Loading...
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19#include <linux/fs.h>
20#include <linux/slab.h>
21#include <linux/sched.h>
22#include <linux/writeback.h>
23#include <linux/pagemap.h>
24#include <linux/blkdev.h>
25#include <linux/uuid.h>
26#include "ctree.h"
27#include "disk-io.h"
28#include "transaction.h"
29#include "locking.h"
30#include "tree-log.h"
31#include "inode-map.h"
32#include "volumes.h"
33#include "dev-replace.h"
34
35#define BTRFS_ROOT_TRANS_TAG 0
36
37static unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
38 [TRANS_STATE_RUNNING] = 0U,
39 [TRANS_STATE_BLOCKED] = (__TRANS_USERSPACE |
40 __TRANS_START),
41 [TRANS_STATE_COMMIT_START] = (__TRANS_USERSPACE |
42 __TRANS_START |
43 __TRANS_ATTACH),
44 [TRANS_STATE_COMMIT_DOING] = (__TRANS_USERSPACE |
45 __TRANS_START |
46 __TRANS_ATTACH |
47 __TRANS_JOIN),
48 [TRANS_STATE_UNBLOCKED] = (__TRANS_USERSPACE |
49 __TRANS_START |
50 __TRANS_ATTACH |
51 __TRANS_JOIN |
52 __TRANS_JOIN_NOLOCK),
53 [TRANS_STATE_COMPLETED] = (__TRANS_USERSPACE |
54 __TRANS_START |
55 __TRANS_ATTACH |
56 __TRANS_JOIN |
57 __TRANS_JOIN_NOLOCK),
58};
59
60void btrfs_put_transaction(struct btrfs_transaction *transaction)
61{
62 WARN_ON(atomic_read(&transaction->use_count) == 0);
63 if (atomic_dec_and_test(&transaction->use_count)) {
64 BUG_ON(!list_empty(&transaction->list));
65 WARN_ON(!RB_EMPTY_ROOT(&transaction->delayed_refs.href_root));
66 while (!list_empty(&transaction->pending_chunks)) {
67 struct extent_map *em;
68
69 em = list_first_entry(&transaction->pending_chunks,
70 struct extent_map, list);
71 list_del_init(&em->list);
72 free_extent_map(em);
73 }
74 kmem_cache_free(btrfs_transaction_cachep, transaction);
75 }
76}
77
78static noinline void switch_commit_roots(struct btrfs_transaction *trans,
79 struct btrfs_fs_info *fs_info)
80{
81 struct btrfs_root *root, *tmp;
82
83 down_write(&fs_info->commit_root_sem);
84 list_for_each_entry_safe(root, tmp, &trans->switch_commits,
85 dirty_list) {
86 list_del_init(&root->dirty_list);
87 free_extent_buffer(root->commit_root);
88 root->commit_root = btrfs_root_node(root);
89 if (is_fstree(root->objectid))
90 btrfs_unpin_free_ino(root);
91 }
92 up_write(&fs_info->commit_root_sem);
93}
94
95static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
96 unsigned int type)
97{
98 if (type & TRANS_EXTWRITERS)
99 atomic_inc(&trans->num_extwriters);
100}
101
102static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
103 unsigned int type)
104{
105 if (type & TRANS_EXTWRITERS)
106 atomic_dec(&trans->num_extwriters);
107}
108
109static inline void extwriter_counter_init(struct btrfs_transaction *trans,
110 unsigned int type)
111{
112 atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
113}
114
115static inline int extwriter_counter_read(struct btrfs_transaction *trans)
116{
117 return atomic_read(&trans->num_extwriters);
118}
119
120/*
121 * either allocate a new transaction or hop into the existing one
122 */
123static noinline int join_transaction(struct btrfs_root *root, unsigned int type)
124{
125 struct btrfs_transaction *cur_trans;
126 struct btrfs_fs_info *fs_info = root->fs_info;
127
128 spin_lock(&fs_info->trans_lock);
129loop:
130 /* The file system has been taken offline. No new transactions. */
131 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
132 spin_unlock(&fs_info->trans_lock);
133 return -EROFS;
134 }
135
136 cur_trans = fs_info->running_transaction;
137 if (cur_trans) {
138 if (cur_trans->aborted) {
139 spin_unlock(&fs_info->trans_lock);
140 return cur_trans->aborted;
141 }
142 if (btrfs_blocked_trans_types[cur_trans->state] & type) {
143 spin_unlock(&fs_info->trans_lock);
144 return -EBUSY;
145 }
146 atomic_inc(&cur_trans->use_count);
147 atomic_inc(&cur_trans->num_writers);
148 extwriter_counter_inc(cur_trans, type);
149 spin_unlock(&fs_info->trans_lock);
150 return 0;
151 }
152 spin_unlock(&fs_info->trans_lock);
153
154 /*
155 * If we are ATTACH, we just want to catch the current transaction,
156 * and commit it. If there is no transaction, just return ENOENT.
157 */
158 if (type == TRANS_ATTACH)
159 return -ENOENT;
160
161 /*
162 * JOIN_NOLOCK only happens during the transaction commit, so
163 * it is impossible that ->running_transaction is NULL
164 */
165 BUG_ON(type == TRANS_JOIN_NOLOCK);
166
167 cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS);
168 if (!cur_trans)
169 return -ENOMEM;
170
171 spin_lock(&fs_info->trans_lock);
172 if (fs_info->running_transaction) {
173 /*
174 * someone started a transaction after we unlocked. Make sure
175 * to redo the checks above
176 */
177 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
178 goto loop;
179 } else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
180 spin_unlock(&fs_info->trans_lock);
181 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
182 return -EROFS;
183 }
184
185 atomic_set(&cur_trans->num_writers, 1);
186 extwriter_counter_init(cur_trans, type);
187 init_waitqueue_head(&cur_trans->writer_wait);
188 init_waitqueue_head(&cur_trans->commit_wait);
189 cur_trans->state = TRANS_STATE_RUNNING;
190 /*
191 * One for this trans handle, one so it will live on until we
192 * commit the transaction.
193 */
194 atomic_set(&cur_trans->use_count, 2);
195 cur_trans->start_time = get_seconds();
196
197 cur_trans->delayed_refs.href_root = RB_ROOT;
198 atomic_set(&cur_trans->delayed_refs.num_entries, 0);
199 cur_trans->delayed_refs.num_heads_ready = 0;
200 cur_trans->delayed_refs.num_heads = 0;
201 cur_trans->delayed_refs.flushing = 0;
202 cur_trans->delayed_refs.run_delayed_start = 0;
203
204 /*
205 * although the tree mod log is per file system and not per transaction,
206 * the log must never go across transaction boundaries.
207 */
208 smp_mb();
209 if (!list_empty(&fs_info->tree_mod_seq_list))
210 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when "
211 "creating a fresh transaction\n");
212 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
213 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when "
214 "creating a fresh transaction\n");
215 atomic64_set(&fs_info->tree_mod_seq, 0);
216
217 spin_lock_init(&cur_trans->delayed_refs.lock);
218
219 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
220 INIT_LIST_HEAD(&cur_trans->ordered_operations);
221 INIT_LIST_HEAD(&cur_trans->pending_chunks);
222 INIT_LIST_HEAD(&cur_trans->switch_commits);
223 list_add_tail(&cur_trans->list, &fs_info->trans_list);
224 extent_io_tree_init(&cur_trans->dirty_pages,
225 fs_info->btree_inode->i_mapping);
226 fs_info->generation++;
227 cur_trans->transid = fs_info->generation;
228 fs_info->running_transaction = cur_trans;
229 cur_trans->aborted = 0;
230 spin_unlock(&fs_info->trans_lock);
231
232 return 0;
233}
234
235/*
236 * this does all the record keeping required to make sure that a reference
237 * counted root is properly recorded in a given transaction. This is required
238 * to make sure the old root from before we joined the transaction is deleted
239 * when the transaction commits
240 */
241static int record_root_in_trans(struct btrfs_trans_handle *trans,
242 struct btrfs_root *root)
243{
244 if (root->ref_cows && root->last_trans < trans->transid) {
245 WARN_ON(root == root->fs_info->extent_root);
246 WARN_ON(root->commit_root != root->node);
247
248 /*
249 * see below for in_trans_setup usage rules
250 * we have the reloc mutex held now, so there
251 * is only one writer in this function
252 */
253 root->in_trans_setup = 1;
254
255 /* make sure readers find in_trans_setup before
256 * they find our root->last_trans update
257 */
258 smp_wmb();
259
260 spin_lock(&root->fs_info->fs_roots_radix_lock);
261 if (root->last_trans == trans->transid) {
262 spin_unlock(&root->fs_info->fs_roots_radix_lock);
263 return 0;
264 }
265 radix_tree_tag_set(&root->fs_info->fs_roots_radix,
266 (unsigned long)root->root_key.objectid,
267 BTRFS_ROOT_TRANS_TAG);
268 spin_unlock(&root->fs_info->fs_roots_radix_lock);
269 root->last_trans = trans->transid;
270
271 /* this is pretty tricky. We don't want to
272 * take the relocation lock in btrfs_record_root_in_trans
273 * unless we're really doing the first setup for this root in
274 * this transaction.
275 *
276 * Normally we'd use root->last_trans as a flag to decide
277 * if we want to take the expensive mutex.
278 *
279 * But, we have to set root->last_trans before we
280 * init the relocation root, otherwise, we trip over warnings
281 * in ctree.c. The solution used here is to flag ourselves
282 * with root->in_trans_setup. When this is 1, we're still
283 * fixing up the reloc trees and everyone must wait.
284 *
285 * When this is zero, they can trust root->last_trans and fly
286 * through btrfs_record_root_in_trans without having to take the
287 * lock. smp_wmb() makes sure that all the writes above are
288 * done before we pop in the zero below
289 */
290 btrfs_init_reloc_root(trans, root);
291 smp_wmb();
292 root->in_trans_setup = 0;
293 }
294 return 0;
295}
296
297
298int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
299 struct btrfs_root *root)
300{
301 if (!root->ref_cows)
302 return 0;
303
304 /*
305 * see record_root_in_trans for comments about in_trans_setup usage
306 * and barriers
307 */
308 smp_rmb();
309 if (root->last_trans == trans->transid &&
310 !root->in_trans_setup)
311 return 0;
312
313 mutex_lock(&root->fs_info->reloc_mutex);
314 record_root_in_trans(trans, root);
315 mutex_unlock(&root->fs_info->reloc_mutex);
316
317 return 0;
318}
319
320static inline int is_transaction_blocked(struct btrfs_transaction *trans)
321{
322 return (trans->state >= TRANS_STATE_BLOCKED &&
323 trans->state < TRANS_STATE_UNBLOCKED &&
324 !trans->aborted);
325}
326
327/* wait for commit against the current transaction to become unblocked
328 * when this is done, it is safe to start a new transaction, but the current
329 * transaction might not be fully on disk.
330 */
331static void wait_current_trans(struct btrfs_root *root)
332{
333 struct btrfs_transaction *cur_trans;
334
335 spin_lock(&root->fs_info->trans_lock);
336 cur_trans = root->fs_info->running_transaction;
337 if (cur_trans && is_transaction_blocked(cur_trans)) {
338 atomic_inc(&cur_trans->use_count);
339 spin_unlock(&root->fs_info->trans_lock);
340
341 wait_event(root->fs_info->transaction_wait,
342 cur_trans->state >= TRANS_STATE_UNBLOCKED ||
343 cur_trans->aborted);
344 btrfs_put_transaction(cur_trans);
345 } else {
346 spin_unlock(&root->fs_info->trans_lock);
347 }
348}
349
350static int may_wait_transaction(struct btrfs_root *root, int type)
351{
352 if (root->fs_info->log_root_recovering)
353 return 0;
354
355 if (type == TRANS_USERSPACE)
356 return 1;
357
358 if (type == TRANS_START &&
359 !atomic_read(&root->fs_info->open_ioctl_trans))
360 return 1;
361
362 return 0;
363}
364
365static inline bool need_reserve_reloc_root(struct btrfs_root *root)
366{
367 if (!root->fs_info->reloc_ctl ||
368 !root->ref_cows ||
369 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
370 root->reloc_root)
371 return false;
372
373 return true;
374}
375
376static struct btrfs_trans_handle *
377start_transaction(struct btrfs_root *root, u64 num_items, unsigned int type,
378 enum btrfs_reserve_flush_enum flush)
379{
380 struct btrfs_trans_handle *h;
381 struct btrfs_transaction *cur_trans;
382 u64 num_bytes = 0;
383 u64 qgroup_reserved = 0;
384 bool reloc_reserved = false;
385 int ret;
386
387 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
388 return ERR_PTR(-EROFS);
389
390 if (current->journal_info &&
391 current->journal_info != (void *)BTRFS_SEND_TRANS_STUB) {
392 WARN_ON(type & TRANS_EXTWRITERS);
393 h = current->journal_info;
394 h->use_count++;
395 WARN_ON(h->use_count > 2);
396 h->orig_rsv = h->block_rsv;
397 h->block_rsv = NULL;
398 goto got_it;
399 }
400
401 /*
402 * Do the reservation before we join the transaction so we can do all
403 * the appropriate flushing if need be.
404 */
405 if (num_items > 0 && root != root->fs_info->chunk_root) {
406 if (root->fs_info->quota_enabled &&
407 is_fstree(root->root_key.objectid)) {
408 qgroup_reserved = num_items * root->leafsize;
409 ret = btrfs_qgroup_reserve(root, qgroup_reserved);
410 if (ret)
411 return ERR_PTR(ret);
412 }
413
414 num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
415 /*
416 * Do the reservation for the relocation root creation
417 */
418 if (unlikely(need_reserve_reloc_root(root))) {
419 num_bytes += root->nodesize;
420 reloc_reserved = true;
421 }
422
423 ret = btrfs_block_rsv_add(root,
424 &root->fs_info->trans_block_rsv,
425 num_bytes, flush);
426 if (ret)
427 goto reserve_fail;
428 }
429again:
430 h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
431 if (!h) {
432 ret = -ENOMEM;
433 goto alloc_fail;
434 }
435
436 /*
437 * If we are JOIN_NOLOCK we're already committing a transaction and
438 * waiting on this guy, so we don't need to do the sb_start_intwrite
439 * because we're already holding a ref. We need this because we could
440 * have raced in and did an fsync() on a file which can kick a commit
441 * and then we deadlock with somebody doing a freeze.
442 *
443 * If we are ATTACH, it means we just want to catch the current
444 * transaction and commit it, so we needn't do sb_start_intwrite().
445 */
446 if (type & __TRANS_FREEZABLE)
447 sb_start_intwrite(root->fs_info->sb);
448
449 if (may_wait_transaction(root, type))
450 wait_current_trans(root);
451
452 do {
453 ret = join_transaction(root, type);
454 if (ret == -EBUSY) {
455 wait_current_trans(root);
456 if (unlikely(type == TRANS_ATTACH))
457 ret = -ENOENT;
458 }
459 } while (ret == -EBUSY);
460
461 if (ret < 0) {
462 /* We must get the transaction if we are JOIN_NOLOCK. */
463 BUG_ON(type == TRANS_JOIN_NOLOCK);
464 goto join_fail;
465 }
466
467 cur_trans = root->fs_info->running_transaction;
468
469 h->transid = cur_trans->transid;
470 h->transaction = cur_trans;
471 h->blocks_used = 0;
472 h->bytes_reserved = 0;
473 h->root = root;
474 h->delayed_ref_updates = 0;
475 h->use_count = 1;
476 h->adding_csums = 0;
477 h->block_rsv = NULL;
478 h->orig_rsv = NULL;
479 h->aborted = 0;
480 h->qgroup_reserved = 0;
481 h->delayed_ref_elem.seq = 0;
482 h->type = type;
483 h->allocating_chunk = false;
484 h->reloc_reserved = false;
485 h->sync = false;
486 INIT_LIST_HEAD(&h->qgroup_ref_list);
487 INIT_LIST_HEAD(&h->new_bgs);
488
489 smp_mb();
490 if (cur_trans->state >= TRANS_STATE_BLOCKED &&
491 may_wait_transaction(root, type)) {
492 btrfs_commit_transaction(h, root);
493 goto again;
494 }
495
496 if (num_bytes) {
497 trace_btrfs_space_reservation(root->fs_info, "transaction",
498 h->transid, num_bytes, 1);
499 h->block_rsv = &root->fs_info->trans_block_rsv;
500 h->bytes_reserved = num_bytes;
501 h->reloc_reserved = reloc_reserved;
502 }
503 h->qgroup_reserved = qgroup_reserved;
504
505got_it:
506 btrfs_record_root_in_trans(h, root);
507
508 if (!current->journal_info && type != TRANS_USERSPACE)
509 current->journal_info = h;
510 return h;
511
512join_fail:
513 if (type & __TRANS_FREEZABLE)
514 sb_end_intwrite(root->fs_info->sb);
515 kmem_cache_free(btrfs_trans_handle_cachep, h);
516alloc_fail:
517 if (num_bytes)
518 btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
519 num_bytes);
520reserve_fail:
521 if (qgroup_reserved)
522 btrfs_qgroup_free(root, qgroup_reserved);
523 return ERR_PTR(ret);
524}
525
526struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
527 int num_items)
528{
529 return start_transaction(root, num_items, TRANS_START,
530 BTRFS_RESERVE_FLUSH_ALL);
531}
532
533struct btrfs_trans_handle *btrfs_start_transaction_lflush(
534 struct btrfs_root *root, int num_items)
535{
536 return start_transaction(root, num_items, TRANS_START,
537 BTRFS_RESERVE_FLUSH_LIMIT);
538}
539
540struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
541{
542 return start_transaction(root, 0, TRANS_JOIN, 0);
543}
544
545struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
546{
547 return start_transaction(root, 0, TRANS_JOIN_NOLOCK, 0);
548}
549
550struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
551{
552 return start_transaction(root, 0, TRANS_USERSPACE, 0);
553}
554
555/*
556 * btrfs_attach_transaction() - catch the running transaction
557 *
558 * It is used when we want to commit the current the transaction, but
559 * don't want to start a new one.
560 *
561 * Note: If this function return -ENOENT, it just means there is no
562 * running transaction. But it is possible that the inactive transaction
563 * is still in the memory, not fully on disk. If you hope there is no
564 * inactive transaction in the fs when -ENOENT is returned, you should
565 * invoke
566 * btrfs_attach_transaction_barrier()
567 */
568struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
569{
570 return start_transaction(root, 0, TRANS_ATTACH, 0);
571}
572
573/*
574 * btrfs_attach_transaction_barrier() - catch the running transaction
575 *
576 * It is similar to the above function, the differentia is this one
577 * will wait for all the inactive transactions until they fully
578 * complete.
579 */
580struct btrfs_trans_handle *
581btrfs_attach_transaction_barrier(struct btrfs_root *root)
582{
583 struct btrfs_trans_handle *trans;
584
585 trans = start_transaction(root, 0, TRANS_ATTACH, 0);
586 if (IS_ERR(trans) && PTR_ERR(trans) == -ENOENT)
587 btrfs_wait_for_commit(root, 0);
588
589 return trans;
590}
591
592/* wait for a transaction commit to be fully complete */
593static noinline void wait_for_commit(struct btrfs_root *root,
594 struct btrfs_transaction *commit)
595{
596 wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED);
597}
598
599int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid)
600{
601 struct btrfs_transaction *cur_trans = NULL, *t;
602 int ret = 0;
603
604 if (transid) {
605 if (transid <= root->fs_info->last_trans_committed)
606 goto out;
607
608 ret = -EINVAL;
609 /* find specified transaction */
610 spin_lock(&root->fs_info->trans_lock);
611 list_for_each_entry(t, &root->fs_info->trans_list, list) {
612 if (t->transid == transid) {
613 cur_trans = t;
614 atomic_inc(&cur_trans->use_count);
615 ret = 0;
616 break;
617 }
618 if (t->transid > transid) {
619 ret = 0;
620 break;
621 }
622 }
623 spin_unlock(&root->fs_info->trans_lock);
624 /* The specified transaction doesn't exist */
625 if (!cur_trans)
626 goto out;
627 } else {
628 /* find newest transaction that is committing | committed */
629 spin_lock(&root->fs_info->trans_lock);
630 list_for_each_entry_reverse(t, &root->fs_info->trans_list,
631 list) {
632 if (t->state >= TRANS_STATE_COMMIT_START) {
633 if (t->state == TRANS_STATE_COMPLETED)
634 break;
635 cur_trans = t;
636 atomic_inc(&cur_trans->use_count);
637 break;
638 }
639 }
640 spin_unlock(&root->fs_info->trans_lock);
641 if (!cur_trans)
642 goto out; /* nothing committing|committed */
643 }
644
645 wait_for_commit(root, cur_trans);
646 btrfs_put_transaction(cur_trans);
647out:
648 return ret;
649}
650
651void btrfs_throttle(struct btrfs_root *root)
652{
653 if (!atomic_read(&root->fs_info->open_ioctl_trans))
654 wait_current_trans(root);
655}
656
657static int should_end_transaction(struct btrfs_trans_handle *trans,
658 struct btrfs_root *root)
659{
660 if (root->fs_info->global_block_rsv.space_info->full &&
661 btrfs_check_space_for_delayed_refs(trans, root))
662 return 1;
663
664 return !!btrfs_block_rsv_check(root, &root->fs_info->global_block_rsv, 5);
665}
666
667int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
668 struct btrfs_root *root)
669{
670 struct btrfs_transaction *cur_trans = trans->transaction;
671 int updates;
672 int err;
673
674 smp_mb();
675 if (cur_trans->state >= TRANS_STATE_BLOCKED ||
676 cur_trans->delayed_refs.flushing)
677 return 1;
678
679 updates = trans->delayed_ref_updates;
680 trans->delayed_ref_updates = 0;
681 if (updates) {
682 err = btrfs_run_delayed_refs(trans, root, updates);
683 if (err) /* Error code will also eval true */
684 return err;
685 }
686
687 return should_end_transaction(trans, root);
688}
689
690static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
691 struct btrfs_root *root, int throttle)
692{
693 struct btrfs_transaction *cur_trans = trans->transaction;
694 struct btrfs_fs_info *info = root->fs_info;
695 unsigned long cur = trans->delayed_ref_updates;
696 int lock = (trans->type != TRANS_JOIN_NOLOCK);
697 int err = 0;
698
699 if (trans->use_count > 1) {
700 trans->use_count--;
701 trans->block_rsv = trans->orig_rsv;
702 return 0;
703 }
704
705 /*
706 * do the qgroup accounting as early as possible
707 */
708 err = btrfs_delayed_refs_qgroup_accounting(trans, info);
709
710 btrfs_trans_release_metadata(trans, root);
711 trans->block_rsv = NULL;
712
713 if (trans->qgroup_reserved) {
714 /*
715 * the same root has to be passed here between start_transaction
716 * and end_transaction. Subvolume quota depends on this.
717 */
718 btrfs_qgroup_free(trans->root, trans->qgroup_reserved);
719 trans->qgroup_reserved = 0;
720 }
721
722 if (!list_empty(&trans->new_bgs))
723 btrfs_create_pending_block_groups(trans, root);
724
725 trans->delayed_ref_updates = 0;
726 if (!trans->sync && btrfs_should_throttle_delayed_refs(trans, root)) {
727 cur = max_t(unsigned long, cur, 32);
728 trans->delayed_ref_updates = 0;
729 btrfs_run_delayed_refs(trans, root, cur);
730 }
731
732 btrfs_trans_release_metadata(trans, root);
733 trans->block_rsv = NULL;
734
735 if (!list_empty(&trans->new_bgs))
736 btrfs_create_pending_block_groups(trans, root);
737
738 if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) &&
739 should_end_transaction(trans, root) &&
740 ACCESS_ONCE(cur_trans->state) == TRANS_STATE_RUNNING) {
741 spin_lock(&info->trans_lock);
742 if (cur_trans->state == TRANS_STATE_RUNNING)
743 cur_trans->state = TRANS_STATE_BLOCKED;
744 spin_unlock(&info->trans_lock);
745 }
746
747 if (lock && ACCESS_ONCE(cur_trans->state) == TRANS_STATE_BLOCKED) {
748 if (throttle)
749 return btrfs_commit_transaction(trans, root);
750 else
751 wake_up_process(info->transaction_kthread);
752 }
753
754 if (trans->type & __TRANS_FREEZABLE)
755 sb_end_intwrite(root->fs_info->sb);
756
757 WARN_ON(cur_trans != info->running_transaction);
758 WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
759 atomic_dec(&cur_trans->num_writers);
760 extwriter_counter_dec(cur_trans, trans->type);
761
762 smp_mb();
763 if (waitqueue_active(&cur_trans->writer_wait))
764 wake_up(&cur_trans->writer_wait);
765 btrfs_put_transaction(cur_trans);
766
767 if (current->journal_info == trans)
768 current->journal_info = NULL;
769
770 if (throttle)
771 btrfs_run_delayed_iputs(root);
772
773 if (trans->aborted ||
774 test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
775 wake_up_process(info->transaction_kthread);
776 err = -EIO;
777 }
778 assert_qgroups_uptodate(trans);
779
780 kmem_cache_free(btrfs_trans_handle_cachep, trans);
781 return err;
782}
783
784int btrfs_end_transaction(struct btrfs_trans_handle *trans,
785 struct btrfs_root *root)
786{
787 return __btrfs_end_transaction(trans, root, 0);
788}
789
790int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
791 struct btrfs_root *root)
792{
793 return __btrfs_end_transaction(trans, root, 1);
794}
795
796/*
797 * when btree blocks are allocated, they have some corresponding bits set for
798 * them in one of two extent_io trees. This is used to make sure all of
799 * those extents are sent to disk but does not wait on them
800 */
801int btrfs_write_marked_extents(struct btrfs_root *root,
802 struct extent_io_tree *dirty_pages, int mark)
803{
804 int err = 0;
805 int werr = 0;
806 struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
807 struct extent_state *cached_state = NULL;
808 u64 start = 0;
809 u64 end;
810
811 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
812 mark, &cached_state)) {
813 convert_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT,
814 mark, &cached_state, GFP_NOFS);
815 cached_state = NULL;
816 err = filemap_fdatawrite_range(mapping, start, end);
817 if (err)
818 werr = err;
819 cond_resched();
820 start = end + 1;
821 }
822 if (err)
823 werr = err;
824 return werr;
825}
826
827/*
828 * when btree blocks are allocated, they have some corresponding bits set for
829 * them in one of two extent_io trees. This is used to make sure all of
830 * those extents are on disk for transaction or log commit. We wait
831 * on all the pages and clear them from the dirty pages state tree
832 */
833int btrfs_wait_marked_extents(struct btrfs_root *root,
834 struct extent_io_tree *dirty_pages, int mark)
835{
836 int err = 0;
837 int werr = 0;
838 struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
839 struct extent_state *cached_state = NULL;
840 u64 start = 0;
841 u64 end;
842
843 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
844 EXTENT_NEED_WAIT, &cached_state)) {
845 clear_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT,
846 0, 0, &cached_state, GFP_NOFS);
847 err = filemap_fdatawait_range(mapping, start, end);
848 if (err)
849 werr = err;
850 cond_resched();
851 start = end + 1;
852 }
853 if (err)
854 werr = err;
855 return werr;
856}
857
858/*
859 * when btree blocks are allocated, they have some corresponding bits set for
860 * them in one of two extent_io trees. This is used to make sure all of
861 * those extents are on disk for transaction or log commit
862 */
863static int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
864 struct extent_io_tree *dirty_pages, int mark)
865{
866 int ret;
867 int ret2;
868 struct blk_plug plug;
869
870 blk_start_plug(&plug);
871 ret = btrfs_write_marked_extents(root, dirty_pages, mark);
872 blk_finish_plug(&plug);
873 ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
874
875 if (ret)
876 return ret;
877 if (ret2)
878 return ret2;
879 return 0;
880}
881
882int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
883 struct btrfs_root *root)
884{
885 if (!trans || !trans->transaction) {
886 struct inode *btree_inode;
887 btree_inode = root->fs_info->btree_inode;
888 return filemap_write_and_wait(btree_inode->i_mapping);
889 }
890 return btrfs_write_and_wait_marked_extents(root,
891 &trans->transaction->dirty_pages,
892 EXTENT_DIRTY);
893}
894
895/*
896 * this is used to update the root pointer in the tree of tree roots.
897 *
898 * But, in the case of the extent allocation tree, updating the root
899 * pointer may allocate blocks which may change the root of the extent
900 * allocation tree.
901 *
902 * So, this loops and repeats and makes sure the cowonly root didn't
903 * change while the root pointer was being updated in the metadata.
904 */
905static int update_cowonly_root(struct btrfs_trans_handle *trans,
906 struct btrfs_root *root)
907{
908 int ret;
909 u64 old_root_bytenr;
910 u64 old_root_used;
911 struct btrfs_root *tree_root = root->fs_info->tree_root;
912
913 old_root_used = btrfs_root_used(&root->root_item);
914 btrfs_write_dirty_block_groups(trans, root);
915
916 while (1) {
917 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
918 if (old_root_bytenr == root->node->start &&
919 old_root_used == btrfs_root_used(&root->root_item))
920 break;
921
922 btrfs_set_root_node(&root->root_item, root->node);
923 ret = btrfs_update_root(trans, tree_root,
924 &root->root_key,
925 &root->root_item);
926 if (ret)
927 return ret;
928
929 old_root_used = btrfs_root_used(&root->root_item);
930 ret = btrfs_write_dirty_block_groups(trans, root);
931 if (ret)
932 return ret;
933 }
934
935 return 0;
936}
937
938/*
939 * update all the cowonly tree roots on disk
940 *
941 * The error handling in this function may not be obvious. Any of the
942 * failures will cause the file system to go offline. We still need
943 * to clean up the delayed refs.
944 */
945static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
946 struct btrfs_root *root)
947{
948 struct btrfs_fs_info *fs_info = root->fs_info;
949 struct list_head *next;
950 struct extent_buffer *eb;
951 int ret;
952
953 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
954 if (ret)
955 return ret;
956
957 eb = btrfs_lock_root_node(fs_info->tree_root);
958 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
959 0, &eb);
960 btrfs_tree_unlock(eb);
961 free_extent_buffer(eb);
962
963 if (ret)
964 return ret;
965
966 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
967 if (ret)
968 return ret;
969
970 ret = btrfs_run_dev_stats(trans, root->fs_info);
971 if (ret)
972 return ret;
973 ret = btrfs_run_dev_replace(trans, root->fs_info);
974 if (ret)
975 return ret;
976 ret = btrfs_run_qgroups(trans, root->fs_info);
977 if (ret)
978 return ret;
979
980 /* run_qgroups might have added some more refs */
981 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
982 if (ret)
983 return ret;
984
985 while (!list_empty(&fs_info->dirty_cowonly_roots)) {
986 next = fs_info->dirty_cowonly_roots.next;
987 list_del_init(next);
988 root = list_entry(next, struct btrfs_root, dirty_list);
989
990 if (root != fs_info->extent_root)
991 list_add_tail(&root->dirty_list,
992 &trans->transaction->switch_commits);
993 ret = update_cowonly_root(trans, root);
994 if (ret)
995 return ret;
996 }
997
998 list_add_tail(&fs_info->extent_root->dirty_list,
999 &trans->transaction->switch_commits);
1000 btrfs_after_dev_replace_commit(fs_info);
1001
1002 return 0;
1003}
1004
1005/*
1006 * dead roots are old snapshots that need to be deleted. This allocates
1007 * a dirty root struct and adds it into the list of dead roots that need to
1008 * be deleted
1009 */
1010void btrfs_add_dead_root(struct btrfs_root *root)
1011{
1012 spin_lock(&root->fs_info->trans_lock);
1013 if (list_empty(&root->root_list))
1014 list_add_tail(&root->root_list, &root->fs_info->dead_roots);
1015 spin_unlock(&root->fs_info->trans_lock);
1016}
1017
1018/*
1019 * update all the cowonly tree roots on disk
1020 */
1021static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
1022 struct btrfs_root *root)
1023{
1024 struct btrfs_root *gang[8];
1025 struct btrfs_fs_info *fs_info = root->fs_info;
1026 int i;
1027 int ret;
1028 int err = 0;
1029
1030 spin_lock(&fs_info->fs_roots_radix_lock);
1031 while (1) {
1032 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1033 (void **)gang, 0,
1034 ARRAY_SIZE(gang),
1035 BTRFS_ROOT_TRANS_TAG);
1036 if (ret == 0)
1037 break;
1038 for (i = 0; i < ret; i++) {
1039 root = gang[i];
1040 radix_tree_tag_clear(&fs_info->fs_roots_radix,
1041 (unsigned long)root->root_key.objectid,
1042 BTRFS_ROOT_TRANS_TAG);
1043 spin_unlock(&fs_info->fs_roots_radix_lock);
1044
1045 btrfs_free_log(trans, root);
1046 btrfs_update_reloc_root(trans, root);
1047 btrfs_orphan_commit_root(trans, root);
1048
1049 btrfs_save_ino_cache(root, trans);
1050
1051 /* see comments in should_cow_block() */
1052 root->force_cow = 0;
1053 smp_wmb();
1054
1055 if (root->commit_root != root->node) {
1056 list_add_tail(&root->dirty_list,
1057 &trans->transaction->switch_commits);
1058 btrfs_set_root_node(&root->root_item,
1059 root->node);
1060 }
1061
1062 err = btrfs_update_root(trans, fs_info->tree_root,
1063 &root->root_key,
1064 &root->root_item);
1065 spin_lock(&fs_info->fs_roots_radix_lock);
1066 if (err)
1067 break;
1068 }
1069 }
1070 spin_unlock(&fs_info->fs_roots_radix_lock);
1071 return err;
1072}
1073
1074/*
1075 * defrag a given btree.
1076 * Every leaf in the btree is read and defragged.
1077 */
1078int btrfs_defrag_root(struct btrfs_root *root)
1079{
1080 struct btrfs_fs_info *info = root->fs_info;
1081 struct btrfs_trans_handle *trans;
1082 int ret;
1083
1084 if (xchg(&root->defrag_running, 1))
1085 return 0;
1086
1087 while (1) {
1088 trans = btrfs_start_transaction(root, 0);
1089 if (IS_ERR(trans))
1090 return PTR_ERR(trans);
1091
1092 ret = btrfs_defrag_leaves(trans, root);
1093
1094 btrfs_end_transaction(trans, root);
1095 btrfs_btree_balance_dirty(info->tree_root);
1096 cond_resched();
1097
1098 if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN)
1099 break;
1100
1101 if (btrfs_defrag_cancelled(root->fs_info)) {
1102 pr_debug("BTRFS: defrag_root cancelled\n");
1103 ret = -EAGAIN;
1104 break;
1105 }
1106 }
1107 root->defrag_running = 0;
1108 return ret;
1109}
1110
1111/*
1112 * new snapshots need to be created at a very specific time in the
1113 * transaction commit. This does the actual creation.
1114 *
1115 * Note:
1116 * If the error which may affect the commitment of the current transaction
1117 * happens, we should return the error number. If the error which just affect
1118 * the creation of the pending snapshots, just return 0.
1119 */
1120static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1121 struct btrfs_fs_info *fs_info,
1122 struct btrfs_pending_snapshot *pending)
1123{
1124 struct btrfs_key key;
1125 struct btrfs_root_item *new_root_item;
1126 struct btrfs_root *tree_root = fs_info->tree_root;
1127 struct btrfs_root *root = pending->root;
1128 struct btrfs_root *parent_root;
1129 struct btrfs_block_rsv *rsv;
1130 struct inode *parent_inode;
1131 struct btrfs_path *path;
1132 struct btrfs_dir_item *dir_item;
1133 struct dentry *dentry;
1134 struct extent_buffer *tmp;
1135 struct extent_buffer *old;
1136 struct timespec cur_time = CURRENT_TIME;
1137 int ret = 0;
1138 u64 to_reserve = 0;
1139 u64 index = 0;
1140 u64 objectid;
1141 u64 root_flags;
1142 uuid_le new_uuid;
1143
1144 path = btrfs_alloc_path();
1145 if (!path) {
1146 pending->error = -ENOMEM;
1147 return 0;
1148 }
1149
1150 new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
1151 if (!new_root_item) {
1152 pending->error = -ENOMEM;
1153 goto root_item_alloc_fail;
1154 }
1155
1156 pending->error = btrfs_find_free_objectid(tree_root, &objectid);
1157 if (pending->error)
1158 goto no_free_objectid;
1159
1160 btrfs_reloc_pre_snapshot(trans, pending, &to_reserve);
1161
1162 if (to_reserve > 0) {
1163 pending->error = btrfs_block_rsv_add(root,
1164 &pending->block_rsv,
1165 to_reserve,
1166 BTRFS_RESERVE_NO_FLUSH);
1167 if (pending->error)
1168 goto no_free_objectid;
1169 }
1170
1171 pending->error = btrfs_qgroup_inherit(trans, fs_info,
1172 root->root_key.objectid,
1173 objectid, pending->inherit);
1174 if (pending->error)
1175 goto no_free_objectid;
1176
1177 key.objectid = objectid;
1178 key.offset = (u64)-1;
1179 key.type = BTRFS_ROOT_ITEM_KEY;
1180
1181 rsv = trans->block_rsv;
1182 trans->block_rsv = &pending->block_rsv;
1183 trans->bytes_reserved = trans->block_rsv->reserved;
1184
1185 dentry = pending->dentry;
1186 parent_inode = pending->dir;
1187 parent_root = BTRFS_I(parent_inode)->root;
1188 record_root_in_trans(trans, parent_root);
1189
1190 /*
1191 * insert the directory item
1192 */
1193 ret = btrfs_set_inode_index(parent_inode, &index);
1194 BUG_ON(ret); /* -ENOMEM */
1195
1196 /* check if there is a file/dir which has the same name. */
1197 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1198 btrfs_ino(parent_inode),
1199 dentry->d_name.name,
1200 dentry->d_name.len, 0);
1201 if (dir_item != NULL && !IS_ERR(dir_item)) {
1202 pending->error = -EEXIST;
1203 goto dir_item_existed;
1204 } else if (IS_ERR(dir_item)) {
1205 ret = PTR_ERR(dir_item);
1206 btrfs_abort_transaction(trans, root, ret);
1207 goto fail;
1208 }
1209 btrfs_release_path(path);
1210
1211 /*
1212 * pull in the delayed directory update
1213 * and the delayed inode item
1214 * otherwise we corrupt the FS during
1215 * snapshot
1216 */
1217 ret = btrfs_run_delayed_items(trans, root);
1218 if (ret) { /* Transaction aborted */
1219 btrfs_abort_transaction(trans, root, ret);
1220 goto fail;
1221 }
1222
1223 record_root_in_trans(trans, root);
1224 btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1225 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1226 btrfs_check_and_init_root_item(new_root_item);
1227
1228 root_flags = btrfs_root_flags(new_root_item);
1229 if (pending->readonly)
1230 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1231 else
1232 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1233 btrfs_set_root_flags(new_root_item, root_flags);
1234
1235 btrfs_set_root_generation_v2(new_root_item,
1236 trans->transid);
1237 uuid_le_gen(&new_uuid);
1238 memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
1239 memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1240 BTRFS_UUID_SIZE);
1241 if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1242 memset(new_root_item->received_uuid, 0,
1243 sizeof(new_root_item->received_uuid));
1244 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1245 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1246 btrfs_set_root_stransid(new_root_item, 0);
1247 btrfs_set_root_rtransid(new_root_item, 0);
1248 }
1249 btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1250 btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1251 btrfs_set_root_otransid(new_root_item, trans->transid);
1252
1253 old = btrfs_lock_root_node(root);
1254 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1255 if (ret) {
1256 btrfs_tree_unlock(old);
1257 free_extent_buffer(old);
1258 btrfs_abort_transaction(trans, root, ret);
1259 goto fail;
1260 }
1261
1262 btrfs_set_lock_blocking(old);
1263
1264 ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1265 /* clean up in any case */
1266 btrfs_tree_unlock(old);
1267 free_extent_buffer(old);
1268 if (ret) {
1269 btrfs_abort_transaction(trans, root, ret);
1270 goto fail;
1271 }
1272
1273 /* see comments in should_cow_block() */
1274 root->force_cow = 1;
1275 smp_wmb();
1276
1277 btrfs_set_root_node(new_root_item, tmp);
1278 /* record when the snapshot was created in key.offset */
1279 key.offset = trans->transid;
1280 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1281 btrfs_tree_unlock(tmp);
1282 free_extent_buffer(tmp);
1283 if (ret) {
1284 btrfs_abort_transaction(trans, root, ret);
1285 goto fail;
1286 }
1287
1288 /*
1289 * insert root back/forward references
1290 */
1291 ret = btrfs_add_root_ref(trans, tree_root, objectid,
1292 parent_root->root_key.objectid,
1293 btrfs_ino(parent_inode), index,
1294 dentry->d_name.name, dentry->d_name.len);
1295 if (ret) {
1296 btrfs_abort_transaction(trans, root, ret);
1297 goto fail;
1298 }
1299
1300 key.offset = (u64)-1;
1301 pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
1302 if (IS_ERR(pending->snap)) {
1303 ret = PTR_ERR(pending->snap);
1304 btrfs_abort_transaction(trans, root, ret);
1305 goto fail;
1306 }
1307
1308 ret = btrfs_reloc_post_snapshot(trans, pending);
1309 if (ret) {
1310 btrfs_abort_transaction(trans, root, ret);
1311 goto fail;
1312 }
1313
1314 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1315 if (ret) {
1316 btrfs_abort_transaction(trans, root, ret);
1317 goto fail;
1318 }
1319
1320 ret = btrfs_insert_dir_item(trans, parent_root,
1321 dentry->d_name.name, dentry->d_name.len,
1322 parent_inode, &key,
1323 BTRFS_FT_DIR, index);
1324 /* We have check then name at the beginning, so it is impossible. */
1325 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1326 if (ret) {
1327 btrfs_abort_transaction(trans, root, ret);
1328 goto fail;
1329 }
1330
1331 btrfs_i_size_write(parent_inode, parent_inode->i_size +
1332 dentry->d_name.len * 2);
1333 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
1334 ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
1335 if (ret) {
1336 btrfs_abort_transaction(trans, root, ret);
1337 goto fail;
1338 }
1339 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root, new_uuid.b,
1340 BTRFS_UUID_KEY_SUBVOL, objectid);
1341 if (ret) {
1342 btrfs_abort_transaction(trans, root, ret);
1343 goto fail;
1344 }
1345 if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1346 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
1347 new_root_item->received_uuid,
1348 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1349 objectid);
1350 if (ret && ret != -EEXIST) {
1351 btrfs_abort_transaction(trans, root, ret);
1352 goto fail;
1353 }
1354 }
1355fail:
1356 pending->error = ret;
1357dir_item_existed:
1358 trans->block_rsv = rsv;
1359 trans->bytes_reserved = 0;
1360no_free_objectid:
1361 kfree(new_root_item);
1362root_item_alloc_fail:
1363 btrfs_free_path(path);
1364 return ret;
1365}
1366
1367/*
1368 * create all the snapshots we've scheduled for creation
1369 */
1370static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
1371 struct btrfs_fs_info *fs_info)
1372{
1373 struct btrfs_pending_snapshot *pending, *next;
1374 struct list_head *head = &trans->transaction->pending_snapshots;
1375 int ret = 0;
1376
1377 list_for_each_entry_safe(pending, next, head, list) {
1378 list_del(&pending->list);
1379 ret = create_pending_snapshot(trans, fs_info, pending);
1380 if (ret)
1381 break;
1382 }
1383 return ret;
1384}
1385
1386static void update_super_roots(struct btrfs_root *root)
1387{
1388 struct btrfs_root_item *root_item;
1389 struct btrfs_super_block *super;
1390
1391 super = root->fs_info->super_copy;
1392
1393 root_item = &root->fs_info->chunk_root->root_item;
1394 super->chunk_root = root_item->bytenr;
1395 super->chunk_root_generation = root_item->generation;
1396 super->chunk_root_level = root_item->level;
1397
1398 root_item = &root->fs_info->tree_root->root_item;
1399 super->root = root_item->bytenr;
1400 super->generation = root_item->generation;
1401 super->root_level = root_item->level;
1402 if (btrfs_test_opt(root, SPACE_CACHE))
1403 super->cache_generation = root_item->generation;
1404 if (root->fs_info->update_uuid_tree_gen)
1405 super->uuid_tree_generation = root_item->generation;
1406}
1407
1408int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1409{
1410 struct btrfs_transaction *trans;
1411 int ret = 0;
1412
1413 spin_lock(&info->trans_lock);
1414 trans = info->running_transaction;
1415 if (trans)
1416 ret = (trans->state >= TRANS_STATE_COMMIT_START);
1417 spin_unlock(&info->trans_lock);
1418 return ret;
1419}
1420
1421int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1422{
1423 struct btrfs_transaction *trans;
1424 int ret = 0;
1425
1426 spin_lock(&info->trans_lock);
1427 trans = info->running_transaction;
1428 if (trans)
1429 ret = is_transaction_blocked(trans);
1430 spin_unlock(&info->trans_lock);
1431 return ret;
1432}
1433
1434/*
1435 * wait for the current transaction commit to start and block subsequent
1436 * transaction joins
1437 */
1438static void wait_current_trans_commit_start(struct btrfs_root *root,
1439 struct btrfs_transaction *trans)
1440{
1441 wait_event(root->fs_info->transaction_blocked_wait,
1442 trans->state >= TRANS_STATE_COMMIT_START ||
1443 trans->aborted);
1444}
1445
1446/*
1447 * wait for the current transaction to start and then become unblocked.
1448 * caller holds ref.
1449 */
1450static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root,
1451 struct btrfs_transaction *trans)
1452{
1453 wait_event(root->fs_info->transaction_wait,
1454 trans->state >= TRANS_STATE_UNBLOCKED ||
1455 trans->aborted);
1456}
1457
1458/*
1459 * commit transactions asynchronously. once btrfs_commit_transaction_async
1460 * returns, any subsequent transaction will not be allowed to join.
1461 */
1462struct btrfs_async_commit {
1463 struct btrfs_trans_handle *newtrans;
1464 struct btrfs_root *root;
1465 struct work_struct work;
1466};
1467
1468static void do_async_commit(struct work_struct *work)
1469{
1470 struct btrfs_async_commit *ac =
1471 container_of(work, struct btrfs_async_commit, work);
1472
1473 /*
1474 * We've got freeze protection passed with the transaction.
1475 * Tell lockdep about it.
1476 */
1477 if (ac->newtrans->type & __TRANS_FREEZABLE)
1478 rwsem_acquire_read(
1479 &ac->root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1],
1480 0, 1, _THIS_IP_);
1481
1482 current->journal_info = ac->newtrans;
1483
1484 btrfs_commit_transaction(ac->newtrans, ac->root);
1485 kfree(ac);
1486}
1487
1488int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1489 struct btrfs_root *root,
1490 int wait_for_unblock)
1491{
1492 struct btrfs_async_commit *ac;
1493 struct btrfs_transaction *cur_trans;
1494
1495 ac = kmalloc(sizeof(*ac), GFP_NOFS);
1496 if (!ac)
1497 return -ENOMEM;
1498
1499 INIT_WORK(&ac->work, do_async_commit);
1500 ac->root = root;
1501 ac->newtrans = btrfs_join_transaction(root);
1502 if (IS_ERR(ac->newtrans)) {
1503 int err = PTR_ERR(ac->newtrans);
1504 kfree(ac);
1505 return err;
1506 }
1507
1508 /* take transaction reference */
1509 cur_trans = trans->transaction;
1510 atomic_inc(&cur_trans->use_count);
1511
1512 btrfs_end_transaction(trans, root);
1513
1514 /*
1515 * Tell lockdep we've released the freeze rwsem, since the
1516 * async commit thread will be the one to unlock it.
1517 */
1518 if (ac->newtrans->type & __TRANS_FREEZABLE)
1519 rwsem_release(
1520 &root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1],
1521 1, _THIS_IP_);
1522
1523 schedule_work(&ac->work);
1524
1525 /* wait for transaction to start and unblock */
1526 if (wait_for_unblock)
1527 wait_current_trans_commit_start_and_unblock(root, cur_trans);
1528 else
1529 wait_current_trans_commit_start(root, cur_trans);
1530
1531 if (current->journal_info == trans)
1532 current->journal_info = NULL;
1533
1534 btrfs_put_transaction(cur_trans);
1535 return 0;
1536}
1537
1538
1539static void cleanup_transaction(struct btrfs_trans_handle *trans,
1540 struct btrfs_root *root, int err)
1541{
1542 struct btrfs_transaction *cur_trans = trans->transaction;
1543 DEFINE_WAIT(wait);
1544
1545 WARN_ON(trans->use_count > 1);
1546
1547 btrfs_abort_transaction(trans, root, err);
1548
1549 spin_lock(&root->fs_info->trans_lock);
1550
1551 /*
1552 * If the transaction is removed from the list, it means this
1553 * transaction has been committed successfully, so it is impossible
1554 * to call the cleanup function.
1555 */
1556 BUG_ON(list_empty(&cur_trans->list));
1557
1558 list_del_init(&cur_trans->list);
1559 if (cur_trans == root->fs_info->running_transaction) {
1560 cur_trans->state = TRANS_STATE_COMMIT_DOING;
1561 spin_unlock(&root->fs_info->trans_lock);
1562 wait_event(cur_trans->writer_wait,
1563 atomic_read(&cur_trans->num_writers) == 1);
1564
1565 spin_lock(&root->fs_info->trans_lock);
1566 }
1567 spin_unlock(&root->fs_info->trans_lock);
1568
1569 btrfs_cleanup_one_transaction(trans->transaction, root);
1570
1571 spin_lock(&root->fs_info->trans_lock);
1572 if (cur_trans == root->fs_info->running_transaction)
1573 root->fs_info->running_transaction = NULL;
1574 spin_unlock(&root->fs_info->trans_lock);
1575
1576 if (trans->type & __TRANS_FREEZABLE)
1577 sb_end_intwrite(root->fs_info->sb);
1578 btrfs_put_transaction(cur_trans);
1579 btrfs_put_transaction(cur_trans);
1580
1581 trace_btrfs_transaction_commit(root);
1582
1583 if (current->journal_info == trans)
1584 current->journal_info = NULL;
1585 btrfs_scrub_cancel(root->fs_info);
1586
1587 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1588}
1589
1590static int btrfs_flush_all_pending_stuffs(struct btrfs_trans_handle *trans,
1591 struct btrfs_root *root)
1592{
1593 int ret;
1594
1595 ret = btrfs_run_delayed_items(trans, root);
1596 /*
1597 * running the delayed items may have added new refs. account
1598 * them now so that they hinder processing of more delayed refs
1599 * as little as possible.
1600 */
1601 if (ret) {
1602 btrfs_delayed_refs_qgroup_accounting(trans, root->fs_info);
1603 return ret;
1604 }
1605
1606 ret = btrfs_delayed_refs_qgroup_accounting(trans, root->fs_info);
1607 if (ret)
1608 return ret;
1609
1610 /*
1611 * rename don't use btrfs_join_transaction, so, once we
1612 * set the transaction to blocked above, we aren't going
1613 * to get any new ordered operations. We can safely run
1614 * it here and no for sure that nothing new will be added
1615 * to the list
1616 */
1617 ret = btrfs_run_ordered_operations(trans, root, 1);
1618
1619 return ret;
1620}
1621
1622static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
1623{
1624 if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT))
1625 return btrfs_start_delalloc_roots(fs_info, 1, -1);
1626 return 0;
1627}
1628
1629static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
1630{
1631 if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT))
1632 btrfs_wait_ordered_roots(fs_info, -1);
1633}
1634
1635int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
1636 struct btrfs_root *root)
1637{
1638 struct btrfs_transaction *cur_trans = trans->transaction;
1639 struct btrfs_transaction *prev_trans = NULL;
1640 int ret;
1641
1642 ret = btrfs_run_ordered_operations(trans, root, 0);
1643 if (ret) {
1644 btrfs_abort_transaction(trans, root, ret);
1645 btrfs_end_transaction(trans, root);
1646 return ret;
1647 }
1648
1649 /* Stop the commit early if ->aborted is set */
1650 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1651 ret = cur_trans->aborted;
1652 btrfs_end_transaction(trans, root);
1653 return ret;
1654 }
1655
1656 /* make a pass through all the delayed refs we have so far
1657 * any runnings procs may add more while we are here
1658 */
1659 ret = btrfs_run_delayed_refs(trans, root, 0);
1660 if (ret) {
1661 btrfs_end_transaction(trans, root);
1662 return ret;
1663 }
1664
1665 btrfs_trans_release_metadata(trans, root);
1666 trans->block_rsv = NULL;
1667 if (trans->qgroup_reserved) {
1668 btrfs_qgroup_free(root, trans->qgroup_reserved);
1669 trans->qgroup_reserved = 0;
1670 }
1671
1672 cur_trans = trans->transaction;
1673
1674 /*
1675 * set the flushing flag so procs in this transaction have to
1676 * start sending their work down.
1677 */
1678 cur_trans->delayed_refs.flushing = 1;
1679 smp_wmb();
1680
1681 if (!list_empty(&trans->new_bgs))
1682 btrfs_create_pending_block_groups(trans, root);
1683
1684 ret = btrfs_run_delayed_refs(trans, root, 0);
1685 if (ret) {
1686 btrfs_end_transaction(trans, root);
1687 return ret;
1688 }
1689
1690 spin_lock(&root->fs_info->trans_lock);
1691 if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
1692 spin_unlock(&root->fs_info->trans_lock);
1693 atomic_inc(&cur_trans->use_count);
1694 ret = btrfs_end_transaction(trans, root);
1695
1696 wait_for_commit(root, cur_trans);
1697
1698 btrfs_put_transaction(cur_trans);
1699
1700 return ret;
1701 }
1702
1703 cur_trans->state = TRANS_STATE_COMMIT_START;
1704 wake_up(&root->fs_info->transaction_blocked_wait);
1705
1706 if (cur_trans->list.prev != &root->fs_info->trans_list) {
1707 prev_trans = list_entry(cur_trans->list.prev,
1708 struct btrfs_transaction, list);
1709 if (prev_trans->state != TRANS_STATE_COMPLETED) {
1710 atomic_inc(&prev_trans->use_count);
1711 spin_unlock(&root->fs_info->trans_lock);
1712
1713 wait_for_commit(root, prev_trans);
1714
1715 btrfs_put_transaction(prev_trans);
1716 } else {
1717 spin_unlock(&root->fs_info->trans_lock);
1718 }
1719 } else {
1720 spin_unlock(&root->fs_info->trans_lock);
1721 }
1722
1723 extwriter_counter_dec(cur_trans, trans->type);
1724
1725 ret = btrfs_start_delalloc_flush(root->fs_info);
1726 if (ret)
1727 goto cleanup_transaction;
1728
1729 ret = btrfs_flush_all_pending_stuffs(trans, root);
1730 if (ret)
1731 goto cleanup_transaction;
1732
1733 wait_event(cur_trans->writer_wait,
1734 extwriter_counter_read(cur_trans) == 0);
1735
1736 /* some pending stuffs might be added after the previous flush. */
1737 ret = btrfs_flush_all_pending_stuffs(trans, root);
1738 if (ret)
1739 goto cleanup_transaction;
1740
1741 btrfs_wait_delalloc_flush(root->fs_info);
1742
1743 btrfs_scrub_pause(root);
1744 /*
1745 * Ok now we need to make sure to block out any other joins while we
1746 * commit the transaction. We could have started a join before setting
1747 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
1748 */
1749 spin_lock(&root->fs_info->trans_lock);
1750 cur_trans->state = TRANS_STATE_COMMIT_DOING;
1751 spin_unlock(&root->fs_info->trans_lock);
1752 wait_event(cur_trans->writer_wait,
1753 atomic_read(&cur_trans->num_writers) == 1);
1754
1755 /* ->aborted might be set after the previous check, so check it */
1756 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1757 ret = cur_trans->aborted;
1758 goto scrub_continue;
1759 }
1760 /*
1761 * the reloc mutex makes sure that we stop
1762 * the balancing code from coming in and moving
1763 * extents around in the middle of the commit
1764 */
1765 mutex_lock(&root->fs_info->reloc_mutex);
1766
1767 /*
1768 * We needn't worry about the delayed items because we will
1769 * deal with them in create_pending_snapshot(), which is the
1770 * core function of the snapshot creation.
1771 */
1772 ret = create_pending_snapshots(trans, root->fs_info);
1773 if (ret) {
1774 mutex_unlock(&root->fs_info->reloc_mutex);
1775 goto scrub_continue;
1776 }
1777
1778 /*
1779 * We insert the dir indexes of the snapshots and update the inode
1780 * of the snapshots' parents after the snapshot creation, so there
1781 * are some delayed items which are not dealt with. Now deal with
1782 * them.
1783 *
1784 * We needn't worry that this operation will corrupt the snapshots,
1785 * because all the tree which are snapshoted will be forced to COW
1786 * the nodes and leaves.
1787 */
1788 ret = btrfs_run_delayed_items(trans, root);
1789 if (ret) {
1790 mutex_unlock(&root->fs_info->reloc_mutex);
1791 goto scrub_continue;
1792 }
1793
1794 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1795 if (ret) {
1796 mutex_unlock(&root->fs_info->reloc_mutex);
1797 goto scrub_continue;
1798 }
1799
1800 /*
1801 * make sure none of the code above managed to slip in a
1802 * delayed item
1803 */
1804 btrfs_assert_delayed_root_empty(root);
1805
1806 WARN_ON(cur_trans != trans->transaction);
1807
1808 /* btrfs_commit_tree_roots is responsible for getting the
1809 * various roots consistent with each other. Every pointer
1810 * in the tree of tree roots has to point to the most up to date
1811 * root for every subvolume and other tree. So, we have to keep
1812 * the tree logging code from jumping in and changing any
1813 * of the trees.
1814 *
1815 * At this point in the commit, there can't be any tree-log
1816 * writers, but a little lower down we drop the trans mutex
1817 * and let new people in. By holding the tree_log_mutex
1818 * from now until after the super is written, we avoid races
1819 * with the tree-log code.
1820 */
1821 mutex_lock(&root->fs_info->tree_log_mutex);
1822
1823 ret = commit_fs_roots(trans, root);
1824 if (ret) {
1825 mutex_unlock(&root->fs_info->tree_log_mutex);
1826 mutex_unlock(&root->fs_info->reloc_mutex);
1827 goto scrub_continue;
1828 }
1829
1830 /*
1831 * Since the transaction is done, we should set the inode map cache flag
1832 * before any other comming transaction.
1833 */
1834 if (btrfs_test_opt(root, CHANGE_INODE_CACHE))
1835 btrfs_set_opt(root->fs_info->mount_opt, INODE_MAP_CACHE);
1836 else
1837 btrfs_clear_opt(root->fs_info->mount_opt, INODE_MAP_CACHE);
1838
1839 /* commit_fs_roots gets rid of all the tree log roots, it is now
1840 * safe to free the root of tree log roots
1841 */
1842 btrfs_free_log_root_tree(trans, root->fs_info);
1843
1844 ret = commit_cowonly_roots(trans, root);
1845 if (ret) {
1846 mutex_unlock(&root->fs_info->tree_log_mutex);
1847 mutex_unlock(&root->fs_info->reloc_mutex);
1848 goto scrub_continue;
1849 }
1850
1851 /*
1852 * The tasks which save the space cache and inode cache may also
1853 * update ->aborted, check it.
1854 */
1855 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1856 ret = cur_trans->aborted;
1857 mutex_unlock(&root->fs_info->tree_log_mutex);
1858 mutex_unlock(&root->fs_info->reloc_mutex);
1859 goto scrub_continue;
1860 }
1861
1862 btrfs_prepare_extent_commit(trans, root);
1863
1864 cur_trans = root->fs_info->running_transaction;
1865
1866 btrfs_set_root_node(&root->fs_info->tree_root->root_item,
1867 root->fs_info->tree_root->node);
1868 list_add_tail(&root->fs_info->tree_root->dirty_list,
1869 &cur_trans->switch_commits);
1870
1871 btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
1872 root->fs_info->chunk_root->node);
1873 list_add_tail(&root->fs_info->chunk_root->dirty_list,
1874 &cur_trans->switch_commits);
1875
1876 switch_commit_roots(cur_trans, root->fs_info);
1877
1878 assert_qgroups_uptodate(trans);
1879 update_super_roots(root);
1880
1881 btrfs_set_super_log_root(root->fs_info->super_copy, 0);
1882 btrfs_set_super_log_root_level(root->fs_info->super_copy, 0);
1883 memcpy(root->fs_info->super_for_commit, root->fs_info->super_copy,
1884 sizeof(*root->fs_info->super_copy));
1885
1886 spin_lock(&root->fs_info->trans_lock);
1887 cur_trans->state = TRANS_STATE_UNBLOCKED;
1888 root->fs_info->running_transaction = NULL;
1889 spin_unlock(&root->fs_info->trans_lock);
1890 mutex_unlock(&root->fs_info->reloc_mutex);
1891
1892 wake_up(&root->fs_info->transaction_wait);
1893
1894 ret = btrfs_write_and_wait_transaction(trans, root);
1895 if (ret) {
1896 btrfs_error(root->fs_info, ret,
1897 "Error while writing out transaction");
1898 mutex_unlock(&root->fs_info->tree_log_mutex);
1899 goto scrub_continue;
1900 }
1901
1902 ret = write_ctree_super(trans, root, 0);
1903 if (ret) {
1904 mutex_unlock(&root->fs_info->tree_log_mutex);
1905 goto scrub_continue;
1906 }
1907
1908 /*
1909 * the super is written, we can safely allow the tree-loggers
1910 * to go about their business
1911 */
1912 mutex_unlock(&root->fs_info->tree_log_mutex);
1913
1914 btrfs_finish_extent_commit(trans, root);
1915
1916 root->fs_info->last_trans_committed = cur_trans->transid;
1917 /*
1918 * We needn't acquire the lock here because there is no other task
1919 * which can change it.
1920 */
1921 cur_trans->state = TRANS_STATE_COMPLETED;
1922 wake_up(&cur_trans->commit_wait);
1923
1924 spin_lock(&root->fs_info->trans_lock);
1925 list_del_init(&cur_trans->list);
1926 spin_unlock(&root->fs_info->trans_lock);
1927
1928 btrfs_put_transaction(cur_trans);
1929 btrfs_put_transaction(cur_trans);
1930
1931 if (trans->type & __TRANS_FREEZABLE)
1932 sb_end_intwrite(root->fs_info->sb);
1933
1934 trace_btrfs_transaction_commit(root);
1935
1936 btrfs_scrub_continue(root);
1937
1938 if (current->journal_info == trans)
1939 current->journal_info = NULL;
1940
1941 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1942
1943 if (current != root->fs_info->transaction_kthread)
1944 btrfs_run_delayed_iputs(root);
1945
1946 return ret;
1947
1948scrub_continue:
1949 btrfs_scrub_continue(root);
1950cleanup_transaction:
1951 btrfs_trans_release_metadata(trans, root);
1952 trans->block_rsv = NULL;
1953 if (trans->qgroup_reserved) {
1954 btrfs_qgroup_free(root, trans->qgroup_reserved);
1955 trans->qgroup_reserved = 0;
1956 }
1957 btrfs_warn(root->fs_info, "Skipping commit of aborted transaction.");
1958 if (current->journal_info == trans)
1959 current->journal_info = NULL;
1960 cleanup_transaction(trans, root, ret);
1961
1962 return ret;
1963}
1964
1965/*
1966 * return < 0 if error
1967 * 0 if there are no more dead_roots at the time of call
1968 * 1 there are more to be processed, call me again
1969 *
1970 * The return value indicates there are certainly more snapshots to delete, but
1971 * if there comes a new one during processing, it may return 0. We don't mind,
1972 * because btrfs_commit_super will poke cleaner thread and it will process it a
1973 * few seconds later.
1974 */
1975int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
1976{
1977 int ret;
1978 struct btrfs_fs_info *fs_info = root->fs_info;
1979
1980 spin_lock(&fs_info->trans_lock);
1981 if (list_empty(&fs_info->dead_roots)) {
1982 spin_unlock(&fs_info->trans_lock);
1983 return 0;
1984 }
1985 root = list_first_entry(&fs_info->dead_roots,
1986 struct btrfs_root, root_list);
1987 /*
1988 * Make sure root is not involved in send,
1989 * if we fail with first root, we return
1990 * directly rather than continue.
1991 */
1992 spin_lock(&root->root_item_lock);
1993 if (root->send_in_progress) {
1994 spin_unlock(&fs_info->trans_lock);
1995 spin_unlock(&root->root_item_lock);
1996 return 0;
1997 }
1998 spin_unlock(&root->root_item_lock);
1999
2000 list_del_init(&root->root_list);
2001 spin_unlock(&fs_info->trans_lock);
2002
2003 pr_debug("BTRFS: cleaner removing %llu\n", root->objectid);
2004
2005 btrfs_kill_all_delayed_nodes(root);
2006
2007 if (btrfs_header_backref_rev(root->node) <
2008 BTRFS_MIXED_BACKREF_REV)
2009 ret = btrfs_drop_snapshot(root, NULL, 0, 0);
2010 else
2011 ret = btrfs_drop_snapshot(root, NULL, 1, 0);
2012 /*
2013 * If we encounter a transaction abort during snapshot cleaning, we
2014 * don't want to crash here
2015 */
2016 return (ret < 0) ? 0 : 1;
2017}
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2007 Oracle. All rights reserved.
4 */
5
6#include <linux/fs.h>
7#include <linux/slab.h>
8#include <linux/sched.h>
9#include <linux/writeback.h>
10#include <linux/pagemap.h>
11#include <linux/blkdev.h>
12#include <linux/uuid.h>
13#include "misc.h"
14#include "ctree.h"
15#include "disk-io.h"
16#include "transaction.h"
17#include "locking.h"
18#include "tree-log.h"
19#include "inode-map.h"
20#include "volumes.h"
21#include "dev-replace.h"
22#include "qgroup.h"
23#include "block-group.h"
24#include "space-info.h"
25
26#define BTRFS_ROOT_TRANS_TAG 0
27
28/*
29 * Transaction states and transitions
30 *
31 * No running transaction (fs tree blocks are not modified)
32 * |
33 * | To next stage:
34 * | Call start_transaction() variants. Except btrfs_join_transaction_nostart().
35 * V
36 * Transaction N [[TRANS_STATE_RUNNING]]
37 * |
38 * | New trans handles can be attached to transaction N by calling all
39 * | start_transaction() variants.
40 * |
41 * | To next stage:
42 * | Call btrfs_commit_transaction() on any trans handle attached to
43 * | transaction N
44 * V
45 * Transaction N [[TRANS_STATE_COMMIT_START]]
46 * |
47 * | Will wait for previous running transaction to completely finish if there
48 * | is one
49 * |
50 * | Then one of the following happes:
51 * | - Wait for all other trans handle holders to release.
52 * | The btrfs_commit_transaction() caller will do the commit work.
53 * | - Wait for current transaction to be committed by others.
54 * | Other btrfs_commit_transaction() caller will do the commit work.
55 * |
56 * | At this stage, only btrfs_join_transaction*() variants can attach
57 * | to this running transaction.
58 * | All other variants will wait for current one to finish and attach to
59 * | transaction N+1.
60 * |
61 * | To next stage:
62 * | Caller is chosen to commit transaction N, and all other trans handle
63 * | haven been released.
64 * V
65 * Transaction N [[TRANS_STATE_COMMIT_DOING]]
66 * |
67 * | The heavy lifting transaction work is started.
68 * | From running delayed refs (modifying extent tree) to creating pending
69 * | snapshots, running qgroups.
70 * | In short, modify supporting trees to reflect modifications of subvolume
71 * | trees.
72 * |
73 * | At this stage, all start_transaction() calls will wait for this
74 * | transaction to finish and attach to transaction N+1.
75 * |
76 * | To next stage:
77 * | Until all supporting trees are updated.
78 * V
79 * Transaction N [[TRANS_STATE_UNBLOCKED]]
80 * | Transaction N+1
81 * | All needed trees are modified, thus we only [[TRANS_STATE_RUNNING]]
82 * | need to write them back to disk and update |
83 * | super blocks. |
84 * | |
85 * | At this stage, new transaction is allowed to |
86 * | start. |
87 * | All new start_transaction() calls will be |
88 * | attached to transid N+1. |
89 * | |
90 * | To next stage: |
91 * | Until all tree blocks are super blocks are |
92 * | written to block devices |
93 * V |
94 * Transaction N [[TRANS_STATE_COMPLETED]] V
95 * All tree blocks and super blocks are written. Transaction N+1
96 * This transaction is finished and all its [[TRANS_STATE_COMMIT_START]]
97 * data structures will be cleaned up. | Life goes on
98 */
99static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
100 [TRANS_STATE_RUNNING] = 0U,
101 [TRANS_STATE_COMMIT_START] = (__TRANS_START | __TRANS_ATTACH),
102 [TRANS_STATE_COMMIT_DOING] = (__TRANS_START |
103 __TRANS_ATTACH |
104 __TRANS_JOIN |
105 __TRANS_JOIN_NOSTART),
106 [TRANS_STATE_UNBLOCKED] = (__TRANS_START |
107 __TRANS_ATTACH |
108 __TRANS_JOIN |
109 __TRANS_JOIN_NOLOCK |
110 __TRANS_JOIN_NOSTART),
111 [TRANS_STATE_COMPLETED] = (__TRANS_START |
112 __TRANS_ATTACH |
113 __TRANS_JOIN |
114 __TRANS_JOIN_NOLOCK |
115 __TRANS_JOIN_NOSTART),
116};
117
118void btrfs_put_transaction(struct btrfs_transaction *transaction)
119{
120 WARN_ON(refcount_read(&transaction->use_count) == 0);
121 if (refcount_dec_and_test(&transaction->use_count)) {
122 BUG_ON(!list_empty(&transaction->list));
123 WARN_ON(!RB_EMPTY_ROOT(
124 &transaction->delayed_refs.href_root.rb_root));
125 WARN_ON(!RB_EMPTY_ROOT(
126 &transaction->delayed_refs.dirty_extent_root));
127 if (transaction->delayed_refs.pending_csums)
128 btrfs_err(transaction->fs_info,
129 "pending csums is %llu",
130 transaction->delayed_refs.pending_csums);
131 /*
132 * If any block groups are found in ->deleted_bgs then it's
133 * because the transaction was aborted and a commit did not
134 * happen (things failed before writing the new superblock
135 * and calling btrfs_finish_extent_commit()), so we can not
136 * discard the physical locations of the block groups.
137 */
138 while (!list_empty(&transaction->deleted_bgs)) {
139 struct btrfs_block_group *cache;
140
141 cache = list_first_entry(&transaction->deleted_bgs,
142 struct btrfs_block_group,
143 bg_list);
144 list_del_init(&cache->bg_list);
145 btrfs_unfreeze_block_group(cache);
146 btrfs_put_block_group(cache);
147 }
148 WARN_ON(!list_empty(&transaction->dev_update_list));
149 kfree(transaction);
150 }
151}
152
153static noinline void switch_commit_roots(struct btrfs_trans_handle *trans)
154{
155 struct btrfs_transaction *cur_trans = trans->transaction;
156 struct btrfs_fs_info *fs_info = trans->fs_info;
157 struct btrfs_root *root, *tmp;
158
159 down_write(&fs_info->commit_root_sem);
160 list_for_each_entry_safe(root, tmp, &cur_trans->switch_commits,
161 dirty_list) {
162 list_del_init(&root->dirty_list);
163 free_extent_buffer(root->commit_root);
164 root->commit_root = btrfs_root_node(root);
165 if (is_fstree(root->root_key.objectid))
166 btrfs_unpin_free_ino(root);
167 extent_io_tree_release(&root->dirty_log_pages);
168 btrfs_qgroup_clean_swapped_blocks(root);
169 }
170
171 /* We can free old roots now. */
172 spin_lock(&cur_trans->dropped_roots_lock);
173 while (!list_empty(&cur_trans->dropped_roots)) {
174 root = list_first_entry(&cur_trans->dropped_roots,
175 struct btrfs_root, root_list);
176 list_del_init(&root->root_list);
177 spin_unlock(&cur_trans->dropped_roots_lock);
178 btrfs_free_log(trans, root);
179 btrfs_drop_and_free_fs_root(fs_info, root);
180 spin_lock(&cur_trans->dropped_roots_lock);
181 }
182 spin_unlock(&cur_trans->dropped_roots_lock);
183 up_write(&fs_info->commit_root_sem);
184}
185
186static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
187 unsigned int type)
188{
189 if (type & TRANS_EXTWRITERS)
190 atomic_inc(&trans->num_extwriters);
191}
192
193static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
194 unsigned int type)
195{
196 if (type & TRANS_EXTWRITERS)
197 atomic_dec(&trans->num_extwriters);
198}
199
200static inline void extwriter_counter_init(struct btrfs_transaction *trans,
201 unsigned int type)
202{
203 atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
204}
205
206static inline int extwriter_counter_read(struct btrfs_transaction *trans)
207{
208 return atomic_read(&trans->num_extwriters);
209}
210
211/*
212 * To be called after all the new block groups attached to the transaction
213 * handle have been created (btrfs_create_pending_block_groups()).
214 */
215void btrfs_trans_release_chunk_metadata(struct btrfs_trans_handle *trans)
216{
217 struct btrfs_fs_info *fs_info = trans->fs_info;
218
219 if (!trans->chunk_bytes_reserved)
220 return;
221
222 WARN_ON_ONCE(!list_empty(&trans->new_bgs));
223
224 btrfs_block_rsv_release(fs_info, &fs_info->chunk_block_rsv,
225 trans->chunk_bytes_reserved, NULL);
226 trans->chunk_bytes_reserved = 0;
227}
228
229/*
230 * either allocate a new transaction or hop into the existing one
231 */
232static noinline int join_transaction(struct btrfs_fs_info *fs_info,
233 unsigned int type)
234{
235 struct btrfs_transaction *cur_trans;
236
237 spin_lock(&fs_info->trans_lock);
238loop:
239 /* The file system has been taken offline. No new transactions. */
240 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
241 spin_unlock(&fs_info->trans_lock);
242 return -EROFS;
243 }
244
245 cur_trans = fs_info->running_transaction;
246 if (cur_trans) {
247 if (TRANS_ABORTED(cur_trans)) {
248 spin_unlock(&fs_info->trans_lock);
249 return cur_trans->aborted;
250 }
251 if (btrfs_blocked_trans_types[cur_trans->state] & type) {
252 spin_unlock(&fs_info->trans_lock);
253 return -EBUSY;
254 }
255 refcount_inc(&cur_trans->use_count);
256 atomic_inc(&cur_trans->num_writers);
257 extwriter_counter_inc(cur_trans, type);
258 spin_unlock(&fs_info->trans_lock);
259 return 0;
260 }
261 spin_unlock(&fs_info->trans_lock);
262
263 /*
264 * If we are ATTACH, we just want to catch the current transaction,
265 * and commit it. If there is no transaction, just return ENOENT.
266 */
267 if (type == TRANS_ATTACH)
268 return -ENOENT;
269
270 /*
271 * JOIN_NOLOCK only happens during the transaction commit, so
272 * it is impossible that ->running_transaction is NULL
273 */
274 BUG_ON(type == TRANS_JOIN_NOLOCK);
275
276 cur_trans = kmalloc(sizeof(*cur_trans), GFP_NOFS);
277 if (!cur_trans)
278 return -ENOMEM;
279
280 spin_lock(&fs_info->trans_lock);
281 if (fs_info->running_transaction) {
282 /*
283 * someone started a transaction after we unlocked. Make sure
284 * to redo the checks above
285 */
286 kfree(cur_trans);
287 goto loop;
288 } else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
289 spin_unlock(&fs_info->trans_lock);
290 kfree(cur_trans);
291 return -EROFS;
292 }
293
294 cur_trans->fs_info = fs_info;
295 atomic_set(&cur_trans->num_writers, 1);
296 extwriter_counter_init(cur_trans, type);
297 init_waitqueue_head(&cur_trans->writer_wait);
298 init_waitqueue_head(&cur_trans->commit_wait);
299 cur_trans->state = TRANS_STATE_RUNNING;
300 /*
301 * One for this trans handle, one so it will live on until we
302 * commit the transaction.
303 */
304 refcount_set(&cur_trans->use_count, 2);
305 cur_trans->flags = 0;
306 cur_trans->start_time = ktime_get_seconds();
307
308 memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
309
310 cur_trans->delayed_refs.href_root = RB_ROOT_CACHED;
311 cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
312 atomic_set(&cur_trans->delayed_refs.num_entries, 0);
313
314 /*
315 * although the tree mod log is per file system and not per transaction,
316 * the log must never go across transaction boundaries.
317 */
318 smp_mb();
319 if (!list_empty(&fs_info->tree_mod_seq_list))
320 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when creating a fresh transaction\n");
321 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
322 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when creating a fresh transaction\n");
323 atomic64_set(&fs_info->tree_mod_seq, 0);
324
325 spin_lock_init(&cur_trans->delayed_refs.lock);
326
327 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
328 INIT_LIST_HEAD(&cur_trans->dev_update_list);
329 INIT_LIST_HEAD(&cur_trans->switch_commits);
330 INIT_LIST_HEAD(&cur_trans->dirty_bgs);
331 INIT_LIST_HEAD(&cur_trans->io_bgs);
332 INIT_LIST_HEAD(&cur_trans->dropped_roots);
333 mutex_init(&cur_trans->cache_write_mutex);
334 spin_lock_init(&cur_trans->dirty_bgs_lock);
335 INIT_LIST_HEAD(&cur_trans->deleted_bgs);
336 spin_lock_init(&cur_trans->dropped_roots_lock);
337 list_add_tail(&cur_trans->list, &fs_info->trans_list);
338 extent_io_tree_init(fs_info, &cur_trans->dirty_pages,
339 IO_TREE_TRANS_DIRTY_PAGES, fs_info->btree_inode);
340 extent_io_tree_init(fs_info, &cur_trans->pinned_extents,
341 IO_TREE_FS_PINNED_EXTENTS, NULL);
342 fs_info->generation++;
343 cur_trans->transid = fs_info->generation;
344 fs_info->running_transaction = cur_trans;
345 cur_trans->aborted = 0;
346 spin_unlock(&fs_info->trans_lock);
347
348 return 0;
349}
350
351/*
352 * This does all the record keeping required to make sure that a shareable root
353 * is properly recorded in a given transaction. This is required to make sure
354 * the old root from before we joined the transaction is deleted when the
355 * transaction commits.
356 */
357static int record_root_in_trans(struct btrfs_trans_handle *trans,
358 struct btrfs_root *root,
359 int force)
360{
361 struct btrfs_fs_info *fs_info = root->fs_info;
362
363 if ((test_bit(BTRFS_ROOT_SHAREABLE, &root->state) &&
364 root->last_trans < trans->transid) || force) {
365 WARN_ON(root == fs_info->extent_root);
366 WARN_ON(!force && root->commit_root != root->node);
367
368 /*
369 * see below for IN_TRANS_SETUP usage rules
370 * we have the reloc mutex held now, so there
371 * is only one writer in this function
372 */
373 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
374
375 /* make sure readers find IN_TRANS_SETUP before
376 * they find our root->last_trans update
377 */
378 smp_wmb();
379
380 spin_lock(&fs_info->fs_roots_radix_lock);
381 if (root->last_trans == trans->transid && !force) {
382 spin_unlock(&fs_info->fs_roots_radix_lock);
383 return 0;
384 }
385 radix_tree_tag_set(&fs_info->fs_roots_radix,
386 (unsigned long)root->root_key.objectid,
387 BTRFS_ROOT_TRANS_TAG);
388 spin_unlock(&fs_info->fs_roots_radix_lock);
389 root->last_trans = trans->transid;
390
391 /* this is pretty tricky. We don't want to
392 * take the relocation lock in btrfs_record_root_in_trans
393 * unless we're really doing the first setup for this root in
394 * this transaction.
395 *
396 * Normally we'd use root->last_trans as a flag to decide
397 * if we want to take the expensive mutex.
398 *
399 * But, we have to set root->last_trans before we
400 * init the relocation root, otherwise, we trip over warnings
401 * in ctree.c. The solution used here is to flag ourselves
402 * with root IN_TRANS_SETUP. When this is 1, we're still
403 * fixing up the reloc trees and everyone must wait.
404 *
405 * When this is zero, they can trust root->last_trans and fly
406 * through btrfs_record_root_in_trans without having to take the
407 * lock. smp_wmb() makes sure that all the writes above are
408 * done before we pop in the zero below
409 */
410 btrfs_init_reloc_root(trans, root);
411 smp_mb__before_atomic();
412 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
413 }
414 return 0;
415}
416
417
418void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
419 struct btrfs_root *root)
420{
421 struct btrfs_fs_info *fs_info = root->fs_info;
422 struct btrfs_transaction *cur_trans = trans->transaction;
423
424 /* Add ourselves to the transaction dropped list */
425 spin_lock(&cur_trans->dropped_roots_lock);
426 list_add_tail(&root->root_list, &cur_trans->dropped_roots);
427 spin_unlock(&cur_trans->dropped_roots_lock);
428
429 /* Make sure we don't try to update the root at commit time */
430 spin_lock(&fs_info->fs_roots_radix_lock);
431 radix_tree_tag_clear(&fs_info->fs_roots_radix,
432 (unsigned long)root->root_key.objectid,
433 BTRFS_ROOT_TRANS_TAG);
434 spin_unlock(&fs_info->fs_roots_radix_lock);
435}
436
437int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
438 struct btrfs_root *root)
439{
440 struct btrfs_fs_info *fs_info = root->fs_info;
441
442 if (!test_bit(BTRFS_ROOT_SHAREABLE, &root->state))
443 return 0;
444
445 /*
446 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
447 * and barriers
448 */
449 smp_rmb();
450 if (root->last_trans == trans->transid &&
451 !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
452 return 0;
453
454 mutex_lock(&fs_info->reloc_mutex);
455 record_root_in_trans(trans, root, 0);
456 mutex_unlock(&fs_info->reloc_mutex);
457
458 return 0;
459}
460
461static inline int is_transaction_blocked(struct btrfs_transaction *trans)
462{
463 return (trans->state >= TRANS_STATE_COMMIT_START &&
464 trans->state < TRANS_STATE_UNBLOCKED &&
465 !TRANS_ABORTED(trans));
466}
467
468/* wait for commit against the current transaction to become unblocked
469 * when this is done, it is safe to start a new transaction, but the current
470 * transaction might not be fully on disk.
471 */
472static void wait_current_trans(struct btrfs_fs_info *fs_info)
473{
474 struct btrfs_transaction *cur_trans;
475
476 spin_lock(&fs_info->trans_lock);
477 cur_trans = fs_info->running_transaction;
478 if (cur_trans && is_transaction_blocked(cur_trans)) {
479 refcount_inc(&cur_trans->use_count);
480 spin_unlock(&fs_info->trans_lock);
481
482 wait_event(fs_info->transaction_wait,
483 cur_trans->state >= TRANS_STATE_UNBLOCKED ||
484 TRANS_ABORTED(cur_trans));
485 btrfs_put_transaction(cur_trans);
486 } else {
487 spin_unlock(&fs_info->trans_lock);
488 }
489}
490
491static int may_wait_transaction(struct btrfs_fs_info *fs_info, int type)
492{
493 if (test_bit(BTRFS_FS_LOG_RECOVERING, &fs_info->flags))
494 return 0;
495
496 if (type == TRANS_START)
497 return 1;
498
499 return 0;
500}
501
502static inline bool need_reserve_reloc_root(struct btrfs_root *root)
503{
504 struct btrfs_fs_info *fs_info = root->fs_info;
505
506 if (!fs_info->reloc_ctl ||
507 !test_bit(BTRFS_ROOT_SHAREABLE, &root->state) ||
508 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
509 root->reloc_root)
510 return false;
511
512 return true;
513}
514
515static struct btrfs_trans_handle *
516start_transaction(struct btrfs_root *root, unsigned int num_items,
517 unsigned int type, enum btrfs_reserve_flush_enum flush,
518 bool enforce_qgroups)
519{
520 struct btrfs_fs_info *fs_info = root->fs_info;
521 struct btrfs_block_rsv *delayed_refs_rsv = &fs_info->delayed_refs_rsv;
522 struct btrfs_trans_handle *h;
523 struct btrfs_transaction *cur_trans;
524 u64 num_bytes = 0;
525 u64 qgroup_reserved = 0;
526 bool reloc_reserved = false;
527 bool do_chunk_alloc = false;
528 int ret;
529
530 /* Send isn't supposed to start transactions. */
531 ASSERT(current->journal_info != BTRFS_SEND_TRANS_STUB);
532
533 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state))
534 return ERR_PTR(-EROFS);
535
536 if (current->journal_info) {
537 WARN_ON(type & TRANS_EXTWRITERS);
538 h = current->journal_info;
539 refcount_inc(&h->use_count);
540 WARN_ON(refcount_read(&h->use_count) > 2);
541 h->orig_rsv = h->block_rsv;
542 h->block_rsv = NULL;
543 goto got_it;
544 }
545
546 /*
547 * Do the reservation before we join the transaction so we can do all
548 * the appropriate flushing if need be.
549 */
550 if (num_items && root != fs_info->chunk_root) {
551 struct btrfs_block_rsv *rsv = &fs_info->trans_block_rsv;
552 u64 delayed_refs_bytes = 0;
553
554 qgroup_reserved = num_items * fs_info->nodesize;
555 ret = btrfs_qgroup_reserve_meta_pertrans(root, qgroup_reserved,
556 enforce_qgroups);
557 if (ret)
558 return ERR_PTR(ret);
559
560 /*
561 * We want to reserve all the bytes we may need all at once, so
562 * we only do 1 enospc flushing cycle per transaction start. We
563 * accomplish this by simply assuming we'll do 2 x num_items
564 * worth of delayed refs updates in this trans handle, and
565 * refill that amount for whatever is missing in the reserve.
566 */
567 num_bytes = btrfs_calc_insert_metadata_size(fs_info, num_items);
568 if (flush == BTRFS_RESERVE_FLUSH_ALL &&
569 delayed_refs_rsv->full == 0) {
570 delayed_refs_bytes = num_bytes;
571 num_bytes <<= 1;
572 }
573
574 /*
575 * Do the reservation for the relocation root creation
576 */
577 if (need_reserve_reloc_root(root)) {
578 num_bytes += fs_info->nodesize;
579 reloc_reserved = true;
580 }
581
582 ret = btrfs_block_rsv_add(root, rsv, num_bytes, flush);
583 if (ret)
584 goto reserve_fail;
585 if (delayed_refs_bytes) {
586 btrfs_migrate_to_delayed_refs_rsv(fs_info, rsv,
587 delayed_refs_bytes);
588 num_bytes -= delayed_refs_bytes;
589 }
590
591 if (rsv->space_info->force_alloc)
592 do_chunk_alloc = true;
593 } else if (num_items == 0 && flush == BTRFS_RESERVE_FLUSH_ALL &&
594 !delayed_refs_rsv->full) {
595 /*
596 * Some people call with btrfs_start_transaction(root, 0)
597 * because they can be throttled, but have some other mechanism
598 * for reserving space. We still want these guys to refill the
599 * delayed block_rsv so just add 1 items worth of reservation
600 * here.
601 */
602 ret = btrfs_delayed_refs_rsv_refill(fs_info, flush);
603 if (ret)
604 goto reserve_fail;
605 }
606again:
607 h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
608 if (!h) {
609 ret = -ENOMEM;
610 goto alloc_fail;
611 }
612
613 /*
614 * If we are JOIN_NOLOCK we're already committing a transaction and
615 * waiting on this guy, so we don't need to do the sb_start_intwrite
616 * because we're already holding a ref. We need this because we could
617 * have raced in and did an fsync() on a file which can kick a commit
618 * and then we deadlock with somebody doing a freeze.
619 *
620 * If we are ATTACH, it means we just want to catch the current
621 * transaction and commit it, so we needn't do sb_start_intwrite().
622 */
623 if (type & __TRANS_FREEZABLE)
624 sb_start_intwrite(fs_info->sb);
625
626 if (may_wait_transaction(fs_info, type))
627 wait_current_trans(fs_info);
628
629 do {
630 ret = join_transaction(fs_info, type);
631 if (ret == -EBUSY) {
632 wait_current_trans(fs_info);
633 if (unlikely(type == TRANS_ATTACH ||
634 type == TRANS_JOIN_NOSTART))
635 ret = -ENOENT;
636 }
637 } while (ret == -EBUSY);
638
639 if (ret < 0)
640 goto join_fail;
641
642 cur_trans = fs_info->running_transaction;
643
644 h->transid = cur_trans->transid;
645 h->transaction = cur_trans;
646 h->root = root;
647 refcount_set(&h->use_count, 1);
648 h->fs_info = root->fs_info;
649
650 h->type = type;
651 h->can_flush_pending_bgs = true;
652 INIT_LIST_HEAD(&h->new_bgs);
653
654 smp_mb();
655 if (cur_trans->state >= TRANS_STATE_COMMIT_START &&
656 may_wait_transaction(fs_info, type)) {
657 current->journal_info = h;
658 btrfs_commit_transaction(h);
659 goto again;
660 }
661
662 if (num_bytes) {
663 trace_btrfs_space_reservation(fs_info, "transaction",
664 h->transid, num_bytes, 1);
665 h->block_rsv = &fs_info->trans_block_rsv;
666 h->bytes_reserved = num_bytes;
667 h->reloc_reserved = reloc_reserved;
668 }
669
670got_it:
671 if (!current->journal_info)
672 current->journal_info = h;
673
674 /*
675 * If the space_info is marked ALLOC_FORCE then we'll get upgraded to
676 * ALLOC_FORCE the first run through, and then we won't allocate for
677 * anybody else who races in later. We don't care about the return
678 * value here.
679 */
680 if (do_chunk_alloc && num_bytes) {
681 u64 flags = h->block_rsv->space_info->flags;
682
683 btrfs_chunk_alloc(h, btrfs_get_alloc_profile(fs_info, flags),
684 CHUNK_ALLOC_NO_FORCE);
685 }
686
687 /*
688 * btrfs_record_root_in_trans() needs to alloc new extents, and may
689 * call btrfs_join_transaction() while we're also starting a
690 * transaction.
691 *
692 * Thus it need to be called after current->journal_info initialized,
693 * or we can deadlock.
694 */
695 btrfs_record_root_in_trans(h, root);
696
697 return h;
698
699join_fail:
700 if (type & __TRANS_FREEZABLE)
701 sb_end_intwrite(fs_info->sb);
702 kmem_cache_free(btrfs_trans_handle_cachep, h);
703alloc_fail:
704 if (num_bytes)
705 btrfs_block_rsv_release(fs_info, &fs_info->trans_block_rsv,
706 num_bytes, NULL);
707reserve_fail:
708 btrfs_qgroup_free_meta_pertrans(root, qgroup_reserved);
709 return ERR_PTR(ret);
710}
711
712struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
713 unsigned int num_items)
714{
715 return start_transaction(root, num_items, TRANS_START,
716 BTRFS_RESERVE_FLUSH_ALL, true);
717}
718
719struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
720 struct btrfs_root *root,
721 unsigned int num_items)
722{
723 return start_transaction(root, num_items, TRANS_START,
724 BTRFS_RESERVE_FLUSH_ALL_STEAL, false);
725}
726
727struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
728{
729 return start_transaction(root, 0, TRANS_JOIN, BTRFS_RESERVE_NO_FLUSH,
730 true);
731}
732
733struct btrfs_trans_handle *btrfs_join_transaction_spacecache(struct btrfs_root *root)
734{
735 return start_transaction(root, 0, TRANS_JOIN_NOLOCK,
736 BTRFS_RESERVE_NO_FLUSH, true);
737}
738
739/*
740 * Similar to regular join but it never starts a transaction when none is
741 * running or after waiting for the current one to finish.
742 */
743struct btrfs_trans_handle *btrfs_join_transaction_nostart(struct btrfs_root *root)
744{
745 return start_transaction(root, 0, TRANS_JOIN_NOSTART,
746 BTRFS_RESERVE_NO_FLUSH, true);
747}
748
749/*
750 * btrfs_attach_transaction() - catch the running transaction
751 *
752 * It is used when we want to commit the current the transaction, but
753 * don't want to start a new one.
754 *
755 * Note: If this function return -ENOENT, it just means there is no
756 * running transaction. But it is possible that the inactive transaction
757 * is still in the memory, not fully on disk. If you hope there is no
758 * inactive transaction in the fs when -ENOENT is returned, you should
759 * invoke
760 * btrfs_attach_transaction_barrier()
761 */
762struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
763{
764 return start_transaction(root, 0, TRANS_ATTACH,
765 BTRFS_RESERVE_NO_FLUSH, true);
766}
767
768/*
769 * btrfs_attach_transaction_barrier() - catch the running transaction
770 *
771 * It is similar to the above function, the difference is this one
772 * will wait for all the inactive transactions until they fully
773 * complete.
774 */
775struct btrfs_trans_handle *
776btrfs_attach_transaction_barrier(struct btrfs_root *root)
777{
778 struct btrfs_trans_handle *trans;
779
780 trans = start_transaction(root, 0, TRANS_ATTACH,
781 BTRFS_RESERVE_NO_FLUSH, true);
782 if (trans == ERR_PTR(-ENOENT))
783 btrfs_wait_for_commit(root->fs_info, 0);
784
785 return trans;
786}
787
788/* wait for a transaction commit to be fully complete */
789static noinline void wait_for_commit(struct btrfs_transaction *commit)
790{
791 wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED);
792}
793
794int btrfs_wait_for_commit(struct btrfs_fs_info *fs_info, u64 transid)
795{
796 struct btrfs_transaction *cur_trans = NULL, *t;
797 int ret = 0;
798
799 if (transid) {
800 if (transid <= fs_info->last_trans_committed)
801 goto out;
802
803 /* find specified transaction */
804 spin_lock(&fs_info->trans_lock);
805 list_for_each_entry(t, &fs_info->trans_list, list) {
806 if (t->transid == transid) {
807 cur_trans = t;
808 refcount_inc(&cur_trans->use_count);
809 ret = 0;
810 break;
811 }
812 if (t->transid > transid) {
813 ret = 0;
814 break;
815 }
816 }
817 spin_unlock(&fs_info->trans_lock);
818
819 /*
820 * The specified transaction doesn't exist, or we
821 * raced with btrfs_commit_transaction
822 */
823 if (!cur_trans) {
824 if (transid > fs_info->last_trans_committed)
825 ret = -EINVAL;
826 goto out;
827 }
828 } else {
829 /* find newest transaction that is committing | committed */
830 spin_lock(&fs_info->trans_lock);
831 list_for_each_entry_reverse(t, &fs_info->trans_list,
832 list) {
833 if (t->state >= TRANS_STATE_COMMIT_START) {
834 if (t->state == TRANS_STATE_COMPLETED)
835 break;
836 cur_trans = t;
837 refcount_inc(&cur_trans->use_count);
838 break;
839 }
840 }
841 spin_unlock(&fs_info->trans_lock);
842 if (!cur_trans)
843 goto out; /* nothing committing|committed */
844 }
845
846 wait_for_commit(cur_trans);
847 btrfs_put_transaction(cur_trans);
848out:
849 return ret;
850}
851
852void btrfs_throttle(struct btrfs_fs_info *fs_info)
853{
854 wait_current_trans(fs_info);
855}
856
857static int should_end_transaction(struct btrfs_trans_handle *trans)
858{
859 struct btrfs_fs_info *fs_info = trans->fs_info;
860
861 if (btrfs_check_space_for_delayed_refs(fs_info))
862 return 1;
863
864 return !!btrfs_block_rsv_check(&fs_info->global_block_rsv, 5);
865}
866
867int btrfs_should_end_transaction(struct btrfs_trans_handle *trans)
868{
869 struct btrfs_transaction *cur_trans = trans->transaction;
870
871 smp_mb();
872 if (cur_trans->state >= TRANS_STATE_COMMIT_START ||
873 cur_trans->delayed_refs.flushing)
874 return 1;
875
876 return should_end_transaction(trans);
877}
878
879static void btrfs_trans_release_metadata(struct btrfs_trans_handle *trans)
880
881{
882 struct btrfs_fs_info *fs_info = trans->fs_info;
883
884 if (!trans->block_rsv) {
885 ASSERT(!trans->bytes_reserved);
886 return;
887 }
888
889 if (!trans->bytes_reserved)
890 return;
891
892 ASSERT(trans->block_rsv == &fs_info->trans_block_rsv);
893 trace_btrfs_space_reservation(fs_info, "transaction",
894 trans->transid, trans->bytes_reserved, 0);
895 btrfs_block_rsv_release(fs_info, trans->block_rsv,
896 trans->bytes_reserved, NULL);
897 trans->bytes_reserved = 0;
898}
899
900static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
901 int throttle)
902{
903 struct btrfs_fs_info *info = trans->fs_info;
904 struct btrfs_transaction *cur_trans = trans->transaction;
905 int err = 0;
906
907 if (refcount_read(&trans->use_count) > 1) {
908 refcount_dec(&trans->use_count);
909 trans->block_rsv = trans->orig_rsv;
910 return 0;
911 }
912
913 btrfs_trans_release_metadata(trans);
914 trans->block_rsv = NULL;
915
916 btrfs_create_pending_block_groups(trans);
917
918 btrfs_trans_release_chunk_metadata(trans);
919
920 if (trans->type & __TRANS_FREEZABLE)
921 sb_end_intwrite(info->sb);
922
923 WARN_ON(cur_trans != info->running_transaction);
924 WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
925 atomic_dec(&cur_trans->num_writers);
926 extwriter_counter_dec(cur_trans, trans->type);
927
928 cond_wake_up(&cur_trans->writer_wait);
929 btrfs_put_transaction(cur_trans);
930
931 if (current->journal_info == trans)
932 current->journal_info = NULL;
933
934 if (throttle)
935 btrfs_run_delayed_iputs(info);
936
937 if (TRANS_ABORTED(trans) ||
938 test_bit(BTRFS_FS_STATE_ERROR, &info->fs_state)) {
939 wake_up_process(info->transaction_kthread);
940 if (TRANS_ABORTED(trans))
941 err = trans->aborted;
942 else
943 err = -EROFS;
944 }
945
946 kmem_cache_free(btrfs_trans_handle_cachep, trans);
947 return err;
948}
949
950int btrfs_end_transaction(struct btrfs_trans_handle *trans)
951{
952 return __btrfs_end_transaction(trans, 0);
953}
954
955int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans)
956{
957 return __btrfs_end_transaction(trans, 1);
958}
959
960/*
961 * when btree blocks are allocated, they have some corresponding bits set for
962 * them in one of two extent_io trees. This is used to make sure all of
963 * those extents are sent to disk but does not wait on them
964 */
965int btrfs_write_marked_extents(struct btrfs_fs_info *fs_info,
966 struct extent_io_tree *dirty_pages, int mark)
967{
968 int err = 0;
969 int werr = 0;
970 struct address_space *mapping = fs_info->btree_inode->i_mapping;
971 struct extent_state *cached_state = NULL;
972 u64 start = 0;
973 u64 end;
974
975 atomic_inc(&BTRFS_I(fs_info->btree_inode)->sync_writers);
976 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
977 mark, &cached_state)) {
978 bool wait_writeback = false;
979
980 err = convert_extent_bit(dirty_pages, start, end,
981 EXTENT_NEED_WAIT,
982 mark, &cached_state);
983 /*
984 * convert_extent_bit can return -ENOMEM, which is most of the
985 * time a temporary error. So when it happens, ignore the error
986 * and wait for writeback of this range to finish - because we
987 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
988 * to __btrfs_wait_marked_extents() would not know that
989 * writeback for this range started and therefore wouldn't
990 * wait for it to finish - we don't want to commit a
991 * superblock that points to btree nodes/leafs for which
992 * writeback hasn't finished yet (and without errors).
993 * We cleanup any entries left in the io tree when committing
994 * the transaction (through extent_io_tree_release()).
995 */
996 if (err == -ENOMEM) {
997 err = 0;
998 wait_writeback = true;
999 }
1000 if (!err)
1001 err = filemap_fdatawrite_range(mapping, start, end);
1002 if (err)
1003 werr = err;
1004 else if (wait_writeback)
1005 werr = filemap_fdatawait_range(mapping, start, end);
1006 free_extent_state(cached_state);
1007 cached_state = NULL;
1008 cond_resched();
1009 start = end + 1;
1010 }
1011 atomic_dec(&BTRFS_I(fs_info->btree_inode)->sync_writers);
1012 return werr;
1013}
1014
1015/*
1016 * when btree blocks are allocated, they have some corresponding bits set for
1017 * them in one of two extent_io trees. This is used to make sure all of
1018 * those extents are on disk for transaction or log commit. We wait
1019 * on all the pages and clear them from the dirty pages state tree
1020 */
1021static int __btrfs_wait_marked_extents(struct btrfs_fs_info *fs_info,
1022 struct extent_io_tree *dirty_pages)
1023{
1024 int err = 0;
1025 int werr = 0;
1026 struct address_space *mapping = fs_info->btree_inode->i_mapping;
1027 struct extent_state *cached_state = NULL;
1028 u64 start = 0;
1029 u64 end;
1030
1031 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
1032 EXTENT_NEED_WAIT, &cached_state)) {
1033 /*
1034 * Ignore -ENOMEM errors returned by clear_extent_bit().
1035 * When committing the transaction, we'll remove any entries
1036 * left in the io tree. For a log commit, we don't remove them
1037 * after committing the log because the tree can be accessed
1038 * concurrently - we do it only at transaction commit time when
1039 * it's safe to do it (through extent_io_tree_release()).
1040 */
1041 err = clear_extent_bit(dirty_pages, start, end,
1042 EXTENT_NEED_WAIT, 0, 0, &cached_state);
1043 if (err == -ENOMEM)
1044 err = 0;
1045 if (!err)
1046 err = filemap_fdatawait_range(mapping, start, end);
1047 if (err)
1048 werr = err;
1049 free_extent_state(cached_state);
1050 cached_state = NULL;
1051 cond_resched();
1052 start = end + 1;
1053 }
1054 if (err)
1055 werr = err;
1056 return werr;
1057}
1058
1059static int btrfs_wait_extents(struct btrfs_fs_info *fs_info,
1060 struct extent_io_tree *dirty_pages)
1061{
1062 bool errors = false;
1063 int err;
1064
1065 err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1066 if (test_and_clear_bit(BTRFS_FS_BTREE_ERR, &fs_info->flags))
1067 errors = true;
1068
1069 if (errors && !err)
1070 err = -EIO;
1071 return err;
1072}
1073
1074int btrfs_wait_tree_log_extents(struct btrfs_root *log_root, int mark)
1075{
1076 struct btrfs_fs_info *fs_info = log_root->fs_info;
1077 struct extent_io_tree *dirty_pages = &log_root->dirty_log_pages;
1078 bool errors = false;
1079 int err;
1080
1081 ASSERT(log_root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID);
1082
1083 err = __btrfs_wait_marked_extents(fs_info, dirty_pages);
1084 if ((mark & EXTENT_DIRTY) &&
1085 test_and_clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags))
1086 errors = true;
1087
1088 if ((mark & EXTENT_NEW) &&
1089 test_and_clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags))
1090 errors = true;
1091
1092 if (errors && !err)
1093 err = -EIO;
1094 return err;
1095}
1096
1097/*
1098 * When btree blocks are allocated the corresponding extents are marked dirty.
1099 * This function ensures such extents are persisted on disk for transaction or
1100 * log commit.
1101 *
1102 * @trans: transaction whose dirty pages we'd like to write
1103 */
1104static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans)
1105{
1106 int ret;
1107 int ret2;
1108 struct extent_io_tree *dirty_pages = &trans->transaction->dirty_pages;
1109 struct btrfs_fs_info *fs_info = trans->fs_info;
1110 struct blk_plug plug;
1111
1112 blk_start_plug(&plug);
1113 ret = btrfs_write_marked_extents(fs_info, dirty_pages, EXTENT_DIRTY);
1114 blk_finish_plug(&plug);
1115 ret2 = btrfs_wait_extents(fs_info, dirty_pages);
1116
1117 extent_io_tree_release(&trans->transaction->dirty_pages);
1118
1119 if (ret)
1120 return ret;
1121 else if (ret2)
1122 return ret2;
1123 else
1124 return 0;
1125}
1126
1127/*
1128 * this is used to update the root pointer in the tree of tree roots.
1129 *
1130 * But, in the case of the extent allocation tree, updating the root
1131 * pointer may allocate blocks which may change the root of the extent
1132 * allocation tree.
1133 *
1134 * So, this loops and repeats and makes sure the cowonly root didn't
1135 * change while the root pointer was being updated in the metadata.
1136 */
1137static int update_cowonly_root(struct btrfs_trans_handle *trans,
1138 struct btrfs_root *root)
1139{
1140 int ret;
1141 u64 old_root_bytenr;
1142 u64 old_root_used;
1143 struct btrfs_fs_info *fs_info = root->fs_info;
1144 struct btrfs_root *tree_root = fs_info->tree_root;
1145
1146 old_root_used = btrfs_root_used(&root->root_item);
1147
1148 while (1) {
1149 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1150 if (old_root_bytenr == root->node->start &&
1151 old_root_used == btrfs_root_used(&root->root_item))
1152 break;
1153
1154 btrfs_set_root_node(&root->root_item, root->node);
1155 ret = btrfs_update_root(trans, tree_root,
1156 &root->root_key,
1157 &root->root_item);
1158 if (ret)
1159 return ret;
1160
1161 old_root_used = btrfs_root_used(&root->root_item);
1162 }
1163
1164 return 0;
1165}
1166
1167/*
1168 * update all the cowonly tree roots on disk
1169 *
1170 * The error handling in this function may not be obvious. Any of the
1171 * failures will cause the file system to go offline. We still need
1172 * to clean up the delayed refs.
1173 */
1174static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans)
1175{
1176 struct btrfs_fs_info *fs_info = trans->fs_info;
1177 struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1178 struct list_head *io_bgs = &trans->transaction->io_bgs;
1179 struct list_head *next;
1180 struct extent_buffer *eb;
1181 int ret;
1182
1183 eb = btrfs_lock_root_node(fs_info->tree_root);
1184 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1185 0, &eb);
1186 btrfs_tree_unlock(eb);
1187 free_extent_buffer(eb);
1188
1189 if (ret)
1190 return ret;
1191
1192 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1193 if (ret)
1194 return ret;
1195
1196 ret = btrfs_run_dev_stats(trans);
1197 if (ret)
1198 return ret;
1199 ret = btrfs_run_dev_replace(trans);
1200 if (ret)
1201 return ret;
1202 ret = btrfs_run_qgroups(trans);
1203 if (ret)
1204 return ret;
1205
1206 ret = btrfs_setup_space_cache(trans);
1207 if (ret)
1208 return ret;
1209
1210 /* run_qgroups might have added some more refs */
1211 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1212 if (ret)
1213 return ret;
1214again:
1215 while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1216 struct btrfs_root *root;
1217 next = fs_info->dirty_cowonly_roots.next;
1218 list_del_init(next);
1219 root = list_entry(next, struct btrfs_root, dirty_list);
1220 clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1221
1222 if (root != fs_info->extent_root)
1223 list_add_tail(&root->dirty_list,
1224 &trans->transaction->switch_commits);
1225 ret = update_cowonly_root(trans, root);
1226 if (ret)
1227 return ret;
1228 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1229 if (ret)
1230 return ret;
1231 }
1232
1233 while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
1234 ret = btrfs_write_dirty_block_groups(trans);
1235 if (ret)
1236 return ret;
1237 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1238 if (ret)
1239 return ret;
1240 }
1241
1242 if (!list_empty(&fs_info->dirty_cowonly_roots))
1243 goto again;
1244
1245 list_add_tail(&fs_info->extent_root->dirty_list,
1246 &trans->transaction->switch_commits);
1247
1248 /* Update dev-replace pointer once everything is committed */
1249 fs_info->dev_replace.committed_cursor_left =
1250 fs_info->dev_replace.cursor_left_last_write_of_item;
1251
1252 return 0;
1253}
1254
1255/*
1256 * dead roots are old snapshots that need to be deleted. This allocates
1257 * a dirty root struct and adds it into the list of dead roots that need to
1258 * be deleted
1259 */
1260void btrfs_add_dead_root(struct btrfs_root *root)
1261{
1262 struct btrfs_fs_info *fs_info = root->fs_info;
1263
1264 spin_lock(&fs_info->trans_lock);
1265 if (list_empty(&root->root_list)) {
1266 btrfs_grab_root(root);
1267 list_add_tail(&root->root_list, &fs_info->dead_roots);
1268 }
1269 spin_unlock(&fs_info->trans_lock);
1270}
1271
1272/*
1273 * update all the cowonly tree roots on disk
1274 */
1275static noinline int commit_fs_roots(struct btrfs_trans_handle *trans)
1276{
1277 struct btrfs_fs_info *fs_info = trans->fs_info;
1278 struct btrfs_root *gang[8];
1279 int i;
1280 int ret;
1281 int err = 0;
1282
1283 spin_lock(&fs_info->fs_roots_radix_lock);
1284 while (1) {
1285 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1286 (void **)gang, 0,
1287 ARRAY_SIZE(gang),
1288 BTRFS_ROOT_TRANS_TAG);
1289 if (ret == 0)
1290 break;
1291 for (i = 0; i < ret; i++) {
1292 struct btrfs_root *root = gang[i];
1293 radix_tree_tag_clear(&fs_info->fs_roots_radix,
1294 (unsigned long)root->root_key.objectid,
1295 BTRFS_ROOT_TRANS_TAG);
1296 spin_unlock(&fs_info->fs_roots_radix_lock);
1297
1298 btrfs_free_log(trans, root);
1299 btrfs_update_reloc_root(trans, root);
1300
1301 btrfs_save_ino_cache(root, trans);
1302
1303 /* see comments in should_cow_block() */
1304 clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1305 smp_mb__after_atomic();
1306
1307 if (root->commit_root != root->node) {
1308 list_add_tail(&root->dirty_list,
1309 &trans->transaction->switch_commits);
1310 btrfs_set_root_node(&root->root_item,
1311 root->node);
1312 }
1313
1314 err = btrfs_update_root(trans, fs_info->tree_root,
1315 &root->root_key,
1316 &root->root_item);
1317 spin_lock(&fs_info->fs_roots_radix_lock);
1318 if (err)
1319 break;
1320 btrfs_qgroup_free_meta_all_pertrans(root);
1321 }
1322 }
1323 spin_unlock(&fs_info->fs_roots_radix_lock);
1324 return err;
1325}
1326
1327/*
1328 * defrag a given btree.
1329 * Every leaf in the btree is read and defragged.
1330 */
1331int btrfs_defrag_root(struct btrfs_root *root)
1332{
1333 struct btrfs_fs_info *info = root->fs_info;
1334 struct btrfs_trans_handle *trans;
1335 int ret;
1336
1337 if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
1338 return 0;
1339
1340 while (1) {
1341 trans = btrfs_start_transaction(root, 0);
1342 if (IS_ERR(trans))
1343 return PTR_ERR(trans);
1344
1345 ret = btrfs_defrag_leaves(trans, root);
1346
1347 btrfs_end_transaction(trans);
1348 btrfs_btree_balance_dirty(info);
1349 cond_resched();
1350
1351 if (btrfs_fs_closing(info) || ret != -EAGAIN)
1352 break;
1353
1354 if (btrfs_defrag_cancelled(info)) {
1355 btrfs_debug(info, "defrag_root cancelled");
1356 ret = -EAGAIN;
1357 break;
1358 }
1359 }
1360 clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
1361 return ret;
1362}
1363
1364/*
1365 * Do all special snapshot related qgroup dirty hack.
1366 *
1367 * Will do all needed qgroup inherit and dirty hack like switch commit
1368 * roots inside one transaction and write all btree into disk, to make
1369 * qgroup works.
1370 */
1371static int qgroup_account_snapshot(struct btrfs_trans_handle *trans,
1372 struct btrfs_root *src,
1373 struct btrfs_root *parent,
1374 struct btrfs_qgroup_inherit *inherit,
1375 u64 dst_objectid)
1376{
1377 struct btrfs_fs_info *fs_info = src->fs_info;
1378 int ret;
1379
1380 /*
1381 * Save some performance in the case that qgroups are not
1382 * enabled. If this check races with the ioctl, rescan will
1383 * kick in anyway.
1384 */
1385 if (!test_bit(BTRFS_FS_QUOTA_ENABLED, &fs_info->flags))
1386 return 0;
1387
1388 /*
1389 * Ensure dirty @src will be committed. Or, after coming
1390 * commit_fs_roots() and switch_commit_roots(), any dirty but not
1391 * recorded root will never be updated again, causing an outdated root
1392 * item.
1393 */
1394 record_root_in_trans(trans, src, 1);
1395
1396 /*
1397 * We are going to commit transaction, see btrfs_commit_transaction()
1398 * comment for reason locking tree_log_mutex
1399 */
1400 mutex_lock(&fs_info->tree_log_mutex);
1401
1402 ret = commit_fs_roots(trans);
1403 if (ret)
1404 goto out;
1405 ret = btrfs_qgroup_account_extents(trans);
1406 if (ret < 0)
1407 goto out;
1408
1409 /* Now qgroup are all updated, we can inherit it to new qgroups */
1410 ret = btrfs_qgroup_inherit(trans, src->root_key.objectid, dst_objectid,
1411 inherit);
1412 if (ret < 0)
1413 goto out;
1414
1415 /*
1416 * Now we do a simplified commit transaction, which will:
1417 * 1) commit all subvolume and extent tree
1418 * To ensure all subvolume and extent tree have a valid
1419 * commit_root to accounting later insert_dir_item()
1420 * 2) write all btree blocks onto disk
1421 * This is to make sure later btree modification will be cowed
1422 * Or commit_root can be populated and cause wrong qgroup numbers
1423 * In this simplified commit, we don't really care about other trees
1424 * like chunk and root tree, as they won't affect qgroup.
1425 * And we don't write super to avoid half committed status.
1426 */
1427 ret = commit_cowonly_roots(trans);
1428 if (ret)
1429 goto out;
1430 switch_commit_roots(trans);
1431 ret = btrfs_write_and_wait_transaction(trans);
1432 if (ret)
1433 btrfs_handle_fs_error(fs_info, ret,
1434 "Error while writing out transaction for qgroup");
1435
1436out:
1437 mutex_unlock(&fs_info->tree_log_mutex);
1438
1439 /*
1440 * Force parent root to be updated, as we recorded it before so its
1441 * last_trans == cur_transid.
1442 * Or it won't be committed again onto disk after later
1443 * insert_dir_item()
1444 */
1445 if (!ret)
1446 record_root_in_trans(trans, parent, 1);
1447 return ret;
1448}
1449
1450/*
1451 * new snapshots need to be created at a very specific time in the
1452 * transaction commit. This does the actual creation.
1453 *
1454 * Note:
1455 * If the error which may affect the commitment of the current transaction
1456 * happens, we should return the error number. If the error which just affect
1457 * the creation of the pending snapshots, just return 0.
1458 */
1459static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1460 struct btrfs_pending_snapshot *pending)
1461{
1462
1463 struct btrfs_fs_info *fs_info = trans->fs_info;
1464 struct btrfs_key key;
1465 struct btrfs_root_item *new_root_item;
1466 struct btrfs_root *tree_root = fs_info->tree_root;
1467 struct btrfs_root *root = pending->root;
1468 struct btrfs_root *parent_root;
1469 struct btrfs_block_rsv *rsv;
1470 struct inode *parent_inode;
1471 struct btrfs_path *path;
1472 struct btrfs_dir_item *dir_item;
1473 struct dentry *dentry;
1474 struct extent_buffer *tmp;
1475 struct extent_buffer *old;
1476 struct timespec64 cur_time;
1477 int ret = 0;
1478 u64 to_reserve = 0;
1479 u64 index = 0;
1480 u64 objectid;
1481 u64 root_flags;
1482
1483 ASSERT(pending->path);
1484 path = pending->path;
1485
1486 ASSERT(pending->root_item);
1487 new_root_item = pending->root_item;
1488
1489 pending->error = btrfs_find_free_objectid(tree_root, &objectid);
1490 if (pending->error)
1491 goto no_free_objectid;
1492
1493 /*
1494 * Make qgroup to skip current new snapshot's qgroupid, as it is
1495 * accounted by later btrfs_qgroup_inherit().
1496 */
1497 btrfs_set_skip_qgroup(trans, objectid);
1498
1499 btrfs_reloc_pre_snapshot(pending, &to_reserve);
1500
1501 if (to_reserve > 0) {
1502 pending->error = btrfs_block_rsv_add(root,
1503 &pending->block_rsv,
1504 to_reserve,
1505 BTRFS_RESERVE_NO_FLUSH);
1506 if (pending->error)
1507 goto clear_skip_qgroup;
1508 }
1509
1510 key.objectid = objectid;
1511 key.offset = (u64)-1;
1512 key.type = BTRFS_ROOT_ITEM_KEY;
1513
1514 rsv = trans->block_rsv;
1515 trans->block_rsv = &pending->block_rsv;
1516 trans->bytes_reserved = trans->block_rsv->reserved;
1517 trace_btrfs_space_reservation(fs_info, "transaction",
1518 trans->transid,
1519 trans->bytes_reserved, 1);
1520 dentry = pending->dentry;
1521 parent_inode = pending->dir;
1522 parent_root = BTRFS_I(parent_inode)->root;
1523 record_root_in_trans(trans, parent_root, 0);
1524
1525 cur_time = current_time(parent_inode);
1526
1527 /*
1528 * insert the directory item
1529 */
1530 ret = btrfs_set_inode_index(BTRFS_I(parent_inode), &index);
1531 BUG_ON(ret); /* -ENOMEM */
1532
1533 /* check if there is a file/dir which has the same name. */
1534 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1535 btrfs_ino(BTRFS_I(parent_inode)),
1536 dentry->d_name.name,
1537 dentry->d_name.len, 0);
1538 if (dir_item != NULL && !IS_ERR(dir_item)) {
1539 pending->error = -EEXIST;
1540 goto dir_item_existed;
1541 } else if (IS_ERR(dir_item)) {
1542 ret = PTR_ERR(dir_item);
1543 btrfs_abort_transaction(trans, ret);
1544 goto fail;
1545 }
1546 btrfs_release_path(path);
1547
1548 /*
1549 * pull in the delayed directory update
1550 * and the delayed inode item
1551 * otherwise we corrupt the FS during
1552 * snapshot
1553 */
1554 ret = btrfs_run_delayed_items(trans);
1555 if (ret) { /* Transaction aborted */
1556 btrfs_abort_transaction(trans, ret);
1557 goto fail;
1558 }
1559
1560 record_root_in_trans(trans, root, 0);
1561 btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1562 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1563 btrfs_check_and_init_root_item(new_root_item);
1564
1565 root_flags = btrfs_root_flags(new_root_item);
1566 if (pending->readonly)
1567 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1568 else
1569 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1570 btrfs_set_root_flags(new_root_item, root_flags);
1571
1572 btrfs_set_root_generation_v2(new_root_item,
1573 trans->transid);
1574 generate_random_guid(new_root_item->uuid);
1575 memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1576 BTRFS_UUID_SIZE);
1577 if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1578 memset(new_root_item->received_uuid, 0,
1579 sizeof(new_root_item->received_uuid));
1580 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1581 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1582 btrfs_set_root_stransid(new_root_item, 0);
1583 btrfs_set_root_rtransid(new_root_item, 0);
1584 }
1585 btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1586 btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1587 btrfs_set_root_otransid(new_root_item, trans->transid);
1588
1589 old = btrfs_lock_root_node(root);
1590 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1591 if (ret) {
1592 btrfs_tree_unlock(old);
1593 free_extent_buffer(old);
1594 btrfs_abort_transaction(trans, ret);
1595 goto fail;
1596 }
1597
1598 btrfs_set_lock_blocking_write(old);
1599
1600 ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1601 /* clean up in any case */
1602 btrfs_tree_unlock(old);
1603 free_extent_buffer(old);
1604 if (ret) {
1605 btrfs_abort_transaction(trans, ret);
1606 goto fail;
1607 }
1608 /* see comments in should_cow_block() */
1609 set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1610 smp_wmb();
1611
1612 btrfs_set_root_node(new_root_item, tmp);
1613 /* record when the snapshot was created in key.offset */
1614 key.offset = trans->transid;
1615 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1616 btrfs_tree_unlock(tmp);
1617 free_extent_buffer(tmp);
1618 if (ret) {
1619 btrfs_abort_transaction(trans, ret);
1620 goto fail;
1621 }
1622
1623 /*
1624 * insert root back/forward references
1625 */
1626 ret = btrfs_add_root_ref(trans, objectid,
1627 parent_root->root_key.objectid,
1628 btrfs_ino(BTRFS_I(parent_inode)), index,
1629 dentry->d_name.name, dentry->d_name.len);
1630 if (ret) {
1631 btrfs_abort_transaction(trans, ret);
1632 goto fail;
1633 }
1634
1635 key.offset = (u64)-1;
1636 pending->snap = btrfs_get_new_fs_root(fs_info, objectid, pending->anon_dev);
1637 if (IS_ERR(pending->snap)) {
1638 ret = PTR_ERR(pending->snap);
1639 pending->snap = NULL;
1640 btrfs_abort_transaction(trans, ret);
1641 goto fail;
1642 }
1643
1644 ret = btrfs_reloc_post_snapshot(trans, pending);
1645 if (ret) {
1646 btrfs_abort_transaction(trans, ret);
1647 goto fail;
1648 }
1649
1650 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1651 if (ret) {
1652 btrfs_abort_transaction(trans, ret);
1653 goto fail;
1654 }
1655
1656 /*
1657 * Do special qgroup accounting for snapshot, as we do some qgroup
1658 * snapshot hack to do fast snapshot.
1659 * To co-operate with that hack, we do hack again.
1660 * Or snapshot will be greatly slowed down by a subtree qgroup rescan
1661 */
1662 ret = qgroup_account_snapshot(trans, root, parent_root,
1663 pending->inherit, objectid);
1664 if (ret < 0)
1665 goto fail;
1666
1667 ret = btrfs_insert_dir_item(trans, dentry->d_name.name,
1668 dentry->d_name.len, BTRFS_I(parent_inode),
1669 &key, BTRFS_FT_DIR, index);
1670 /* We have check then name at the beginning, so it is impossible. */
1671 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1672 if (ret) {
1673 btrfs_abort_transaction(trans, ret);
1674 goto fail;
1675 }
1676
1677 btrfs_i_size_write(BTRFS_I(parent_inode), parent_inode->i_size +
1678 dentry->d_name.len * 2);
1679 parent_inode->i_mtime = parent_inode->i_ctime =
1680 current_time(parent_inode);
1681 ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
1682 if (ret) {
1683 btrfs_abort_transaction(trans, ret);
1684 goto fail;
1685 }
1686 ret = btrfs_uuid_tree_add(trans, new_root_item->uuid,
1687 BTRFS_UUID_KEY_SUBVOL,
1688 objectid);
1689 if (ret) {
1690 btrfs_abort_transaction(trans, ret);
1691 goto fail;
1692 }
1693 if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1694 ret = btrfs_uuid_tree_add(trans, new_root_item->received_uuid,
1695 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1696 objectid);
1697 if (ret && ret != -EEXIST) {
1698 btrfs_abort_transaction(trans, ret);
1699 goto fail;
1700 }
1701 }
1702
1703 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
1704 if (ret) {
1705 btrfs_abort_transaction(trans, ret);
1706 goto fail;
1707 }
1708
1709fail:
1710 pending->error = ret;
1711dir_item_existed:
1712 trans->block_rsv = rsv;
1713 trans->bytes_reserved = 0;
1714clear_skip_qgroup:
1715 btrfs_clear_skip_qgroup(trans);
1716no_free_objectid:
1717 kfree(new_root_item);
1718 pending->root_item = NULL;
1719 btrfs_free_path(path);
1720 pending->path = NULL;
1721
1722 return ret;
1723}
1724
1725/*
1726 * create all the snapshots we've scheduled for creation
1727 */
1728static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans)
1729{
1730 struct btrfs_pending_snapshot *pending, *next;
1731 struct list_head *head = &trans->transaction->pending_snapshots;
1732 int ret = 0;
1733
1734 list_for_each_entry_safe(pending, next, head, list) {
1735 list_del(&pending->list);
1736 ret = create_pending_snapshot(trans, pending);
1737 if (ret)
1738 break;
1739 }
1740 return ret;
1741}
1742
1743static void update_super_roots(struct btrfs_fs_info *fs_info)
1744{
1745 struct btrfs_root_item *root_item;
1746 struct btrfs_super_block *super;
1747
1748 super = fs_info->super_copy;
1749
1750 root_item = &fs_info->chunk_root->root_item;
1751 super->chunk_root = root_item->bytenr;
1752 super->chunk_root_generation = root_item->generation;
1753 super->chunk_root_level = root_item->level;
1754
1755 root_item = &fs_info->tree_root->root_item;
1756 super->root = root_item->bytenr;
1757 super->generation = root_item->generation;
1758 super->root_level = root_item->level;
1759 if (btrfs_test_opt(fs_info, SPACE_CACHE))
1760 super->cache_generation = root_item->generation;
1761 if (test_bit(BTRFS_FS_UPDATE_UUID_TREE_GEN, &fs_info->flags))
1762 super->uuid_tree_generation = root_item->generation;
1763}
1764
1765int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1766{
1767 struct btrfs_transaction *trans;
1768 int ret = 0;
1769
1770 spin_lock(&info->trans_lock);
1771 trans = info->running_transaction;
1772 if (trans)
1773 ret = (trans->state >= TRANS_STATE_COMMIT_START);
1774 spin_unlock(&info->trans_lock);
1775 return ret;
1776}
1777
1778int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1779{
1780 struct btrfs_transaction *trans;
1781 int ret = 0;
1782
1783 spin_lock(&info->trans_lock);
1784 trans = info->running_transaction;
1785 if (trans)
1786 ret = is_transaction_blocked(trans);
1787 spin_unlock(&info->trans_lock);
1788 return ret;
1789}
1790
1791/*
1792 * wait for the current transaction commit to start and block subsequent
1793 * transaction joins
1794 */
1795static void wait_current_trans_commit_start(struct btrfs_fs_info *fs_info,
1796 struct btrfs_transaction *trans)
1797{
1798 wait_event(fs_info->transaction_blocked_wait,
1799 trans->state >= TRANS_STATE_COMMIT_START ||
1800 TRANS_ABORTED(trans));
1801}
1802
1803/*
1804 * wait for the current transaction to start and then become unblocked.
1805 * caller holds ref.
1806 */
1807static void wait_current_trans_commit_start_and_unblock(
1808 struct btrfs_fs_info *fs_info,
1809 struct btrfs_transaction *trans)
1810{
1811 wait_event(fs_info->transaction_wait,
1812 trans->state >= TRANS_STATE_UNBLOCKED ||
1813 TRANS_ABORTED(trans));
1814}
1815
1816/*
1817 * commit transactions asynchronously. once btrfs_commit_transaction_async
1818 * returns, any subsequent transaction will not be allowed to join.
1819 */
1820struct btrfs_async_commit {
1821 struct btrfs_trans_handle *newtrans;
1822 struct work_struct work;
1823};
1824
1825static void do_async_commit(struct work_struct *work)
1826{
1827 struct btrfs_async_commit *ac =
1828 container_of(work, struct btrfs_async_commit, work);
1829
1830 /*
1831 * We've got freeze protection passed with the transaction.
1832 * Tell lockdep about it.
1833 */
1834 if (ac->newtrans->type & __TRANS_FREEZABLE)
1835 __sb_writers_acquired(ac->newtrans->fs_info->sb, SB_FREEZE_FS);
1836
1837 current->journal_info = ac->newtrans;
1838
1839 btrfs_commit_transaction(ac->newtrans);
1840 kfree(ac);
1841}
1842
1843int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1844 int wait_for_unblock)
1845{
1846 struct btrfs_fs_info *fs_info = trans->fs_info;
1847 struct btrfs_async_commit *ac;
1848 struct btrfs_transaction *cur_trans;
1849
1850 ac = kmalloc(sizeof(*ac), GFP_NOFS);
1851 if (!ac)
1852 return -ENOMEM;
1853
1854 INIT_WORK(&ac->work, do_async_commit);
1855 ac->newtrans = btrfs_join_transaction(trans->root);
1856 if (IS_ERR(ac->newtrans)) {
1857 int err = PTR_ERR(ac->newtrans);
1858 kfree(ac);
1859 return err;
1860 }
1861
1862 /* take transaction reference */
1863 cur_trans = trans->transaction;
1864 refcount_inc(&cur_trans->use_count);
1865
1866 btrfs_end_transaction(trans);
1867
1868 /*
1869 * Tell lockdep we've released the freeze rwsem, since the
1870 * async commit thread will be the one to unlock it.
1871 */
1872 if (ac->newtrans->type & __TRANS_FREEZABLE)
1873 __sb_writers_release(fs_info->sb, SB_FREEZE_FS);
1874
1875 schedule_work(&ac->work);
1876
1877 /* wait for transaction to start and unblock */
1878 if (wait_for_unblock)
1879 wait_current_trans_commit_start_and_unblock(fs_info, cur_trans);
1880 else
1881 wait_current_trans_commit_start(fs_info, cur_trans);
1882
1883 if (current->journal_info == trans)
1884 current->journal_info = NULL;
1885
1886 btrfs_put_transaction(cur_trans);
1887 return 0;
1888}
1889
1890
1891static void cleanup_transaction(struct btrfs_trans_handle *trans, int err)
1892{
1893 struct btrfs_fs_info *fs_info = trans->fs_info;
1894 struct btrfs_transaction *cur_trans = trans->transaction;
1895
1896 WARN_ON(refcount_read(&trans->use_count) > 1);
1897
1898 btrfs_abort_transaction(trans, err);
1899
1900 spin_lock(&fs_info->trans_lock);
1901
1902 /*
1903 * If the transaction is removed from the list, it means this
1904 * transaction has been committed successfully, so it is impossible
1905 * to call the cleanup function.
1906 */
1907 BUG_ON(list_empty(&cur_trans->list));
1908
1909 list_del_init(&cur_trans->list);
1910 if (cur_trans == fs_info->running_transaction) {
1911 cur_trans->state = TRANS_STATE_COMMIT_DOING;
1912 spin_unlock(&fs_info->trans_lock);
1913 wait_event(cur_trans->writer_wait,
1914 atomic_read(&cur_trans->num_writers) == 1);
1915
1916 spin_lock(&fs_info->trans_lock);
1917 }
1918 spin_unlock(&fs_info->trans_lock);
1919
1920 btrfs_cleanup_one_transaction(trans->transaction, fs_info);
1921
1922 spin_lock(&fs_info->trans_lock);
1923 if (cur_trans == fs_info->running_transaction)
1924 fs_info->running_transaction = NULL;
1925 spin_unlock(&fs_info->trans_lock);
1926
1927 if (trans->type & __TRANS_FREEZABLE)
1928 sb_end_intwrite(fs_info->sb);
1929 btrfs_put_transaction(cur_trans);
1930 btrfs_put_transaction(cur_trans);
1931
1932 trace_btrfs_transaction_commit(trans->root);
1933
1934 if (current->journal_info == trans)
1935 current->journal_info = NULL;
1936 btrfs_scrub_cancel(fs_info);
1937
1938 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1939}
1940
1941/*
1942 * Release reserved delayed ref space of all pending block groups of the
1943 * transaction and remove them from the list
1944 */
1945static void btrfs_cleanup_pending_block_groups(struct btrfs_trans_handle *trans)
1946{
1947 struct btrfs_fs_info *fs_info = trans->fs_info;
1948 struct btrfs_block_group *block_group, *tmp;
1949
1950 list_for_each_entry_safe(block_group, tmp, &trans->new_bgs, bg_list) {
1951 btrfs_delayed_refs_rsv_release(fs_info, 1);
1952 list_del_init(&block_group->bg_list);
1953 }
1954}
1955
1956static inline int btrfs_start_delalloc_flush(struct btrfs_trans_handle *trans)
1957{
1958 struct btrfs_fs_info *fs_info = trans->fs_info;
1959
1960 /*
1961 * We use writeback_inodes_sb here because if we used
1962 * btrfs_start_delalloc_roots we would deadlock with fs freeze.
1963 * Currently are holding the fs freeze lock, if we do an async flush
1964 * we'll do btrfs_join_transaction() and deadlock because we need to
1965 * wait for the fs freeze lock. Using the direct flushing we benefit
1966 * from already being in a transaction and our join_transaction doesn't
1967 * have to re-take the fs freeze lock.
1968 */
1969 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT)) {
1970 writeback_inodes_sb(fs_info->sb, WB_REASON_SYNC);
1971 } else {
1972 struct btrfs_pending_snapshot *pending;
1973 struct list_head *head = &trans->transaction->pending_snapshots;
1974
1975 /*
1976 * Flush dellaloc for any root that is going to be snapshotted.
1977 * This is done to avoid a corrupted version of files, in the
1978 * snapshots, that had both buffered and direct IO writes (even
1979 * if they were done sequentially) due to an unordered update of
1980 * the inode's size on disk.
1981 */
1982 list_for_each_entry(pending, head, list) {
1983 int ret;
1984
1985 ret = btrfs_start_delalloc_snapshot(pending->root);
1986 if (ret)
1987 return ret;
1988 }
1989 }
1990 return 0;
1991}
1992
1993static inline void btrfs_wait_delalloc_flush(struct btrfs_trans_handle *trans)
1994{
1995 struct btrfs_fs_info *fs_info = trans->fs_info;
1996
1997 if (btrfs_test_opt(fs_info, FLUSHONCOMMIT)) {
1998 btrfs_wait_ordered_roots(fs_info, U64_MAX, 0, (u64)-1);
1999 } else {
2000 struct btrfs_pending_snapshot *pending;
2001 struct list_head *head = &trans->transaction->pending_snapshots;
2002
2003 /*
2004 * Wait for any dellaloc that we started previously for the roots
2005 * that are going to be snapshotted. This is to avoid a corrupted
2006 * version of files in the snapshots that had both buffered and
2007 * direct IO writes (even if they were done sequentially).
2008 */
2009 list_for_each_entry(pending, head, list)
2010 btrfs_wait_ordered_extents(pending->root,
2011 U64_MAX, 0, U64_MAX);
2012 }
2013}
2014
2015int btrfs_commit_transaction(struct btrfs_trans_handle *trans)
2016{
2017 struct btrfs_fs_info *fs_info = trans->fs_info;
2018 struct btrfs_transaction *cur_trans = trans->transaction;
2019 struct btrfs_transaction *prev_trans = NULL;
2020 int ret;
2021
2022 ASSERT(refcount_read(&trans->use_count) == 1);
2023
2024 /*
2025 * Some places just start a transaction to commit it. We need to make
2026 * sure that if this commit fails that the abort code actually marks the
2027 * transaction as failed, so set trans->dirty to make the abort code do
2028 * the right thing.
2029 */
2030 trans->dirty = true;
2031
2032 /* Stop the commit early if ->aborted is set */
2033 if (TRANS_ABORTED(cur_trans)) {
2034 ret = cur_trans->aborted;
2035 btrfs_end_transaction(trans);
2036 return ret;
2037 }
2038
2039 btrfs_trans_release_metadata(trans);
2040 trans->block_rsv = NULL;
2041
2042 /* make a pass through all the delayed refs we have so far
2043 * any runnings procs may add more while we are here
2044 */
2045 ret = btrfs_run_delayed_refs(trans, 0);
2046 if (ret) {
2047 btrfs_end_transaction(trans);
2048 return ret;
2049 }
2050
2051 cur_trans = trans->transaction;
2052
2053 /*
2054 * set the flushing flag so procs in this transaction have to
2055 * start sending their work down.
2056 */
2057 cur_trans->delayed_refs.flushing = 1;
2058 smp_wmb();
2059
2060 btrfs_create_pending_block_groups(trans);
2061
2062 ret = btrfs_run_delayed_refs(trans, 0);
2063 if (ret) {
2064 btrfs_end_transaction(trans);
2065 return ret;
2066 }
2067
2068 if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
2069 int run_it = 0;
2070
2071 /* this mutex is also taken before trying to set
2072 * block groups readonly. We need to make sure
2073 * that nobody has set a block group readonly
2074 * after a extents from that block group have been
2075 * allocated for cache files. btrfs_set_block_group_ro
2076 * will wait for the transaction to commit if it
2077 * finds BTRFS_TRANS_DIRTY_BG_RUN set.
2078 *
2079 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
2080 * only one process starts all the block group IO. It wouldn't
2081 * hurt to have more than one go through, but there's no
2082 * real advantage to it either.
2083 */
2084 mutex_lock(&fs_info->ro_block_group_mutex);
2085 if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
2086 &cur_trans->flags))
2087 run_it = 1;
2088 mutex_unlock(&fs_info->ro_block_group_mutex);
2089
2090 if (run_it) {
2091 ret = btrfs_start_dirty_block_groups(trans);
2092 if (ret) {
2093 btrfs_end_transaction(trans);
2094 return ret;
2095 }
2096 }
2097 }
2098
2099 spin_lock(&fs_info->trans_lock);
2100 if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
2101 spin_unlock(&fs_info->trans_lock);
2102 refcount_inc(&cur_trans->use_count);
2103 ret = btrfs_end_transaction(trans);
2104
2105 wait_for_commit(cur_trans);
2106
2107 if (TRANS_ABORTED(cur_trans))
2108 ret = cur_trans->aborted;
2109
2110 btrfs_put_transaction(cur_trans);
2111
2112 return ret;
2113 }
2114
2115 cur_trans->state = TRANS_STATE_COMMIT_START;
2116 wake_up(&fs_info->transaction_blocked_wait);
2117
2118 if (cur_trans->list.prev != &fs_info->trans_list) {
2119 prev_trans = list_entry(cur_trans->list.prev,
2120 struct btrfs_transaction, list);
2121 if (prev_trans->state != TRANS_STATE_COMPLETED) {
2122 refcount_inc(&prev_trans->use_count);
2123 spin_unlock(&fs_info->trans_lock);
2124
2125 wait_for_commit(prev_trans);
2126 ret = READ_ONCE(prev_trans->aborted);
2127
2128 btrfs_put_transaction(prev_trans);
2129 if (ret)
2130 goto cleanup_transaction;
2131 } else {
2132 spin_unlock(&fs_info->trans_lock);
2133 }
2134 } else {
2135 spin_unlock(&fs_info->trans_lock);
2136 /*
2137 * The previous transaction was aborted and was already removed
2138 * from the list of transactions at fs_info->trans_list. So we
2139 * abort to prevent writing a new superblock that reflects a
2140 * corrupt state (pointing to trees with unwritten nodes/leafs).
2141 */
2142 if (test_bit(BTRFS_FS_STATE_TRANS_ABORTED, &fs_info->fs_state)) {
2143 ret = -EROFS;
2144 goto cleanup_transaction;
2145 }
2146 }
2147
2148 extwriter_counter_dec(cur_trans, trans->type);
2149
2150 ret = btrfs_start_delalloc_flush(trans);
2151 if (ret)
2152 goto cleanup_transaction;
2153
2154 ret = btrfs_run_delayed_items(trans);
2155 if (ret)
2156 goto cleanup_transaction;
2157
2158 wait_event(cur_trans->writer_wait,
2159 extwriter_counter_read(cur_trans) == 0);
2160
2161 /* some pending stuffs might be added after the previous flush. */
2162 ret = btrfs_run_delayed_items(trans);
2163 if (ret)
2164 goto cleanup_transaction;
2165
2166 btrfs_wait_delalloc_flush(trans);
2167
2168 btrfs_scrub_pause(fs_info);
2169 /*
2170 * Ok now we need to make sure to block out any other joins while we
2171 * commit the transaction. We could have started a join before setting
2172 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
2173 */
2174 spin_lock(&fs_info->trans_lock);
2175 cur_trans->state = TRANS_STATE_COMMIT_DOING;
2176 spin_unlock(&fs_info->trans_lock);
2177 wait_event(cur_trans->writer_wait,
2178 atomic_read(&cur_trans->num_writers) == 1);
2179
2180 if (TRANS_ABORTED(cur_trans)) {
2181 ret = cur_trans->aborted;
2182 goto scrub_continue;
2183 }
2184 /*
2185 * the reloc mutex makes sure that we stop
2186 * the balancing code from coming in and moving
2187 * extents around in the middle of the commit
2188 */
2189 mutex_lock(&fs_info->reloc_mutex);
2190
2191 /*
2192 * We needn't worry about the delayed items because we will
2193 * deal with them in create_pending_snapshot(), which is the
2194 * core function of the snapshot creation.
2195 */
2196 ret = create_pending_snapshots(trans);
2197 if (ret)
2198 goto unlock_reloc;
2199
2200 /*
2201 * We insert the dir indexes of the snapshots and update the inode
2202 * of the snapshots' parents after the snapshot creation, so there
2203 * are some delayed items which are not dealt with. Now deal with
2204 * them.
2205 *
2206 * We needn't worry that this operation will corrupt the snapshots,
2207 * because all the tree which are snapshoted will be forced to COW
2208 * the nodes and leaves.
2209 */
2210 ret = btrfs_run_delayed_items(trans);
2211 if (ret)
2212 goto unlock_reloc;
2213
2214 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
2215 if (ret)
2216 goto unlock_reloc;
2217
2218 /*
2219 * make sure none of the code above managed to slip in a
2220 * delayed item
2221 */
2222 btrfs_assert_delayed_root_empty(fs_info);
2223
2224 WARN_ON(cur_trans != trans->transaction);
2225
2226 /* btrfs_commit_tree_roots is responsible for getting the
2227 * various roots consistent with each other. Every pointer
2228 * in the tree of tree roots has to point to the most up to date
2229 * root for every subvolume and other tree. So, we have to keep
2230 * the tree logging code from jumping in and changing any
2231 * of the trees.
2232 *
2233 * At this point in the commit, there can't be any tree-log
2234 * writers, but a little lower down we drop the trans mutex
2235 * and let new people in. By holding the tree_log_mutex
2236 * from now until after the super is written, we avoid races
2237 * with the tree-log code.
2238 */
2239 mutex_lock(&fs_info->tree_log_mutex);
2240
2241 ret = commit_fs_roots(trans);
2242 if (ret)
2243 goto unlock_tree_log;
2244
2245 /*
2246 * Since the transaction is done, we can apply the pending changes
2247 * before the next transaction.
2248 */
2249 btrfs_apply_pending_changes(fs_info);
2250
2251 /* commit_fs_roots gets rid of all the tree log roots, it is now
2252 * safe to free the root of tree log roots
2253 */
2254 btrfs_free_log_root_tree(trans, fs_info);
2255
2256 /*
2257 * commit_fs_roots() can call btrfs_save_ino_cache(), which generates
2258 * new delayed refs. Must handle them or qgroup can be wrong.
2259 */
2260 ret = btrfs_run_delayed_refs(trans, (unsigned long)-1);
2261 if (ret)
2262 goto unlock_tree_log;
2263
2264 /*
2265 * Since fs roots are all committed, we can get a quite accurate
2266 * new_roots. So let's do quota accounting.
2267 */
2268 ret = btrfs_qgroup_account_extents(trans);
2269 if (ret < 0)
2270 goto unlock_tree_log;
2271
2272 ret = commit_cowonly_roots(trans);
2273 if (ret)
2274 goto unlock_tree_log;
2275
2276 /*
2277 * The tasks which save the space cache and inode cache may also
2278 * update ->aborted, check it.
2279 */
2280 if (TRANS_ABORTED(cur_trans)) {
2281 ret = cur_trans->aborted;
2282 goto unlock_tree_log;
2283 }
2284
2285 btrfs_prepare_extent_commit(fs_info);
2286
2287 cur_trans = fs_info->running_transaction;
2288
2289 btrfs_set_root_node(&fs_info->tree_root->root_item,
2290 fs_info->tree_root->node);
2291 list_add_tail(&fs_info->tree_root->dirty_list,
2292 &cur_trans->switch_commits);
2293
2294 btrfs_set_root_node(&fs_info->chunk_root->root_item,
2295 fs_info->chunk_root->node);
2296 list_add_tail(&fs_info->chunk_root->dirty_list,
2297 &cur_trans->switch_commits);
2298
2299 switch_commit_roots(trans);
2300
2301 ASSERT(list_empty(&cur_trans->dirty_bgs));
2302 ASSERT(list_empty(&cur_trans->io_bgs));
2303 update_super_roots(fs_info);
2304
2305 btrfs_set_super_log_root(fs_info->super_copy, 0);
2306 btrfs_set_super_log_root_level(fs_info->super_copy, 0);
2307 memcpy(fs_info->super_for_commit, fs_info->super_copy,
2308 sizeof(*fs_info->super_copy));
2309
2310 btrfs_commit_device_sizes(cur_trans);
2311
2312 clear_bit(BTRFS_FS_LOG1_ERR, &fs_info->flags);
2313 clear_bit(BTRFS_FS_LOG2_ERR, &fs_info->flags);
2314
2315 btrfs_trans_release_chunk_metadata(trans);
2316
2317 spin_lock(&fs_info->trans_lock);
2318 cur_trans->state = TRANS_STATE_UNBLOCKED;
2319 fs_info->running_transaction = NULL;
2320 spin_unlock(&fs_info->trans_lock);
2321 mutex_unlock(&fs_info->reloc_mutex);
2322
2323 wake_up(&fs_info->transaction_wait);
2324
2325 ret = btrfs_write_and_wait_transaction(trans);
2326 if (ret) {
2327 btrfs_handle_fs_error(fs_info, ret,
2328 "Error while writing out transaction");
2329 /*
2330 * reloc_mutex has been unlocked, tree_log_mutex is still held
2331 * but we can't jump to unlock_tree_log causing double unlock
2332 */
2333 mutex_unlock(&fs_info->tree_log_mutex);
2334 goto scrub_continue;
2335 }
2336
2337 ret = write_all_supers(fs_info, 0);
2338 /*
2339 * the super is written, we can safely allow the tree-loggers
2340 * to go about their business
2341 */
2342 mutex_unlock(&fs_info->tree_log_mutex);
2343 if (ret)
2344 goto scrub_continue;
2345
2346 btrfs_finish_extent_commit(trans);
2347
2348 if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
2349 btrfs_clear_space_info_full(fs_info);
2350
2351 fs_info->last_trans_committed = cur_trans->transid;
2352 /*
2353 * We needn't acquire the lock here because there is no other task
2354 * which can change it.
2355 */
2356 cur_trans->state = TRANS_STATE_COMPLETED;
2357 wake_up(&cur_trans->commit_wait);
2358
2359 spin_lock(&fs_info->trans_lock);
2360 list_del_init(&cur_trans->list);
2361 spin_unlock(&fs_info->trans_lock);
2362
2363 btrfs_put_transaction(cur_trans);
2364 btrfs_put_transaction(cur_trans);
2365
2366 if (trans->type & __TRANS_FREEZABLE)
2367 sb_end_intwrite(fs_info->sb);
2368
2369 trace_btrfs_transaction_commit(trans->root);
2370
2371 btrfs_scrub_continue(fs_info);
2372
2373 if (current->journal_info == trans)
2374 current->journal_info = NULL;
2375
2376 kmem_cache_free(btrfs_trans_handle_cachep, trans);
2377
2378 return ret;
2379
2380unlock_tree_log:
2381 mutex_unlock(&fs_info->tree_log_mutex);
2382unlock_reloc:
2383 mutex_unlock(&fs_info->reloc_mutex);
2384scrub_continue:
2385 btrfs_scrub_continue(fs_info);
2386cleanup_transaction:
2387 btrfs_trans_release_metadata(trans);
2388 btrfs_cleanup_pending_block_groups(trans);
2389 btrfs_trans_release_chunk_metadata(trans);
2390 trans->block_rsv = NULL;
2391 btrfs_warn(fs_info, "Skipping commit of aborted transaction.");
2392 if (current->journal_info == trans)
2393 current->journal_info = NULL;
2394 cleanup_transaction(trans, ret);
2395
2396 return ret;
2397}
2398
2399/*
2400 * return < 0 if error
2401 * 0 if there are no more dead_roots at the time of call
2402 * 1 there are more to be processed, call me again
2403 *
2404 * The return value indicates there are certainly more snapshots to delete, but
2405 * if there comes a new one during processing, it may return 0. We don't mind,
2406 * because btrfs_commit_super will poke cleaner thread and it will process it a
2407 * few seconds later.
2408 */
2409int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
2410{
2411 int ret;
2412 struct btrfs_fs_info *fs_info = root->fs_info;
2413
2414 spin_lock(&fs_info->trans_lock);
2415 if (list_empty(&fs_info->dead_roots)) {
2416 spin_unlock(&fs_info->trans_lock);
2417 return 0;
2418 }
2419 root = list_first_entry(&fs_info->dead_roots,
2420 struct btrfs_root, root_list);
2421 list_del_init(&root->root_list);
2422 spin_unlock(&fs_info->trans_lock);
2423
2424 btrfs_debug(fs_info, "cleaner removing %llu", root->root_key.objectid);
2425
2426 btrfs_kill_all_delayed_nodes(root);
2427 if (root->ino_cache_inode) {
2428 iput(root->ino_cache_inode);
2429 root->ino_cache_inode = NULL;
2430 }
2431
2432 if (btrfs_header_backref_rev(root->node) <
2433 BTRFS_MIXED_BACKREF_REV)
2434 ret = btrfs_drop_snapshot(root, 0, 0);
2435 else
2436 ret = btrfs_drop_snapshot(root, 1, 0);
2437
2438 btrfs_put_root(root);
2439 return (ret < 0) ? 0 : 1;
2440}
2441
2442void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info)
2443{
2444 unsigned long prev;
2445 unsigned long bit;
2446
2447 prev = xchg(&fs_info->pending_changes, 0);
2448 if (!prev)
2449 return;
2450
2451 bit = 1 << BTRFS_PENDING_SET_INODE_MAP_CACHE;
2452 if (prev & bit)
2453 btrfs_set_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2454 prev &= ~bit;
2455
2456 bit = 1 << BTRFS_PENDING_CLEAR_INODE_MAP_CACHE;
2457 if (prev & bit)
2458 btrfs_clear_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2459 prev &= ~bit;
2460
2461 bit = 1 << BTRFS_PENDING_COMMIT;
2462 if (prev & bit)
2463 btrfs_debug(fs_info, "pending commit done");
2464 prev &= ~bit;
2465
2466 if (prev)
2467 btrfs_warn(fs_info,
2468 "unknown pending changes left 0x%lx, ignoring", prev);
2469}