Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.15.
   1// SPDX-License-Identifier: GPL-2.0+
   2/*
   3 * XArray implementation
   4 * Copyright (c) 2017 Microsoft Corporation
   5 * Author: Matthew Wilcox <willy@infradead.org>
   6 */
   7
   8#include <linux/bitmap.h>
   9#include <linux/export.h>
  10#include <linux/list.h>
  11#include <linux/slab.h>
  12#include <linux/xarray.h>
  13
  14/*
  15 * Coding conventions in this file:
  16 *
  17 * @xa is used to refer to the entire xarray.
  18 * @xas is the 'xarray operation state'.  It may be either a pointer to
  19 * an xa_state, or an xa_state stored on the stack.  This is an unfortunate
  20 * ambiguity.
  21 * @index is the index of the entry being operated on
  22 * @mark is an xa_mark_t; a small number indicating one of the mark bits.
  23 * @node refers to an xa_node; usually the primary one being operated on by
  24 * this function.
  25 * @offset is the index into the slots array inside an xa_node.
  26 * @parent refers to the @xa_node closer to the head than @node.
  27 * @entry refers to something stored in a slot in the xarray
  28 */
  29
  30static inline unsigned int xa_lock_type(const struct xarray *xa)
  31{
  32	return (__force unsigned int)xa->xa_flags & 3;
  33}
  34
  35static inline void xas_lock_type(struct xa_state *xas, unsigned int lock_type)
  36{
  37	if (lock_type == XA_LOCK_IRQ)
  38		xas_lock_irq(xas);
  39	else if (lock_type == XA_LOCK_BH)
  40		xas_lock_bh(xas);
  41	else
  42		xas_lock(xas);
  43}
  44
  45static inline void xas_unlock_type(struct xa_state *xas, unsigned int lock_type)
  46{
  47	if (lock_type == XA_LOCK_IRQ)
  48		xas_unlock_irq(xas);
  49	else if (lock_type == XA_LOCK_BH)
  50		xas_unlock_bh(xas);
  51	else
  52		xas_unlock(xas);
  53}
  54
  55static inline bool xa_track_free(const struct xarray *xa)
  56{
  57	return xa->xa_flags & XA_FLAGS_TRACK_FREE;
  58}
  59
  60static inline bool xa_zero_busy(const struct xarray *xa)
  61{
  62	return xa->xa_flags & XA_FLAGS_ZERO_BUSY;
  63}
  64
  65static inline void xa_mark_set(struct xarray *xa, xa_mark_t mark)
  66{
  67	if (!(xa->xa_flags & XA_FLAGS_MARK(mark)))
  68		xa->xa_flags |= XA_FLAGS_MARK(mark);
  69}
  70
  71static inline void xa_mark_clear(struct xarray *xa, xa_mark_t mark)
  72{
  73	if (xa->xa_flags & XA_FLAGS_MARK(mark))
  74		xa->xa_flags &= ~(XA_FLAGS_MARK(mark));
  75}
  76
  77static inline unsigned long *node_marks(struct xa_node *node, xa_mark_t mark)
  78{
  79	return node->marks[(__force unsigned)mark];
  80}
  81
  82static inline bool node_get_mark(struct xa_node *node,
  83		unsigned int offset, xa_mark_t mark)
  84{
  85	return test_bit(offset, node_marks(node, mark));
  86}
  87
  88/* returns true if the bit was set */
  89static inline bool node_set_mark(struct xa_node *node, unsigned int offset,
  90				xa_mark_t mark)
  91{
  92	return __test_and_set_bit(offset, node_marks(node, mark));
  93}
  94
  95/* returns true if the bit was set */
  96static inline bool node_clear_mark(struct xa_node *node, unsigned int offset,
  97				xa_mark_t mark)
  98{
  99	return __test_and_clear_bit(offset, node_marks(node, mark));
 100}
 101
 102static inline bool node_any_mark(struct xa_node *node, xa_mark_t mark)
 103{
 104	return !bitmap_empty(node_marks(node, mark), XA_CHUNK_SIZE);
 105}
 106
 107static inline void node_mark_all(struct xa_node *node, xa_mark_t mark)
 108{
 109	bitmap_fill(node_marks(node, mark), XA_CHUNK_SIZE);
 110}
 111
 112#define mark_inc(mark) do { \
 113	mark = (__force xa_mark_t)((__force unsigned)(mark) + 1); \
 114} while (0)
 115
 116/*
 117 * xas_squash_marks() - Merge all marks to the first entry
 118 * @xas: Array operation state.
 119 *
 120 * Set a mark on the first entry if any entry has it set.  Clear marks on
 121 * all sibling entries.
 122 */
 123static void xas_squash_marks(const struct xa_state *xas)
 124{
 125	unsigned int mark = 0;
 126	unsigned int limit = xas->xa_offset + xas->xa_sibs + 1;
 127
 128	if (!xas->xa_sibs)
 129		return;
 130
 131	do {
 132		unsigned long *marks = xas->xa_node->marks[mark];
 133		if (find_next_bit(marks, limit, xas->xa_offset + 1) == limit)
 134			continue;
 135		__set_bit(xas->xa_offset, marks);
 136		bitmap_clear(marks, xas->xa_offset + 1, xas->xa_sibs);
 137	} while (mark++ != (__force unsigned)XA_MARK_MAX);
 138}
 139
 140/* extracts the offset within this node from the index */
 141static unsigned int get_offset(unsigned long index, struct xa_node *node)
 142{
 143	return (index >> node->shift) & XA_CHUNK_MASK;
 144}
 145
 146static void xas_set_offset(struct xa_state *xas)
 147{
 148	xas->xa_offset = get_offset(xas->xa_index, xas->xa_node);
 149}
 150
 151/* move the index either forwards (find) or backwards (sibling slot) */
 152static void xas_move_index(struct xa_state *xas, unsigned long offset)
 153{
 154	unsigned int shift = xas->xa_node->shift;
 155	xas->xa_index &= ~XA_CHUNK_MASK << shift;
 156	xas->xa_index += offset << shift;
 157}
 158
 159static void xas_advance(struct xa_state *xas)
 160{
 161	xas->xa_offset++;
 162	xas_move_index(xas, xas->xa_offset);
 163}
 164
 165static void *set_bounds(struct xa_state *xas)
 166{
 167	xas->xa_node = XAS_BOUNDS;
 168	return NULL;
 169}
 170
 171/*
 172 * Starts a walk.  If the @xas is already valid, we assume that it's on
 173 * the right path and just return where we've got to.  If we're in an
 174 * error state, return NULL.  If the index is outside the current scope
 175 * of the xarray, return NULL without changing @xas->xa_node.  Otherwise
 176 * set @xas->xa_node to NULL and return the current head of the array.
 177 */
 178static void *xas_start(struct xa_state *xas)
 179{
 180	void *entry;
 181
 182	if (xas_valid(xas))
 183		return xas_reload(xas);
 184	if (xas_error(xas))
 185		return NULL;
 186
 187	entry = xa_head(xas->xa);
 188	if (!xa_is_node(entry)) {
 189		if (xas->xa_index)
 190			return set_bounds(xas);
 191	} else {
 192		if ((xas->xa_index >> xa_to_node(entry)->shift) > XA_CHUNK_MASK)
 193			return set_bounds(xas);
 194	}
 195
 196	xas->xa_node = NULL;
 197	return entry;
 198}
 199
 200static void *xas_descend(struct xa_state *xas, struct xa_node *node)
 201{
 202	unsigned int offset = get_offset(xas->xa_index, node);
 203	void *entry = xa_entry(xas->xa, node, offset);
 204
 205	xas->xa_node = node;
 206	if (xa_is_sibling(entry)) {
 207		offset = xa_to_sibling(entry);
 208		entry = xa_entry(xas->xa, node, offset);
 209	}
 210
 211	xas->xa_offset = offset;
 212	return entry;
 213}
 214
 215/**
 216 * xas_load() - Load an entry from the XArray (advanced).
 217 * @xas: XArray operation state.
 218 *
 219 * Usually walks the @xas to the appropriate state to load the entry
 220 * stored at xa_index.  However, it will do nothing and return %NULL if
 221 * @xas is in an error state.  xas_load() will never expand the tree.
 222 *
 223 * If the xa_state is set up to operate on a multi-index entry, xas_load()
 224 * may return %NULL or an internal entry, even if there are entries
 225 * present within the range specified by @xas.
 226 *
 227 * Context: Any context.  The caller should hold the xa_lock or the RCU lock.
 228 * Return: Usually an entry in the XArray, but see description for exceptions.
 229 */
 230void *xas_load(struct xa_state *xas)
 231{
 232	void *entry = xas_start(xas);
 233
 234	while (xa_is_node(entry)) {
 235		struct xa_node *node = xa_to_node(entry);
 236
 237		if (xas->xa_shift > node->shift)
 238			break;
 239		entry = xas_descend(xas, node);
 240		if (node->shift == 0)
 241			break;
 242	}
 243	return entry;
 244}
 245EXPORT_SYMBOL_GPL(xas_load);
 246
 247/* Move the radix tree node cache here */
 248extern struct kmem_cache *radix_tree_node_cachep;
 249extern void radix_tree_node_rcu_free(struct rcu_head *head);
 250
 251#define XA_RCU_FREE	((struct xarray *)1)
 252
 253static void xa_node_free(struct xa_node *node)
 254{
 255	XA_NODE_BUG_ON(node, !list_empty(&node->private_list));
 256	node->array = XA_RCU_FREE;
 257	call_rcu(&node->rcu_head, radix_tree_node_rcu_free);
 258}
 259
 260/*
 261 * xas_destroy() - Free any resources allocated during the XArray operation.
 262 * @xas: XArray operation state.
 263 *
 264 * This function is now internal-only.
 265 */
 266static void xas_destroy(struct xa_state *xas)
 267{
 268	struct xa_node *node = xas->xa_alloc;
 269
 270	if (!node)
 271		return;
 272	XA_NODE_BUG_ON(node, !list_empty(&node->private_list));
 273	kmem_cache_free(radix_tree_node_cachep, node);
 274	xas->xa_alloc = NULL;
 275}
 276
 277/**
 278 * xas_nomem() - Allocate memory if needed.
 279 * @xas: XArray operation state.
 280 * @gfp: Memory allocation flags.
 281 *
 282 * If we need to add new nodes to the XArray, we try to allocate memory
 283 * with GFP_NOWAIT while holding the lock, which will usually succeed.
 284 * If it fails, @xas is flagged as needing memory to continue.  The caller
 285 * should drop the lock and call xas_nomem().  If xas_nomem() succeeds,
 286 * the caller should retry the operation.
 287 *
 288 * Forward progress is guaranteed as one node is allocated here and
 289 * stored in the xa_state where it will be found by xas_alloc().  More
 290 * nodes will likely be found in the slab allocator, but we do not tie
 291 * them up here.
 292 *
 293 * Return: true if memory was needed, and was successfully allocated.
 294 */
 295bool xas_nomem(struct xa_state *xas, gfp_t gfp)
 296{
 297	if (xas->xa_node != XA_ERROR(-ENOMEM)) {
 298		xas_destroy(xas);
 299		return false;
 300	}
 301	if (xas->xa->xa_flags & XA_FLAGS_ACCOUNT)
 302		gfp |= __GFP_ACCOUNT;
 303	xas->xa_alloc = kmem_cache_alloc(radix_tree_node_cachep, gfp);
 304	if (!xas->xa_alloc)
 305		return false;
 306	XA_NODE_BUG_ON(xas->xa_alloc, !list_empty(&xas->xa_alloc->private_list));
 307	xas->xa_node = XAS_RESTART;
 308	return true;
 309}
 310EXPORT_SYMBOL_GPL(xas_nomem);
 311
 312/*
 313 * __xas_nomem() - Drop locks and allocate memory if needed.
 314 * @xas: XArray operation state.
 315 * @gfp: Memory allocation flags.
 316 *
 317 * Internal variant of xas_nomem().
 318 *
 319 * Return: true if memory was needed, and was successfully allocated.
 320 */
 321static bool __xas_nomem(struct xa_state *xas, gfp_t gfp)
 322	__must_hold(xas->xa->xa_lock)
 323{
 324	unsigned int lock_type = xa_lock_type(xas->xa);
 325
 326	if (xas->xa_node != XA_ERROR(-ENOMEM)) {
 327		xas_destroy(xas);
 328		return false;
 329	}
 330	if (xas->xa->xa_flags & XA_FLAGS_ACCOUNT)
 331		gfp |= __GFP_ACCOUNT;
 332	if (gfpflags_allow_blocking(gfp)) {
 333		xas_unlock_type(xas, lock_type);
 334		xas->xa_alloc = kmem_cache_alloc(radix_tree_node_cachep, gfp);
 335		xas_lock_type(xas, lock_type);
 336	} else {
 337		xas->xa_alloc = kmem_cache_alloc(radix_tree_node_cachep, gfp);
 338	}
 339	if (!xas->xa_alloc)
 340		return false;
 341	XA_NODE_BUG_ON(xas->xa_alloc, !list_empty(&xas->xa_alloc->private_list));
 342	xas->xa_node = XAS_RESTART;
 343	return true;
 344}
 345
 346static void xas_update(struct xa_state *xas, struct xa_node *node)
 347{
 348	if (xas->xa_update)
 349		xas->xa_update(node);
 350	else
 351		XA_NODE_BUG_ON(node, !list_empty(&node->private_list));
 352}
 353
 354static void *xas_alloc(struct xa_state *xas, unsigned int shift)
 355{
 356	struct xa_node *parent = xas->xa_node;
 357	struct xa_node *node = xas->xa_alloc;
 358
 359	if (xas_invalid(xas))
 360		return NULL;
 361
 362	if (node) {
 363		xas->xa_alloc = NULL;
 364	} else {
 365		gfp_t gfp = GFP_NOWAIT | __GFP_NOWARN;
 366
 367		if (xas->xa->xa_flags & XA_FLAGS_ACCOUNT)
 368			gfp |= __GFP_ACCOUNT;
 369
 370		node = kmem_cache_alloc(radix_tree_node_cachep, gfp);
 371		if (!node) {
 372			xas_set_err(xas, -ENOMEM);
 373			return NULL;
 374		}
 375	}
 376
 377	if (parent) {
 378		node->offset = xas->xa_offset;
 379		parent->count++;
 380		XA_NODE_BUG_ON(node, parent->count > XA_CHUNK_SIZE);
 381		xas_update(xas, parent);
 382	}
 383	XA_NODE_BUG_ON(node, shift > BITS_PER_LONG);
 384	XA_NODE_BUG_ON(node, !list_empty(&node->private_list));
 385	node->shift = shift;
 386	node->count = 0;
 387	node->nr_values = 0;
 388	RCU_INIT_POINTER(node->parent, xas->xa_node);
 389	node->array = xas->xa;
 390
 391	return node;
 392}
 393
 394#ifdef CONFIG_XARRAY_MULTI
 395/* Returns the number of indices covered by a given xa_state */
 396static unsigned long xas_size(const struct xa_state *xas)
 397{
 398	return (xas->xa_sibs + 1UL) << xas->xa_shift;
 399}
 400#endif
 401
 402/*
 403 * Use this to calculate the maximum index that will need to be created
 404 * in order to add the entry described by @xas.  Because we cannot store a
 405 * multiple-index entry at index 0, the calculation is a little more complex
 406 * than you might expect.
 407 */
 408static unsigned long xas_max(struct xa_state *xas)
 409{
 410	unsigned long max = xas->xa_index;
 411
 412#ifdef CONFIG_XARRAY_MULTI
 413	if (xas->xa_shift || xas->xa_sibs) {
 414		unsigned long mask = xas_size(xas) - 1;
 415		max |= mask;
 416		if (mask == max)
 417			max++;
 418	}
 419#endif
 420
 421	return max;
 422}
 423
 424/* The maximum index that can be contained in the array without expanding it */
 425static unsigned long max_index(void *entry)
 426{
 427	if (!xa_is_node(entry))
 428		return 0;
 429	return (XA_CHUNK_SIZE << xa_to_node(entry)->shift) - 1;
 430}
 431
 432static void xas_shrink(struct xa_state *xas)
 433{
 434	struct xarray *xa = xas->xa;
 435	struct xa_node *node = xas->xa_node;
 436
 437	for (;;) {
 438		void *entry;
 439
 440		XA_NODE_BUG_ON(node, node->count > XA_CHUNK_SIZE);
 441		if (node->count != 1)
 442			break;
 443		entry = xa_entry_locked(xa, node, 0);
 444		if (!entry)
 445			break;
 446		if (!xa_is_node(entry) && node->shift)
 447			break;
 448		if (xa_is_zero(entry) && xa_zero_busy(xa))
 449			entry = NULL;
 450		xas->xa_node = XAS_BOUNDS;
 451
 452		RCU_INIT_POINTER(xa->xa_head, entry);
 453		if (xa_track_free(xa) && !node_get_mark(node, 0, XA_FREE_MARK))
 454			xa_mark_clear(xa, XA_FREE_MARK);
 455
 456		node->count = 0;
 457		node->nr_values = 0;
 458		if (!xa_is_node(entry))
 459			RCU_INIT_POINTER(node->slots[0], XA_RETRY_ENTRY);
 460		xas_update(xas, node);
 461		xa_node_free(node);
 462		if (!xa_is_node(entry))
 463			break;
 464		node = xa_to_node(entry);
 465		node->parent = NULL;
 466	}
 467}
 468
 469/*
 470 * xas_delete_node() - Attempt to delete an xa_node
 471 * @xas: Array operation state.
 472 *
 473 * Attempts to delete the @xas->xa_node.  This will fail if xa->node has
 474 * a non-zero reference count.
 475 */
 476static void xas_delete_node(struct xa_state *xas)
 477{
 478	struct xa_node *node = xas->xa_node;
 479
 480	for (;;) {
 481		struct xa_node *parent;
 482
 483		XA_NODE_BUG_ON(node, node->count > XA_CHUNK_SIZE);
 484		if (node->count)
 485			break;
 486
 487		parent = xa_parent_locked(xas->xa, node);
 488		xas->xa_node = parent;
 489		xas->xa_offset = node->offset;
 490		xa_node_free(node);
 491
 492		if (!parent) {
 493			xas->xa->xa_head = NULL;
 494			xas->xa_node = XAS_BOUNDS;
 495			return;
 496		}
 497
 498		parent->slots[xas->xa_offset] = NULL;
 499		parent->count--;
 500		XA_NODE_BUG_ON(parent, parent->count > XA_CHUNK_SIZE);
 501		node = parent;
 502		xas_update(xas, node);
 503	}
 504
 505	if (!node->parent)
 506		xas_shrink(xas);
 507}
 508
 509/**
 510 * xas_free_nodes() - Free this node and all nodes that it references
 511 * @xas: Array operation state.
 512 * @top: Node to free
 513 *
 514 * This node has been removed from the tree.  We must now free it and all
 515 * of its subnodes.  There may be RCU walkers with references into the tree,
 516 * so we must replace all entries with retry markers.
 517 */
 518static void xas_free_nodes(struct xa_state *xas, struct xa_node *top)
 519{
 520	unsigned int offset = 0;
 521	struct xa_node *node = top;
 522
 523	for (;;) {
 524		void *entry = xa_entry_locked(xas->xa, node, offset);
 525
 526		if (node->shift && xa_is_node(entry)) {
 527			node = xa_to_node(entry);
 528			offset = 0;
 529			continue;
 530		}
 531		if (entry)
 532			RCU_INIT_POINTER(node->slots[offset], XA_RETRY_ENTRY);
 533		offset++;
 534		while (offset == XA_CHUNK_SIZE) {
 535			struct xa_node *parent;
 536
 537			parent = xa_parent_locked(xas->xa, node);
 538			offset = node->offset + 1;
 539			node->count = 0;
 540			node->nr_values = 0;
 541			xas_update(xas, node);
 542			xa_node_free(node);
 543			if (node == top)
 544				return;
 545			node = parent;
 546		}
 547	}
 548}
 549
 550/*
 551 * xas_expand adds nodes to the head of the tree until it has reached
 552 * sufficient height to be able to contain @xas->xa_index
 553 */
 554static int xas_expand(struct xa_state *xas, void *head)
 555{
 556	struct xarray *xa = xas->xa;
 557	struct xa_node *node = NULL;
 558	unsigned int shift = 0;
 559	unsigned long max = xas_max(xas);
 560
 561	if (!head) {
 562		if (max == 0)
 563			return 0;
 564		while ((max >> shift) >= XA_CHUNK_SIZE)
 565			shift += XA_CHUNK_SHIFT;
 566		return shift + XA_CHUNK_SHIFT;
 567	} else if (xa_is_node(head)) {
 568		node = xa_to_node(head);
 569		shift = node->shift + XA_CHUNK_SHIFT;
 570	}
 571	xas->xa_node = NULL;
 572
 573	while (max > max_index(head)) {
 574		xa_mark_t mark = 0;
 575
 576		XA_NODE_BUG_ON(node, shift > BITS_PER_LONG);
 577		node = xas_alloc(xas, shift);
 578		if (!node)
 579			return -ENOMEM;
 580
 581		node->count = 1;
 582		if (xa_is_value(head))
 583			node->nr_values = 1;
 584		RCU_INIT_POINTER(node->slots[0], head);
 585
 586		/* Propagate the aggregated mark info to the new child */
 587		for (;;) {
 588			if (xa_track_free(xa) && mark == XA_FREE_MARK) {
 589				node_mark_all(node, XA_FREE_MARK);
 590				if (!xa_marked(xa, XA_FREE_MARK)) {
 591					node_clear_mark(node, 0, XA_FREE_MARK);
 592					xa_mark_set(xa, XA_FREE_MARK);
 593				}
 594			} else if (xa_marked(xa, mark)) {
 595				node_set_mark(node, 0, mark);
 596			}
 597			if (mark == XA_MARK_MAX)
 598				break;
 599			mark_inc(mark);
 600		}
 601
 602		/*
 603		 * Now that the new node is fully initialised, we can add
 604		 * it to the tree
 605		 */
 606		if (xa_is_node(head)) {
 607			xa_to_node(head)->offset = 0;
 608			rcu_assign_pointer(xa_to_node(head)->parent, node);
 609		}
 610		head = xa_mk_node(node);
 611		rcu_assign_pointer(xa->xa_head, head);
 612		xas_update(xas, node);
 613
 614		shift += XA_CHUNK_SHIFT;
 615	}
 616
 617	xas->xa_node = node;
 618	return shift;
 619}
 620
 621/*
 622 * xas_create() - Create a slot to store an entry in.
 623 * @xas: XArray operation state.
 624 * @allow_root: %true if we can store the entry in the root directly
 625 *
 626 * Most users will not need to call this function directly, as it is called
 627 * by xas_store().  It is useful for doing conditional store operations
 628 * (see the xa_cmpxchg() implementation for an example).
 629 *
 630 * Return: If the slot already existed, returns the contents of this slot.
 631 * If the slot was newly created, returns %NULL.  If it failed to create the
 632 * slot, returns %NULL and indicates the error in @xas.
 633 */
 634static void *xas_create(struct xa_state *xas, bool allow_root)
 635{
 636	struct xarray *xa = xas->xa;
 637	void *entry;
 638	void __rcu **slot;
 639	struct xa_node *node = xas->xa_node;
 640	int shift;
 641	unsigned int order = xas->xa_shift;
 642
 643	if (xas_top(node)) {
 644		entry = xa_head_locked(xa);
 645		xas->xa_node = NULL;
 646		if (!entry && xa_zero_busy(xa))
 647			entry = XA_ZERO_ENTRY;
 648		shift = xas_expand(xas, entry);
 649		if (shift < 0)
 650			return NULL;
 651		if (!shift && !allow_root)
 652			shift = XA_CHUNK_SHIFT;
 653		entry = xa_head_locked(xa);
 654		slot = &xa->xa_head;
 655	} else if (xas_error(xas)) {
 656		return NULL;
 657	} else if (node) {
 658		unsigned int offset = xas->xa_offset;
 659
 660		shift = node->shift;
 661		entry = xa_entry_locked(xa, node, offset);
 662		slot = &node->slots[offset];
 663	} else {
 664		shift = 0;
 665		entry = xa_head_locked(xa);
 666		slot = &xa->xa_head;
 667	}
 668
 669	while (shift > order) {
 670		shift -= XA_CHUNK_SHIFT;
 671		if (!entry) {
 672			node = xas_alloc(xas, shift);
 673			if (!node)
 674				break;
 675			if (xa_track_free(xa))
 676				node_mark_all(node, XA_FREE_MARK);
 677			rcu_assign_pointer(*slot, xa_mk_node(node));
 678		} else if (xa_is_node(entry)) {
 679			node = xa_to_node(entry);
 680		} else {
 681			break;
 682		}
 683		entry = xas_descend(xas, node);
 684		slot = &node->slots[xas->xa_offset];
 685	}
 686
 687	return entry;
 688}
 689
 690/**
 691 * xas_create_range() - Ensure that stores to this range will succeed
 692 * @xas: XArray operation state.
 693 *
 694 * Creates all of the slots in the range covered by @xas.  Sets @xas to
 695 * create single-index entries and positions it at the beginning of the
 696 * range.  This is for the benefit of users which have not yet been
 697 * converted to use multi-index entries.
 698 */
 699void xas_create_range(struct xa_state *xas)
 700{
 701	unsigned long index = xas->xa_index;
 702	unsigned char shift = xas->xa_shift;
 703	unsigned char sibs = xas->xa_sibs;
 704
 705	xas->xa_index |= ((sibs + 1) << shift) - 1;
 706	if (xas_is_node(xas) && xas->xa_node->shift == xas->xa_shift)
 707		xas->xa_offset |= sibs;
 708	xas->xa_shift = 0;
 709	xas->xa_sibs = 0;
 710
 711	for (;;) {
 712		xas_create(xas, true);
 713		if (xas_error(xas))
 714			goto restore;
 715		if (xas->xa_index <= (index | XA_CHUNK_MASK))
 716			goto success;
 717		xas->xa_index -= XA_CHUNK_SIZE;
 718
 719		for (;;) {
 720			struct xa_node *node = xas->xa_node;
 721			xas->xa_node = xa_parent_locked(xas->xa, node);
 722			xas->xa_offset = node->offset - 1;
 723			if (node->offset != 0)
 724				break;
 725		}
 726	}
 727
 728restore:
 729	xas->xa_shift = shift;
 730	xas->xa_sibs = sibs;
 731	xas->xa_index = index;
 732	return;
 733success:
 734	xas->xa_index = index;
 735	if (xas->xa_node)
 736		xas_set_offset(xas);
 737}
 738EXPORT_SYMBOL_GPL(xas_create_range);
 739
 740static void update_node(struct xa_state *xas, struct xa_node *node,
 741		int count, int values)
 742{
 743	if (!node || (!count && !values))
 744		return;
 745
 746	node->count += count;
 747	node->nr_values += values;
 748	XA_NODE_BUG_ON(node, node->count > XA_CHUNK_SIZE);
 749	XA_NODE_BUG_ON(node, node->nr_values > XA_CHUNK_SIZE);
 750	xas_update(xas, node);
 751	if (count < 0)
 752		xas_delete_node(xas);
 753}
 754
 755/**
 756 * xas_store() - Store this entry in the XArray.
 757 * @xas: XArray operation state.
 758 * @entry: New entry.
 759 *
 760 * If @xas is operating on a multi-index entry, the entry returned by this
 761 * function is essentially meaningless (it may be an internal entry or it
 762 * may be %NULL, even if there are non-NULL entries at some of the indices
 763 * covered by the range).  This is not a problem for any current users,
 764 * and can be changed if needed.
 765 *
 766 * Return: The old entry at this index.
 767 */
 768void *xas_store(struct xa_state *xas, void *entry)
 769{
 770	struct xa_node *node;
 771	void __rcu **slot = &xas->xa->xa_head;
 772	unsigned int offset, max;
 773	int count = 0;
 774	int values = 0;
 775	void *first, *next;
 776	bool value = xa_is_value(entry);
 777
 778	if (entry) {
 779		bool allow_root = !xa_is_node(entry) && !xa_is_zero(entry);
 780		first = xas_create(xas, allow_root);
 781	} else {
 782		first = xas_load(xas);
 783	}
 784
 785	if (xas_invalid(xas))
 786		return first;
 787	node = xas->xa_node;
 788	if (node && (xas->xa_shift < node->shift))
 789		xas->xa_sibs = 0;
 790	if ((first == entry) && !xas->xa_sibs)
 791		return first;
 792
 793	next = first;
 794	offset = xas->xa_offset;
 795	max = xas->xa_offset + xas->xa_sibs;
 796	if (node) {
 797		slot = &node->slots[offset];
 798		if (xas->xa_sibs)
 799			xas_squash_marks(xas);
 800	}
 801	if (!entry)
 802		xas_init_marks(xas);
 803
 804	for (;;) {
 805		/*
 806		 * Must clear the marks before setting the entry to NULL,
 807		 * otherwise xas_for_each_marked may find a NULL entry and
 808		 * stop early.  rcu_assign_pointer contains a release barrier
 809		 * so the mark clearing will appear to happen before the
 810		 * entry is set to NULL.
 811		 */
 812		rcu_assign_pointer(*slot, entry);
 813		if (xa_is_node(next) && (!node || node->shift))
 814			xas_free_nodes(xas, xa_to_node(next));
 815		if (!node)
 816			break;
 817		count += !next - !entry;
 818		values += !xa_is_value(first) - !value;
 819		if (entry) {
 820			if (offset == max)
 821				break;
 822			if (!xa_is_sibling(entry))
 823				entry = xa_mk_sibling(xas->xa_offset);
 824		} else {
 825			if (offset == XA_CHUNK_MASK)
 826				break;
 827		}
 828		next = xa_entry_locked(xas->xa, node, ++offset);
 829		if (!xa_is_sibling(next)) {
 830			if (!entry && (offset > max))
 831				break;
 832			first = next;
 833		}
 834		slot++;
 835	}
 836
 837	update_node(xas, node, count, values);
 838	return first;
 839}
 840EXPORT_SYMBOL_GPL(xas_store);
 841
 842/**
 843 * xas_get_mark() - Returns the state of this mark.
 844 * @xas: XArray operation state.
 845 * @mark: Mark number.
 846 *
 847 * Return: true if the mark is set, false if the mark is clear or @xas
 848 * is in an error state.
 849 */
 850bool xas_get_mark(const struct xa_state *xas, xa_mark_t mark)
 851{
 852	if (xas_invalid(xas))
 853		return false;
 854	if (!xas->xa_node)
 855		return xa_marked(xas->xa, mark);
 856	return node_get_mark(xas->xa_node, xas->xa_offset, mark);
 857}
 858EXPORT_SYMBOL_GPL(xas_get_mark);
 859
 860/**
 861 * xas_set_mark() - Sets the mark on this entry and its parents.
 862 * @xas: XArray operation state.
 863 * @mark: Mark number.
 864 *
 865 * Sets the specified mark on this entry, and walks up the tree setting it
 866 * on all the ancestor entries.  Does nothing if @xas has not been walked to
 867 * an entry, or is in an error state.
 868 */
 869void xas_set_mark(const struct xa_state *xas, xa_mark_t mark)
 870{
 871	struct xa_node *node = xas->xa_node;
 872	unsigned int offset = xas->xa_offset;
 873
 874	if (xas_invalid(xas))
 875		return;
 876
 877	while (node) {
 878		if (node_set_mark(node, offset, mark))
 879			return;
 880		offset = node->offset;
 881		node = xa_parent_locked(xas->xa, node);
 882	}
 883
 884	if (!xa_marked(xas->xa, mark))
 885		xa_mark_set(xas->xa, mark);
 886}
 887EXPORT_SYMBOL_GPL(xas_set_mark);
 888
 889/**
 890 * xas_clear_mark() - Clears the mark on this entry and its parents.
 891 * @xas: XArray operation state.
 892 * @mark: Mark number.
 893 *
 894 * Clears the specified mark on this entry, and walks back to the head
 895 * attempting to clear it on all the ancestor entries.  Does nothing if
 896 * @xas has not been walked to an entry, or is in an error state.
 897 */
 898void xas_clear_mark(const struct xa_state *xas, xa_mark_t mark)
 899{
 900	struct xa_node *node = xas->xa_node;
 901	unsigned int offset = xas->xa_offset;
 902
 903	if (xas_invalid(xas))
 904		return;
 905
 906	while (node) {
 907		if (!node_clear_mark(node, offset, mark))
 908			return;
 909		if (node_any_mark(node, mark))
 910			return;
 911
 912		offset = node->offset;
 913		node = xa_parent_locked(xas->xa, node);
 914	}
 915
 916	if (xa_marked(xas->xa, mark))
 917		xa_mark_clear(xas->xa, mark);
 918}
 919EXPORT_SYMBOL_GPL(xas_clear_mark);
 920
 921/**
 922 * xas_init_marks() - Initialise all marks for the entry
 923 * @xas: Array operations state.
 924 *
 925 * Initialise all marks for the entry specified by @xas.  If we're tracking
 926 * free entries with a mark, we need to set it on all entries.  All other
 927 * marks are cleared.
 928 *
 929 * This implementation is not as efficient as it could be; we may walk
 930 * up the tree multiple times.
 931 */
 932void xas_init_marks(const struct xa_state *xas)
 933{
 934	xa_mark_t mark = 0;
 935
 936	for (;;) {
 937		if (xa_track_free(xas->xa) && mark == XA_FREE_MARK)
 938			xas_set_mark(xas, mark);
 939		else
 940			xas_clear_mark(xas, mark);
 941		if (mark == XA_MARK_MAX)
 942			break;
 943		mark_inc(mark);
 944	}
 945}
 946EXPORT_SYMBOL_GPL(xas_init_marks);
 947
 948/**
 949 * xas_pause() - Pause a walk to drop a lock.
 950 * @xas: XArray operation state.
 951 *
 952 * Some users need to pause a walk and drop the lock they're holding in
 953 * order to yield to a higher priority thread or carry out an operation
 954 * on an entry.  Those users should call this function before they drop
 955 * the lock.  It resets the @xas to be suitable for the next iteration
 956 * of the loop after the user has reacquired the lock.  If most entries
 957 * found during a walk require you to call xas_pause(), the xa_for_each()
 958 * iterator may be more appropriate.
 959 *
 960 * Note that xas_pause() only works for forward iteration.  If a user needs
 961 * to pause a reverse iteration, we will need a xas_pause_rev().
 962 */
 963void xas_pause(struct xa_state *xas)
 964{
 965	struct xa_node *node = xas->xa_node;
 966
 967	if (xas_invalid(xas))
 968		return;
 969
 970	if (node) {
 971		unsigned int offset = xas->xa_offset;
 972		while (++offset < XA_CHUNK_SIZE) {
 973			if (!xa_is_sibling(xa_entry(xas->xa, node, offset)))
 974				break;
 975		}
 976		xas->xa_index += (offset - xas->xa_offset) << node->shift;
 977	} else {
 978		xas->xa_index++;
 979	}
 980	xas->xa_node = XAS_RESTART;
 981}
 982EXPORT_SYMBOL_GPL(xas_pause);
 983
 984/*
 985 * __xas_prev() - Find the previous entry in the XArray.
 986 * @xas: XArray operation state.
 987 *
 988 * Helper function for xas_prev() which handles all the complex cases
 989 * out of line.
 990 */
 991void *__xas_prev(struct xa_state *xas)
 992{
 993	void *entry;
 994
 995	if (!xas_frozen(xas->xa_node))
 996		xas->xa_index--;
 997	if (!xas->xa_node)
 998		return set_bounds(xas);
 999	if (xas_not_node(xas->xa_node))
1000		return xas_load(xas);
1001
1002	if (xas->xa_offset != get_offset(xas->xa_index, xas->xa_node))
1003		xas->xa_offset--;
1004
1005	while (xas->xa_offset == 255) {
1006		xas->xa_offset = xas->xa_node->offset - 1;
1007		xas->xa_node = xa_parent(xas->xa, xas->xa_node);
1008		if (!xas->xa_node)
1009			return set_bounds(xas);
1010	}
1011
1012	for (;;) {
1013		entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset);
1014		if (!xa_is_node(entry))
1015			return entry;
1016
1017		xas->xa_node = xa_to_node(entry);
1018		xas_set_offset(xas);
1019	}
1020}
1021EXPORT_SYMBOL_GPL(__xas_prev);
1022
1023/*
1024 * __xas_next() - Find the next entry in the XArray.
1025 * @xas: XArray operation state.
1026 *
1027 * Helper function for xas_next() which handles all the complex cases
1028 * out of line.
1029 */
1030void *__xas_next(struct xa_state *xas)
1031{
1032	void *entry;
1033
1034	if (!xas_frozen(xas->xa_node))
1035		xas->xa_index++;
1036	if (!xas->xa_node)
1037		return set_bounds(xas);
1038	if (xas_not_node(xas->xa_node))
1039		return xas_load(xas);
1040
1041	if (xas->xa_offset != get_offset(xas->xa_index, xas->xa_node))
1042		xas->xa_offset++;
1043
1044	while (xas->xa_offset == XA_CHUNK_SIZE) {
1045		xas->xa_offset = xas->xa_node->offset + 1;
1046		xas->xa_node = xa_parent(xas->xa, xas->xa_node);
1047		if (!xas->xa_node)
1048			return set_bounds(xas);
1049	}
1050
1051	for (;;) {
1052		entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset);
1053		if (!xa_is_node(entry))
1054			return entry;
1055
1056		xas->xa_node = xa_to_node(entry);
1057		xas_set_offset(xas);
1058	}
1059}
1060EXPORT_SYMBOL_GPL(__xas_next);
1061
1062/**
1063 * xas_find() - Find the next present entry in the XArray.
1064 * @xas: XArray operation state.
1065 * @max: Highest index to return.
1066 *
1067 * If the @xas has not yet been walked to an entry, return the entry
1068 * which has an index >= xas.xa_index.  If it has been walked, the entry
1069 * currently being pointed at has been processed, and so we move to the
1070 * next entry.
1071 *
1072 * If no entry is found and the array is smaller than @max, the iterator
1073 * is set to the smallest index not yet in the array.  This allows @xas
1074 * to be immediately passed to xas_store().
1075 *
1076 * Return: The entry, if found, otherwise %NULL.
1077 */
1078void *xas_find(struct xa_state *xas, unsigned long max)
1079{
1080	void *entry;
1081
1082	if (xas_error(xas))
1083		return NULL;
1084
1085	if (!xas->xa_node) {
1086		xas->xa_index = 1;
1087		return set_bounds(xas);
1088	} else if (xas_top(xas->xa_node)) {
1089		entry = xas_load(xas);
1090		if (entry || xas_not_node(xas->xa_node))
1091			return entry;
1092	} else if (!xas->xa_node->shift &&
1093		    xas->xa_offset != (xas->xa_index & XA_CHUNK_MASK)) {
1094		xas->xa_offset = ((xas->xa_index - 1) & XA_CHUNK_MASK) + 1;
1095	}
1096
1097	xas_advance(xas);
1098
1099	while (xas->xa_node && (xas->xa_index <= max)) {
1100		if (unlikely(xas->xa_offset == XA_CHUNK_SIZE)) {
1101			xas->xa_offset = xas->xa_node->offset + 1;
1102			xas->xa_node = xa_parent(xas->xa, xas->xa_node);
1103			continue;
1104		}
1105
1106		entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset);
1107		if (xa_is_node(entry)) {
1108			xas->xa_node = xa_to_node(entry);
1109			xas->xa_offset = 0;
1110			continue;
1111		}
1112		if (entry && !xa_is_sibling(entry))
1113			return entry;
1114
1115		xas_advance(xas);
1116	}
1117
1118	if (!xas->xa_node)
1119		xas->xa_node = XAS_BOUNDS;
1120	return NULL;
1121}
1122EXPORT_SYMBOL_GPL(xas_find);
1123
1124/**
1125 * xas_find_marked() - Find the next marked entry in the XArray.
1126 * @xas: XArray operation state.
1127 * @max: Highest index to return.
1128 * @mark: Mark number to search for.
1129 *
1130 * If the @xas has not yet been walked to an entry, return the marked entry
1131 * which has an index >= xas.xa_index.  If it has been walked, the entry
1132 * currently being pointed at has been processed, and so we return the
1133 * first marked entry with an index > xas.xa_index.
1134 *
1135 * If no marked entry is found and the array is smaller than @max, @xas is
1136 * set to the bounds state and xas->xa_index is set to the smallest index
1137 * not yet in the array.  This allows @xas to be immediately passed to
1138 * xas_store().
1139 *
1140 * If no entry is found before @max is reached, @xas is set to the restart
1141 * state.
1142 *
1143 * Return: The entry, if found, otherwise %NULL.
1144 */
1145void *xas_find_marked(struct xa_state *xas, unsigned long max, xa_mark_t mark)
1146{
1147	bool advance = true;
1148	unsigned int offset;
1149	void *entry;
1150
1151	if (xas_error(xas))
1152		return NULL;
1153
1154	if (!xas->xa_node) {
1155		xas->xa_index = 1;
1156		goto out;
1157	} else if (xas_top(xas->xa_node)) {
1158		advance = false;
1159		entry = xa_head(xas->xa);
1160		xas->xa_node = NULL;
1161		if (xas->xa_index > max_index(entry))
1162			goto out;
1163		if (!xa_is_node(entry)) {
1164			if (xa_marked(xas->xa, mark))
1165				return entry;
1166			xas->xa_index = 1;
1167			goto out;
1168		}
1169		xas->xa_node = xa_to_node(entry);
1170		xas->xa_offset = xas->xa_index >> xas->xa_node->shift;
1171	}
1172
1173	while (xas->xa_index <= max) {
1174		if (unlikely(xas->xa_offset == XA_CHUNK_SIZE)) {
1175			xas->xa_offset = xas->xa_node->offset + 1;
1176			xas->xa_node = xa_parent(xas->xa, xas->xa_node);
1177			if (!xas->xa_node)
1178				break;
1179			advance = false;
1180			continue;
1181		}
1182
1183		if (!advance) {
1184			entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset);
1185			if (xa_is_sibling(entry)) {
1186				xas->xa_offset = xa_to_sibling(entry);
1187				xas_move_index(xas, xas->xa_offset);
1188			}
1189		}
1190
1191		offset = xas_find_chunk(xas, advance, mark);
1192		if (offset > xas->xa_offset) {
1193			advance = false;
1194			xas_move_index(xas, offset);
1195			/* Mind the wrap */
1196			if ((xas->xa_index - 1) >= max)
1197				goto max;
1198			xas->xa_offset = offset;
1199			if (offset == XA_CHUNK_SIZE)
1200				continue;
1201		}
1202
1203		entry = xa_entry(xas->xa, xas->xa_node, xas->xa_offset);
1204		if (!xa_is_node(entry))
1205			return entry;
1206		xas->xa_node = xa_to_node(entry);
1207		xas_set_offset(xas);
1208	}
1209
1210out:
1211	if (xas->xa_index > max)
1212		goto max;
1213	return set_bounds(xas);
1214max:
1215	xas->xa_node = XAS_RESTART;
1216	return NULL;
1217}
1218EXPORT_SYMBOL_GPL(xas_find_marked);
1219
1220/**
1221 * xas_find_conflict() - Find the next present entry in a range.
1222 * @xas: XArray operation state.
1223 *
1224 * The @xas describes both a range and a position within that range.
1225 *
1226 * Context: Any context.  Expects xa_lock to be held.
1227 * Return: The next entry in the range covered by @xas or %NULL.
1228 */
1229void *xas_find_conflict(struct xa_state *xas)
1230{
1231	void *curr;
1232
1233	if (xas_error(xas))
1234		return NULL;
1235
1236	if (!xas->xa_node)
1237		return NULL;
1238
1239	if (xas_top(xas->xa_node)) {
1240		curr = xas_start(xas);
1241		if (!curr)
1242			return NULL;
1243		while (xa_is_node(curr)) {
1244			struct xa_node *node = xa_to_node(curr);
1245			curr = xas_descend(xas, node);
1246		}
1247		if (curr)
1248			return curr;
1249	}
1250
1251	if (xas->xa_node->shift > xas->xa_shift)
1252		return NULL;
1253
1254	for (;;) {
1255		if (xas->xa_node->shift == xas->xa_shift) {
1256			if ((xas->xa_offset & xas->xa_sibs) == xas->xa_sibs)
1257				break;
1258		} else if (xas->xa_offset == XA_CHUNK_MASK) {
1259			xas->xa_offset = xas->xa_node->offset;
1260			xas->xa_node = xa_parent_locked(xas->xa, xas->xa_node);
1261			if (!xas->xa_node)
1262				break;
1263			continue;
1264		}
1265		curr = xa_entry_locked(xas->xa, xas->xa_node, ++xas->xa_offset);
1266		if (xa_is_sibling(curr))
1267			continue;
1268		while (xa_is_node(curr)) {
1269			xas->xa_node = xa_to_node(curr);
1270			xas->xa_offset = 0;
1271			curr = xa_entry_locked(xas->xa, xas->xa_node, 0);
1272		}
1273		if (curr)
1274			return curr;
1275	}
1276	xas->xa_offset -= xas->xa_sibs;
1277	return NULL;
1278}
1279EXPORT_SYMBOL_GPL(xas_find_conflict);
1280
1281/**
1282 * xa_load() - Load an entry from an XArray.
1283 * @xa: XArray.
1284 * @index: index into array.
1285 *
1286 * Context: Any context.  Takes and releases the RCU lock.
1287 * Return: The entry at @index in @xa.
1288 */
1289void *xa_load(struct xarray *xa, unsigned long index)
1290{
1291	XA_STATE(xas, xa, index);
1292	void *entry;
1293
1294	rcu_read_lock();
1295	do {
1296		entry = xas_load(&xas);
1297		if (xa_is_zero(entry))
1298			entry = NULL;
1299	} while (xas_retry(&xas, entry));
1300	rcu_read_unlock();
1301
1302	return entry;
1303}
1304EXPORT_SYMBOL(xa_load);
1305
1306static void *xas_result(struct xa_state *xas, void *curr)
1307{
1308	if (xa_is_zero(curr))
1309		return NULL;
1310	if (xas_error(xas))
1311		curr = xas->xa_node;
1312	return curr;
1313}
1314
1315/**
1316 * __xa_erase() - Erase this entry from the XArray while locked.
1317 * @xa: XArray.
1318 * @index: Index into array.
1319 *
1320 * After this function returns, loading from @index will return %NULL.
1321 * If the index is part of a multi-index entry, all indices will be erased
1322 * and none of the entries will be part of a multi-index entry.
1323 *
1324 * Context: Any context.  Expects xa_lock to be held on entry.
1325 * Return: The entry which used to be at this index.
1326 */
1327void *__xa_erase(struct xarray *xa, unsigned long index)
1328{
1329	XA_STATE(xas, xa, index);
1330	return xas_result(&xas, xas_store(&xas, NULL));
1331}
1332EXPORT_SYMBOL(__xa_erase);
1333
1334/**
1335 * xa_erase() - Erase this entry from the XArray.
1336 * @xa: XArray.
1337 * @index: Index of entry.
1338 *
1339 * After this function returns, loading from @index will return %NULL.
1340 * If the index is part of a multi-index entry, all indices will be erased
1341 * and none of the entries will be part of a multi-index entry.
1342 *
1343 * Context: Any context.  Takes and releases the xa_lock.
1344 * Return: The entry which used to be at this index.
1345 */
1346void *xa_erase(struct xarray *xa, unsigned long index)
1347{
1348	void *entry;
1349
1350	xa_lock(xa);
1351	entry = __xa_erase(xa, index);
1352	xa_unlock(xa);
1353
1354	return entry;
1355}
1356EXPORT_SYMBOL(xa_erase);
1357
1358/**
1359 * __xa_store() - Store this entry in the XArray.
1360 * @xa: XArray.
1361 * @index: Index into array.
1362 * @entry: New entry.
1363 * @gfp: Memory allocation flags.
1364 *
1365 * You must already be holding the xa_lock when calling this function.
1366 * It will drop the lock if needed to allocate memory, and then reacquire
1367 * it afterwards.
1368 *
1369 * Context: Any context.  Expects xa_lock to be held on entry.  May
1370 * release and reacquire xa_lock if @gfp flags permit.
1371 * Return: The old entry at this index or xa_err() if an error happened.
1372 */
1373void *__xa_store(struct xarray *xa, unsigned long index, void *entry, gfp_t gfp)
1374{
1375	XA_STATE(xas, xa, index);
1376	void *curr;
1377
1378	if (WARN_ON_ONCE(xa_is_advanced(entry)))
1379		return XA_ERROR(-EINVAL);
1380	if (xa_track_free(xa) && !entry)
1381		entry = XA_ZERO_ENTRY;
1382
1383	do {
1384		curr = xas_store(&xas, entry);
1385		if (xa_track_free(xa))
1386			xas_clear_mark(&xas, XA_FREE_MARK);
1387	} while (__xas_nomem(&xas, gfp));
1388
1389	return xas_result(&xas, curr);
1390}
1391EXPORT_SYMBOL(__xa_store);
1392
1393/**
1394 * xa_store() - Store this entry in the XArray.
1395 * @xa: XArray.
1396 * @index: Index into array.
1397 * @entry: New entry.
1398 * @gfp: Memory allocation flags.
1399 *
1400 * After this function returns, loads from this index will return @entry.
1401 * Storing into an existing multislot entry updates the entry of every index.
1402 * The marks associated with @index are unaffected unless @entry is %NULL.
1403 *
1404 * Context: Any context.  Takes and releases the xa_lock.
1405 * May sleep if the @gfp flags permit.
1406 * Return: The old entry at this index on success, xa_err(-EINVAL) if @entry
1407 * cannot be stored in an XArray, or xa_err(-ENOMEM) if memory allocation
1408 * failed.
1409 */
1410void *xa_store(struct xarray *xa, unsigned long index, void *entry, gfp_t gfp)
1411{
1412	void *curr;
1413
1414	xa_lock(xa);
1415	curr = __xa_store(xa, index, entry, gfp);
1416	xa_unlock(xa);
1417
1418	return curr;
1419}
1420EXPORT_SYMBOL(xa_store);
1421
1422/**
1423 * __xa_cmpxchg() - Store this entry in the XArray.
1424 * @xa: XArray.
1425 * @index: Index into array.
1426 * @old: Old value to test against.
1427 * @entry: New entry.
1428 * @gfp: Memory allocation flags.
1429 *
1430 * You must already be holding the xa_lock when calling this function.
1431 * It will drop the lock if needed to allocate memory, and then reacquire
1432 * it afterwards.
1433 *
1434 * Context: Any context.  Expects xa_lock to be held on entry.  May
1435 * release and reacquire xa_lock if @gfp flags permit.
1436 * Return: The old entry at this index or xa_err() if an error happened.
1437 */
1438void *__xa_cmpxchg(struct xarray *xa, unsigned long index,
1439			void *old, void *entry, gfp_t gfp)
1440{
1441	XA_STATE(xas, xa, index);
1442	void *curr;
1443
1444	if (WARN_ON_ONCE(xa_is_advanced(entry)))
1445		return XA_ERROR(-EINVAL);
1446
1447	do {
1448		curr = xas_load(&xas);
1449		if (curr == old) {
1450			xas_store(&xas, entry);
1451			if (xa_track_free(xa) && entry && !curr)
1452				xas_clear_mark(&xas, XA_FREE_MARK);
1453		}
1454	} while (__xas_nomem(&xas, gfp));
1455
1456	return xas_result(&xas, curr);
1457}
1458EXPORT_SYMBOL(__xa_cmpxchg);
1459
1460/**
1461 * __xa_insert() - Store this entry in the XArray if no entry is present.
1462 * @xa: XArray.
1463 * @index: Index into array.
1464 * @entry: New entry.
1465 * @gfp: Memory allocation flags.
1466 *
1467 * Inserting a NULL entry will store a reserved entry (like xa_reserve())
1468 * if no entry is present.  Inserting will fail if a reserved entry is
1469 * present, even though loading from this index will return NULL.
1470 *
1471 * Context: Any context.  Expects xa_lock to be held on entry.  May
1472 * release and reacquire xa_lock if @gfp flags permit.
1473 * Return: 0 if the store succeeded.  -EBUSY if another entry was present.
1474 * -ENOMEM if memory could not be allocated.
1475 */
1476int __xa_insert(struct xarray *xa, unsigned long index, void *entry, gfp_t gfp)
1477{
1478	XA_STATE(xas, xa, index);
1479	void *curr;
1480
1481	if (WARN_ON_ONCE(xa_is_advanced(entry)))
1482		return -EINVAL;
1483	if (!entry)
1484		entry = XA_ZERO_ENTRY;
1485
1486	do {
1487		curr = xas_load(&xas);
1488		if (!curr) {
1489			xas_store(&xas, entry);
1490			if (xa_track_free(xa))
1491				xas_clear_mark(&xas, XA_FREE_MARK);
1492		} else {
1493			xas_set_err(&xas, -EBUSY);
1494		}
1495	} while (__xas_nomem(&xas, gfp));
1496
1497	return xas_error(&xas);
1498}
1499EXPORT_SYMBOL(__xa_insert);
1500
1501#ifdef CONFIG_XARRAY_MULTI
1502static void xas_set_range(struct xa_state *xas, unsigned long first,
1503		unsigned long last)
1504{
1505	unsigned int shift = 0;
1506	unsigned long sibs = last - first;
1507	unsigned int offset = XA_CHUNK_MASK;
1508
1509	xas_set(xas, first);
1510
1511	while ((first & XA_CHUNK_MASK) == 0) {
1512		if (sibs < XA_CHUNK_MASK)
1513			break;
1514		if ((sibs == XA_CHUNK_MASK) && (offset < XA_CHUNK_MASK))
1515			break;
1516		shift += XA_CHUNK_SHIFT;
1517		if (offset == XA_CHUNK_MASK)
1518			offset = sibs & XA_CHUNK_MASK;
1519		sibs >>= XA_CHUNK_SHIFT;
1520		first >>= XA_CHUNK_SHIFT;
1521	}
1522
1523	offset = first & XA_CHUNK_MASK;
1524	if (offset + sibs > XA_CHUNK_MASK)
1525		sibs = XA_CHUNK_MASK - offset;
1526	if ((((first + sibs + 1) << shift) - 1) > last)
1527		sibs -= 1;
1528
1529	xas->xa_shift = shift;
1530	xas->xa_sibs = sibs;
1531}
1532
1533/**
1534 * xa_store_range() - Store this entry at a range of indices in the XArray.
1535 * @xa: XArray.
1536 * @first: First index to affect.
1537 * @last: Last index to affect.
1538 * @entry: New entry.
1539 * @gfp: Memory allocation flags.
1540 *
1541 * After this function returns, loads from any index between @first and @last,
1542 * inclusive will return @entry.
1543 * Storing into an existing multislot entry updates the entry of every index.
1544 * The marks associated with @index are unaffected unless @entry is %NULL.
1545 *
1546 * Context: Process context.  Takes and releases the xa_lock.  May sleep
1547 * if the @gfp flags permit.
1548 * Return: %NULL on success, xa_err(-EINVAL) if @entry cannot be stored in
1549 * an XArray, or xa_err(-ENOMEM) if memory allocation failed.
1550 */
1551void *xa_store_range(struct xarray *xa, unsigned long first,
1552		unsigned long last, void *entry, gfp_t gfp)
1553{
1554	XA_STATE(xas, xa, 0);
1555
1556	if (WARN_ON_ONCE(xa_is_internal(entry)))
1557		return XA_ERROR(-EINVAL);
1558	if (last < first)
1559		return XA_ERROR(-EINVAL);
1560
1561	do {
1562		xas_lock(&xas);
1563		if (entry) {
1564			unsigned int order = BITS_PER_LONG;
1565			if (last + 1)
1566				order = __ffs(last + 1);
1567			xas_set_order(&xas, last, order);
1568			xas_create(&xas, true);
1569			if (xas_error(&xas))
1570				goto unlock;
1571		}
1572		do {
1573			xas_set_range(&xas, first, last);
1574			xas_store(&xas, entry);
1575			if (xas_error(&xas))
1576				goto unlock;
1577			first += xas_size(&xas);
1578		} while (first <= last);
1579unlock:
1580		xas_unlock(&xas);
1581	} while (xas_nomem(&xas, gfp));
1582
1583	return xas_result(&xas, NULL);
1584}
1585EXPORT_SYMBOL(xa_store_range);
1586#endif /* CONFIG_XARRAY_MULTI */
1587
1588/**
1589 * __xa_alloc() - Find somewhere to store this entry in the XArray.
1590 * @xa: XArray.
1591 * @id: Pointer to ID.
1592 * @limit: Range for allocated ID.
1593 * @entry: New entry.
1594 * @gfp: Memory allocation flags.
1595 *
1596 * Finds an empty entry in @xa between @limit.min and @limit.max,
1597 * stores the index into the @id pointer, then stores the entry at
1598 * that index.  A concurrent lookup will not see an uninitialised @id.
1599 *
1600 * Context: Any context.  Expects xa_lock to be held on entry.  May
1601 * release and reacquire xa_lock if @gfp flags permit.
1602 * Return: 0 on success, -ENOMEM if memory could not be allocated or
1603 * -EBUSY if there are no free entries in @limit.
1604 */
1605int __xa_alloc(struct xarray *xa, u32 *id, void *entry,
1606		struct xa_limit limit, gfp_t gfp)
1607{
1608	XA_STATE(xas, xa, 0);
1609
1610	if (WARN_ON_ONCE(xa_is_advanced(entry)))
1611		return -EINVAL;
1612	if (WARN_ON_ONCE(!xa_track_free(xa)))
1613		return -EINVAL;
1614
1615	if (!entry)
1616		entry = XA_ZERO_ENTRY;
1617
1618	do {
1619		xas.xa_index = limit.min;
1620		xas_find_marked(&xas, limit.max, XA_FREE_MARK);
1621		if (xas.xa_node == XAS_RESTART)
1622			xas_set_err(&xas, -EBUSY);
1623		else
1624			*id = xas.xa_index;
1625		xas_store(&xas, entry);
1626		xas_clear_mark(&xas, XA_FREE_MARK);
1627	} while (__xas_nomem(&xas, gfp));
1628
1629	return xas_error(&xas);
1630}
1631EXPORT_SYMBOL(__xa_alloc);
1632
1633/**
1634 * __xa_alloc_cyclic() - Find somewhere to store this entry in the XArray.
1635 * @xa: XArray.
1636 * @id: Pointer to ID.
1637 * @entry: New entry.
1638 * @limit: Range of allocated ID.
1639 * @next: Pointer to next ID to allocate.
1640 * @gfp: Memory allocation flags.
1641 *
1642 * Finds an empty entry in @xa between @limit.min and @limit.max,
1643 * stores the index into the @id pointer, then stores the entry at
1644 * that index.  A concurrent lookup will not see an uninitialised @id.
1645 * The search for an empty entry will start at @next and will wrap
1646 * around if necessary.
1647 *
1648 * Context: Any context.  Expects xa_lock to be held on entry.  May
1649 * release and reacquire xa_lock if @gfp flags permit.
1650 * Return: 0 if the allocation succeeded without wrapping.  1 if the
1651 * allocation succeeded after wrapping, -ENOMEM if memory could not be
1652 * allocated or -EBUSY if there are no free entries in @limit.
1653 */
1654int __xa_alloc_cyclic(struct xarray *xa, u32 *id, void *entry,
1655		struct xa_limit limit, u32 *next, gfp_t gfp)
1656{
1657	u32 min = limit.min;
1658	int ret;
1659
1660	limit.min = max(min, *next);
1661	ret = __xa_alloc(xa, id, entry, limit, gfp);
1662	if ((xa->xa_flags & XA_FLAGS_ALLOC_WRAPPED) && ret == 0) {
1663		xa->xa_flags &= ~XA_FLAGS_ALLOC_WRAPPED;
1664		ret = 1;
1665	}
1666
1667	if (ret < 0 && limit.min > min) {
1668		limit.min = min;
1669		ret = __xa_alloc(xa, id, entry, limit, gfp);
1670		if (ret == 0)
1671			ret = 1;
1672	}
1673
1674	if (ret >= 0) {
1675		*next = *id + 1;
1676		if (*next == 0)
1677			xa->xa_flags |= XA_FLAGS_ALLOC_WRAPPED;
1678	}
1679	return ret;
1680}
1681EXPORT_SYMBOL(__xa_alloc_cyclic);
1682
1683/**
1684 * __xa_set_mark() - Set this mark on this entry while locked.
1685 * @xa: XArray.
1686 * @index: Index of entry.
1687 * @mark: Mark number.
1688 *
1689 * Attempting to set a mark on a %NULL entry does not succeed.
1690 *
1691 * Context: Any context.  Expects xa_lock to be held on entry.
1692 */
1693void __xa_set_mark(struct xarray *xa, unsigned long index, xa_mark_t mark)
1694{
1695	XA_STATE(xas, xa, index);
1696	void *entry = xas_load(&xas);
1697
1698	if (entry)
1699		xas_set_mark(&xas, mark);
1700}
1701EXPORT_SYMBOL(__xa_set_mark);
1702
1703/**
1704 * __xa_clear_mark() - Clear this mark on this entry while locked.
1705 * @xa: XArray.
1706 * @index: Index of entry.
1707 * @mark: Mark number.
1708 *
1709 * Context: Any context.  Expects xa_lock to be held on entry.
1710 */
1711void __xa_clear_mark(struct xarray *xa, unsigned long index, xa_mark_t mark)
1712{
1713	XA_STATE(xas, xa, index);
1714	void *entry = xas_load(&xas);
1715
1716	if (entry)
1717		xas_clear_mark(&xas, mark);
1718}
1719EXPORT_SYMBOL(__xa_clear_mark);
1720
1721/**
1722 * xa_get_mark() - Inquire whether this mark is set on this entry.
1723 * @xa: XArray.
1724 * @index: Index of entry.
1725 * @mark: Mark number.
1726 *
1727 * This function uses the RCU read lock, so the result may be out of date
1728 * by the time it returns.  If you need the result to be stable, use a lock.
1729 *
1730 * Context: Any context.  Takes and releases the RCU lock.
1731 * Return: True if the entry at @index has this mark set, false if it doesn't.
1732 */
1733bool xa_get_mark(struct xarray *xa, unsigned long index, xa_mark_t mark)
1734{
1735	XA_STATE(xas, xa, index);
1736	void *entry;
1737
1738	rcu_read_lock();
1739	entry = xas_start(&xas);
1740	while (xas_get_mark(&xas, mark)) {
1741		if (!xa_is_node(entry))
1742			goto found;
1743		entry = xas_descend(&xas, xa_to_node(entry));
1744	}
1745	rcu_read_unlock();
1746	return false;
1747 found:
1748	rcu_read_unlock();
1749	return true;
1750}
1751EXPORT_SYMBOL(xa_get_mark);
1752
1753/**
1754 * xa_set_mark() - Set this mark on this entry.
1755 * @xa: XArray.
1756 * @index: Index of entry.
1757 * @mark: Mark number.
1758 *
1759 * Attempting to set a mark on a %NULL entry does not succeed.
1760 *
1761 * Context: Process context.  Takes and releases the xa_lock.
1762 */
1763void xa_set_mark(struct xarray *xa, unsigned long index, xa_mark_t mark)
1764{
1765	xa_lock(xa);
1766	__xa_set_mark(xa, index, mark);
1767	xa_unlock(xa);
1768}
1769EXPORT_SYMBOL(xa_set_mark);
1770
1771/**
1772 * xa_clear_mark() - Clear this mark on this entry.
1773 * @xa: XArray.
1774 * @index: Index of entry.
1775 * @mark: Mark number.
1776 *
1777 * Clearing a mark always succeeds.
1778 *
1779 * Context: Process context.  Takes and releases the xa_lock.
1780 */
1781void xa_clear_mark(struct xarray *xa, unsigned long index, xa_mark_t mark)
1782{
1783	xa_lock(xa);
1784	__xa_clear_mark(xa, index, mark);
1785	xa_unlock(xa);
1786}
1787EXPORT_SYMBOL(xa_clear_mark);
1788
1789/**
1790 * xa_find() - Search the XArray for an entry.
1791 * @xa: XArray.
1792 * @indexp: Pointer to an index.
1793 * @max: Maximum index to search to.
1794 * @filter: Selection criterion.
1795 *
1796 * Finds the entry in @xa which matches the @filter, and has the lowest
1797 * index that is at least @indexp and no more than @max.
1798 * If an entry is found, @indexp is updated to be the index of the entry.
1799 * This function is protected by the RCU read lock, so it may not find
1800 * entries which are being simultaneously added.  It will not return an
1801 * %XA_RETRY_ENTRY; if you need to see retry entries, use xas_find().
1802 *
1803 * Context: Any context.  Takes and releases the RCU lock.
1804 * Return: The entry, if found, otherwise %NULL.
1805 */
1806void *xa_find(struct xarray *xa, unsigned long *indexp,
1807			unsigned long max, xa_mark_t filter)
1808{
1809	XA_STATE(xas, xa, *indexp);
1810	void *entry;
1811
1812	rcu_read_lock();
1813	do {
1814		if ((__force unsigned int)filter < XA_MAX_MARKS)
1815			entry = xas_find_marked(&xas, max, filter);
1816		else
1817			entry = xas_find(&xas, max);
1818	} while (xas_retry(&xas, entry));
1819	rcu_read_unlock();
1820
1821	if (entry)
1822		*indexp = xas.xa_index;
1823	return entry;
1824}
1825EXPORT_SYMBOL(xa_find);
1826
1827/**
1828 * xa_find_after() - Search the XArray for a present entry.
1829 * @xa: XArray.
1830 * @indexp: Pointer to an index.
1831 * @max: Maximum index to search to.
1832 * @filter: Selection criterion.
1833 *
1834 * Finds the entry in @xa which matches the @filter and has the lowest
1835 * index that is above @indexp and no more than @max.
1836 * If an entry is found, @indexp is updated to be the index of the entry.
1837 * This function is protected by the RCU read lock, so it may miss entries
1838 * which are being simultaneously added.  It will not return an
1839 * %XA_RETRY_ENTRY; if you need to see retry entries, use xas_find().
1840 *
1841 * Context: Any context.  Takes and releases the RCU lock.
1842 * Return: The pointer, if found, otherwise %NULL.
1843 */
1844void *xa_find_after(struct xarray *xa, unsigned long *indexp,
1845			unsigned long max, xa_mark_t filter)
1846{
1847	XA_STATE(xas, xa, *indexp + 1);
1848	void *entry;
1849
1850	rcu_read_lock();
1851	for (;;) {
1852		if ((__force unsigned int)filter < XA_MAX_MARKS)
1853			entry = xas_find_marked(&xas, max, filter);
1854		else
1855			entry = xas_find(&xas, max);
1856		if (xas.xa_node == XAS_BOUNDS)
1857			break;
1858		if (xas.xa_shift) {
1859			if (xas.xa_index & ((1UL << xas.xa_shift) - 1))
1860				continue;
1861		} else {
1862			if (xas.xa_offset < (xas.xa_index & XA_CHUNK_MASK))
1863				continue;
1864		}
1865		if (!xas_retry(&xas, entry))
1866			break;
1867	}
1868	rcu_read_unlock();
1869
1870	if (entry)
1871		*indexp = xas.xa_index;
1872	return entry;
1873}
1874EXPORT_SYMBOL(xa_find_after);
1875
1876static unsigned int xas_extract_present(struct xa_state *xas, void **dst,
1877			unsigned long max, unsigned int n)
1878{
1879	void *entry;
1880	unsigned int i = 0;
1881
1882	rcu_read_lock();
1883	xas_for_each(xas, entry, max) {
1884		if (xas_retry(xas, entry))
1885			continue;
1886		dst[i++] = entry;
1887		if (i == n)
1888			break;
1889	}
1890	rcu_read_unlock();
1891
1892	return i;
1893}
1894
1895static unsigned int xas_extract_marked(struct xa_state *xas, void **dst,
1896			unsigned long max, unsigned int n, xa_mark_t mark)
1897{
1898	void *entry;
1899	unsigned int i = 0;
1900
1901	rcu_read_lock();
1902	xas_for_each_marked(xas, entry, max, mark) {
1903		if (xas_retry(xas, entry))
1904			continue;
1905		dst[i++] = entry;
1906		if (i == n)
1907			break;
1908	}
1909	rcu_read_unlock();
1910
1911	return i;
1912}
1913
1914/**
1915 * xa_extract() - Copy selected entries from the XArray into a normal array.
1916 * @xa: The source XArray to copy from.
1917 * @dst: The buffer to copy entries into.
1918 * @start: The first index in the XArray eligible to be selected.
1919 * @max: The last index in the XArray eligible to be selected.
1920 * @n: The maximum number of entries to copy.
1921 * @filter: Selection criterion.
1922 *
1923 * Copies up to @n entries that match @filter from the XArray.  The
1924 * copied entries will have indices between @start and @max, inclusive.
1925 *
1926 * The @filter may be an XArray mark value, in which case entries which are
1927 * marked with that mark will be copied.  It may also be %XA_PRESENT, in
1928 * which case all entries which are not %NULL will be copied.
1929 *
1930 * The entries returned may not represent a snapshot of the XArray at a
1931 * moment in time.  For example, if another thread stores to index 5, then
1932 * index 10, calling xa_extract() may return the old contents of index 5
1933 * and the new contents of index 10.  Indices not modified while this
1934 * function is running will not be skipped.
1935 *
1936 * If you need stronger guarantees, holding the xa_lock across calls to this
1937 * function will prevent concurrent modification.
1938 *
1939 * Context: Any context.  Takes and releases the RCU lock.
1940 * Return: The number of entries copied.
1941 */
1942unsigned int xa_extract(struct xarray *xa, void **dst, unsigned long start,
1943			unsigned long max, unsigned int n, xa_mark_t filter)
1944{
1945	XA_STATE(xas, xa, start);
1946
1947	if (!n)
1948		return 0;
1949
1950	if ((__force unsigned int)filter < XA_MAX_MARKS)
1951		return xas_extract_marked(&xas, dst, max, n, filter);
1952	return xas_extract_present(&xas, dst, max, n);
1953}
1954EXPORT_SYMBOL(xa_extract);
1955
1956/**
1957 * xa_destroy() - Free all internal data structures.
1958 * @xa: XArray.
1959 *
1960 * After calling this function, the XArray is empty and has freed all memory
1961 * allocated for its internal data structures.  You are responsible for
1962 * freeing the objects referenced by the XArray.
1963 *
1964 * Context: Any context.  Takes and releases the xa_lock, interrupt-safe.
1965 */
1966void xa_destroy(struct xarray *xa)
1967{
1968	XA_STATE(xas, xa, 0);
1969	unsigned long flags;
1970	void *entry;
1971
1972	xas.xa_node = NULL;
1973	xas_lock_irqsave(&xas, flags);
1974	entry = xa_head_locked(xa);
1975	RCU_INIT_POINTER(xa->xa_head, NULL);
1976	xas_init_marks(&xas);
1977	if (xa_zero_busy(xa))
1978		xa_mark_clear(xa, XA_FREE_MARK);
1979	/* lockdep checks we're still holding the lock in xas_free_nodes() */
1980	if (xa_is_node(entry))
1981		xas_free_nodes(&xas, xa_to_node(entry));
1982	xas_unlock_irqrestore(&xas, flags);
1983}
1984EXPORT_SYMBOL(xa_destroy);
1985
1986#ifdef XA_DEBUG
1987void xa_dump_node(const struct xa_node *node)
1988{
1989	unsigned i, j;
1990
1991	if (!node)
1992		return;
1993	if ((unsigned long)node & 3) {
1994		pr_cont("node %px\n", node);
1995		return;
1996	}
1997
1998	pr_cont("node %px %s %d parent %px shift %d count %d values %d "
1999		"array %px list %px %px marks",
2000		node, node->parent ? "offset" : "max", node->offset,
2001		node->parent, node->shift, node->count, node->nr_values,
2002		node->array, node->private_list.prev, node->private_list.next);
2003	for (i = 0; i < XA_MAX_MARKS; i++)
2004		for (j = 0; j < XA_MARK_LONGS; j++)
2005			pr_cont(" %lx", node->marks[i][j]);
2006	pr_cont("\n");
2007}
2008
2009void xa_dump_index(unsigned long index, unsigned int shift)
2010{
2011	if (!shift)
2012		pr_info("%lu: ", index);
2013	else if (shift >= BITS_PER_LONG)
2014		pr_info("0-%lu: ", ~0UL);
2015	else
2016		pr_info("%lu-%lu: ", index, index | ((1UL << shift) - 1));
2017}
2018
2019void xa_dump_entry(const void *entry, unsigned long index, unsigned long shift)
2020{
2021	if (!entry)
2022		return;
2023
2024	xa_dump_index(index, shift);
2025
2026	if (xa_is_node(entry)) {
2027		if (shift == 0) {
2028			pr_cont("%px\n", entry);
2029		} else {
2030			unsigned long i;
2031			struct xa_node *node = xa_to_node(entry);
2032			xa_dump_node(node);
2033			for (i = 0; i < XA_CHUNK_SIZE; i++)
2034				xa_dump_entry(node->slots[i],
2035				      index + (i << node->shift), node->shift);
2036		}
2037	} else if (xa_is_value(entry))
2038		pr_cont("value %ld (0x%lx) [%px]\n", xa_to_value(entry),
2039						xa_to_value(entry), entry);
2040	else if (!xa_is_internal(entry))
2041		pr_cont("%px\n", entry);
2042	else if (xa_is_retry(entry))
2043		pr_cont("retry (%ld)\n", xa_to_internal(entry));
2044	else if (xa_is_sibling(entry))
2045		pr_cont("sibling (slot %ld)\n", xa_to_sibling(entry));
2046	else if (xa_is_zero(entry))
2047		pr_cont("zero (%ld)\n", xa_to_internal(entry));
2048	else
2049		pr_cont("UNKNOWN ENTRY (%px)\n", entry);
2050}
2051
2052void xa_dump(const struct xarray *xa)
2053{
2054	void *entry = xa->xa_head;
2055	unsigned int shift = 0;
2056
2057	pr_info("xarray: %px head %px flags %x marks %d %d %d\n", xa, entry,
2058			xa->xa_flags, xa_marked(xa, XA_MARK_0),
2059			xa_marked(xa, XA_MARK_1), xa_marked(xa, XA_MARK_2));
2060	if (xa_is_node(entry))
2061		shift = xa_to_node(entry)->shift + XA_CHUNK_SHIFT;
2062	xa_dump_entry(entry, 0, shift);
2063}
2064#endif