Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.15.
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * XArray implementation
   4 * Copyright (c) 2017-2018 Microsoft Corporation
   5 * Copyright (c) 2018-2020 Oracle
   6 * Author: Matthew Wilcox <willy@infradead.org>
   7 */
   8
   9#include <linux/bitmap.h>
  10#include <linux/export.h>
  11#include <linux/list.h>
  12#include <linux/slab.h>
  13#include <linux/xarray.h>
  14
  15/*
  16 * Coding conventions in this file:
  17 *
  18 * @xa is used to refer to the entire xarray.
  19 * @xas is the 'xarray operation state'.  It may be either a pointer to
  20 * an xa_state, or an xa_state stored on the stack.  This is an unfortunate
  21 * ambiguity.
  22 * @index is the index of the entry being operated on
  23 * @mark is an xa_mark_t; a small number indicating one of the mark bits.
  24 * @node refers to an xa_node; usually the primary one being operated on by
  25 * this function.
  26 * @offset is the index into the slots array inside an xa_node.
  27 * @parent refers to the @xa_node closer to the head than @node.
  28 * @entry refers to something stored in a slot in the xarray
  29 */
  30
  31static inline unsigned int xa_lock_type(const struct xarray *xa)
  32{
  33	return (__force unsigned int)xa->xa_flags & 3;
  34}
  35
  36static inline void xas_lock_type(struct xa_state *xas, unsigned int lock_type)
  37{
  38	if (lock_type == XA_LOCK_IRQ)
  39		xas_lock_irq(xas);
  40	else if (lock_type == XA_LOCK_BH)
  41		xas_lock_bh(xas);
  42	else
  43		xas_lock(xas);
  44}
  45
  46static inline void xas_unlock_type(struct xa_state *xas, unsigned int lock_type)
  47{
  48	if (lock_type == XA_LOCK_IRQ)
  49		xas_unlock_irq(xas);
  50	else if (lock_type == XA_LOCK_BH)
  51		xas_unlock_bh(xas);
  52	else
  53		xas_unlock(xas);
  54}
  55
  56static inline bool xa_track_free(const struct xarray *xa)
  57{
  58	return xa->xa_flags & XA_FLAGS_TRACK_FREE;
  59}
  60
  61static inline bool xa_zero_busy(const struct xarray *xa)
  62{
  63	return xa->xa_flags & XA_FLAGS_ZERO_BUSY;
  64}
  65
  66static inline void xa_mark_set(struct xarray *xa, xa_mark_t mark)
  67{
  68	if (!(xa->xa_flags & XA_FLAGS_MARK(mark)))
  69		xa->xa_flags |= XA_FLAGS_MARK(mark);
  70}
  71
  72static inline void xa_mark_clear(struct xarray *xa, xa_mark_t mark)
  73{
  74	if (xa->xa_flags & XA_FLAGS_MARK(mark))
  75		xa->xa_flags &= ~(XA_FLAGS_MARK(mark));
  76}
  77
  78static inline unsigned long *node_marks(struct xa_node *node, xa_mark_t mark)
  79{
  80	return node->marks[(__force unsigned)mark];
  81}
  82
  83static inline bool node_get_mark(struct xa_node *node,
  84		unsigned int offset, xa_mark_t mark)
  85{
  86	return test_bit(offset, node_marks(node, mark));
  87}
  88
  89/* returns true if the bit was set */
  90static inline bool node_set_mark(struct xa_node *node, unsigned int offset,
  91				xa_mark_t mark)
  92{
  93	return __test_and_set_bit(offset, node_marks(node, mark));
  94}
  95
  96/* returns true if the bit was set */
  97static inline bool node_clear_mark(struct xa_node *node, unsigned int offset,
  98				xa_mark_t mark)
  99{
 100	return __test_and_clear_bit(offset, node_marks(node, mark));
 101}
 102
 103static inline bool node_any_mark(struct xa_node *node, xa_mark_t mark)
 104{
 105	return !bitmap_empty(node_marks(node, mark), XA_CHUNK_SIZE);
 106}
 107
 108static inline void node_mark_all(struct xa_node *node, xa_mark_t mark)
 109{
 110	bitmap_fill(node_marks(node, mark), XA_CHUNK_SIZE);
 111}
 112
 113#define mark_inc(mark) do { \
 114	mark = (__force xa_mark_t)((__force unsigned)(mark) + 1); \
 115} while (0)
 116
 117/*
 118 * xas_squash_marks() - Merge all marks to the first entry
 119 * @xas: Array operation state.
 120 *
 121 * Set a mark on the first entry if any entry has it set.  Clear marks on
 122 * all sibling entries.
 123 */
 124static void xas_squash_marks(const struct xa_state *xas)
 125{
 126	unsigned int mark = 0;
 127	unsigned int limit = xas->xa_offset + xas->xa_sibs + 1;
 128
 129	if (!xas->xa_sibs)
 130		return;
 131
 132	do {
 133		unsigned long *marks = xas->xa_node->marks[mark];
 134		if (find_next_bit(marks, limit, xas->xa_offset + 1) == limit)
 135			continue;
 136		__set_bit(xas->xa_offset, marks);
 137		bitmap_clear(marks, xas->xa_offset + 1, xas->xa_sibs);
 138	} while (mark++ != (__force unsigned)XA_MARK_MAX);
 139}
 140
 141/* extracts the offset within this node from the index */
 142static unsigned int get_offset(unsigned long index, struct xa_node *node)
 143{
 144	return (index >> node->shift) & XA_CHUNK_MASK;
 145}
 146
 147static void xas_set_offset(struct xa_state *xas)
 148{
 149	xas->xa_offset = get_offset(xas->xa_index, xas->xa_node);
 150}
 151
 152/* move the index either forwards (find) or backwards (sibling slot) */
 153static void xas_move_index(struct xa_state *xas, unsigned long offset)
 154{
 155	unsigned int shift = xas->xa_node->shift;
 156	xas->xa_index &= ~XA_CHUNK_MASK << shift;
 157	xas->xa_index += offset << shift;
 158}
 159
 160static void xas_advance(struct xa_state *xas)
 161{
 162	xas->xa_offset++;
 163	xas_move_index(xas, xas->xa_offset);
 164}
 165
 166static void *set_bounds(struct xa_state *xas)
 167{
 168	xas->xa_node = XAS_BOUNDS;
 169	return NULL;
 170}
 171
 172/*
 173 * Starts a walk.  If the @xas is already valid, we assume that it's on
 174 * the right path and just return where we've got to.  If we're in an
 175 * error state, return NULL.  If the index is outside the current scope
 176 * of the xarray, return NULL without changing @xas->xa_node.  Otherwise
 177 * set @xas->xa_node to NULL and return the current head of the array.
 178 */
 179static void *xas_start(struct xa_state *xas)
 180{
 181	void *entry;
 182
 183	if (xas_valid(xas))
 184		return xas_reload(xas);
 185	if (xas_error(xas))
 186		return NULL;
 187
 188	entry = xa_head(xas->xa);
 189	if (!xa_is_node(entry)) {
 190		if (xas->xa_index)
 191			return set_bounds(xas);
 192	} else {
 193		if ((xas->xa_index >> xa_to_node(entry)->shift) > XA_CHUNK_MASK)
 194			return set_bounds(xas);
 195	}
 196
 197	xas->xa_node = NULL;
 198	return entry;
 199}
 200
 201static void *xas_descend(struct xa_state *xas, struct xa_node *node)
 202{
 203	unsigned int offset = get_offset(xas->xa_index, node);
 204	void *entry = xa_entry(xas->xa, node, offset);
 205
 206	xas->xa_node = node;
 207	if (xa_is_sibling(entry)) {
 208		offset = xa_to_sibling(entry);
 209		entry = xa_entry(xas->xa, node, offset);
 210	}
 211
 212	xas->xa_offset = offset;
 213	return entry;
 214}
 215
 216/**
 217 * xas_load() - Load an entry from the XArray (advanced).
 218 * @xas: XArray operation state.
 219 *
 220 * Usually walks the @xas to the appropriate state to load the entry
 221 * stored at xa_index.  However, it will do nothing and return %NULL if
 222 * @xas is in an error state.  xas_load() will never expand the tree.
 223 *
 224 * If the xa_state is set up to operate on a multi-index entry, xas_load()
 225 * may return %NULL or an internal entry, even if there are entries
 226 * present within the range specified by @xas.
 227 *
 228 * Context: Any context.  The caller should hold the xa_lock or the RCU lock.
 229 * Return: Usually an entry in the XArray, but see description for exceptions.
 230 */
 231void *xas_load(struct xa_state *xas)
 232{
 233	void *entry = xas_start(xas);
 234
 235	while (xa_is_node(entry)) {
 236		struct xa_node *node = xa_to_node(entry);
 237
 238		if (xas->xa_shift > node->shift)
 239			break;
 240		entry = xas_descend(xas, node);
 241		if (node->shift == 0)
 242			break;
 243	}
 244	return entry;
 245}
 246EXPORT_SYMBOL_GPL(xas_load);
 247
 248/* Move the radix tree node cache here */
 249extern struct kmem_cache *radix_tree_node_cachep;
 250extern void radix_tree_node_rcu_free(struct rcu_head *head);
 251
 252#define XA_RCU_FREE	((struct xarray *)1)
 253
 254static void xa_node_free(struct xa_node *node)
 255{
 256	XA_NODE_BUG_ON(node, !list_empty(&node->private_list));
 257	node->array = XA_RCU_FREE;
 258	call_rcu(&node->rcu_head, radix_tree_node_rcu_free);
 259}
 260
 261/*
 262 * xas_destroy() - Free any resources allocated during the XArray operation.
 263 * @xas: XArray operation state.
 264 *
 265 * This function is now internal-only.
 266 */
 267static void xas_destroy(struct xa_state *xas)
 268{
 269	struct xa_node *node = xas->xa_alloc;
 270
 271	if (!node)
 272		return;
 273	XA_NODE_BUG_ON(node, !list_empty(&node->private_list));
 274	kmem_cache_free(radix_tree_node_cachep, node);
 275	xas->xa_alloc = NULL;
 276}
 277
 278/**
 279 * xas_nomem() - Allocate memory if needed.
 280 * @xas: XArray operation state.
 281 * @gfp: Memory allocation flags.
 282 *
 283 * If we need to add new nodes to the XArray, we try to allocate memory
 284 * with GFP_NOWAIT while holding the lock, which will usually succeed.
 285 * If it fails, @xas is flagged as needing memory to continue.  The caller
 286 * should drop the lock and call xas_nomem().  If xas_nomem() succeeds,
 287 * the caller should retry the operation.
 288 *
 289 * Forward progress is guaranteed as one node is allocated here and
 290 * stored in the xa_state where it will be found by xas_alloc().  More
 291 * nodes will likely be found in the slab allocator, but we do not tie
 292 * them up here.
 293 *
 294 * Return: true if memory was needed, and was successfully allocated.
 295 */
 296bool xas_nomem(struct xa_state *xas, gfp_t gfp)
 297{
 298	if (xas->xa_node != XA_ERROR(-ENOMEM)) {
 299		xas_destroy(xas);
 300		return false;
 301	}
 302	if (xas->xa->xa_flags & XA_FLAGS_ACCOUNT)
 303		gfp |= __GFP_ACCOUNT;
 304	xas->xa_alloc = kmem_cache_alloc(radix_tree_node_cachep, gfp);
 305	if (!xas->xa_alloc)
 306		return false;
 307	XA_NODE_BUG_ON(xas->xa_alloc, !list_empty(&xas->xa_alloc->private_list));
 308	xas->xa_node = XAS_RESTART;
 309	return true;
 310}
 311EXPORT_SYMBOL_GPL(xas_nomem);
 312
 313/*
 314 * __xas_nomem() - Drop locks and allocate memory if needed.
 315 * @xas: XArray operation state.
 316 * @gfp: Memory allocation flags.
 317 *
 318 * Internal variant of xas_nomem().
 319 *
 320 * Return: true if memory was needed, and was successfully allocated.
 321 */
 322static bool __xas_nomem(struct xa_state *xas, gfp_t gfp)
 323	__must_hold(xas->xa->xa_lock)
 324{
 325	unsigned int lock_type = xa_lock_type(xas->xa);
 326
 327	if (xas->xa_node != XA_ERROR(-ENOMEM)) {
 328		xas_destroy(xas);
 329		return false;
 330	}
 331	if (xas->xa->xa_flags & XA_FLAGS_ACCOUNT)
 332		gfp |= __GFP_ACCOUNT;
 333	if (gfpflags_allow_blocking(gfp)) {
 334		xas_unlock_type(xas, lock_type);
 335		xas->xa_alloc = kmem_cache_alloc(radix_tree_node_cachep, gfp);
 336		xas_lock_type(xas, lock_type);
 337	} else {
 338		xas->xa_alloc = kmem_cache_alloc(radix_tree_node_cachep, gfp);
 339	}
 340	if (!xas->xa_alloc)
 341		return false;
 342	XA_NODE_BUG_ON(xas->xa_alloc, !list_empty(&xas->xa_alloc->private_list));
 343	xas->xa_node = XAS_RESTART;
 344	return true;
 345}
 346
 347static void xas_update(struct xa_state *xas, struct xa_node *node)
 348{
 349	if (xas->xa_update)
 350		xas->xa_update(node);
 351	else
 352		XA_NODE_BUG_ON(node, !list_empty(&node->private_list));
 353}
 354
 355static void *xas_alloc(struct xa_state *xas, unsigned int shift)
 356{
 357	struct xa_node *parent = xas->xa_node;
 358	struct xa_node *node = xas->xa_alloc;
 359
 360	if (xas_invalid(xas))
 361		return NULL;
 362
 363	if (node) {
 364		xas->xa_alloc = NULL;
 365	} else {
 366		gfp_t gfp = GFP_NOWAIT | __GFP_NOWARN;
 367
 368		if (xas->xa->xa_flags & XA_FLAGS_ACCOUNT)
 369			gfp |= __GFP_ACCOUNT;
 370
 371		node = kmem_cache_alloc(radix_tree_node_cachep, gfp);
 372		if (!node) {
 373			xas_set_err(xas, -ENOMEM);
 374			return NULL;
 375		}
 376	}
 377
 378	if (parent) {
 379		node->offset = xas->xa_offset;
 380		parent->count++;
 381		XA_NODE_BUG_ON(node, parent->count > XA_CHUNK_SIZE);
 382		xas_update(xas, parent);
 383	}
 384	XA_NODE_BUG_ON(node, shift > BITS_PER_LONG);
 385	XA_NODE_BUG_ON(node, !list_empty(&node->private_list));
 386	node->shift = shift;
 387	node->count = 0;
 388	node->nr_values = 0;
 389	RCU_INIT_POINTER(node->parent, xas->xa_node);
 390	node->array = xas->xa;
 391
 392	return node;
 393}
 394
 395#ifdef CONFIG_XARRAY_MULTI
 396/* Returns the number of indices covered by a given xa_state */
 397static unsigned long xas_size(const struct xa_state *xas)
 398{
 399	return (xas->xa_sibs + 1UL) << xas->xa_shift;
 400}
 401#endif
 402
 403/*
 404 * Use this to calculate the maximum index that will need to be created
 405 * in order to add the entry described by @xas.  Because we cannot store a
 406 * multiple-index entry at index 0, the calculation is a little more complex
 407 * than you might expect.
 408 */
 409static unsigned long xas_max(struct xa_state *xas)
 410{
 411	unsigned long max = xas->xa_index;
 412
 413#ifdef CONFIG_XARRAY_MULTI
 414	if (xas->xa_shift || xas->xa_sibs) {
 415		unsigned long mask = xas_size(xas) - 1;
 416		max |= mask;
 417		if (mask == max)
 418			max++;
 419	}
 420#endif
 421
 422	return max;
 423}
 424
 425/* The maximum index that can be contained in the array without expanding it */
 426static unsigned long max_index(void *entry)
 427{
 428	if (!xa_is_node(entry))
 429		return 0;
 430	return (XA_CHUNK_SIZE << xa_to_node(entry)->shift) - 1;
 431}
 432
 433static void xas_shrink(struct xa_state *xas)
 434{
 435	struct xarray *xa = xas->xa;
 436	struct xa_node *node = xas->xa_node;
 437
 438	for (;;) {
 439		void *entry;
 440
 441		XA_NODE_BUG_ON(node, node->count > XA_CHUNK_SIZE);
 442		if (node->count != 1)
 443			break;
 444		entry = xa_entry_locked(xa, node, 0);
 445		if (!entry)
 446			break;
 447		if (!xa_is_node(entry) && node->shift)
 448			break;
 449		if (xa_is_zero(entry) && xa_zero_busy(xa))
 450			entry = NULL;
 451		xas->xa_node = XAS_BOUNDS;
 452
 453		RCU_INIT_POINTER(xa->xa_head, entry);
 454		if (xa_track_free(xa) && !node_get_mark(node, 0, XA_FREE_MARK))
 455			xa_mark_clear(xa, XA_FREE_MARK);
 456
 457		node->count = 0;
 458		node->nr_values = 0;
 459		if (!xa_is_node(entry))
 460			RCU_INIT_POINTER(node->slots[0], XA_RETRY_ENTRY);
 461		xas_update(xas, node);
 462		xa_node_free(node);
 463		if (!xa_is_node(entry))
 464			break;
 465		node = xa_to_node(entry);
 466		node->parent = NULL;
 467	}
 468}
 469
 470/*
 471 * xas_delete_node() - Attempt to delete an xa_node
 472 * @xas: Array operation state.
 473 *
 474 * Attempts to delete the @xas->xa_node.  This will fail if xa->node has
 475 * a non-zero reference count.
 476 */
 477static void xas_delete_node(struct xa_state *xas)
 478{
 479	struct xa_node *node = xas->xa_node;
 480
 481	for (;;) {
 482		struct xa_node *parent;
 483
 484		XA_NODE_BUG_ON(node, node->count > XA_CHUNK_SIZE);
 485		if (node->count)
 486			break;
 487
 488		parent = xa_parent_locked(xas->xa, node);
 489		xas->xa_node = parent;
 490		xas->xa_offset = node->offset;
 491		xa_node_free(node);
 492
 493		if (!parent) {
 494			xas->xa->xa_head = NULL;
 495			xas->xa_node = XAS_BOUNDS;
 496			return;
 497		}
 498
 499		parent->slots[xas->xa_offset] = NULL;
 500		parent->count--;
 501		XA_NODE_BUG_ON(parent, parent->count > XA_CHUNK_SIZE);
 502		node = parent;
 503		xas_update(xas, node);
 504	}
 505
 506	if (!node->parent)
 507		xas_shrink(xas);
 508}
 509
 510/**
 511 * xas_free_nodes() - Free this node and all nodes that it references
 512 * @xas: Array operation state.
 513 * @top: Node to free
 514 *
 515 * This node has been removed from the tree.  We must now free it and all
 516 * of its subnodes.  There may be RCU walkers with references into the tree,
 517 * so we must replace all entries with retry markers.
 518 */
 519static void xas_free_nodes(struct xa_state *xas, struct xa_node *top)
 520{
 521	unsigned int offset = 0;
 522	struct xa_node *node = top;
 523
 524	for (;;) {
 525		void *entry = xa_entry_locked(xas->xa, node, offset);
 526
 527		if (node->shift && xa_is_node(entry)) {
 528			node = xa_to_node(entry);
 529			offset = 0;
 530			continue;
 531		}
 532		if (entry)
 533			RCU_INIT_POINTER(node->slots[offset], XA_RETRY_ENTRY);
 534		offset++;
 535		while (offset == XA_CHUNK_SIZE) {
 536			struct xa_node *parent;
 537
 538			parent = xa_parent_locked(xas->xa, node);
 539			offset = node->offset + 1;
 540			node->count = 0;
 541			node->nr_values = 0;
 542			xas_update(xas, node);
 543			xa_node_free(node);
 544			if (node == top)
 545				return;
 546			node = parent;
 547		}
 548	}
 549}
 550
 551/*
 552 * xas_expand adds nodes to the head of the tree until it has reached
 553 * sufficient height to be able to contain @xas->xa_index
 554 */
 555static int xas_expand(struct xa_state *xas, void *head)
 556{
 557	struct xarray *xa = xas->xa;
 558	struct xa_node *node = NULL;
 559	unsigned int shift = 0;
 560	unsigned long max = xas_max(xas);
 561
 562	if (!head) {
 563		if (max == 0)
 564			return 0;
 565		while ((max >> shift) >= XA_CHUNK_SIZE)
 566			shift += XA_CHUNK_SHIFT;
 567		return shift + XA_CHUNK_SHIFT;
 568	} else if (xa_is_node(head)) {
 569		node = xa_to_node(head);
 570		shift = node->shift + XA_CHUNK_SHIFT;
 571	}
 572	xas->xa_node = NULL;
 573
 574	while (max > max_index(head)) {
 575		xa_mark_t mark = 0;
 576
 577		XA_NODE_BUG_ON(node, shift > BITS_PER_LONG);
 578		node = xas_alloc(xas, shift);
 579		if (!node)
 580			return -ENOMEM;
 581
 582		node->count = 1;
 583		if (xa_is_value(head))
 584			node->nr_values = 1;
 585		RCU_INIT_POINTER(node->slots[0], head);
 586
 587		/* Propagate the aggregated mark info to the new child */
 588		for (;;) {
 589			if (xa_track_free(xa) && mark == XA_FREE_MARK) {
 590				node_mark_all(node, XA_FREE_MARK);
 591				if (!xa_marked(xa, XA_FREE_MARK)) {
 592					node_clear_mark(node, 0, XA_FREE_MARK);
 593					xa_mark_set(xa, XA_FREE_MARK);
 594				}
 595			} else if (xa_marked(xa, mark)) {
 596				node_set_mark(node, 0, mark);
 597			}
 598			if (mark == XA_MARK_MAX)
 599				break;
 600			mark_inc(mark);
 601		}
 602
 603		/*
 604		 * Now that the new node is fully initialised, we can add
 605		 * it to the tree
 606		 */
 607		if (xa_is_node(head)) {
 608			xa_to_node(head)->offset = 0;
 609			rcu_assign_pointer(xa_to_node(head)->parent, node);
 610		}
 611		head = xa_mk_node(node);
 612		rcu_assign_pointer(xa->xa_head, head);
 613		xas_update(xas, node);
 614
 615		shift += XA_CHUNK_SHIFT;
 616	}
 617
 618	xas->xa_node = node;
 619	return shift;
 620}
 621
 622/*
 623 * xas_create() - Create a slot to store an entry in.
 624 * @xas: XArray operation state.
 625 * @allow_root: %true if we can store the entry in the root directly
 626 *
 627 * Most users will not need to call this function directly, as it is called
 628 * by xas_store().  It is useful for doing conditional store operations
 629 * (see the xa_cmpxchg() implementation for an example).
 630 *
 631 * Return: If the slot already existed, returns the contents of this slot.
 632 * If the slot was newly created, returns %NULL.  If it failed to create the
 633 * slot, returns %NULL and indicates the error in @xas.
 634 */
 635static void *xas_create(struct xa_state *xas, bool allow_root)
 636{
 637	struct xarray *xa = xas->xa;
 638	void *entry;
 639	void __rcu **slot;
 640	struct xa_node *node = xas->xa_node;
 641	int shift;
 642	unsigned int order = xas->xa_shift;
 643
 644	if (xas_top(node)) {
 645		entry = xa_head_locked(xa);
 646		xas->xa_node = NULL;
 647		if (!entry && xa_zero_busy(xa))
 648			entry = XA_ZERO_ENTRY;
 649		shift = xas_expand(xas, entry);
 650		if (shift < 0)
 651			return NULL;
 652		if (!shift && !allow_root)
 653			shift = XA_CHUNK_SHIFT;
 654		entry = xa_head_locked(xa);
 655		slot = &xa->xa_head;
 656	} else if (xas_error(xas)) {
 657		return NULL;
 658	} else if (node) {
 659		unsigned int offset = xas->xa_offset;
 660
 661		shift = node->shift;
 662		entry = xa_entry_locked(xa, node, offset);
 663		slot = &node->slots[offset];
 664	} else {
 665		shift = 0;
 666		entry = xa_head_locked(xa);
 667		slot = &xa->xa_head;
 668	}
 669
 670	while (shift > order) {
 671		shift -= XA_CHUNK_SHIFT;
 672		if (!entry) {
 673			node = xas_alloc(xas, shift);
 674			if (!node)
 675				break;
 676			if (xa_track_free(xa))
 677				node_mark_all(node, XA_FREE_MARK);
 678			rcu_assign_pointer(*slot, xa_mk_node(node));
 679		} else if (xa_is_node(entry)) {
 680			node = xa_to_node(entry);
 681		} else {
 682			break;
 683		}
 684		entry = xas_descend(xas, node);
 685		slot = &node->slots[xas->xa_offset];
 686	}
 687
 688	return entry;
 689}
 690
 691/**
 692 * xas_create_range() - Ensure that stores to this range will succeed
 693 * @xas: XArray operation state.
 694 *
 695 * Creates all of the slots in the range covered by @xas.  Sets @xas to
 696 * create single-index entries and positions it at the beginning of the
 697 * range.  This is for the benefit of users which have not yet been
 698 * converted to use multi-index entries.
 699 */
 700void xas_create_range(struct xa_state *xas)
 701{
 702	unsigned long index = xas->xa_index;
 703	unsigned char shift = xas->xa_shift;
 704	unsigned char sibs = xas->xa_sibs;
 705
 706	xas->xa_index |= ((sibs + 1) << shift) - 1;
 707	if (xas_is_node(xas) && xas->xa_node->shift == xas->xa_shift)
 708		xas->xa_offset |= sibs;
 709	xas->xa_shift = 0;
 710	xas->xa_sibs = 0;
 711
 712	for (;;) {
 713		xas_create(xas, true);
 714		if (xas_error(xas))
 715			goto restore;
 716		if (xas->xa_index <= (index | XA_CHUNK_MASK))
 717			goto success;
 718		xas->xa_index -= XA_CHUNK_SIZE;
 719
 720		for (;;) {
 721			struct xa_node *node = xas->xa_node;
 722			xas->xa_node = xa_parent_locked(xas->xa, node);
 723			xas->xa_offset = node->offset - 1;
 724			if (node->offset != 0)
 725				break;
 726		}
 727	}
 728
 729restore:
 730	xas->xa_shift = shift;
 731	xas->xa_sibs = sibs;
 732	xas->xa_index = index;
 733	return;
 734success:
 735	xas->xa_index = index;
 736	if (xas->xa_node)
 737		xas_set_offset(xas);
 738}
 739EXPORT_SYMBOL_GPL(xas_create_range);
 740
 741static void update_node(struct xa_state *xas, struct xa_node *node,
 742		int count, int values)
 743{
 744	if (!node || (!count && !values))
 745		return;
 746
 747	node->count += count;
 748	node->nr_values += values;
 749	XA_NODE_BUG_ON(node, node->count > XA_CHUNK_SIZE);
 750	XA_NODE_BUG_ON(node, node->nr_values > XA_CHUNK_SIZE);
 751	xas_update(xas, node);
 752	if (count < 0)
 753		xas_delete_node(xas);
 754}
 755
 756/**
 757 * xas_store() - Store this entry in the XArray.
 758 * @xas: XArray operation state.
 759 * @entry: New entry.
 760 *
 761 * If @xas is operating on a multi-index entry, the entry returned by this
 762 * function is essentially meaningless (it may be an internal entry or it
 763 * may be %NULL, even if there are non-NULL entries at some of the indices
 764 * covered by the range).  This is not a problem for any current users,
 765 * and can be changed if needed.
 766 *
 767 * Return: The old entry at this index.
 768 */
 769void *xas_store(struct xa_state *xas, void *entry)
 770{
 771	struct xa_node *node;
 772	void __rcu **slot = &xas->xa->xa_head;
 773	unsigned int offset, max;
 774	int count = 0;
 775	int values = 0;
 776	void *first, *next;
 777	bool value = xa_is_value(entry);
 778
 779	if (entry) {
 780		bool allow_root = !xa_is_node(entry) && !xa_is_zero(entry);
 781		first = xas_create(xas, allow_root);
 782	} else {
 783		first = xas_load(xas);
 784	}
 785
 786	if (xas_invalid(xas))
 787		return first;
 788	node = xas->xa_node;
 789	if (node && (xas->xa_shift < node->shift))
 790		xas->xa_sibs = 0;
 791	if ((first == entry) && !xas->xa_sibs)
 792		return first;
 793
 794	next = first;
 795	offset = xas->xa_offset;
 796	max = xas->xa_offset + xas->xa_sibs;
 797	if (node) {
 798		slot = &node->slots[offset];
 799		if (xas->xa_sibs)
 800			xas_squash_marks(xas);
 801	}
 802	if (!entry)
 803		xas_init_marks(xas);
 804
 805	for (;;) {
 806		/*
 807		 * Must clear the marks before setting the entry to NULL,
 808		 * otherwise xas_for_each_marked may find a NULL entry and
 809		 * stop early.  rcu_assign_pointer contains a release barrier
 810		 * so the mark clearing will appear to happen before the
 811		 * entry is set to NULL.
 812		 */
 813		rcu_assign_pointer(*slot, entry);
 814		if (xa_is_node(next) && (!node || node->shift))
 815			xas_free_nodes(xas, xa_to_node(next));
 816		if (!node)
 817			break;
 818		count += !next - !entry;
 819		values += !xa_is_value(first) - !value;
 820		if (entry) {
 821			if (offset == max)
 822				break;
 823			if (!xa_is_sibling(entry))
 824				entry = xa_mk_sibling(xas->xa_offset);
 825		} else {
 826			if (offset == XA_CHUNK_MASK)
 827				break;
 828		}
 829		next = xa_entry_locked(xas->xa, node, ++offset);
 830		if (!xa_is_sibling(next)) {
 831			if (!entry && (offset > max))
 832				break;
 833			first = next;
 834		}
 835		slot++;
 836	}
 837
 838	update_node(xas, node, count, values);
 839	return first;
 840}
 841EXPORT_SYMBOL_GPL(xas_store);
 842
 843/**
 844 * xas_get_mark() - Returns the state of this mark.
 845 * @xas: XArray operation state.
 846 * @mark: Mark number.
 847 *
 848 * Return: true if the mark is set, false if the mark is clear or @xas
 849 * is in an error state.
 850 */
 851bool xas_get_mark(const struct xa_state *xas, xa_mark_t mark)
 852{
 853	if (xas_invalid(xas))
 854		return false;
 855	if (!xas->xa_node)
 856		return xa_marked(xas->xa, mark);
 857	return node_get_mark(xas->xa_node, xas->xa_offset, mark);
 858}
 859EXPORT_SYMBOL_GPL(xas_get_mark);
 860
 861/**
 862 * xas_set_mark() - Sets the mark on this entry and its parents.
 863 * @xas: XArray operation state.
 864 * @mark: Mark number.
 865 *
 866 * Sets the specified mark on this entry, and walks up the tree setting it
 867 * on all the ancestor entries.  Does nothing if @xas has not been walked to
 868 * an entry, or is in an error state.
 869 */
 870void xas_set_mark(const struct xa_state *xas, xa_mark_t mark)
 871{
 872	struct xa_node *node = xas->xa_node;
 873	unsigned int offset = xas->xa_offset;
 874
 875	if (xas_invalid(xas))
 876		return;
 877
 878	while (node) {
 879		if (node_set_mark(node, offset, mark))
 880			return;
 881		offset = node->offset;
 882		node = xa_parent_locked(xas->xa, node);
 883	}
 884
 885	if (!xa_marked(xas->xa, mark))
 886		xa_mark_set(xas->xa, mark);
 887}
 888EXPORT_SYMBOL_GPL(xas_set_mark);
 889
 890/**
 891 * xas_clear_mark() - Clears the mark on this entry and its parents.
 892 * @xas: XArray operation state.
 893 * @mark: Mark number.
 894 *
 895 * Clears the specified mark on this entry, and walks back to the head
 896 * attempting to clear it on all the ancestor entries.  Does nothing if
 897 * @xas has not been walked to an entry, or is in an error state.
 898 */
 899void xas_clear_mark(const struct xa_state *xas, xa_mark_t mark)
 900{
 901	struct xa_node *node = xas->xa_node;
 902	unsigned int offset = xas->xa_offset;
 903
 904	if (xas_invalid(xas))
 905		return;
 906
 907	while (node) {
 908		if (!node_clear_mark(node, offset, mark))
 909			return;
 910		if (node_any_mark(node, mark))
 911			return;
 912
 913		offset = node->offset;
 914		node = xa_parent_locked(xas->xa, node);
 915	}
 916
 917	if (xa_marked(xas->xa, mark))
 918		xa_mark_clear(xas->xa, mark);
 919}
 920EXPORT_SYMBOL_GPL(xas_clear_mark);
 921
 922/**
 923 * xas_init_marks() - Initialise all marks for the entry
 924 * @xas: Array operations state.
 925 *
 926 * Initialise all marks for the entry specified by @xas.  If we're tracking
 927 * free entries with a mark, we need to set it on all entries.  All other
 928 * marks are cleared.
 929 *
 930 * This implementation is not as efficient as it could be; we may walk
 931 * up the tree multiple times.
 932 */
 933void xas_init_marks(const struct xa_state *xas)
 934{
 935	xa_mark_t mark = 0;
 936
 937	for (;;) {
 938		if (xa_track_free(xas->xa) && mark == XA_FREE_MARK)
 939			xas_set_mark(xas, mark);
 940		else
 941			xas_clear_mark(xas, mark);
 942		if (mark == XA_MARK_MAX)
 943			break;
 944		mark_inc(mark);
 945	}
 946}
 947EXPORT_SYMBOL_GPL(xas_init_marks);
 948
 949/**
 950 * xas_pause() - Pause a walk to drop a lock.
 951 * @xas: XArray operation state.
 952 *
 953 * Some users need to pause a walk and drop the lock they're holding in
 954 * order to yield to a higher priority thread or carry out an operation
 955 * on an entry.  Those users should call this function before they drop
 956 * the lock.  It resets the @xas to be suitable for the next iteration
 957 * of the loop after the user has reacquired the lock.  If most entries
 958 * found during a walk require you to call xas_pause(), the xa_for_each()
 959 * iterator may be more appropriate.
 960 *
 961 * Note that xas_pause() only works for forward iteration.  If a user needs
 962 * to pause a reverse iteration, we will need a xas_pause_rev().
 963 */
 964void xas_pause(struct xa_state *xas)
 965{
 966	struct xa_node *node = xas->xa_node;
 967
 968	if (xas_invalid(xas))
 969		return;
 970
 971	xas->xa_node = XAS_RESTART;
 972	if (node) {
 973		unsigned long offset = xas->xa_offset;
 974		while (++offset < XA_CHUNK_SIZE) {
 975			if (!xa_is_sibling(xa_entry(xas->xa, node, offset)))
 976				break;
 977		}
 978		xas->xa_index += (offset - xas->xa_offset) << node->shift;
 979		if (xas->xa_index == 0)
 980			xas->xa_node = XAS_BOUNDS;
 981	} else {
 982		xas->xa_index++;
 983	}
 984}
 985EXPORT_SYMBOL_GPL(xas_pause);
 986
 987/*
 988 * __xas_prev() - Find the previous entry in the XArray.
 989 * @xas: XArray operation state.
 990 *
 991 * Helper function for xas_prev() which handles all the complex cases
 992 * out of line.
 993 */
 994void *__xas_prev(struct xa_state *xas)
 995{
 996	void *entry;
 997
 998	if (!xas_frozen(xas->xa_node))
 999		xas->xa_index--;
1000	if (!xas->xa_node)
1001		return set_bounds(xas);
1002	if (xas_not_node(xas->xa_node))
1003		return xas_load(xas);
1004
1005	if (xas->xa_offset != get_offset(xas->xa_index, xas->xa_node))
1006		xas->xa_offset--;
1007
1008	while (xas->xa_offset == 255) {
1009		xas->xa_offset = xas->xa_node->offset - 1;
1010		xas->xa_node = xa_parent(xas->xa, xas->xa_node);
1011		if (!xas->xa_node)
1012			return set_bounds(xas);
1013	}
1014
1015	for (;;) {
1016		entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset);
1017		if (!xa_is_node(entry))
1018			return entry;
1019
1020		xas->xa_node = xa_to_node(entry);
1021		xas_set_offset(xas);
1022	}
1023}
1024EXPORT_SYMBOL_GPL(__xas_prev);
1025
1026/*
1027 * __xas_next() - Find the next entry in the XArray.
1028 * @xas: XArray operation state.
1029 *
1030 * Helper function for xas_next() which handles all the complex cases
1031 * out of line.
1032 */
1033void *__xas_next(struct xa_state *xas)
1034{
1035	void *entry;
1036
1037	if (!xas_frozen(xas->xa_node))
1038		xas->xa_index++;
1039	if (!xas->xa_node)
1040		return set_bounds(xas);
1041	if (xas_not_node(xas->xa_node))
1042		return xas_load(xas);
1043
1044	if (xas->xa_offset != get_offset(xas->xa_index, xas->xa_node))
1045		xas->xa_offset++;
1046
1047	while (xas->xa_offset == XA_CHUNK_SIZE) {
1048		xas->xa_offset = xas->xa_node->offset + 1;
1049		xas->xa_node = xa_parent(xas->xa, xas->xa_node);
1050		if (!xas->xa_node)
1051			return set_bounds(xas);
1052	}
1053
1054	for (;;) {
1055		entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset);
1056		if (!xa_is_node(entry))
1057			return entry;
1058
1059		xas->xa_node = xa_to_node(entry);
1060		xas_set_offset(xas);
1061	}
1062}
1063EXPORT_SYMBOL_GPL(__xas_next);
1064
1065/**
1066 * xas_find() - Find the next present entry in the XArray.
1067 * @xas: XArray operation state.
1068 * @max: Highest index to return.
1069 *
1070 * If the @xas has not yet been walked to an entry, return the entry
1071 * which has an index >= xas.xa_index.  If it has been walked, the entry
1072 * currently being pointed at has been processed, and so we move to the
1073 * next entry.
1074 *
1075 * If no entry is found and the array is smaller than @max, the iterator
1076 * is set to the smallest index not yet in the array.  This allows @xas
1077 * to be immediately passed to xas_store().
1078 *
1079 * Return: The entry, if found, otherwise %NULL.
1080 */
1081void *xas_find(struct xa_state *xas, unsigned long max)
1082{
1083	void *entry;
1084
1085	if (xas_error(xas) || xas->xa_node == XAS_BOUNDS)
1086		return NULL;
1087	if (xas->xa_index > max)
1088		return set_bounds(xas);
1089
1090	if (!xas->xa_node) {
1091		xas->xa_index = 1;
1092		return set_bounds(xas);
1093	} else if (xas->xa_node == XAS_RESTART) {
1094		entry = xas_load(xas);
1095		if (entry || xas_not_node(xas->xa_node))
1096			return entry;
1097	} else if (!xas->xa_node->shift &&
1098		    xas->xa_offset != (xas->xa_index & XA_CHUNK_MASK)) {
1099		xas->xa_offset = ((xas->xa_index - 1) & XA_CHUNK_MASK) + 1;
1100	}
1101
1102	xas_advance(xas);
1103
1104	while (xas->xa_node && (xas->xa_index <= max)) {
1105		if (unlikely(xas->xa_offset == XA_CHUNK_SIZE)) {
1106			xas->xa_offset = xas->xa_node->offset + 1;
1107			xas->xa_node = xa_parent(xas->xa, xas->xa_node);
1108			continue;
1109		}
1110
1111		entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset);
1112		if (xa_is_node(entry)) {
1113			xas->xa_node = xa_to_node(entry);
1114			xas->xa_offset = 0;
1115			continue;
1116		}
1117		if (entry && !xa_is_sibling(entry))
1118			return entry;
1119
1120		xas_advance(xas);
1121	}
1122
1123	if (!xas->xa_node)
1124		xas->xa_node = XAS_BOUNDS;
1125	return NULL;
1126}
1127EXPORT_SYMBOL_GPL(xas_find);
1128
1129/**
1130 * xas_find_marked() - Find the next marked entry in the XArray.
1131 * @xas: XArray operation state.
1132 * @max: Highest index to return.
1133 * @mark: Mark number to search for.
1134 *
1135 * If the @xas has not yet been walked to an entry, return the marked entry
1136 * which has an index >= xas.xa_index.  If it has been walked, the entry
1137 * currently being pointed at has been processed, and so we return the
1138 * first marked entry with an index > xas.xa_index.
1139 *
1140 * If no marked entry is found and the array is smaller than @max, @xas is
1141 * set to the bounds state and xas->xa_index is set to the smallest index
1142 * not yet in the array.  This allows @xas to be immediately passed to
1143 * xas_store().
1144 *
1145 * If no entry is found before @max is reached, @xas is set to the restart
1146 * state.
1147 *
1148 * Return: The entry, if found, otherwise %NULL.
1149 */
1150void *xas_find_marked(struct xa_state *xas, unsigned long max, xa_mark_t mark)
1151{
1152	bool advance = true;
1153	unsigned int offset;
1154	void *entry;
1155
1156	if (xas_error(xas))
1157		return NULL;
1158	if (xas->xa_index > max)
1159		goto max;
1160
1161	if (!xas->xa_node) {
1162		xas->xa_index = 1;
1163		goto out;
1164	} else if (xas_top(xas->xa_node)) {
1165		advance = false;
1166		entry = xa_head(xas->xa);
1167		xas->xa_node = NULL;
1168		if (xas->xa_index > max_index(entry))
1169			goto out;
1170		if (!xa_is_node(entry)) {
1171			if (xa_marked(xas->xa, mark))
1172				return entry;
1173			xas->xa_index = 1;
1174			goto out;
1175		}
1176		xas->xa_node = xa_to_node(entry);
1177		xas->xa_offset = xas->xa_index >> xas->xa_node->shift;
1178	}
1179
1180	while (xas->xa_index <= max) {
1181		if (unlikely(xas->xa_offset == XA_CHUNK_SIZE)) {
1182			xas->xa_offset = xas->xa_node->offset + 1;
1183			xas->xa_node = xa_parent(xas->xa, xas->xa_node);
1184			if (!xas->xa_node)
1185				break;
1186			advance = false;
1187			continue;
1188		}
1189
1190		if (!advance) {
1191			entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset);
1192			if (xa_is_sibling(entry)) {
1193				xas->xa_offset = xa_to_sibling(entry);
1194				xas_move_index(xas, xas->xa_offset);
1195			}
1196		}
1197
1198		offset = xas_find_chunk(xas, advance, mark);
1199		if (offset > xas->xa_offset) {
1200			advance = false;
1201			xas_move_index(xas, offset);
1202			/* Mind the wrap */
1203			if ((xas->xa_index - 1) >= max)
1204				goto max;
1205			xas->xa_offset = offset;
1206			if (offset == XA_CHUNK_SIZE)
1207				continue;
1208		}
1209
1210		entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset);
1211		if (!entry && !(xa_track_free(xas->xa) && mark == XA_FREE_MARK))
1212			continue;
1213		if (!xa_is_node(entry))
1214			return entry;
1215		xas->xa_node = xa_to_node(entry);
1216		xas_set_offset(xas);
1217	}
1218
1219out:
1220	if (xas->xa_index > max)
1221		goto max;
1222	return set_bounds(xas);
1223max:
1224	xas->xa_node = XAS_RESTART;
1225	return NULL;
1226}
1227EXPORT_SYMBOL_GPL(xas_find_marked);
1228
1229/**
1230 * xas_find_conflict() - Find the next present entry in a range.
1231 * @xas: XArray operation state.
1232 *
1233 * The @xas describes both a range and a position within that range.
1234 *
1235 * Context: Any context.  Expects xa_lock to be held.
1236 * Return: The next entry in the range covered by @xas or %NULL.
1237 */
1238void *xas_find_conflict(struct xa_state *xas)
1239{
1240	void *curr;
1241
1242	if (xas_error(xas))
1243		return NULL;
1244
1245	if (!xas->xa_node)
1246		return NULL;
1247
1248	if (xas_top(xas->xa_node)) {
1249		curr = xas_start(xas);
1250		if (!curr)
1251			return NULL;
1252		while (xa_is_node(curr)) {
1253			struct xa_node *node = xa_to_node(curr);
1254			curr = xas_descend(xas, node);
1255		}
1256		if (curr)
1257			return curr;
1258	}
1259
1260	if (xas->xa_node->shift > xas->xa_shift)
1261		return NULL;
1262
1263	for (;;) {
1264		if (xas->xa_node->shift == xas->xa_shift) {
1265			if ((xas->xa_offset & xas->xa_sibs) == xas->xa_sibs)
1266				break;
1267		} else if (xas->xa_offset == XA_CHUNK_MASK) {
1268			xas->xa_offset = xas->xa_node->offset;
1269			xas->xa_node = xa_parent_locked(xas->xa, xas->xa_node);
1270			if (!xas->xa_node)
1271				break;
1272			continue;
1273		}
1274		curr = xa_entry_locked(xas->xa, xas->xa_node, ++xas->xa_offset);
1275		if (xa_is_sibling(curr))
1276			continue;
1277		while (xa_is_node(curr)) {
1278			xas->xa_node = xa_to_node(curr);
1279			xas->xa_offset = 0;
1280			curr = xa_entry_locked(xas->xa, xas->xa_node, 0);
1281		}
1282		if (curr)
1283			return curr;
1284	}
1285	xas->xa_offset -= xas->xa_sibs;
1286	return NULL;
1287}
1288EXPORT_SYMBOL_GPL(xas_find_conflict);
1289
1290/**
1291 * xa_load() - Load an entry from an XArray.
1292 * @xa: XArray.
1293 * @index: index into array.
1294 *
1295 * Context: Any context.  Takes and releases the RCU lock.
1296 * Return: The entry at @index in @xa.
1297 */
1298void *xa_load(struct xarray *xa, unsigned long index)
1299{
1300	XA_STATE(xas, xa, index);
1301	void *entry;
1302
1303	rcu_read_lock();
1304	do {
1305		entry = xas_load(&xas);
1306		if (xa_is_zero(entry))
1307			entry = NULL;
1308	} while (xas_retry(&xas, entry));
1309	rcu_read_unlock();
1310
1311	return entry;
1312}
1313EXPORT_SYMBOL(xa_load);
1314
1315static void *xas_result(struct xa_state *xas, void *curr)
1316{
1317	if (xa_is_zero(curr))
1318		return NULL;
1319	if (xas_error(xas))
1320		curr = xas->xa_node;
1321	return curr;
1322}
1323
1324/**
1325 * __xa_erase() - Erase this entry from the XArray while locked.
1326 * @xa: XArray.
1327 * @index: Index into array.
1328 *
1329 * After this function returns, loading from @index will return %NULL.
1330 * If the index is part of a multi-index entry, all indices will be erased
1331 * and none of the entries will be part of a multi-index entry.
1332 *
1333 * Context: Any context.  Expects xa_lock to be held on entry.
1334 * Return: The entry which used to be at this index.
1335 */
1336void *__xa_erase(struct xarray *xa, unsigned long index)
1337{
1338	XA_STATE(xas, xa, index);
1339	return xas_result(&xas, xas_store(&xas, NULL));
1340}
1341EXPORT_SYMBOL(__xa_erase);
1342
1343/**
1344 * xa_erase() - Erase this entry from the XArray.
1345 * @xa: XArray.
1346 * @index: Index of entry.
1347 *
1348 * After this function returns, loading from @index will return %NULL.
1349 * If the index is part of a multi-index entry, all indices will be erased
1350 * and none of the entries will be part of a multi-index entry.
1351 *
1352 * Context: Any context.  Takes and releases the xa_lock.
1353 * Return: The entry which used to be at this index.
1354 */
1355void *xa_erase(struct xarray *xa, unsigned long index)
1356{
1357	void *entry;
1358
1359	xa_lock(xa);
1360	entry = __xa_erase(xa, index);
1361	xa_unlock(xa);
1362
1363	return entry;
1364}
1365EXPORT_SYMBOL(xa_erase);
1366
1367/**
1368 * __xa_store() - Store this entry in the XArray.
1369 * @xa: XArray.
1370 * @index: Index into array.
1371 * @entry: New entry.
1372 * @gfp: Memory allocation flags.
1373 *
1374 * You must already be holding the xa_lock when calling this function.
1375 * It will drop the lock if needed to allocate memory, and then reacquire
1376 * it afterwards.
1377 *
1378 * Context: Any context.  Expects xa_lock to be held on entry.  May
1379 * release and reacquire xa_lock if @gfp flags permit.
1380 * Return: The old entry at this index or xa_err() if an error happened.
1381 */
1382void *__xa_store(struct xarray *xa, unsigned long index, void *entry, gfp_t gfp)
1383{
1384	XA_STATE(xas, xa, index);
1385	void *curr;
1386
1387	if (WARN_ON_ONCE(xa_is_advanced(entry)))
1388		return XA_ERROR(-EINVAL);
1389	if (xa_track_free(xa) && !entry)
1390		entry = XA_ZERO_ENTRY;
1391
1392	do {
1393		curr = xas_store(&xas, entry);
1394		if (xa_track_free(xa))
1395			xas_clear_mark(&xas, XA_FREE_MARK);
1396	} while (__xas_nomem(&xas, gfp));
1397
1398	return xas_result(&xas, curr);
1399}
1400EXPORT_SYMBOL(__xa_store);
1401
1402/**
1403 * xa_store() - Store this entry in the XArray.
1404 * @xa: XArray.
1405 * @index: Index into array.
1406 * @entry: New entry.
1407 * @gfp: Memory allocation flags.
1408 *
1409 * After this function returns, loads from this index will return @entry.
1410 * Storing into an existing multislot entry updates the entry of every index.
1411 * The marks associated with @index are unaffected unless @entry is %NULL.
1412 *
1413 * Context: Any context.  Takes and releases the xa_lock.
1414 * May sleep if the @gfp flags permit.
1415 * Return: The old entry at this index on success, xa_err(-EINVAL) if @entry
1416 * cannot be stored in an XArray, or xa_err(-ENOMEM) if memory allocation
1417 * failed.
1418 */
1419void *xa_store(struct xarray *xa, unsigned long index, void *entry, gfp_t gfp)
1420{
1421	void *curr;
1422
1423	xa_lock(xa);
1424	curr = __xa_store(xa, index, entry, gfp);
1425	xa_unlock(xa);
1426
1427	return curr;
1428}
1429EXPORT_SYMBOL(xa_store);
1430
1431/**
1432 * __xa_cmpxchg() - Store this entry in the XArray.
1433 * @xa: XArray.
1434 * @index: Index into array.
1435 * @old: Old value to test against.
1436 * @entry: New entry.
1437 * @gfp: Memory allocation flags.
1438 *
1439 * You must already be holding the xa_lock when calling this function.
1440 * It will drop the lock if needed to allocate memory, and then reacquire
1441 * it afterwards.
1442 *
1443 * Context: Any context.  Expects xa_lock to be held on entry.  May
1444 * release and reacquire xa_lock if @gfp flags permit.
1445 * Return: The old entry at this index or xa_err() if an error happened.
1446 */
1447void *__xa_cmpxchg(struct xarray *xa, unsigned long index,
1448			void *old, void *entry, gfp_t gfp)
1449{
1450	XA_STATE(xas, xa, index);
1451	void *curr;
1452
1453	if (WARN_ON_ONCE(xa_is_advanced(entry)))
1454		return XA_ERROR(-EINVAL);
1455
1456	do {
1457		curr = xas_load(&xas);
1458		if (curr == old) {
1459			xas_store(&xas, entry);
1460			if (xa_track_free(xa) && entry && !curr)
1461				xas_clear_mark(&xas, XA_FREE_MARK);
1462		}
1463	} while (__xas_nomem(&xas, gfp));
1464
1465	return xas_result(&xas, curr);
1466}
1467EXPORT_SYMBOL(__xa_cmpxchg);
1468
1469/**
1470 * __xa_insert() - Store this entry in the XArray if no entry is present.
1471 * @xa: XArray.
1472 * @index: Index into array.
1473 * @entry: New entry.
1474 * @gfp: Memory allocation flags.
1475 *
1476 * Inserting a NULL entry will store a reserved entry (like xa_reserve())
1477 * if no entry is present.  Inserting will fail if a reserved entry is
1478 * present, even though loading from this index will return NULL.
1479 *
1480 * Context: Any context.  Expects xa_lock to be held on entry.  May
1481 * release and reacquire xa_lock if @gfp flags permit.
1482 * Return: 0 if the store succeeded.  -EBUSY if another entry was present.
1483 * -ENOMEM if memory could not be allocated.
1484 */
1485int __xa_insert(struct xarray *xa, unsigned long index, void *entry, gfp_t gfp)
1486{
1487	XA_STATE(xas, xa, index);
1488	void *curr;
1489
1490	if (WARN_ON_ONCE(xa_is_advanced(entry)))
1491		return -EINVAL;
1492	if (!entry)
1493		entry = XA_ZERO_ENTRY;
1494
1495	do {
1496		curr = xas_load(&xas);
1497		if (!curr) {
1498			xas_store(&xas, entry);
1499			if (xa_track_free(xa))
1500				xas_clear_mark(&xas, XA_FREE_MARK);
1501		} else {
1502			xas_set_err(&xas, -EBUSY);
1503		}
1504	} while (__xas_nomem(&xas, gfp));
1505
1506	return xas_error(&xas);
1507}
1508EXPORT_SYMBOL(__xa_insert);
1509
1510#ifdef CONFIG_XARRAY_MULTI
1511static void xas_set_range(struct xa_state *xas, unsigned long first,
1512		unsigned long last)
1513{
1514	unsigned int shift = 0;
1515	unsigned long sibs = last - first;
1516	unsigned int offset = XA_CHUNK_MASK;
1517
1518	xas_set(xas, first);
1519
1520	while ((first & XA_CHUNK_MASK) == 0) {
1521		if (sibs < XA_CHUNK_MASK)
1522			break;
1523		if ((sibs == XA_CHUNK_MASK) && (offset < XA_CHUNK_MASK))
1524			break;
1525		shift += XA_CHUNK_SHIFT;
1526		if (offset == XA_CHUNK_MASK)
1527			offset = sibs & XA_CHUNK_MASK;
1528		sibs >>= XA_CHUNK_SHIFT;
1529		first >>= XA_CHUNK_SHIFT;
1530	}
1531
1532	offset = first & XA_CHUNK_MASK;
1533	if (offset + sibs > XA_CHUNK_MASK)
1534		sibs = XA_CHUNK_MASK - offset;
1535	if ((((first + sibs + 1) << shift) - 1) > last)
1536		sibs -= 1;
1537
1538	xas->xa_shift = shift;
1539	xas->xa_sibs = sibs;
1540}
1541
1542/**
1543 * xa_store_range() - Store this entry at a range of indices in the XArray.
1544 * @xa: XArray.
1545 * @first: First index to affect.
1546 * @last: Last index to affect.
1547 * @entry: New entry.
1548 * @gfp: Memory allocation flags.
1549 *
1550 * After this function returns, loads from any index between @first and @last,
1551 * inclusive will return @entry.
1552 * Storing into an existing multislot entry updates the entry of every index.
1553 * The marks associated with @index are unaffected unless @entry is %NULL.
1554 *
1555 * Context: Process context.  Takes and releases the xa_lock.  May sleep
1556 * if the @gfp flags permit.
1557 * Return: %NULL on success, xa_err(-EINVAL) if @entry cannot be stored in
1558 * an XArray, or xa_err(-ENOMEM) if memory allocation failed.
1559 */
1560void *xa_store_range(struct xarray *xa, unsigned long first,
1561		unsigned long last, void *entry, gfp_t gfp)
1562{
1563	XA_STATE(xas, xa, 0);
1564
1565	if (WARN_ON_ONCE(xa_is_internal(entry)))
1566		return XA_ERROR(-EINVAL);
1567	if (last < first)
1568		return XA_ERROR(-EINVAL);
1569
1570	do {
1571		xas_lock(&xas);
1572		if (entry) {
1573			unsigned int order = BITS_PER_LONG;
1574			if (last + 1)
1575				order = __ffs(last + 1);
1576			xas_set_order(&xas, last, order);
1577			xas_create(&xas, true);
1578			if (xas_error(&xas))
1579				goto unlock;
1580		}
1581		do {
1582			xas_set_range(&xas, first, last);
1583			xas_store(&xas, entry);
1584			if (xas_error(&xas))
1585				goto unlock;
1586			first += xas_size(&xas);
1587		} while (first <= last);
1588unlock:
1589		xas_unlock(&xas);
1590	} while (xas_nomem(&xas, gfp));
1591
1592	return xas_result(&xas, NULL);
1593}
1594EXPORT_SYMBOL(xa_store_range);
1595#endif /* CONFIG_XARRAY_MULTI */
1596
1597/**
1598 * __xa_alloc() - Find somewhere to store this entry in the XArray.
1599 * @xa: XArray.
1600 * @id: Pointer to ID.
1601 * @limit: Range for allocated ID.
1602 * @entry: New entry.
1603 * @gfp: Memory allocation flags.
1604 *
1605 * Finds an empty entry in @xa between @limit.min and @limit.max,
1606 * stores the index into the @id pointer, then stores the entry at
1607 * that index.  A concurrent lookup will not see an uninitialised @id.
1608 *
1609 * Context: Any context.  Expects xa_lock to be held on entry.  May
1610 * release and reacquire xa_lock if @gfp flags permit.
1611 * Return: 0 on success, -ENOMEM if memory could not be allocated or
1612 * -EBUSY if there are no free entries in @limit.
1613 */
1614int __xa_alloc(struct xarray *xa, u32 *id, void *entry,
1615		struct xa_limit limit, gfp_t gfp)
1616{
1617	XA_STATE(xas, xa, 0);
1618
1619	if (WARN_ON_ONCE(xa_is_advanced(entry)))
1620		return -EINVAL;
1621	if (WARN_ON_ONCE(!xa_track_free(xa)))
1622		return -EINVAL;
1623
1624	if (!entry)
1625		entry = XA_ZERO_ENTRY;
1626
1627	do {
1628		xas.xa_index = limit.min;
1629		xas_find_marked(&xas, limit.max, XA_FREE_MARK);
1630		if (xas.xa_node == XAS_RESTART)
1631			xas_set_err(&xas, -EBUSY);
1632		else
1633			*id = xas.xa_index;
1634		xas_store(&xas, entry);
1635		xas_clear_mark(&xas, XA_FREE_MARK);
1636	} while (__xas_nomem(&xas, gfp));
1637
1638	return xas_error(&xas);
1639}
1640EXPORT_SYMBOL(__xa_alloc);
1641
1642/**
1643 * __xa_alloc_cyclic() - Find somewhere to store this entry in the XArray.
1644 * @xa: XArray.
1645 * @id: Pointer to ID.
1646 * @entry: New entry.
1647 * @limit: Range of allocated ID.
1648 * @next: Pointer to next ID to allocate.
1649 * @gfp: Memory allocation flags.
1650 *
1651 * Finds an empty entry in @xa between @limit.min and @limit.max,
1652 * stores the index into the @id pointer, then stores the entry at
1653 * that index.  A concurrent lookup will not see an uninitialised @id.
1654 * The search for an empty entry will start at @next and will wrap
1655 * around if necessary.
1656 *
1657 * Context: Any context.  Expects xa_lock to be held on entry.  May
1658 * release and reacquire xa_lock if @gfp flags permit.
1659 * Return: 0 if the allocation succeeded without wrapping.  1 if the
1660 * allocation succeeded after wrapping, -ENOMEM if memory could not be
1661 * allocated or -EBUSY if there are no free entries in @limit.
1662 */
1663int __xa_alloc_cyclic(struct xarray *xa, u32 *id, void *entry,
1664		struct xa_limit limit, u32 *next, gfp_t gfp)
1665{
1666	u32 min = limit.min;
1667	int ret;
1668
1669	limit.min = max(min, *next);
1670	ret = __xa_alloc(xa, id, entry, limit, gfp);
1671	if ((xa->xa_flags & XA_FLAGS_ALLOC_WRAPPED) && ret == 0) {
1672		xa->xa_flags &= ~XA_FLAGS_ALLOC_WRAPPED;
1673		ret = 1;
1674	}
1675
1676	if (ret < 0 && limit.min > min) {
1677		limit.min = min;
1678		ret = __xa_alloc(xa, id, entry, limit, gfp);
1679		if (ret == 0)
1680			ret = 1;
1681	}
1682
1683	if (ret >= 0) {
1684		*next = *id + 1;
1685		if (*next == 0)
1686			xa->xa_flags |= XA_FLAGS_ALLOC_WRAPPED;
1687	}
1688	return ret;
1689}
1690EXPORT_SYMBOL(__xa_alloc_cyclic);
1691
1692/**
1693 * __xa_set_mark() - Set this mark on this entry while locked.
1694 * @xa: XArray.
1695 * @index: Index of entry.
1696 * @mark: Mark number.
1697 *
1698 * Attempting to set a mark on a %NULL entry does not succeed.
1699 *
1700 * Context: Any context.  Expects xa_lock to be held on entry.
1701 */
1702void __xa_set_mark(struct xarray *xa, unsigned long index, xa_mark_t mark)
1703{
1704	XA_STATE(xas, xa, index);
1705	void *entry = xas_load(&xas);
1706
1707	if (entry)
1708		xas_set_mark(&xas, mark);
1709}
1710EXPORT_SYMBOL(__xa_set_mark);
1711
1712/**
1713 * __xa_clear_mark() - Clear this mark on this entry while locked.
1714 * @xa: XArray.
1715 * @index: Index of entry.
1716 * @mark: Mark number.
1717 *
1718 * Context: Any context.  Expects xa_lock to be held on entry.
1719 */
1720void __xa_clear_mark(struct xarray *xa, unsigned long index, xa_mark_t mark)
1721{
1722	XA_STATE(xas, xa, index);
1723	void *entry = xas_load(&xas);
1724
1725	if (entry)
1726		xas_clear_mark(&xas, mark);
1727}
1728EXPORT_SYMBOL(__xa_clear_mark);
1729
1730/**
1731 * xa_get_mark() - Inquire whether this mark is set on this entry.
1732 * @xa: XArray.
1733 * @index: Index of entry.
1734 * @mark: Mark number.
1735 *
1736 * This function uses the RCU read lock, so the result may be out of date
1737 * by the time it returns.  If you need the result to be stable, use a lock.
1738 *
1739 * Context: Any context.  Takes and releases the RCU lock.
1740 * Return: True if the entry at @index has this mark set, false if it doesn't.
1741 */
1742bool xa_get_mark(struct xarray *xa, unsigned long index, xa_mark_t mark)
1743{
1744	XA_STATE(xas, xa, index);
1745	void *entry;
1746
1747	rcu_read_lock();
1748	entry = xas_start(&xas);
1749	while (xas_get_mark(&xas, mark)) {
1750		if (!xa_is_node(entry))
1751			goto found;
1752		entry = xas_descend(&xas, xa_to_node(entry));
1753	}
1754	rcu_read_unlock();
1755	return false;
1756 found:
1757	rcu_read_unlock();
1758	return true;
1759}
1760EXPORT_SYMBOL(xa_get_mark);
1761
1762/**
1763 * xa_set_mark() - Set this mark on this entry.
1764 * @xa: XArray.
1765 * @index: Index of entry.
1766 * @mark: Mark number.
1767 *
1768 * Attempting to set a mark on a %NULL entry does not succeed.
1769 *
1770 * Context: Process context.  Takes and releases the xa_lock.
1771 */
1772void xa_set_mark(struct xarray *xa, unsigned long index, xa_mark_t mark)
1773{
1774	xa_lock(xa);
1775	__xa_set_mark(xa, index, mark);
1776	xa_unlock(xa);
1777}
1778EXPORT_SYMBOL(xa_set_mark);
1779
1780/**
1781 * xa_clear_mark() - Clear this mark on this entry.
1782 * @xa: XArray.
1783 * @index: Index of entry.
1784 * @mark: Mark number.
1785 *
1786 * Clearing a mark always succeeds.
1787 *
1788 * Context: Process context.  Takes and releases the xa_lock.
1789 */
1790void xa_clear_mark(struct xarray *xa, unsigned long index, xa_mark_t mark)
1791{
1792	xa_lock(xa);
1793	__xa_clear_mark(xa, index, mark);
1794	xa_unlock(xa);
1795}
1796EXPORT_SYMBOL(xa_clear_mark);
1797
1798/**
1799 * xa_find() - Search the XArray for an entry.
1800 * @xa: XArray.
1801 * @indexp: Pointer to an index.
1802 * @max: Maximum index to search to.
1803 * @filter: Selection criterion.
1804 *
1805 * Finds the entry in @xa which matches the @filter, and has the lowest
1806 * index that is at least @indexp and no more than @max.
1807 * If an entry is found, @indexp is updated to be the index of the entry.
1808 * This function is protected by the RCU read lock, so it may not find
1809 * entries which are being simultaneously added.  It will not return an
1810 * %XA_RETRY_ENTRY; if you need to see retry entries, use xas_find().
1811 *
1812 * Context: Any context.  Takes and releases the RCU lock.
1813 * Return: The entry, if found, otherwise %NULL.
1814 */
1815void *xa_find(struct xarray *xa, unsigned long *indexp,
1816			unsigned long max, xa_mark_t filter)
1817{
1818	XA_STATE(xas, xa, *indexp);
1819	void *entry;
1820
1821	rcu_read_lock();
1822	do {
1823		if ((__force unsigned int)filter < XA_MAX_MARKS)
1824			entry = xas_find_marked(&xas, max, filter);
1825		else
1826			entry = xas_find(&xas, max);
1827	} while (xas_retry(&xas, entry));
1828	rcu_read_unlock();
1829
1830	if (entry)
1831		*indexp = xas.xa_index;
1832	return entry;
1833}
1834EXPORT_SYMBOL(xa_find);
1835
1836static bool xas_sibling(struct xa_state *xas)
1837{
1838	struct xa_node *node = xas->xa_node;
1839	unsigned long mask;
1840
1841	if (!IS_ENABLED(CONFIG_XARRAY_MULTI) || !node)
1842		return false;
1843	mask = (XA_CHUNK_SIZE << node->shift) - 1;
1844	return (xas->xa_index & mask) >
1845		((unsigned long)xas->xa_offset << node->shift);
1846}
1847
1848/**
1849 * xa_find_after() - Search the XArray for a present entry.
1850 * @xa: XArray.
1851 * @indexp: Pointer to an index.
1852 * @max: Maximum index to search to.
1853 * @filter: Selection criterion.
1854 *
1855 * Finds the entry in @xa which matches the @filter and has the lowest
1856 * index that is above @indexp and no more than @max.
1857 * If an entry is found, @indexp is updated to be the index of the entry.
1858 * This function is protected by the RCU read lock, so it may miss entries
1859 * which are being simultaneously added.  It will not return an
1860 * %XA_RETRY_ENTRY; if you need to see retry entries, use xas_find().
1861 *
1862 * Context: Any context.  Takes and releases the RCU lock.
1863 * Return: The pointer, if found, otherwise %NULL.
1864 */
1865void *xa_find_after(struct xarray *xa, unsigned long *indexp,
1866			unsigned long max, xa_mark_t filter)
1867{
1868	XA_STATE(xas, xa, *indexp + 1);
1869	void *entry;
1870
1871	if (xas.xa_index == 0)
1872		return NULL;
1873
1874	rcu_read_lock();
1875	for (;;) {
1876		if ((__force unsigned int)filter < XA_MAX_MARKS)
1877			entry = xas_find_marked(&xas, max, filter);
1878		else
1879			entry = xas_find(&xas, max);
1880
1881		if (xas_invalid(&xas))
1882			break;
1883		if (xas_sibling(&xas))
1884			continue;
1885		if (!xas_retry(&xas, entry))
1886			break;
1887	}
1888	rcu_read_unlock();
1889
1890	if (entry)
1891		*indexp = xas.xa_index;
1892	return entry;
1893}
1894EXPORT_SYMBOL(xa_find_after);
1895
1896static unsigned int xas_extract_present(struct xa_state *xas, void **dst,
1897			unsigned long max, unsigned int n)
1898{
1899	void *entry;
1900	unsigned int i = 0;
1901
1902	rcu_read_lock();
1903	xas_for_each(xas, entry, max) {
1904		if (xas_retry(xas, entry))
1905			continue;
1906		dst[i++] = entry;
1907		if (i == n)
1908			break;
1909	}
1910	rcu_read_unlock();
1911
1912	return i;
1913}
1914
1915static unsigned int xas_extract_marked(struct xa_state *xas, void **dst,
1916			unsigned long max, unsigned int n, xa_mark_t mark)
1917{
1918	void *entry;
1919	unsigned int i = 0;
1920
1921	rcu_read_lock();
1922	xas_for_each_marked(xas, entry, max, mark) {
1923		if (xas_retry(xas, entry))
1924			continue;
1925		dst[i++] = entry;
1926		if (i == n)
1927			break;
1928	}
1929	rcu_read_unlock();
1930
1931	return i;
1932}
1933
1934/**
1935 * xa_extract() - Copy selected entries from the XArray into a normal array.
1936 * @xa: The source XArray to copy from.
1937 * @dst: The buffer to copy entries into.
1938 * @start: The first index in the XArray eligible to be selected.
1939 * @max: The last index in the XArray eligible to be selected.
1940 * @n: The maximum number of entries to copy.
1941 * @filter: Selection criterion.
1942 *
1943 * Copies up to @n entries that match @filter from the XArray.  The
1944 * copied entries will have indices between @start and @max, inclusive.
1945 *
1946 * The @filter may be an XArray mark value, in which case entries which are
1947 * marked with that mark will be copied.  It may also be %XA_PRESENT, in
1948 * which case all entries which are not %NULL will be copied.
1949 *
1950 * The entries returned may not represent a snapshot of the XArray at a
1951 * moment in time.  For example, if another thread stores to index 5, then
1952 * index 10, calling xa_extract() may return the old contents of index 5
1953 * and the new contents of index 10.  Indices not modified while this
1954 * function is running will not be skipped.
1955 *
1956 * If you need stronger guarantees, holding the xa_lock across calls to this
1957 * function will prevent concurrent modification.
1958 *
1959 * Context: Any context.  Takes and releases the RCU lock.
1960 * Return: The number of entries copied.
1961 */
1962unsigned int xa_extract(struct xarray *xa, void **dst, unsigned long start,
1963			unsigned long max, unsigned int n, xa_mark_t filter)
1964{
1965	XA_STATE(xas, xa, start);
1966
1967	if (!n)
1968		return 0;
1969
1970	if ((__force unsigned int)filter < XA_MAX_MARKS)
1971		return xas_extract_marked(&xas, dst, max, n, filter);
1972	return xas_extract_present(&xas, dst, max, n);
1973}
1974EXPORT_SYMBOL(xa_extract);
1975
1976/**
1977 * xa_destroy() - Free all internal data structures.
1978 * @xa: XArray.
1979 *
1980 * After calling this function, the XArray is empty and has freed all memory
1981 * allocated for its internal data structures.  You are responsible for
1982 * freeing the objects referenced by the XArray.
1983 *
1984 * Context: Any context.  Takes and releases the xa_lock, interrupt-safe.
1985 */
1986void xa_destroy(struct xarray *xa)
1987{
1988	XA_STATE(xas, xa, 0);
1989	unsigned long flags;
1990	void *entry;
1991
1992	xas.xa_node = NULL;
1993	xas_lock_irqsave(&xas, flags);
1994	entry = xa_head_locked(xa);
1995	RCU_INIT_POINTER(xa->xa_head, NULL);
1996	xas_init_marks(&xas);
1997	if (xa_zero_busy(xa))
1998		xa_mark_clear(xa, XA_FREE_MARK);
1999	/* lockdep checks we're still holding the lock in xas_free_nodes() */
2000	if (xa_is_node(entry))
2001		xas_free_nodes(&xas, xa_to_node(entry));
2002	xas_unlock_irqrestore(&xas, flags);
2003}
2004EXPORT_SYMBOL(xa_destroy);
2005
2006#ifdef XA_DEBUG
2007void xa_dump_node(const struct xa_node *node)
2008{
2009	unsigned i, j;
2010
2011	if (!node)
2012		return;
2013	if ((unsigned long)node & 3) {
2014		pr_cont("node %px\n", node);
2015		return;
2016	}
2017
2018	pr_cont("node %px %s %d parent %px shift %d count %d values %d "
2019		"array %px list %px %px marks",
2020		node, node->parent ? "offset" : "max", node->offset,
2021		node->parent, node->shift, node->count, node->nr_values,
2022		node->array, node->private_list.prev, node->private_list.next);
2023	for (i = 0; i < XA_MAX_MARKS; i++)
2024		for (j = 0; j < XA_MARK_LONGS; j++)
2025			pr_cont(" %lx", node->marks[i][j]);
2026	pr_cont("\n");
2027}
2028
2029void xa_dump_index(unsigned long index, unsigned int shift)
2030{
2031	if (!shift)
2032		pr_info("%lu: ", index);
2033	else if (shift >= BITS_PER_LONG)
2034		pr_info("0-%lu: ", ~0UL);
2035	else
2036		pr_info("%lu-%lu: ", index, index | ((1UL << shift) - 1));
2037}
2038
2039void xa_dump_entry(const void *entry, unsigned long index, unsigned long shift)
2040{
2041	if (!entry)
2042		return;
2043
2044	xa_dump_index(index, shift);
2045
2046	if (xa_is_node(entry)) {
2047		if (shift == 0) {
2048			pr_cont("%px\n", entry);
2049		} else {
2050			unsigned long i;
2051			struct xa_node *node = xa_to_node(entry);
2052			xa_dump_node(node);
2053			for (i = 0; i < XA_CHUNK_SIZE; i++)
2054				xa_dump_entry(node->slots[i],
2055				      index + (i << node->shift), node->shift);
2056		}
2057	} else if (xa_is_value(entry))
2058		pr_cont("value %ld (0x%lx) [%px]\n", xa_to_value(entry),
2059						xa_to_value(entry), entry);
2060	else if (!xa_is_internal(entry))
2061		pr_cont("%px\n", entry);
2062	else if (xa_is_retry(entry))
2063		pr_cont("retry (%ld)\n", xa_to_internal(entry));
2064	else if (xa_is_sibling(entry))
2065		pr_cont("sibling (slot %ld)\n", xa_to_sibling(entry));
2066	else if (xa_is_zero(entry))
2067		pr_cont("zero (%ld)\n", xa_to_internal(entry));
2068	else
2069		pr_cont("UNKNOWN ENTRY (%px)\n", entry);
2070}
2071
2072void xa_dump(const struct xarray *xa)
2073{
2074	void *entry = xa->xa_head;
2075	unsigned int shift = 0;
2076
2077	pr_info("xarray: %px head %px flags %x marks %d %d %d\n", xa, entry,
2078			xa->xa_flags, xa_marked(xa, XA_MARK_0),
2079			xa_marked(xa, XA_MARK_1), xa_marked(xa, XA_MARK_2));
2080	if (xa_is_node(entry))
2081		shift = xa_to_node(entry)->shift + XA_CHUNK_SHIFT;
2082	xa_dump_entry(entry, 0, shift);
2083}
2084#endif