Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.15.
   1/* Copyright (c) 2018, Mellanox Technologies All rights reserved.
   2 *
   3 * This software is available to you under a choice of one of two
   4 * licenses.  You may choose to be licensed under the terms of the GNU
   5 * General Public License (GPL) Version 2, available from the file
   6 * COPYING in the main directory of this source tree, or the
   7 * OpenIB.org BSD license below:
   8 *
   9 *     Redistribution and use in source and binary forms, with or
  10 *     without modification, are permitted provided that the following
  11 *     conditions are met:
  12 *
  13 *      - Redistributions of source code must retain the above
  14 *        copyright notice, this list of conditions and the following
  15 *        disclaimer.
  16 *
  17 *      - Redistributions in binary form must reproduce the above
  18 *        copyright notice, this list of conditions and the following
  19 *        disclaimer in the documentation and/or other materials
  20 *        provided with the distribution.
  21 *
  22 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  23 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  24 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  25 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  26 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  27 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  28 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  29 * SOFTWARE.
  30 */
  31
  32#include <crypto/aead.h>
  33#include <linux/highmem.h>
  34#include <linux/module.h>
  35#include <linux/netdevice.h>
  36#include <net/dst.h>
  37#include <net/inet_connection_sock.h>
  38#include <net/tcp.h>
  39#include <net/tls.h>
  40
  41#include "trace.h"
  42
  43/* device_offload_lock is used to synchronize tls_dev_add
  44 * against NETDEV_DOWN notifications.
  45 */
  46static DECLARE_RWSEM(device_offload_lock);
  47
  48static void tls_device_gc_task(struct work_struct *work);
  49
  50static DECLARE_WORK(tls_device_gc_work, tls_device_gc_task);
  51static LIST_HEAD(tls_device_gc_list);
  52static LIST_HEAD(tls_device_list);
  53static DEFINE_SPINLOCK(tls_device_lock);
  54
  55static void tls_device_free_ctx(struct tls_context *ctx)
  56{
  57	if (ctx->tx_conf == TLS_HW) {
  58		kfree(tls_offload_ctx_tx(ctx));
  59		kfree(ctx->tx.rec_seq);
  60		kfree(ctx->tx.iv);
  61	}
  62
  63	if (ctx->rx_conf == TLS_HW)
  64		kfree(tls_offload_ctx_rx(ctx));
  65
  66	tls_ctx_free(NULL, ctx);
  67}
  68
  69static void tls_device_gc_task(struct work_struct *work)
  70{
  71	struct tls_context *ctx, *tmp;
  72	unsigned long flags;
  73	LIST_HEAD(gc_list);
  74
  75	spin_lock_irqsave(&tls_device_lock, flags);
  76	list_splice_init(&tls_device_gc_list, &gc_list);
  77	spin_unlock_irqrestore(&tls_device_lock, flags);
  78
  79	list_for_each_entry_safe(ctx, tmp, &gc_list, list) {
  80		struct net_device *netdev = ctx->netdev;
  81
  82		if (netdev && ctx->tx_conf == TLS_HW) {
  83			netdev->tlsdev_ops->tls_dev_del(netdev, ctx,
  84							TLS_OFFLOAD_CTX_DIR_TX);
  85			dev_put(netdev);
  86			ctx->netdev = NULL;
  87		}
  88
  89		list_del(&ctx->list);
  90		tls_device_free_ctx(ctx);
  91	}
  92}
  93
  94static void tls_device_queue_ctx_destruction(struct tls_context *ctx)
  95{
  96	unsigned long flags;
  97
  98	spin_lock_irqsave(&tls_device_lock, flags);
  99	list_move_tail(&ctx->list, &tls_device_gc_list);
 100
 101	/* schedule_work inside the spinlock
 102	 * to make sure tls_device_down waits for that work.
 103	 */
 104	schedule_work(&tls_device_gc_work);
 105
 106	spin_unlock_irqrestore(&tls_device_lock, flags);
 107}
 108
 109/* We assume that the socket is already connected */
 110static struct net_device *get_netdev_for_sock(struct sock *sk)
 111{
 112	struct dst_entry *dst = sk_dst_get(sk);
 113	struct net_device *netdev = NULL;
 114
 115	if (likely(dst)) {
 116		netdev = dst->dev;
 117		dev_hold(netdev);
 118	}
 119
 120	dst_release(dst);
 121
 122	return netdev;
 123}
 124
 125static void destroy_record(struct tls_record_info *record)
 126{
 127	int i;
 128
 129	for (i = 0; i < record->num_frags; i++)
 130		__skb_frag_unref(&record->frags[i]);
 131	kfree(record);
 132}
 133
 134static void delete_all_records(struct tls_offload_context_tx *offload_ctx)
 135{
 136	struct tls_record_info *info, *temp;
 137
 138	list_for_each_entry_safe(info, temp, &offload_ctx->records_list, list) {
 139		list_del(&info->list);
 140		destroy_record(info);
 141	}
 142
 143	offload_ctx->retransmit_hint = NULL;
 144}
 145
 146static void tls_icsk_clean_acked(struct sock *sk, u32 acked_seq)
 147{
 148	struct tls_context *tls_ctx = tls_get_ctx(sk);
 149	struct tls_record_info *info, *temp;
 150	struct tls_offload_context_tx *ctx;
 151	u64 deleted_records = 0;
 152	unsigned long flags;
 153
 154	if (!tls_ctx)
 155		return;
 156
 157	ctx = tls_offload_ctx_tx(tls_ctx);
 158
 159	spin_lock_irqsave(&ctx->lock, flags);
 160	info = ctx->retransmit_hint;
 161	if (info && !before(acked_seq, info->end_seq))
 162		ctx->retransmit_hint = NULL;
 163
 164	list_for_each_entry_safe(info, temp, &ctx->records_list, list) {
 165		if (before(acked_seq, info->end_seq))
 166			break;
 167		list_del(&info->list);
 168
 169		destroy_record(info);
 170		deleted_records++;
 171	}
 172
 173	ctx->unacked_record_sn += deleted_records;
 174	spin_unlock_irqrestore(&ctx->lock, flags);
 175}
 176
 177/* At this point, there should be no references on this
 178 * socket and no in-flight SKBs associated with this
 179 * socket, so it is safe to free all the resources.
 180 */
 181void tls_device_sk_destruct(struct sock *sk)
 182{
 183	struct tls_context *tls_ctx = tls_get_ctx(sk);
 184	struct tls_offload_context_tx *ctx = tls_offload_ctx_tx(tls_ctx);
 185
 186	tls_ctx->sk_destruct(sk);
 187
 188	if (tls_ctx->tx_conf == TLS_HW) {
 189		if (ctx->open_record)
 190			destroy_record(ctx->open_record);
 191		delete_all_records(ctx);
 192		crypto_free_aead(ctx->aead_send);
 193		clean_acked_data_disable(inet_csk(sk));
 194	}
 195
 196	if (refcount_dec_and_test(&tls_ctx->refcount))
 197		tls_device_queue_ctx_destruction(tls_ctx);
 198}
 199EXPORT_SYMBOL_GPL(tls_device_sk_destruct);
 200
 201void tls_device_free_resources_tx(struct sock *sk)
 202{
 203	struct tls_context *tls_ctx = tls_get_ctx(sk);
 204
 205	tls_free_partial_record(sk, tls_ctx);
 206}
 207
 208void tls_offload_tx_resync_request(struct sock *sk, u32 got_seq, u32 exp_seq)
 209{
 210	struct tls_context *tls_ctx = tls_get_ctx(sk);
 211
 212	trace_tls_device_tx_resync_req(sk, got_seq, exp_seq);
 213	WARN_ON(test_and_set_bit(TLS_TX_SYNC_SCHED, &tls_ctx->flags));
 214}
 215EXPORT_SYMBOL_GPL(tls_offload_tx_resync_request);
 216
 217static void tls_device_resync_tx(struct sock *sk, struct tls_context *tls_ctx,
 218				 u32 seq)
 219{
 220	struct net_device *netdev;
 221	struct sk_buff *skb;
 222	int err = 0;
 223	u8 *rcd_sn;
 224
 225	skb = tcp_write_queue_tail(sk);
 226	if (skb)
 227		TCP_SKB_CB(skb)->eor = 1;
 228
 229	rcd_sn = tls_ctx->tx.rec_seq;
 230
 231	trace_tls_device_tx_resync_send(sk, seq, rcd_sn);
 232	down_read(&device_offload_lock);
 233	netdev = tls_ctx->netdev;
 234	if (netdev)
 235		err = netdev->tlsdev_ops->tls_dev_resync(netdev, sk, seq,
 236							 rcd_sn,
 237							 TLS_OFFLOAD_CTX_DIR_TX);
 238	up_read(&device_offload_lock);
 239	if (err)
 240		return;
 241
 242	clear_bit_unlock(TLS_TX_SYNC_SCHED, &tls_ctx->flags);
 243}
 244
 245static void tls_append_frag(struct tls_record_info *record,
 246			    struct page_frag *pfrag,
 247			    int size)
 248{
 249	skb_frag_t *frag;
 250
 251	frag = &record->frags[record->num_frags - 1];
 252	if (skb_frag_page(frag) == pfrag->page &&
 253	    skb_frag_off(frag) + skb_frag_size(frag) == pfrag->offset) {
 254		skb_frag_size_add(frag, size);
 255	} else {
 256		++frag;
 257		__skb_frag_set_page(frag, pfrag->page);
 258		skb_frag_off_set(frag, pfrag->offset);
 259		skb_frag_size_set(frag, size);
 260		++record->num_frags;
 261		get_page(pfrag->page);
 262	}
 263
 264	pfrag->offset += size;
 265	record->len += size;
 266}
 267
 268static int tls_push_record(struct sock *sk,
 269			   struct tls_context *ctx,
 270			   struct tls_offload_context_tx *offload_ctx,
 271			   struct tls_record_info *record,
 272			   int flags)
 273{
 274	struct tls_prot_info *prot = &ctx->prot_info;
 275	struct tcp_sock *tp = tcp_sk(sk);
 276	skb_frag_t *frag;
 277	int i;
 278
 279	record->end_seq = tp->write_seq + record->len;
 280	list_add_tail_rcu(&record->list, &offload_ctx->records_list);
 281	offload_ctx->open_record = NULL;
 282
 283	if (test_bit(TLS_TX_SYNC_SCHED, &ctx->flags))
 284		tls_device_resync_tx(sk, ctx, tp->write_seq);
 285
 286	tls_advance_record_sn(sk, prot, &ctx->tx);
 287
 288	for (i = 0; i < record->num_frags; i++) {
 289		frag = &record->frags[i];
 290		sg_unmark_end(&offload_ctx->sg_tx_data[i]);
 291		sg_set_page(&offload_ctx->sg_tx_data[i], skb_frag_page(frag),
 292			    skb_frag_size(frag), skb_frag_off(frag));
 293		sk_mem_charge(sk, skb_frag_size(frag));
 294		get_page(skb_frag_page(frag));
 295	}
 296	sg_mark_end(&offload_ctx->sg_tx_data[record->num_frags - 1]);
 297
 298	/* all ready, send */
 299	return tls_push_sg(sk, ctx, offload_ctx->sg_tx_data, 0, flags);
 300}
 301
 302static int tls_device_record_close(struct sock *sk,
 303				   struct tls_context *ctx,
 304				   struct tls_record_info *record,
 305				   struct page_frag *pfrag,
 306				   unsigned char record_type)
 307{
 308	struct tls_prot_info *prot = &ctx->prot_info;
 309	int ret;
 310
 311	/* append tag
 312	 * device will fill in the tag, we just need to append a placeholder
 313	 * use socket memory to improve coalescing (re-using a single buffer
 314	 * increases frag count)
 315	 * if we can't allocate memory now, steal some back from data
 316	 */
 317	if (likely(skb_page_frag_refill(prot->tag_size, pfrag,
 318					sk->sk_allocation))) {
 319		ret = 0;
 320		tls_append_frag(record, pfrag, prot->tag_size);
 321	} else {
 322		ret = prot->tag_size;
 323		if (record->len <= prot->overhead_size)
 324			return -ENOMEM;
 325	}
 326
 327	/* fill prepend */
 328	tls_fill_prepend(ctx, skb_frag_address(&record->frags[0]),
 329			 record->len - prot->overhead_size,
 330			 record_type, prot->version);
 331	return ret;
 332}
 333
 334static int tls_create_new_record(struct tls_offload_context_tx *offload_ctx,
 335				 struct page_frag *pfrag,
 336				 size_t prepend_size)
 337{
 338	struct tls_record_info *record;
 339	skb_frag_t *frag;
 340
 341	record = kmalloc(sizeof(*record), GFP_KERNEL);
 342	if (!record)
 343		return -ENOMEM;
 344
 345	frag = &record->frags[0];
 346	__skb_frag_set_page(frag, pfrag->page);
 347	skb_frag_off_set(frag, pfrag->offset);
 348	skb_frag_size_set(frag, prepend_size);
 349
 350	get_page(pfrag->page);
 351	pfrag->offset += prepend_size;
 352
 353	record->num_frags = 1;
 354	record->len = prepend_size;
 355	offload_ctx->open_record = record;
 356	return 0;
 357}
 358
 359static int tls_do_allocation(struct sock *sk,
 360			     struct tls_offload_context_tx *offload_ctx,
 361			     struct page_frag *pfrag,
 362			     size_t prepend_size)
 363{
 364	int ret;
 365
 366	if (!offload_ctx->open_record) {
 367		if (unlikely(!skb_page_frag_refill(prepend_size, pfrag,
 368						   sk->sk_allocation))) {
 369			READ_ONCE(sk->sk_prot)->enter_memory_pressure(sk);
 370			sk_stream_moderate_sndbuf(sk);
 371			return -ENOMEM;
 372		}
 373
 374		ret = tls_create_new_record(offload_ctx, pfrag, prepend_size);
 375		if (ret)
 376			return ret;
 377
 378		if (pfrag->size > pfrag->offset)
 379			return 0;
 380	}
 381
 382	if (!sk_page_frag_refill(sk, pfrag))
 383		return -ENOMEM;
 384
 385	return 0;
 386}
 387
 388static int tls_device_copy_data(void *addr, size_t bytes, struct iov_iter *i)
 389{
 390	size_t pre_copy, nocache;
 391
 392	pre_copy = ~((unsigned long)addr - 1) & (SMP_CACHE_BYTES - 1);
 393	if (pre_copy) {
 394		pre_copy = min(pre_copy, bytes);
 395		if (copy_from_iter(addr, pre_copy, i) != pre_copy)
 396			return -EFAULT;
 397		bytes -= pre_copy;
 398		addr += pre_copy;
 399	}
 400
 401	nocache = round_down(bytes, SMP_CACHE_BYTES);
 402	if (copy_from_iter_nocache(addr, nocache, i) != nocache)
 403		return -EFAULT;
 404	bytes -= nocache;
 405	addr += nocache;
 406
 407	if (bytes && copy_from_iter(addr, bytes, i) != bytes)
 408		return -EFAULT;
 409
 410	return 0;
 411}
 412
 413static int tls_push_data(struct sock *sk,
 414			 struct iov_iter *msg_iter,
 415			 size_t size, int flags,
 416			 unsigned char record_type)
 417{
 418	struct tls_context *tls_ctx = tls_get_ctx(sk);
 419	struct tls_prot_info *prot = &tls_ctx->prot_info;
 420	struct tls_offload_context_tx *ctx = tls_offload_ctx_tx(tls_ctx);
 421	int more = flags & (MSG_SENDPAGE_NOTLAST | MSG_MORE);
 422	struct tls_record_info *record = ctx->open_record;
 423	int tls_push_record_flags;
 424	struct page_frag *pfrag;
 425	size_t orig_size = size;
 426	u32 max_open_record_len;
 427	int copy, rc = 0;
 428	bool done = false;
 429	long timeo;
 430
 431	if (flags &
 432	    ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | MSG_SENDPAGE_NOTLAST))
 433		return -EOPNOTSUPP;
 434
 435	if (unlikely(sk->sk_err))
 436		return -sk->sk_err;
 437
 438	flags |= MSG_SENDPAGE_DECRYPTED;
 439	tls_push_record_flags = flags | MSG_SENDPAGE_NOTLAST;
 440
 441	timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
 442	if (tls_is_partially_sent_record(tls_ctx)) {
 443		rc = tls_push_partial_record(sk, tls_ctx, flags);
 444		if (rc < 0)
 445			return rc;
 446	}
 447
 448	pfrag = sk_page_frag(sk);
 449
 450	/* TLS_HEADER_SIZE is not counted as part of the TLS record, and
 451	 * we need to leave room for an authentication tag.
 452	 */
 453	max_open_record_len = TLS_MAX_PAYLOAD_SIZE +
 454			      prot->prepend_size;
 455	do {
 456		rc = tls_do_allocation(sk, ctx, pfrag, prot->prepend_size);
 457		if (unlikely(rc)) {
 458			rc = sk_stream_wait_memory(sk, &timeo);
 459			if (!rc)
 460				continue;
 461
 462			record = ctx->open_record;
 463			if (!record)
 464				break;
 465handle_error:
 466			if (record_type != TLS_RECORD_TYPE_DATA) {
 467				/* avoid sending partial
 468				 * record with type !=
 469				 * application_data
 470				 */
 471				size = orig_size;
 472				destroy_record(record);
 473				ctx->open_record = NULL;
 474			} else if (record->len > prot->prepend_size) {
 475				goto last_record;
 476			}
 477
 478			break;
 479		}
 480
 481		record = ctx->open_record;
 482		copy = min_t(size_t, size, (pfrag->size - pfrag->offset));
 483		copy = min_t(size_t, copy, (max_open_record_len - record->len));
 484
 485		rc = tls_device_copy_data(page_address(pfrag->page) +
 486					  pfrag->offset, copy, msg_iter);
 487		if (rc)
 488			goto handle_error;
 489		tls_append_frag(record, pfrag, copy);
 490
 491		size -= copy;
 492		if (!size) {
 493last_record:
 494			tls_push_record_flags = flags;
 495			if (more) {
 496				tls_ctx->pending_open_record_frags =
 497						!!record->num_frags;
 498				break;
 499			}
 500
 501			done = true;
 502		}
 503
 504		if (done || record->len >= max_open_record_len ||
 505		    (record->num_frags >= MAX_SKB_FRAGS - 1)) {
 506			rc = tls_device_record_close(sk, tls_ctx, record,
 507						     pfrag, record_type);
 508			if (rc) {
 509				if (rc > 0) {
 510					size += rc;
 511				} else {
 512					size = orig_size;
 513					destroy_record(record);
 514					ctx->open_record = NULL;
 515					break;
 516				}
 517			}
 518
 519			rc = tls_push_record(sk,
 520					     tls_ctx,
 521					     ctx,
 522					     record,
 523					     tls_push_record_flags);
 524			if (rc < 0)
 525				break;
 526		}
 527	} while (!done);
 528
 529	if (orig_size - size > 0)
 530		rc = orig_size - size;
 531
 532	return rc;
 533}
 534
 535int tls_device_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
 536{
 537	unsigned char record_type = TLS_RECORD_TYPE_DATA;
 538	struct tls_context *tls_ctx = tls_get_ctx(sk);
 539	int rc;
 540
 541	mutex_lock(&tls_ctx->tx_lock);
 542	lock_sock(sk);
 543
 544	if (unlikely(msg->msg_controllen)) {
 545		rc = tls_proccess_cmsg(sk, msg, &record_type);
 546		if (rc)
 547			goto out;
 548	}
 549
 550	rc = tls_push_data(sk, &msg->msg_iter, size,
 551			   msg->msg_flags, record_type);
 552
 553out:
 554	release_sock(sk);
 555	mutex_unlock(&tls_ctx->tx_lock);
 556	return rc;
 557}
 558
 559int tls_device_sendpage(struct sock *sk, struct page *page,
 560			int offset, size_t size, int flags)
 561{
 562	struct tls_context *tls_ctx = tls_get_ctx(sk);
 563	struct iov_iter	msg_iter;
 564	char *kaddr;
 565	struct kvec iov;
 566	int rc;
 567
 568	if (flags & MSG_SENDPAGE_NOTLAST)
 569		flags |= MSG_MORE;
 570
 571	mutex_lock(&tls_ctx->tx_lock);
 572	lock_sock(sk);
 573
 574	if (flags & MSG_OOB) {
 575		rc = -EOPNOTSUPP;
 576		goto out;
 577	}
 578
 579	kaddr = kmap(page);
 580	iov.iov_base = kaddr + offset;
 581	iov.iov_len = size;
 582	iov_iter_kvec(&msg_iter, WRITE, &iov, 1, size);
 583	rc = tls_push_data(sk, &msg_iter, size,
 584			   flags, TLS_RECORD_TYPE_DATA);
 585	kunmap(page);
 586
 587out:
 588	release_sock(sk);
 589	mutex_unlock(&tls_ctx->tx_lock);
 590	return rc;
 591}
 592
 593struct tls_record_info *tls_get_record(struct tls_offload_context_tx *context,
 594				       u32 seq, u64 *p_record_sn)
 595{
 596	u64 record_sn = context->hint_record_sn;
 597	struct tls_record_info *info, *last;
 598
 599	info = context->retransmit_hint;
 600	if (!info ||
 601	    before(seq, info->end_seq - info->len)) {
 602		/* if retransmit_hint is irrelevant start
 603		 * from the beggining of the list
 604		 */
 605		info = list_first_entry_or_null(&context->records_list,
 606						struct tls_record_info, list);
 607		if (!info)
 608			return NULL;
 609		/* send the start_marker record if seq number is before the
 610		 * tls offload start marker sequence number. This record is
 611		 * required to handle TCP packets which are before TLS offload
 612		 * started.
 613		 *  And if it's not start marker, look if this seq number
 614		 * belongs to the list.
 615		 */
 616		if (likely(!tls_record_is_start_marker(info))) {
 617			/* we have the first record, get the last record to see
 618			 * if this seq number belongs to the list.
 619			 */
 620			last = list_last_entry(&context->records_list,
 621					       struct tls_record_info, list);
 622
 623			if (!between(seq, tls_record_start_seq(info),
 624				     last->end_seq))
 625				return NULL;
 626		}
 627		record_sn = context->unacked_record_sn;
 628	}
 629
 630	/* We just need the _rcu for the READ_ONCE() */
 631	rcu_read_lock();
 632	list_for_each_entry_from_rcu(info, &context->records_list, list) {
 633		if (before(seq, info->end_seq)) {
 634			if (!context->retransmit_hint ||
 635			    after(info->end_seq,
 636				  context->retransmit_hint->end_seq)) {
 637				context->hint_record_sn = record_sn;
 638				context->retransmit_hint = info;
 639			}
 640			*p_record_sn = record_sn;
 641			goto exit_rcu_unlock;
 642		}
 643		record_sn++;
 644	}
 645	info = NULL;
 646
 647exit_rcu_unlock:
 648	rcu_read_unlock();
 649	return info;
 650}
 651EXPORT_SYMBOL(tls_get_record);
 652
 653static int tls_device_push_pending_record(struct sock *sk, int flags)
 654{
 655	struct iov_iter	msg_iter;
 656
 657	iov_iter_kvec(&msg_iter, WRITE, NULL, 0, 0);
 658	return tls_push_data(sk, &msg_iter, 0, flags, TLS_RECORD_TYPE_DATA);
 659}
 660
 661void tls_device_write_space(struct sock *sk, struct tls_context *ctx)
 662{
 663	if (tls_is_partially_sent_record(ctx)) {
 664		gfp_t sk_allocation = sk->sk_allocation;
 665
 666		WARN_ON_ONCE(sk->sk_write_pending);
 667
 668		sk->sk_allocation = GFP_ATOMIC;
 669		tls_push_partial_record(sk, ctx,
 670					MSG_DONTWAIT | MSG_NOSIGNAL |
 671					MSG_SENDPAGE_DECRYPTED);
 672		sk->sk_allocation = sk_allocation;
 673	}
 674}
 675
 676static void tls_device_resync_rx(struct tls_context *tls_ctx,
 677				 struct sock *sk, u32 seq, u8 *rcd_sn)
 678{
 679	struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx);
 680	struct net_device *netdev;
 681
 682	if (WARN_ON(test_and_set_bit(TLS_RX_SYNC_RUNNING, &tls_ctx->flags)))
 683		return;
 684
 685	trace_tls_device_rx_resync_send(sk, seq, rcd_sn, rx_ctx->resync_type);
 686	netdev = READ_ONCE(tls_ctx->netdev);
 687	if (netdev)
 688		netdev->tlsdev_ops->tls_dev_resync(netdev, sk, seq, rcd_sn,
 689						   TLS_OFFLOAD_CTX_DIR_RX);
 690	clear_bit_unlock(TLS_RX_SYNC_RUNNING, &tls_ctx->flags);
 691	TLS_INC_STATS(sock_net(sk), LINUX_MIB_TLSRXDEVICERESYNC);
 692}
 693
 694static bool
 695tls_device_rx_resync_async(struct tls_offload_resync_async *resync_async,
 696			   s64 resync_req, u32 *seq)
 697{
 698	u32 is_async = resync_req & RESYNC_REQ_ASYNC;
 699	u32 req_seq = resync_req >> 32;
 700	u32 req_end = req_seq + ((resync_req >> 16) & 0xffff);
 701
 702	if (is_async) {
 703		/* asynchronous stage: log all headers seq such that
 704		 * req_seq <= seq <= end_seq, and wait for real resync request
 705		 */
 706		if (between(*seq, req_seq, req_end) &&
 707		    resync_async->loglen < TLS_DEVICE_RESYNC_ASYNC_LOGMAX)
 708			resync_async->log[resync_async->loglen++] = *seq;
 709
 710		return false;
 711	}
 712
 713	/* synchronous stage: check against the logged entries and
 714	 * proceed to check the next entries if no match was found
 715	 */
 716	while (resync_async->loglen) {
 717		if (req_seq == resync_async->log[resync_async->loglen - 1] &&
 718		    atomic64_try_cmpxchg(&resync_async->req,
 719					 &resync_req, 0)) {
 720			resync_async->loglen = 0;
 721			*seq = req_seq;
 722			return true;
 723		}
 724		resync_async->loglen--;
 725	}
 726
 727	if (req_seq == *seq &&
 728	    atomic64_try_cmpxchg(&resync_async->req,
 729				 &resync_req, 0))
 730		return true;
 731
 732	return false;
 733}
 734
 735void tls_device_rx_resync_new_rec(struct sock *sk, u32 rcd_len, u32 seq)
 736{
 737	struct tls_context *tls_ctx = tls_get_ctx(sk);
 738	struct tls_offload_context_rx *rx_ctx;
 739	u8 rcd_sn[TLS_MAX_REC_SEQ_SIZE];
 740	u32 sock_data, is_req_pending;
 741	struct tls_prot_info *prot;
 742	s64 resync_req;
 743	u32 req_seq;
 744
 745	if (tls_ctx->rx_conf != TLS_HW)
 746		return;
 747
 748	prot = &tls_ctx->prot_info;
 749	rx_ctx = tls_offload_ctx_rx(tls_ctx);
 750	memcpy(rcd_sn, tls_ctx->rx.rec_seq, prot->rec_seq_size);
 751
 752	switch (rx_ctx->resync_type) {
 753	case TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ:
 754		resync_req = atomic64_read(&rx_ctx->resync_req);
 755		req_seq = resync_req >> 32;
 756		seq += TLS_HEADER_SIZE - 1;
 757		is_req_pending = resync_req;
 758
 759		if (likely(!is_req_pending) || req_seq != seq ||
 760		    !atomic64_try_cmpxchg(&rx_ctx->resync_req, &resync_req, 0))
 761			return;
 762		break;
 763	case TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT:
 764		if (likely(!rx_ctx->resync_nh_do_now))
 765			return;
 766
 767		/* head of next rec is already in, note that the sock_inq will
 768		 * include the currently parsed message when called from parser
 769		 */
 770		sock_data = tcp_inq(sk);
 771		if (sock_data > rcd_len) {
 772			trace_tls_device_rx_resync_nh_delay(sk, sock_data,
 773							    rcd_len);
 774			return;
 775		}
 776
 777		rx_ctx->resync_nh_do_now = 0;
 778		seq += rcd_len;
 779		tls_bigint_increment(rcd_sn, prot->rec_seq_size);
 780		break;
 781	case TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ_ASYNC:
 782		resync_req = atomic64_read(&rx_ctx->resync_async->req);
 783		is_req_pending = resync_req;
 784		if (likely(!is_req_pending))
 785			return;
 786
 787		if (!tls_device_rx_resync_async(rx_ctx->resync_async,
 788						resync_req, &seq))
 789			return;
 790		break;
 791	}
 792
 793	tls_device_resync_rx(tls_ctx, sk, seq, rcd_sn);
 794}
 795
 796static void tls_device_core_ctrl_rx_resync(struct tls_context *tls_ctx,
 797					   struct tls_offload_context_rx *ctx,
 798					   struct sock *sk, struct sk_buff *skb)
 799{
 800	struct strp_msg *rxm;
 801
 802	/* device will request resyncs by itself based on stream scan */
 803	if (ctx->resync_type != TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT)
 804		return;
 805	/* already scheduled */
 806	if (ctx->resync_nh_do_now)
 807		return;
 808	/* seen decrypted fragments since last fully-failed record */
 809	if (ctx->resync_nh_reset) {
 810		ctx->resync_nh_reset = 0;
 811		ctx->resync_nh.decrypted_failed = 1;
 812		ctx->resync_nh.decrypted_tgt = TLS_DEVICE_RESYNC_NH_START_IVAL;
 813		return;
 814	}
 815
 816	if (++ctx->resync_nh.decrypted_failed <= ctx->resync_nh.decrypted_tgt)
 817		return;
 818
 819	/* doing resync, bump the next target in case it fails */
 820	if (ctx->resync_nh.decrypted_tgt < TLS_DEVICE_RESYNC_NH_MAX_IVAL)
 821		ctx->resync_nh.decrypted_tgt *= 2;
 822	else
 823		ctx->resync_nh.decrypted_tgt += TLS_DEVICE_RESYNC_NH_MAX_IVAL;
 824
 825	rxm = strp_msg(skb);
 826
 827	/* head of next rec is already in, parser will sync for us */
 828	if (tcp_inq(sk) > rxm->full_len) {
 829		trace_tls_device_rx_resync_nh_schedule(sk);
 830		ctx->resync_nh_do_now = 1;
 831	} else {
 832		struct tls_prot_info *prot = &tls_ctx->prot_info;
 833		u8 rcd_sn[TLS_MAX_REC_SEQ_SIZE];
 834
 835		memcpy(rcd_sn, tls_ctx->rx.rec_seq, prot->rec_seq_size);
 836		tls_bigint_increment(rcd_sn, prot->rec_seq_size);
 837
 838		tls_device_resync_rx(tls_ctx, sk, tcp_sk(sk)->copied_seq,
 839				     rcd_sn);
 840	}
 841}
 842
 843static int tls_device_reencrypt(struct sock *sk, struct sk_buff *skb)
 844{
 845	struct strp_msg *rxm = strp_msg(skb);
 846	int err = 0, offset = rxm->offset, copy, nsg, data_len, pos;
 847	struct sk_buff *skb_iter, *unused;
 848	struct scatterlist sg[1];
 849	char *orig_buf, *buf;
 850
 851	orig_buf = kmalloc(rxm->full_len + TLS_HEADER_SIZE +
 852			   TLS_CIPHER_AES_GCM_128_IV_SIZE, sk->sk_allocation);
 853	if (!orig_buf)
 854		return -ENOMEM;
 855	buf = orig_buf;
 856
 857	nsg = skb_cow_data(skb, 0, &unused);
 858	if (unlikely(nsg < 0)) {
 859		err = nsg;
 860		goto free_buf;
 861	}
 862
 863	sg_init_table(sg, 1);
 864	sg_set_buf(&sg[0], buf,
 865		   rxm->full_len + TLS_HEADER_SIZE +
 866		   TLS_CIPHER_AES_GCM_128_IV_SIZE);
 867	err = skb_copy_bits(skb, offset, buf,
 868			    TLS_HEADER_SIZE + TLS_CIPHER_AES_GCM_128_IV_SIZE);
 869	if (err)
 870		goto free_buf;
 871
 872	/* We are interested only in the decrypted data not the auth */
 873	err = decrypt_skb(sk, skb, sg);
 874	if (err != -EBADMSG)
 875		goto free_buf;
 876	else
 877		err = 0;
 878
 879	data_len = rxm->full_len - TLS_CIPHER_AES_GCM_128_TAG_SIZE;
 880
 881	if (skb_pagelen(skb) > offset) {
 882		copy = min_t(int, skb_pagelen(skb) - offset, data_len);
 883
 884		if (skb->decrypted) {
 885			err = skb_store_bits(skb, offset, buf, copy);
 886			if (err)
 887				goto free_buf;
 888		}
 889
 890		offset += copy;
 891		buf += copy;
 892	}
 893
 894	pos = skb_pagelen(skb);
 895	skb_walk_frags(skb, skb_iter) {
 896		int frag_pos;
 897
 898		/* Practically all frags must belong to msg if reencrypt
 899		 * is needed with current strparser and coalescing logic,
 900		 * but strparser may "get optimized", so let's be safe.
 901		 */
 902		if (pos + skb_iter->len <= offset)
 903			goto done_with_frag;
 904		if (pos >= data_len + rxm->offset)
 905			break;
 906
 907		frag_pos = offset - pos;
 908		copy = min_t(int, skb_iter->len - frag_pos,
 909			     data_len + rxm->offset - offset);
 910
 911		if (skb_iter->decrypted) {
 912			err = skb_store_bits(skb_iter, frag_pos, buf, copy);
 913			if (err)
 914				goto free_buf;
 915		}
 916
 917		offset += copy;
 918		buf += copy;
 919done_with_frag:
 920		pos += skb_iter->len;
 921	}
 922
 923free_buf:
 924	kfree(orig_buf);
 925	return err;
 926}
 927
 928int tls_device_decrypted(struct sock *sk, struct tls_context *tls_ctx,
 929			 struct sk_buff *skb, struct strp_msg *rxm)
 930{
 931	struct tls_offload_context_rx *ctx = tls_offload_ctx_rx(tls_ctx);
 932	int is_decrypted = skb->decrypted;
 933	int is_encrypted = !is_decrypted;
 934	struct sk_buff *skb_iter;
 935
 936	/* Check if all the data is decrypted already */
 937	skb_walk_frags(skb, skb_iter) {
 938		is_decrypted &= skb_iter->decrypted;
 939		is_encrypted &= !skb_iter->decrypted;
 940	}
 941
 942	trace_tls_device_decrypted(sk, tcp_sk(sk)->copied_seq - rxm->full_len,
 943				   tls_ctx->rx.rec_seq, rxm->full_len,
 944				   is_encrypted, is_decrypted);
 945
 946	ctx->sw.decrypted |= is_decrypted;
 947
 948	/* Return immediately if the record is either entirely plaintext or
 949	 * entirely ciphertext. Otherwise handle reencrypt partially decrypted
 950	 * record.
 951	 */
 952	if (is_decrypted) {
 953		ctx->resync_nh_reset = 1;
 954		return 0;
 955	}
 956	if (is_encrypted) {
 957		tls_device_core_ctrl_rx_resync(tls_ctx, ctx, sk, skb);
 958		return 0;
 959	}
 960
 961	ctx->resync_nh_reset = 1;
 962	return tls_device_reencrypt(sk, skb);
 963}
 964
 965static void tls_device_attach(struct tls_context *ctx, struct sock *sk,
 966			      struct net_device *netdev)
 967{
 968	if (sk->sk_destruct != tls_device_sk_destruct) {
 969		refcount_set(&ctx->refcount, 1);
 970		dev_hold(netdev);
 971		ctx->netdev = netdev;
 972		spin_lock_irq(&tls_device_lock);
 973		list_add_tail(&ctx->list, &tls_device_list);
 974		spin_unlock_irq(&tls_device_lock);
 975
 976		ctx->sk_destruct = sk->sk_destruct;
 977		smp_store_release(&sk->sk_destruct, tls_device_sk_destruct);
 978	}
 979}
 980
 981int tls_set_device_offload(struct sock *sk, struct tls_context *ctx)
 982{
 983	u16 nonce_size, tag_size, iv_size, rec_seq_size;
 984	struct tls_context *tls_ctx = tls_get_ctx(sk);
 985	struct tls_prot_info *prot = &tls_ctx->prot_info;
 986	struct tls_record_info *start_marker_record;
 987	struct tls_offload_context_tx *offload_ctx;
 988	struct tls_crypto_info *crypto_info;
 989	struct net_device *netdev;
 990	char *iv, *rec_seq;
 991	struct sk_buff *skb;
 992	__be64 rcd_sn;
 993	int rc;
 994
 995	if (!ctx)
 996		return -EINVAL;
 997
 998	if (ctx->priv_ctx_tx)
 999		return -EEXIST;
1000
1001	start_marker_record = kmalloc(sizeof(*start_marker_record), GFP_KERNEL);
1002	if (!start_marker_record)
1003		return -ENOMEM;
1004
1005	offload_ctx = kzalloc(TLS_OFFLOAD_CONTEXT_SIZE_TX, GFP_KERNEL);
1006	if (!offload_ctx) {
1007		rc = -ENOMEM;
1008		goto free_marker_record;
1009	}
1010
1011	crypto_info = &ctx->crypto_send.info;
1012	if (crypto_info->version != TLS_1_2_VERSION) {
1013		rc = -EOPNOTSUPP;
1014		goto free_offload_ctx;
1015	}
1016
1017	switch (crypto_info->cipher_type) {
1018	case TLS_CIPHER_AES_GCM_128:
1019		nonce_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
1020		tag_size = TLS_CIPHER_AES_GCM_128_TAG_SIZE;
1021		iv_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
1022		iv = ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->iv;
1023		rec_seq_size = TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE;
1024		rec_seq =
1025		 ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->rec_seq;
1026		break;
1027	default:
1028		rc = -EINVAL;
1029		goto free_offload_ctx;
1030	}
1031
1032	/* Sanity-check the rec_seq_size for stack allocations */
1033	if (rec_seq_size > TLS_MAX_REC_SEQ_SIZE) {
1034		rc = -EINVAL;
1035		goto free_offload_ctx;
1036	}
1037
1038	prot->version = crypto_info->version;
1039	prot->cipher_type = crypto_info->cipher_type;
1040	prot->prepend_size = TLS_HEADER_SIZE + nonce_size;
1041	prot->tag_size = tag_size;
1042	prot->overhead_size = prot->prepend_size + prot->tag_size;
1043	prot->iv_size = iv_size;
1044	ctx->tx.iv = kmalloc(iv_size + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
1045			     GFP_KERNEL);
1046	if (!ctx->tx.iv) {
1047		rc = -ENOMEM;
1048		goto free_offload_ctx;
1049	}
1050
1051	memcpy(ctx->tx.iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, iv, iv_size);
1052
1053	prot->rec_seq_size = rec_seq_size;
1054	ctx->tx.rec_seq = kmemdup(rec_seq, rec_seq_size, GFP_KERNEL);
1055	if (!ctx->tx.rec_seq) {
1056		rc = -ENOMEM;
1057		goto free_iv;
1058	}
1059
1060	rc = tls_sw_fallback_init(sk, offload_ctx, crypto_info);
1061	if (rc)
1062		goto free_rec_seq;
1063
1064	/* start at rec_seq - 1 to account for the start marker record */
1065	memcpy(&rcd_sn, ctx->tx.rec_seq, sizeof(rcd_sn));
1066	offload_ctx->unacked_record_sn = be64_to_cpu(rcd_sn) - 1;
1067
1068	start_marker_record->end_seq = tcp_sk(sk)->write_seq;
1069	start_marker_record->len = 0;
1070	start_marker_record->num_frags = 0;
1071
1072	INIT_LIST_HEAD(&offload_ctx->records_list);
1073	list_add_tail(&start_marker_record->list, &offload_ctx->records_list);
1074	spin_lock_init(&offload_ctx->lock);
1075	sg_init_table(offload_ctx->sg_tx_data,
1076		      ARRAY_SIZE(offload_ctx->sg_tx_data));
1077
1078	clean_acked_data_enable(inet_csk(sk), &tls_icsk_clean_acked);
1079	ctx->push_pending_record = tls_device_push_pending_record;
1080
1081	/* TLS offload is greatly simplified if we don't send
1082	 * SKBs where only part of the payload needs to be encrypted.
1083	 * So mark the last skb in the write queue as end of record.
1084	 */
1085	skb = tcp_write_queue_tail(sk);
1086	if (skb)
1087		TCP_SKB_CB(skb)->eor = 1;
1088
1089	netdev = get_netdev_for_sock(sk);
1090	if (!netdev) {
1091		pr_err_ratelimited("%s: netdev not found\n", __func__);
1092		rc = -EINVAL;
1093		goto disable_cad;
1094	}
1095
1096	if (!(netdev->features & NETIF_F_HW_TLS_TX)) {
1097		rc = -EOPNOTSUPP;
1098		goto release_netdev;
1099	}
1100
1101	/* Avoid offloading if the device is down
1102	 * We don't want to offload new flows after
1103	 * the NETDEV_DOWN event
1104	 *
1105	 * device_offload_lock is taken in tls_devices's NETDEV_DOWN
1106	 * handler thus protecting from the device going down before
1107	 * ctx was added to tls_device_list.
1108	 */
1109	down_read(&device_offload_lock);
1110	if (!(netdev->flags & IFF_UP)) {
1111		rc = -EINVAL;
1112		goto release_lock;
1113	}
1114
1115	ctx->priv_ctx_tx = offload_ctx;
1116	rc = netdev->tlsdev_ops->tls_dev_add(netdev, sk, TLS_OFFLOAD_CTX_DIR_TX,
1117					     &ctx->crypto_send.info,
1118					     tcp_sk(sk)->write_seq);
1119	trace_tls_device_offload_set(sk, TLS_OFFLOAD_CTX_DIR_TX,
1120				     tcp_sk(sk)->write_seq, rec_seq, rc);
1121	if (rc)
1122		goto release_lock;
1123
1124	tls_device_attach(ctx, sk, netdev);
1125	up_read(&device_offload_lock);
1126
1127	/* following this assignment tls_is_sk_tx_device_offloaded
1128	 * will return true and the context might be accessed
1129	 * by the netdev's xmit function.
1130	 */
1131	smp_store_release(&sk->sk_validate_xmit_skb, tls_validate_xmit_skb);
1132	dev_put(netdev);
1133
1134	return 0;
1135
1136release_lock:
1137	up_read(&device_offload_lock);
1138release_netdev:
1139	dev_put(netdev);
1140disable_cad:
1141	clean_acked_data_disable(inet_csk(sk));
1142	crypto_free_aead(offload_ctx->aead_send);
1143free_rec_seq:
1144	kfree(ctx->tx.rec_seq);
1145free_iv:
1146	kfree(ctx->tx.iv);
1147free_offload_ctx:
1148	kfree(offload_ctx);
1149	ctx->priv_ctx_tx = NULL;
1150free_marker_record:
1151	kfree(start_marker_record);
1152	return rc;
1153}
1154
1155int tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx)
1156{
1157	struct tls12_crypto_info_aes_gcm_128 *info;
1158	struct tls_offload_context_rx *context;
1159	struct net_device *netdev;
1160	int rc = 0;
1161
1162	if (ctx->crypto_recv.info.version != TLS_1_2_VERSION)
1163		return -EOPNOTSUPP;
1164
1165	netdev = get_netdev_for_sock(sk);
1166	if (!netdev) {
1167		pr_err_ratelimited("%s: netdev not found\n", __func__);
1168		return -EINVAL;
1169	}
1170
1171	if (!(netdev->features & NETIF_F_HW_TLS_RX)) {
1172		rc = -EOPNOTSUPP;
1173		goto release_netdev;
1174	}
1175
1176	/* Avoid offloading if the device is down
1177	 * We don't want to offload new flows after
1178	 * the NETDEV_DOWN event
1179	 *
1180	 * device_offload_lock is taken in tls_devices's NETDEV_DOWN
1181	 * handler thus protecting from the device going down before
1182	 * ctx was added to tls_device_list.
1183	 */
1184	down_read(&device_offload_lock);
1185	if (!(netdev->flags & IFF_UP)) {
1186		rc = -EINVAL;
1187		goto release_lock;
1188	}
1189
1190	context = kzalloc(TLS_OFFLOAD_CONTEXT_SIZE_RX, GFP_KERNEL);
1191	if (!context) {
1192		rc = -ENOMEM;
1193		goto release_lock;
1194	}
1195	context->resync_nh_reset = 1;
1196
1197	ctx->priv_ctx_rx = context;
1198	rc = tls_set_sw_offload(sk, ctx, 0);
1199	if (rc)
1200		goto release_ctx;
1201
1202	rc = netdev->tlsdev_ops->tls_dev_add(netdev, sk, TLS_OFFLOAD_CTX_DIR_RX,
1203					     &ctx->crypto_recv.info,
1204					     tcp_sk(sk)->copied_seq);
1205	info = (void *)&ctx->crypto_recv.info;
1206	trace_tls_device_offload_set(sk, TLS_OFFLOAD_CTX_DIR_RX,
1207				     tcp_sk(sk)->copied_seq, info->rec_seq, rc);
1208	if (rc)
1209		goto free_sw_resources;
1210
1211	tls_device_attach(ctx, sk, netdev);
1212	up_read(&device_offload_lock);
1213
1214	dev_put(netdev);
1215
1216	return 0;
1217
1218free_sw_resources:
1219	up_read(&device_offload_lock);
1220	tls_sw_free_resources_rx(sk);
1221	down_read(&device_offload_lock);
1222release_ctx:
1223	ctx->priv_ctx_rx = NULL;
1224release_lock:
1225	up_read(&device_offload_lock);
1226release_netdev:
1227	dev_put(netdev);
1228	return rc;
1229}
1230
1231void tls_device_offload_cleanup_rx(struct sock *sk)
1232{
1233	struct tls_context *tls_ctx = tls_get_ctx(sk);
1234	struct net_device *netdev;
1235
1236	down_read(&device_offload_lock);
1237	netdev = tls_ctx->netdev;
1238	if (!netdev)
1239		goto out;
1240
1241	netdev->tlsdev_ops->tls_dev_del(netdev, tls_ctx,
1242					TLS_OFFLOAD_CTX_DIR_RX);
1243
1244	if (tls_ctx->tx_conf != TLS_HW) {
1245		dev_put(netdev);
1246		tls_ctx->netdev = NULL;
1247	}
1248out:
1249	up_read(&device_offload_lock);
1250	tls_sw_release_resources_rx(sk);
1251}
1252
1253static int tls_device_down(struct net_device *netdev)
1254{
1255	struct tls_context *ctx, *tmp;
1256	unsigned long flags;
1257	LIST_HEAD(list);
1258
1259	/* Request a write lock to block new offload attempts */
1260	down_write(&device_offload_lock);
1261
1262	spin_lock_irqsave(&tls_device_lock, flags);
1263	list_for_each_entry_safe(ctx, tmp, &tls_device_list, list) {
1264		if (ctx->netdev != netdev ||
1265		    !refcount_inc_not_zero(&ctx->refcount))
1266			continue;
1267
1268		list_move(&ctx->list, &list);
1269	}
1270	spin_unlock_irqrestore(&tls_device_lock, flags);
1271
1272	list_for_each_entry_safe(ctx, tmp, &list, list)	{
1273		if (ctx->tx_conf == TLS_HW)
1274			netdev->tlsdev_ops->tls_dev_del(netdev, ctx,
1275							TLS_OFFLOAD_CTX_DIR_TX);
1276		if (ctx->rx_conf == TLS_HW)
1277			netdev->tlsdev_ops->tls_dev_del(netdev, ctx,
1278							TLS_OFFLOAD_CTX_DIR_RX);
1279		WRITE_ONCE(ctx->netdev, NULL);
1280		smp_mb__before_atomic(); /* pairs with test_and_set_bit() */
1281		while (test_bit(TLS_RX_SYNC_RUNNING, &ctx->flags))
1282			usleep_range(10, 200);
1283		dev_put(netdev);
1284		list_del_init(&ctx->list);
1285
1286		if (refcount_dec_and_test(&ctx->refcount))
1287			tls_device_free_ctx(ctx);
1288	}
1289
1290	up_write(&device_offload_lock);
1291
1292	flush_work(&tls_device_gc_work);
1293
1294	return NOTIFY_DONE;
1295}
1296
1297static int tls_dev_event(struct notifier_block *this, unsigned long event,
1298			 void *ptr)
1299{
1300	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1301
1302	if (!dev->tlsdev_ops &&
1303	    !(dev->features & (NETIF_F_HW_TLS_RX | NETIF_F_HW_TLS_TX)))
1304		return NOTIFY_DONE;
1305
1306	switch (event) {
1307	case NETDEV_REGISTER:
1308	case NETDEV_FEAT_CHANGE:
1309		if ((dev->features & NETIF_F_HW_TLS_RX) &&
1310		    !dev->tlsdev_ops->tls_dev_resync)
1311			return NOTIFY_BAD;
1312
1313		if  (dev->tlsdev_ops &&
1314		     dev->tlsdev_ops->tls_dev_add &&
1315		     dev->tlsdev_ops->tls_dev_del)
1316			return NOTIFY_DONE;
1317		else
1318			return NOTIFY_BAD;
1319	case NETDEV_DOWN:
1320		return tls_device_down(dev);
1321	}
1322	return NOTIFY_DONE;
1323}
1324
1325static struct notifier_block tls_dev_notifier = {
1326	.notifier_call	= tls_dev_event,
1327};
1328
1329void __init tls_device_init(void)
1330{
1331	register_netdevice_notifier(&tls_dev_notifier);
1332}
1333
1334void __exit tls_device_cleanup(void)
1335{
1336	unregister_netdevice_notifier(&tls_dev_notifier);
1337	flush_work(&tls_device_gc_work);
1338	clean_acked_data_flush();
1339}