Linux Audio

Check our new training course

Embedded Linux training

Mar 31-Apr 8, 2025
Register
Loading...
   1#include <linux/kernel.h>
   2#include <linux/module.h>
   3#include <linux/backing-dev.h>
   4#include <linux/bio.h>
   5#include <linux/blkdev.h>
   6#include <linux/mm.h>
   7#include <linux/init.h>
   8#include <linux/slab.h>
   9#include <linux/workqueue.h>
  10#include <linux/smp.h>
  11#include <linux/llist.h>
  12#include <linux/list_sort.h>
  13#include <linux/cpu.h>
  14#include <linux/cache.h>
  15#include <linux/sched/sysctl.h>
  16#include <linux/delay.h>
  17
  18#include <trace/events/block.h>
  19
  20#include <linux/blk-mq.h>
  21#include "blk.h"
  22#include "blk-mq.h"
  23#include "blk-mq-tag.h"
  24
  25static DEFINE_MUTEX(all_q_mutex);
  26static LIST_HEAD(all_q_list);
  27
  28static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx);
  29
  30static struct blk_mq_ctx *__blk_mq_get_ctx(struct request_queue *q,
  31					   unsigned int cpu)
  32{
  33	return per_cpu_ptr(q->queue_ctx, cpu);
  34}
  35
  36/*
  37 * This assumes per-cpu software queueing queues. They could be per-node
  38 * as well, for instance. For now this is hardcoded as-is. Note that we don't
  39 * care about preemption, since we know the ctx's are persistent. This does
  40 * mean that we can't rely on ctx always matching the currently running CPU.
  41 */
  42static struct blk_mq_ctx *blk_mq_get_ctx(struct request_queue *q)
  43{
  44	return __blk_mq_get_ctx(q, get_cpu());
  45}
  46
  47static void blk_mq_put_ctx(struct blk_mq_ctx *ctx)
  48{
  49	put_cpu();
  50}
  51
  52/*
  53 * Check if any of the ctx's have pending work in this hardware queue
  54 */
  55static bool blk_mq_hctx_has_pending(struct blk_mq_hw_ctx *hctx)
  56{
  57	unsigned int i;
  58
  59	for (i = 0; i < hctx->nr_ctx_map; i++)
  60		if (hctx->ctx_map[i])
  61			return true;
  62
  63	return false;
  64}
  65
  66/*
  67 * Mark this ctx as having pending work in this hardware queue
  68 */
  69static void blk_mq_hctx_mark_pending(struct blk_mq_hw_ctx *hctx,
  70				     struct blk_mq_ctx *ctx)
  71{
  72	if (!test_bit(ctx->index_hw, hctx->ctx_map))
  73		set_bit(ctx->index_hw, hctx->ctx_map);
  74}
  75
  76static struct request *__blk_mq_alloc_request(struct blk_mq_hw_ctx *hctx,
  77					      gfp_t gfp, bool reserved)
  78{
  79	struct request *rq;
  80	unsigned int tag;
  81
  82	tag = blk_mq_get_tag(hctx->tags, gfp, reserved);
  83	if (tag != BLK_MQ_TAG_FAIL) {
  84		rq = hctx->rqs[tag];
  85		rq->tag = tag;
  86
  87		return rq;
  88	}
  89
  90	return NULL;
  91}
  92
  93static int blk_mq_queue_enter(struct request_queue *q)
  94{
  95	int ret;
  96
  97	__percpu_counter_add(&q->mq_usage_counter, 1, 1000000);
  98	smp_wmb();
  99	/* we have problems to freeze the queue if it's initializing */
 100	if (!blk_queue_bypass(q) || !blk_queue_init_done(q))
 101		return 0;
 102
 103	__percpu_counter_add(&q->mq_usage_counter, -1, 1000000);
 104
 105	spin_lock_irq(q->queue_lock);
 106	ret = wait_event_interruptible_lock_irq(q->mq_freeze_wq,
 107		!blk_queue_bypass(q) || blk_queue_dying(q),
 108		*q->queue_lock);
 109	/* inc usage with lock hold to avoid freeze_queue runs here */
 110	if (!ret && !blk_queue_dying(q))
 111		__percpu_counter_add(&q->mq_usage_counter, 1, 1000000);
 112	else if (blk_queue_dying(q))
 113		ret = -ENODEV;
 114	spin_unlock_irq(q->queue_lock);
 115
 116	return ret;
 117}
 118
 119static void blk_mq_queue_exit(struct request_queue *q)
 120{
 121	__percpu_counter_add(&q->mq_usage_counter, -1, 1000000);
 122}
 123
 124static void __blk_mq_drain_queue(struct request_queue *q)
 125{
 126	while (true) {
 127		s64 count;
 128
 129		spin_lock_irq(q->queue_lock);
 130		count = percpu_counter_sum(&q->mq_usage_counter);
 131		spin_unlock_irq(q->queue_lock);
 132
 133		if (count == 0)
 134			break;
 135		blk_mq_run_queues(q, false);
 136		msleep(10);
 137	}
 138}
 139
 140/*
 141 * Guarantee no request is in use, so we can change any data structure of
 142 * the queue afterward.
 143 */
 144static void blk_mq_freeze_queue(struct request_queue *q)
 145{
 146	bool drain;
 147
 148	spin_lock_irq(q->queue_lock);
 149	drain = !q->bypass_depth++;
 150	queue_flag_set(QUEUE_FLAG_BYPASS, q);
 151	spin_unlock_irq(q->queue_lock);
 152
 153	if (drain)
 154		__blk_mq_drain_queue(q);
 155}
 156
 157void blk_mq_drain_queue(struct request_queue *q)
 158{
 159	__blk_mq_drain_queue(q);
 160}
 161
 162static void blk_mq_unfreeze_queue(struct request_queue *q)
 163{
 164	bool wake = false;
 165
 166	spin_lock_irq(q->queue_lock);
 167	if (!--q->bypass_depth) {
 168		queue_flag_clear(QUEUE_FLAG_BYPASS, q);
 169		wake = true;
 170	}
 171	WARN_ON_ONCE(q->bypass_depth < 0);
 172	spin_unlock_irq(q->queue_lock);
 173	if (wake)
 174		wake_up_all(&q->mq_freeze_wq);
 175}
 176
 177bool blk_mq_can_queue(struct blk_mq_hw_ctx *hctx)
 178{
 179	return blk_mq_has_free_tags(hctx->tags);
 180}
 181EXPORT_SYMBOL(blk_mq_can_queue);
 182
 183static void blk_mq_rq_ctx_init(struct request_queue *q, struct blk_mq_ctx *ctx,
 184			       struct request *rq, unsigned int rw_flags)
 185{
 186	if (blk_queue_io_stat(q))
 187		rw_flags |= REQ_IO_STAT;
 188
 189	rq->mq_ctx = ctx;
 190	rq->cmd_flags = rw_flags;
 191	rq->start_time = jiffies;
 192	set_start_time_ns(rq);
 193	ctx->rq_dispatched[rw_is_sync(rw_flags)]++;
 194}
 195
 196static struct request *blk_mq_alloc_request_pinned(struct request_queue *q,
 197						   int rw, gfp_t gfp,
 198						   bool reserved)
 199{
 200	struct request *rq;
 201
 202	do {
 203		struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
 204		struct blk_mq_hw_ctx *hctx = q->mq_ops->map_queue(q, ctx->cpu);
 205
 206		rq = __blk_mq_alloc_request(hctx, gfp & ~__GFP_WAIT, reserved);
 207		if (rq) {
 208			blk_mq_rq_ctx_init(q, ctx, rq, rw);
 209			break;
 210		}
 211
 212		blk_mq_put_ctx(ctx);
 213		if (!(gfp & __GFP_WAIT))
 214			break;
 215
 216		__blk_mq_run_hw_queue(hctx);
 217		blk_mq_wait_for_tags(hctx->tags);
 218	} while (1);
 219
 220	return rq;
 221}
 222
 223struct request *blk_mq_alloc_request(struct request_queue *q, int rw, gfp_t gfp)
 224{
 225	struct request *rq;
 226
 227	if (blk_mq_queue_enter(q))
 228		return NULL;
 229
 230	rq = blk_mq_alloc_request_pinned(q, rw, gfp, false);
 231	if (rq)
 232		blk_mq_put_ctx(rq->mq_ctx);
 233	return rq;
 234}
 235
 236struct request *blk_mq_alloc_reserved_request(struct request_queue *q, int rw,
 237					      gfp_t gfp)
 238{
 239	struct request *rq;
 240
 241	if (blk_mq_queue_enter(q))
 242		return NULL;
 243
 244	rq = blk_mq_alloc_request_pinned(q, rw, gfp, true);
 245	if (rq)
 246		blk_mq_put_ctx(rq->mq_ctx);
 247	return rq;
 248}
 249EXPORT_SYMBOL(blk_mq_alloc_reserved_request);
 250
 251/*
 252 * Re-init and set pdu, if we have it
 253 */
 254void blk_mq_rq_init(struct blk_mq_hw_ctx *hctx, struct request *rq)
 255{
 256	blk_rq_init(hctx->queue, rq);
 257
 258	if (hctx->cmd_size)
 259		rq->special = blk_mq_rq_to_pdu(rq);
 260}
 261
 262static void __blk_mq_free_request(struct blk_mq_hw_ctx *hctx,
 263				  struct blk_mq_ctx *ctx, struct request *rq)
 264{
 265	const int tag = rq->tag;
 266	struct request_queue *q = rq->q;
 267
 268	blk_mq_rq_init(hctx, rq);
 269	blk_mq_put_tag(hctx->tags, tag);
 270
 271	blk_mq_queue_exit(q);
 272}
 273
 274void blk_mq_free_request(struct request *rq)
 275{
 276	struct blk_mq_ctx *ctx = rq->mq_ctx;
 277	struct blk_mq_hw_ctx *hctx;
 278	struct request_queue *q = rq->q;
 279
 280	ctx->rq_completed[rq_is_sync(rq)]++;
 281
 282	hctx = q->mq_ops->map_queue(q, ctx->cpu);
 283	__blk_mq_free_request(hctx, ctx, rq);
 284}
 285
 286bool blk_mq_end_io_partial(struct request *rq, int error, unsigned int nr_bytes)
 287{
 288	if (blk_update_request(rq, error, blk_rq_bytes(rq)))
 289		return true;
 290
 291	blk_account_io_done(rq);
 292
 293	if (rq->end_io)
 294		rq->end_io(rq, error);
 295	else
 296		blk_mq_free_request(rq);
 297	return false;
 298}
 299EXPORT_SYMBOL(blk_mq_end_io_partial);
 300
 301static void __blk_mq_complete_request_remote(void *data)
 302{
 303	struct request *rq = data;
 304
 305	rq->q->softirq_done_fn(rq);
 306}
 307
 308void __blk_mq_complete_request(struct request *rq)
 309{
 310	struct blk_mq_ctx *ctx = rq->mq_ctx;
 311	int cpu;
 312
 313	if (!ctx->ipi_redirect) {
 314		rq->q->softirq_done_fn(rq);
 315		return;
 316	}
 317
 318	cpu = get_cpu();
 319	if (cpu != ctx->cpu && cpu_online(ctx->cpu)) {
 320		rq->csd.func = __blk_mq_complete_request_remote;
 321		rq->csd.info = rq;
 322		rq->csd.flags = 0;
 323		smp_call_function_single_async(ctx->cpu, &rq->csd);
 324	} else {
 325		rq->q->softirq_done_fn(rq);
 326	}
 327	put_cpu();
 328}
 329
 330/**
 331 * blk_mq_complete_request - end I/O on a request
 332 * @rq:		the request being processed
 333 *
 334 * Description:
 335 *	Ends all I/O on a request. It does not handle partial completions.
 336 *	The actual completion happens out-of-order, through a IPI handler.
 337 **/
 338void blk_mq_complete_request(struct request *rq)
 339{
 340	if (unlikely(blk_should_fake_timeout(rq->q)))
 341		return;
 342	if (!blk_mark_rq_complete(rq))
 343		__blk_mq_complete_request(rq);
 344}
 345EXPORT_SYMBOL(blk_mq_complete_request);
 346
 347static void blk_mq_start_request(struct request *rq, bool last)
 348{
 349	struct request_queue *q = rq->q;
 350
 351	trace_block_rq_issue(q, rq);
 352
 353	/*
 354	 * Just mark start time and set the started bit. Due to memory
 355	 * ordering, we know we'll see the correct deadline as long as
 356	 * REQ_ATOMIC_STARTED is seen.
 357	 */
 358	rq->deadline = jiffies + q->rq_timeout;
 359	set_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
 360
 361	if (q->dma_drain_size && blk_rq_bytes(rq)) {
 362		/*
 363		 * Make sure space for the drain appears.  We know we can do
 364		 * this because max_hw_segments has been adjusted to be one
 365		 * fewer than the device can handle.
 366		 */
 367		rq->nr_phys_segments++;
 368	}
 369
 370	/*
 371	 * Flag the last request in the series so that drivers know when IO
 372	 * should be kicked off, if they don't do it on a per-request basis.
 373	 *
 374	 * Note: the flag isn't the only condition drivers should do kick off.
 375	 * If drive is busy, the last request might not have the bit set.
 376	 */
 377	if (last)
 378		rq->cmd_flags |= REQ_END;
 379}
 380
 381static void blk_mq_requeue_request(struct request *rq)
 382{
 383	struct request_queue *q = rq->q;
 384
 385	trace_block_rq_requeue(q, rq);
 386	clear_bit(REQ_ATOM_STARTED, &rq->atomic_flags);
 387
 388	rq->cmd_flags &= ~REQ_END;
 389
 390	if (q->dma_drain_size && blk_rq_bytes(rq))
 391		rq->nr_phys_segments--;
 392}
 393
 394struct blk_mq_timeout_data {
 395	struct blk_mq_hw_ctx *hctx;
 396	unsigned long *next;
 397	unsigned int *next_set;
 398};
 399
 400static void blk_mq_timeout_check(void *__data, unsigned long *free_tags)
 401{
 402	struct blk_mq_timeout_data *data = __data;
 403	struct blk_mq_hw_ctx *hctx = data->hctx;
 404	unsigned int tag;
 405
 406	 /* It may not be in flight yet (this is where
 407	 * the REQ_ATOMIC_STARTED flag comes in). The requests are
 408	 * statically allocated, so we know it's always safe to access the
 409	 * memory associated with a bit offset into ->rqs[].
 410	 */
 411	tag = 0;
 412	do {
 413		struct request *rq;
 414
 415		tag = find_next_zero_bit(free_tags, hctx->queue_depth, tag);
 416		if (tag >= hctx->queue_depth)
 417			break;
 418
 419		rq = hctx->rqs[tag++];
 420
 421		if (!test_bit(REQ_ATOM_STARTED, &rq->atomic_flags))
 422			continue;
 423
 424		blk_rq_check_expired(rq, data->next, data->next_set);
 425	} while (1);
 426}
 427
 428static void blk_mq_hw_ctx_check_timeout(struct blk_mq_hw_ctx *hctx,
 429					unsigned long *next,
 430					unsigned int *next_set)
 431{
 432	struct blk_mq_timeout_data data = {
 433		.hctx		= hctx,
 434		.next		= next,
 435		.next_set	= next_set,
 436	};
 437
 438	/*
 439	 * Ask the tagging code to iterate busy requests, so we can
 440	 * check them for timeout.
 441	 */
 442	blk_mq_tag_busy_iter(hctx->tags, blk_mq_timeout_check, &data);
 443}
 444
 445static void blk_mq_rq_timer(unsigned long data)
 446{
 447	struct request_queue *q = (struct request_queue *) data;
 448	struct blk_mq_hw_ctx *hctx;
 449	unsigned long next = 0;
 450	int i, next_set = 0;
 451
 452	queue_for_each_hw_ctx(q, hctx, i)
 453		blk_mq_hw_ctx_check_timeout(hctx, &next, &next_set);
 454
 455	if (next_set)
 456		mod_timer(&q->timeout, round_jiffies_up(next));
 457}
 458
 459/*
 460 * Reverse check our software queue for entries that we could potentially
 461 * merge with. Currently includes a hand-wavy stop count of 8, to not spend
 462 * too much time checking for merges.
 463 */
 464static bool blk_mq_attempt_merge(struct request_queue *q,
 465				 struct blk_mq_ctx *ctx, struct bio *bio)
 466{
 467	struct request *rq;
 468	int checked = 8;
 469
 470	list_for_each_entry_reverse(rq, &ctx->rq_list, queuelist) {
 471		int el_ret;
 472
 473		if (!checked--)
 474			break;
 475
 476		if (!blk_rq_merge_ok(rq, bio))
 477			continue;
 478
 479		el_ret = blk_try_merge(rq, bio);
 480		if (el_ret == ELEVATOR_BACK_MERGE) {
 481			if (bio_attempt_back_merge(q, rq, bio)) {
 482				ctx->rq_merged++;
 483				return true;
 484			}
 485			break;
 486		} else if (el_ret == ELEVATOR_FRONT_MERGE) {
 487			if (bio_attempt_front_merge(q, rq, bio)) {
 488				ctx->rq_merged++;
 489				return true;
 490			}
 491			break;
 492		}
 493	}
 494
 495	return false;
 496}
 497
 498void blk_mq_add_timer(struct request *rq)
 499{
 500	__blk_add_timer(rq, NULL);
 501}
 502
 503/*
 504 * Run this hardware queue, pulling any software queues mapped to it in.
 505 * Note that this function currently has various problems around ordering
 506 * of IO. In particular, we'd like FIFO behaviour on handling existing
 507 * items on the hctx->dispatch list. Ignore that for now.
 508 */
 509static void __blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx)
 510{
 511	struct request_queue *q = hctx->queue;
 512	struct blk_mq_ctx *ctx;
 513	struct request *rq;
 514	LIST_HEAD(rq_list);
 515	int bit, queued;
 516
 517	if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
 518		return;
 519
 520	hctx->run++;
 521
 522	/*
 523	 * Touch any software queue that has pending entries.
 524	 */
 525	for_each_set_bit(bit, hctx->ctx_map, hctx->nr_ctx) {
 526		clear_bit(bit, hctx->ctx_map);
 527		ctx = hctx->ctxs[bit];
 528		BUG_ON(bit != ctx->index_hw);
 529
 530		spin_lock(&ctx->lock);
 531		list_splice_tail_init(&ctx->rq_list, &rq_list);
 532		spin_unlock(&ctx->lock);
 533	}
 534
 535	/*
 536	 * If we have previous entries on our dispatch list, grab them
 537	 * and stuff them at the front for more fair dispatch.
 538	 */
 539	if (!list_empty_careful(&hctx->dispatch)) {
 540		spin_lock(&hctx->lock);
 541		if (!list_empty(&hctx->dispatch))
 542			list_splice_init(&hctx->dispatch, &rq_list);
 543		spin_unlock(&hctx->lock);
 544	}
 545
 546	/*
 547	 * Delete and return all entries from our dispatch list
 548	 */
 549	queued = 0;
 550
 551	/*
 552	 * Now process all the entries, sending them to the driver.
 553	 */
 554	while (!list_empty(&rq_list)) {
 555		int ret;
 556
 557		rq = list_first_entry(&rq_list, struct request, queuelist);
 558		list_del_init(&rq->queuelist);
 559
 560		blk_mq_start_request(rq, list_empty(&rq_list));
 561
 562		ret = q->mq_ops->queue_rq(hctx, rq);
 563		switch (ret) {
 564		case BLK_MQ_RQ_QUEUE_OK:
 565			queued++;
 566			continue;
 567		case BLK_MQ_RQ_QUEUE_BUSY:
 568			/*
 569			 * FIXME: we should have a mechanism to stop the queue
 570			 * like blk_stop_queue, otherwise we will waste cpu
 571			 * time
 572			 */
 573			list_add(&rq->queuelist, &rq_list);
 574			blk_mq_requeue_request(rq);
 575			break;
 576		default:
 577			pr_err("blk-mq: bad return on queue: %d\n", ret);
 578		case BLK_MQ_RQ_QUEUE_ERROR:
 579			rq->errors = -EIO;
 580			blk_mq_end_io(rq, rq->errors);
 581			break;
 582		}
 583
 584		if (ret == BLK_MQ_RQ_QUEUE_BUSY)
 585			break;
 586	}
 587
 588	if (!queued)
 589		hctx->dispatched[0]++;
 590	else if (queued < (1 << (BLK_MQ_MAX_DISPATCH_ORDER - 1)))
 591		hctx->dispatched[ilog2(queued) + 1]++;
 592
 593	/*
 594	 * Any items that need requeuing? Stuff them into hctx->dispatch,
 595	 * that is where we will continue on next queue run.
 596	 */
 597	if (!list_empty(&rq_list)) {
 598		spin_lock(&hctx->lock);
 599		list_splice(&rq_list, &hctx->dispatch);
 600		spin_unlock(&hctx->lock);
 601	}
 602}
 603
 604void blk_mq_run_hw_queue(struct blk_mq_hw_ctx *hctx, bool async)
 605{
 606	if (unlikely(test_bit(BLK_MQ_S_STOPPED, &hctx->state)))
 607		return;
 608
 609	if (!async)
 610		__blk_mq_run_hw_queue(hctx);
 611	else {
 612		struct request_queue *q = hctx->queue;
 613
 614		kblockd_schedule_delayed_work(q, &hctx->delayed_work, 0);
 615	}
 616}
 617
 618void blk_mq_run_queues(struct request_queue *q, bool async)
 619{
 620	struct blk_mq_hw_ctx *hctx;
 621	int i;
 622
 623	queue_for_each_hw_ctx(q, hctx, i) {
 624		if ((!blk_mq_hctx_has_pending(hctx) &&
 625		    list_empty_careful(&hctx->dispatch)) ||
 626		    test_bit(BLK_MQ_S_STOPPED, &hctx->state))
 627			continue;
 628
 629		blk_mq_run_hw_queue(hctx, async);
 630	}
 631}
 632EXPORT_SYMBOL(blk_mq_run_queues);
 633
 634void blk_mq_stop_hw_queue(struct blk_mq_hw_ctx *hctx)
 635{
 636	cancel_delayed_work(&hctx->delayed_work);
 637	set_bit(BLK_MQ_S_STOPPED, &hctx->state);
 638}
 639EXPORT_SYMBOL(blk_mq_stop_hw_queue);
 640
 641void blk_mq_stop_hw_queues(struct request_queue *q)
 642{
 643	struct blk_mq_hw_ctx *hctx;
 644	int i;
 645
 646	queue_for_each_hw_ctx(q, hctx, i)
 647		blk_mq_stop_hw_queue(hctx);
 648}
 649EXPORT_SYMBOL(blk_mq_stop_hw_queues);
 650
 651void blk_mq_start_hw_queue(struct blk_mq_hw_ctx *hctx)
 652{
 653	clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
 654	__blk_mq_run_hw_queue(hctx);
 655}
 656EXPORT_SYMBOL(blk_mq_start_hw_queue);
 657
 658void blk_mq_start_stopped_hw_queues(struct request_queue *q)
 659{
 660	struct blk_mq_hw_ctx *hctx;
 661	int i;
 662
 663	queue_for_each_hw_ctx(q, hctx, i) {
 664		if (!test_bit(BLK_MQ_S_STOPPED, &hctx->state))
 665			continue;
 666
 667		clear_bit(BLK_MQ_S_STOPPED, &hctx->state);
 668		blk_mq_run_hw_queue(hctx, true);
 669	}
 670}
 671EXPORT_SYMBOL(blk_mq_start_stopped_hw_queues);
 672
 673static void blk_mq_work_fn(struct work_struct *work)
 674{
 675	struct blk_mq_hw_ctx *hctx;
 676
 677	hctx = container_of(work, struct blk_mq_hw_ctx, delayed_work.work);
 678	__blk_mq_run_hw_queue(hctx);
 679}
 680
 681static void __blk_mq_insert_request(struct blk_mq_hw_ctx *hctx,
 682				    struct request *rq, bool at_head)
 683{
 684	struct blk_mq_ctx *ctx = rq->mq_ctx;
 685
 686	trace_block_rq_insert(hctx->queue, rq);
 687
 688	if (at_head)
 689		list_add(&rq->queuelist, &ctx->rq_list);
 690	else
 691		list_add_tail(&rq->queuelist, &ctx->rq_list);
 692	blk_mq_hctx_mark_pending(hctx, ctx);
 693
 694	/*
 695	 * We do this early, to ensure we are on the right CPU.
 696	 */
 697	blk_mq_add_timer(rq);
 698}
 699
 700void blk_mq_insert_request(struct request *rq, bool at_head, bool run_queue,
 701		bool async)
 702{
 703	struct request_queue *q = rq->q;
 704	struct blk_mq_hw_ctx *hctx;
 705	struct blk_mq_ctx *ctx = rq->mq_ctx, *current_ctx;
 706
 707	current_ctx = blk_mq_get_ctx(q);
 708	if (!cpu_online(ctx->cpu))
 709		rq->mq_ctx = ctx = current_ctx;
 710
 711	hctx = q->mq_ops->map_queue(q, ctx->cpu);
 712
 713	if (rq->cmd_flags & (REQ_FLUSH | REQ_FUA) &&
 714	    !(rq->cmd_flags & (REQ_FLUSH_SEQ))) {
 715		blk_insert_flush(rq);
 716	} else {
 717		spin_lock(&ctx->lock);
 718		__blk_mq_insert_request(hctx, rq, at_head);
 719		spin_unlock(&ctx->lock);
 720	}
 721
 722	blk_mq_put_ctx(current_ctx);
 723
 724	if (run_queue)
 725		blk_mq_run_hw_queue(hctx, async);
 726}
 727
 728static void blk_mq_insert_requests(struct request_queue *q,
 729				     struct blk_mq_ctx *ctx,
 730				     struct list_head *list,
 731				     int depth,
 732				     bool from_schedule)
 733
 734{
 735	struct blk_mq_hw_ctx *hctx;
 736	struct blk_mq_ctx *current_ctx;
 737
 738	trace_block_unplug(q, depth, !from_schedule);
 739
 740	current_ctx = blk_mq_get_ctx(q);
 741
 742	if (!cpu_online(ctx->cpu))
 743		ctx = current_ctx;
 744	hctx = q->mq_ops->map_queue(q, ctx->cpu);
 745
 746	/*
 747	 * preemption doesn't flush plug list, so it's possible ctx->cpu is
 748	 * offline now
 749	 */
 750	spin_lock(&ctx->lock);
 751	while (!list_empty(list)) {
 752		struct request *rq;
 753
 754		rq = list_first_entry(list, struct request, queuelist);
 755		list_del_init(&rq->queuelist);
 756		rq->mq_ctx = ctx;
 757		__blk_mq_insert_request(hctx, rq, false);
 758	}
 759	spin_unlock(&ctx->lock);
 760
 761	blk_mq_put_ctx(current_ctx);
 762
 763	blk_mq_run_hw_queue(hctx, from_schedule);
 764}
 765
 766static int plug_ctx_cmp(void *priv, struct list_head *a, struct list_head *b)
 767{
 768	struct request *rqa = container_of(a, struct request, queuelist);
 769	struct request *rqb = container_of(b, struct request, queuelist);
 770
 771	return !(rqa->mq_ctx < rqb->mq_ctx ||
 772		 (rqa->mq_ctx == rqb->mq_ctx &&
 773		  blk_rq_pos(rqa) < blk_rq_pos(rqb)));
 774}
 775
 776void blk_mq_flush_plug_list(struct blk_plug *plug, bool from_schedule)
 777{
 778	struct blk_mq_ctx *this_ctx;
 779	struct request_queue *this_q;
 780	struct request *rq;
 781	LIST_HEAD(list);
 782	LIST_HEAD(ctx_list);
 783	unsigned int depth;
 784
 785	list_splice_init(&plug->mq_list, &list);
 786
 787	list_sort(NULL, &list, plug_ctx_cmp);
 788
 789	this_q = NULL;
 790	this_ctx = NULL;
 791	depth = 0;
 792
 793	while (!list_empty(&list)) {
 794		rq = list_entry_rq(list.next);
 795		list_del_init(&rq->queuelist);
 796		BUG_ON(!rq->q);
 797		if (rq->mq_ctx != this_ctx) {
 798			if (this_ctx) {
 799				blk_mq_insert_requests(this_q, this_ctx,
 800							&ctx_list, depth,
 801							from_schedule);
 802			}
 803
 804			this_ctx = rq->mq_ctx;
 805			this_q = rq->q;
 806			depth = 0;
 807		}
 808
 809		depth++;
 810		list_add_tail(&rq->queuelist, &ctx_list);
 811	}
 812
 813	/*
 814	 * If 'this_ctx' is set, we know we have entries to complete
 815	 * on 'ctx_list'. Do those.
 816	 */
 817	if (this_ctx) {
 818		blk_mq_insert_requests(this_q, this_ctx, &ctx_list, depth,
 819				       from_schedule);
 820	}
 821}
 822
 823static void blk_mq_bio_to_request(struct request *rq, struct bio *bio)
 824{
 825	init_request_from_bio(rq, bio);
 826	blk_account_io_start(rq, 1);
 827}
 828
 829static void blk_mq_make_request(struct request_queue *q, struct bio *bio)
 830{
 831	struct blk_mq_hw_ctx *hctx;
 832	struct blk_mq_ctx *ctx;
 833	const int is_sync = rw_is_sync(bio->bi_rw);
 834	const int is_flush_fua = bio->bi_rw & (REQ_FLUSH | REQ_FUA);
 835	int rw = bio_data_dir(bio);
 836	struct request *rq;
 837	unsigned int use_plug, request_count = 0;
 838
 839	/*
 840	 * If we have multiple hardware queues, just go directly to
 841	 * one of those for sync IO.
 842	 */
 843	use_plug = !is_flush_fua && ((q->nr_hw_queues == 1) || !is_sync);
 844
 845	blk_queue_bounce(q, &bio);
 846
 847	if (bio_integrity_enabled(bio) && bio_integrity_prep(bio)) {
 848		bio_endio(bio, -EIO);
 849		return;
 850	}
 851
 852	if (use_plug && blk_attempt_plug_merge(q, bio, &request_count))
 853		return;
 854
 855	if (blk_mq_queue_enter(q)) {
 856		bio_endio(bio, -EIO);
 857		return;
 858	}
 859
 860	ctx = blk_mq_get_ctx(q);
 861	hctx = q->mq_ops->map_queue(q, ctx->cpu);
 862
 863	if (is_sync)
 864		rw |= REQ_SYNC;
 865	trace_block_getrq(q, bio, rw);
 866	rq = __blk_mq_alloc_request(hctx, GFP_ATOMIC, false);
 867	if (likely(rq))
 868		blk_mq_rq_ctx_init(q, ctx, rq, rw);
 869	else {
 870		blk_mq_put_ctx(ctx);
 871		trace_block_sleeprq(q, bio, rw);
 872		rq = blk_mq_alloc_request_pinned(q, rw, __GFP_WAIT|GFP_ATOMIC,
 873							false);
 874		ctx = rq->mq_ctx;
 875		hctx = q->mq_ops->map_queue(q, ctx->cpu);
 876	}
 877
 878	hctx->queued++;
 879
 880	if (unlikely(is_flush_fua)) {
 881		blk_mq_bio_to_request(rq, bio);
 882		blk_mq_put_ctx(ctx);
 883		blk_insert_flush(rq);
 884		goto run_queue;
 885	}
 886
 887	/*
 888	 * A task plug currently exists. Since this is completely lockless,
 889	 * utilize that to temporarily store requests until the task is
 890	 * either done or scheduled away.
 891	 */
 892	if (use_plug) {
 893		struct blk_plug *plug = current->plug;
 894
 895		if (plug) {
 896			blk_mq_bio_to_request(rq, bio);
 897			if (list_empty(&plug->mq_list))
 898				trace_block_plug(q);
 899			else if (request_count >= BLK_MAX_REQUEST_COUNT) {
 900				blk_flush_plug_list(plug, false);
 901				trace_block_plug(q);
 902			}
 903			list_add_tail(&rq->queuelist, &plug->mq_list);
 904			blk_mq_put_ctx(ctx);
 905			return;
 906		}
 907	}
 908
 909	spin_lock(&ctx->lock);
 910
 911	if ((hctx->flags & BLK_MQ_F_SHOULD_MERGE) &&
 912	    blk_mq_attempt_merge(q, ctx, bio))
 913		__blk_mq_free_request(hctx, ctx, rq);
 914	else {
 915		blk_mq_bio_to_request(rq, bio);
 916		__blk_mq_insert_request(hctx, rq, false);
 917	}
 918
 919	spin_unlock(&ctx->lock);
 920	blk_mq_put_ctx(ctx);
 921
 922	/*
 923	 * For a SYNC request, send it to the hardware immediately. For an
 924	 * ASYNC request, just ensure that we run it later on. The latter
 925	 * allows for merging opportunities and more efficient dispatching.
 926	 */
 927run_queue:
 928	blk_mq_run_hw_queue(hctx, !is_sync || is_flush_fua);
 929}
 930
 931/*
 932 * Default mapping to a software queue, since we use one per CPU.
 933 */
 934struct blk_mq_hw_ctx *blk_mq_map_queue(struct request_queue *q, const int cpu)
 935{
 936	return q->queue_hw_ctx[q->mq_map[cpu]];
 937}
 938EXPORT_SYMBOL(blk_mq_map_queue);
 939
 940struct blk_mq_hw_ctx *blk_mq_alloc_single_hw_queue(struct blk_mq_reg *reg,
 941						   unsigned int hctx_index)
 942{
 943	return kmalloc_node(sizeof(struct blk_mq_hw_ctx),
 944				GFP_KERNEL | __GFP_ZERO, reg->numa_node);
 945}
 946EXPORT_SYMBOL(blk_mq_alloc_single_hw_queue);
 947
 948void blk_mq_free_single_hw_queue(struct blk_mq_hw_ctx *hctx,
 949				 unsigned int hctx_index)
 950{
 951	kfree(hctx);
 952}
 953EXPORT_SYMBOL(blk_mq_free_single_hw_queue);
 954
 955static void blk_mq_hctx_notify(void *data, unsigned long action,
 956			       unsigned int cpu)
 957{
 958	struct blk_mq_hw_ctx *hctx = data;
 959	struct request_queue *q = hctx->queue;
 960	struct blk_mq_ctx *ctx;
 961	LIST_HEAD(tmp);
 962
 963	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
 964		return;
 965
 966	/*
 967	 * Move ctx entries to new CPU, if this one is going away.
 968	 */
 969	ctx = __blk_mq_get_ctx(q, cpu);
 970
 971	spin_lock(&ctx->lock);
 972	if (!list_empty(&ctx->rq_list)) {
 973		list_splice_init(&ctx->rq_list, &tmp);
 974		clear_bit(ctx->index_hw, hctx->ctx_map);
 975	}
 976	spin_unlock(&ctx->lock);
 977
 978	if (list_empty(&tmp))
 979		return;
 980
 981	ctx = blk_mq_get_ctx(q);
 982	spin_lock(&ctx->lock);
 983
 984	while (!list_empty(&tmp)) {
 985		struct request *rq;
 986
 987		rq = list_first_entry(&tmp, struct request, queuelist);
 988		rq->mq_ctx = ctx;
 989		list_move_tail(&rq->queuelist, &ctx->rq_list);
 990	}
 991
 992	hctx = q->mq_ops->map_queue(q, ctx->cpu);
 993	blk_mq_hctx_mark_pending(hctx, ctx);
 994
 995	spin_unlock(&ctx->lock);
 996	blk_mq_put_ctx(ctx);
 997
 998	blk_mq_run_hw_queue(hctx, true);
 999}
1000
1001static int blk_mq_init_hw_commands(struct blk_mq_hw_ctx *hctx,
1002				   int (*init)(void *, struct blk_mq_hw_ctx *,
1003					struct request *, unsigned int),
1004				   void *data)
1005{
1006	unsigned int i;
1007	int ret = 0;
1008
1009	for (i = 0; i < hctx->queue_depth; i++) {
1010		struct request *rq = hctx->rqs[i];
1011
1012		ret = init(data, hctx, rq, i);
1013		if (ret)
1014			break;
1015	}
1016
1017	return ret;
1018}
1019
1020int blk_mq_init_commands(struct request_queue *q,
1021			 int (*init)(void *, struct blk_mq_hw_ctx *,
1022					struct request *, unsigned int),
1023			 void *data)
1024{
1025	struct blk_mq_hw_ctx *hctx;
1026	unsigned int i;
1027	int ret = 0;
1028
1029	queue_for_each_hw_ctx(q, hctx, i) {
1030		ret = blk_mq_init_hw_commands(hctx, init, data);
1031		if (ret)
1032			break;
1033	}
1034
1035	return ret;
1036}
1037EXPORT_SYMBOL(blk_mq_init_commands);
1038
1039static void blk_mq_free_hw_commands(struct blk_mq_hw_ctx *hctx,
1040				    void (*free)(void *, struct blk_mq_hw_ctx *,
1041					struct request *, unsigned int),
1042				    void *data)
1043{
1044	unsigned int i;
1045
1046	for (i = 0; i < hctx->queue_depth; i++) {
1047		struct request *rq = hctx->rqs[i];
1048
1049		free(data, hctx, rq, i);
1050	}
1051}
1052
1053void blk_mq_free_commands(struct request_queue *q,
1054			  void (*free)(void *, struct blk_mq_hw_ctx *,
1055					struct request *, unsigned int),
1056			  void *data)
1057{
1058	struct blk_mq_hw_ctx *hctx;
1059	unsigned int i;
1060
1061	queue_for_each_hw_ctx(q, hctx, i)
1062		blk_mq_free_hw_commands(hctx, free, data);
1063}
1064EXPORT_SYMBOL(blk_mq_free_commands);
1065
1066static void blk_mq_free_rq_map(struct blk_mq_hw_ctx *hctx)
1067{
1068	struct page *page;
1069
1070	while (!list_empty(&hctx->page_list)) {
1071		page = list_first_entry(&hctx->page_list, struct page, lru);
1072		list_del_init(&page->lru);
1073		__free_pages(page, page->private);
1074	}
1075
1076	kfree(hctx->rqs);
1077
1078	if (hctx->tags)
1079		blk_mq_free_tags(hctx->tags);
1080}
1081
1082static size_t order_to_size(unsigned int order)
1083{
1084	size_t ret = PAGE_SIZE;
1085
1086	while (order--)
1087		ret *= 2;
1088
1089	return ret;
1090}
1091
1092static int blk_mq_init_rq_map(struct blk_mq_hw_ctx *hctx,
1093			      unsigned int reserved_tags, int node)
1094{
1095	unsigned int i, j, entries_per_page, max_order = 4;
1096	size_t rq_size, left;
1097
1098	INIT_LIST_HEAD(&hctx->page_list);
1099
1100	hctx->rqs = kmalloc_node(hctx->queue_depth * sizeof(struct request *),
1101					GFP_KERNEL, node);
1102	if (!hctx->rqs)
1103		return -ENOMEM;
1104
1105	/*
1106	 * rq_size is the size of the request plus driver payload, rounded
1107	 * to the cacheline size
1108	 */
1109	rq_size = round_up(sizeof(struct request) + hctx->cmd_size,
1110				cache_line_size());
1111	left = rq_size * hctx->queue_depth;
1112
1113	for (i = 0; i < hctx->queue_depth;) {
1114		int this_order = max_order;
1115		struct page *page;
1116		int to_do;
1117		void *p;
1118
1119		while (left < order_to_size(this_order - 1) && this_order)
1120			this_order--;
1121
1122		do {
1123			page = alloc_pages_node(node, GFP_KERNEL, this_order);
1124			if (page)
1125				break;
1126			if (!this_order--)
1127				break;
1128			if (order_to_size(this_order) < rq_size)
1129				break;
1130		} while (1);
1131
1132		if (!page)
1133			break;
1134
1135		page->private = this_order;
1136		list_add_tail(&page->lru, &hctx->page_list);
1137
1138		p = page_address(page);
1139		entries_per_page = order_to_size(this_order) / rq_size;
1140		to_do = min(entries_per_page, hctx->queue_depth - i);
1141		left -= to_do * rq_size;
1142		for (j = 0; j < to_do; j++) {
1143			hctx->rqs[i] = p;
1144			blk_mq_rq_init(hctx, hctx->rqs[i]);
1145			p += rq_size;
1146			i++;
1147		}
1148	}
1149
1150	if (i < (reserved_tags + BLK_MQ_TAG_MIN))
1151		goto err_rq_map;
1152	else if (i != hctx->queue_depth) {
1153		hctx->queue_depth = i;
1154		pr_warn("%s: queue depth set to %u because of low memory\n",
1155					__func__, i);
1156	}
1157
1158	hctx->tags = blk_mq_init_tags(hctx->queue_depth, reserved_tags, node);
1159	if (!hctx->tags) {
1160err_rq_map:
1161		blk_mq_free_rq_map(hctx);
1162		return -ENOMEM;
1163	}
1164
1165	return 0;
1166}
1167
1168static int blk_mq_init_hw_queues(struct request_queue *q,
1169				 struct blk_mq_reg *reg, void *driver_data)
1170{
1171	struct blk_mq_hw_ctx *hctx;
1172	unsigned int i, j;
1173
1174	/*
1175	 * Initialize hardware queues
1176	 */
1177	queue_for_each_hw_ctx(q, hctx, i) {
1178		unsigned int num_maps;
1179		int node;
1180
1181		node = hctx->numa_node;
1182		if (node == NUMA_NO_NODE)
1183			node = hctx->numa_node = reg->numa_node;
1184
1185		INIT_DELAYED_WORK(&hctx->delayed_work, blk_mq_work_fn);
1186		spin_lock_init(&hctx->lock);
1187		INIT_LIST_HEAD(&hctx->dispatch);
1188		hctx->queue = q;
1189		hctx->queue_num = i;
1190		hctx->flags = reg->flags;
1191		hctx->queue_depth = reg->queue_depth;
1192		hctx->cmd_size = reg->cmd_size;
1193
1194		blk_mq_init_cpu_notifier(&hctx->cpu_notifier,
1195						blk_mq_hctx_notify, hctx);
1196		blk_mq_register_cpu_notifier(&hctx->cpu_notifier);
1197
1198		if (blk_mq_init_rq_map(hctx, reg->reserved_tags, node))
1199			break;
1200
1201		/*
1202		 * Allocate space for all possible cpus to avoid allocation in
1203		 * runtime
1204		 */
1205		hctx->ctxs = kmalloc_node(nr_cpu_ids * sizeof(void *),
1206						GFP_KERNEL, node);
1207		if (!hctx->ctxs)
1208			break;
1209
1210		num_maps = ALIGN(nr_cpu_ids, BITS_PER_LONG) / BITS_PER_LONG;
1211		hctx->ctx_map = kzalloc_node(num_maps * sizeof(unsigned long),
1212						GFP_KERNEL, node);
1213		if (!hctx->ctx_map)
1214			break;
1215
1216		hctx->nr_ctx_map = num_maps;
1217		hctx->nr_ctx = 0;
1218
1219		if (reg->ops->init_hctx &&
1220		    reg->ops->init_hctx(hctx, driver_data, i))
1221			break;
1222	}
1223
1224	if (i == q->nr_hw_queues)
1225		return 0;
1226
1227	/*
1228	 * Init failed
1229	 */
1230	queue_for_each_hw_ctx(q, hctx, j) {
1231		if (i == j)
1232			break;
1233
1234		if (reg->ops->exit_hctx)
1235			reg->ops->exit_hctx(hctx, j);
1236
1237		blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1238		blk_mq_free_rq_map(hctx);
1239		kfree(hctx->ctxs);
1240	}
1241
1242	return 1;
1243}
1244
1245static void blk_mq_init_cpu_queues(struct request_queue *q,
1246				   unsigned int nr_hw_queues)
1247{
1248	unsigned int i;
1249
1250	for_each_possible_cpu(i) {
1251		struct blk_mq_ctx *__ctx = per_cpu_ptr(q->queue_ctx, i);
1252		struct blk_mq_hw_ctx *hctx;
1253
1254		memset(__ctx, 0, sizeof(*__ctx));
1255		__ctx->cpu = i;
1256		spin_lock_init(&__ctx->lock);
1257		INIT_LIST_HEAD(&__ctx->rq_list);
1258		__ctx->queue = q;
1259
1260		/* If the cpu isn't online, the cpu is mapped to first hctx */
1261		hctx = q->mq_ops->map_queue(q, i);
1262		hctx->nr_ctx++;
1263
1264		if (!cpu_online(i))
1265			continue;
1266
1267		/*
1268		 * Set local node, IFF we have more than one hw queue. If
1269		 * not, we remain on the home node of the device
1270		 */
1271		if (nr_hw_queues > 1 && hctx->numa_node == NUMA_NO_NODE)
1272			hctx->numa_node = cpu_to_node(i);
1273	}
1274}
1275
1276static void blk_mq_map_swqueue(struct request_queue *q)
1277{
1278	unsigned int i;
1279	struct blk_mq_hw_ctx *hctx;
1280	struct blk_mq_ctx *ctx;
1281
1282	queue_for_each_hw_ctx(q, hctx, i) {
1283		hctx->nr_ctx = 0;
1284	}
1285
1286	/*
1287	 * Map software to hardware queues
1288	 */
1289	queue_for_each_ctx(q, ctx, i) {
1290		/* If the cpu isn't online, the cpu is mapped to first hctx */
1291		hctx = q->mq_ops->map_queue(q, i);
1292		ctx->index_hw = hctx->nr_ctx;
1293		hctx->ctxs[hctx->nr_ctx++] = ctx;
1294	}
1295}
1296
1297struct request_queue *blk_mq_init_queue(struct blk_mq_reg *reg,
1298					void *driver_data)
1299{
1300	struct blk_mq_hw_ctx **hctxs;
1301	struct blk_mq_ctx *ctx;
1302	struct request_queue *q;
1303	int i;
1304
1305	if (!reg->nr_hw_queues ||
1306	    !reg->ops->queue_rq || !reg->ops->map_queue ||
1307	    !reg->ops->alloc_hctx || !reg->ops->free_hctx)
1308		return ERR_PTR(-EINVAL);
1309
1310	if (!reg->queue_depth)
1311		reg->queue_depth = BLK_MQ_MAX_DEPTH;
1312	else if (reg->queue_depth > BLK_MQ_MAX_DEPTH) {
1313		pr_err("blk-mq: queuedepth too large (%u)\n", reg->queue_depth);
1314		reg->queue_depth = BLK_MQ_MAX_DEPTH;
1315	}
1316
1317	if (reg->queue_depth < (reg->reserved_tags + BLK_MQ_TAG_MIN))
1318		return ERR_PTR(-EINVAL);
1319
1320	ctx = alloc_percpu(struct blk_mq_ctx);
1321	if (!ctx)
1322		return ERR_PTR(-ENOMEM);
1323
1324	hctxs = kmalloc_node(reg->nr_hw_queues * sizeof(*hctxs), GFP_KERNEL,
1325			reg->numa_node);
1326
1327	if (!hctxs)
1328		goto err_percpu;
1329
1330	for (i = 0; i < reg->nr_hw_queues; i++) {
1331		hctxs[i] = reg->ops->alloc_hctx(reg, i);
1332		if (!hctxs[i])
1333			goto err_hctxs;
1334
1335		hctxs[i]->numa_node = NUMA_NO_NODE;
1336		hctxs[i]->queue_num = i;
1337	}
1338
1339	q = blk_alloc_queue_node(GFP_KERNEL, reg->numa_node);
1340	if (!q)
1341		goto err_hctxs;
1342
1343	q->mq_map = blk_mq_make_queue_map(reg);
1344	if (!q->mq_map)
1345		goto err_map;
1346
1347	setup_timer(&q->timeout, blk_mq_rq_timer, (unsigned long) q);
1348	blk_queue_rq_timeout(q, 30000);
1349
1350	q->nr_queues = nr_cpu_ids;
1351	q->nr_hw_queues = reg->nr_hw_queues;
1352
1353	q->queue_ctx = ctx;
1354	q->queue_hw_ctx = hctxs;
1355
1356	q->mq_ops = reg->ops;
1357	q->queue_flags |= QUEUE_FLAG_MQ_DEFAULT;
1358
1359	q->sg_reserved_size = INT_MAX;
1360
1361	blk_queue_make_request(q, blk_mq_make_request);
1362	blk_queue_rq_timed_out(q, reg->ops->timeout);
1363	if (reg->timeout)
1364		blk_queue_rq_timeout(q, reg->timeout);
1365
1366	if (reg->ops->complete)
1367		blk_queue_softirq_done(q, reg->ops->complete);
1368
1369	blk_mq_init_flush(q);
1370	blk_mq_init_cpu_queues(q, reg->nr_hw_queues);
1371
1372	q->flush_rq = kzalloc(round_up(sizeof(struct request) + reg->cmd_size,
1373				cache_line_size()), GFP_KERNEL);
1374	if (!q->flush_rq)
1375		goto err_hw;
1376
1377	if (blk_mq_init_hw_queues(q, reg, driver_data))
1378		goto err_flush_rq;
1379
1380	blk_mq_map_swqueue(q);
1381
1382	mutex_lock(&all_q_mutex);
1383	list_add_tail(&q->all_q_node, &all_q_list);
1384	mutex_unlock(&all_q_mutex);
1385
1386	return q;
1387
1388err_flush_rq:
1389	kfree(q->flush_rq);
1390err_hw:
1391	kfree(q->mq_map);
1392err_map:
1393	blk_cleanup_queue(q);
1394err_hctxs:
1395	for (i = 0; i < reg->nr_hw_queues; i++) {
1396		if (!hctxs[i])
1397			break;
1398		reg->ops->free_hctx(hctxs[i], i);
1399	}
1400	kfree(hctxs);
1401err_percpu:
1402	free_percpu(ctx);
1403	return ERR_PTR(-ENOMEM);
1404}
1405EXPORT_SYMBOL(blk_mq_init_queue);
1406
1407void blk_mq_free_queue(struct request_queue *q)
1408{
1409	struct blk_mq_hw_ctx *hctx;
1410	int i;
1411
1412	queue_for_each_hw_ctx(q, hctx, i) {
1413		kfree(hctx->ctx_map);
1414		kfree(hctx->ctxs);
1415		blk_mq_free_rq_map(hctx);
1416		blk_mq_unregister_cpu_notifier(&hctx->cpu_notifier);
1417		if (q->mq_ops->exit_hctx)
1418			q->mq_ops->exit_hctx(hctx, i);
1419		q->mq_ops->free_hctx(hctx, i);
1420	}
1421
1422	free_percpu(q->queue_ctx);
1423	kfree(q->queue_hw_ctx);
1424	kfree(q->mq_map);
1425
1426	q->queue_ctx = NULL;
1427	q->queue_hw_ctx = NULL;
1428	q->mq_map = NULL;
1429
1430	mutex_lock(&all_q_mutex);
1431	list_del_init(&q->all_q_node);
1432	mutex_unlock(&all_q_mutex);
1433}
1434
1435/* Basically redo blk_mq_init_queue with queue frozen */
1436static void blk_mq_queue_reinit(struct request_queue *q)
1437{
1438	blk_mq_freeze_queue(q);
1439
1440	blk_mq_update_queue_map(q->mq_map, q->nr_hw_queues);
1441
1442	/*
1443	 * redo blk_mq_init_cpu_queues and blk_mq_init_hw_queues. FIXME: maybe
1444	 * we should change hctx numa_node according to new topology (this
1445	 * involves free and re-allocate memory, worthy doing?)
1446	 */
1447
1448	blk_mq_map_swqueue(q);
1449
1450	blk_mq_unfreeze_queue(q);
1451}
1452
1453static int blk_mq_queue_reinit_notify(struct notifier_block *nb,
1454				      unsigned long action, void *hcpu)
1455{
1456	struct request_queue *q;
1457
1458	/*
1459	 * Before new mapping is established, hotadded cpu might already start
1460	 * handling requests. This doesn't break anything as we map offline
1461	 * CPUs to first hardware queue. We will re-init queue below to get
1462	 * optimal settings.
1463	 */
1464	if (action != CPU_DEAD && action != CPU_DEAD_FROZEN &&
1465	    action != CPU_ONLINE && action != CPU_ONLINE_FROZEN)
1466		return NOTIFY_OK;
1467
1468	mutex_lock(&all_q_mutex);
1469	list_for_each_entry(q, &all_q_list, all_q_node)
1470		blk_mq_queue_reinit(q);
1471	mutex_unlock(&all_q_mutex);
1472	return NOTIFY_OK;
1473}
1474
1475void blk_mq_disable_hotplug(void)
1476{
1477	mutex_lock(&all_q_mutex);
1478}
1479
1480void blk_mq_enable_hotplug(void)
1481{
1482	mutex_unlock(&all_q_mutex);
1483}
1484
1485static int __init blk_mq_init(void)
1486{
1487	blk_mq_cpu_init();
1488
1489	/* Must be called after percpu_counter_hotcpu_callback() */
1490	hotcpu_notifier(blk_mq_queue_reinit_notify, -10);
1491
1492	return 0;
1493}
1494subsys_initcall(blk_mq_init);
1