Loading...
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19#include <linux/fs.h>
20#include <linux/slab.h>
21#include <linux/sched.h>
22#include <linux/writeback.h>
23#include <linux/pagemap.h>
24#include <linux/blkdev.h>
25#include <linux/uuid.h>
26#include "ctree.h"
27#include "disk-io.h"
28#include "transaction.h"
29#include "locking.h"
30#include "tree-log.h"
31#include "inode-map.h"
32#include "volumes.h"
33#include "dev-replace.h"
34
35#define BTRFS_ROOT_TRANS_TAG 0
36
37static unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
38 [TRANS_STATE_RUNNING] = 0U,
39 [TRANS_STATE_BLOCKED] = (__TRANS_USERSPACE |
40 __TRANS_START),
41 [TRANS_STATE_COMMIT_START] = (__TRANS_USERSPACE |
42 __TRANS_START |
43 __TRANS_ATTACH),
44 [TRANS_STATE_COMMIT_DOING] = (__TRANS_USERSPACE |
45 __TRANS_START |
46 __TRANS_ATTACH |
47 __TRANS_JOIN),
48 [TRANS_STATE_UNBLOCKED] = (__TRANS_USERSPACE |
49 __TRANS_START |
50 __TRANS_ATTACH |
51 __TRANS_JOIN |
52 __TRANS_JOIN_NOLOCK),
53 [TRANS_STATE_COMPLETED] = (__TRANS_USERSPACE |
54 __TRANS_START |
55 __TRANS_ATTACH |
56 __TRANS_JOIN |
57 __TRANS_JOIN_NOLOCK),
58};
59
60void btrfs_put_transaction(struct btrfs_transaction *transaction)
61{
62 WARN_ON(atomic_read(&transaction->use_count) == 0);
63 if (atomic_dec_and_test(&transaction->use_count)) {
64 BUG_ON(!list_empty(&transaction->list));
65 WARN_ON(!RB_EMPTY_ROOT(&transaction->delayed_refs.href_root));
66 while (!list_empty(&transaction->pending_chunks)) {
67 struct extent_map *em;
68
69 em = list_first_entry(&transaction->pending_chunks,
70 struct extent_map, list);
71 list_del_init(&em->list);
72 free_extent_map(em);
73 }
74 kmem_cache_free(btrfs_transaction_cachep, transaction);
75 }
76}
77
78static noinline void switch_commit_roots(struct btrfs_transaction *trans,
79 struct btrfs_fs_info *fs_info)
80{
81 struct btrfs_root *root, *tmp;
82
83 down_write(&fs_info->commit_root_sem);
84 list_for_each_entry_safe(root, tmp, &trans->switch_commits,
85 dirty_list) {
86 list_del_init(&root->dirty_list);
87 free_extent_buffer(root->commit_root);
88 root->commit_root = btrfs_root_node(root);
89 if (is_fstree(root->objectid))
90 btrfs_unpin_free_ino(root);
91 }
92 up_write(&fs_info->commit_root_sem);
93}
94
95static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
96 unsigned int type)
97{
98 if (type & TRANS_EXTWRITERS)
99 atomic_inc(&trans->num_extwriters);
100}
101
102static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
103 unsigned int type)
104{
105 if (type & TRANS_EXTWRITERS)
106 atomic_dec(&trans->num_extwriters);
107}
108
109static inline void extwriter_counter_init(struct btrfs_transaction *trans,
110 unsigned int type)
111{
112 atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
113}
114
115static inline int extwriter_counter_read(struct btrfs_transaction *trans)
116{
117 return atomic_read(&trans->num_extwriters);
118}
119
120/*
121 * either allocate a new transaction or hop into the existing one
122 */
123static noinline int join_transaction(struct btrfs_root *root, unsigned int type)
124{
125 struct btrfs_transaction *cur_trans;
126 struct btrfs_fs_info *fs_info = root->fs_info;
127
128 spin_lock(&fs_info->trans_lock);
129loop:
130 /* The file system has been taken offline. No new transactions. */
131 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
132 spin_unlock(&fs_info->trans_lock);
133 return -EROFS;
134 }
135
136 cur_trans = fs_info->running_transaction;
137 if (cur_trans) {
138 if (cur_trans->aborted) {
139 spin_unlock(&fs_info->trans_lock);
140 return cur_trans->aborted;
141 }
142 if (btrfs_blocked_trans_types[cur_trans->state] & type) {
143 spin_unlock(&fs_info->trans_lock);
144 return -EBUSY;
145 }
146 atomic_inc(&cur_trans->use_count);
147 atomic_inc(&cur_trans->num_writers);
148 extwriter_counter_inc(cur_trans, type);
149 spin_unlock(&fs_info->trans_lock);
150 return 0;
151 }
152 spin_unlock(&fs_info->trans_lock);
153
154 /*
155 * If we are ATTACH, we just want to catch the current transaction,
156 * and commit it. If there is no transaction, just return ENOENT.
157 */
158 if (type == TRANS_ATTACH)
159 return -ENOENT;
160
161 /*
162 * JOIN_NOLOCK only happens during the transaction commit, so
163 * it is impossible that ->running_transaction is NULL
164 */
165 BUG_ON(type == TRANS_JOIN_NOLOCK);
166
167 cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS);
168 if (!cur_trans)
169 return -ENOMEM;
170
171 spin_lock(&fs_info->trans_lock);
172 if (fs_info->running_transaction) {
173 /*
174 * someone started a transaction after we unlocked. Make sure
175 * to redo the checks above
176 */
177 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
178 goto loop;
179 } else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
180 spin_unlock(&fs_info->trans_lock);
181 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
182 return -EROFS;
183 }
184
185 atomic_set(&cur_trans->num_writers, 1);
186 extwriter_counter_init(cur_trans, type);
187 init_waitqueue_head(&cur_trans->writer_wait);
188 init_waitqueue_head(&cur_trans->commit_wait);
189 cur_trans->state = TRANS_STATE_RUNNING;
190 /*
191 * One for this trans handle, one so it will live on until we
192 * commit the transaction.
193 */
194 atomic_set(&cur_trans->use_count, 2);
195 cur_trans->start_time = get_seconds();
196
197 cur_trans->delayed_refs.href_root = RB_ROOT;
198 atomic_set(&cur_trans->delayed_refs.num_entries, 0);
199 cur_trans->delayed_refs.num_heads_ready = 0;
200 cur_trans->delayed_refs.num_heads = 0;
201 cur_trans->delayed_refs.flushing = 0;
202 cur_trans->delayed_refs.run_delayed_start = 0;
203
204 /*
205 * although the tree mod log is per file system and not per transaction,
206 * the log must never go across transaction boundaries.
207 */
208 smp_mb();
209 if (!list_empty(&fs_info->tree_mod_seq_list))
210 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when "
211 "creating a fresh transaction\n");
212 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
213 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when "
214 "creating a fresh transaction\n");
215 atomic64_set(&fs_info->tree_mod_seq, 0);
216
217 spin_lock_init(&cur_trans->delayed_refs.lock);
218
219 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
220 INIT_LIST_HEAD(&cur_trans->ordered_operations);
221 INIT_LIST_HEAD(&cur_trans->pending_chunks);
222 INIT_LIST_HEAD(&cur_trans->switch_commits);
223 list_add_tail(&cur_trans->list, &fs_info->trans_list);
224 extent_io_tree_init(&cur_trans->dirty_pages,
225 fs_info->btree_inode->i_mapping);
226 fs_info->generation++;
227 cur_trans->transid = fs_info->generation;
228 fs_info->running_transaction = cur_trans;
229 cur_trans->aborted = 0;
230 spin_unlock(&fs_info->trans_lock);
231
232 return 0;
233}
234
235/*
236 * this does all the record keeping required to make sure that a reference
237 * counted root is properly recorded in a given transaction. This is required
238 * to make sure the old root from before we joined the transaction is deleted
239 * when the transaction commits
240 */
241static int record_root_in_trans(struct btrfs_trans_handle *trans,
242 struct btrfs_root *root)
243{
244 if (root->ref_cows && root->last_trans < trans->transid) {
245 WARN_ON(root == root->fs_info->extent_root);
246 WARN_ON(root->commit_root != root->node);
247
248 /*
249 * see below for in_trans_setup usage rules
250 * we have the reloc mutex held now, so there
251 * is only one writer in this function
252 */
253 root->in_trans_setup = 1;
254
255 /* make sure readers find in_trans_setup before
256 * they find our root->last_trans update
257 */
258 smp_wmb();
259
260 spin_lock(&root->fs_info->fs_roots_radix_lock);
261 if (root->last_trans == trans->transid) {
262 spin_unlock(&root->fs_info->fs_roots_radix_lock);
263 return 0;
264 }
265 radix_tree_tag_set(&root->fs_info->fs_roots_radix,
266 (unsigned long)root->root_key.objectid,
267 BTRFS_ROOT_TRANS_TAG);
268 spin_unlock(&root->fs_info->fs_roots_radix_lock);
269 root->last_trans = trans->transid;
270
271 /* this is pretty tricky. We don't want to
272 * take the relocation lock in btrfs_record_root_in_trans
273 * unless we're really doing the first setup for this root in
274 * this transaction.
275 *
276 * Normally we'd use root->last_trans as a flag to decide
277 * if we want to take the expensive mutex.
278 *
279 * But, we have to set root->last_trans before we
280 * init the relocation root, otherwise, we trip over warnings
281 * in ctree.c. The solution used here is to flag ourselves
282 * with root->in_trans_setup. When this is 1, we're still
283 * fixing up the reloc trees and everyone must wait.
284 *
285 * When this is zero, they can trust root->last_trans and fly
286 * through btrfs_record_root_in_trans without having to take the
287 * lock. smp_wmb() makes sure that all the writes above are
288 * done before we pop in the zero below
289 */
290 btrfs_init_reloc_root(trans, root);
291 smp_wmb();
292 root->in_trans_setup = 0;
293 }
294 return 0;
295}
296
297
298int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
299 struct btrfs_root *root)
300{
301 if (!root->ref_cows)
302 return 0;
303
304 /*
305 * see record_root_in_trans for comments about in_trans_setup usage
306 * and barriers
307 */
308 smp_rmb();
309 if (root->last_trans == trans->transid &&
310 !root->in_trans_setup)
311 return 0;
312
313 mutex_lock(&root->fs_info->reloc_mutex);
314 record_root_in_trans(trans, root);
315 mutex_unlock(&root->fs_info->reloc_mutex);
316
317 return 0;
318}
319
320static inline int is_transaction_blocked(struct btrfs_transaction *trans)
321{
322 return (trans->state >= TRANS_STATE_BLOCKED &&
323 trans->state < TRANS_STATE_UNBLOCKED &&
324 !trans->aborted);
325}
326
327/* wait for commit against the current transaction to become unblocked
328 * when this is done, it is safe to start a new transaction, but the current
329 * transaction might not be fully on disk.
330 */
331static void wait_current_trans(struct btrfs_root *root)
332{
333 struct btrfs_transaction *cur_trans;
334
335 spin_lock(&root->fs_info->trans_lock);
336 cur_trans = root->fs_info->running_transaction;
337 if (cur_trans && is_transaction_blocked(cur_trans)) {
338 atomic_inc(&cur_trans->use_count);
339 spin_unlock(&root->fs_info->trans_lock);
340
341 wait_event(root->fs_info->transaction_wait,
342 cur_trans->state >= TRANS_STATE_UNBLOCKED ||
343 cur_trans->aborted);
344 btrfs_put_transaction(cur_trans);
345 } else {
346 spin_unlock(&root->fs_info->trans_lock);
347 }
348}
349
350static int may_wait_transaction(struct btrfs_root *root, int type)
351{
352 if (root->fs_info->log_root_recovering)
353 return 0;
354
355 if (type == TRANS_USERSPACE)
356 return 1;
357
358 if (type == TRANS_START &&
359 !atomic_read(&root->fs_info->open_ioctl_trans))
360 return 1;
361
362 return 0;
363}
364
365static inline bool need_reserve_reloc_root(struct btrfs_root *root)
366{
367 if (!root->fs_info->reloc_ctl ||
368 !root->ref_cows ||
369 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
370 root->reloc_root)
371 return false;
372
373 return true;
374}
375
376static struct btrfs_trans_handle *
377start_transaction(struct btrfs_root *root, u64 num_items, unsigned int type,
378 enum btrfs_reserve_flush_enum flush)
379{
380 struct btrfs_trans_handle *h;
381 struct btrfs_transaction *cur_trans;
382 u64 num_bytes = 0;
383 u64 qgroup_reserved = 0;
384 bool reloc_reserved = false;
385 int ret;
386
387 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
388 return ERR_PTR(-EROFS);
389
390 if (current->journal_info &&
391 current->journal_info != (void *)BTRFS_SEND_TRANS_STUB) {
392 WARN_ON(type & TRANS_EXTWRITERS);
393 h = current->journal_info;
394 h->use_count++;
395 WARN_ON(h->use_count > 2);
396 h->orig_rsv = h->block_rsv;
397 h->block_rsv = NULL;
398 goto got_it;
399 }
400
401 /*
402 * Do the reservation before we join the transaction so we can do all
403 * the appropriate flushing if need be.
404 */
405 if (num_items > 0 && root != root->fs_info->chunk_root) {
406 if (root->fs_info->quota_enabled &&
407 is_fstree(root->root_key.objectid)) {
408 qgroup_reserved = num_items * root->leafsize;
409 ret = btrfs_qgroup_reserve(root, qgroup_reserved);
410 if (ret)
411 return ERR_PTR(ret);
412 }
413
414 num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
415 /*
416 * Do the reservation for the relocation root creation
417 */
418 if (unlikely(need_reserve_reloc_root(root))) {
419 num_bytes += root->nodesize;
420 reloc_reserved = true;
421 }
422
423 ret = btrfs_block_rsv_add(root,
424 &root->fs_info->trans_block_rsv,
425 num_bytes, flush);
426 if (ret)
427 goto reserve_fail;
428 }
429again:
430 h = kmem_cache_alloc(btrfs_trans_handle_cachep, GFP_NOFS);
431 if (!h) {
432 ret = -ENOMEM;
433 goto alloc_fail;
434 }
435
436 /*
437 * If we are JOIN_NOLOCK we're already committing a transaction and
438 * waiting on this guy, so we don't need to do the sb_start_intwrite
439 * because we're already holding a ref. We need this because we could
440 * have raced in and did an fsync() on a file which can kick a commit
441 * and then we deadlock with somebody doing a freeze.
442 *
443 * If we are ATTACH, it means we just want to catch the current
444 * transaction and commit it, so we needn't do sb_start_intwrite().
445 */
446 if (type & __TRANS_FREEZABLE)
447 sb_start_intwrite(root->fs_info->sb);
448
449 if (may_wait_transaction(root, type))
450 wait_current_trans(root);
451
452 do {
453 ret = join_transaction(root, type);
454 if (ret == -EBUSY) {
455 wait_current_trans(root);
456 if (unlikely(type == TRANS_ATTACH))
457 ret = -ENOENT;
458 }
459 } while (ret == -EBUSY);
460
461 if (ret < 0) {
462 /* We must get the transaction if we are JOIN_NOLOCK. */
463 BUG_ON(type == TRANS_JOIN_NOLOCK);
464 goto join_fail;
465 }
466
467 cur_trans = root->fs_info->running_transaction;
468
469 h->transid = cur_trans->transid;
470 h->transaction = cur_trans;
471 h->blocks_used = 0;
472 h->bytes_reserved = 0;
473 h->root = root;
474 h->delayed_ref_updates = 0;
475 h->use_count = 1;
476 h->adding_csums = 0;
477 h->block_rsv = NULL;
478 h->orig_rsv = NULL;
479 h->aborted = 0;
480 h->qgroup_reserved = 0;
481 h->delayed_ref_elem.seq = 0;
482 h->type = type;
483 h->allocating_chunk = false;
484 h->reloc_reserved = false;
485 h->sync = false;
486 INIT_LIST_HEAD(&h->qgroup_ref_list);
487 INIT_LIST_HEAD(&h->new_bgs);
488
489 smp_mb();
490 if (cur_trans->state >= TRANS_STATE_BLOCKED &&
491 may_wait_transaction(root, type)) {
492 btrfs_commit_transaction(h, root);
493 goto again;
494 }
495
496 if (num_bytes) {
497 trace_btrfs_space_reservation(root->fs_info, "transaction",
498 h->transid, num_bytes, 1);
499 h->block_rsv = &root->fs_info->trans_block_rsv;
500 h->bytes_reserved = num_bytes;
501 h->reloc_reserved = reloc_reserved;
502 }
503 h->qgroup_reserved = qgroup_reserved;
504
505got_it:
506 btrfs_record_root_in_trans(h, root);
507
508 if (!current->journal_info && type != TRANS_USERSPACE)
509 current->journal_info = h;
510 return h;
511
512join_fail:
513 if (type & __TRANS_FREEZABLE)
514 sb_end_intwrite(root->fs_info->sb);
515 kmem_cache_free(btrfs_trans_handle_cachep, h);
516alloc_fail:
517 if (num_bytes)
518 btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
519 num_bytes);
520reserve_fail:
521 if (qgroup_reserved)
522 btrfs_qgroup_free(root, qgroup_reserved);
523 return ERR_PTR(ret);
524}
525
526struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
527 int num_items)
528{
529 return start_transaction(root, num_items, TRANS_START,
530 BTRFS_RESERVE_FLUSH_ALL);
531}
532
533struct btrfs_trans_handle *btrfs_start_transaction_lflush(
534 struct btrfs_root *root, int num_items)
535{
536 return start_transaction(root, num_items, TRANS_START,
537 BTRFS_RESERVE_FLUSH_LIMIT);
538}
539
540struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
541{
542 return start_transaction(root, 0, TRANS_JOIN, 0);
543}
544
545struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
546{
547 return start_transaction(root, 0, TRANS_JOIN_NOLOCK, 0);
548}
549
550struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
551{
552 return start_transaction(root, 0, TRANS_USERSPACE, 0);
553}
554
555/*
556 * btrfs_attach_transaction() - catch the running transaction
557 *
558 * It is used when we want to commit the current the transaction, but
559 * don't want to start a new one.
560 *
561 * Note: If this function return -ENOENT, it just means there is no
562 * running transaction. But it is possible that the inactive transaction
563 * is still in the memory, not fully on disk. If you hope there is no
564 * inactive transaction in the fs when -ENOENT is returned, you should
565 * invoke
566 * btrfs_attach_transaction_barrier()
567 */
568struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
569{
570 return start_transaction(root, 0, TRANS_ATTACH, 0);
571}
572
573/*
574 * btrfs_attach_transaction_barrier() - catch the running transaction
575 *
576 * It is similar to the above function, the differentia is this one
577 * will wait for all the inactive transactions until they fully
578 * complete.
579 */
580struct btrfs_trans_handle *
581btrfs_attach_transaction_barrier(struct btrfs_root *root)
582{
583 struct btrfs_trans_handle *trans;
584
585 trans = start_transaction(root, 0, TRANS_ATTACH, 0);
586 if (IS_ERR(trans) && PTR_ERR(trans) == -ENOENT)
587 btrfs_wait_for_commit(root, 0);
588
589 return trans;
590}
591
592/* wait for a transaction commit to be fully complete */
593static noinline void wait_for_commit(struct btrfs_root *root,
594 struct btrfs_transaction *commit)
595{
596 wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED);
597}
598
599int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid)
600{
601 struct btrfs_transaction *cur_trans = NULL, *t;
602 int ret = 0;
603
604 if (transid) {
605 if (transid <= root->fs_info->last_trans_committed)
606 goto out;
607
608 ret = -EINVAL;
609 /* find specified transaction */
610 spin_lock(&root->fs_info->trans_lock);
611 list_for_each_entry(t, &root->fs_info->trans_list, list) {
612 if (t->transid == transid) {
613 cur_trans = t;
614 atomic_inc(&cur_trans->use_count);
615 ret = 0;
616 break;
617 }
618 if (t->transid > transid) {
619 ret = 0;
620 break;
621 }
622 }
623 spin_unlock(&root->fs_info->trans_lock);
624 /* The specified transaction doesn't exist */
625 if (!cur_trans)
626 goto out;
627 } else {
628 /* find newest transaction that is committing | committed */
629 spin_lock(&root->fs_info->trans_lock);
630 list_for_each_entry_reverse(t, &root->fs_info->trans_list,
631 list) {
632 if (t->state >= TRANS_STATE_COMMIT_START) {
633 if (t->state == TRANS_STATE_COMPLETED)
634 break;
635 cur_trans = t;
636 atomic_inc(&cur_trans->use_count);
637 break;
638 }
639 }
640 spin_unlock(&root->fs_info->trans_lock);
641 if (!cur_trans)
642 goto out; /* nothing committing|committed */
643 }
644
645 wait_for_commit(root, cur_trans);
646 btrfs_put_transaction(cur_trans);
647out:
648 return ret;
649}
650
651void btrfs_throttle(struct btrfs_root *root)
652{
653 if (!atomic_read(&root->fs_info->open_ioctl_trans))
654 wait_current_trans(root);
655}
656
657static int should_end_transaction(struct btrfs_trans_handle *trans,
658 struct btrfs_root *root)
659{
660 if (root->fs_info->global_block_rsv.space_info->full &&
661 btrfs_check_space_for_delayed_refs(trans, root))
662 return 1;
663
664 return !!btrfs_block_rsv_check(root, &root->fs_info->global_block_rsv, 5);
665}
666
667int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
668 struct btrfs_root *root)
669{
670 struct btrfs_transaction *cur_trans = trans->transaction;
671 int updates;
672 int err;
673
674 smp_mb();
675 if (cur_trans->state >= TRANS_STATE_BLOCKED ||
676 cur_trans->delayed_refs.flushing)
677 return 1;
678
679 updates = trans->delayed_ref_updates;
680 trans->delayed_ref_updates = 0;
681 if (updates) {
682 err = btrfs_run_delayed_refs(trans, root, updates);
683 if (err) /* Error code will also eval true */
684 return err;
685 }
686
687 return should_end_transaction(trans, root);
688}
689
690static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
691 struct btrfs_root *root, int throttle)
692{
693 struct btrfs_transaction *cur_trans = trans->transaction;
694 struct btrfs_fs_info *info = root->fs_info;
695 unsigned long cur = trans->delayed_ref_updates;
696 int lock = (trans->type != TRANS_JOIN_NOLOCK);
697 int err = 0;
698
699 if (trans->use_count > 1) {
700 trans->use_count--;
701 trans->block_rsv = trans->orig_rsv;
702 return 0;
703 }
704
705 /*
706 * do the qgroup accounting as early as possible
707 */
708 err = btrfs_delayed_refs_qgroup_accounting(trans, info);
709
710 btrfs_trans_release_metadata(trans, root);
711 trans->block_rsv = NULL;
712
713 if (trans->qgroup_reserved) {
714 /*
715 * the same root has to be passed here between start_transaction
716 * and end_transaction. Subvolume quota depends on this.
717 */
718 btrfs_qgroup_free(trans->root, trans->qgroup_reserved);
719 trans->qgroup_reserved = 0;
720 }
721
722 if (!list_empty(&trans->new_bgs))
723 btrfs_create_pending_block_groups(trans, root);
724
725 trans->delayed_ref_updates = 0;
726 if (!trans->sync && btrfs_should_throttle_delayed_refs(trans, root)) {
727 cur = max_t(unsigned long, cur, 32);
728 trans->delayed_ref_updates = 0;
729 btrfs_run_delayed_refs(trans, root, cur);
730 }
731
732 btrfs_trans_release_metadata(trans, root);
733 trans->block_rsv = NULL;
734
735 if (!list_empty(&trans->new_bgs))
736 btrfs_create_pending_block_groups(trans, root);
737
738 if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) &&
739 should_end_transaction(trans, root) &&
740 ACCESS_ONCE(cur_trans->state) == TRANS_STATE_RUNNING) {
741 spin_lock(&info->trans_lock);
742 if (cur_trans->state == TRANS_STATE_RUNNING)
743 cur_trans->state = TRANS_STATE_BLOCKED;
744 spin_unlock(&info->trans_lock);
745 }
746
747 if (lock && ACCESS_ONCE(cur_trans->state) == TRANS_STATE_BLOCKED) {
748 if (throttle)
749 return btrfs_commit_transaction(trans, root);
750 else
751 wake_up_process(info->transaction_kthread);
752 }
753
754 if (trans->type & __TRANS_FREEZABLE)
755 sb_end_intwrite(root->fs_info->sb);
756
757 WARN_ON(cur_trans != info->running_transaction);
758 WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
759 atomic_dec(&cur_trans->num_writers);
760 extwriter_counter_dec(cur_trans, trans->type);
761
762 smp_mb();
763 if (waitqueue_active(&cur_trans->writer_wait))
764 wake_up(&cur_trans->writer_wait);
765 btrfs_put_transaction(cur_trans);
766
767 if (current->journal_info == trans)
768 current->journal_info = NULL;
769
770 if (throttle)
771 btrfs_run_delayed_iputs(root);
772
773 if (trans->aborted ||
774 test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
775 wake_up_process(info->transaction_kthread);
776 err = -EIO;
777 }
778 assert_qgroups_uptodate(trans);
779
780 kmem_cache_free(btrfs_trans_handle_cachep, trans);
781 return err;
782}
783
784int btrfs_end_transaction(struct btrfs_trans_handle *trans,
785 struct btrfs_root *root)
786{
787 return __btrfs_end_transaction(trans, root, 0);
788}
789
790int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
791 struct btrfs_root *root)
792{
793 return __btrfs_end_transaction(trans, root, 1);
794}
795
796/*
797 * when btree blocks are allocated, they have some corresponding bits set for
798 * them in one of two extent_io trees. This is used to make sure all of
799 * those extents are sent to disk but does not wait on them
800 */
801int btrfs_write_marked_extents(struct btrfs_root *root,
802 struct extent_io_tree *dirty_pages, int mark)
803{
804 int err = 0;
805 int werr = 0;
806 struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
807 struct extent_state *cached_state = NULL;
808 u64 start = 0;
809 u64 end;
810
811 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
812 mark, &cached_state)) {
813 convert_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT,
814 mark, &cached_state, GFP_NOFS);
815 cached_state = NULL;
816 err = filemap_fdatawrite_range(mapping, start, end);
817 if (err)
818 werr = err;
819 cond_resched();
820 start = end + 1;
821 }
822 if (err)
823 werr = err;
824 return werr;
825}
826
827/*
828 * when btree blocks are allocated, they have some corresponding bits set for
829 * them in one of two extent_io trees. This is used to make sure all of
830 * those extents are on disk for transaction or log commit. We wait
831 * on all the pages and clear them from the dirty pages state tree
832 */
833int btrfs_wait_marked_extents(struct btrfs_root *root,
834 struct extent_io_tree *dirty_pages, int mark)
835{
836 int err = 0;
837 int werr = 0;
838 struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
839 struct extent_state *cached_state = NULL;
840 u64 start = 0;
841 u64 end;
842
843 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
844 EXTENT_NEED_WAIT, &cached_state)) {
845 clear_extent_bit(dirty_pages, start, end, EXTENT_NEED_WAIT,
846 0, 0, &cached_state, GFP_NOFS);
847 err = filemap_fdatawait_range(mapping, start, end);
848 if (err)
849 werr = err;
850 cond_resched();
851 start = end + 1;
852 }
853 if (err)
854 werr = err;
855 return werr;
856}
857
858/*
859 * when btree blocks are allocated, they have some corresponding bits set for
860 * them in one of two extent_io trees. This is used to make sure all of
861 * those extents are on disk for transaction or log commit
862 */
863static int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
864 struct extent_io_tree *dirty_pages, int mark)
865{
866 int ret;
867 int ret2;
868 struct blk_plug plug;
869
870 blk_start_plug(&plug);
871 ret = btrfs_write_marked_extents(root, dirty_pages, mark);
872 blk_finish_plug(&plug);
873 ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
874
875 if (ret)
876 return ret;
877 if (ret2)
878 return ret2;
879 return 0;
880}
881
882int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
883 struct btrfs_root *root)
884{
885 if (!trans || !trans->transaction) {
886 struct inode *btree_inode;
887 btree_inode = root->fs_info->btree_inode;
888 return filemap_write_and_wait(btree_inode->i_mapping);
889 }
890 return btrfs_write_and_wait_marked_extents(root,
891 &trans->transaction->dirty_pages,
892 EXTENT_DIRTY);
893}
894
895/*
896 * this is used to update the root pointer in the tree of tree roots.
897 *
898 * But, in the case of the extent allocation tree, updating the root
899 * pointer may allocate blocks which may change the root of the extent
900 * allocation tree.
901 *
902 * So, this loops and repeats and makes sure the cowonly root didn't
903 * change while the root pointer was being updated in the metadata.
904 */
905static int update_cowonly_root(struct btrfs_trans_handle *trans,
906 struct btrfs_root *root)
907{
908 int ret;
909 u64 old_root_bytenr;
910 u64 old_root_used;
911 struct btrfs_root *tree_root = root->fs_info->tree_root;
912
913 old_root_used = btrfs_root_used(&root->root_item);
914 btrfs_write_dirty_block_groups(trans, root);
915
916 while (1) {
917 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
918 if (old_root_bytenr == root->node->start &&
919 old_root_used == btrfs_root_used(&root->root_item))
920 break;
921
922 btrfs_set_root_node(&root->root_item, root->node);
923 ret = btrfs_update_root(trans, tree_root,
924 &root->root_key,
925 &root->root_item);
926 if (ret)
927 return ret;
928
929 old_root_used = btrfs_root_used(&root->root_item);
930 ret = btrfs_write_dirty_block_groups(trans, root);
931 if (ret)
932 return ret;
933 }
934
935 return 0;
936}
937
938/*
939 * update all the cowonly tree roots on disk
940 *
941 * The error handling in this function may not be obvious. Any of the
942 * failures will cause the file system to go offline. We still need
943 * to clean up the delayed refs.
944 */
945static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
946 struct btrfs_root *root)
947{
948 struct btrfs_fs_info *fs_info = root->fs_info;
949 struct list_head *next;
950 struct extent_buffer *eb;
951 int ret;
952
953 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
954 if (ret)
955 return ret;
956
957 eb = btrfs_lock_root_node(fs_info->tree_root);
958 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
959 0, &eb);
960 btrfs_tree_unlock(eb);
961 free_extent_buffer(eb);
962
963 if (ret)
964 return ret;
965
966 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
967 if (ret)
968 return ret;
969
970 ret = btrfs_run_dev_stats(trans, root->fs_info);
971 if (ret)
972 return ret;
973 ret = btrfs_run_dev_replace(trans, root->fs_info);
974 if (ret)
975 return ret;
976 ret = btrfs_run_qgroups(trans, root->fs_info);
977 if (ret)
978 return ret;
979
980 /* run_qgroups might have added some more refs */
981 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
982 if (ret)
983 return ret;
984
985 while (!list_empty(&fs_info->dirty_cowonly_roots)) {
986 next = fs_info->dirty_cowonly_roots.next;
987 list_del_init(next);
988 root = list_entry(next, struct btrfs_root, dirty_list);
989
990 if (root != fs_info->extent_root)
991 list_add_tail(&root->dirty_list,
992 &trans->transaction->switch_commits);
993 ret = update_cowonly_root(trans, root);
994 if (ret)
995 return ret;
996 }
997
998 list_add_tail(&fs_info->extent_root->dirty_list,
999 &trans->transaction->switch_commits);
1000 btrfs_after_dev_replace_commit(fs_info);
1001
1002 return 0;
1003}
1004
1005/*
1006 * dead roots are old snapshots that need to be deleted. This allocates
1007 * a dirty root struct and adds it into the list of dead roots that need to
1008 * be deleted
1009 */
1010void btrfs_add_dead_root(struct btrfs_root *root)
1011{
1012 spin_lock(&root->fs_info->trans_lock);
1013 if (list_empty(&root->root_list))
1014 list_add_tail(&root->root_list, &root->fs_info->dead_roots);
1015 spin_unlock(&root->fs_info->trans_lock);
1016}
1017
1018/*
1019 * update all the cowonly tree roots on disk
1020 */
1021static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
1022 struct btrfs_root *root)
1023{
1024 struct btrfs_root *gang[8];
1025 struct btrfs_fs_info *fs_info = root->fs_info;
1026 int i;
1027 int ret;
1028 int err = 0;
1029
1030 spin_lock(&fs_info->fs_roots_radix_lock);
1031 while (1) {
1032 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1033 (void **)gang, 0,
1034 ARRAY_SIZE(gang),
1035 BTRFS_ROOT_TRANS_TAG);
1036 if (ret == 0)
1037 break;
1038 for (i = 0; i < ret; i++) {
1039 root = gang[i];
1040 radix_tree_tag_clear(&fs_info->fs_roots_radix,
1041 (unsigned long)root->root_key.objectid,
1042 BTRFS_ROOT_TRANS_TAG);
1043 spin_unlock(&fs_info->fs_roots_radix_lock);
1044
1045 btrfs_free_log(trans, root);
1046 btrfs_update_reloc_root(trans, root);
1047 btrfs_orphan_commit_root(trans, root);
1048
1049 btrfs_save_ino_cache(root, trans);
1050
1051 /* see comments in should_cow_block() */
1052 root->force_cow = 0;
1053 smp_wmb();
1054
1055 if (root->commit_root != root->node) {
1056 list_add_tail(&root->dirty_list,
1057 &trans->transaction->switch_commits);
1058 btrfs_set_root_node(&root->root_item,
1059 root->node);
1060 }
1061
1062 err = btrfs_update_root(trans, fs_info->tree_root,
1063 &root->root_key,
1064 &root->root_item);
1065 spin_lock(&fs_info->fs_roots_radix_lock);
1066 if (err)
1067 break;
1068 }
1069 }
1070 spin_unlock(&fs_info->fs_roots_radix_lock);
1071 return err;
1072}
1073
1074/*
1075 * defrag a given btree.
1076 * Every leaf in the btree is read and defragged.
1077 */
1078int btrfs_defrag_root(struct btrfs_root *root)
1079{
1080 struct btrfs_fs_info *info = root->fs_info;
1081 struct btrfs_trans_handle *trans;
1082 int ret;
1083
1084 if (xchg(&root->defrag_running, 1))
1085 return 0;
1086
1087 while (1) {
1088 trans = btrfs_start_transaction(root, 0);
1089 if (IS_ERR(trans))
1090 return PTR_ERR(trans);
1091
1092 ret = btrfs_defrag_leaves(trans, root);
1093
1094 btrfs_end_transaction(trans, root);
1095 btrfs_btree_balance_dirty(info->tree_root);
1096 cond_resched();
1097
1098 if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN)
1099 break;
1100
1101 if (btrfs_defrag_cancelled(root->fs_info)) {
1102 pr_debug("BTRFS: defrag_root cancelled\n");
1103 ret = -EAGAIN;
1104 break;
1105 }
1106 }
1107 root->defrag_running = 0;
1108 return ret;
1109}
1110
1111/*
1112 * new snapshots need to be created at a very specific time in the
1113 * transaction commit. This does the actual creation.
1114 *
1115 * Note:
1116 * If the error which may affect the commitment of the current transaction
1117 * happens, we should return the error number. If the error which just affect
1118 * the creation of the pending snapshots, just return 0.
1119 */
1120static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1121 struct btrfs_fs_info *fs_info,
1122 struct btrfs_pending_snapshot *pending)
1123{
1124 struct btrfs_key key;
1125 struct btrfs_root_item *new_root_item;
1126 struct btrfs_root *tree_root = fs_info->tree_root;
1127 struct btrfs_root *root = pending->root;
1128 struct btrfs_root *parent_root;
1129 struct btrfs_block_rsv *rsv;
1130 struct inode *parent_inode;
1131 struct btrfs_path *path;
1132 struct btrfs_dir_item *dir_item;
1133 struct dentry *dentry;
1134 struct extent_buffer *tmp;
1135 struct extent_buffer *old;
1136 struct timespec cur_time = CURRENT_TIME;
1137 int ret = 0;
1138 u64 to_reserve = 0;
1139 u64 index = 0;
1140 u64 objectid;
1141 u64 root_flags;
1142 uuid_le new_uuid;
1143
1144 path = btrfs_alloc_path();
1145 if (!path) {
1146 pending->error = -ENOMEM;
1147 return 0;
1148 }
1149
1150 new_root_item = kmalloc(sizeof(*new_root_item), GFP_NOFS);
1151 if (!new_root_item) {
1152 pending->error = -ENOMEM;
1153 goto root_item_alloc_fail;
1154 }
1155
1156 pending->error = btrfs_find_free_objectid(tree_root, &objectid);
1157 if (pending->error)
1158 goto no_free_objectid;
1159
1160 btrfs_reloc_pre_snapshot(trans, pending, &to_reserve);
1161
1162 if (to_reserve > 0) {
1163 pending->error = btrfs_block_rsv_add(root,
1164 &pending->block_rsv,
1165 to_reserve,
1166 BTRFS_RESERVE_NO_FLUSH);
1167 if (pending->error)
1168 goto no_free_objectid;
1169 }
1170
1171 pending->error = btrfs_qgroup_inherit(trans, fs_info,
1172 root->root_key.objectid,
1173 objectid, pending->inherit);
1174 if (pending->error)
1175 goto no_free_objectid;
1176
1177 key.objectid = objectid;
1178 key.offset = (u64)-1;
1179 key.type = BTRFS_ROOT_ITEM_KEY;
1180
1181 rsv = trans->block_rsv;
1182 trans->block_rsv = &pending->block_rsv;
1183 trans->bytes_reserved = trans->block_rsv->reserved;
1184
1185 dentry = pending->dentry;
1186 parent_inode = pending->dir;
1187 parent_root = BTRFS_I(parent_inode)->root;
1188 record_root_in_trans(trans, parent_root);
1189
1190 /*
1191 * insert the directory item
1192 */
1193 ret = btrfs_set_inode_index(parent_inode, &index);
1194 BUG_ON(ret); /* -ENOMEM */
1195
1196 /* check if there is a file/dir which has the same name. */
1197 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1198 btrfs_ino(parent_inode),
1199 dentry->d_name.name,
1200 dentry->d_name.len, 0);
1201 if (dir_item != NULL && !IS_ERR(dir_item)) {
1202 pending->error = -EEXIST;
1203 goto dir_item_existed;
1204 } else if (IS_ERR(dir_item)) {
1205 ret = PTR_ERR(dir_item);
1206 btrfs_abort_transaction(trans, root, ret);
1207 goto fail;
1208 }
1209 btrfs_release_path(path);
1210
1211 /*
1212 * pull in the delayed directory update
1213 * and the delayed inode item
1214 * otherwise we corrupt the FS during
1215 * snapshot
1216 */
1217 ret = btrfs_run_delayed_items(trans, root);
1218 if (ret) { /* Transaction aborted */
1219 btrfs_abort_transaction(trans, root, ret);
1220 goto fail;
1221 }
1222
1223 record_root_in_trans(trans, root);
1224 btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1225 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1226 btrfs_check_and_init_root_item(new_root_item);
1227
1228 root_flags = btrfs_root_flags(new_root_item);
1229 if (pending->readonly)
1230 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1231 else
1232 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1233 btrfs_set_root_flags(new_root_item, root_flags);
1234
1235 btrfs_set_root_generation_v2(new_root_item,
1236 trans->transid);
1237 uuid_le_gen(&new_uuid);
1238 memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
1239 memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1240 BTRFS_UUID_SIZE);
1241 if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1242 memset(new_root_item->received_uuid, 0,
1243 sizeof(new_root_item->received_uuid));
1244 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1245 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1246 btrfs_set_root_stransid(new_root_item, 0);
1247 btrfs_set_root_rtransid(new_root_item, 0);
1248 }
1249 btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1250 btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1251 btrfs_set_root_otransid(new_root_item, trans->transid);
1252
1253 old = btrfs_lock_root_node(root);
1254 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1255 if (ret) {
1256 btrfs_tree_unlock(old);
1257 free_extent_buffer(old);
1258 btrfs_abort_transaction(trans, root, ret);
1259 goto fail;
1260 }
1261
1262 btrfs_set_lock_blocking(old);
1263
1264 ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1265 /* clean up in any case */
1266 btrfs_tree_unlock(old);
1267 free_extent_buffer(old);
1268 if (ret) {
1269 btrfs_abort_transaction(trans, root, ret);
1270 goto fail;
1271 }
1272
1273 /* see comments in should_cow_block() */
1274 root->force_cow = 1;
1275 smp_wmb();
1276
1277 btrfs_set_root_node(new_root_item, tmp);
1278 /* record when the snapshot was created in key.offset */
1279 key.offset = trans->transid;
1280 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1281 btrfs_tree_unlock(tmp);
1282 free_extent_buffer(tmp);
1283 if (ret) {
1284 btrfs_abort_transaction(trans, root, ret);
1285 goto fail;
1286 }
1287
1288 /*
1289 * insert root back/forward references
1290 */
1291 ret = btrfs_add_root_ref(trans, tree_root, objectid,
1292 parent_root->root_key.objectid,
1293 btrfs_ino(parent_inode), index,
1294 dentry->d_name.name, dentry->d_name.len);
1295 if (ret) {
1296 btrfs_abort_transaction(trans, root, ret);
1297 goto fail;
1298 }
1299
1300 key.offset = (u64)-1;
1301 pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
1302 if (IS_ERR(pending->snap)) {
1303 ret = PTR_ERR(pending->snap);
1304 btrfs_abort_transaction(trans, root, ret);
1305 goto fail;
1306 }
1307
1308 ret = btrfs_reloc_post_snapshot(trans, pending);
1309 if (ret) {
1310 btrfs_abort_transaction(trans, root, ret);
1311 goto fail;
1312 }
1313
1314 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1315 if (ret) {
1316 btrfs_abort_transaction(trans, root, ret);
1317 goto fail;
1318 }
1319
1320 ret = btrfs_insert_dir_item(trans, parent_root,
1321 dentry->d_name.name, dentry->d_name.len,
1322 parent_inode, &key,
1323 BTRFS_FT_DIR, index);
1324 /* We have check then name at the beginning, so it is impossible. */
1325 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1326 if (ret) {
1327 btrfs_abort_transaction(trans, root, ret);
1328 goto fail;
1329 }
1330
1331 btrfs_i_size_write(parent_inode, parent_inode->i_size +
1332 dentry->d_name.len * 2);
1333 parent_inode->i_mtime = parent_inode->i_ctime = CURRENT_TIME;
1334 ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
1335 if (ret) {
1336 btrfs_abort_transaction(trans, root, ret);
1337 goto fail;
1338 }
1339 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root, new_uuid.b,
1340 BTRFS_UUID_KEY_SUBVOL, objectid);
1341 if (ret) {
1342 btrfs_abort_transaction(trans, root, ret);
1343 goto fail;
1344 }
1345 if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1346 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
1347 new_root_item->received_uuid,
1348 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1349 objectid);
1350 if (ret && ret != -EEXIST) {
1351 btrfs_abort_transaction(trans, root, ret);
1352 goto fail;
1353 }
1354 }
1355fail:
1356 pending->error = ret;
1357dir_item_existed:
1358 trans->block_rsv = rsv;
1359 trans->bytes_reserved = 0;
1360no_free_objectid:
1361 kfree(new_root_item);
1362root_item_alloc_fail:
1363 btrfs_free_path(path);
1364 return ret;
1365}
1366
1367/*
1368 * create all the snapshots we've scheduled for creation
1369 */
1370static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
1371 struct btrfs_fs_info *fs_info)
1372{
1373 struct btrfs_pending_snapshot *pending, *next;
1374 struct list_head *head = &trans->transaction->pending_snapshots;
1375 int ret = 0;
1376
1377 list_for_each_entry_safe(pending, next, head, list) {
1378 list_del(&pending->list);
1379 ret = create_pending_snapshot(trans, fs_info, pending);
1380 if (ret)
1381 break;
1382 }
1383 return ret;
1384}
1385
1386static void update_super_roots(struct btrfs_root *root)
1387{
1388 struct btrfs_root_item *root_item;
1389 struct btrfs_super_block *super;
1390
1391 super = root->fs_info->super_copy;
1392
1393 root_item = &root->fs_info->chunk_root->root_item;
1394 super->chunk_root = root_item->bytenr;
1395 super->chunk_root_generation = root_item->generation;
1396 super->chunk_root_level = root_item->level;
1397
1398 root_item = &root->fs_info->tree_root->root_item;
1399 super->root = root_item->bytenr;
1400 super->generation = root_item->generation;
1401 super->root_level = root_item->level;
1402 if (btrfs_test_opt(root, SPACE_CACHE))
1403 super->cache_generation = root_item->generation;
1404 if (root->fs_info->update_uuid_tree_gen)
1405 super->uuid_tree_generation = root_item->generation;
1406}
1407
1408int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1409{
1410 struct btrfs_transaction *trans;
1411 int ret = 0;
1412
1413 spin_lock(&info->trans_lock);
1414 trans = info->running_transaction;
1415 if (trans)
1416 ret = (trans->state >= TRANS_STATE_COMMIT_START);
1417 spin_unlock(&info->trans_lock);
1418 return ret;
1419}
1420
1421int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1422{
1423 struct btrfs_transaction *trans;
1424 int ret = 0;
1425
1426 spin_lock(&info->trans_lock);
1427 trans = info->running_transaction;
1428 if (trans)
1429 ret = is_transaction_blocked(trans);
1430 spin_unlock(&info->trans_lock);
1431 return ret;
1432}
1433
1434/*
1435 * wait for the current transaction commit to start and block subsequent
1436 * transaction joins
1437 */
1438static void wait_current_trans_commit_start(struct btrfs_root *root,
1439 struct btrfs_transaction *trans)
1440{
1441 wait_event(root->fs_info->transaction_blocked_wait,
1442 trans->state >= TRANS_STATE_COMMIT_START ||
1443 trans->aborted);
1444}
1445
1446/*
1447 * wait for the current transaction to start and then become unblocked.
1448 * caller holds ref.
1449 */
1450static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root,
1451 struct btrfs_transaction *trans)
1452{
1453 wait_event(root->fs_info->transaction_wait,
1454 trans->state >= TRANS_STATE_UNBLOCKED ||
1455 trans->aborted);
1456}
1457
1458/*
1459 * commit transactions asynchronously. once btrfs_commit_transaction_async
1460 * returns, any subsequent transaction will not be allowed to join.
1461 */
1462struct btrfs_async_commit {
1463 struct btrfs_trans_handle *newtrans;
1464 struct btrfs_root *root;
1465 struct work_struct work;
1466};
1467
1468static void do_async_commit(struct work_struct *work)
1469{
1470 struct btrfs_async_commit *ac =
1471 container_of(work, struct btrfs_async_commit, work);
1472
1473 /*
1474 * We've got freeze protection passed with the transaction.
1475 * Tell lockdep about it.
1476 */
1477 if (ac->newtrans->type & __TRANS_FREEZABLE)
1478 rwsem_acquire_read(
1479 &ac->root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1],
1480 0, 1, _THIS_IP_);
1481
1482 current->journal_info = ac->newtrans;
1483
1484 btrfs_commit_transaction(ac->newtrans, ac->root);
1485 kfree(ac);
1486}
1487
1488int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1489 struct btrfs_root *root,
1490 int wait_for_unblock)
1491{
1492 struct btrfs_async_commit *ac;
1493 struct btrfs_transaction *cur_trans;
1494
1495 ac = kmalloc(sizeof(*ac), GFP_NOFS);
1496 if (!ac)
1497 return -ENOMEM;
1498
1499 INIT_WORK(&ac->work, do_async_commit);
1500 ac->root = root;
1501 ac->newtrans = btrfs_join_transaction(root);
1502 if (IS_ERR(ac->newtrans)) {
1503 int err = PTR_ERR(ac->newtrans);
1504 kfree(ac);
1505 return err;
1506 }
1507
1508 /* take transaction reference */
1509 cur_trans = trans->transaction;
1510 atomic_inc(&cur_trans->use_count);
1511
1512 btrfs_end_transaction(trans, root);
1513
1514 /*
1515 * Tell lockdep we've released the freeze rwsem, since the
1516 * async commit thread will be the one to unlock it.
1517 */
1518 if (ac->newtrans->type & __TRANS_FREEZABLE)
1519 rwsem_release(
1520 &root->fs_info->sb->s_writers.lock_map[SB_FREEZE_FS-1],
1521 1, _THIS_IP_);
1522
1523 schedule_work(&ac->work);
1524
1525 /* wait for transaction to start and unblock */
1526 if (wait_for_unblock)
1527 wait_current_trans_commit_start_and_unblock(root, cur_trans);
1528 else
1529 wait_current_trans_commit_start(root, cur_trans);
1530
1531 if (current->journal_info == trans)
1532 current->journal_info = NULL;
1533
1534 btrfs_put_transaction(cur_trans);
1535 return 0;
1536}
1537
1538
1539static void cleanup_transaction(struct btrfs_trans_handle *trans,
1540 struct btrfs_root *root, int err)
1541{
1542 struct btrfs_transaction *cur_trans = trans->transaction;
1543 DEFINE_WAIT(wait);
1544
1545 WARN_ON(trans->use_count > 1);
1546
1547 btrfs_abort_transaction(trans, root, err);
1548
1549 spin_lock(&root->fs_info->trans_lock);
1550
1551 /*
1552 * If the transaction is removed from the list, it means this
1553 * transaction has been committed successfully, so it is impossible
1554 * to call the cleanup function.
1555 */
1556 BUG_ON(list_empty(&cur_trans->list));
1557
1558 list_del_init(&cur_trans->list);
1559 if (cur_trans == root->fs_info->running_transaction) {
1560 cur_trans->state = TRANS_STATE_COMMIT_DOING;
1561 spin_unlock(&root->fs_info->trans_lock);
1562 wait_event(cur_trans->writer_wait,
1563 atomic_read(&cur_trans->num_writers) == 1);
1564
1565 spin_lock(&root->fs_info->trans_lock);
1566 }
1567 spin_unlock(&root->fs_info->trans_lock);
1568
1569 btrfs_cleanup_one_transaction(trans->transaction, root);
1570
1571 spin_lock(&root->fs_info->trans_lock);
1572 if (cur_trans == root->fs_info->running_transaction)
1573 root->fs_info->running_transaction = NULL;
1574 spin_unlock(&root->fs_info->trans_lock);
1575
1576 if (trans->type & __TRANS_FREEZABLE)
1577 sb_end_intwrite(root->fs_info->sb);
1578 btrfs_put_transaction(cur_trans);
1579 btrfs_put_transaction(cur_trans);
1580
1581 trace_btrfs_transaction_commit(root);
1582
1583 if (current->journal_info == trans)
1584 current->journal_info = NULL;
1585 btrfs_scrub_cancel(root->fs_info);
1586
1587 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1588}
1589
1590static int btrfs_flush_all_pending_stuffs(struct btrfs_trans_handle *trans,
1591 struct btrfs_root *root)
1592{
1593 int ret;
1594
1595 ret = btrfs_run_delayed_items(trans, root);
1596 /*
1597 * running the delayed items may have added new refs. account
1598 * them now so that they hinder processing of more delayed refs
1599 * as little as possible.
1600 */
1601 if (ret) {
1602 btrfs_delayed_refs_qgroup_accounting(trans, root->fs_info);
1603 return ret;
1604 }
1605
1606 ret = btrfs_delayed_refs_qgroup_accounting(trans, root->fs_info);
1607 if (ret)
1608 return ret;
1609
1610 /*
1611 * rename don't use btrfs_join_transaction, so, once we
1612 * set the transaction to blocked above, we aren't going
1613 * to get any new ordered operations. We can safely run
1614 * it here and no for sure that nothing new will be added
1615 * to the list
1616 */
1617 ret = btrfs_run_ordered_operations(trans, root, 1);
1618
1619 return ret;
1620}
1621
1622static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
1623{
1624 if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT))
1625 return btrfs_start_delalloc_roots(fs_info, 1, -1);
1626 return 0;
1627}
1628
1629static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
1630{
1631 if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT))
1632 btrfs_wait_ordered_roots(fs_info, -1);
1633}
1634
1635int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
1636 struct btrfs_root *root)
1637{
1638 struct btrfs_transaction *cur_trans = trans->transaction;
1639 struct btrfs_transaction *prev_trans = NULL;
1640 int ret;
1641
1642 ret = btrfs_run_ordered_operations(trans, root, 0);
1643 if (ret) {
1644 btrfs_abort_transaction(trans, root, ret);
1645 btrfs_end_transaction(trans, root);
1646 return ret;
1647 }
1648
1649 /* Stop the commit early if ->aborted is set */
1650 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1651 ret = cur_trans->aborted;
1652 btrfs_end_transaction(trans, root);
1653 return ret;
1654 }
1655
1656 /* make a pass through all the delayed refs we have so far
1657 * any runnings procs may add more while we are here
1658 */
1659 ret = btrfs_run_delayed_refs(trans, root, 0);
1660 if (ret) {
1661 btrfs_end_transaction(trans, root);
1662 return ret;
1663 }
1664
1665 btrfs_trans_release_metadata(trans, root);
1666 trans->block_rsv = NULL;
1667 if (trans->qgroup_reserved) {
1668 btrfs_qgroup_free(root, trans->qgroup_reserved);
1669 trans->qgroup_reserved = 0;
1670 }
1671
1672 cur_trans = trans->transaction;
1673
1674 /*
1675 * set the flushing flag so procs in this transaction have to
1676 * start sending their work down.
1677 */
1678 cur_trans->delayed_refs.flushing = 1;
1679 smp_wmb();
1680
1681 if (!list_empty(&trans->new_bgs))
1682 btrfs_create_pending_block_groups(trans, root);
1683
1684 ret = btrfs_run_delayed_refs(trans, root, 0);
1685 if (ret) {
1686 btrfs_end_transaction(trans, root);
1687 return ret;
1688 }
1689
1690 spin_lock(&root->fs_info->trans_lock);
1691 if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
1692 spin_unlock(&root->fs_info->trans_lock);
1693 atomic_inc(&cur_trans->use_count);
1694 ret = btrfs_end_transaction(trans, root);
1695
1696 wait_for_commit(root, cur_trans);
1697
1698 btrfs_put_transaction(cur_trans);
1699
1700 return ret;
1701 }
1702
1703 cur_trans->state = TRANS_STATE_COMMIT_START;
1704 wake_up(&root->fs_info->transaction_blocked_wait);
1705
1706 if (cur_trans->list.prev != &root->fs_info->trans_list) {
1707 prev_trans = list_entry(cur_trans->list.prev,
1708 struct btrfs_transaction, list);
1709 if (prev_trans->state != TRANS_STATE_COMPLETED) {
1710 atomic_inc(&prev_trans->use_count);
1711 spin_unlock(&root->fs_info->trans_lock);
1712
1713 wait_for_commit(root, prev_trans);
1714
1715 btrfs_put_transaction(prev_trans);
1716 } else {
1717 spin_unlock(&root->fs_info->trans_lock);
1718 }
1719 } else {
1720 spin_unlock(&root->fs_info->trans_lock);
1721 }
1722
1723 extwriter_counter_dec(cur_trans, trans->type);
1724
1725 ret = btrfs_start_delalloc_flush(root->fs_info);
1726 if (ret)
1727 goto cleanup_transaction;
1728
1729 ret = btrfs_flush_all_pending_stuffs(trans, root);
1730 if (ret)
1731 goto cleanup_transaction;
1732
1733 wait_event(cur_trans->writer_wait,
1734 extwriter_counter_read(cur_trans) == 0);
1735
1736 /* some pending stuffs might be added after the previous flush. */
1737 ret = btrfs_flush_all_pending_stuffs(trans, root);
1738 if (ret)
1739 goto cleanup_transaction;
1740
1741 btrfs_wait_delalloc_flush(root->fs_info);
1742
1743 btrfs_scrub_pause(root);
1744 /*
1745 * Ok now we need to make sure to block out any other joins while we
1746 * commit the transaction. We could have started a join before setting
1747 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
1748 */
1749 spin_lock(&root->fs_info->trans_lock);
1750 cur_trans->state = TRANS_STATE_COMMIT_DOING;
1751 spin_unlock(&root->fs_info->trans_lock);
1752 wait_event(cur_trans->writer_wait,
1753 atomic_read(&cur_trans->num_writers) == 1);
1754
1755 /* ->aborted might be set after the previous check, so check it */
1756 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1757 ret = cur_trans->aborted;
1758 goto scrub_continue;
1759 }
1760 /*
1761 * the reloc mutex makes sure that we stop
1762 * the balancing code from coming in and moving
1763 * extents around in the middle of the commit
1764 */
1765 mutex_lock(&root->fs_info->reloc_mutex);
1766
1767 /*
1768 * We needn't worry about the delayed items because we will
1769 * deal with them in create_pending_snapshot(), which is the
1770 * core function of the snapshot creation.
1771 */
1772 ret = create_pending_snapshots(trans, root->fs_info);
1773 if (ret) {
1774 mutex_unlock(&root->fs_info->reloc_mutex);
1775 goto scrub_continue;
1776 }
1777
1778 /*
1779 * We insert the dir indexes of the snapshots and update the inode
1780 * of the snapshots' parents after the snapshot creation, so there
1781 * are some delayed items which are not dealt with. Now deal with
1782 * them.
1783 *
1784 * We needn't worry that this operation will corrupt the snapshots,
1785 * because all the tree which are snapshoted will be forced to COW
1786 * the nodes and leaves.
1787 */
1788 ret = btrfs_run_delayed_items(trans, root);
1789 if (ret) {
1790 mutex_unlock(&root->fs_info->reloc_mutex);
1791 goto scrub_continue;
1792 }
1793
1794 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1795 if (ret) {
1796 mutex_unlock(&root->fs_info->reloc_mutex);
1797 goto scrub_continue;
1798 }
1799
1800 /*
1801 * make sure none of the code above managed to slip in a
1802 * delayed item
1803 */
1804 btrfs_assert_delayed_root_empty(root);
1805
1806 WARN_ON(cur_trans != trans->transaction);
1807
1808 /* btrfs_commit_tree_roots is responsible for getting the
1809 * various roots consistent with each other. Every pointer
1810 * in the tree of tree roots has to point to the most up to date
1811 * root for every subvolume and other tree. So, we have to keep
1812 * the tree logging code from jumping in and changing any
1813 * of the trees.
1814 *
1815 * At this point in the commit, there can't be any tree-log
1816 * writers, but a little lower down we drop the trans mutex
1817 * and let new people in. By holding the tree_log_mutex
1818 * from now until after the super is written, we avoid races
1819 * with the tree-log code.
1820 */
1821 mutex_lock(&root->fs_info->tree_log_mutex);
1822
1823 ret = commit_fs_roots(trans, root);
1824 if (ret) {
1825 mutex_unlock(&root->fs_info->tree_log_mutex);
1826 mutex_unlock(&root->fs_info->reloc_mutex);
1827 goto scrub_continue;
1828 }
1829
1830 /*
1831 * Since the transaction is done, we should set the inode map cache flag
1832 * before any other comming transaction.
1833 */
1834 if (btrfs_test_opt(root, CHANGE_INODE_CACHE))
1835 btrfs_set_opt(root->fs_info->mount_opt, INODE_MAP_CACHE);
1836 else
1837 btrfs_clear_opt(root->fs_info->mount_opt, INODE_MAP_CACHE);
1838
1839 /* commit_fs_roots gets rid of all the tree log roots, it is now
1840 * safe to free the root of tree log roots
1841 */
1842 btrfs_free_log_root_tree(trans, root->fs_info);
1843
1844 ret = commit_cowonly_roots(trans, root);
1845 if (ret) {
1846 mutex_unlock(&root->fs_info->tree_log_mutex);
1847 mutex_unlock(&root->fs_info->reloc_mutex);
1848 goto scrub_continue;
1849 }
1850
1851 /*
1852 * The tasks which save the space cache and inode cache may also
1853 * update ->aborted, check it.
1854 */
1855 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1856 ret = cur_trans->aborted;
1857 mutex_unlock(&root->fs_info->tree_log_mutex);
1858 mutex_unlock(&root->fs_info->reloc_mutex);
1859 goto scrub_continue;
1860 }
1861
1862 btrfs_prepare_extent_commit(trans, root);
1863
1864 cur_trans = root->fs_info->running_transaction;
1865
1866 btrfs_set_root_node(&root->fs_info->tree_root->root_item,
1867 root->fs_info->tree_root->node);
1868 list_add_tail(&root->fs_info->tree_root->dirty_list,
1869 &cur_trans->switch_commits);
1870
1871 btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
1872 root->fs_info->chunk_root->node);
1873 list_add_tail(&root->fs_info->chunk_root->dirty_list,
1874 &cur_trans->switch_commits);
1875
1876 switch_commit_roots(cur_trans, root->fs_info);
1877
1878 assert_qgroups_uptodate(trans);
1879 update_super_roots(root);
1880
1881 btrfs_set_super_log_root(root->fs_info->super_copy, 0);
1882 btrfs_set_super_log_root_level(root->fs_info->super_copy, 0);
1883 memcpy(root->fs_info->super_for_commit, root->fs_info->super_copy,
1884 sizeof(*root->fs_info->super_copy));
1885
1886 spin_lock(&root->fs_info->trans_lock);
1887 cur_trans->state = TRANS_STATE_UNBLOCKED;
1888 root->fs_info->running_transaction = NULL;
1889 spin_unlock(&root->fs_info->trans_lock);
1890 mutex_unlock(&root->fs_info->reloc_mutex);
1891
1892 wake_up(&root->fs_info->transaction_wait);
1893
1894 ret = btrfs_write_and_wait_transaction(trans, root);
1895 if (ret) {
1896 btrfs_error(root->fs_info, ret,
1897 "Error while writing out transaction");
1898 mutex_unlock(&root->fs_info->tree_log_mutex);
1899 goto scrub_continue;
1900 }
1901
1902 ret = write_ctree_super(trans, root, 0);
1903 if (ret) {
1904 mutex_unlock(&root->fs_info->tree_log_mutex);
1905 goto scrub_continue;
1906 }
1907
1908 /*
1909 * the super is written, we can safely allow the tree-loggers
1910 * to go about their business
1911 */
1912 mutex_unlock(&root->fs_info->tree_log_mutex);
1913
1914 btrfs_finish_extent_commit(trans, root);
1915
1916 root->fs_info->last_trans_committed = cur_trans->transid;
1917 /*
1918 * We needn't acquire the lock here because there is no other task
1919 * which can change it.
1920 */
1921 cur_trans->state = TRANS_STATE_COMPLETED;
1922 wake_up(&cur_trans->commit_wait);
1923
1924 spin_lock(&root->fs_info->trans_lock);
1925 list_del_init(&cur_trans->list);
1926 spin_unlock(&root->fs_info->trans_lock);
1927
1928 btrfs_put_transaction(cur_trans);
1929 btrfs_put_transaction(cur_trans);
1930
1931 if (trans->type & __TRANS_FREEZABLE)
1932 sb_end_intwrite(root->fs_info->sb);
1933
1934 trace_btrfs_transaction_commit(root);
1935
1936 btrfs_scrub_continue(root);
1937
1938 if (current->journal_info == trans)
1939 current->journal_info = NULL;
1940
1941 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1942
1943 if (current != root->fs_info->transaction_kthread)
1944 btrfs_run_delayed_iputs(root);
1945
1946 return ret;
1947
1948scrub_continue:
1949 btrfs_scrub_continue(root);
1950cleanup_transaction:
1951 btrfs_trans_release_metadata(trans, root);
1952 trans->block_rsv = NULL;
1953 if (trans->qgroup_reserved) {
1954 btrfs_qgroup_free(root, trans->qgroup_reserved);
1955 trans->qgroup_reserved = 0;
1956 }
1957 btrfs_warn(root->fs_info, "Skipping commit of aborted transaction.");
1958 if (current->journal_info == trans)
1959 current->journal_info = NULL;
1960 cleanup_transaction(trans, root, ret);
1961
1962 return ret;
1963}
1964
1965/*
1966 * return < 0 if error
1967 * 0 if there are no more dead_roots at the time of call
1968 * 1 there are more to be processed, call me again
1969 *
1970 * The return value indicates there are certainly more snapshots to delete, but
1971 * if there comes a new one during processing, it may return 0. We don't mind,
1972 * because btrfs_commit_super will poke cleaner thread and it will process it a
1973 * few seconds later.
1974 */
1975int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
1976{
1977 int ret;
1978 struct btrfs_fs_info *fs_info = root->fs_info;
1979
1980 spin_lock(&fs_info->trans_lock);
1981 if (list_empty(&fs_info->dead_roots)) {
1982 spin_unlock(&fs_info->trans_lock);
1983 return 0;
1984 }
1985 root = list_first_entry(&fs_info->dead_roots,
1986 struct btrfs_root, root_list);
1987 /*
1988 * Make sure root is not involved in send,
1989 * if we fail with first root, we return
1990 * directly rather than continue.
1991 */
1992 spin_lock(&root->root_item_lock);
1993 if (root->send_in_progress) {
1994 spin_unlock(&fs_info->trans_lock);
1995 spin_unlock(&root->root_item_lock);
1996 return 0;
1997 }
1998 spin_unlock(&root->root_item_lock);
1999
2000 list_del_init(&root->root_list);
2001 spin_unlock(&fs_info->trans_lock);
2002
2003 pr_debug("BTRFS: cleaner removing %llu\n", root->objectid);
2004
2005 btrfs_kill_all_delayed_nodes(root);
2006
2007 if (btrfs_header_backref_rev(root->node) <
2008 BTRFS_MIXED_BACKREF_REV)
2009 ret = btrfs_drop_snapshot(root, NULL, 0, 0);
2010 else
2011 ret = btrfs_drop_snapshot(root, NULL, 1, 0);
2012 /*
2013 * If we encounter a transaction abort during snapshot cleaning, we
2014 * don't want to crash here
2015 */
2016 return (ret < 0) ? 0 : 1;
2017}
1/*
2 * Copyright (C) 2007 Oracle. All rights reserved.
3 *
4 * This program is free software; you can redistribute it and/or
5 * modify it under the terms of the GNU General Public
6 * License v2 as published by the Free Software Foundation.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
11 * General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public
14 * License along with this program; if not, write to the
15 * Free Software Foundation, Inc., 59 Temple Place - Suite 330,
16 * Boston, MA 021110-1307, USA.
17 */
18
19#include <linux/fs.h>
20#include <linux/slab.h>
21#include <linux/sched.h>
22#include <linux/writeback.h>
23#include <linux/pagemap.h>
24#include <linux/blkdev.h>
25#include <linux/uuid.h>
26#include "ctree.h"
27#include "disk-io.h"
28#include "transaction.h"
29#include "locking.h"
30#include "tree-log.h"
31#include "inode-map.h"
32#include "volumes.h"
33#include "dev-replace.h"
34#include "qgroup.h"
35
36#define BTRFS_ROOT_TRANS_TAG 0
37
38static const unsigned int btrfs_blocked_trans_types[TRANS_STATE_MAX] = {
39 [TRANS_STATE_RUNNING] = 0U,
40 [TRANS_STATE_BLOCKED] = (__TRANS_USERSPACE |
41 __TRANS_START),
42 [TRANS_STATE_COMMIT_START] = (__TRANS_USERSPACE |
43 __TRANS_START |
44 __TRANS_ATTACH),
45 [TRANS_STATE_COMMIT_DOING] = (__TRANS_USERSPACE |
46 __TRANS_START |
47 __TRANS_ATTACH |
48 __TRANS_JOIN),
49 [TRANS_STATE_UNBLOCKED] = (__TRANS_USERSPACE |
50 __TRANS_START |
51 __TRANS_ATTACH |
52 __TRANS_JOIN |
53 __TRANS_JOIN_NOLOCK),
54 [TRANS_STATE_COMPLETED] = (__TRANS_USERSPACE |
55 __TRANS_START |
56 __TRANS_ATTACH |
57 __TRANS_JOIN |
58 __TRANS_JOIN_NOLOCK),
59};
60
61void btrfs_put_transaction(struct btrfs_transaction *transaction)
62{
63 WARN_ON(atomic_read(&transaction->use_count) == 0);
64 if (atomic_dec_and_test(&transaction->use_count)) {
65 BUG_ON(!list_empty(&transaction->list));
66 WARN_ON(!RB_EMPTY_ROOT(&transaction->delayed_refs.href_root));
67 if (transaction->delayed_refs.pending_csums)
68 printk(KERN_ERR "pending csums is %llu\n",
69 transaction->delayed_refs.pending_csums);
70 while (!list_empty(&transaction->pending_chunks)) {
71 struct extent_map *em;
72
73 em = list_first_entry(&transaction->pending_chunks,
74 struct extent_map, list);
75 list_del_init(&em->list);
76 free_extent_map(em);
77 }
78 /*
79 * If any block groups are found in ->deleted_bgs then it's
80 * because the transaction was aborted and a commit did not
81 * happen (things failed before writing the new superblock
82 * and calling btrfs_finish_extent_commit()), so we can not
83 * discard the physical locations of the block groups.
84 */
85 while (!list_empty(&transaction->deleted_bgs)) {
86 struct btrfs_block_group_cache *cache;
87
88 cache = list_first_entry(&transaction->deleted_bgs,
89 struct btrfs_block_group_cache,
90 bg_list);
91 list_del_init(&cache->bg_list);
92 btrfs_put_block_group_trimming(cache);
93 btrfs_put_block_group(cache);
94 }
95 kmem_cache_free(btrfs_transaction_cachep, transaction);
96 }
97}
98
99static void clear_btree_io_tree(struct extent_io_tree *tree)
100{
101 spin_lock(&tree->lock);
102 /*
103 * Do a single barrier for the waitqueue_active check here, the state
104 * of the waitqueue should not change once clear_btree_io_tree is
105 * called.
106 */
107 smp_mb();
108 while (!RB_EMPTY_ROOT(&tree->state)) {
109 struct rb_node *node;
110 struct extent_state *state;
111
112 node = rb_first(&tree->state);
113 state = rb_entry(node, struct extent_state, rb_node);
114 rb_erase(&state->rb_node, &tree->state);
115 RB_CLEAR_NODE(&state->rb_node);
116 /*
117 * btree io trees aren't supposed to have tasks waiting for
118 * changes in the flags of extent states ever.
119 */
120 ASSERT(!waitqueue_active(&state->wq));
121 free_extent_state(state);
122
123 cond_resched_lock(&tree->lock);
124 }
125 spin_unlock(&tree->lock);
126}
127
128static noinline void switch_commit_roots(struct btrfs_transaction *trans,
129 struct btrfs_fs_info *fs_info)
130{
131 struct btrfs_root *root, *tmp;
132
133 down_write(&fs_info->commit_root_sem);
134 list_for_each_entry_safe(root, tmp, &trans->switch_commits,
135 dirty_list) {
136 list_del_init(&root->dirty_list);
137 free_extent_buffer(root->commit_root);
138 root->commit_root = btrfs_root_node(root);
139 if (is_fstree(root->objectid))
140 btrfs_unpin_free_ino(root);
141 clear_btree_io_tree(&root->dirty_log_pages);
142 }
143
144 /* We can free old roots now. */
145 spin_lock(&trans->dropped_roots_lock);
146 while (!list_empty(&trans->dropped_roots)) {
147 root = list_first_entry(&trans->dropped_roots,
148 struct btrfs_root, root_list);
149 list_del_init(&root->root_list);
150 spin_unlock(&trans->dropped_roots_lock);
151 btrfs_drop_and_free_fs_root(fs_info, root);
152 spin_lock(&trans->dropped_roots_lock);
153 }
154 spin_unlock(&trans->dropped_roots_lock);
155 up_write(&fs_info->commit_root_sem);
156}
157
158static inline void extwriter_counter_inc(struct btrfs_transaction *trans,
159 unsigned int type)
160{
161 if (type & TRANS_EXTWRITERS)
162 atomic_inc(&trans->num_extwriters);
163}
164
165static inline void extwriter_counter_dec(struct btrfs_transaction *trans,
166 unsigned int type)
167{
168 if (type & TRANS_EXTWRITERS)
169 atomic_dec(&trans->num_extwriters);
170}
171
172static inline void extwriter_counter_init(struct btrfs_transaction *trans,
173 unsigned int type)
174{
175 atomic_set(&trans->num_extwriters, ((type & TRANS_EXTWRITERS) ? 1 : 0));
176}
177
178static inline int extwriter_counter_read(struct btrfs_transaction *trans)
179{
180 return atomic_read(&trans->num_extwriters);
181}
182
183/*
184 * either allocate a new transaction or hop into the existing one
185 */
186static noinline int join_transaction(struct btrfs_root *root, unsigned int type)
187{
188 struct btrfs_transaction *cur_trans;
189 struct btrfs_fs_info *fs_info = root->fs_info;
190
191 spin_lock(&fs_info->trans_lock);
192loop:
193 /* The file system has been taken offline. No new transactions. */
194 if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
195 spin_unlock(&fs_info->trans_lock);
196 return -EROFS;
197 }
198
199 cur_trans = fs_info->running_transaction;
200 if (cur_trans) {
201 if (cur_trans->aborted) {
202 spin_unlock(&fs_info->trans_lock);
203 return cur_trans->aborted;
204 }
205 if (btrfs_blocked_trans_types[cur_trans->state] & type) {
206 spin_unlock(&fs_info->trans_lock);
207 return -EBUSY;
208 }
209 atomic_inc(&cur_trans->use_count);
210 atomic_inc(&cur_trans->num_writers);
211 extwriter_counter_inc(cur_trans, type);
212 spin_unlock(&fs_info->trans_lock);
213 return 0;
214 }
215 spin_unlock(&fs_info->trans_lock);
216
217 /*
218 * If we are ATTACH, we just want to catch the current transaction,
219 * and commit it. If there is no transaction, just return ENOENT.
220 */
221 if (type == TRANS_ATTACH)
222 return -ENOENT;
223
224 /*
225 * JOIN_NOLOCK only happens during the transaction commit, so
226 * it is impossible that ->running_transaction is NULL
227 */
228 BUG_ON(type == TRANS_JOIN_NOLOCK);
229
230 cur_trans = kmem_cache_alloc(btrfs_transaction_cachep, GFP_NOFS);
231 if (!cur_trans)
232 return -ENOMEM;
233
234 spin_lock(&fs_info->trans_lock);
235 if (fs_info->running_transaction) {
236 /*
237 * someone started a transaction after we unlocked. Make sure
238 * to redo the checks above
239 */
240 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
241 goto loop;
242 } else if (test_bit(BTRFS_FS_STATE_ERROR, &fs_info->fs_state)) {
243 spin_unlock(&fs_info->trans_lock);
244 kmem_cache_free(btrfs_transaction_cachep, cur_trans);
245 return -EROFS;
246 }
247
248 atomic_set(&cur_trans->num_writers, 1);
249 extwriter_counter_init(cur_trans, type);
250 init_waitqueue_head(&cur_trans->writer_wait);
251 init_waitqueue_head(&cur_trans->commit_wait);
252 init_waitqueue_head(&cur_trans->pending_wait);
253 cur_trans->state = TRANS_STATE_RUNNING;
254 /*
255 * One for this trans handle, one so it will live on until we
256 * commit the transaction.
257 */
258 atomic_set(&cur_trans->use_count, 2);
259 atomic_set(&cur_trans->pending_ordered, 0);
260 cur_trans->flags = 0;
261 cur_trans->start_time = get_seconds();
262
263 memset(&cur_trans->delayed_refs, 0, sizeof(cur_trans->delayed_refs));
264
265 cur_trans->delayed_refs.href_root = RB_ROOT;
266 cur_trans->delayed_refs.dirty_extent_root = RB_ROOT;
267 atomic_set(&cur_trans->delayed_refs.num_entries, 0);
268
269 /*
270 * although the tree mod log is per file system and not per transaction,
271 * the log must never go across transaction boundaries.
272 */
273 smp_mb();
274 if (!list_empty(&fs_info->tree_mod_seq_list))
275 WARN(1, KERN_ERR "BTRFS: tree_mod_seq_list not empty when "
276 "creating a fresh transaction\n");
277 if (!RB_EMPTY_ROOT(&fs_info->tree_mod_log))
278 WARN(1, KERN_ERR "BTRFS: tree_mod_log rb tree not empty when "
279 "creating a fresh transaction\n");
280 atomic64_set(&fs_info->tree_mod_seq, 0);
281
282 spin_lock_init(&cur_trans->delayed_refs.lock);
283
284 INIT_LIST_HEAD(&cur_trans->pending_snapshots);
285 INIT_LIST_HEAD(&cur_trans->pending_chunks);
286 INIT_LIST_HEAD(&cur_trans->switch_commits);
287 INIT_LIST_HEAD(&cur_trans->dirty_bgs);
288 INIT_LIST_HEAD(&cur_trans->io_bgs);
289 INIT_LIST_HEAD(&cur_trans->dropped_roots);
290 mutex_init(&cur_trans->cache_write_mutex);
291 cur_trans->num_dirty_bgs = 0;
292 spin_lock_init(&cur_trans->dirty_bgs_lock);
293 INIT_LIST_HEAD(&cur_trans->deleted_bgs);
294 spin_lock_init(&cur_trans->dropped_roots_lock);
295 list_add_tail(&cur_trans->list, &fs_info->trans_list);
296 extent_io_tree_init(&cur_trans->dirty_pages,
297 fs_info->btree_inode->i_mapping);
298 fs_info->generation++;
299 cur_trans->transid = fs_info->generation;
300 fs_info->running_transaction = cur_trans;
301 cur_trans->aborted = 0;
302 spin_unlock(&fs_info->trans_lock);
303
304 return 0;
305}
306
307/*
308 * this does all the record keeping required to make sure that a reference
309 * counted root is properly recorded in a given transaction. This is required
310 * to make sure the old root from before we joined the transaction is deleted
311 * when the transaction commits
312 */
313static int record_root_in_trans(struct btrfs_trans_handle *trans,
314 struct btrfs_root *root)
315{
316 if (test_bit(BTRFS_ROOT_REF_COWS, &root->state) &&
317 root->last_trans < trans->transid) {
318 WARN_ON(root == root->fs_info->extent_root);
319 WARN_ON(root->commit_root != root->node);
320
321 /*
322 * see below for IN_TRANS_SETUP usage rules
323 * we have the reloc mutex held now, so there
324 * is only one writer in this function
325 */
326 set_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
327
328 /* make sure readers find IN_TRANS_SETUP before
329 * they find our root->last_trans update
330 */
331 smp_wmb();
332
333 spin_lock(&root->fs_info->fs_roots_radix_lock);
334 if (root->last_trans == trans->transid) {
335 spin_unlock(&root->fs_info->fs_roots_radix_lock);
336 return 0;
337 }
338 radix_tree_tag_set(&root->fs_info->fs_roots_radix,
339 (unsigned long)root->root_key.objectid,
340 BTRFS_ROOT_TRANS_TAG);
341 spin_unlock(&root->fs_info->fs_roots_radix_lock);
342 root->last_trans = trans->transid;
343
344 /* this is pretty tricky. We don't want to
345 * take the relocation lock in btrfs_record_root_in_trans
346 * unless we're really doing the first setup for this root in
347 * this transaction.
348 *
349 * Normally we'd use root->last_trans as a flag to decide
350 * if we want to take the expensive mutex.
351 *
352 * But, we have to set root->last_trans before we
353 * init the relocation root, otherwise, we trip over warnings
354 * in ctree.c. The solution used here is to flag ourselves
355 * with root IN_TRANS_SETUP. When this is 1, we're still
356 * fixing up the reloc trees and everyone must wait.
357 *
358 * When this is zero, they can trust root->last_trans and fly
359 * through btrfs_record_root_in_trans without having to take the
360 * lock. smp_wmb() makes sure that all the writes above are
361 * done before we pop in the zero below
362 */
363 btrfs_init_reloc_root(trans, root);
364 smp_mb__before_atomic();
365 clear_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state);
366 }
367 return 0;
368}
369
370
371void btrfs_add_dropped_root(struct btrfs_trans_handle *trans,
372 struct btrfs_root *root)
373{
374 struct btrfs_transaction *cur_trans = trans->transaction;
375
376 /* Add ourselves to the transaction dropped list */
377 spin_lock(&cur_trans->dropped_roots_lock);
378 list_add_tail(&root->root_list, &cur_trans->dropped_roots);
379 spin_unlock(&cur_trans->dropped_roots_lock);
380
381 /* Make sure we don't try to update the root at commit time */
382 spin_lock(&root->fs_info->fs_roots_radix_lock);
383 radix_tree_tag_clear(&root->fs_info->fs_roots_radix,
384 (unsigned long)root->root_key.objectid,
385 BTRFS_ROOT_TRANS_TAG);
386 spin_unlock(&root->fs_info->fs_roots_radix_lock);
387}
388
389int btrfs_record_root_in_trans(struct btrfs_trans_handle *trans,
390 struct btrfs_root *root)
391{
392 if (!test_bit(BTRFS_ROOT_REF_COWS, &root->state))
393 return 0;
394
395 /*
396 * see record_root_in_trans for comments about IN_TRANS_SETUP usage
397 * and barriers
398 */
399 smp_rmb();
400 if (root->last_trans == trans->transid &&
401 !test_bit(BTRFS_ROOT_IN_TRANS_SETUP, &root->state))
402 return 0;
403
404 mutex_lock(&root->fs_info->reloc_mutex);
405 record_root_in_trans(trans, root);
406 mutex_unlock(&root->fs_info->reloc_mutex);
407
408 return 0;
409}
410
411static inline int is_transaction_blocked(struct btrfs_transaction *trans)
412{
413 return (trans->state >= TRANS_STATE_BLOCKED &&
414 trans->state < TRANS_STATE_UNBLOCKED &&
415 !trans->aborted);
416}
417
418/* wait for commit against the current transaction to become unblocked
419 * when this is done, it is safe to start a new transaction, but the current
420 * transaction might not be fully on disk.
421 */
422static void wait_current_trans(struct btrfs_root *root)
423{
424 struct btrfs_transaction *cur_trans;
425
426 spin_lock(&root->fs_info->trans_lock);
427 cur_trans = root->fs_info->running_transaction;
428 if (cur_trans && is_transaction_blocked(cur_trans)) {
429 atomic_inc(&cur_trans->use_count);
430 spin_unlock(&root->fs_info->trans_lock);
431
432 wait_event(root->fs_info->transaction_wait,
433 cur_trans->state >= TRANS_STATE_UNBLOCKED ||
434 cur_trans->aborted);
435 btrfs_put_transaction(cur_trans);
436 } else {
437 spin_unlock(&root->fs_info->trans_lock);
438 }
439}
440
441static int may_wait_transaction(struct btrfs_root *root, int type)
442{
443 if (root->fs_info->log_root_recovering)
444 return 0;
445
446 if (type == TRANS_USERSPACE)
447 return 1;
448
449 if (type == TRANS_START &&
450 !atomic_read(&root->fs_info->open_ioctl_trans))
451 return 1;
452
453 return 0;
454}
455
456static inline bool need_reserve_reloc_root(struct btrfs_root *root)
457{
458 if (!root->fs_info->reloc_ctl ||
459 !test_bit(BTRFS_ROOT_REF_COWS, &root->state) ||
460 root->root_key.objectid == BTRFS_TREE_RELOC_OBJECTID ||
461 root->reloc_root)
462 return false;
463
464 return true;
465}
466
467static struct btrfs_trans_handle *
468start_transaction(struct btrfs_root *root, unsigned int num_items,
469 unsigned int type, enum btrfs_reserve_flush_enum flush)
470{
471 struct btrfs_trans_handle *h;
472 struct btrfs_transaction *cur_trans;
473 u64 num_bytes = 0;
474 u64 qgroup_reserved = 0;
475 bool reloc_reserved = false;
476 int ret;
477
478 /* Send isn't supposed to start transactions. */
479 ASSERT(current->journal_info != BTRFS_SEND_TRANS_STUB);
480
481 if (test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state))
482 return ERR_PTR(-EROFS);
483
484 if (current->journal_info) {
485 WARN_ON(type & TRANS_EXTWRITERS);
486 h = current->journal_info;
487 h->use_count++;
488 WARN_ON(h->use_count > 2);
489 h->orig_rsv = h->block_rsv;
490 h->block_rsv = NULL;
491 goto got_it;
492 }
493
494 /*
495 * Do the reservation before we join the transaction so we can do all
496 * the appropriate flushing if need be.
497 */
498 if (num_items > 0 && root != root->fs_info->chunk_root) {
499 qgroup_reserved = num_items * root->nodesize;
500 ret = btrfs_qgroup_reserve_meta(root, qgroup_reserved);
501 if (ret)
502 return ERR_PTR(ret);
503
504 num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
505 /*
506 * Do the reservation for the relocation root creation
507 */
508 if (need_reserve_reloc_root(root)) {
509 num_bytes += root->nodesize;
510 reloc_reserved = true;
511 }
512
513 ret = btrfs_block_rsv_add(root,
514 &root->fs_info->trans_block_rsv,
515 num_bytes, flush);
516 if (ret)
517 goto reserve_fail;
518 }
519again:
520 h = kmem_cache_zalloc(btrfs_trans_handle_cachep, GFP_NOFS);
521 if (!h) {
522 ret = -ENOMEM;
523 goto alloc_fail;
524 }
525
526 /*
527 * If we are JOIN_NOLOCK we're already committing a transaction and
528 * waiting on this guy, so we don't need to do the sb_start_intwrite
529 * because we're already holding a ref. We need this because we could
530 * have raced in and did an fsync() on a file which can kick a commit
531 * and then we deadlock with somebody doing a freeze.
532 *
533 * If we are ATTACH, it means we just want to catch the current
534 * transaction and commit it, so we needn't do sb_start_intwrite().
535 */
536 if (type & __TRANS_FREEZABLE)
537 sb_start_intwrite(root->fs_info->sb);
538
539 if (may_wait_transaction(root, type))
540 wait_current_trans(root);
541
542 do {
543 ret = join_transaction(root, type);
544 if (ret == -EBUSY) {
545 wait_current_trans(root);
546 if (unlikely(type == TRANS_ATTACH))
547 ret = -ENOENT;
548 }
549 } while (ret == -EBUSY);
550
551 if (ret < 0) {
552 /* We must get the transaction if we are JOIN_NOLOCK. */
553 BUG_ON(type == TRANS_JOIN_NOLOCK);
554 goto join_fail;
555 }
556
557 cur_trans = root->fs_info->running_transaction;
558
559 h->transid = cur_trans->transid;
560 h->transaction = cur_trans;
561 h->root = root;
562 h->use_count = 1;
563
564 h->type = type;
565 h->can_flush_pending_bgs = true;
566 INIT_LIST_HEAD(&h->qgroup_ref_list);
567 INIT_LIST_HEAD(&h->new_bgs);
568
569 smp_mb();
570 if (cur_trans->state >= TRANS_STATE_BLOCKED &&
571 may_wait_transaction(root, type)) {
572 current->journal_info = h;
573 btrfs_commit_transaction(h, root);
574 goto again;
575 }
576
577 if (num_bytes) {
578 trace_btrfs_space_reservation(root->fs_info, "transaction",
579 h->transid, num_bytes, 1);
580 h->block_rsv = &root->fs_info->trans_block_rsv;
581 h->bytes_reserved = num_bytes;
582 h->reloc_reserved = reloc_reserved;
583 }
584
585got_it:
586 btrfs_record_root_in_trans(h, root);
587
588 if (!current->journal_info && type != TRANS_USERSPACE)
589 current->journal_info = h;
590 return h;
591
592join_fail:
593 if (type & __TRANS_FREEZABLE)
594 sb_end_intwrite(root->fs_info->sb);
595 kmem_cache_free(btrfs_trans_handle_cachep, h);
596alloc_fail:
597 if (num_bytes)
598 btrfs_block_rsv_release(root, &root->fs_info->trans_block_rsv,
599 num_bytes);
600reserve_fail:
601 btrfs_qgroup_free_meta(root, qgroup_reserved);
602 return ERR_PTR(ret);
603}
604
605struct btrfs_trans_handle *btrfs_start_transaction(struct btrfs_root *root,
606 unsigned int num_items)
607{
608 return start_transaction(root, num_items, TRANS_START,
609 BTRFS_RESERVE_FLUSH_ALL);
610}
611struct btrfs_trans_handle *btrfs_start_transaction_fallback_global_rsv(
612 struct btrfs_root *root,
613 unsigned int num_items,
614 int min_factor)
615{
616 struct btrfs_trans_handle *trans;
617 u64 num_bytes;
618 int ret;
619
620 trans = btrfs_start_transaction(root, num_items);
621 if (!IS_ERR(trans) || PTR_ERR(trans) != -ENOSPC)
622 return trans;
623
624 trans = btrfs_start_transaction(root, 0);
625 if (IS_ERR(trans))
626 return trans;
627
628 num_bytes = btrfs_calc_trans_metadata_size(root, num_items);
629 ret = btrfs_cond_migrate_bytes(root->fs_info,
630 &root->fs_info->trans_block_rsv,
631 num_bytes,
632 min_factor);
633 if (ret) {
634 btrfs_end_transaction(trans, root);
635 return ERR_PTR(ret);
636 }
637
638 trans->block_rsv = &root->fs_info->trans_block_rsv;
639 trans->bytes_reserved = num_bytes;
640 trace_btrfs_space_reservation(root->fs_info, "transaction",
641 trans->transid, num_bytes, 1);
642
643 return trans;
644}
645
646struct btrfs_trans_handle *btrfs_start_transaction_lflush(
647 struct btrfs_root *root,
648 unsigned int num_items)
649{
650 return start_transaction(root, num_items, TRANS_START,
651 BTRFS_RESERVE_FLUSH_LIMIT);
652}
653
654struct btrfs_trans_handle *btrfs_join_transaction(struct btrfs_root *root)
655{
656 return start_transaction(root, 0, TRANS_JOIN,
657 BTRFS_RESERVE_NO_FLUSH);
658}
659
660struct btrfs_trans_handle *btrfs_join_transaction_nolock(struct btrfs_root *root)
661{
662 return start_transaction(root, 0, TRANS_JOIN_NOLOCK,
663 BTRFS_RESERVE_NO_FLUSH);
664}
665
666struct btrfs_trans_handle *btrfs_start_ioctl_transaction(struct btrfs_root *root)
667{
668 return start_transaction(root, 0, TRANS_USERSPACE,
669 BTRFS_RESERVE_NO_FLUSH);
670}
671
672/*
673 * btrfs_attach_transaction() - catch the running transaction
674 *
675 * It is used when we want to commit the current the transaction, but
676 * don't want to start a new one.
677 *
678 * Note: If this function return -ENOENT, it just means there is no
679 * running transaction. But it is possible that the inactive transaction
680 * is still in the memory, not fully on disk. If you hope there is no
681 * inactive transaction in the fs when -ENOENT is returned, you should
682 * invoke
683 * btrfs_attach_transaction_barrier()
684 */
685struct btrfs_trans_handle *btrfs_attach_transaction(struct btrfs_root *root)
686{
687 return start_transaction(root, 0, TRANS_ATTACH,
688 BTRFS_RESERVE_NO_FLUSH);
689}
690
691/*
692 * btrfs_attach_transaction_barrier() - catch the running transaction
693 *
694 * It is similar to the above function, the differentia is this one
695 * will wait for all the inactive transactions until they fully
696 * complete.
697 */
698struct btrfs_trans_handle *
699btrfs_attach_transaction_barrier(struct btrfs_root *root)
700{
701 struct btrfs_trans_handle *trans;
702
703 trans = start_transaction(root, 0, TRANS_ATTACH,
704 BTRFS_RESERVE_NO_FLUSH);
705 if (IS_ERR(trans) && PTR_ERR(trans) == -ENOENT)
706 btrfs_wait_for_commit(root, 0);
707
708 return trans;
709}
710
711/* wait for a transaction commit to be fully complete */
712static noinline void wait_for_commit(struct btrfs_root *root,
713 struct btrfs_transaction *commit)
714{
715 wait_event(commit->commit_wait, commit->state == TRANS_STATE_COMPLETED);
716}
717
718int btrfs_wait_for_commit(struct btrfs_root *root, u64 transid)
719{
720 struct btrfs_transaction *cur_trans = NULL, *t;
721 int ret = 0;
722
723 if (transid) {
724 if (transid <= root->fs_info->last_trans_committed)
725 goto out;
726
727 /* find specified transaction */
728 spin_lock(&root->fs_info->trans_lock);
729 list_for_each_entry(t, &root->fs_info->trans_list, list) {
730 if (t->transid == transid) {
731 cur_trans = t;
732 atomic_inc(&cur_trans->use_count);
733 ret = 0;
734 break;
735 }
736 if (t->transid > transid) {
737 ret = 0;
738 break;
739 }
740 }
741 spin_unlock(&root->fs_info->trans_lock);
742
743 /*
744 * The specified transaction doesn't exist, or we
745 * raced with btrfs_commit_transaction
746 */
747 if (!cur_trans) {
748 if (transid > root->fs_info->last_trans_committed)
749 ret = -EINVAL;
750 goto out;
751 }
752 } else {
753 /* find newest transaction that is committing | committed */
754 spin_lock(&root->fs_info->trans_lock);
755 list_for_each_entry_reverse(t, &root->fs_info->trans_list,
756 list) {
757 if (t->state >= TRANS_STATE_COMMIT_START) {
758 if (t->state == TRANS_STATE_COMPLETED)
759 break;
760 cur_trans = t;
761 atomic_inc(&cur_trans->use_count);
762 break;
763 }
764 }
765 spin_unlock(&root->fs_info->trans_lock);
766 if (!cur_trans)
767 goto out; /* nothing committing|committed */
768 }
769
770 wait_for_commit(root, cur_trans);
771 btrfs_put_transaction(cur_trans);
772out:
773 return ret;
774}
775
776void btrfs_throttle(struct btrfs_root *root)
777{
778 if (!atomic_read(&root->fs_info->open_ioctl_trans))
779 wait_current_trans(root);
780}
781
782static int should_end_transaction(struct btrfs_trans_handle *trans,
783 struct btrfs_root *root)
784{
785 if (root->fs_info->global_block_rsv.space_info->full &&
786 btrfs_check_space_for_delayed_refs(trans, root))
787 return 1;
788
789 return !!btrfs_block_rsv_check(root, &root->fs_info->global_block_rsv, 5);
790}
791
792int btrfs_should_end_transaction(struct btrfs_trans_handle *trans,
793 struct btrfs_root *root)
794{
795 struct btrfs_transaction *cur_trans = trans->transaction;
796 int updates;
797 int err;
798
799 smp_mb();
800 if (cur_trans->state >= TRANS_STATE_BLOCKED ||
801 cur_trans->delayed_refs.flushing)
802 return 1;
803
804 updates = trans->delayed_ref_updates;
805 trans->delayed_ref_updates = 0;
806 if (updates) {
807 err = btrfs_run_delayed_refs(trans, root, updates * 2);
808 if (err) /* Error code will also eval true */
809 return err;
810 }
811
812 return should_end_transaction(trans, root);
813}
814
815static int __btrfs_end_transaction(struct btrfs_trans_handle *trans,
816 struct btrfs_root *root, int throttle)
817{
818 struct btrfs_transaction *cur_trans = trans->transaction;
819 struct btrfs_fs_info *info = root->fs_info;
820 unsigned long cur = trans->delayed_ref_updates;
821 int lock = (trans->type != TRANS_JOIN_NOLOCK);
822 int err = 0;
823 int must_run_delayed_refs = 0;
824
825 if (trans->use_count > 1) {
826 trans->use_count--;
827 trans->block_rsv = trans->orig_rsv;
828 return 0;
829 }
830
831 btrfs_trans_release_metadata(trans, root);
832 trans->block_rsv = NULL;
833
834 if (!list_empty(&trans->new_bgs))
835 btrfs_create_pending_block_groups(trans, root);
836
837 trans->delayed_ref_updates = 0;
838 if (!trans->sync) {
839 must_run_delayed_refs =
840 btrfs_should_throttle_delayed_refs(trans, root);
841 cur = max_t(unsigned long, cur, 32);
842
843 /*
844 * don't make the caller wait if they are from a NOLOCK
845 * or ATTACH transaction, it will deadlock with commit
846 */
847 if (must_run_delayed_refs == 1 &&
848 (trans->type & (__TRANS_JOIN_NOLOCK | __TRANS_ATTACH)))
849 must_run_delayed_refs = 2;
850 }
851
852 btrfs_trans_release_metadata(trans, root);
853 trans->block_rsv = NULL;
854
855 if (!list_empty(&trans->new_bgs))
856 btrfs_create_pending_block_groups(trans, root);
857
858 btrfs_trans_release_chunk_metadata(trans);
859
860 if (lock && !atomic_read(&root->fs_info->open_ioctl_trans) &&
861 should_end_transaction(trans, root) &&
862 ACCESS_ONCE(cur_trans->state) == TRANS_STATE_RUNNING) {
863 spin_lock(&info->trans_lock);
864 if (cur_trans->state == TRANS_STATE_RUNNING)
865 cur_trans->state = TRANS_STATE_BLOCKED;
866 spin_unlock(&info->trans_lock);
867 }
868
869 if (lock && ACCESS_ONCE(cur_trans->state) == TRANS_STATE_BLOCKED) {
870 if (throttle)
871 return btrfs_commit_transaction(trans, root);
872 else
873 wake_up_process(info->transaction_kthread);
874 }
875
876 if (trans->type & __TRANS_FREEZABLE)
877 sb_end_intwrite(root->fs_info->sb);
878
879 WARN_ON(cur_trans != info->running_transaction);
880 WARN_ON(atomic_read(&cur_trans->num_writers) < 1);
881 atomic_dec(&cur_trans->num_writers);
882 extwriter_counter_dec(cur_trans, trans->type);
883
884 /*
885 * Make sure counter is updated before we wake up waiters.
886 */
887 smp_mb();
888 if (waitqueue_active(&cur_trans->writer_wait))
889 wake_up(&cur_trans->writer_wait);
890 btrfs_put_transaction(cur_trans);
891
892 if (current->journal_info == trans)
893 current->journal_info = NULL;
894
895 if (throttle)
896 btrfs_run_delayed_iputs(root);
897
898 if (trans->aborted ||
899 test_bit(BTRFS_FS_STATE_ERROR, &root->fs_info->fs_state)) {
900 wake_up_process(info->transaction_kthread);
901 err = -EIO;
902 }
903 assert_qgroups_uptodate(trans);
904
905 kmem_cache_free(btrfs_trans_handle_cachep, trans);
906 if (must_run_delayed_refs) {
907 btrfs_async_run_delayed_refs(root, cur,
908 must_run_delayed_refs == 1);
909 }
910 return err;
911}
912
913int btrfs_end_transaction(struct btrfs_trans_handle *trans,
914 struct btrfs_root *root)
915{
916 return __btrfs_end_transaction(trans, root, 0);
917}
918
919int btrfs_end_transaction_throttle(struct btrfs_trans_handle *trans,
920 struct btrfs_root *root)
921{
922 return __btrfs_end_transaction(trans, root, 1);
923}
924
925/*
926 * when btree blocks are allocated, they have some corresponding bits set for
927 * them in one of two extent_io trees. This is used to make sure all of
928 * those extents are sent to disk but does not wait on them
929 */
930int btrfs_write_marked_extents(struct btrfs_root *root,
931 struct extent_io_tree *dirty_pages, int mark)
932{
933 int err = 0;
934 int werr = 0;
935 struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
936 struct extent_state *cached_state = NULL;
937 u64 start = 0;
938 u64 end;
939
940 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
941 mark, &cached_state)) {
942 bool wait_writeback = false;
943
944 err = convert_extent_bit(dirty_pages, start, end,
945 EXTENT_NEED_WAIT,
946 mark, &cached_state, GFP_NOFS);
947 /*
948 * convert_extent_bit can return -ENOMEM, which is most of the
949 * time a temporary error. So when it happens, ignore the error
950 * and wait for writeback of this range to finish - because we
951 * failed to set the bit EXTENT_NEED_WAIT for the range, a call
952 * to btrfs_wait_marked_extents() would not know that writeback
953 * for this range started and therefore wouldn't wait for it to
954 * finish - we don't want to commit a superblock that points to
955 * btree nodes/leafs for which writeback hasn't finished yet
956 * (and without errors).
957 * We cleanup any entries left in the io tree when committing
958 * the transaction (through clear_btree_io_tree()).
959 */
960 if (err == -ENOMEM) {
961 err = 0;
962 wait_writeback = true;
963 }
964 if (!err)
965 err = filemap_fdatawrite_range(mapping, start, end);
966 if (err)
967 werr = err;
968 else if (wait_writeback)
969 werr = filemap_fdatawait_range(mapping, start, end);
970 free_extent_state(cached_state);
971 cached_state = NULL;
972 cond_resched();
973 start = end + 1;
974 }
975 return werr;
976}
977
978/*
979 * when btree blocks are allocated, they have some corresponding bits set for
980 * them in one of two extent_io trees. This is used to make sure all of
981 * those extents are on disk for transaction or log commit. We wait
982 * on all the pages and clear them from the dirty pages state tree
983 */
984int btrfs_wait_marked_extents(struct btrfs_root *root,
985 struct extent_io_tree *dirty_pages, int mark)
986{
987 int err = 0;
988 int werr = 0;
989 struct address_space *mapping = root->fs_info->btree_inode->i_mapping;
990 struct extent_state *cached_state = NULL;
991 u64 start = 0;
992 u64 end;
993 struct btrfs_inode *btree_ino = BTRFS_I(root->fs_info->btree_inode);
994 bool errors = false;
995
996 while (!find_first_extent_bit(dirty_pages, start, &start, &end,
997 EXTENT_NEED_WAIT, &cached_state)) {
998 /*
999 * Ignore -ENOMEM errors returned by clear_extent_bit().
1000 * When committing the transaction, we'll remove any entries
1001 * left in the io tree. For a log commit, we don't remove them
1002 * after committing the log because the tree can be accessed
1003 * concurrently - we do it only at transaction commit time when
1004 * it's safe to do it (through clear_btree_io_tree()).
1005 */
1006 err = clear_extent_bit(dirty_pages, start, end,
1007 EXTENT_NEED_WAIT,
1008 0, 0, &cached_state, GFP_NOFS);
1009 if (err == -ENOMEM)
1010 err = 0;
1011 if (!err)
1012 err = filemap_fdatawait_range(mapping, start, end);
1013 if (err)
1014 werr = err;
1015 free_extent_state(cached_state);
1016 cached_state = NULL;
1017 cond_resched();
1018 start = end + 1;
1019 }
1020 if (err)
1021 werr = err;
1022
1023 if (root->root_key.objectid == BTRFS_TREE_LOG_OBJECTID) {
1024 if ((mark & EXTENT_DIRTY) &&
1025 test_and_clear_bit(BTRFS_INODE_BTREE_LOG1_ERR,
1026 &btree_ino->runtime_flags))
1027 errors = true;
1028
1029 if ((mark & EXTENT_NEW) &&
1030 test_and_clear_bit(BTRFS_INODE_BTREE_LOG2_ERR,
1031 &btree_ino->runtime_flags))
1032 errors = true;
1033 } else {
1034 if (test_and_clear_bit(BTRFS_INODE_BTREE_ERR,
1035 &btree_ino->runtime_flags))
1036 errors = true;
1037 }
1038
1039 if (errors && !werr)
1040 werr = -EIO;
1041
1042 return werr;
1043}
1044
1045/*
1046 * when btree blocks are allocated, they have some corresponding bits set for
1047 * them in one of two extent_io trees. This is used to make sure all of
1048 * those extents are on disk for transaction or log commit
1049 */
1050static int btrfs_write_and_wait_marked_extents(struct btrfs_root *root,
1051 struct extent_io_tree *dirty_pages, int mark)
1052{
1053 int ret;
1054 int ret2;
1055 struct blk_plug plug;
1056
1057 blk_start_plug(&plug);
1058 ret = btrfs_write_marked_extents(root, dirty_pages, mark);
1059 blk_finish_plug(&plug);
1060 ret2 = btrfs_wait_marked_extents(root, dirty_pages, mark);
1061
1062 if (ret)
1063 return ret;
1064 if (ret2)
1065 return ret2;
1066 return 0;
1067}
1068
1069static int btrfs_write_and_wait_transaction(struct btrfs_trans_handle *trans,
1070 struct btrfs_root *root)
1071{
1072 int ret;
1073
1074 ret = btrfs_write_and_wait_marked_extents(root,
1075 &trans->transaction->dirty_pages,
1076 EXTENT_DIRTY);
1077 clear_btree_io_tree(&trans->transaction->dirty_pages);
1078
1079 return ret;
1080}
1081
1082/*
1083 * this is used to update the root pointer in the tree of tree roots.
1084 *
1085 * But, in the case of the extent allocation tree, updating the root
1086 * pointer may allocate blocks which may change the root of the extent
1087 * allocation tree.
1088 *
1089 * So, this loops and repeats and makes sure the cowonly root didn't
1090 * change while the root pointer was being updated in the metadata.
1091 */
1092static int update_cowonly_root(struct btrfs_trans_handle *trans,
1093 struct btrfs_root *root)
1094{
1095 int ret;
1096 u64 old_root_bytenr;
1097 u64 old_root_used;
1098 struct btrfs_root *tree_root = root->fs_info->tree_root;
1099
1100 old_root_used = btrfs_root_used(&root->root_item);
1101
1102 while (1) {
1103 old_root_bytenr = btrfs_root_bytenr(&root->root_item);
1104 if (old_root_bytenr == root->node->start &&
1105 old_root_used == btrfs_root_used(&root->root_item))
1106 break;
1107
1108 btrfs_set_root_node(&root->root_item, root->node);
1109 ret = btrfs_update_root(trans, tree_root,
1110 &root->root_key,
1111 &root->root_item);
1112 if (ret)
1113 return ret;
1114
1115 old_root_used = btrfs_root_used(&root->root_item);
1116 }
1117
1118 return 0;
1119}
1120
1121/*
1122 * update all the cowonly tree roots on disk
1123 *
1124 * The error handling in this function may not be obvious. Any of the
1125 * failures will cause the file system to go offline. We still need
1126 * to clean up the delayed refs.
1127 */
1128static noinline int commit_cowonly_roots(struct btrfs_trans_handle *trans,
1129 struct btrfs_root *root)
1130{
1131 struct btrfs_fs_info *fs_info = root->fs_info;
1132 struct list_head *dirty_bgs = &trans->transaction->dirty_bgs;
1133 struct list_head *io_bgs = &trans->transaction->io_bgs;
1134 struct list_head *next;
1135 struct extent_buffer *eb;
1136 int ret;
1137
1138 eb = btrfs_lock_root_node(fs_info->tree_root);
1139 ret = btrfs_cow_block(trans, fs_info->tree_root, eb, NULL,
1140 0, &eb);
1141 btrfs_tree_unlock(eb);
1142 free_extent_buffer(eb);
1143
1144 if (ret)
1145 return ret;
1146
1147 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1148 if (ret)
1149 return ret;
1150
1151 ret = btrfs_run_dev_stats(trans, root->fs_info);
1152 if (ret)
1153 return ret;
1154 ret = btrfs_run_dev_replace(trans, root->fs_info);
1155 if (ret)
1156 return ret;
1157 ret = btrfs_run_qgroups(trans, root->fs_info);
1158 if (ret)
1159 return ret;
1160
1161 ret = btrfs_setup_space_cache(trans, root);
1162 if (ret)
1163 return ret;
1164
1165 /* run_qgroups might have added some more refs */
1166 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1167 if (ret)
1168 return ret;
1169again:
1170 while (!list_empty(&fs_info->dirty_cowonly_roots)) {
1171 next = fs_info->dirty_cowonly_roots.next;
1172 list_del_init(next);
1173 root = list_entry(next, struct btrfs_root, dirty_list);
1174 clear_bit(BTRFS_ROOT_DIRTY, &root->state);
1175
1176 if (root != fs_info->extent_root)
1177 list_add_tail(&root->dirty_list,
1178 &trans->transaction->switch_commits);
1179 ret = update_cowonly_root(trans, root);
1180 if (ret)
1181 return ret;
1182 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1183 if (ret)
1184 return ret;
1185 }
1186
1187 while (!list_empty(dirty_bgs) || !list_empty(io_bgs)) {
1188 ret = btrfs_write_dirty_block_groups(trans, root);
1189 if (ret)
1190 return ret;
1191 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1192 if (ret)
1193 return ret;
1194 }
1195
1196 if (!list_empty(&fs_info->dirty_cowonly_roots))
1197 goto again;
1198
1199 list_add_tail(&fs_info->extent_root->dirty_list,
1200 &trans->transaction->switch_commits);
1201 btrfs_after_dev_replace_commit(fs_info);
1202
1203 return 0;
1204}
1205
1206/*
1207 * dead roots are old snapshots that need to be deleted. This allocates
1208 * a dirty root struct and adds it into the list of dead roots that need to
1209 * be deleted
1210 */
1211void btrfs_add_dead_root(struct btrfs_root *root)
1212{
1213 spin_lock(&root->fs_info->trans_lock);
1214 if (list_empty(&root->root_list))
1215 list_add_tail(&root->root_list, &root->fs_info->dead_roots);
1216 spin_unlock(&root->fs_info->trans_lock);
1217}
1218
1219/*
1220 * update all the cowonly tree roots on disk
1221 */
1222static noinline int commit_fs_roots(struct btrfs_trans_handle *trans,
1223 struct btrfs_root *root)
1224{
1225 struct btrfs_root *gang[8];
1226 struct btrfs_fs_info *fs_info = root->fs_info;
1227 int i;
1228 int ret;
1229 int err = 0;
1230
1231 spin_lock(&fs_info->fs_roots_radix_lock);
1232 while (1) {
1233 ret = radix_tree_gang_lookup_tag(&fs_info->fs_roots_radix,
1234 (void **)gang, 0,
1235 ARRAY_SIZE(gang),
1236 BTRFS_ROOT_TRANS_TAG);
1237 if (ret == 0)
1238 break;
1239 for (i = 0; i < ret; i++) {
1240 root = gang[i];
1241 radix_tree_tag_clear(&fs_info->fs_roots_radix,
1242 (unsigned long)root->root_key.objectid,
1243 BTRFS_ROOT_TRANS_TAG);
1244 spin_unlock(&fs_info->fs_roots_radix_lock);
1245
1246 btrfs_free_log(trans, root);
1247 btrfs_update_reloc_root(trans, root);
1248 btrfs_orphan_commit_root(trans, root);
1249
1250 btrfs_save_ino_cache(root, trans);
1251
1252 /* see comments in should_cow_block() */
1253 clear_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1254 smp_mb__after_atomic();
1255
1256 if (root->commit_root != root->node) {
1257 list_add_tail(&root->dirty_list,
1258 &trans->transaction->switch_commits);
1259 btrfs_set_root_node(&root->root_item,
1260 root->node);
1261 }
1262
1263 err = btrfs_update_root(trans, fs_info->tree_root,
1264 &root->root_key,
1265 &root->root_item);
1266 spin_lock(&fs_info->fs_roots_radix_lock);
1267 if (err)
1268 break;
1269 btrfs_qgroup_free_meta_all(root);
1270 }
1271 }
1272 spin_unlock(&fs_info->fs_roots_radix_lock);
1273 return err;
1274}
1275
1276/*
1277 * defrag a given btree.
1278 * Every leaf in the btree is read and defragged.
1279 */
1280int btrfs_defrag_root(struct btrfs_root *root)
1281{
1282 struct btrfs_fs_info *info = root->fs_info;
1283 struct btrfs_trans_handle *trans;
1284 int ret;
1285
1286 if (test_and_set_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state))
1287 return 0;
1288
1289 while (1) {
1290 trans = btrfs_start_transaction(root, 0);
1291 if (IS_ERR(trans))
1292 return PTR_ERR(trans);
1293
1294 ret = btrfs_defrag_leaves(trans, root);
1295
1296 btrfs_end_transaction(trans, root);
1297 btrfs_btree_balance_dirty(info->tree_root);
1298 cond_resched();
1299
1300 if (btrfs_fs_closing(root->fs_info) || ret != -EAGAIN)
1301 break;
1302
1303 if (btrfs_defrag_cancelled(root->fs_info)) {
1304 pr_debug("BTRFS: defrag_root cancelled\n");
1305 ret = -EAGAIN;
1306 break;
1307 }
1308 }
1309 clear_bit(BTRFS_ROOT_DEFRAG_RUNNING, &root->state);
1310 return ret;
1311}
1312
1313/*
1314 * new snapshots need to be created at a very specific time in the
1315 * transaction commit. This does the actual creation.
1316 *
1317 * Note:
1318 * If the error which may affect the commitment of the current transaction
1319 * happens, we should return the error number. If the error which just affect
1320 * the creation of the pending snapshots, just return 0.
1321 */
1322static noinline int create_pending_snapshot(struct btrfs_trans_handle *trans,
1323 struct btrfs_fs_info *fs_info,
1324 struct btrfs_pending_snapshot *pending)
1325{
1326 struct btrfs_key key;
1327 struct btrfs_root_item *new_root_item;
1328 struct btrfs_root *tree_root = fs_info->tree_root;
1329 struct btrfs_root *root = pending->root;
1330 struct btrfs_root *parent_root;
1331 struct btrfs_block_rsv *rsv;
1332 struct inode *parent_inode;
1333 struct btrfs_path *path;
1334 struct btrfs_dir_item *dir_item;
1335 struct dentry *dentry;
1336 struct extent_buffer *tmp;
1337 struct extent_buffer *old;
1338 struct timespec cur_time;
1339 int ret = 0;
1340 u64 to_reserve = 0;
1341 u64 index = 0;
1342 u64 objectid;
1343 u64 root_flags;
1344 uuid_le new_uuid;
1345
1346 ASSERT(pending->path);
1347 path = pending->path;
1348
1349 ASSERT(pending->root_item);
1350 new_root_item = pending->root_item;
1351
1352 pending->error = btrfs_find_free_objectid(tree_root, &objectid);
1353 if (pending->error)
1354 goto no_free_objectid;
1355
1356 /*
1357 * Make qgroup to skip current new snapshot's qgroupid, as it is
1358 * accounted by later btrfs_qgroup_inherit().
1359 */
1360 btrfs_set_skip_qgroup(trans, objectid);
1361
1362 btrfs_reloc_pre_snapshot(pending, &to_reserve);
1363
1364 if (to_reserve > 0) {
1365 pending->error = btrfs_block_rsv_add(root,
1366 &pending->block_rsv,
1367 to_reserve,
1368 BTRFS_RESERVE_NO_FLUSH);
1369 if (pending->error)
1370 goto clear_skip_qgroup;
1371 }
1372
1373 key.objectid = objectid;
1374 key.offset = (u64)-1;
1375 key.type = BTRFS_ROOT_ITEM_KEY;
1376
1377 rsv = trans->block_rsv;
1378 trans->block_rsv = &pending->block_rsv;
1379 trans->bytes_reserved = trans->block_rsv->reserved;
1380 trace_btrfs_space_reservation(root->fs_info, "transaction",
1381 trans->transid,
1382 trans->bytes_reserved, 1);
1383 dentry = pending->dentry;
1384 parent_inode = pending->dir;
1385 parent_root = BTRFS_I(parent_inode)->root;
1386 record_root_in_trans(trans, parent_root);
1387
1388 cur_time = current_fs_time(parent_inode->i_sb);
1389
1390 /*
1391 * insert the directory item
1392 */
1393 ret = btrfs_set_inode_index(parent_inode, &index);
1394 BUG_ON(ret); /* -ENOMEM */
1395
1396 /* check if there is a file/dir which has the same name. */
1397 dir_item = btrfs_lookup_dir_item(NULL, parent_root, path,
1398 btrfs_ino(parent_inode),
1399 dentry->d_name.name,
1400 dentry->d_name.len, 0);
1401 if (dir_item != NULL && !IS_ERR(dir_item)) {
1402 pending->error = -EEXIST;
1403 goto dir_item_existed;
1404 } else if (IS_ERR(dir_item)) {
1405 ret = PTR_ERR(dir_item);
1406 btrfs_abort_transaction(trans, root, ret);
1407 goto fail;
1408 }
1409 btrfs_release_path(path);
1410
1411 /*
1412 * pull in the delayed directory update
1413 * and the delayed inode item
1414 * otherwise we corrupt the FS during
1415 * snapshot
1416 */
1417 ret = btrfs_run_delayed_items(trans, root);
1418 if (ret) { /* Transaction aborted */
1419 btrfs_abort_transaction(trans, root, ret);
1420 goto fail;
1421 }
1422
1423 record_root_in_trans(trans, root);
1424 btrfs_set_root_last_snapshot(&root->root_item, trans->transid);
1425 memcpy(new_root_item, &root->root_item, sizeof(*new_root_item));
1426 btrfs_check_and_init_root_item(new_root_item);
1427
1428 root_flags = btrfs_root_flags(new_root_item);
1429 if (pending->readonly)
1430 root_flags |= BTRFS_ROOT_SUBVOL_RDONLY;
1431 else
1432 root_flags &= ~BTRFS_ROOT_SUBVOL_RDONLY;
1433 btrfs_set_root_flags(new_root_item, root_flags);
1434
1435 btrfs_set_root_generation_v2(new_root_item,
1436 trans->transid);
1437 uuid_le_gen(&new_uuid);
1438 memcpy(new_root_item->uuid, new_uuid.b, BTRFS_UUID_SIZE);
1439 memcpy(new_root_item->parent_uuid, root->root_item.uuid,
1440 BTRFS_UUID_SIZE);
1441 if (!(root_flags & BTRFS_ROOT_SUBVOL_RDONLY)) {
1442 memset(new_root_item->received_uuid, 0,
1443 sizeof(new_root_item->received_uuid));
1444 memset(&new_root_item->stime, 0, sizeof(new_root_item->stime));
1445 memset(&new_root_item->rtime, 0, sizeof(new_root_item->rtime));
1446 btrfs_set_root_stransid(new_root_item, 0);
1447 btrfs_set_root_rtransid(new_root_item, 0);
1448 }
1449 btrfs_set_stack_timespec_sec(&new_root_item->otime, cur_time.tv_sec);
1450 btrfs_set_stack_timespec_nsec(&new_root_item->otime, cur_time.tv_nsec);
1451 btrfs_set_root_otransid(new_root_item, trans->transid);
1452
1453 old = btrfs_lock_root_node(root);
1454 ret = btrfs_cow_block(trans, root, old, NULL, 0, &old);
1455 if (ret) {
1456 btrfs_tree_unlock(old);
1457 free_extent_buffer(old);
1458 btrfs_abort_transaction(trans, root, ret);
1459 goto fail;
1460 }
1461
1462 btrfs_set_lock_blocking(old);
1463
1464 ret = btrfs_copy_root(trans, root, old, &tmp, objectid);
1465 /* clean up in any case */
1466 btrfs_tree_unlock(old);
1467 free_extent_buffer(old);
1468 if (ret) {
1469 btrfs_abort_transaction(trans, root, ret);
1470 goto fail;
1471 }
1472 /* see comments in should_cow_block() */
1473 set_bit(BTRFS_ROOT_FORCE_COW, &root->state);
1474 smp_wmb();
1475
1476 btrfs_set_root_node(new_root_item, tmp);
1477 /* record when the snapshot was created in key.offset */
1478 key.offset = trans->transid;
1479 ret = btrfs_insert_root(trans, tree_root, &key, new_root_item);
1480 btrfs_tree_unlock(tmp);
1481 free_extent_buffer(tmp);
1482 if (ret) {
1483 btrfs_abort_transaction(trans, root, ret);
1484 goto fail;
1485 }
1486
1487 /*
1488 * insert root back/forward references
1489 */
1490 ret = btrfs_add_root_ref(trans, tree_root, objectid,
1491 parent_root->root_key.objectid,
1492 btrfs_ino(parent_inode), index,
1493 dentry->d_name.name, dentry->d_name.len);
1494 if (ret) {
1495 btrfs_abort_transaction(trans, root, ret);
1496 goto fail;
1497 }
1498
1499 key.offset = (u64)-1;
1500 pending->snap = btrfs_read_fs_root_no_name(root->fs_info, &key);
1501 if (IS_ERR(pending->snap)) {
1502 ret = PTR_ERR(pending->snap);
1503 btrfs_abort_transaction(trans, root, ret);
1504 goto fail;
1505 }
1506
1507 ret = btrfs_reloc_post_snapshot(trans, pending);
1508 if (ret) {
1509 btrfs_abort_transaction(trans, root, ret);
1510 goto fail;
1511 }
1512
1513 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1514 if (ret) {
1515 btrfs_abort_transaction(trans, root, ret);
1516 goto fail;
1517 }
1518
1519 ret = btrfs_insert_dir_item(trans, parent_root,
1520 dentry->d_name.name, dentry->d_name.len,
1521 parent_inode, &key,
1522 BTRFS_FT_DIR, index);
1523 /* We have check then name at the beginning, so it is impossible. */
1524 BUG_ON(ret == -EEXIST || ret == -EOVERFLOW);
1525 if (ret) {
1526 btrfs_abort_transaction(trans, root, ret);
1527 goto fail;
1528 }
1529
1530 btrfs_i_size_write(parent_inode, parent_inode->i_size +
1531 dentry->d_name.len * 2);
1532 parent_inode->i_mtime = parent_inode->i_ctime =
1533 current_fs_time(parent_inode->i_sb);
1534 ret = btrfs_update_inode_fallback(trans, parent_root, parent_inode);
1535 if (ret) {
1536 btrfs_abort_transaction(trans, root, ret);
1537 goto fail;
1538 }
1539 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root, new_uuid.b,
1540 BTRFS_UUID_KEY_SUBVOL, objectid);
1541 if (ret) {
1542 btrfs_abort_transaction(trans, root, ret);
1543 goto fail;
1544 }
1545 if (!btrfs_is_empty_uuid(new_root_item->received_uuid)) {
1546 ret = btrfs_uuid_tree_add(trans, fs_info->uuid_root,
1547 new_root_item->received_uuid,
1548 BTRFS_UUID_KEY_RECEIVED_SUBVOL,
1549 objectid);
1550 if (ret && ret != -EEXIST) {
1551 btrfs_abort_transaction(trans, root, ret);
1552 goto fail;
1553 }
1554 }
1555
1556 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
1557 if (ret) {
1558 btrfs_abort_transaction(trans, root, ret);
1559 goto fail;
1560 }
1561
1562 /*
1563 * account qgroup counters before qgroup_inherit()
1564 */
1565 ret = btrfs_qgroup_prepare_account_extents(trans, fs_info);
1566 if (ret)
1567 goto fail;
1568 ret = btrfs_qgroup_account_extents(trans, fs_info);
1569 if (ret)
1570 goto fail;
1571 ret = btrfs_qgroup_inherit(trans, fs_info,
1572 root->root_key.objectid,
1573 objectid, pending->inherit);
1574 if (ret) {
1575 btrfs_abort_transaction(trans, root, ret);
1576 goto fail;
1577 }
1578
1579fail:
1580 pending->error = ret;
1581dir_item_existed:
1582 trans->block_rsv = rsv;
1583 trans->bytes_reserved = 0;
1584clear_skip_qgroup:
1585 btrfs_clear_skip_qgroup(trans);
1586no_free_objectid:
1587 kfree(new_root_item);
1588 pending->root_item = NULL;
1589 btrfs_free_path(path);
1590 pending->path = NULL;
1591
1592 return ret;
1593}
1594
1595/*
1596 * create all the snapshots we've scheduled for creation
1597 */
1598static noinline int create_pending_snapshots(struct btrfs_trans_handle *trans,
1599 struct btrfs_fs_info *fs_info)
1600{
1601 struct btrfs_pending_snapshot *pending, *next;
1602 struct list_head *head = &trans->transaction->pending_snapshots;
1603 int ret = 0;
1604
1605 list_for_each_entry_safe(pending, next, head, list) {
1606 list_del(&pending->list);
1607 ret = create_pending_snapshot(trans, fs_info, pending);
1608 if (ret)
1609 break;
1610 }
1611 return ret;
1612}
1613
1614static void update_super_roots(struct btrfs_root *root)
1615{
1616 struct btrfs_root_item *root_item;
1617 struct btrfs_super_block *super;
1618
1619 super = root->fs_info->super_copy;
1620
1621 root_item = &root->fs_info->chunk_root->root_item;
1622 super->chunk_root = root_item->bytenr;
1623 super->chunk_root_generation = root_item->generation;
1624 super->chunk_root_level = root_item->level;
1625
1626 root_item = &root->fs_info->tree_root->root_item;
1627 super->root = root_item->bytenr;
1628 super->generation = root_item->generation;
1629 super->root_level = root_item->level;
1630 if (btrfs_test_opt(root, SPACE_CACHE))
1631 super->cache_generation = root_item->generation;
1632 if (root->fs_info->update_uuid_tree_gen)
1633 super->uuid_tree_generation = root_item->generation;
1634}
1635
1636int btrfs_transaction_in_commit(struct btrfs_fs_info *info)
1637{
1638 struct btrfs_transaction *trans;
1639 int ret = 0;
1640
1641 spin_lock(&info->trans_lock);
1642 trans = info->running_transaction;
1643 if (trans)
1644 ret = (trans->state >= TRANS_STATE_COMMIT_START);
1645 spin_unlock(&info->trans_lock);
1646 return ret;
1647}
1648
1649int btrfs_transaction_blocked(struct btrfs_fs_info *info)
1650{
1651 struct btrfs_transaction *trans;
1652 int ret = 0;
1653
1654 spin_lock(&info->trans_lock);
1655 trans = info->running_transaction;
1656 if (trans)
1657 ret = is_transaction_blocked(trans);
1658 spin_unlock(&info->trans_lock);
1659 return ret;
1660}
1661
1662/*
1663 * wait for the current transaction commit to start and block subsequent
1664 * transaction joins
1665 */
1666static void wait_current_trans_commit_start(struct btrfs_root *root,
1667 struct btrfs_transaction *trans)
1668{
1669 wait_event(root->fs_info->transaction_blocked_wait,
1670 trans->state >= TRANS_STATE_COMMIT_START ||
1671 trans->aborted);
1672}
1673
1674/*
1675 * wait for the current transaction to start and then become unblocked.
1676 * caller holds ref.
1677 */
1678static void wait_current_trans_commit_start_and_unblock(struct btrfs_root *root,
1679 struct btrfs_transaction *trans)
1680{
1681 wait_event(root->fs_info->transaction_wait,
1682 trans->state >= TRANS_STATE_UNBLOCKED ||
1683 trans->aborted);
1684}
1685
1686/*
1687 * commit transactions asynchronously. once btrfs_commit_transaction_async
1688 * returns, any subsequent transaction will not be allowed to join.
1689 */
1690struct btrfs_async_commit {
1691 struct btrfs_trans_handle *newtrans;
1692 struct btrfs_root *root;
1693 struct work_struct work;
1694};
1695
1696static void do_async_commit(struct work_struct *work)
1697{
1698 struct btrfs_async_commit *ac =
1699 container_of(work, struct btrfs_async_commit, work);
1700
1701 /*
1702 * We've got freeze protection passed with the transaction.
1703 * Tell lockdep about it.
1704 */
1705 if (ac->newtrans->type & __TRANS_FREEZABLE)
1706 __sb_writers_acquired(ac->root->fs_info->sb, SB_FREEZE_FS);
1707
1708 current->journal_info = ac->newtrans;
1709
1710 btrfs_commit_transaction(ac->newtrans, ac->root);
1711 kfree(ac);
1712}
1713
1714int btrfs_commit_transaction_async(struct btrfs_trans_handle *trans,
1715 struct btrfs_root *root,
1716 int wait_for_unblock)
1717{
1718 struct btrfs_async_commit *ac;
1719 struct btrfs_transaction *cur_trans;
1720
1721 ac = kmalloc(sizeof(*ac), GFP_NOFS);
1722 if (!ac)
1723 return -ENOMEM;
1724
1725 INIT_WORK(&ac->work, do_async_commit);
1726 ac->root = root;
1727 ac->newtrans = btrfs_join_transaction(root);
1728 if (IS_ERR(ac->newtrans)) {
1729 int err = PTR_ERR(ac->newtrans);
1730 kfree(ac);
1731 return err;
1732 }
1733
1734 /* take transaction reference */
1735 cur_trans = trans->transaction;
1736 atomic_inc(&cur_trans->use_count);
1737
1738 btrfs_end_transaction(trans, root);
1739
1740 /*
1741 * Tell lockdep we've released the freeze rwsem, since the
1742 * async commit thread will be the one to unlock it.
1743 */
1744 if (ac->newtrans->type & __TRANS_FREEZABLE)
1745 __sb_writers_release(root->fs_info->sb, SB_FREEZE_FS);
1746
1747 schedule_work(&ac->work);
1748
1749 /* wait for transaction to start and unblock */
1750 if (wait_for_unblock)
1751 wait_current_trans_commit_start_and_unblock(root, cur_trans);
1752 else
1753 wait_current_trans_commit_start(root, cur_trans);
1754
1755 if (current->journal_info == trans)
1756 current->journal_info = NULL;
1757
1758 btrfs_put_transaction(cur_trans);
1759 return 0;
1760}
1761
1762
1763static void cleanup_transaction(struct btrfs_trans_handle *trans,
1764 struct btrfs_root *root, int err)
1765{
1766 struct btrfs_transaction *cur_trans = trans->transaction;
1767 DEFINE_WAIT(wait);
1768
1769 WARN_ON(trans->use_count > 1);
1770
1771 btrfs_abort_transaction(trans, root, err);
1772
1773 spin_lock(&root->fs_info->trans_lock);
1774
1775 /*
1776 * If the transaction is removed from the list, it means this
1777 * transaction has been committed successfully, so it is impossible
1778 * to call the cleanup function.
1779 */
1780 BUG_ON(list_empty(&cur_trans->list));
1781
1782 list_del_init(&cur_trans->list);
1783 if (cur_trans == root->fs_info->running_transaction) {
1784 cur_trans->state = TRANS_STATE_COMMIT_DOING;
1785 spin_unlock(&root->fs_info->trans_lock);
1786 wait_event(cur_trans->writer_wait,
1787 atomic_read(&cur_trans->num_writers) == 1);
1788
1789 spin_lock(&root->fs_info->trans_lock);
1790 }
1791 spin_unlock(&root->fs_info->trans_lock);
1792
1793 btrfs_cleanup_one_transaction(trans->transaction, root);
1794
1795 spin_lock(&root->fs_info->trans_lock);
1796 if (cur_trans == root->fs_info->running_transaction)
1797 root->fs_info->running_transaction = NULL;
1798 spin_unlock(&root->fs_info->trans_lock);
1799
1800 if (trans->type & __TRANS_FREEZABLE)
1801 sb_end_intwrite(root->fs_info->sb);
1802 btrfs_put_transaction(cur_trans);
1803 btrfs_put_transaction(cur_trans);
1804
1805 trace_btrfs_transaction_commit(root);
1806
1807 if (current->journal_info == trans)
1808 current->journal_info = NULL;
1809 btrfs_scrub_cancel(root->fs_info);
1810
1811 kmem_cache_free(btrfs_trans_handle_cachep, trans);
1812}
1813
1814static inline int btrfs_start_delalloc_flush(struct btrfs_fs_info *fs_info)
1815{
1816 if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT))
1817 return btrfs_start_delalloc_roots(fs_info, 1, -1);
1818 return 0;
1819}
1820
1821static inline void btrfs_wait_delalloc_flush(struct btrfs_fs_info *fs_info)
1822{
1823 if (btrfs_test_opt(fs_info->tree_root, FLUSHONCOMMIT))
1824 btrfs_wait_ordered_roots(fs_info, -1);
1825}
1826
1827static inline void
1828btrfs_wait_pending_ordered(struct btrfs_transaction *cur_trans)
1829{
1830 wait_event(cur_trans->pending_wait,
1831 atomic_read(&cur_trans->pending_ordered) == 0);
1832}
1833
1834int btrfs_commit_transaction(struct btrfs_trans_handle *trans,
1835 struct btrfs_root *root)
1836{
1837 struct btrfs_transaction *cur_trans = trans->transaction;
1838 struct btrfs_transaction *prev_trans = NULL;
1839 struct btrfs_inode *btree_ino = BTRFS_I(root->fs_info->btree_inode);
1840 int ret;
1841
1842 /* Stop the commit early if ->aborted is set */
1843 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1844 ret = cur_trans->aborted;
1845 btrfs_end_transaction(trans, root);
1846 return ret;
1847 }
1848
1849 /* make a pass through all the delayed refs we have so far
1850 * any runnings procs may add more while we are here
1851 */
1852 ret = btrfs_run_delayed_refs(trans, root, 0);
1853 if (ret) {
1854 btrfs_end_transaction(trans, root);
1855 return ret;
1856 }
1857
1858 btrfs_trans_release_metadata(trans, root);
1859 trans->block_rsv = NULL;
1860
1861 cur_trans = trans->transaction;
1862
1863 /*
1864 * set the flushing flag so procs in this transaction have to
1865 * start sending their work down.
1866 */
1867 cur_trans->delayed_refs.flushing = 1;
1868 smp_wmb();
1869
1870 if (!list_empty(&trans->new_bgs))
1871 btrfs_create_pending_block_groups(trans, root);
1872
1873 ret = btrfs_run_delayed_refs(trans, root, 0);
1874 if (ret) {
1875 btrfs_end_transaction(trans, root);
1876 return ret;
1877 }
1878
1879 if (!test_bit(BTRFS_TRANS_DIRTY_BG_RUN, &cur_trans->flags)) {
1880 int run_it = 0;
1881
1882 /* this mutex is also taken before trying to set
1883 * block groups readonly. We need to make sure
1884 * that nobody has set a block group readonly
1885 * after a extents from that block group have been
1886 * allocated for cache files. btrfs_set_block_group_ro
1887 * will wait for the transaction to commit if it
1888 * finds BTRFS_TRANS_DIRTY_BG_RUN set.
1889 *
1890 * The BTRFS_TRANS_DIRTY_BG_RUN flag is also used to make sure
1891 * only one process starts all the block group IO. It wouldn't
1892 * hurt to have more than one go through, but there's no
1893 * real advantage to it either.
1894 */
1895 mutex_lock(&root->fs_info->ro_block_group_mutex);
1896 if (!test_and_set_bit(BTRFS_TRANS_DIRTY_BG_RUN,
1897 &cur_trans->flags))
1898 run_it = 1;
1899 mutex_unlock(&root->fs_info->ro_block_group_mutex);
1900
1901 if (run_it)
1902 ret = btrfs_start_dirty_block_groups(trans, root);
1903 }
1904 if (ret) {
1905 btrfs_end_transaction(trans, root);
1906 return ret;
1907 }
1908
1909 spin_lock(&root->fs_info->trans_lock);
1910 if (cur_trans->state >= TRANS_STATE_COMMIT_START) {
1911 spin_unlock(&root->fs_info->trans_lock);
1912 atomic_inc(&cur_trans->use_count);
1913 ret = btrfs_end_transaction(trans, root);
1914
1915 wait_for_commit(root, cur_trans);
1916
1917 if (unlikely(cur_trans->aborted))
1918 ret = cur_trans->aborted;
1919
1920 btrfs_put_transaction(cur_trans);
1921
1922 return ret;
1923 }
1924
1925 cur_trans->state = TRANS_STATE_COMMIT_START;
1926 wake_up(&root->fs_info->transaction_blocked_wait);
1927
1928 if (cur_trans->list.prev != &root->fs_info->trans_list) {
1929 prev_trans = list_entry(cur_trans->list.prev,
1930 struct btrfs_transaction, list);
1931 if (prev_trans->state != TRANS_STATE_COMPLETED) {
1932 atomic_inc(&prev_trans->use_count);
1933 spin_unlock(&root->fs_info->trans_lock);
1934
1935 wait_for_commit(root, prev_trans);
1936 ret = prev_trans->aborted;
1937
1938 btrfs_put_transaction(prev_trans);
1939 if (ret)
1940 goto cleanup_transaction;
1941 } else {
1942 spin_unlock(&root->fs_info->trans_lock);
1943 }
1944 } else {
1945 spin_unlock(&root->fs_info->trans_lock);
1946 }
1947
1948 extwriter_counter_dec(cur_trans, trans->type);
1949
1950 ret = btrfs_start_delalloc_flush(root->fs_info);
1951 if (ret)
1952 goto cleanup_transaction;
1953
1954 ret = btrfs_run_delayed_items(trans, root);
1955 if (ret)
1956 goto cleanup_transaction;
1957
1958 wait_event(cur_trans->writer_wait,
1959 extwriter_counter_read(cur_trans) == 0);
1960
1961 /* some pending stuffs might be added after the previous flush. */
1962 ret = btrfs_run_delayed_items(trans, root);
1963 if (ret)
1964 goto cleanup_transaction;
1965
1966 btrfs_wait_delalloc_flush(root->fs_info);
1967
1968 btrfs_wait_pending_ordered(cur_trans);
1969
1970 btrfs_scrub_pause(root);
1971 /*
1972 * Ok now we need to make sure to block out any other joins while we
1973 * commit the transaction. We could have started a join before setting
1974 * COMMIT_DOING so make sure to wait for num_writers to == 1 again.
1975 */
1976 spin_lock(&root->fs_info->trans_lock);
1977 cur_trans->state = TRANS_STATE_COMMIT_DOING;
1978 spin_unlock(&root->fs_info->trans_lock);
1979 wait_event(cur_trans->writer_wait,
1980 atomic_read(&cur_trans->num_writers) == 1);
1981
1982 /* ->aborted might be set after the previous check, so check it */
1983 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
1984 ret = cur_trans->aborted;
1985 goto scrub_continue;
1986 }
1987 /*
1988 * the reloc mutex makes sure that we stop
1989 * the balancing code from coming in and moving
1990 * extents around in the middle of the commit
1991 */
1992 mutex_lock(&root->fs_info->reloc_mutex);
1993
1994 /*
1995 * We needn't worry about the delayed items because we will
1996 * deal with them in create_pending_snapshot(), which is the
1997 * core function of the snapshot creation.
1998 */
1999 ret = create_pending_snapshots(trans, root->fs_info);
2000 if (ret) {
2001 mutex_unlock(&root->fs_info->reloc_mutex);
2002 goto scrub_continue;
2003 }
2004
2005 /*
2006 * We insert the dir indexes of the snapshots and update the inode
2007 * of the snapshots' parents after the snapshot creation, so there
2008 * are some delayed items which are not dealt with. Now deal with
2009 * them.
2010 *
2011 * We needn't worry that this operation will corrupt the snapshots,
2012 * because all the tree which are snapshoted will be forced to COW
2013 * the nodes and leaves.
2014 */
2015 ret = btrfs_run_delayed_items(trans, root);
2016 if (ret) {
2017 mutex_unlock(&root->fs_info->reloc_mutex);
2018 goto scrub_continue;
2019 }
2020
2021 ret = btrfs_run_delayed_refs(trans, root, (unsigned long)-1);
2022 if (ret) {
2023 mutex_unlock(&root->fs_info->reloc_mutex);
2024 goto scrub_continue;
2025 }
2026
2027 /* Reocrd old roots for later qgroup accounting */
2028 ret = btrfs_qgroup_prepare_account_extents(trans, root->fs_info);
2029 if (ret) {
2030 mutex_unlock(&root->fs_info->reloc_mutex);
2031 goto scrub_continue;
2032 }
2033
2034 /*
2035 * make sure none of the code above managed to slip in a
2036 * delayed item
2037 */
2038 btrfs_assert_delayed_root_empty(root);
2039
2040 WARN_ON(cur_trans != trans->transaction);
2041
2042 /* btrfs_commit_tree_roots is responsible for getting the
2043 * various roots consistent with each other. Every pointer
2044 * in the tree of tree roots has to point to the most up to date
2045 * root for every subvolume and other tree. So, we have to keep
2046 * the tree logging code from jumping in and changing any
2047 * of the trees.
2048 *
2049 * At this point in the commit, there can't be any tree-log
2050 * writers, but a little lower down we drop the trans mutex
2051 * and let new people in. By holding the tree_log_mutex
2052 * from now until after the super is written, we avoid races
2053 * with the tree-log code.
2054 */
2055 mutex_lock(&root->fs_info->tree_log_mutex);
2056
2057 ret = commit_fs_roots(trans, root);
2058 if (ret) {
2059 mutex_unlock(&root->fs_info->tree_log_mutex);
2060 mutex_unlock(&root->fs_info->reloc_mutex);
2061 goto scrub_continue;
2062 }
2063
2064 /*
2065 * Since the transaction is done, we can apply the pending changes
2066 * before the next transaction.
2067 */
2068 btrfs_apply_pending_changes(root->fs_info);
2069
2070 /* commit_fs_roots gets rid of all the tree log roots, it is now
2071 * safe to free the root of tree log roots
2072 */
2073 btrfs_free_log_root_tree(trans, root->fs_info);
2074
2075 /*
2076 * Since fs roots are all committed, we can get a quite accurate
2077 * new_roots. So let's do quota accounting.
2078 */
2079 ret = btrfs_qgroup_account_extents(trans, root->fs_info);
2080 if (ret < 0) {
2081 mutex_unlock(&root->fs_info->tree_log_mutex);
2082 mutex_unlock(&root->fs_info->reloc_mutex);
2083 goto scrub_continue;
2084 }
2085
2086 ret = commit_cowonly_roots(trans, root);
2087 if (ret) {
2088 mutex_unlock(&root->fs_info->tree_log_mutex);
2089 mutex_unlock(&root->fs_info->reloc_mutex);
2090 goto scrub_continue;
2091 }
2092
2093 /*
2094 * The tasks which save the space cache and inode cache may also
2095 * update ->aborted, check it.
2096 */
2097 if (unlikely(ACCESS_ONCE(cur_trans->aborted))) {
2098 ret = cur_trans->aborted;
2099 mutex_unlock(&root->fs_info->tree_log_mutex);
2100 mutex_unlock(&root->fs_info->reloc_mutex);
2101 goto scrub_continue;
2102 }
2103
2104 btrfs_prepare_extent_commit(trans, root);
2105
2106 cur_trans = root->fs_info->running_transaction;
2107
2108 btrfs_set_root_node(&root->fs_info->tree_root->root_item,
2109 root->fs_info->tree_root->node);
2110 list_add_tail(&root->fs_info->tree_root->dirty_list,
2111 &cur_trans->switch_commits);
2112
2113 btrfs_set_root_node(&root->fs_info->chunk_root->root_item,
2114 root->fs_info->chunk_root->node);
2115 list_add_tail(&root->fs_info->chunk_root->dirty_list,
2116 &cur_trans->switch_commits);
2117
2118 switch_commit_roots(cur_trans, root->fs_info);
2119
2120 assert_qgroups_uptodate(trans);
2121 ASSERT(list_empty(&cur_trans->dirty_bgs));
2122 ASSERT(list_empty(&cur_trans->io_bgs));
2123 update_super_roots(root);
2124
2125 btrfs_set_super_log_root(root->fs_info->super_copy, 0);
2126 btrfs_set_super_log_root_level(root->fs_info->super_copy, 0);
2127 memcpy(root->fs_info->super_for_commit, root->fs_info->super_copy,
2128 sizeof(*root->fs_info->super_copy));
2129
2130 btrfs_update_commit_device_size(root->fs_info);
2131 btrfs_update_commit_device_bytes_used(root, cur_trans);
2132
2133 clear_bit(BTRFS_INODE_BTREE_LOG1_ERR, &btree_ino->runtime_flags);
2134 clear_bit(BTRFS_INODE_BTREE_LOG2_ERR, &btree_ino->runtime_flags);
2135
2136 btrfs_trans_release_chunk_metadata(trans);
2137
2138 spin_lock(&root->fs_info->trans_lock);
2139 cur_trans->state = TRANS_STATE_UNBLOCKED;
2140 root->fs_info->running_transaction = NULL;
2141 spin_unlock(&root->fs_info->trans_lock);
2142 mutex_unlock(&root->fs_info->reloc_mutex);
2143
2144 wake_up(&root->fs_info->transaction_wait);
2145
2146 ret = btrfs_write_and_wait_transaction(trans, root);
2147 if (ret) {
2148 btrfs_std_error(root->fs_info, ret,
2149 "Error while writing out transaction");
2150 mutex_unlock(&root->fs_info->tree_log_mutex);
2151 goto scrub_continue;
2152 }
2153
2154 ret = write_ctree_super(trans, root, 0);
2155 if (ret) {
2156 mutex_unlock(&root->fs_info->tree_log_mutex);
2157 goto scrub_continue;
2158 }
2159
2160 /*
2161 * the super is written, we can safely allow the tree-loggers
2162 * to go about their business
2163 */
2164 mutex_unlock(&root->fs_info->tree_log_mutex);
2165
2166 btrfs_finish_extent_commit(trans, root);
2167
2168 if (test_bit(BTRFS_TRANS_HAVE_FREE_BGS, &cur_trans->flags))
2169 btrfs_clear_space_info_full(root->fs_info);
2170
2171 root->fs_info->last_trans_committed = cur_trans->transid;
2172 /*
2173 * We needn't acquire the lock here because there is no other task
2174 * which can change it.
2175 */
2176 cur_trans->state = TRANS_STATE_COMPLETED;
2177 wake_up(&cur_trans->commit_wait);
2178
2179 spin_lock(&root->fs_info->trans_lock);
2180 list_del_init(&cur_trans->list);
2181 spin_unlock(&root->fs_info->trans_lock);
2182
2183 btrfs_put_transaction(cur_trans);
2184 btrfs_put_transaction(cur_trans);
2185
2186 if (trans->type & __TRANS_FREEZABLE)
2187 sb_end_intwrite(root->fs_info->sb);
2188
2189 trace_btrfs_transaction_commit(root);
2190
2191 btrfs_scrub_continue(root);
2192
2193 if (current->journal_info == trans)
2194 current->journal_info = NULL;
2195
2196 kmem_cache_free(btrfs_trans_handle_cachep, trans);
2197
2198 if (current != root->fs_info->transaction_kthread &&
2199 current != root->fs_info->cleaner_kthread)
2200 btrfs_run_delayed_iputs(root);
2201
2202 return ret;
2203
2204scrub_continue:
2205 btrfs_scrub_continue(root);
2206cleanup_transaction:
2207 btrfs_trans_release_metadata(trans, root);
2208 btrfs_trans_release_chunk_metadata(trans);
2209 trans->block_rsv = NULL;
2210 btrfs_warn(root->fs_info, "Skipping commit of aborted transaction.");
2211 if (current->journal_info == trans)
2212 current->journal_info = NULL;
2213 cleanup_transaction(trans, root, ret);
2214
2215 return ret;
2216}
2217
2218/*
2219 * return < 0 if error
2220 * 0 if there are no more dead_roots at the time of call
2221 * 1 there are more to be processed, call me again
2222 *
2223 * The return value indicates there are certainly more snapshots to delete, but
2224 * if there comes a new one during processing, it may return 0. We don't mind,
2225 * because btrfs_commit_super will poke cleaner thread and it will process it a
2226 * few seconds later.
2227 */
2228int btrfs_clean_one_deleted_snapshot(struct btrfs_root *root)
2229{
2230 int ret;
2231 struct btrfs_fs_info *fs_info = root->fs_info;
2232
2233 spin_lock(&fs_info->trans_lock);
2234 if (list_empty(&fs_info->dead_roots)) {
2235 spin_unlock(&fs_info->trans_lock);
2236 return 0;
2237 }
2238 root = list_first_entry(&fs_info->dead_roots,
2239 struct btrfs_root, root_list);
2240 list_del_init(&root->root_list);
2241 spin_unlock(&fs_info->trans_lock);
2242
2243 pr_debug("BTRFS: cleaner removing %llu\n", root->objectid);
2244
2245 btrfs_kill_all_delayed_nodes(root);
2246
2247 if (btrfs_header_backref_rev(root->node) <
2248 BTRFS_MIXED_BACKREF_REV)
2249 ret = btrfs_drop_snapshot(root, NULL, 0, 0);
2250 else
2251 ret = btrfs_drop_snapshot(root, NULL, 1, 0);
2252
2253 return (ret < 0) ? 0 : 1;
2254}
2255
2256void btrfs_apply_pending_changes(struct btrfs_fs_info *fs_info)
2257{
2258 unsigned long prev;
2259 unsigned long bit;
2260
2261 prev = xchg(&fs_info->pending_changes, 0);
2262 if (!prev)
2263 return;
2264
2265 bit = 1 << BTRFS_PENDING_SET_INODE_MAP_CACHE;
2266 if (prev & bit)
2267 btrfs_set_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2268 prev &= ~bit;
2269
2270 bit = 1 << BTRFS_PENDING_CLEAR_INODE_MAP_CACHE;
2271 if (prev & bit)
2272 btrfs_clear_opt(fs_info->mount_opt, INODE_MAP_CACHE);
2273 prev &= ~bit;
2274
2275 bit = 1 << BTRFS_PENDING_COMMIT;
2276 if (prev & bit)
2277 btrfs_debug(fs_info, "pending commit done");
2278 prev &= ~bit;
2279
2280 if (prev)
2281 btrfs_warn(fs_info,
2282 "unknown pending changes left 0x%lx, ignoring", prev);
2283}