Linux Audio

Check our new training course

Loading...
v3.15
 
  1/*
  2 *  Syncookies implementation for the Linux kernel
  3 *
  4 *  Copyright (C) 1997 Andi Kleen
  5 *  Based on ideas by D.J.Bernstein and Eric Schenk.
  6 *
  7 *	This program is free software; you can redistribute it and/or
  8 *      modify it under the terms of the GNU General Public License
  9 *      as published by the Free Software Foundation; either version
 10 *      2 of the License, or (at your option) any later version.
 11 */
 12
 13#include <linux/tcp.h>
 14#include <linux/slab.h>
 15#include <linux/random.h>
 16#include <linux/cryptohash.h>
 17#include <linux/kernel.h>
 18#include <linux/export.h>
 
 19#include <net/tcp.h>
 20#include <net/route.h>
 21
 22/* Timestamps: lowest bits store TCP options */
 23#define TSBITS 6
 24#define TSMASK (((__u32)1 << TSBITS) - 1)
 25
 26extern int sysctl_tcp_syncookies;
 27
 28static u32 syncookie_secret[2][16-4+SHA_DIGEST_WORDS];
 29
 30#define COOKIEBITS 24	/* Upper bits store count */
 31#define COOKIEMASK (((__u32)1 << COOKIEBITS) - 1)
 32
 33static DEFINE_PER_CPU(__u32 [16 + 5 + SHA_WORKSPACE_WORDS],
 34		      ipv4_cookie_scratch);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 35
 36static u32 cookie_hash(__be32 saddr, __be32 daddr, __be16 sport, __be16 dport,
 37		       u32 count, int c)
 38{
 39	__u32 *tmp;
 40
 41	net_get_random_once(syncookie_secret, sizeof(syncookie_secret));
 42
 43	tmp  = __get_cpu_var(ipv4_cookie_scratch);
 44	memcpy(tmp + 4, syncookie_secret[c], sizeof(syncookie_secret[c]));
 45	tmp[0] = (__force u32)saddr;
 46	tmp[1] = (__force u32)daddr;
 47	tmp[2] = ((__force u32)sport << 16) + (__force u32)dport;
 48	tmp[3] = count;
 49	sha_transform(tmp + 16, (__u8 *)tmp, tmp + 16 + 5);
 50
 51	return tmp[17];
 52}
 53
 54
 55/*
 56 * when syncookies are in effect and tcp timestamps are enabled we encode
 57 * tcp options in the lower bits of the timestamp value that will be
 58 * sent in the syn-ack.
 59 * Since subsequent timestamps use the normal tcp_time_stamp value, we
 60 * must make sure that the resulting initial timestamp is <= tcp_time_stamp.
 61 */
 62__u32 cookie_init_timestamp(struct request_sock *req)
 63{
 64	struct inet_request_sock *ireq;
 65	u32 ts, ts_now = tcp_time_stamp;
 66	u32 options = 0;
 67
 68	ireq = inet_rsk(req);
 69
 70	options = ireq->wscale_ok ? ireq->snd_wscale : 0xf;
 71	options |= ireq->sack_ok << 4;
 72	options |= ireq->ecn_ok << 5;
 
 
 73
 74	ts = ts_now & ~TSMASK;
 75	ts |= options;
 76	if (ts > ts_now) {
 77		ts >>= TSBITS;
 78		ts--;
 79		ts <<= TSBITS;
 80		ts |= options;
 81	}
 82	return ts;
 83}
 84
 85
 86static __u32 secure_tcp_syn_cookie(__be32 saddr, __be32 daddr, __be16 sport,
 87				   __be16 dport, __u32 sseq, __u32 data)
 88{
 89	/*
 90	 * Compute the secure sequence number.
 91	 * The output should be:
 92	 *   HASH(sec1,saddr,sport,daddr,dport,sec1) + sseq + (count * 2^24)
 93	 *      + (HASH(sec2,saddr,sport,daddr,dport,count,sec2) % 2^24).
 94	 * Where sseq is their sequence number and count increases every
 95	 * minute by 1.
 96	 * As an extra hack, we add a small "data" value that encodes the
 97	 * MSS into the second hash value.
 98	 */
 99	u32 count = tcp_cookie_time();
100	return (cookie_hash(saddr, daddr, sport, dport, 0, 0) +
101		sseq + (count << COOKIEBITS) +
102		((cookie_hash(saddr, daddr, sport, dport, count, 1) + data)
103		 & COOKIEMASK));
104}
105
106/*
107 * This retrieves the small "data" value from the syncookie.
108 * If the syncookie is bad, the data returned will be out of
109 * range.  This must be checked by the caller.
110 *
111 * The count value used to generate the cookie must be less than
112 * MAX_SYNCOOKIE_AGE minutes in the past.
113 * The return value (__u32)-1 if this test fails.
114 */
115static __u32 check_tcp_syn_cookie(__u32 cookie, __be32 saddr, __be32 daddr,
116				  __be16 sport, __be16 dport, __u32 sseq)
117{
118	u32 diff, count = tcp_cookie_time();
119
120	/* Strip away the layers from the cookie */
121	cookie -= cookie_hash(saddr, daddr, sport, dport, 0, 0) + sseq;
122
123	/* Cookie is now reduced to (count * 2^24) ^ (hash % 2^24) */
124	diff = (count - (cookie >> COOKIEBITS)) & ((__u32) -1 >> COOKIEBITS);
125	if (diff >= MAX_SYNCOOKIE_AGE)
126		return (__u32)-1;
127
128	return (cookie -
129		cookie_hash(saddr, daddr, sport, dport, count - diff, 1))
130		& COOKIEMASK;	/* Leaving the data behind */
131}
132
133/*
134 * MSS Values are chosen based on the 2011 paper
135 * 'An Analysis of TCP Maximum Segement Sizes' by S. Alcock and R. Nelson.
136 * Values ..
137 *  .. lower than 536 are rare (< 0.2%)
138 *  .. between 537 and 1299 account for less than < 1.5% of observed values
139 *  .. in the 1300-1349 range account for about 15 to 20% of observed mss values
140 *  .. exceeding 1460 are very rare (< 0.04%)
141 *
142 *  1460 is the single most frequently announced mss value (30 to 46% depending
143 *  on monitor location).  Table must be sorted.
144 */
145static __u16 const msstab[] = {
146	536,
147	1300,
148	1440,	/* 1440, 1452: PPPoE */
149	1460,
150};
151
152/*
153 * Generate a syncookie.  mssp points to the mss, which is returned
154 * rounded down to the value encoded in the cookie.
155 */
156u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
157			      u16 *mssp)
158{
159	int mssind;
160	const __u16 mss = *mssp;
161
162	for (mssind = ARRAY_SIZE(msstab) - 1; mssind ; mssind--)
163		if (mss >= msstab[mssind])
164			break;
165	*mssp = msstab[mssind];
166
167	return secure_tcp_syn_cookie(iph->saddr, iph->daddr,
168				     th->source, th->dest, ntohl(th->seq),
169				     mssind);
170}
171EXPORT_SYMBOL_GPL(__cookie_v4_init_sequence);
172
173__u32 cookie_v4_init_sequence(struct sock *sk, struct sk_buff *skb, __u16 *mssp)
174{
175	const struct iphdr *iph = ip_hdr(skb);
176	const struct tcphdr *th = tcp_hdr(skb);
177
178	tcp_synq_overflow(sk);
179	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT);
180
181	return __cookie_v4_init_sequence(iph, th, mssp);
182}
183
184/*
185 * Check if a ack sequence number is a valid syncookie.
186 * Return the decoded mss if it is, or 0 if not.
187 */
188int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th,
189		      u32 cookie)
190{
191	__u32 seq = ntohl(th->seq) - 1;
192	__u32 mssind = check_tcp_syn_cookie(cookie, iph->saddr, iph->daddr,
193					    th->source, th->dest, seq);
194
195	return mssind < ARRAY_SIZE(msstab) ? msstab[mssind] : 0;
196}
197EXPORT_SYMBOL_GPL(__cookie_v4_check);
198
199static inline struct sock *get_cookie_sock(struct sock *sk, struct sk_buff *skb,
200					   struct request_sock *req,
201					   struct dst_entry *dst)
202{
203	struct inet_connection_sock *icsk = inet_csk(sk);
204	struct sock *child;
 
205
206	child = icsk->icsk_af_ops->syn_recv_sock(sk, skb, req, dst);
207	if (child)
208		inet_csk_reqsk_queue_add(sk, req, child);
209	else
210		reqsk_free(req);
 
 
 
 
 
 
211
212	return child;
213}
 
 
 
 
 
214
 
 
 
215
216/*
217 * when syncookies are in effect and tcp timestamps are enabled we stored
218 * additional tcp options in the timestamp.
219 * This extracts these options from the timestamp echo.
220 *
221 * The lowest 4 bits store snd_wscale.
222 * next 2 bits indicate SACK and ECN support.
223 *
224 * return false if we decode an option that should not be.
225 */
226bool cookie_check_timestamp(struct tcp_options_received *tcp_opt,
227			struct net *net, bool *ecn_ok)
228{
229	/* echoed timestamp, lowest bits contain options */
230	u32 options = tcp_opt->rcv_tsecr & TSMASK;
231
232	if (!tcp_opt->saw_tstamp)  {
233		tcp_clear_options(tcp_opt);
234		return true;
235	}
236
237	if (!sysctl_tcp_timestamps)
238		return false;
239
240	tcp_opt->sack_ok = (options & (1 << 4)) ? TCP_SACK_SEEN : 0;
241	*ecn_ok = (options >> 5) & 1;
242	if (*ecn_ok && !net->ipv4.sysctl_tcp_ecn)
243		return false;
244
245	if (tcp_opt->sack_ok && !sysctl_tcp_sack)
246		return false;
247
248	if ((options & 0xf) == 0xf)
249		return true; /* no window scaling */
250
251	tcp_opt->wscale_ok = 1;
252	tcp_opt->snd_wscale = options & 0xf;
253	return sysctl_tcp_window_scaling != 0;
 
254}
255EXPORT_SYMBOL(cookie_check_timestamp);
256
257struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb,
258			     struct ip_options *opt)
259{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
260	struct tcp_options_received tcp_opt;
261	struct inet_request_sock *ireq;
262	struct tcp_request_sock *treq;
263	struct tcp_sock *tp = tcp_sk(sk);
264	const struct tcphdr *th = tcp_hdr(skb);
265	__u32 cookie = ntohl(th->ack_seq) - 1;
266	struct sock *ret = sk;
267	struct request_sock *req;
268	int mss;
269	struct rtable *rt;
270	__u8 rcv_wscale;
271	bool ecn_ok = false;
272	struct flowi4 fl4;
 
273
274	if (!sysctl_tcp_syncookies || !th->ack || th->rst)
275		goto out;
276
277	if (tcp_synq_no_recent_overflow(sk) ||
278	    (mss = __cookie_v4_check(ip_hdr(skb), th, cookie)) == 0) {
279		NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SYNCOOKIESFAILED);
 
 
 
280		goto out;
281	}
282
283	NET_INC_STATS_BH(sock_net(sk), LINUX_MIB_SYNCOOKIESRECV);
284
285	/* check for timestamp cookie support */
286	memset(&tcp_opt, 0, sizeof(tcp_opt));
287	tcp_parse_options(skb, &tcp_opt, 0, NULL);
288
289	if (!cookie_check_timestamp(&tcp_opt, sock_net(sk), &ecn_ok))
 
 
 
 
 
 
 
290		goto out;
291
292	ret = NULL;
293	req = inet_reqsk_alloc(&tcp_request_sock_ops); /* for safety */
294	if (!req)
295		goto out;
296
297	ireq = inet_rsk(req);
298	treq = tcp_rsk(req);
299	treq->rcv_isn		= ntohl(th->seq) - 1;
300	treq->snt_isn		= cookie;
 
 
301	req->mss		= mss;
302	ireq->ir_num		= ntohs(th->dest);
303	ireq->ir_rmt_port	= th->source;
304	ireq->ir_loc_addr	= ip_hdr(skb)->daddr;
305	ireq->ir_rmt_addr	= ip_hdr(skb)->saddr;
306	ireq->ecn_ok		= ecn_ok;
307	ireq->snd_wscale	= tcp_opt.snd_wscale;
308	ireq->sack_ok		= tcp_opt.sack_ok;
309	ireq->wscale_ok		= tcp_opt.wscale_ok;
310	ireq->tstamp_ok		= tcp_opt.saw_tstamp;
311	req->ts_recent		= tcp_opt.saw_tstamp ? tcp_opt.rcv_tsval : 0;
312	treq->snt_synack	= tcp_opt.saw_tstamp ? tcp_opt.rcv_tsecr : 0;
313	treq->listener		= NULL;
 
 
 
 
 
314
315	/* We throwed the options of the initial SYN away, so we hope
316	 * the ACK carries the same options again (see RFC1122 4.2.3.8)
317	 */
318	if (opt && opt->optlen) {
319		int opt_size = sizeof(struct ip_options_rcu) + opt->optlen;
320
321		ireq->opt = kmalloc(opt_size, GFP_ATOMIC);
322		if (ireq->opt != NULL && ip_options_echo(&ireq->opt->opt, skb)) {
323			kfree(ireq->opt);
324			ireq->opt = NULL;
325		}
326	}
327
328	if (security_inet_conn_request(sk, skb, req)) {
329		reqsk_free(req);
330		goto out;
331	}
332
333	req->expires	= 0UL;
334	req->num_retrans = 0;
335
336	/*
337	 * We need to lookup the route here to get at the correct
338	 * window size. We should better make sure that the window size
339	 * hasn't changed since we received the original syn, but I see
340	 * no easy way to do this.
341	 */
342	flowi4_init_output(&fl4, sk->sk_bound_dev_if, sk->sk_mark,
343			   RT_CONN_FLAGS(sk), RT_SCOPE_UNIVERSE, IPPROTO_TCP,
344			   inet_sk_flowi_flags(sk),
345			   (opt && opt->srr) ? opt->faddr : ireq->ir_rmt_addr,
346			   ireq->ir_loc_addr, th->source, th->dest);
347	security_req_classify_flow(req, flowi4_to_flowi(&fl4));
348	rt = ip_route_output_key(sock_net(sk), &fl4);
349	if (IS_ERR(rt)) {
350		reqsk_free(req);
351		goto out;
352	}
353
354	/* Try to redo what tcp_v4_send_synack did. */
355	req->window_clamp = tp->window_clamp ? :dst_metric(&rt->dst, RTAX_WINDOW);
356
357	tcp_select_initial_window(tcp_full_space(sk), req->mss,
358				  &req->rcv_wnd, &req->window_clamp,
359				  ireq->wscale_ok, &rcv_wscale,
360				  dst_metric(&rt->dst, RTAX_INITRWND));
361
362	ireq->rcv_wscale  = rcv_wscale;
 
363
364	ret = get_cookie_sock(sk, skb, req, &rt->dst);
365	/* ip_queue_xmit() depends on our flow being setup
366	 * Normal sockets get it right from inet_csk_route_child_sock()
367	 */
368	if (ret)
369		inet_sk(ret)->cork.fl.u.ip4 = fl4;
370out:	return ret;
371}
v5.9
  1// SPDX-License-Identifier: GPL-2.0-or-later
  2/*
  3 *  Syncookies implementation for the Linux kernel
  4 *
  5 *  Copyright (C) 1997 Andi Kleen
  6 *  Based on ideas by D.J.Bernstein and Eric Schenk.
 
 
 
 
 
  7 */
  8
  9#include <linux/tcp.h>
 10#include <linux/slab.h>
 11#include <linux/random.h>
 12#include <linux/siphash.h>
 13#include <linux/kernel.h>
 14#include <linux/export.h>
 15#include <net/secure_seq.h>
 16#include <net/tcp.h>
 17#include <net/route.h>
 18
 19static siphash_key_t syncookie_secret[2] __read_mostly;
 
 
 
 
 
 
 20
 21#define COOKIEBITS 24	/* Upper bits store count */
 22#define COOKIEMASK (((__u32)1 << COOKIEBITS) - 1)
 23
 24/* TCP Timestamp: 6 lowest bits of timestamp sent in the cookie SYN-ACK
 25 * stores TCP options:
 26 *
 27 * MSB                               LSB
 28 * | 31 ...   6 |  5  |  4   | 3 2 1 0 |
 29 * |  Timestamp | ECN | SACK | WScale  |
 30 *
 31 * When we receive a valid cookie-ACK, we look at the echoed tsval (if
 32 * any) to figure out which TCP options we should use for the rebuilt
 33 * connection.
 34 *
 35 * A WScale setting of '0xf' (which is an invalid scaling value)
 36 * means that original syn did not include the TCP window scaling option.
 37 */
 38#define TS_OPT_WSCALE_MASK	0xf
 39#define TS_OPT_SACK		BIT(4)
 40#define TS_OPT_ECN		BIT(5)
 41/* There is no TS_OPT_TIMESTAMP:
 42 * if ACK contains timestamp option, we already know it was
 43 * requested/supported by the syn/synack exchange.
 44 */
 45#define TSBITS	6
 46#define TSMASK	(((__u32)1 << TSBITS) - 1)
 47
 48static u32 cookie_hash(__be32 saddr, __be32 daddr, __be16 sport, __be16 dport,
 49		       u32 count, int c)
 50{
 
 
 51	net_get_random_once(syncookie_secret, sizeof(syncookie_secret));
 52	return siphash_4u32((__force u32)saddr, (__force u32)daddr,
 53			    (__force u32)sport << 16 | (__force u32)dport,
 54			    count, &syncookie_secret[c]);
 
 
 
 
 
 
 
 55}
 56
 57
 58/*
 59 * when syncookies are in effect and tcp timestamps are enabled we encode
 60 * tcp options in the lower bits of the timestamp value that will be
 61 * sent in the syn-ack.
 62 * Since subsequent timestamps use the normal tcp_time_stamp value, we
 63 * must make sure that the resulting initial timestamp is <= tcp_time_stamp.
 64 */
 65u64 cookie_init_timestamp(struct request_sock *req, u64 now)
 66{
 67	struct inet_request_sock *ireq;
 68	u32 ts, ts_now = tcp_ns_to_ts(now);
 69	u32 options = 0;
 70
 71	ireq = inet_rsk(req);
 72
 73	options = ireq->wscale_ok ? ireq->snd_wscale : TS_OPT_WSCALE_MASK;
 74	if (ireq->sack_ok)
 75		options |= TS_OPT_SACK;
 76	if (ireq->ecn_ok)
 77		options |= TS_OPT_ECN;
 78
 79	ts = ts_now & ~TSMASK;
 80	ts |= options;
 81	if (ts > ts_now) {
 82		ts >>= TSBITS;
 83		ts--;
 84		ts <<= TSBITS;
 85		ts |= options;
 86	}
 87	return (u64)ts * (NSEC_PER_SEC / TCP_TS_HZ);
 88}
 89
 90
 91static __u32 secure_tcp_syn_cookie(__be32 saddr, __be32 daddr, __be16 sport,
 92				   __be16 dport, __u32 sseq, __u32 data)
 93{
 94	/*
 95	 * Compute the secure sequence number.
 96	 * The output should be:
 97	 *   HASH(sec1,saddr,sport,daddr,dport,sec1) + sseq + (count * 2^24)
 98	 *      + (HASH(sec2,saddr,sport,daddr,dport,count,sec2) % 2^24).
 99	 * Where sseq is their sequence number and count increases every
100	 * minute by 1.
101	 * As an extra hack, we add a small "data" value that encodes the
102	 * MSS into the second hash value.
103	 */
104	u32 count = tcp_cookie_time();
105	return (cookie_hash(saddr, daddr, sport, dport, 0, 0) +
106		sseq + (count << COOKIEBITS) +
107		((cookie_hash(saddr, daddr, sport, dport, count, 1) + data)
108		 & COOKIEMASK));
109}
110
111/*
112 * This retrieves the small "data" value from the syncookie.
113 * If the syncookie is bad, the data returned will be out of
114 * range.  This must be checked by the caller.
115 *
116 * The count value used to generate the cookie must be less than
117 * MAX_SYNCOOKIE_AGE minutes in the past.
118 * The return value (__u32)-1 if this test fails.
119 */
120static __u32 check_tcp_syn_cookie(__u32 cookie, __be32 saddr, __be32 daddr,
121				  __be16 sport, __be16 dport, __u32 sseq)
122{
123	u32 diff, count = tcp_cookie_time();
124
125	/* Strip away the layers from the cookie */
126	cookie -= cookie_hash(saddr, daddr, sport, dport, 0, 0) + sseq;
127
128	/* Cookie is now reduced to (count * 2^24) ^ (hash % 2^24) */
129	diff = (count - (cookie >> COOKIEBITS)) & ((__u32) -1 >> COOKIEBITS);
130	if (diff >= MAX_SYNCOOKIE_AGE)
131		return (__u32)-1;
132
133	return (cookie -
134		cookie_hash(saddr, daddr, sport, dport, count - diff, 1))
135		& COOKIEMASK;	/* Leaving the data behind */
136}
137
138/*
139 * MSS Values are chosen based on the 2011 paper
140 * 'An Analysis of TCP Maximum Segement Sizes' by S. Alcock and R. Nelson.
141 * Values ..
142 *  .. lower than 536 are rare (< 0.2%)
143 *  .. between 537 and 1299 account for less than < 1.5% of observed values
144 *  .. in the 1300-1349 range account for about 15 to 20% of observed mss values
145 *  .. exceeding 1460 are very rare (< 0.04%)
146 *
147 *  1460 is the single most frequently announced mss value (30 to 46% depending
148 *  on monitor location).  Table must be sorted.
149 */
150static __u16 const msstab[] = {
151	536,
152	1300,
153	1440,	/* 1440, 1452: PPPoE */
154	1460,
155};
156
157/*
158 * Generate a syncookie.  mssp points to the mss, which is returned
159 * rounded down to the value encoded in the cookie.
160 */
161u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
162			      u16 *mssp)
163{
164	int mssind;
165	const __u16 mss = *mssp;
166
167	for (mssind = ARRAY_SIZE(msstab) - 1; mssind ; mssind--)
168		if (mss >= msstab[mssind])
169			break;
170	*mssp = msstab[mssind];
171
172	return secure_tcp_syn_cookie(iph->saddr, iph->daddr,
173				     th->source, th->dest, ntohl(th->seq),
174				     mssind);
175}
176EXPORT_SYMBOL_GPL(__cookie_v4_init_sequence);
177
178__u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mssp)
179{
180	const struct iphdr *iph = ip_hdr(skb);
181	const struct tcphdr *th = tcp_hdr(skb);
182
 
 
 
183	return __cookie_v4_init_sequence(iph, th, mssp);
184}
185
186/*
187 * Check if a ack sequence number is a valid syncookie.
188 * Return the decoded mss if it is, or 0 if not.
189 */
190int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th,
191		      u32 cookie)
192{
193	__u32 seq = ntohl(th->seq) - 1;
194	__u32 mssind = check_tcp_syn_cookie(cookie, iph->saddr, iph->daddr,
195					    th->source, th->dest, seq);
196
197	return mssind < ARRAY_SIZE(msstab) ? msstab[mssind] : 0;
198}
199EXPORT_SYMBOL_GPL(__cookie_v4_check);
200
201struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
202				 struct request_sock *req,
203				 struct dst_entry *dst, u32 tsoff)
204{
205	struct inet_connection_sock *icsk = inet_csk(sk);
206	struct sock *child;
207	bool own_req;
208
209	child = icsk->icsk_af_ops->syn_recv_sock(sk, skb, req, dst,
210						 NULL, &own_req);
211	if (child) {
212		refcount_set(&req->rsk_refcnt, 1);
213		tcp_sk(child)->tsoffset = tsoff;
214		sock_rps_save_rxhash(child, skb);
215
216		if (rsk_drop_req(req)) {
217			reqsk_put(req);
218			return child;
219		}
220
221		if (inet_csk_reqsk_queue_add(sk, req, child))
222			return child;
223
224		bh_unlock_sock(child);
225		sock_put(child);
226	}
227	__reqsk_free(req);
228
229	return NULL;
230}
231EXPORT_SYMBOL(tcp_get_cookie_sock);
232
233/*
234 * when syncookies are in effect and tcp timestamps are enabled we stored
235 * additional tcp options in the timestamp.
236 * This extracts these options from the timestamp echo.
237 *
238 * return false if we decode a tcp option that is disabled
239 * on the host.
 
 
240 */
241bool cookie_timestamp_decode(const struct net *net,
242			     struct tcp_options_received *tcp_opt)
243{
244	/* echoed timestamp, lowest bits contain options */
245	u32 options = tcp_opt->rcv_tsecr;
246
247	if (!tcp_opt->saw_tstamp)  {
248		tcp_clear_options(tcp_opt);
249		return true;
250	}
251
252	if (!net->ipv4.sysctl_tcp_timestamps)
253		return false;
254
255	tcp_opt->sack_ok = (options & TS_OPT_SACK) ? TCP_SACK_SEEN : 0;
 
 
 
256
257	if (tcp_opt->sack_ok && !net->ipv4.sysctl_tcp_sack)
258		return false;
259
260	if ((options & TS_OPT_WSCALE_MASK) == TS_OPT_WSCALE_MASK)
261		return true; /* no window scaling */
262
263	tcp_opt->wscale_ok = 1;
264	tcp_opt->snd_wscale = options & TS_OPT_WSCALE_MASK;
265
266	return net->ipv4.sysctl_tcp_window_scaling != 0;
267}
268EXPORT_SYMBOL(cookie_timestamp_decode);
269
270bool cookie_ecn_ok(const struct tcp_options_received *tcp_opt,
271		   const struct net *net, const struct dst_entry *dst)
272{
273	bool ecn_ok = tcp_opt->rcv_tsecr & TS_OPT_ECN;
274
275	if (!ecn_ok)
276		return false;
277
278	if (net->ipv4.sysctl_tcp_ecn)
279		return true;
280
281	return dst_feature(dst, RTAX_FEATURE_ECN);
282}
283EXPORT_SYMBOL(cookie_ecn_ok);
284
285struct request_sock *cookie_tcp_reqsk_alloc(const struct request_sock_ops *ops,
286					    struct sock *sk,
287					    struct sk_buff *skb)
288{
289	struct request_sock *req;
290
291#ifdef CONFIG_MPTCP
292	struct tcp_request_sock *treq;
293
294	if (sk_is_mptcp(sk))
295		ops = &mptcp_subflow_request_sock_ops;
296#endif
297
298	req = inet_reqsk_alloc(ops, sk, false);
299	if (!req)
300		return NULL;
301
302#if IS_ENABLED(CONFIG_MPTCP)
303	treq = tcp_rsk(req);
304	treq->is_mptcp = sk_is_mptcp(sk);
305	if (treq->is_mptcp) {
306		int err = mptcp_subflow_init_cookie_req(req, sk, skb);
307
308		if (err) {
309			reqsk_free(req);
310			return NULL;
311		}
312	}
313#endif
314
315	return req;
316}
317EXPORT_SYMBOL_GPL(cookie_tcp_reqsk_alloc);
318
319/* On input, sk is a listener.
320 * Output is listener if incoming packet would not create a child
321 *           NULL if memory could not be allocated.
322 */
323struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb)
324{
325	struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
326	struct tcp_options_received tcp_opt;
327	struct inet_request_sock *ireq;
328	struct tcp_request_sock *treq;
329	struct tcp_sock *tp = tcp_sk(sk);
330	const struct tcphdr *th = tcp_hdr(skb);
331	__u32 cookie = ntohl(th->ack_seq) - 1;
332	struct sock *ret = sk;
333	struct request_sock *req;
334	int mss;
335	struct rtable *rt;
336	__u8 rcv_wscale;
 
337	struct flowi4 fl4;
338	u32 tsoff = 0;
339
340	if (!sock_net(sk)->ipv4.sysctl_tcp_syncookies || !th->ack || th->rst)
341		goto out;
342
343	if (tcp_synq_no_recent_overflow(sk))
344		goto out;
345
346	mss = __cookie_v4_check(ip_hdr(skb), th, cookie);
347	if (mss == 0) {
348		__NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESFAILED);
349		goto out;
350	}
351
352	__NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESRECV);
353
354	/* check for timestamp cookie support */
355	memset(&tcp_opt, 0, sizeof(tcp_opt));
356	tcp_parse_options(sock_net(sk), skb, &tcp_opt, 0, NULL);
357
358	if (tcp_opt.saw_tstamp && tcp_opt.rcv_tsecr) {
359		tsoff = secure_tcp_ts_off(sock_net(sk),
360					  ip_hdr(skb)->daddr,
361					  ip_hdr(skb)->saddr);
362		tcp_opt.rcv_tsecr -= tsoff;
363	}
364
365	if (!cookie_timestamp_decode(sock_net(sk), &tcp_opt))
366		goto out;
367
368	ret = NULL;
369	req = cookie_tcp_reqsk_alloc(&tcp_request_sock_ops, sk, skb);
370	if (!req)
371		goto out;
372
373	ireq = inet_rsk(req);
374	treq = tcp_rsk(req);
375	treq->rcv_isn		= ntohl(th->seq) - 1;
376	treq->snt_isn		= cookie;
377	treq->ts_off		= 0;
378	treq->txhash		= net_tx_rndhash();
379	req->mss		= mss;
380	ireq->ir_num		= ntohs(th->dest);
381	ireq->ir_rmt_port	= th->source;
382	sk_rcv_saddr_set(req_to_sk(req), ip_hdr(skb)->daddr);
383	sk_daddr_set(req_to_sk(req), ip_hdr(skb)->saddr);
384	ireq->ir_mark		= inet_request_mark(sk, skb);
385	ireq->snd_wscale	= tcp_opt.snd_wscale;
386	ireq->sack_ok		= tcp_opt.sack_ok;
387	ireq->wscale_ok		= tcp_opt.wscale_ok;
388	ireq->tstamp_ok		= tcp_opt.saw_tstamp;
389	req->ts_recent		= tcp_opt.saw_tstamp ? tcp_opt.rcv_tsval : 0;
390	treq->snt_synack	= 0;
391	treq->tfo_listener	= false;
392
393	if (IS_ENABLED(CONFIG_SMC))
394		ireq->smc_ok = 0;
395
396	ireq->ir_iif = inet_request_bound_dev_if(sk, skb);
397
398	/* We throwed the options of the initial SYN away, so we hope
399	 * the ACK carries the same options again (see RFC1122 4.2.3.8)
400	 */
401	RCU_INIT_POINTER(ireq->ireq_opt, tcp_v4_save_options(sock_net(sk), skb));
 
 
 
 
 
 
 
 
402
403	if (security_inet_conn_request(sk, skb, req)) {
404		reqsk_free(req);
405		goto out;
406	}
407
 
408	req->num_retrans = 0;
409
410	/*
411	 * We need to lookup the route here to get at the correct
412	 * window size. We should better make sure that the window size
413	 * hasn't changed since we received the original syn, but I see
414	 * no easy way to do this.
415	 */
416	flowi4_init_output(&fl4, ireq->ir_iif, ireq->ir_mark,
417			   RT_CONN_FLAGS(sk), RT_SCOPE_UNIVERSE, IPPROTO_TCP,
418			   inet_sk_flowi_flags(sk),
419			   opt->srr ? opt->faddr : ireq->ir_rmt_addr,
420			   ireq->ir_loc_addr, th->source, th->dest, sk->sk_uid);
421	security_req_classify_flow(req, flowi4_to_flowi(&fl4));
422	rt = ip_route_output_key(sock_net(sk), &fl4);
423	if (IS_ERR(rt)) {
424		reqsk_free(req);
425		goto out;
426	}
427
428	/* Try to redo what tcp_v4_send_synack did. */
429	req->rsk_window_clamp = tp->window_clamp ? :dst_metric(&rt->dst, RTAX_WINDOW);
430
431	tcp_select_initial_window(sk, tcp_full_space(sk), req->mss,
432				  &req->rsk_rcv_wnd, &req->rsk_window_clamp,
433				  ireq->wscale_ok, &rcv_wscale,
434				  dst_metric(&rt->dst, RTAX_INITRWND));
435
436	ireq->rcv_wscale  = rcv_wscale;
437	ireq->ecn_ok = cookie_ecn_ok(&tcp_opt, sock_net(sk), &rt->dst);
438
439	ret = tcp_get_cookie_sock(sk, skb, req, &rt->dst, tsoff);
440	/* ip_queue_xmit() depends on our flow being setup
441	 * Normal sockets get it right from inet_csk_route_child_sock()
442	 */
443	if (ret)
444		inet_sk(ret)->cork.fl.u.ip4 = fl4;
445out:	return ret;
446}