idx = set->map[j].mq_map[i];
2803			/* unmapped hw queue can be remapped after CPU topo changed */
2804			if (!set->tags[hctx_idx] &&
2805			    !__blk_mq_alloc_map_and_request(set, hctx_idx)) {
2806				/*
2807				 * If tags initialization fail for some hctx,
2808				 * that hctx won't be brought online.  In this
2809				 * case, remap the current ctx to hctx[0] which
2810				 * is guaranteed to always have tags allocated
2811				 */
2812				set->map[j].mq_map[i] = 0;
2813			}
2814
2815			hctx = blk_mq_map_queue_type(q, j, i);
2816			ctx->hctxs[j] = hctx;
2817			/*
2818			 * If the CPU is already set in the mask, then we've
2819			 * mapped this one already. This can happen if
2820			 * devices share queues across queue maps.
2821			 */
2822			if (cpumask_test_cpu(i, hctx->cpumask))
2823				continue;
2824
2825			cpumask_set_cpu(i, hctx->cpumask);
2826			hctx->type = j;
2827			ctx->index_hw[hctx->type] = hctx->nr_ctx;
2828			hctx->ctxs[hctx->nr_ctx++] = ctx;
2829
2830			/*
2831			 * If the nr_ctx type overflows, we have exceeded the
2832			 * amount of sw queues we can support.
2833			 */
2834			BUG_ON(!hctx->nr_ctx);
2835		}
2836
2837		for (; j < HCTX_MAX_TYPES; j++)
2838			ctx->hctxs[j] = blk_mq_map_queue_type(q,
2839					HCTX_TYPE_DEFAULT, i);
2840	}
2841
2842	queue_for_each_hw_ctx(q, hctx, i) {
2843		/*
2844		 * If no software queues are mapped to this hardware queue,
2845		 * disable it and free the request entries.
2846		 */
2847		if (!hctx->nr_ctx) {
2848			/* Never unmap queue 0.  We need it as a
2849			 * fallback in case of a new remap fails
2850			 * allocation
2851			 */
2852			if (i && set->tags[i])
2853				blk_mq_free_map_and_requests(set, i);
2854
2855			hctx->tags = NULL;
2856			continue;
2857		}
2858
2859		hctx->tags = set->tags[i];
2860		WARN_ON(!hctx->tags);
2861
2862		/*
2863		 * Set the map size to the number of mapped software queues.
2864		 * This is more accurate and more efficient than looping
2865		 * over all possibly mapped software queues.
2866		 */
2867		sbitmap_resize(&hctx->ctx_map, hctx->nr_ctx);
2868
2869		/*
2870		 * Initialize batch roundrobin counts
2871		 */
2872		hctx->next_cpu = blk_mq_first_mapped_cpu(hctx);
2873		hctx->next_cpu_batch = BLK_MQ_CPU_WORK_BATCH;
2874	}
2875}
2876
2877/*
2878 * Caller needs to ensure that we're either frozen/quiesced, or that
2879 * the queue isn't live yet.
2880 */
2881static void queue_set_hctx_shared(struct request_queue *q, bool shared)
2882{
2883	struct blk_mq_hw_ctx *hctx;
2884	int i;
2885
2886	queue_for_each_hw_ctx(q, hctx, i) {
2887		if (shared)
2888			hctx->flags |= BLK_MQ_F_TAG_SHARED;
2889		else
2890			hctx->flags &= ~BLK_MQ_F_TAG_SHARED;
2891	}
2892}
2893
2894static void blk_mq_update_tag_set_depth(struct blk_mq_tag_set *set,
2895					bool shared)
2896{
 
 
2897	struct request_queue *q;
2898
2899	lockdep_assert_held(&set->tag_list_lock);
2900
2901	list_for_each_entry(q, &set->tag_list, tag_set_list) {
2902		blk_mq_freeze_queue(q);
2903		queue_set_hctx_shared(q, shared);
2904		blk_mq_unfreeze_queue(q);
2905	}
2906}
2907
2908static void blk_mq_del_queue_tag_set(struct request_queue *q)
2909{
2910	struct blk_mq_tag_set *set = q->tag_set;
2911
2912	mutex_lock(&set->tag_list_lock);
2913	list_del(&q->tag_set_list);
2914	if (list_is_singular(&set->tag_list)) {
2915		/* just transitioned to unshared */
2916		set->flags &= ~BLK_MQ_F_TAG_SHARED;
2917		/* update existing queue */
2918		blk_mq_update_tag_set_depth(set, false);
2919	}
2920	mutex_unlock(&set->tag_list_lock);
2921	INIT_LIST_HEAD(&q->tag_set_list);
2922}
2923
2924static void blk_mq_add_queue_tag_set(struct blk_mq_tag_set *set,
2925				     struct request_queue *q)
2926{
2927	mutex_lock(&set->tag_list_lock);
2928
2929	/*
2930	 * Check to see if we're transitioning to shared (from 1 to 2 queues).
2931	 */
2932	if (!list_empty(&set->tag_list) &&
2933	    !(set->flags & BLK_MQ_F_TAG_SHARED)) {
2934		set->flags |= BLK_MQ_F_TAG_SHARED;
2935		/* update existing queue */
2936		blk_mq_update_tag_set_depth(set, true);
2937	}
2938	if (set->flags & BLK_MQ_F_TAG_SHARED)
2939		queue_set_hctx_shared(q, true);
2940	list_add_tail(&q->tag_set_list, &set->tag_list);
2941
2942	mutex_unlock(&set->tag_list_lock);
2943}
2944
2945/* All allocations will be freed in release handler of q->mq_kobj */
2946static int blk_mq_alloc_ctxs(struct request_queue *q)
2947{
2948	struct blk_mq_ctxs *ctxs;
2949	int cpu;
2950
2951	ctxs = kzalloc(sizeof(*ctxs), GFP_KERNEL);
2952	if (!ctxs)
2953		return -ENOMEM;
2954
2955	ctxs->queue_ctx = alloc_percpu(struct blk_mq_ctx);
2956	if (!ctxs->queue_ctx)
2957		goto fail;
2958
2959	for_each_possible_cpu(cpu) {
2960		struct blk_mq_ctx *ctx = per_cpu_ptr(ctxs->queue_ctx, cpu);
2961		ctx->ctxs = ctxs;
2962	}
2963
2964	q->mq_kobj = &ctxs->kobj;
2965	q->queue_ctx = ctxs->queue_ctx;
2966
2967	return 0;
2968 fail:
2969	kfree(ctxs);
2970	return -ENOMEM;
2971}
2972
2973/*
2974 * It is the actual release handler for mq, but we do it from
2975 * request queue's release handler for avoiding use-after-free
2976 * and headache because q->mq_kobj shouldn't have been introduced,
2977 * but we can't group ctx/kctx kobj without it.
2978 */
2979void blk_mq_release(struct request_queue *q)
2980{
2981	struct blk_mq_hw_ctx *hctx, *next;
2982	int i;
2983
2984	queue_for_each_hw_ctx(q, hctx, i)
2985		WARN_ON_ONCE(hctx && list_empty(&hctx->hctx_list));
 
 
2986
2987	/* all hctx are in .unused_hctx_list now */
2988	list_for_each_entry_safe(hctx, next, &q->unused_hctx_list, hctx_list) {
2989		list_del_init(&hctx->hctx_list);
2990		kobject_put(&hctx->kobj);
 
2991	}
2992
2993	kfree(q->queue_hw_ctx);
2994
2995	/*
2996	 * release .mq_kobj and sw queue's kobject now because
2997	 * both share lifetime with request queue.
2998	 */
2999	blk_mq_sysfs_deinit(q);
3000}
3001
3002struct request_queue *blk_mq_init_queue_data(struct blk_mq_tag_set *set,
3003		void *queuedata)
3004{
3005	struct request_queue *uninit_q, *q;
3006
3007	uninit_q = blk_alloc_queue(set->numa_node);
3008	if (!uninit_q)
3009		return ERR_PTR(-ENOMEM);
3010	uninit_q->queuedata = queuedata;
3011
3012	/*
3013	 * Initialize the queue without an elevator. device_add_disk() will do
3014	 * the initialization.
3015	 */
3016	q = blk_mq_init_allocated_queue(set, uninit_q, false);
3017	if (IS_ERR(q))
3018		blk_cleanup_queue(uninit_q);
3019
3020	return q;
3021}
3022EXPORT_SYMBOL_GPL(blk_mq_init_queue_data);
3023
3024struct request_queue *blk_mq_init_queue(struct blk_mq_tag_set *set)
3025{
3026	return blk_mq_init_queue_data(set, NULL);
3027}
3028EXPORT_SYMBOL(blk_mq_init_queue);
3029
3030/*
3031 * Helper for setting up a queue with mq ops, given queue depth, and
3032 * the passed in mq ops flags.
3033 */
3034struct request_queue *blk_mq_init_sq_queue(struct blk_mq_tag_set *set,
3035					   const struct blk_mq_ops *ops,
3036					   unsigned int queue_depth,
3037					   unsigned int set_flags)
3038{
3039	struct request_queue *q;
3040	int ret;
3041
3042	memset(set, 0, sizeof(*set));
3043	set->ops = ops;
3044	set->nr_hw_queues = 1;
3045	set->nr_maps = 1;
3046	set->queue_depth = queue_depth;
3047	set->numa_node = NUMA_NO_NODE;
3048	set->flags = set_flags;
3049
3050	ret = blk_mq_alloc_tag_set(set);
3051	if (ret)
3052		return ERR_PTR(ret);
3053
3054	q = blk_mq_init_queue(set);
3055	if (IS_ERR(q)) {
3056		blk_mq_free_tag_set(set);
3057		return q;
3058	}
3059
3060	return q;
3061}
3062EXPORT_SYMBOL(blk_mq_init_sq_queue);
3063
3064static struct blk_mq_hw_ctx *blk_mq_alloc_and_init_hctx(
3065		struct blk_mq_tag_set *set, struct request_queue *q,
3066		int hctx_idx, int node)
3067{
3068	struct blk_mq_hw_ctx *hctx = NULL, *tmp;
3069
3070	/* reuse dead hctx first */
3071	spin_lock(&q->unused_hctx_lock);
3072	list_for_each_entry(tmp, &q->unused_hctx_list, hctx_list) {
3073		if (tmp->numa_node == node) {
3074			hctx = tmp;
3075			break;
3076		}
3077	}
3078	if (hctx)
3079		list_del_init(&hctx->hctx_list);
3080	spin_unlock(&q->unused_hctx_lock);
3081
3082	if (!hctx)
3083		hctx = blk_mq_alloc_hctx(q, set, node);
3084	if (!hctx)
3085		goto fail;
3086
3087	if (blk_mq_init_hctx(q, set, hctx, hctx_idx))
3088		goto free_hctx;
3089
3090	return hctx;
3091
3092 free_hctx:
3093	kobject_put(&hctx->kobj);
3094 fail:
3095	return NULL;
3096}
3097
3098static void blk_mq_realloc_hw_ctxs(struct blk_mq_tag_set *set,
3099						struct request_queue *q)
3100{
3101	int i, j, end;
3102	struct blk_mq_hw_ctx **hctxs = q->queue_hw_ctx;
3103
3104	if (q->nr_hw_queues < set->nr_hw_queues) {
3105		struct blk_mq_hw_ctx **new_hctxs;
3106
3107		new_hctxs = kcalloc_node(set->nr_hw_queues,
3108				       sizeof(*new_hctxs), GFP_KERNEL,
3109				       set->numa_node);
3110		if (!new_hctxs)
3111			return;
3112		if (hctxs)
3113			memcpy(new_hctxs, hctxs, q->nr_hw_queues *
3114			       sizeof(*hctxs));
3115		q->queue_hw_ctx = new_hctxs;
3116		kfree(hctxs);
3117		hctxs = new_hctxs;
3118	}
3119
3120	/* protect against switching io scheduler  */
3121	mutex_lock(&q->sysfs_lock);
3122	for (i = 0; i < set->nr_hw_queues; i++) {
3123		int node;
3124		struct blk_mq_hw_ctx *hctx;
3125
3126		node = blk_mq_hw_queue_to_node(&set->map[HCTX_TYPE_DEFAULT], i);
3127		/*
3128		 * If the hw queue has been mapped to another numa node,
3129		 * we need to realloc the hctx. If allocation fails, fallback
3130		 * to use the previous one.
3131		 */
3132		if (hctxs[i] && (hctxs[i]->numa_node == node))
3133			continue;
3134
3135		hctx = blk_mq_alloc_and_init_hctx(set, q, i, node);
3136		if (hctx) {
3137			if (hctxs[i])
3138				blk_mq_exit_hctx(q, set, hctxs[i], i);
3139			hctxs[i] = hctx;
3140		} else {
3141			if (hctxs[i])
3142				pr_warn("Allocate new hctx on node %d fails,\
3143						fallback to previous one on node %d\n",
3144						node, hctxs[i]->numa_node);
3145			else
3146				break;
3147		}
3148	}
3149	/*
3150	 * Increasing nr_hw_queues fails. Free the newly allocated
3151	 * hctxs and keep the previous q->nr_hw_queues.
3152	 */
3153	if (i != set->nr_hw_queues) {
3154		j = q->nr_hw_queues;
3155		end = i;
3156	} else {
3157		j = i;
3158		end = q->nr_hw_queues;
3159		q->nr_hw_queues = set->nr_hw_queues;
3160	}
3161
3162	for (; j < end; j++) {
3163		struct blk_mq_hw_ctx *hctx = hctxs[j];
3164
3165		if (hctx) {
3166			if (hctx->tags)
3167				blk_mq_free_map_and_requests(set, j);
3168			blk_mq_exit_hctx(q, set, hctx, j);
3169			hctxs[j] = NULL;
3170		}
3171	}
3172	mutex_unlock(&q->sysfs_lock);
3173}
3174
3175struct request_queue *blk_mq_init_allocated_queue(struct blk_mq_tag_set *set,
3176						  struct request_queue *q,
3177						  bool elevator_init)
3178{
3179	/* mark the queue as mq asap */
3180	q->mq_ops = set->ops;
3181
3182	q->poll_cb = blk_stat_alloc_callback(blk_mq_poll_stats_fn,
3183					     blk_mq_poll_stats_bkt,
3184					     BLK_MQ_POLL_STATS_BKTS, q);
3185	if (!q->poll_cb)
3186		goto err_exit;
3187
3188	if (blk_mq_alloc_ctxs(q))
3189		goto err_poll;
3190
3191	/* init q->mq_kobj and sw queues' kobjects */
3192	blk_mq_sysfs_init(q);
3193
3194	INIT_LIST_HEAD(&q->unused_hctx_list);
3195	spin_lock_init(&q->unused_hctx_lock);
3196
3197	blk_mq_realloc_hw_ctxs(set, q);
3198	if (!q->nr_hw_queues)
3199		goto err_hctxs;
3200
3201	INIT_WORK(&q->timeout_work, blk_mq_timeout_work);
3202	blk_queue_rq_timeout(q, set->timeout ? set->timeout : 30 * HZ);
3203
3204	q->tag_set = set;
3205
 
3206	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
3207	if (set->nr_maps > HCTX_TYPE_POLL &&
3208	    set->map[HCTX_TYPE_POLL].nr_queues)
3209		blk_queue_flag_set(QUEUE_FLAG_POLL, q);
3210
3211	q->sg_reserved_size = INT_MAX;
3212
3213	INIT_DELAYED_WORK(&q->requeue_work, blk_mq_requeue_work);
3214	INIT_LIST_HEAD(&q->requeue_list);
3215	spin_lock_init(&q->requeue_lock);
3216
3217	q->nr_requests = set->queue_depth;
 
 
 
 
 
 
 
 
 
 
3218
3219	/*
3220	 * Default to classic polling
3221	 */
3222	q->poll_nsec = BLK_MQ_POLL_CLASSIC;
3223
3224	blk_mq_init_cpu_queues(q, set->nr_hw_queues);
3225	blk_mq_add_queue_tag_set(set, q);
3226	blk_mq_map_swqueue(q);
3227
3228	if (elevator_init)
3229		elevator_init_mq(q);
 
3230
3231	return q;
3232
 
 
 
 
 
 
3233err_hctxs:
3234	kfree(q->queue_hw_ctx);
3235	q->nr_hw_queues = 0;
3236	blk_mq_sysfs_deinit(q);
3237err_poll:
3238	blk_stat_free_callback(q->poll_cb);
3239	q->poll_cb = NULL;
3240err_exit:
3241	q->mq_ops = NULL;
3242	return ERR_PTR(-ENOMEM);
3243}
3244EXPORT_SYMBOL(blk_mq_init_allocated_queue);
3245
3246/* tags can _not_ be used after returning from blk_mq_exit_queue */
3247void blk_mq_exit_queue(struct request_queue *q)
3248{
3249	struct blk_mq_tag_set	*set = q->tag_set;
3250
3251	blk_mq_del_queue_tag_set(q);
3252	blk_mq_exit_hw_queues(q, set, set->nr_hw_queues);
3253}
3254
3255static int __blk_mq_alloc_rq_maps(struct blk_mq_tag_set *set)
3256{
3257	int i;
3258
3259	for (i = 0; i < set->nr_hw_queues; i++)
3260		if (!__blk_mq_alloc_map_and_request(set, i))
3261			goto out_unwind;
3262
3263	return 0;
3264
3265out_unwind:
3266	while (--i >= 0)
3267		blk_mq_free_map_and_requests(set, i);
3268
3269	return -ENOMEM;
3270}
3271
3272/*
3273 * Allocate the request maps associated with this tag_set. Note that this
3274 * may reduce the depth asked for, if memory is tight. set->queue_depth
3275 * will be updated to reflect the allocated depth.
3276 */
3277static int blk_mq_alloc_map_and_requests(struct blk_mq_tag_set *set)
3278{
3279	unsigned int depth;
3280	int err;
3281
3282	depth = set->queue_depth;
3283	do {
3284		err = __blk_mq_alloc_rq_maps(set);
3285		if (!err)
3286			break;
3287
3288		set->queue_depth >>= 1;
3289		if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN) {
3290			err = -ENOMEM;
3291			break;
3292		}
3293	} while (set->queue_depth);
3294
3295	if (!set->queue_depth || err) {
3296		pr_err("blk-mq: failed to allocate request map\n");
3297		return -ENOMEM;
3298	}
3299
3300	if (depth != set->queue_depth)
3301		pr_info("blk-mq: reduced tag depth (%u -> %u)\n",
3302						depth, set->queue_depth);
3303
3304	return 0;
3305}
 
3306
3307static int blk_mq_update_queue_map(struct blk_mq_tag_set *set)
3308{
3309	/*
3310	 * blk_mq_map_queues() and multiple .map_queues() implementations
3311	 * expect that set->map[HCTX_TYPE_DEFAULT].nr_queues is set to the
3312	 * number of hardware queues.
3313	 */
3314	if (set->nr_maps == 1)
3315		set->map[HCTX_TYPE_DEFAULT].nr_queues = set->nr_hw_queues;
3316
3317	if (set->ops->map_queues && !is_kdump_kernel()) {
3318		int i;
3319
3320		/*
3321		 * transport .map_queues is usually done in the following
3322		 * way:
3323		 *
3324		 * for (queue = 0; queue < set->nr_hw_queues; queue++) {
3325		 * 	mask = get_cpu_mask(queue)
3326		 * 	for_each_cpu(cpu, mask)
3327		 * 		set->map[x].mq_map[cpu] = queue;
3328		 * }
3329		 *
3330		 * When we need to remap, the table has to be cleared for
3331		 * killing stale mapping since one CPU may not be mapped
3332		 * to any hw queue.
3333		 */
3334		for (i = 0; i < set->nr_maps; i++)
3335			blk_mq_clear_mq_map(&set->map[i]);
3336
3337		return set->ops->map_queues(set);
3338	} else {
3339		BUG_ON(set->nr_maps > 1);
3340		return blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3341	}
3342}
3343
3344static int blk_mq_realloc_tag_set_tags(struct blk_mq_tag_set *set,
3345				  int cur_nr_hw_queues, int new_nr_hw_queues)
3346{
3347	struct blk_mq_tags **new_tags;
3348
3349	if (cur_nr_hw_queues >= new_nr_hw_queues)
3350		return 0;
3351
3352	new_tags = kcalloc_node(new_nr_hw_queues, sizeof(struct blk_mq_tags *),
3353				GFP_KERNEL, set->numa_node);
3354	if (!new_tags)
3355		return -ENOMEM;
3356
3357	if (set->tags)
3358		memcpy(new_tags, set->tags, cur_nr_hw_queues *
3359		       sizeof(*set->tags));
3360	kfree(set->tags);
3361	set->tags = new_tags;
3362	set->nr_hw_queues = new_nr_hw_queues;
3363
3364	return 0;
3365}
3366
3367/*
3368 * Alloc a tag set to be associated with one or more request queues.
3369 * May fail with EINVAL for various error conditions. May adjust the
3370 * requested depth down, if it's too large. In that case, the set
3371 * value will be stored in set->queue_depth.
3372 */
3373int blk_mq_alloc_tag_set(struct blk_mq_tag_set *set)
3374{
3375	int i, ret;
3376
3377	BUILD_BUG_ON(BLK_MQ_MAX_DEPTH > 1 << BLK_MQ_UNIQUE_TAG_BITS);
3378
3379	if (!set->nr_hw_queues)
3380		return -EINVAL;
3381	if (!set->queue_depth)
3382		return -EINVAL;
3383	if (set->queue_depth < set->reserved_tags + BLK_MQ_TAG_MIN)
3384		return -EINVAL;
3385
3386	if (!set->ops->queue_rq)
3387		return -EINVAL;
3388
3389	if (!set->ops->get_budget ^ !set->ops->put_budget)
3390		return -EINVAL;
3391
3392	if (set->queue_depth > BLK_MQ_MAX_DEPTH) {
3393		pr_info("blk-mq: reduced tag depth to %u\n",
3394			BLK_MQ_MAX_DEPTH);
3395		set->queue_depth = BLK_MQ_MAX_DEPTH;
3396	}
3397
3398	if (!set->nr_maps)
3399		set->nr_maps = 1;
3400	else if (set->nr_maps > HCTX_MAX_TYPES)
3401		return -EINVAL;
3402
3403	/*
3404	 * If a crashdump is active, then we are potentially in a very
3405	 * memory constrained environment. Limit us to 1 queue and
3406	 * 64 tags to prevent using too much memory.
3407	 */
3408	if (is_kdump_kernel()) {
3409		set->nr_hw_queues = 1;
3410		set->nr_maps = 1;
3411		set->queue_depth = min(64U, set->queue_depth);
3412	}
3413	/*
3414	 * There is no use for more h/w queues than cpus if we just have
3415	 * a single map
3416	 */
3417	if (set->nr_maps == 1 && set->nr_hw_queues > nr_cpu_ids)
3418		set->nr_hw_queues = nr_cpu_ids;
3419
3420	if (blk_mq_realloc_tag_set_tags(set, 0, set->nr_hw_queues) < 0)
3421		return -ENOMEM;
3422
3423	ret = -ENOMEM;
3424	for (i = 0; i < set->nr_maps; i++) {
3425		set->map[i].mq_map = kcalloc_node(nr_cpu_ids,
3426						  sizeof(set->map[i].mq_map[0]),
3427						  GFP_KERNEL, set->numa_node);
3428		if (!set->map[i].mq_map)
3429			goto out_free_mq_map;
3430		set->map[i].nr_queues = is_kdump_kernel() ? 1 : set->nr_hw_queues;
3431	}
3432
3433	ret = blk_mq_update_queue_map(set);
3434	if (ret)
3435		goto out_free_mq_map;
3436
3437	ret = blk_mq_alloc_map_and_requests(set);
3438	if (ret)
3439		goto out_free_mq_map;
3440
3441	mutex_init(&set->tag_list_lock);
3442	INIT_LIST_HEAD(&set->tag_list);
3443
3444	return 0;
3445
3446out_free_mq_map:
3447	for (i = 0; i < set->nr_maps; i++) {
3448		kfree(set->map[i].mq_map);
3449		set->map[i].mq_map = NULL;
3450	}
3451	kfree(set->tags);
3452	set->tags = NULL;
3453	return ret;
3454}
3455EXPORT_SYMBOL(blk_mq_alloc_tag_set);
3456
3457void blk_mq_free_tag_set(struct blk_mq_tag_set *set)
3458{
3459	int i, j;
3460
3461	for (i = 0; i < set->nr_hw_queues; i++)
3462		blk_mq_free_map_and_requests(set, i);
3463
3464	for (j = 0; j < set->nr_maps; j++) {
3465		kfree(set->map[j].mq_map);
3466		set->map[j].mq_map = NULL;
3467	}
3468
3469	kfree(set->tags);
3470	set->tags = NULL;
3471}
3472EXPORT_SYMBOL(blk_mq_free_tag_set);
3473
3474int blk_mq_update_nr_requests(struct request_queue *q, unsigned int nr)
3475{
3476	struct blk_mq_tag_set *set = q->tag_set;
3477	struct blk_mq_hw_ctx *hctx;
3478	int i, ret;
3479
3480	if (!set)
3481		return -EINVAL;
3482
3483	if (q->nr_requests == nr)
3484		return 0;
3485
3486	blk_mq_freeze_queue(q);
3487	blk_mq_quiesce_queue(q);
3488
3489	ret = 0;
3490	queue_for_each_hw_ctx(q, hctx, i) {
3491		if (!hctx->tags)
3492			continue;
3493		/*
3494		 * If we're using an MQ scheduler, just update the scheduler
3495		 * queue depth. This is similar to what the old code would do.
3496		 */
3497		if (!hctx->sched_tags) {
3498			ret = blk_mq_tag_update_depth(hctx, &hctx->tags, nr,
3499							false);
3500		} else {
3501			ret = blk_mq_tag_update_depth(hctx, &hctx->sched_tags,
3502							nr, true);
3503		}
3504		if (ret)
3505			break;
3506		if (q->elevator && q->elevator->type->ops.depth_updated)
3507			q->elevator->type->ops.depth_updated(hctx);
3508	}
3509
3510	if (!ret)
3511		q->nr_requests = nr;
 
3512
3513	blk_mq_unquiesce_queue(q);
3514	blk_mq_unfreeze_queue(q);
 
3515
3516	return ret;
 
 
3517}
3518
3519/*
3520 * request_queue and elevator_type pair.
3521 * It is just used by __blk_mq_update_nr_hw_queues to cache
3522 * the elevator_type associated with a request_queue.
3523 */
3524struct blk_mq_qe_pair {
3525	struct list_head node;
3526	struct request_queue *q;
3527	struct elevator_type *type;
3528};
3529
3530/*
3531 * Cache the elevator_type in qe pair list and switch the
3532 * io scheduler to 'none'
3533 */
3534static bool blk_mq_elv_switch_none(struct list_head *head,
3535		struct request_queue *q)
3536{
3537	struct blk_mq_qe_pair *qe;
3538
3539	if (!q->elevator)
3540		return true;
3541
3542	qe = kmalloc(sizeof(*qe), GFP_NOIO | __GFP_NOWARN | __GFP_NORETRY);
3543	if (!qe)
3544		return false;
3545
3546	INIT_LIST_HEAD(&qe->node);
3547	qe->q = q;
3548	qe->type = q->elevator->type;
3549	list_add(&qe->node, head);
3550
3551	mutex_lock(&q->sysfs_lock);
3552	/*
3553	 * After elevator_switch_mq, the previous elevator_queue will be
3554	 * released by elevator_release. The reference of the io scheduler
3555	 * module get by elevator_get will also be put. So we need to get
3556	 * a reference of the io scheduler module here to prevent it to be
3557	 * removed.
3558	 */
3559	__module_get(qe->type->elevator_owner);
3560	elevator_switch_mq(q, NULL);
3561	mutex_unlock(&q->sysfs_lock);
3562
3563	return true;
3564}
3565
3566static void blk_mq_elv_switch_back(struct list_head *head,
3567		struct request_queue *q)
3568{
3569	struct blk_mq_qe_pair *qe;
3570	struct elevator_type *t = NULL;
3571
3572	list_for_each_entry(qe, head, node)
3573		if (qe->q == q) {
3574			t = qe->type;
3575			break;
3576		}
3577
3578	if (!t)
3579		return;
3580
3581	list_del(&qe->node);
3582	kfree(qe);
3583
3584	mutex_lock(&q->sysfs_lock);
3585	elevator_switch_mq(q, t);
3586	mutex_unlock(&q->sysfs_lock);
3587}
3588
3589static void __blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set,
3590							int nr_hw_queues)
3591{
3592	struct request_queue *q;
3593	LIST_HEAD(head);
3594	int prev_nr_hw_queues;
3595
3596	lockdep_assert_held(&set->tag_list_lock);
3597
3598	if (set->nr_maps == 1 && nr_hw_queues > nr_cpu_ids)
3599		nr_hw_queues = nr_cpu_ids;
3600	if (nr_hw_queues < 1)
3601		return;
3602	if (set->nr_maps == 1 && nr_hw_queues == set->nr_hw_queues)
3603		return;
3604
3605	list_for_each_entry(q, &set->tag_list, tag_set_list)
3606		blk_mq_freeze_queue(q);
3607	/*
3608	 * Switch IO scheduler to 'none', cleaning up the data associated
3609	 * with the previous scheduler. We will switch back once we are done
3610	 * updating the new sw to hw queue mappings.
3611	 */
3612	list_for_each_entry(q, &set->tag_list, tag_set_list)
3613		if (!blk_mq_elv_switch_none(&head, q))
3614			goto switch_back;
3615
3616	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3617		blk_mq_debugfs_unregister_hctxs(q);
3618		blk_mq_sysfs_unregister(q);
3619	}
3620
3621	prev_nr_hw_queues = set->nr_hw_queues;
3622	if (blk_mq_realloc_tag_set_tags(set, set->nr_hw_queues, nr_hw_queues) <
3623	    0)
3624		goto reregister;
3625
3626	set->nr_hw_queues = nr_hw_queues;
3627fallback:
3628	blk_mq_update_queue_map(set);
3629	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3630		blk_mq_realloc_hw_ctxs(set, q);
3631		if (q->nr_hw_queues != set->nr_hw_queues) {
3632			pr_warn("Increasing nr_hw_queues to %d fails, fallback to %d\n",
3633					nr_hw_queues, prev_nr_hw_queues);
3634			set->nr_hw_queues = prev_nr_hw_queues;
3635			blk_mq_map_queues(&set->map[HCTX_TYPE_DEFAULT]);
3636			goto fallback;
3637		}
3638		blk_mq_map_swqueue(q);
3639	}
3640
3641reregister:
3642	list_for_each_entry(q, &set->tag_list, tag_set_list) {
3643		blk_mq_sysfs_register(q);
3644		blk_mq_debugfs_register_hctxs(q);
3645	}
3646
3647switch_back:
3648	list_for_each_entry(q, &set->tag_list, tag_set_list)
3649		blk_mq_elv_switch_back(&head, q);
3650
3651	list_for_each_entry(q, &set->tag_list, tag_set_list)
3652		blk_mq_unfreeze_queue(q);
3653}
3654
3655void blk_mq_update_nr_hw_queues(struct blk_mq_tag_set *set, int nr_hw_queues)
3656{
3657	mutex_lock(&set->tag_list_lock);
3658	__blk_mq_update_nr_hw_queues(set, nr_hw_queues);
3659	mutex_unlock(&set->tag_list_lock);
3660}
3661EXPORT_SYMBOL_GPL(blk_mq_update_nr_hw_queues);
3662
3663/* Enable polling stats and return whether they were already enabled. */
3664static bool blk_poll_stats_enable(struct request_queue *q)
3665{
3666	if (test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3667	    blk_queue_flag_test_and_set(QUEUE_FLAG_POLL_STATS, q))
3668		return true;
3669	blk_stat_add_callback(q, q->poll_cb);
3670	return false;
3671}
3672
3673static void blk_mq_poll_stats_start(struct request_queue *q)
3674{
3675	/*
3676	 * We don't arm the callback if polling stats are not enabled or the
3677	 * callback is already active.
 
 
3678	 */
3679	if (!test_bit(QUEUE_FLAG_POLL_STATS, &q->queue_flags) ||
3680	    blk_stat_is_active(q->poll_cb))
3681		return;
3682
3683	blk_stat_activate_msecs(q->poll_cb, 100);
 
 
 
 
3684}
3685
3686static void blk_mq_poll_stats_fn(struct blk_stat_callback *cb)
3687{
3688	struct request_queue *q = cb->data;
3689	int bucket;
3690
3691	for (bucket = 0; bucket < BLK_MQ_POLL_STATS_BKTS; bucket++) {
3692		if (cb->stat[bucket].nr_samples)
3693			q->poll_stat[bucket] = cb->stat[bucket];
3694	}
3695}
3696
3697static unsigned long blk_mq_poll_nsecs(struct request_queue *q,
3698				       struct request *rq)
3699{
3700	unsigned long ret = 0;
3701	int bucket;
3702
3703	/*
3704	 * If stats collection isn't on, don't sleep but turn it on for
3705	 * future users
3706	 */
3707	if (!blk_poll_stats_enable(q))
3708		return 0;
3709
3710	/*
3711	 * As an optimistic guess, use half of the mean service time
3712	 * for this type of request. We can (and should) make this smarter.
3713	 * For instance, if the completion latencies are tight, we can
3714	 * get closer than just half the mean. This is especially
3715	 * important on devices where the completion latencies are longer
3716	 * than ~10 usec. We do use the stats for the relevant IO size
3717	 * if available which does lead to better estimates.
3718	 */
3719	bucket = blk_mq_poll_stats_bkt(rq);
3720	if (bucket < 0)
3721		return ret;
3722
3723	if (q->poll_stat[bucket].nr_samples)
3724		ret = (q->poll_stat[bucket].mean + 1) / 2;
3725
3726	return ret;
3727}
3728
3729static bool blk_mq_poll_hybrid_sleep(struct request_queue *q,
3730				     struct request *rq)
3731{
3732	struct hrtimer_sleeper hs;
3733	enum hrtimer_mode mode;
3734	unsigned int nsecs;
3735	ktime_t kt;
3736
3737	if (rq->rq_flags & RQF_MQ_POLL_SLEPT)
3738		return false;
3739
3740	/*
3741	 * If we get here, hybrid polling is enabled. Hence poll_nsec can be:
3742	 *
3743	 *  0:	use half of prev avg
3744	 * >0:	use this specific value
3745	 */
3746	if (q->poll_nsec > 0)
3747		nsecs = q->poll_nsec;
3748	else
3749		nsecs = blk_mq_poll_nsecs(q, rq);
3750
3751	if (!nsecs)
3752		return false;
3753
3754	rq->rq_flags |= RQF_MQ_POLL_SLEPT;
3755
3756	/*
3757	 * This will be replaced with the stats tracking code, using
3758	 * 'avg_completion_time / 2' as the pre-sleep target.
3759	 */
3760	kt = nsecs;
3761
3762	mode = HRTIMER_MODE_REL;
3763	hrtimer_init_sleeper_on_stack(&hs, CLOCK_MONOTONIC, mode);
3764	hrtimer_set_expires(&hs.timer, kt);
3765
3766	do {
3767		if (blk_mq_rq_state(rq) == MQ_RQ_COMPLETE)
3768			break;
3769		set_current_state(TASK_UNINTERRUPTIBLE);
3770		hrtimer_sleeper_start_expires(&hs, mode);
3771		if (hs.task)
3772			io_schedule();
3773		hrtimer_cancel(&hs.timer);
3774		mode = HRTIMER_MODE_ABS;
3775	} while (hs.task && !signal_pending(current));
3776
3777	__set_current_state(TASK_RUNNING);
3778	destroy_hrtimer_on_stack(&hs.timer);
3779	return true;
3780}
3781
3782static bool blk_mq_poll_hybrid(struct request_queue *q,
3783			       struct blk_mq_hw_ctx *hctx, blk_qc_t cookie)
3784{
3785	struct request *rq;
3786
3787	if (q->poll_nsec == BLK_MQ_POLL_CLASSIC)
3788		return false;
3789
3790	if (!blk_qc_t_is_internal(cookie))
3791		rq = blk_mq_tag_to_rq(hctx->tags, blk_qc_t_to_tag(cookie));
3792	else {
3793		rq = blk_mq_tag_to_rq(hctx->sched_tags, blk_qc_t_to_tag(cookie));
3794		/*
3795		 * With scheduling, if the request has completed, we'll
3796		 * get a NULL return here, as we clear the sched tag when
3797		 * that happens. The request still remains valid, like always,
3798		 * so we should be safe with just the NULL check.
3799		 */
3800		if (!rq)
3801			return false;
3802	}
3803
3804	return blk_mq_poll_hybrid_sleep(q, rq);
3805}
3806
3807/**
3808 * blk_poll - poll for IO completions
3809 * @q:  the queue
3810 * @cookie: cookie passed back at IO submission time
3811 * @spin: whether to spin for completions
3812 *
3813 * Description:
3814 *    Poll for completions on the passed in queue. Returns number of
3815 *    completed entries found. If @spin is true, then blk_poll will continue
3816 *    looping until at least one completion is found, unless the task is
3817 *    otherwise marked running (or we need to reschedule).
3818 */
3819int blk_poll(struct request_queue *q, blk_qc_t cookie, bool spin)
3820{
3821	struct blk_mq_hw_ctx *hctx;
3822	long state;
3823
3824	if (!blk_qc_t_valid(cookie) ||
3825	    !test_bit(QUEUE_FLAG_POLL, &q->queue_flags))
3826		return 0;
3827
3828	if (current->plug)
3829		blk_flush_plug_list(current->plug, false);
3830
3831	hctx = q->queue_hw_ctx[blk_qc_t_to_queue_num(cookie)];
3832
3833	/*
3834	 * If we sleep, have the caller restart the poll loop to reset
3835	 * the state. Like for the other success return cases, the
3836	 * caller is responsible for checking if the IO completed. If
3837	 * the IO isn't complete, we'll get called again and will go
3838	 * straight to the busy poll loop.
3839	 */
3840	if (blk_mq_poll_hybrid(q, hctx, cookie))
3841		return 1;
3842
3843	hctx->poll_considered++;
3844
3845	state = current->state;
3846	do {
3847		int ret;
3848
3849		hctx->poll_invoked++;
3850
3851		ret = q->mq_ops->poll(hctx);
3852		if (ret > 0) {
3853			hctx->poll_success++;
3854			__set_current_state(TASK_RUNNING);
3855			return ret;
3856		}
3857
3858		if (signal_pending_state(state, current))
3859			__set_current_state(TASK_RUNNING);
3860
3861		if (current->state == TASK_RUNNING)
3862			return 1;
3863		if (ret < 0 || !spin)
3864			break;
3865		cpu_relax();
3866	} while (!need_resched());
3867
3868	__set_current_state(TASK_RUNNING);
3869	return 0;
3870}
3871EXPORT_SYMBOL_GPL(blk_poll);
3872
3873unsigned int blk_mq_rq_cpu(struct request *rq)
3874{
3875	return rq->mq_ctx->cpu;
3876}
3877EXPORT_SYMBOL(blk_mq_rq_cpu);
3878
3879static int __init blk_mq_init(void)
3880{
3881	int i;
3882
3883	for_each_possible_cpu(i)
3884		INIT_LIST_HEAD(&per_cpu(blk_cpu_done, i));
3885	open_softirq(BLOCK_SOFTIRQ, blk_done_softirq);
3886
3887	cpuhp_setup_state_nocalls(CPUHP_BLOCK_SOFTIRQ_DEAD,
3888				  "block/softirq:dead", NULL,
3889				  blk_softirq_cpu_dead);
3890	cpuhp_setup_state_multi(CPUHP_BLK_MQ_DEAD, "block/mq:dead", NULL,
3891				blk_mq_hctx_notify_dead);
3892	cpuhp_setup_state_multi(CPUHP_AP_BLK_MQ_ONLINE, "block/mq:online",
3893				blk_mq_hctx_notify_online,
3894				blk_mq_hctx_notify_offline);
3895	return 0;
3896}
3897subsys_initcall(blk_mq_init);