Linux Audio

Check our new training course

Yocto distribution development and maintenance

Need a Yocto distribution for your embedded project?
Loading...
Note: File does not exist in v3.15.
   1/* Copyright (c) 2018, Mellanox Technologies All rights reserved.
   2 *
   3 * This software is available to you under a choice of one of two
   4 * licenses.  You may choose to be licensed under the terms of the GNU
   5 * General Public License (GPL) Version 2, available from the file
   6 * COPYING in the main directory of this source tree, or the
   7 * OpenIB.org BSD license below:
   8 *
   9 *     Redistribution and use in source and binary forms, with or
  10 *     without modification, are permitted provided that the following
  11 *     conditions are met:
  12 *
  13 *      - Redistributions of source code must retain the above
  14 *        copyright notice, this list of conditions and the following
  15 *        disclaimer.
  16 *
  17 *      - Redistributions in binary form must reproduce the above
  18 *        copyright notice, this list of conditions and the following
  19 *        disclaimer in the documentation and/or other materials
  20 *        provided with the distribution.
  21 *
  22 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
  23 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
  24 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
  25 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
  26 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
  27 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
  28 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
  29 * SOFTWARE.
  30 */
  31
  32#include <crypto/aead.h>
  33#include <linux/highmem.h>
  34#include <linux/module.h>
  35#include <linux/netdevice.h>
  36#include <net/dst.h>
  37#include <net/inet_connection_sock.h>
  38#include <net/tcp.h>
  39#include <net/tls.h>
  40
  41/* device_offload_lock is used to synchronize tls_dev_add
  42 * against NETDEV_DOWN notifications.
  43 */
  44static DECLARE_RWSEM(device_offload_lock);
  45
  46static void tls_device_gc_task(struct work_struct *work);
  47
  48static DECLARE_WORK(tls_device_gc_work, tls_device_gc_task);
  49static LIST_HEAD(tls_device_gc_list);
  50static LIST_HEAD(tls_device_list);
  51static DEFINE_SPINLOCK(tls_device_lock);
  52
  53static void tls_device_free_ctx(struct tls_context *ctx)
  54{
  55	if (ctx->tx_conf == TLS_HW) {
  56		kfree(tls_offload_ctx_tx(ctx));
  57		kfree(ctx->tx.rec_seq);
  58		kfree(ctx->tx.iv);
  59	}
  60
  61	if (ctx->rx_conf == TLS_HW)
  62		kfree(tls_offload_ctx_rx(ctx));
  63
  64	tls_ctx_free(NULL, ctx);
  65}
  66
  67static void tls_device_gc_task(struct work_struct *work)
  68{
  69	struct tls_context *ctx, *tmp;
  70	unsigned long flags;
  71	LIST_HEAD(gc_list);
  72
  73	spin_lock_irqsave(&tls_device_lock, flags);
  74	list_splice_init(&tls_device_gc_list, &gc_list);
  75	spin_unlock_irqrestore(&tls_device_lock, flags);
  76
  77	list_for_each_entry_safe(ctx, tmp, &gc_list, list) {
  78		struct net_device *netdev = ctx->netdev;
  79
  80		if (netdev && ctx->tx_conf == TLS_HW) {
  81			netdev->tlsdev_ops->tls_dev_del(netdev, ctx,
  82							TLS_OFFLOAD_CTX_DIR_TX);
  83			dev_put(netdev);
  84			ctx->netdev = NULL;
  85		}
  86
  87		list_del(&ctx->list);
  88		tls_device_free_ctx(ctx);
  89	}
  90}
  91
  92static void tls_device_queue_ctx_destruction(struct tls_context *ctx)
  93{
  94	unsigned long flags;
  95
  96	spin_lock_irqsave(&tls_device_lock, flags);
  97	list_move_tail(&ctx->list, &tls_device_gc_list);
  98
  99	/* schedule_work inside the spinlock
 100	 * to make sure tls_device_down waits for that work.
 101	 */
 102	schedule_work(&tls_device_gc_work);
 103
 104	spin_unlock_irqrestore(&tls_device_lock, flags);
 105}
 106
 107/* We assume that the socket is already connected */
 108static struct net_device *get_netdev_for_sock(struct sock *sk)
 109{
 110	struct dst_entry *dst = sk_dst_get(sk);
 111	struct net_device *netdev = NULL;
 112
 113	if (likely(dst)) {
 114		netdev = dst->dev;
 115		dev_hold(netdev);
 116	}
 117
 118	dst_release(dst);
 119
 120	return netdev;
 121}
 122
 123static void destroy_record(struct tls_record_info *record)
 124{
 125	int i;
 126
 127	for (i = 0; i < record->num_frags; i++)
 128		__skb_frag_unref(&record->frags[i]);
 129	kfree(record);
 130}
 131
 132static void delete_all_records(struct tls_offload_context_tx *offload_ctx)
 133{
 134	struct tls_record_info *info, *temp;
 135
 136	list_for_each_entry_safe(info, temp, &offload_ctx->records_list, list) {
 137		list_del(&info->list);
 138		destroy_record(info);
 139	}
 140
 141	offload_ctx->retransmit_hint = NULL;
 142}
 143
 144static void tls_icsk_clean_acked(struct sock *sk, u32 acked_seq)
 145{
 146	struct tls_context *tls_ctx = tls_get_ctx(sk);
 147	struct tls_record_info *info, *temp;
 148	struct tls_offload_context_tx *ctx;
 149	u64 deleted_records = 0;
 150	unsigned long flags;
 151
 152	if (!tls_ctx)
 153		return;
 154
 155	ctx = tls_offload_ctx_tx(tls_ctx);
 156
 157	spin_lock_irqsave(&ctx->lock, flags);
 158	info = ctx->retransmit_hint;
 159	if (info && !before(acked_seq, info->end_seq))
 160		ctx->retransmit_hint = NULL;
 161
 162	list_for_each_entry_safe(info, temp, &ctx->records_list, list) {
 163		if (before(acked_seq, info->end_seq))
 164			break;
 165		list_del(&info->list);
 166
 167		destroy_record(info);
 168		deleted_records++;
 169	}
 170
 171	ctx->unacked_record_sn += deleted_records;
 172	spin_unlock_irqrestore(&ctx->lock, flags);
 173}
 174
 175/* At this point, there should be no references on this
 176 * socket and no in-flight SKBs associated with this
 177 * socket, so it is safe to free all the resources.
 178 */
 179static void tls_device_sk_destruct(struct sock *sk)
 180{
 181	struct tls_context *tls_ctx = tls_get_ctx(sk);
 182	struct tls_offload_context_tx *ctx = tls_offload_ctx_tx(tls_ctx);
 183
 184	tls_ctx->sk_destruct(sk);
 185
 186	if (tls_ctx->tx_conf == TLS_HW) {
 187		if (ctx->open_record)
 188			destroy_record(ctx->open_record);
 189		delete_all_records(ctx);
 190		crypto_free_aead(ctx->aead_send);
 191		clean_acked_data_disable(inet_csk(sk));
 192	}
 193
 194	if (refcount_dec_and_test(&tls_ctx->refcount))
 195		tls_device_queue_ctx_destruction(tls_ctx);
 196}
 197
 198void tls_device_free_resources_tx(struct sock *sk)
 199{
 200	struct tls_context *tls_ctx = tls_get_ctx(sk);
 201
 202	tls_free_partial_record(sk, tls_ctx);
 203}
 204
 205static void tls_device_resync_tx(struct sock *sk, struct tls_context *tls_ctx,
 206				 u32 seq)
 207{
 208	struct net_device *netdev;
 209	struct sk_buff *skb;
 210	int err = 0;
 211	u8 *rcd_sn;
 212
 213	skb = tcp_write_queue_tail(sk);
 214	if (skb)
 215		TCP_SKB_CB(skb)->eor = 1;
 216
 217	rcd_sn = tls_ctx->tx.rec_seq;
 218
 219	down_read(&device_offload_lock);
 220	netdev = tls_ctx->netdev;
 221	if (netdev)
 222		err = netdev->tlsdev_ops->tls_dev_resync(netdev, sk, seq,
 223							 rcd_sn,
 224							 TLS_OFFLOAD_CTX_DIR_TX);
 225	up_read(&device_offload_lock);
 226	if (err)
 227		return;
 228
 229	clear_bit_unlock(TLS_TX_SYNC_SCHED, &tls_ctx->flags);
 230}
 231
 232static void tls_append_frag(struct tls_record_info *record,
 233			    struct page_frag *pfrag,
 234			    int size)
 235{
 236	skb_frag_t *frag;
 237
 238	frag = &record->frags[record->num_frags - 1];
 239	if (skb_frag_page(frag) == pfrag->page &&
 240	    skb_frag_off(frag) + skb_frag_size(frag) == pfrag->offset) {
 241		skb_frag_size_add(frag, size);
 242	} else {
 243		++frag;
 244		__skb_frag_set_page(frag, pfrag->page);
 245		skb_frag_off_set(frag, pfrag->offset);
 246		skb_frag_size_set(frag, size);
 247		++record->num_frags;
 248		get_page(pfrag->page);
 249	}
 250
 251	pfrag->offset += size;
 252	record->len += size;
 253}
 254
 255static int tls_push_record(struct sock *sk,
 256			   struct tls_context *ctx,
 257			   struct tls_offload_context_tx *offload_ctx,
 258			   struct tls_record_info *record,
 259			   int flags)
 260{
 261	struct tls_prot_info *prot = &ctx->prot_info;
 262	struct tcp_sock *tp = tcp_sk(sk);
 263	skb_frag_t *frag;
 264	int i;
 265
 266	record->end_seq = tp->write_seq + record->len;
 267	list_add_tail_rcu(&record->list, &offload_ctx->records_list);
 268	offload_ctx->open_record = NULL;
 269
 270	if (test_bit(TLS_TX_SYNC_SCHED, &ctx->flags))
 271		tls_device_resync_tx(sk, ctx, tp->write_seq);
 272
 273	tls_advance_record_sn(sk, prot, &ctx->tx);
 274
 275	for (i = 0; i < record->num_frags; i++) {
 276		frag = &record->frags[i];
 277		sg_unmark_end(&offload_ctx->sg_tx_data[i]);
 278		sg_set_page(&offload_ctx->sg_tx_data[i], skb_frag_page(frag),
 279			    skb_frag_size(frag), skb_frag_off(frag));
 280		sk_mem_charge(sk, skb_frag_size(frag));
 281		get_page(skb_frag_page(frag));
 282	}
 283	sg_mark_end(&offload_ctx->sg_tx_data[record->num_frags - 1]);
 284
 285	/* all ready, send */
 286	return tls_push_sg(sk, ctx, offload_ctx->sg_tx_data, 0, flags);
 287}
 288
 289static int tls_device_record_close(struct sock *sk,
 290				   struct tls_context *ctx,
 291				   struct tls_record_info *record,
 292				   struct page_frag *pfrag,
 293				   unsigned char record_type)
 294{
 295	struct tls_prot_info *prot = &ctx->prot_info;
 296	int ret;
 297
 298	/* append tag
 299	 * device will fill in the tag, we just need to append a placeholder
 300	 * use socket memory to improve coalescing (re-using a single buffer
 301	 * increases frag count)
 302	 * if we can't allocate memory now, steal some back from data
 303	 */
 304	if (likely(skb_page_frag_refill(prot->tag_size, pfrag,
 305					sk->sk_allocation))) {
 306		ret = 0;
 307		tls_append_frag(record, pfrag, prot->tag_size);
 308	} else {
 309		ret = prot->tag_size;
 310		if (record->len <= prot->overhead_size)
 311			return -ENOMEM;
 312	}
 313
 314	/* fill prepend */
 315	tls_fill_prepend(ctx, skb_frag_address(&record->frags[0]),
 316			 record->len - prot->overhead_size,
 317			 record_type, prot->version);
 318	return ret;
 319}
 320
 321static int tls_create_new_record(struct tls_offload_context_tx *offload_ctx,
 322				 struct page_frag *pfrag,
 323				 size_t prepend_size)
 324{
 325	struct tls_record_info *record;
 326	skb_frag_t *frag;
 327
 328	record = kmalloc(sizeof(*record), GFP_KERNEL);
 329	if (!record)
 330		return -ENOMEM;
 331
 332	frag = &record->frags[0];
 333	__skb_frag_set_page(frag, pfrag->page);
 334	skb_frag_off_set(frag, pfrag->offset);
 335	skb_frag_size_set(frag, prepend_size);
 336
 337	get_page(pfrag->page);
 338	pfrag->offset += prepend_size;
 339
 340	record->num_frags = 1;
 341	record->len = prepend_size;
 342	offload_ctx->open_record = record;
 343	return 0;
 344}
 345
 346static int tls_do_allocation(struct sock *sk,
 347			     struct tls_offload_context_tx *offload_ctx,
 348			     struct page_frag *pfrag,
 349			     size_t prepend_size)
 350{
 351	int ret;
 352
 353	if (!offload_ctx->open_record) {
 354		if (unlikely(!skb_page_frag_refill(prepend_size, pfrag,
 355						   sk->sk_allocation))) {
 356			sk->sk_prot->enter_memory_pressure(sk);
 357			sk_stream_moderate_sndbuf(sk);
 358			return -ENOMEM;
 359		}
 360
 361		ret = tls_create_new_record(offload_ctx, pfrag, prepend_size);
 362		if (ret)
 363			return ret;
 364
 365		if (pfrag->size > pfrag->offset)
 366			return 0;
 367	}
 368
 369	if (!sk_page_frag_refill(sk, pfrag))
 370		return -ENOMEM;
 371
 372	return 0;
 373}
 374
 375static int tls_device_copy_data(void *addr, size_t bytes, struct iov_iter *i)
 376{
 377	size_t pre_copy, nocache;
 378
 379	pre_copy = ~((unsigned long)addr - 1) & (SMP_CACHE_BYTES - 1);
 380	if (pre_copy) {
 381		pre_copy = min(pre_copy, bytes);
 382		if (copy_from_iter(addr, pre_copy, i) != pre_copy)
 383			return -EFAULT;
 384		bytes -= pre_copy;
 385		addr += pre_copy;
 386	}
 387
 388	nocache = round_down(bytes, SMP_CACHE_BYTES);
 389	if (copy_from_iter_nocache(addr, nocache, i) != nocache)
 390		return -EFAULT;
 391	bytes -= nocache;
 392	addr += nocache;
 393
 394	if (bytes && copy_from_iter(addr, bytes, i) != bytes)
 395		return -EFAULT;
 396
 397	return 0;
 398}
 399
 400static int tls_push_data(struct sock *sk,
 401			 struct iov_iter *msg_iter,
 402			 size_t size, int flags,
 403			 unsigned char record_type)
 404{
 405	struct tls_context *tls_ctx = tls_get_ctx(sk);
 406	struct tls_prot_info *prot = &tls_ctx->prot_info;
 407	struct tls_offload_context_tx *ctx = tls_offload_ctx_tx(tls_ctx);
 408	int more = flags & (MSG_SENDPAGE_NOTLAST | MSG_MORE);
 409	struct tls_record_info *record = ctx->open_record;
 410	int tls_push_record_flags;
 411	struct page_frag *pfrag;
 412	size_t orig_size = size;
 413	u32 max_open_record_len;
 414	int copy, rc = 0;
 415	bool done = false;
 416	long timeo;
 417
 418	if (flags &
 419	    ~(MSG_MORE | MSG_DONTWAIT | MSG_NOSIGNAL | MSG_SENDPAGE_NOTLAST))
 420		return -ENOTSUPP;
 421
 422	if (sk->sk_err)
 423		return -sk->sk_err;
 424
 425	flags |= MSG_SENDPAGE_DECRYPTED;
 426	tls_push_record_flags = flags | MSG_SENDPAGE_NOTLAST;
 427
 428	timeo = sock_sndtimeo(sk, flags & MSG_DONTWAIT);
 429	if (tls_is_partially_sent_record(tls_ctx)) {
 430		rc = tls_push_partial_record(sk, tls_ctx, flags);
 431		if (rc < 0)
 432			return rc;
 433	}
 434
 435	pfrag = sk_page_frag(sk);
 436
 437	/* TLS_HEADER_SIZE is not counted as part of the TLS record, and
 438	 * we need to leave room for an authentication tag.
 439	 */
 440	max_open_record_len = TLS_MAX_PAYLOAD_SIZE +
 441			      prot->prepend_size;
 442	do {
 443		rc = tls_do_allocation(sk, ctx, pfrag,
 444				       prot->prepend_size);
 445		if (rc) {
 446			rc = sk_stream_wait_memory(sk, &timeo);
 447			if (!rc)
 448				continue;
 449
 450			record = ctx->open_record;
 451			if (!record)
 452				break;
 453handle_error:
 454			if (record_type != TLS_RECORD_TYPE_DATA) {
 455				/* avoid sending partial
 456				 * record with type !=
 457				 * application_data
 458				 */
 459				size = orig_size;
 460				destroy_record(record);
 461				ctx->open_record = NULL;
 462			} else if (record->len > prot->prepend_size) {
 463				goto last_record;
 464			}
 465
 466			break;
 467		}
 468
 469		record = ctx->open_record;
 470		copy = min_t(size_t, size, (pfrag->size - pfrag->offset));
 471		copy = min_t(size_t, copy, (max_open_record_len - record->len));
 472
 473		rc = tls_device_copy_data(page_address(pfrag->page) +
 474					  pfrag->offset, copy, msg_iter);
 475		if (rc)
 476			goto handle_error;
 477		tls_append_frag(record, pfrag, copy);
 478
 479		size -= copy;
 480		if (!size) {
 481last_record:
 482			tls_push_record_flags = flags;
 483			if (more) {
 484				tls_ctx->pending_open_record_frags =
 485						!!record->num_frags;
 486				break;
 487			}
 488
 489			done = true;
 490		}
 491
 492		if (done || record->len >= max_open_record_len ||
 493		    (record->num_frags >= MAX_SKB_FRAGS - 1)) {
 494			rc = tls_device_record_close(sk, tls_ctx, record,
 495						     pfrag, record_type);
 496			if (rc) {
 497				if (rc > 0) {
 498					size += rc;
 499				} else {
 500					size = orig_size;
 501					destroy_record(record);
 502					ctx->open_record = NULL;
 503					break;
 504				}
 505			}
 506
 507			rc = tls_push_record(sk,
 508					     tls_ctx,
 509					     ctx,
 510					     record,
 511					     tls_push_record_flags);
 512			if (rc < 0)
 513				break;
 514		}
 515	} while (!done);
 516
 517	if (orig_size - size > 0)
 518		rc = orig_size - size;
 519
 520	return rc;
 521}
 522
 523int tls_device_sendmsg(struct sock *sk, struct msghdr *msg, size_t size)
 524{
 525	unsigned char record_type = TLS_RECORD_TYPE_DATA;
 526	struct tls_context *tls_ctx = tls_get_ctx(sk);
 527	int rc;
 528
 529	mutex_lock(&tls_ctx->tx_lock);
 530	lock_sock(sk);
 531
 532	if (unlikely(msg->msg_controllen)) {
 533		rc = tls_proccess_cmsg(sk, msg, &record_type);
 534		if (rc)
 535			goto out;
 536	}
 537
 538	rc = tls_push_data(sk, &msg->msg_iter, size,
 539			   msg->msg_flags, record_type);
 540
 541out:
 542	release_sock(sk);
 543	mutex_unlock(&tls_ctx->tx_lock);
 544	return rc;
 545}
 546
 547int tls_device_sendpage(struct sock *sk, struct page *page,
 548			int offset, size_t size, int flags)
 549{
 550	struct tls_context *tls_ctx = tls_get_ctx(sk);
 551	struct iov_iter	msg_iter;
 552	char *kaddr = kmap(page);
 553	struct kvec iov;
 554	int rc;
 555
 556	if (flags & MSG_SENDPAGE_NOTLAST)
 557		flags |= MSG_MORE;
 558
 559	mutex_lock(&tls_ctx->tx_lock);
 560	lock_sock(sk);
 561
 562	if (flags & MSG_OOB) {
 563		rc = -ENOTSUPP;
 564		goto out;
 565	}
 566
 567	iov.iov_base = kaddr + offset;
 568	iov.iov_len = size;
 569	iov_iter_kvec(&msg_iter, WRITE, &iov, 1, size);
 570	rc = tls_push_data(sk, &msg_iter, size,
 571			   flags, TLS_RECORD_TYPE_DATA);
 572	kunmap(page);
 573
 574out:
 575	release_sock(sk);
 576	mutex_unlock(&tls_ctx->tx_lock);
 577	return rc;
 578}
 579
 580struct tls_record_info *tls_get_record(struct tls_offload_context_tx *context,
 581				       u32 seq, u64 *p_record_sn)
 582{
 583	u64 record_sn = context->hint_record_sn;
 584	struct tls_record_info *info;
 585
 586	info = context->retransmit_hint;
 587	if (!info ||
 588	    before(seq, info->end_seq - info->len)) {
 589		/* if retransmit_hint is irrelevant start
 590		 * from the beggining of the list
 591		 */
 592		info = list_first_entry_or_null(&context->records_list,
 593						struct tls_record_info, list);
 594		if (!info)
 595			return NULL;
 596		record_sn = context->unacked_record_sn;
 597	}
 598
 599	/* We just need the _rcu for the READ_ONCE() */
 600	rcu_read_lock();
 601	list_for_each_entry_from_rcu(info, &context->records_list, list) {
 602		if (before(seq, info->end_seq)) {
 603			if (!context->retransmit_hint ||
 604			    after(info->end_seq,
 605				  context->retransmit_hint->end_seq)) {
 606				context->hint_record_sn = record_sn;
 607				context->retransmit_hint = info;
 608			}
 609			*p_record_sn = record_sn;
 610			goto exit_rcu_unlock;
 611		}
 612		record_sn++;
 613	}
 614	info = NULL;
 615
 616exit_rcu_unlock:
 617	rcu_read_unlock();
 618	return info;
 619}
 620EXPORT_SYMBOL(tls_get_record);
 621
 622static int tls_device_push_pending_record(struct sock *sk, int flags)
 623{
 624	struct iov_iter	msg_iter;
 625
 626	iov_iter_kvec(&msg_iter, WRITE, NULL, 0, 0);
 627	return tls_push_data(sk, &msg_iter, 0, flags, TLS_RECORD_TYPE_DATA);
 628}
 629
 630void tls_device_write_space(struct sock *sk, struct tls_context *ctx)
 631{
 632	if (tls_is_partially_sent_record(ctx)) {
 633		gfp_t sk_allocation = sk->sk_allocation;
 634
 635		WARN_ON_ONCE(sk->sk_write_pending);
 636
 637		sk->sk_allocation = GFP_ATOMIC;
 638		tls_push_partial_record(sk, ctx,
 639					MSG_DONTWAIT | MSG_NOSIGNAL |
 640					MSG_SENDPAGE_DECRYPTED);
 641		sk->sk_allocation = sk_allocation;
 642	}
 643}
 644
 645static void tls_device_resync_rx(struct tls_context *tls_ctx,
 646				 struct sock *sk, u32 seq, u8 *rcd_sn)
 647{
 648	struct net_device *netdev;
 649
 650	if (WARN_ON(test_and_set_bit(TLS_RX_SYNC_RUNNING, &tls_ctx->flags)))
 651		return;
 652	netdev = READ_ONCE(tls_ctx->netdev);
 653	if (netdev)
 654		netdev->tlsdev_ops->tls_dev_resync(netdev, sk, seq, rcd_sn,
 655						   TLS_OFFLOAD_CTX_DIR_RX);
 656	clear_bit_unlock(TLS_RX_SYNC_RUNNING, &tls_ctx->flags);
 657}
 658
 659void tls_device_rx_resync_new_rec(struct sock *sk, u32 rcd_len, u32 seq)
 660{
 661	struct tls_context *tls_ctx = tls_get_ctx(sk);
 662	struct tls_offload_context_rx *rx_ctx;
 663	u8 rcd_sn[TLS_MAX_REC_SEQ_SIZE];
 664	struct tls_prot_info *prot;
 665	u32 is_req_pending;
 666	s64 resync_req;
 667	u32 req_seq;
 668
 669	if (tls_ctx->rx_conf != TLS_HW)
 670		return;
 671
 672	prot = &tls_ctx->prot_info;
 673	rx_ctx = tls_offload_ctx_rx(tls_ctx);
 674	memcpy(rcd_sn, tls_ctx->rx.rec_seq, prot->rec_seq_size);
 675
 676	switch (rx_ctx->resync_type) {
 677	case TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ:
 678		resync_req = atomic64_read(&rx_ctx->resync_req);
 679		req_seq = resync_req >> 32;
 680		seq += TLS_HEADER_SIZE - 1;
 681		is_req_pending = resync_req;
 682
 683		if (likely(!is_req_pending) || req_seq != seq ||
 684		    !atomic64_try_cmpxchg(&rx_ctx->resync_req, &resync_req, 0))
 685			return;
 686		break;
 687	case TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT:
 688		if (likely(!rx_ctx->resync_nh_do_now))
 689			return;
 690
 691		/* head of next rec is already in, note that the sock_inq will
 692		 * include the currently parsed message when called from parser
 693		 */
 694		if (tcp_inq(sk) > rcd_len)
 695			return;
 696
 697		rx_ctx->resync_nh_do_now = 0;
 698		seq += rcd_len;
 699		tls_bigint_increment(rcd_sn, prot->rec_seq_size);
 700		break;
 701	}
 702
 703	tls_device_resync_rx(tls_ctx, sk, seq, rcd_sn);
 704}
 705
 706static void tls_device_core_ctrl_rx_resync(struct tls_context *tls_ctx,
 707					   struct tls_offload_context_rx *ctx,
 708					   struct sock *sk, struct sk_buff *skb)
 709{
 710	struct strp_msg *rxm;
 711
 712	/* device will request resyncs by itself based on stream scan */
 713	if (ctx->resync_type != TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT)
 714		return;
 715	/* already scheduled */
 716	if (ctx->resync_nh_do_now)
 717		return;
 718	/* seen decrypted fragments since last fully-failed record */
 719	if (ctx->resync_nh_reset) {
 720		ctx->resync_nh_reset = 0;
 721		ctx->resync_nh.decrypted_failed = 1;
 722		ctx->resync_nh.decrypted_tgt = TLS_DEVICE_RESYNC_NH_START_IVAL;
 723		return;
 724	}
 725
 726	if (++ctx->resync_nh.decrypted_failed <= ctx->resync_nh.decrypted_tgt)
 727		return;
 728
 729	/* doing resync, bump the next target in case it fails */
 730	if (ctx->resync_nh.decrypted_tgt < TLS_DEVICE_RESYNC_NH_MAX_IVAL)
 731		ctx->resync_nh.decrypted_tgt *= 2;
 732	else
 733		ctx->resync_nh.decrypted_tgt += TLS_DEVICE_RESYNC_NH_MAX_IVAL;
 734
 735	rxm = strp_msg(skb);
 736
 737	/* head of next rec is already in, parser will sync for us */
 738	if (tcp_inq(sk) > rxm->full_len) {
 739		ctx->resync_nh_do_now = 1;
 740	} else {
 741		struct tls_prot_info *prot = &tls_ctx->prot_info;
 742		u8 rcd_sn[TLS_MAX_REC_SEQ_SIZE];
 743
 744		memcpy(rcd_sn, tls_ctx->rx.rec_seq, prot->rec_seq_size);
 745		tls_bigint_increment(rcd_sn, prot->rec_seq_size);
 746
 747		tls_device_resync_rx(tls_ctx, sk, tcp_sk(sk)->copied_seq,
 748				     rcd_sn);
 749	}
 750}
 751
 752static int tls_device_reencrypt(struct sock *sk, struct sk_buff *skb)
 753{
 754	struct strp_msg *rxm = strp_msg(skb);
 755	int err = 0, offset = rxm->offset, copy, nsg, data_len, pos;
 756	struct sk_buff *skb_iter, *unused;
 757	struct scatterlist sg[1];
 758	char *orig_buf, *buf;
 759
 760	orig_buf = kmalloc(rxm->full_len + TLS_HEADER_SIZE +
 761			   TLS_CIPHER_AES_GCM_128_IV_SIZE, sk->sk_allocation);
 762	if (!orig_buf)
 763		return -ENOMEM;
 764	buf = orig_buf;
 765
 766	nsg = skb_cow_data(skb, 0, &unused);
 767	if (unlikely(nsg < 0)) {
 768		err = nsg;
 769		goto free_buf;
 770	}
 771
 772	sg_init_table(sg, 1);
 773	sg_set_buf(&sg[0], buf,
 774		   rxm->full_len + TLS_HEADER_SIZE +
 775		   TLS_CIPHER_AES_GCM_128_IV_SIZE);
 776	err = skb_copy_bits(skb, offset, buf,
 777			    TLS_HEADER_SIZE + TLS_CIPHER_AES_GCM_128_IV_SIZE);
 778	if (err)
 779		goto free_buf;
 780
 781	/* We are interested only in the decrypted data not the auth */
 782	err = decrypt_skb(sk, skb, sg);
 783	if (err != -EBADMSG)
 784		goto free_buf;
 785	else
 786		err = 0;
 787
 788	data_len = rxm->full_len - TLS_CIPHER_AES_GCM_128_TAG_SIZE;
 789
 790	if (skb_pagelen(skb) > offset) {
 791		copy = min_t(int, skb_pagelen(skb) - offset, data_len);
 792
 793		if (skb->decrypted) {
 794			err = skb_store_bits(skb, offset, buf, copy);
 795			if (err)
 796				goto free_buf;
 797		}
 798
 799		offset += copy;
 800		buf += copy;
 801	}
 802
 803	pos = skb_pagelen(skb);
 804	skb_walk_frags(skb, skb_iter) {
 805		int frag_pos;
 806
 807		/* Practically all frags must belong to msg if reencrypt
 808		 * is needed with current strparser and coalescing logic,
 809		 * but strparser may "get optimized", so let's be safe.
 810		 */
 811		if (pos + skb_iter->len <= offset)
 812			goto done_with_frag;
 813		if (pos >= data_len + rxm->offset)
 814			break;
 815
 816		frag_pos = offset - pos;
 817		copy = min_t(int, skb_iter->len - frag_pos,
 818			     data_len + rxm->offset - offset);
 819
 820		if (skb_iter->decrypted) {
 821			err = skb_store_bits(skb_iter, frag_pos, buf, copy);
 822			if (err)
 823				goto free_buf;
 824		}
 825
 826		offset += copy;
 827		buf += copy;
 828done_with_frag:
 829		pos += skb_iter->len;
 830	}
 831
 832free_buf:
 833	kfree(orig_buf);
 834	return err;
 835}
 836
 837int tls_device_decrypted(struct sock *sk, struct sk_buff *skb)
 838{
 839	struct tls_context *tls_ctx = tls_get_ctx(sk);
 840	struct tls_offload_context_rx *ctx = tls_offload_ctx_rx(tls_ctx);
 841	int is_decrypted = skb->decrypted;
 842	int is_encrypted = !is_decrypted;
 843	struct sk_buff *skb_iter;
 844
 845	/* Check if all the data is decrypted already */
 846	skb_walk_frags(skb, skb_iter) {
 847		is_decrypted &= skb_iter->decrypted;
 848		is_encrypted &= !skb_iter->decrypted;
 849	}
 850
 851	ctx->sw.decrypted |= is_decrypted;
 852
 853	/* Return immediately if the record is either entirely plaintext or
 854	 * entirely ciphertext. Otherwise handle reencrypt partially decrypted
 855	 * record.
 856	 */
 857	if (is_decrypted) {
 858		ctx->resync_nh_reset = 1;
 859		return 0;
 860	}
 861	if (is_encrypted) {
 862		tls_device_core_ctrl_rx_resync(tls_ctx, ctx, sk, skb);
 863		return 0;
 864	}
 865
 866	ctx->resync_nh_reset = 1;
 867	return tls_device_reencrypt(sk, skb);
 868}
 869
 870static void tls_device_attach(struct tls_context *ctx, struct sock *sk,
 871			      struct net_device *netdev)
 872{
 873	if (sk->sk_destruct != tls_device_sk_destruct) {
 874		refcount_set(&ctx->refcount, 1);
 875		dev_hold(netdev);
 876		ctx->netdev = netdev;
 877		spin_lock_irq(&tls_device_lock);
 878		list_add_tail(&ctx->list, &tls_device_list);
 879		spin_unlock_irq(&tls_device_lock);
 880
 881		ctx->sk_destruct = sk->sk_destruct;
 882		sk->sk_destruct = tls_device_sk_destruct;
 883	}
 884}
 885
 886int tls_set_device_offload(struct sock *sk, struct tls_context *ctx)
 887{
 888	u16 nonce_size, tag_size, iv_size, rec_seq_size;
 889	struct tls_context *tls_ctx = tls_get_ctx(sk);
 890	struct tls_prot_info *prot = &tls_ctx->prot_info;
 891	struct tls_record_info *start_marker_record;
 892	struct tls_offload_context_tx *offload_ctx;
 893	struct tls_crypto_info *crypto_info;
 894	struct net_device *netdev;
 895	char *iv, *rec_seq;
 896	struct sk_buff *skb;
 897	__be64 rcd_sn;
 898	int rc;
 899
 900	if (!ctx)
 901		return -EINVAL;
 902
 903	if (ctx->priv_ctx_tx)
 904		return -EEXIST;
 905
 906	start_marker_record = kmalloc(sizeof(*start_marker_record), GFP_KERNEL);
 907	if (!start_marker_record)
 908		return -ENOMEM;
 909
 910	offload_ctx = kzalloc(TLS_OFFLOAD_CONTEXT_SIZE_TX, GFP_KERNEL);
 911	if (!offload_ctx) {
 912		rc = -ENOMEM;
 913		goto free_marker_record;
 914	}
 915
 916	crypto_info = &ctx->crypto_send.info;
 917	if (crypto_info->version != TLS_1_2_VERSION) {
 918		rc = -EOPNOTSUPP;
 919		goto free_offload_ctx;
 920	}
 921
 922	switch (crypto_info->cipher_type) {
 923	case TLS_CIPHER_AES_GCM_128:
 924		nonce_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
 925		tag_size = TLS_CIPHER_AES_GCM_128_TAG_SIZE;
 926		iv_size = TLS_CIPHER_AES_GCM_128_IV_SIZE;
 927		iv = ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->iv;
 928		rec_seq_size = TLS_CIPHER_AES_GCM_128_REC_SEQ_SIZE;
 929		rec_seq =
 930		 ((struct tls12_crypto_info_aes_gcm_128 *)crypto_info)->rec_seq;
 931		break;
 932	default:
 933		rc = -EINVAL;
 934		goto free_offload_ctx;
 935	}
 936
 937	/* Sanity-check the rec_seq_size for stack allocations */
 938	if (rec_seq_size > TLS_MAX_REC_SEQ_SIZE) {
 939		rc = -EINVAL;
 940		goto free_offload_ctx;
 941	}
 942
 943	prot->version = crypto_info->version;
 944	prot->cipher_type = crypto_info->cipher_type;
 945	prot->prepend_size = TLS_HEADER_SIZE + nonce_size;
 946	prot->tag_size = tag_size;
 947	prot->overhead_size = prot->prepend_size + prot->tag_size;
 948	prot->iv_size = iv_size;
 949	ctx->tx.iv = kmalloc(iv_size + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
 950			     GFP_KERNEL);
 951	if (!ctx->tx.iv) {
 952		rc = -ENOMEM;
 953		goto free_offload_ctx;
 954	}
 955
 956	memcpy(ctx->tx.iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, iv, iv_size);
 957
 958	prot->rec_seq_size = rec_seq_size;
 959	ctx->tx.rec_seq = kmemdup(rec_seq, rec_seq_size, GFP_KERNEL);
 960	if (!ctx->tx.rec_seq) {
 961		rc = -ENOMEM;
 962		goto free_iv;
 963	}
 964
 965	rc = tls_sw_fallback_init(sk, offload_ctx, crypto_info);
 966	if (rc)
 967		goto free_rec_seq;
 968
 969	/* start at rec_seq - 1 to account for the start marker record */
 970	memcpy(&rcd_sn, ctx->tx.rec_seq, sizeof(rcd_sn));
 971	offload_ctx->unacked_record_sn = be64_to_cpu(rcd_sn) - 1;
 972
 973	start_marker_record->end_seq = tcp_sk(sk)->write_seq;
 974	start_marker_record->len = 0;
 975	start_marker_record->num_frags = 0;
 976
 977	INIT_LIST_HEAD(&offload_ctx->records_list);
 978	list_add_tail(&start_marker_record->list, &offload_ctx->records_list);
 979	spin_lock_init(&offload_ctx->lock);
 980	sg_init_table(offload_ctx->sg_tx_data,
 981		      ARRAY_SIZE(offload_ctx->sg_tx_data));
 982
 983	clean_acked_data_enable(inet_csk(sk), &tls_icsk_clean_acked);
 984	ctx->push_pending_record = tls_device_push_pending_record;
 985
 986	/* TLS offload is greatly simplified if we don't send
 987	 * SKBs where only part of the payload needs to be encrypted.
 988	 * So mark the last skb in the write queue as end of record.
 989	 */
 990	skb = tcp_write_queue_tail(sk);
 991	if (skb)
 992		TCP_SKB_CB(skb)->eor = 1;
 993
 994	netdev = get_netdev_for_sock(sk);
 995	if (!netdev) {
 996		pr_err_ratelimited("%s: netdev not found\n", __func__);
 997		rc = -EINVAL;
 998		goto disable_cad;
 999	}
1000
1001	if (!(netdev->features & NETIF_F_HW_TLS_TX)) {
1002		rc = -ENOTSUPP;
1003		goto release_netdev;
1004	}
1005
1006	/* Avoid offloading if the device is down
1007	 * We don't want to offload new flows after
1008	 * the NETDEV_DOWN event
1009	 *
1010	 * device_offload_lock is taken in tls_devices's NETDEV_DOWN
1011	 * handler thus protecting from the device going down before
1012	 * ctx was added to tls_device_list.
1013	 */
1014	down_read(&device_offload_lock);
1015	if (!(netdev->flags & IFF_UP)) {
1016		rc = -EINVAL;
1017		goto release_lock;
1018	}
1019
1020	ctx->priv_ctx_tx = offload_ctx;
1021	rc = netdev->tlsdev_ops->tls_dev_add(netdev, sk, TLS_OFFLOAD_CTX_DIR_TX,
1022					     &ctx->crypto_send.info,
1023					     tcp_sk(sk)->write_seq);
1024	if (rc)
1025		goto release_lock;
1026
1027	tls_device_attach(ctx, sk, netdev);
1028	up_read(&device_offload_lock);
1029
1030	/* following this assignment tls_is_sk_tx_device_offloaded
1031	 * will return true and the context might be accessed
1032	 * by the netdev's xmit function.
1033	 */
1034	smp_store_release(&sk->sk_validate_xmit_skb, tls_validate_xmit_skb);
1035	dev_put(netdev);
1036
1037	return 0;
1038
1039release_lock:
1040	up_read(&device_offload_lock);
1041release_netdev:
1042	dev_put(netdev);
1043disable_cad:
1044	clean_acked_data_disable(inet_csk(sk));
1045	crypto_free_aead(offload_ctx->aead_send);
1046free_rec_seq:
1047	kfree(ctx->tx.rec_seq);
1048free_iv:
1049	kfree(ctx->tx.iv);
1050free_offload_ctx:
1051	kfree(offload_ctx);
1052	ctx->priv_ctx_tx = NULL;
1053free_marker_record:
1054	kfree(start_marker_record);
1055	return rc;
1056}
1057
1058int tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx)
1059{
1060	struct tls_offload_context_rx *context;
1061	struct net_device *netdev;
1062	int rc = 0;
1063
1064	if (ctx->crypto_recv.info.version != TLS_1_2_VERSION)
1065		return -EOPNOTSUPP;
1066
1067	netdev = get_netdev_for_sock(sk);
1068	if (!netdev) {
1069		pr_err_ratelimited("%s: netdev not found\n", __func__);
1070		return -EINVAL;
1071	}
1072
1073	if (!(netdev->features & NETIF_F_HW_TLS_RX)) {
1074		rc = -ENOTSUPP;
1075		goto release_netdev;
1076	}
1077
1078	/* Avoid offloading if the device is down
1079	 * We don't want to offload new flows after
1080	 * the NETDEV_DOWN event
1081	 *
1082	 * device_offload_lock is taken in tls_devices's NETDEV_DOWN
1083	 * handler thus protecting from the device going down before
1084	 * ctx was added to tls_device_list.
1085	 */
1086	down_read(&device_offload_lock);
1087	if (!(netdev->flags & IFF_UP)) {
1088		rc = -EINVAL;
1089		goto release_lock;
1090	}
1091
1092	context = kzalloc(TLS_OFFLOAD_CONTEXT_SIZE_RX, GFP_KERNEL);
1093	if (!context) {
1094		rc = -ENOMEM;
1095		goto release_lock;
1096	}
1097	context->resync_nh_reset = 1;
1098
1099	ctx->priv_ctx_rx = context;
1100	rc = tls_set_sw_offload(sk, ctx, 0);
1101	if (rc)
1102		goto release_ctx;
1103
1104	rc = netdev->tlsdev_ops->tls_dev_add(netdev, sk, TLS_OFFLOAD_CTX_DIR_RX,
1105					     &ctx->crypto_recv.info,
1106					     tcp_sk(sk)->copied_seq);
1107	if (rc)
1108		goto free_sw_resources;
1109
1110	tls_device_attach(ctx, sk, netdev);
1111	up_read(&device_offload_lock);
1112
1113	dev_put(netdev);
1114
1115	return 0;
1116
1117free_sw_resources:
1118	up_read(&device_offload_lock);
1119	tls_sw_free_resources_rx(sk);
1120	down_read(&device_offload_lock);
1121release_ctx:
1122	ctx->priv_ctx_rx = NULL;
1123release_lock:
1124	up_read(&device_offload_lock);
1125release_netdev:
1126	dev_put(netdev);
1127	return rc;
1128}
1129
1130void tls_device_offload_cleanup_rx(struct sock *sk)
1131{
1132	struct tls_context *tls_ctx = tls_get_ctx(sk);
1133	struct net_device *netdev;
1134
1135	down_read(&device_offload_lock);
1136	netdev = tls_ctx->netdev;
1137	if (!netdev)
1138		goto out;
1139
1140	netdev->tlsdev_ops->tls_dev_del(netdev, tls_ctx,
1141					TLS_OFFLOAD_CTX_DIR_RX);
1142
1143	if (tls_ctx->tx_conf != TLS_HW) {
1144		dev_put(netdev);
1145		tls_ctx->netdev = NULL;
1146	}
1147out:
1148	up_read(&device_offload_lock);
1149	tls_sw_release_resources_rx(sk);
1150}
1151
1152static int tls_device_down(struct net_device *netdev)
1153{
1154	struct tls_context *ctx, *tmp;
1155	unsigned long flags;
1156	LIST_HEAD(list);
1157
1158	/* Request a write lock to block new offload attempts */
1159	down_write(&device_offload_lock);
1160
1161	spin_lock_irqsave(&tls_device_lock, flags);
1162	list_for_each_entry_safe(ctx, tmp, &tls_device_list, list) {
1163		if (ctx->netdev != netdev ||
1164		    !refcount_inc_not_zero(&ctx->refcount))
1165			continue;
1166
1167		list_move(&ctx->list, &list);
1168	}
1169	spin_unlock_irqrestore(&tls_device_lock, flags);
1170
1171	list_for_each_entry_safe(ctx, tmp, &list, list)	{
1172		if (ctx->tx_conf == TLS_HW)
1173			netdev->tlsdev_ops->tls_dev_del(netdev, ctx,
1174							TLS_OFFLOAD_CTX_DIR_TX);
1175		if (ctx->rx_conf == TLS_HW)
1176			netdev->tlsdev_ops->tls_dev_del(netdev, ctx,
1177							TLS_OFFLOAD_CTX_DIR_RX);
1178		WRITE_ONCE(ctx->netdev, NULL);
1179		smp_mb__before_atomic(); /* pairs with test_and_set_bit() */
1180		while (test_bit(TLS_RX_SYNC_RUNNING, &ctx->flags))
1181			usleep_range(10, 200);
1182		dev_put(netdev);
1183		list_del_init(&ctx->list);
1184
1185		if (refcount_dec_and_test(&ctx->refcount))
1186			tls_device_free_ctx(ctx);
1187	}
1188
1189	up_write(&device_offload_lock);
1190
1191	flush_work(&tls_device_gc_work);
1192
1193	return NOTIFY_DONE;
1194}
1195
1196static int tls_dev_event(struct notifier_block *this, unsigned long event,
1197			 void *ptr)
1198{
1199	struct net_device *dev = netdev_notifier_info_to_dev(ptr);
1200
1201	if (!dev->tlsdev_ops &&
1202	    !(dev->features & (NETIF_F_HW_TLS_RX | NETIF_F_HW_TLS_TX)))
1203		return NOTIFY_DONE;
1204
1205	switch (event) {
1206	case NETDEV_REGISTER:
1207	case NETDEV_FEAT_CHANGE:
1208		if ((dev->features & NETIF_F_HW_TLS_RX) &&
1209		    !dev->tlsdev_ops->tls_dev_resync)
1210			return NOTIFY_BAD;
1211
1212		if  (dev->tlsdev_ops &&
1213		     dev->tlsdev_ops->tls_dev_add &&
1214		     dev->tlsdev_ops->tls_dev_del)
1215			return NOTIFY_DONE;
1216		else
1217			return NOTIFY_BAD;
1218	case NETDEV_DOWN:
1219		return tls_device_down(dev);
1220	}
1221	return NOTIFY_DONE;
1222}
1223
1224static struct notifier_block tls_dev_notifier = {
1225	.notifier_call	= tls_dev_event,
1226};
1227
1228void __init tls_device_init(void)
1229{
1230	register_netdevice_notifier(&tls_dev_notifier);
1231}
1232
1233void __exit tls_device_cleanup(void)
1234{
1235	unregister_netdevice_notifier(&tls_dev_notifier);
1236	flush_work(&tls_device_gc_work);
1237	clean_acked_data_flush();
1238}