Loading...
1/*
2 * Security plug functions
3 *
4 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
5 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
6 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
7 *
8 * This program is free software; you can redistribute it and/or modify
9 * it under the terms of the GNU General Public License as published by
10 * the Free Software Foundation; either version 2 of the License, or
11 * (at your option) any later version.
12 */
13
14#include <linux/capability.h>
15#include <linux/dcache.h>
16#include <linux/module.h>
17#include <linux/init.h>
18#include <linux/kernel.h>
19#include <linux/security.h>
20#include <linux/integrity.h>
21#include <linux/ima.h>
22#include <linux/evm.h>
23#include <linux/fsnotify.h>
24#include <linux/mman.h>
25#include <linux/mount.h>
26#include <linux/personality.h>
27#include <linux/backing-dev.h>
28#include <net/flow.h>
29
30#define MAX_LSM_EVM_XATTR 2
31
32/* Boot-time LSM user choice */
33static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1] =
34 CONFIG_DEFAULT_SECURITY;
35
36static struct security_operations *security_ops;
37static struct security_operations default_security_ops = {
38 .name = "default",
39};
40
41static inline int __init verify(struct security_operations *ops)
42{
43 /* verify the security_operations structure exists */
44 if (!ops)
45 return -EINVAL;
46 security_fixup_ops(ops);
47 return 0;
48}
49
50static void __init do_security_initcalls(void)
51{
52 initcall_t *call;
53 call = __security_initcall_start;
54 while (call < __security_initcall_end) {
55 (*call) ();
56 call++;
57 }
58}
59
60/**
61 * security_init - initializes the security framework
62 *
63 * This should be called early in the kernel initialization sequence.
64 */
65int __init security_init(void)
66{
67 printk(KERN_INFO "Security Framework initialized\n");
68
69 security_fixup_ops(&default_security_ops);
70 security_ops = &default_security_ops;
71 do_security_initcalls();
72
73 return 0;
74}
75
76void reset_security_ops(void)
77{
78 security_ops = &default_security_ops;
79}
80
81/* Save user chosen LSM */
82static int __init choose_lsm(char *str)
83{
84 strncpy(chosen_lsm, str, SECURITY_NAME_MAX);
85 return 1;
86}
87__setup("security=", choose_lsm);
88
89/**
90 * security_module_enable - Load given security module on boot ?
91 * @ops: a pointer to the struct security_operations that is to be checked.
92 *
93 * Each LSM must pass this method before registering its own operations
94 * to avoid security registration races. This method may also be used
95 * to check if your LSM is currently loaded during kernel initialization.
96 *
97 * Return true if:
98 * -The passed LSM is the one chosen by user at boot time,
99 * -or the passed LSM is configured as the default and the user did not
100 * choose an alternate LSM at boot time.
101 * Otherwise, return false.
102 */
103int __init security_module_enable(struct security_operations *ops)
104{
105 return !strcmp(ops->name, chosen_lsm);
106}
107
108/**
109 * register_security - registers a security framework with the kernel
110 * @ops: a pointer to the struct security_options that is to be registered
111 *
112 * This function allows a security module to register itself with the
113 * kernel security subsystem. Some rudimentary checking is done on the @ops
114 * value passed to this function. You'll need to check first if your LSM
115 * is allowed to register its @ops by calling security_module_enable(@ops).
116 *
117 * If there is already a security module registered with the kernel,
118 * an error will be returned. Otherwise %0 is returned on success.
119 */
120int __init register_security(struct security_operations *ops)
121{
122 if (verify(ops)) {
123 printk(KERN_DEBUG "%s could not verify "
124 "security_operations structure.\n", __func__);
125 return -EINVAL;
126 }
127
128 if (security_ops != &default_security_ops)
129 return -EAGAIN;
130
131 security_ops = ops;
132
133 return 0;
134}
135
136/* Security operations */
137
138int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
139{
140#ifdef CONFIG_SECURITY_YAMA_STACKED
141 int rc;
142 rc = yama_ptrace_access_check(child, mode);
143 if (rc)
144 return rc;
145#endif
146 return security_ops->ptrace_access_check(child, mode);
147}
148
149int security_ptrace_traceme(struct task_struct *parent)
150{
151#ifdef CONFIG_SECURITY_YAMA_STACKED
152 int rc;
153 rc = yama_ptrace_traceme(parent);
154 if (rc)
155 return rc;
156#endif
157 return security_ops->ptrace_traceme(parent);
158}
159
160int security_capget(struct task_struct *target,
161 kernel_cap_t *effective,
162 kernel_cap_t *inheritable,
163 kernel_cap_t *permitted)
164{
165 return security_ops->capget(target, effective, inheritable, permitted);
166}
167
168int security_capset(struct cred *new, const struct cred *old,
169 const kernel_cap_t *effective,
170 const kernel_cap_t *inheritable,
171 const kernel_cap_t *permitted)
172{
173 return security_ops->capset(new, old,
174 effective, inheritable, permitted);
175}
176
177int security_capable(const struct cred *cred, struct user_namespace *ns,
178 int cap)
179{
180 return security_ops->capable(cred, ns, cap, SECURITY_CAP_AUDIT);
181}
182
183int security_capable_noaudit(const struct cred *cred, struct user_namespace *ns,
184 int cap)
185{
186 return security_ops->capable(cred, ns, cap, SECURITY_CAP_NOAUDIT);
187}
188
189int security_quotactl(int cmds, int type, int id, struct super_block *sb)
190{
191 return security_ops->quotactl(cmds, type, id, sb);
192}
193
194int security_quota_on(struct dentry *dentry)
195{
196 return security_ops->quota_on(dentry);
197}
198
199int security_syslog(int type)
200{
201 return security_ops->syslog(type);
202}
203
204int security_settime(const struct timespec *ts, const struct timezone *tz)
205{
206 return security_ops->settime(ts, tz);
207}
208
209int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
210{
211 return security_ops->vm_enough_memory(mm, pages);
212}
213
214int security_bprm_set_creds(struct linux_binprm *bprm)
215{
216 return security_ops->bprm_set_creds(bprm);
217}
218
219int security_bprm_check(struct linux_binprm *bprm)
220{
221 int ret;
222
223 ret = security_ops->bprm_check_security(bprm);
224 if (ret)
225 return ret;
226 return ima_bprm_check(bprm);
227}
228
229void security_bprm_committing_creds(struct linux_binprm *bprm)
230{
231 security_ops->bprm_committing_creds(bprm);
232}
233
234void security_bprm_committed_creds(struct linux_binprm *bprm)
235{
236 security_ops->bprm_committed_creds(bprm);
237}
238
239int security_bprm_secureexec(struct linux_binprm *bprm)
240{
241 return security_ops->bprm_secureexec(bprm);
242}
243
244int security_sb_alloc(struct super_block *sb)
245{
246 return security_ops->sb_alloc_security(sb);
247}
248
249void security_sb_free(struct super_block *sb)
250{
251 security_ops->sb_free_security(sb);
252}
253
254int security_sb_copy_data(char *orig, char *copy)
255{
256 return security_ops->sb_copy_data(orig, copy);
257}
258EXPORT_SYMBOL(security_sb_copy_data);
259
260int security_sb_remount(struct super_block *sb, void *data)
261{
262 return security_ops->sb_remount(sb, data);
263}
264
265int security_sb_kern_mount(struct super_block *sb, int flags, void *data)
266{
267 return security_ops->sb_kern_mount(sb, flags, data);
268}
269
270int security_sb_show_options(struct seq_file *m, struct super_block *sb)
271{
272 return security_ops->sb_show_options(m, sb);
273}
274
275int security_sb_statfs(struct dentry *dentry)
276{
277 return security_ops->sb_statfs(dentry);
278}
279
280int security_sb_mount(const char *dev_name, struct path *path,
281 const char *type, unsigned long flags, void *data)
282{
283 return security_ops->sb_mount(dev_name, path, type, flags, data);
284}
285
286int security_sb_umount(struct vfsmount *mnt, int flags)
287{
288 return security_ops->sb_umount(mnt, flags);
289}
290
291int security_sb_pivotroot(struct path *old_path, struct path *new_path)
292{
293 return security_ops->sb_pivotroot(old_path, new_path);
294}
295
296int security_sb_set_mnt_opts(struct super_block *sb,
297 struct security_mnt_opts *opts,
298 unsigned long kern_flags,
299 unsigned long *set_kern_flags)
300{
301 return security_ops->sb_set_mnt_opts(sb, opts, kern_flags,
302 set_kern_flags);
303}
304EXPORT_SYMBOL(security_sb_set_mnt_opts);
305
306int security_sb_clone_mnt_opts(const struct super_block *oldsb,
307 struct super_block *newsb)
308{
309 return security_ops->sb_clone_mnt_opts(oldsb, newsb);
310}
311EXPORT_SYMBOL(security_sb_clone_mnt_opts);
312
313int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts)
314{
315 return security_ops->sb_parse_opts_str(options, opts);
316}
317EXPORT_SYMBOL(security_sb_parse_opts_str);
318
319int security_inode_alloc(struct inode *inode)
320{
321 inode->i_security = NULL;
322 return security_ops->inode_alloc_security(inode);
323}
324
325void security_inode_free(struct inode *inode)
326{
327 integrity_inode_free(inode);
328 security_ops->inode_free_security(inode);
329}
330
331int security_dentry_init_security(struct dentry *dentry, int mode,
332 struct qstr *name, void **ctx,
333 u32 *ctxlen)
334{
335 return security_ops->dentry_init_security(dentry, mode, name,
336 ctx, ctxlen);
337}
338EXPORT_SYMBOL(security_dentry_init_security);
339
340int security_inode_init_security(struct inode *inode, struct inode *dir,
341 const struct qstr *qstr,
342 const initxattrs initxattrs, void *fs_data)
343{
344 struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1];
345 struct xattr *lsm_xattr, *evm_xattr, *xattr;
346 int ret;
347
348 if (unlikely(IS_PRIVATE(inode)))
349 return 0;
350
351 if (!initxattrs)
352 return security_ops->inode_init_security(inode, dir, qstr,
353 NULL, NULL, NULL);
354 memset(new_xattrs, 0, sizeof(new_xattrs));
355 lsm_xattr = new_xattrs;
356 ret = security_ops->inode_init_security(inode, dir, qstr,
357 &lsm_xattr->name,
358 &lsm_xattr->value,
359 &lsm_xattr->value_len);
360 if (ret)
361 goto out;
362
363 evm_xattr = lsm_xattr + 1;
364 ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr);
365 if (ret)
366 goto out;
367 ret = initxattrs(inode, new_xattrs, fs_data);
368out:
369 for (xattr = new_xattrs; xattr->value != NULL; xattr++)
370 kfree(xattr->value);
371 return (ret == -EOPNOTSUPP) ? 0 : ret;
372}
373EXPORT_SYMBOL(security_inode_init_security);
374
375int security_old_inode_init_security(struct inode *inode, struct inode *dir,
376 const struct qstr *qstr, const char **name,
377 void **value, size_t *len)
378{
379 if (unlikely(IS_PRIVATE(inode)))
380 return -EOPNOTSUPP;
381 return security_ops->inode_init_security(inode, dir, qstr, name, value,
382 len);
383}
384EXPORT_SYMBOL(security_old_inode_init_security);
385
386#ifdef CONFIG_SECURITY_PATH
387int security_path_mknod(struct path *dir, struct dentry *dentry, umode_t mode,
388 unsigned int dev)
389{
390 if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
391 return 0;
392 return security_ops->path_mknod(dir, dentry, mode, dev);
393}
394EXPORT_SYMBOL(security_path_mknod);
395
396int security_path_mkdir(struct path *dir, struct dentry *dentry, umode_t mode)
397{
398 if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
399 return 0;
400 return security_ops->path_mkdir(dir, dentry, mode);
401}
402EXPORT_SYMBOL(security_path_mkdir);
403
404int security_path_rmdir(struct path *dir, struct dentry *dentry)
405{
406 if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
407 return 0;
408 return security_ops->path_rmdir(dir, dentry);
409}
410
411int security_path_unlink(struct path *dir, struct dentry *dentry)
412{
413 if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
414 return 0;
415 return security_ops->path_unlink(dir, dentry);
416}
417EXPORT_SYMBOL(security_path_unlink);
418
419int security_path_symlink(struct path *dir, struct dentry *dentry,
420 const char *old_name)
421{
422 if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
423 return 0;
424 return security_ops->path_symlink(dir, dentry, old_name);
425}
426
427int security_path_link(struct dentry *old_dentry, struct path *new_dir,
428 struct dentry *new_dentry)
429{
430 if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
431 return 0;
432 return security_ops->path_link(old_dentry, new_dir, new_dentry);
433}
434
435int security_path_rename(struct path *old_dir, struct dentry *old_dentry,
436 struct path *new_dir, struct dentry *new_dentry,
437 unsigned int flags)
438{
439 if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
440 (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
441 return 0;
442
443 if (flags & RENAME_EXCHANGE) {
444 int err = security_ops->path_rename(new_dir, new_dentry,
445 old_dir, old_dentry);
446 if (err)
447 return err;
448 }
449
450 return security_ops->path_rename(old_dir, old_dentry, new_dir,
451 new_dentry);
452}
453EXPORT_SYMBOL(security_path_rename);
454
455int security_path_truncate(struct path *path)
456{
457 if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
458 return 0;
459 return security_ops->path_truncate(path);
460}
461
462int security_path_chmod(struct path *path, umode_t mode)
463{
464 if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
465 return 0;
466 return security_ops->path_chmod(path, mode);
467}
468
469int security_path_chown(struct path *path, kuid_t uid, kgid_t gid)
470{
471 if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
472 return 0;
473 return security_ops->path_chown(path, uid, gid);
474}
475
476int security_path_chroot(struct path *path)
477{
478 return security_ops->path_chroot(path);
479}
480#endif
481
482int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
483{
484 if (unlikely(IS_PRIVATE(dir)))
485 return 0;
486 return security_ops->inode_create(dir, dentry, mode);
487}
488EXPORT_SYMBOL_GPL(security_inode_create);
489
490int security_inode_link(struct dentry *old_dentry, struct inode *dir,
491 struct dentry *new_dentry)
492{
493 if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
494 return 0;
495 return security_ops->inode_link(old_dentry, dir, new_dentry);
496}
497
498int security_inode_unlink(struct inode *dir, struct dentry *dentry)
499{
500 if (unlikely(IS_PRIVATE(dentry->d_inode)))
501 return 0;
502 return security_ops->inode_unlink(dir, dentry);
503}
504
505int security_inode_symlink(struct inode *dir, struct dentry *dentry,
506 const char *old_name)
507{
508 if (unlikely(IS_PRIVATE(dir)))
509 return 0;
510 return security_ops->inode_symlink(dir, dentry, old_name);
511}
512
513int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
514{
515 if (unlikely(IS_PRIVATE(dir)))
516 return 0;
517 return security_ops->inode_mkdir(dir, dentry, mode);
518}
519EXPORT_SYMBOL_GPL(security_inode_mkdir);
520
521int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
522{
523 if (unlikely(IS_PRIVATE(dentry->d_inode)))
524 return 0;
525 return security_ops->inode_rmdir(dir, dentry);
526}
527
528int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
529{
530 if (unlikely(IS_PRIVATE(dir)))
531 return 0;
532 return security_ops->inode_mknod(dir, dentry, mode, dev);
533}
534
535int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
536 struct inode *new_dir, struct dentry *new_dentry,
537 unsigned int flags)
538{
539 if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
540 (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
541 return 0;
542
543 if (flags & RENAME_EXCHANGE) {
544 int err = security_ops->inode_rename(new_dir, new_dentry,
545 old_dir, old_dentry);
546 if (err)
547 return err;
548 }
549
550 return security_ops->inode_rename(old_dir, old_dentry,
551 new_dir, new_dentry);
552}
553
554int security_inode_readlink(struct dentry *dentry)
555{
556 if (unlikely(IS_PRIVATE(dentry->d_inode)))
557 return 0;
558 return security_ops->inode_readlink(dentry);
559}
560
561int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd)
562{
563 if (unlikely(IS_PRIVATE(dentry->d_inode)))
564 return 0;
565 return security_ops->inode_follow_link(dentry, nd);
566}
567
568int security_inode_permission(struct inode *inode, int mask)
569{
570 if (unlikely(IS_PRIVATE(inode)))
571 return 0;
572 return security_ops->inode_permission(inode, mask);
573}
574
575int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
576{
577 int ret;
578
579 if (unlikely(IS_PRIVATE(dentry->d_inode)))
580 return 0;
581 ret = security_ops->inode_setattr(dentry, attr);
582 if (ret)
583 return ret;
584 return evm_inode_setattr(dentry, attr);
585}
586EXPORT_SYMBOL_GPL(security_inode_setattr);
587
588int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
589{
590 if (unlikely(IS_PRIVATE(dentry->d_inode)))
591 return 0;
592 return security_ops->inode_getattr(mnt, dentry);
593}
594
595int security_inode_setxattr(struct dentry *dentry, const char *name,
596 const void *value, size_t size, int flags)
597{
598 int ret;
599
600 if (unlikely(IS_PRIVATE(dentry->d_inode)))
601 return 0;
602 ret = security_ops->inode_setxattr(dentry, name, value, size, flags);
603 if (ret)
604 return ret;
605 ret = ima_inode_setxattr(dentry, name, value, size);
606 if (ret)
607 return ret;
608 return evm_inode_setxattr(dentry, name, value, size);
609}
610
611void security_inode_post_setxattr(struct dentry *dentry, const char *name,
612 const void *value, size_t size, int flags)
613{
614 if (unlikely(IS_PRIVATE(dentry->d_inode)))
615 return;
616 security_ops->inode_post_setxattr(dentry, name, value, size, flags);
617 evm_inode_post_setxattr(dentry, name, value, size);
618}
619
620int security_inode_getxattr(struct dentry *dentry, const char *name)
621{
622 if (unlikely(IS_PRIVATE(dentry->d_inode)))
623 return 0;
624 return security_ops->inode_getxattr(dentry, name);
625}
626
627int security_inode_listxattr(struct dentry *dentry)
628{
629 if (unlikely(IS_PRIVATE(dentry->d_inode)))
630 return 0;
631 return security_ops->inode_listxattr(dentry);
632}
633
634int security_inode_removexattr(struct dentry *dentry, const char *name)
635{
636 int ret;
637
638 if (unlikely(IS_PRIVATE(dentry->d_inode)))
639 return 0;
640 ret = security_ops->inode_removexattr(dentry, name);
641 if (ret)
642 return ret;
643 ret = ima_inode_removexattr(dentry, name);
644 if (ret)
645 return ret;
646 return evm_inode_removexattr(dentry, name);
647}
648
649int security_inode_need_killpriv(struct dentry *dentry)
650{
651 return security_ops->inode_need_killpriv(dentry);
652}
653
654int security_inode_killpriv(struct dentry *dentry)
655{
656 return security_ops->inode_killpriv(dentry);
657}
658
659int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
660{
661 if (unlikely(IS_PRIVATE(inode)))
662 return -EOPNOTSUPP;
663 return security_ops->inode_getsecurity(inode, name, buffer, alloc);
664}
665
666int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
667{
668 if (unlikely(IS_PRIVATE(inode)))
669 return -EOPNOTSUPP;
670 return security_ops->inode_setsecurity(inode, name, value, size, flags);
671}
672
673int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
674{
675 if (unlikely(IS_PRIVATE(inode)))
676 return 0;
677 return security_ops->inode_listsecurity(inode, buffer, buffer_size);
678}
679EXPORT_SYMBOL(security_inode_listsecurity);
680
681void security_inode_getsecid(const struct inode *inode, u32 *secid)
682{
683 security_ops->inode_getsecid(inode, secid);
684}
685
686int security_file_permission(struct file *file, int mask)
687{
688 int ret;
689
690 ret = security_ops->file_permission(file, mask);
691 if (ret)
692 return ret;
693
694 return fsnotify_perm(file, mask);
695}
696
697int security_file_alloc(struct file *file)
698{
699 return security_ops->file_alloc_security(file);
700}
701
702void security_file_free(struct file *file)
703{
704 security_ops->file_free_security(file);
705}
706
707int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
708{
709 return security_ops->file_ioctl(file, cmd, arg);
710}
711
712static inline unsigned long mmap_prot(struct file *file, unsigned long prot)
713{
714 /*
715 * Does we have PROT_READ and does the application expect
716 * it to imply PROT_EXEC? If not, nothing to talk about...
717 */
718 if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ)
719 return prot;
720 if (!(current->personality & READ_IMPLIES_EXEC))
721 return prot;
722 /*
723 * if that's an anonymous mapping, let it.
724 */
725 if (!file)
726 return prot | PROT_EXEC;
727 /*
728 * ditto if it's not on noexec mount, except that on !MMU we need
729 * BDI_CAP_EXEC_MMAP (== VM_MAYEXEC) in this case
730 */
731 if (!(file->f_path.mnt->mnt_flags & MNT_NOEXEC)) {
732#ifndef CONFIG_MMU
733 unsigned long caps = 0;
734 struct address_space *mapping = file->f_mapping;
735 if (mapping && mapping->backing_dev_info)
736 caps = mapping->backing_dev_info->capabilities;
737 if (!(caps & BDI_CAP_EXEC_MAP))
738 return prot;
739#endif
740 return prot | PROT_EXEC;
741 }
742 /* anything on noexec mount won't get PROT_EXEC */
743 return prot;
744}
745
746int security_mmap_file(struct file *file, unsigned long prot,
747 unsigned long flags)
748{
749 int ret;
750 ret = security_ops->mmap_file(file, prot,
751 mmap_prot(file, prot), flags);
752 if (ret)
753 return ret;
754 return ima_file_mmap(file, prot);
755}
756
757int security_mmap_addr(unsigned long addr)
758{
759 return security_ops->mmap_addr(addr);
760}
761
762int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
763 unsigned long prot)
764{
765 return security_ops->file_mprotect(vma, reqprot, prot);
766}
767
768int security_file_lock(struct file *file, unsigned int cmd)
769{
770 return security_ops->file_lock(file, cmd);
771}
772
773int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
774{
775 return security_ops->file_fcntl(file, cmd, arg);
776}
777
778int security_file_set_fowner(struct file *file)
779{
780 return security_ops->file_set_fowner(file);
781}
782
783int security_file_send_sigiotask(struct task_struct *tsk,
784 struct fown_struct *fown, int sig)
785{
786 return security_ops->file_send_sigiotask(tsk, fown, sig);
787}
788
789int security_file_receive(struct file *file)
790{
791 return security_ops->file_receive(file);
792}
793
794int security_file_open(struct file *file, const struct cred *cred)
795{
796 int ret;
797
798 ret = security_ops->file_open(file, cred);
799 if (ret)
800 return ret;
801
802 return fsnotify_perm(file, MAY_OPEN);
803}
804
805int security_task_create(unsigned long clone_flags)
806{
807 return security_ops->task_create(clone_flags);
808}
809
810void security_task_free(struct task_struct *task)
811{
812#ifdef CONFIG_SECURITY_YAMA_STACKED
813 yama_task_free(task);
814#endif
815 security_ops->task_free(task);
816}
817
818int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
819{
820 return security_ops->cred_alloc_blank(cred, gfp);
821}
822
823void security_cred_free(struct cred *cred)
824{
825 security_ops->cred_free(cred);
826}
827
828int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
829{
830 return security_ops->cred_prepare(new, old, gfp);
831}
832
833void security_transfer_creds(struct cred *new, const struct cred *old)
834{
835 security_ops->cred_transfer(new, old);
836}
837
838int security_kernel_act_as(struct cred *new, u32 secid)
839{
840 return security_ops->kernel_act_as(new, secid);
841}
842
843int security_kernel_create_files_as(struct cred *new, struct inode *inode)
844{
845 return security_ops->kernel_create_files_as(new, inode);
846}
847
848int security_kernel_module_request(char *kmod_name)
849{
850 return security_ops->kernel_module_request(kmod_name);
851}
852
853int security_kernel_module_from_file(struct file *file)
854{
855 int ret;
856
857 ret = security_ops->kernel_module_from_file(file);
858 if (ret)
859 return ret;
860 return ima_module_check(file);
861}
862
863int security_task_fix_setuid(struct cred *new, const struct cred *old,
864 int flags)
865{
866 return security_ops->task_fix_setuid(new, old, flags);
867}
868
869int security_task_setpgid(struct task_struct *p, pid_t pgid)
870{
871 return security_ops->task_setpgid(p, pgid);
872}
873
874int security_task_getpgid(struct task_struct *p)
875{
876 return security_ops->task_getpgid(p);
877}
878
879int security_task_getsid(struct task_struct *p)
880{
881 return security_ops->task_getsid(p);
882}
883
884void security_task_getsecid(struct task_struct *p, u32 *secid)
885{
886 security_ops->task_getsecid(p, secid);
887}
888EXPORT_SYMBOL(security_task_getsecid);
889
890int security_task_setnice(struct task_struct *p, int nice)
891{
892 return security_ops->task_setnice(p, nice);
893}
894
895int security_task_setioprio(struct task_struct *p, int ioprio)
896{
897 return security_ops->task_setioprio(p, ioprio);
898}
899
900int security_task_getioprio(struct task_struct *p)
901{
902 return security_ops->task_getioprio(p);
903}
904
905int security_task_setrlimit(struct task_struct *p, unsigned int resource,
906 struct rlimit *new_rlim)
907{
908 return security_ops->task_setrlimit(p, resource, new_rlim);
909}
910
911int security_task_setscheduler(struct task_struct *p)
912{
913 return security_ops->task_setscheduler(p);
914}
915
916int security_task_getscheduler(struct task_struct *p)
917{
918 return security_ops->task_getscheduler(p);
919}
920
921int security_task_movememory(struct task_struct *p)
922{
923 return security_ops->task_movememory(p);
924}
925
926int security_task_kill(struct task_struct *p, struct siginfo *info,
927 int sig, u32 secid)
928{
929 return security_ops->task_kill(p, info, sig, secid);
930}
931
932int security_task_wait(struct task_struct *p)
933{
934 return security_ops->task_wait(p);
935}
936
937int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
938 unsigned long arg4, unsigned long arg5)
939{
940#ifdef CONFIG_SECURITY_YAMA_STACKED
941 int rc;
942 rc = yama_task_prctl(option, arg2, arg3, arg4, arg5);
943 if (rc != -ENOSYS)
944 return rc;
945#endif
946 return security_ops->task_prctl(option, arg2, arg3, arg4, arg5);
947}
948
949void security_task_to_inode(struct task_struct *p, struct inode *inode)
950{
951 security_ops->task_to_inode(p, inode);
952}
953
954int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
955{
956 return security_ops->ipc_permission(ipcp, flag);
957}
958
959void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
960{
961 security_ops->ipc_getsecid(ipcp, secid);
962}
963
964int security_msg_msg_alloc(struct msg_msg *msg)
965{
966 return security_ops->msg_msg_alloc_security(msg);
967}
968
969void security_msg_msg_free(struct msg_msg *msg)
970{
971 security_ops->msg_msg_free_security(msg);
972}
973
974int security_msg_queue_alloc(struct msg_queue *msq)
975{
976 return security_ops->msg_queue_alloc_security(msq);
977}
978
979void security_msg_queue_free(struct msg_queue *msq)
980{
981 security_ops->msg_queue_free_security(msq);
982}
983
984int security_msg_queue_associate(struct msg_queue *msq, int msqflg)
985{
986 return security_ops->msg_queue_associate(msq, msqflg);
987}
988
989int security_msg_queue_msgctl(struct msg_queue *msq, int cmd)
990{
991 return security_ops->msg_queue_msgctl(msq, cmd);
992}
993
994int security_msg_queue_msgsnd(struct msg_queue *msq,
995 struct msg_msg *msg, int msqflg)
996{
997 return security_ops->msg_queue_msgsnd(msq, msg, msqflg);
998}
999
1000int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
1001 struct task_struct *target, long type, int mode)
1002{
1003 return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode);
1004}
1005
1006int security_shm_alloc(struct shmid_kernel *shp)
1007{
1008 return security_ops->shm_alloc_security(shp);
1009}
1010
1011void security_shm_free(struct shmid_kernel *shp)
1012{
1013 security_ops->shm_free_security(shp);
1014}
1015
1016int security_shm_associate(struct shmid_kernel *shp, int shmflg)
1017{
1018 return security_ops->shm_associate(shp, shmflg);
1019}
1020
1021int security_shm_shmctl(struct shmid_kernel *shp, int cmd)
1022{
1023 return security_ops->shm_shmctl(shp, cmd);
1024}
1025
1026int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg)
1027{
1028 return security_ops->shm_shmat(shp, shmaddr, shmflg);
1029}
1030
1031int security_sem_alloc(struct sem_array *sma)
1032{
1033 return security_ops->sem_alloc_security(sma);
1034}
1035
1036void security_sem_free(struct sem_array *sma)
1037{
1038 security_ops->sem_free_security(sma);
1039}
1040
1041int security_sem_associate(struct sem_array *sma, int semflg)
1042{
1043 return security_ops->sem_associate(sma, semflg);
1044}
1045
1046int security_sem_semctl(struct sem_array *sma, int cmd)
1047{
1048 return security_ops->sem_semctl(sma, cmd);
1049}
1050
1051int security_sem_semop(struct sem_array *sma, struct sembuf *sops,
1052 unsigned nsops, int alter)
1053{
1054 return security_ops->sem_semop(sma, sops, nsops, alter);
1055}
1056
1057void security_d_instantiate(struct dentry *dentry, struct inode *inode)
1058{
1059 if (unlikely(inode && IS_PRIVATE(inode)))
1060 return;
1061 security_ops->d_instantiate(dentry, inode);
1062}
1063EXPORT_SYMBOL(security_d_instantiate);
1064
1065int security_getprocattr(struct task_struct *p, char *name, char **value)
1066{
1067 return security_ops->getprocattr(p, name, value);
1068}
1069
1070int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
1071{
1072 return security_ops->setprocattr(p, name, value, size);
1073}
1074
1075int security_netlink_send(struct sock *sk, struct sk_buff *skb)
1076{
1077 return security_ops->netlink_send(sk, skb);
1078}
1079
1080int security_ismaclabel(const char *name)
1081{
1082 return security_ops->ismaclabel(name);
1083}
1084EXPORT_SYMBOL(security_ismaclabel);
1085
1086int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
1087{
1088 return security_ops->secid_to_secctx(secid, secdata, seclen);
1089}
1090EXPORT_SYMBOL(security_secid_to_secctx);
1091
1092int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
1093{
1094 return security_ops->secctx_to_secid(secdata, seclen, secid);
1095}
1096EXPORT_SYMBOL(security_secctx_to_secid);
1097
1098void security_release_secctx(char *secdata, u32 seclen)
1099{
1100 security_ops->release_secctx(secdata, seclen);
1101}
1102EXPORT_SYMBOL(security_release_secctx);
1103
1104int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
1105{
1106 return security_ops->inode_notifysecctx(inode, ctx, ctxlen);
1107}
1108EXPORT_SYMBOL(security_inode_notifysecctx);
1109
1110int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
1111{
1112 return security_ops->inode_setsecctx(dentry, ctx, ctxlen);
1113}
1114EXPORT_SYMBOL(security_inode_setsecctx);
1115
1116int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
1117{
1118 return security_ops->inode_getsecctx(inode, ctx, ctxlen);
1119}
1120EXPORT_SYMBOL(security_inode_getsecctx);
1121
1122#ifdef CONFIG_SECURITY_NETWORK
1123
1124int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
1125{
1126 return security_ops->unix_stream_connect(sock, other, newsk);
1127}
1128EXPORT_SYMBOL(security_unix_stream_connect);
1129
1130int security_unix_may_send(struct socket *sock, struct socket *other)
1131{
1132 return security_ops->unix_may_send(sock, other);
1133}
1134EXPORT_SYMBOL(security_unix_may_send);
1135
1136int security_socket_create(int family, int type, int protocol, int kern)
1137{
1138 return security_ops->socket_create(family, type, protocol, kern);
1139}
1140
1141int security_socket_post_create(struct socket *sock, int family,
1142 int type, int protocol, int kern)
1143{
1144 return security_ops->socket_post_create(sock, family, type,
1145 protocol, kern);
1146}
1147
1148int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
1149{
1150 return security_ops->socket_bind(sock, address, addrlen);
1151}
1152
1153int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
1154{
1155 return security_ops->socket_connect(sock, address, addrlen);
1156}
1157
1158int security_socket_listen(struct socket *sock, int backlog)
1159{
1160 return security_ops->socket_listen(sock, backlog);
1161}
1162
1163int security_socket_accept(struct socket *sock, struct socket *newsock)
1164{
1165 return security_ops->socket_accept(sock, newsock);
1166}
1167
1168int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
1169{
1170 return security_ops->socket_sendmsg(sock, msg, size);
1171}
1172
1173int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
1174 int size, int flags)
1175{
1176 return security_ops->socket_recvmsg(sock, msg, size, flags);
1177}
1178
1179int security_socket_getsockname(struct socket *sock)
1180{
1181 return security_ops->socket_getsockname(sock);
1182}
1183
1184int security_socket_getpeername(struct socket *sock)
1185{
1186 return security_ops->socket_getpeername(sock);
1187}
1188
1189int security_socket_getsockopt(struct socket *sock, int level, int optname)
1190{
1191 return security_ops->socket_getsockopt(sock, level, optname);
1192}
1193
1194int security_socket_setsockopt(struct socket *sock, int level, int optname)
1195{
1196 return security_ops->socket_setsockopt(sock, level, optname);
1197}
1198
1199int security_socket_shutdown(struct socket *sock, int how)
1200{
1201 return security_ops->socket_shutdown(sock, how);
1202}
1203
1204int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
1205{
1206 return security_ops->socket_sock_rcv_skb(sk, skb);
1207}
1208EXPORT_SYMBOL(security_sock_rcv_skb);
1209
1210int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
1211 int __user *optlen, unsigned len)
1212{
1213 return security_ops->socket_getpeersec_stream(sock, optval, optlen, len);
1214}
1215
1216int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
1217{
1218 return security_ops->socket_getpeersec_dgram(sock, skb, secid);
1219}
1220EXPORT_SYMBOL(security_socket_getpeersec_dgram);
1221
1222int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
1223{
1224 return security_ops->sk_alloc_security(sk, family, priority);
1225}
1226
1227void security_sk_free(struct sock *sk)
1228{
1229 security_ops->sk_free_security(sk);
1230}
1231
1232void security_sk_clone(const struct sock *sk, struct sock *newsk)
1233{
1234 security_ops->sk_clone_security(sk, newsk);
1235}
1236EXPORT_SYMBOL(security_sk_clone);
1237
1238void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
1239{
1240 security_ops->sk_getsecid(sk, &fl->flowi_secid);
1241}
1242EXPORT_SYMBOL(security_sk_classify_flow);
1243
1244void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
1245{
1246 security_ops->req_classify_flow(req, fl);
1247}
1248EXPORT_SYMBOL(security_req_classify_flow);
1249
1250void security_sock_graft(struct sock *sk, struct socket *parent)
1251{
1252 security_ops->sock_graft(sk, parent);
1253}
1254EXPORT_SYMBOL(security_sock_graft);
1255
1256int security_inet_conn_request(struct sock *sk,
1257 struct sk_buff *skb, struct request_sock *req)
1258{
1259 return security_ops->inet_conn_request(sk, skb, req);
1260}
1261EXPORT_SYMBOL(security_inet_conn_request);
1262
1263void security_inet_csk_clone(struct sock *newsk,
1264 const struct request_sock *req)
1265{
1266 security_ops->inet_csk_clone(newsk, req);
1267}
1268
1269void security_inet_conn_established(struct sock *sk,
1270 struct sk_buff *skb)
1271{
1272 security_ops->inet_conn_established(sk, skb);
1273}
1274
1275int security_secmark_relabel_packet(u32 secid)
1276{
1277 return security_ops->secmark_relabel_packet(secid);
1278}
1279EXPORT_SYMBOL(security_secmark_relabel_packet);
1280
1281void security_secmark_refcount_inc(void)
1282{
1283 security_ops->secmark_refcount_inc();
1284}
1285EXPORT_SYMBOL(security_secmark_refcount_inc);
1286
1287void security_secmark_refcount_dec(void)
1288{
1289 security_ops->secmark_refcount_dec();
1290}
1291EXPORT_SYMBOL(security_secmark_refcount_dec);
1292
1293int security_tun_dev_alloc_security(void **security)
1294{
1295 return security_ops->tun_dev_alloc_security(security);
1296}
1297EXPORT_SYMBOL(security_tun_dev_alloc_security);
1298
1299void security_tun_dev_free_security(void *security)
1300{
1301 security_ops->tun_dev_free_security(security);
1302}
1303EXPORT_SYMBOL(security_tun_dev_free_security);
1304
1305int security_tun_dev_create(void)
1306{
1307 return security_ops->tun_dev_create();
1308}
1309EXPORT_SYMBOL(security_tun_dev_create);
1310
1311int security_tun_dev_attach_queue(void *security)
1312{
1313 return security_ops->tun_dev_attach_queue(security);
1314}
1315EXPORT_SYMBOL(security_tun_dev_attach_queue);
1316
1317int security_tun_dev_attach(struct sock *sk, void *security)
1318{
1319 return security_ops->tun_dev_attach(sk, security);
1320}
1321EXPORT_SYMBOL(security_tun_dev_attach);
1322
1323int security_tun_dev_open(void *security)
1324{
1325 return security_ops->tun_dev_open(security);
1326}
1327EXPORT_SYMBOL(security_tun_dev_open);
1328
1329void security_skb_owned_by(struct sk_buff *skb, struct sock *sk)
1330{
1331 security_ops->skb_owned_by(skb, sk);
1332}
1333
1334#endif /* CONFIG_SECURITY_NETWORK */
1335
1336#ifdef CONFIG_SECURITY_NETWORK_XFRM
1337
1338int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp,
1339 struct xfrm_user_sec_ctx *sec_ctx,
1340 gfp_t gfp)
1341{
1342 return security_ops->xfrm_policy_alloc_security(ctxp, sec_ctx, gfp);
1343}
1344EXPORT_SYMBOL(security_xfrm_policy_alloc);
1345
1346int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
1347 struct xfrm_sec_ctx **new_ctxp)
1348{
1349 return security_ops->xfrm_policy_clone_security(old_ctx, new_ctxp);
1350}
1351
1352void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
1353{
1354 security_ops->xfrm_policy_free_security(ctx);
1355}
1356EXPORT_SYMBOL(security_xfrm_policy_free);
1357
1358int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
1359{
1360 return security_ops->xfrm_policy_delete_security(ctx);
1361}
1362
1363int security_xfrm_state_alloc(struct xfrm_state *x,
1364 struct xfrm_user_sec_ctx *sec_ctx)
1365{
1366 return security_ops->xfrm_state_alloc(x, sec_ctx);
1367}
1368EXPORT_SYMBOL(security_xfrm_state_alloc);
1369
1370int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
1371 struct xfrm_sec_ctx *polsec, u32 secid)
1372{
1373 return security_ops->xfrm_state_alloc_acquire(x, polsec, secid);
1374}
1375
1376int security_xfrm_state_delete(struct xfrm_state *x)
1377{
1378 return security_ops->xfrm_state_delete_security(x);
1379}
1380EXPORT_SYMBOL(security_xfrm_state_delete);
1381
1382void security_xfrm_state_free(struct xfrm_state *x)
1383{
1384 security_ops->xfrm_state_free_security(x);
1385}
1386
1387int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
1388{
1389 return security_ops->xfrm_policy_lookup(ctx, fl_secid, dir);
1390}
1391
1392int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
1393 struct xfrm_policy *xp,
1394 const struct flowi *fl)
1395{
1396 return security_ops->xfrm_state_pol_flow_match(x, xp, fl);
1397}
1398
1399int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
1400{
1401 return security_ops->xfrm_decode_session(skb, secid, 1);
1402}
1403
1404void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
1405{
1406 int rc = security_ops->xfrm_decode_session(skb, &fl->flowi_secid, 0);
1407
1408 BUG_ON(rc);
1409}
1410EXPORT_SYMBOL(security_skb_classify_flow);
1411
1412#endif /* CONFIG_SECURITY_NETWORK_XFRM */
1413
1414#ifdef CONFIG_KEYS
1415
1416int security_key_alloc(struct key *key, const struct cred *cred,
1417 unsigned long flags)
1418{
1419 return security_ops->key_alloc(key, cred, flags);
1420}
1421
1422void security_key_free(struct key *key)
1423{
1424 security_ops->key_free(key);
1425}
1426
1427int security_key_permission(key_ref_t key_ref,
1428 const struct cred *cred, key_perm_t perm)
1429{
1430 return security_ops->key_permission(key_ref, cred, perm);
1431}
1432
1433int security_key_getsecurity(struct key *key, char **_buffer)
1434{
1435 return security_ops->key_getsecurity(key, _buffer);
1436}
1437
1438#endif /* CONFIG_KEYS */
1439
1440#ifdef CONFIG_AUDIT
1441
1442int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
1443{
1444 return security_ops->audit_rule_init(field, op, rulestr, lsmrule);
1445}
1446
1447int security_audit_rule_known(struct audit_krule *krule)
1448{
1449 return security_ops->audit_rule_known(krule);
1450}
1451
1452void security_audit_rule_free(void *lsmrule)
1453{
1454 security_ops->audit_rule_free(lsmrule);
1455}
1456
1457int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule,
1458 struct audit_context *actx)
1459{
1460 return security_ops->audit_rule_match(secid, field, op, lsmrule, actx);
1461}
1462
1463#endif /* CONFIG_AUDIT */
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Security plug functions
4 *
5 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
6 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
7 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
8 * Copyright (C) 2016 Mellanox Technologies
9 */
10
11#define pr_fmt(fmt) "LSM: " fmt
12
13#include <linux/bpf.h>
14#include <linux/capability.h>
15#include <linux/dcache.h>
16#include <linux/export.h>
17#include <linux/init.h>
18#include <linux/kernel.h>
19#include <linux/lsm_hooks.h>
20#include <linux/integrity.h>
21#include <linux/ima.h>
22#include <linux/evm.h>
23#include <linux/fsnotify.h>
24#include <linux/mman.h>
25#include <linux/mount.h>
26#include <linux/personality.h>
27#include <linux/backing-dev.h>
28#include <linux/string.h>
29#include <linux/msg.h>
30#include <net/flow.h>
31
32#define MAX_LSM_EVM_XATTR 2
33
34/* How many LSMs were built into the kernel? */
35#define LSM_COUNT (__end_lsm_info - __start_lsm_info)
36#define EARLY_LSM_COUNT (__end_early_lsm_info - __start_early_lsm_info)
37
38struct security_hook_heads security_hook_heads __lsm_ro_after_init;
39static BLOCKING_NOTIFIER_HEAD(blocking_lsm_notifier_chain);
40
41static struct kmem_cache *lsm_file_cache;
42static struct kmem_cache *lsm_inode_cache;
43
44char *lsm_names;
45static struct lsm_blob_sizes blob_sizes __lsm_ro_after_init;
46
47/* Boot-time LSM user choice */
48static __initdata const char *chosen_lsm_order;
49static __initdata const char *chosen_major_lsm;
50
51static __initconst const char * const builtin_lsm_order = CONFIG_LSM;
52
53/* Ordered list of LSMs to initialize. */
54static __initdata struct lsm_info **ordered_lsms;
55static __initdata struct lsm_info *exclusive;
56
57static __initdata bool debug;
58#define init_debug(...) \
59 do { \
60 if (debug) \
61 pr_info(__VA_ARGS__); \
62 } while (0)
63
64static bool __init is_enabled(struct lsm_info *lsm)
65{
66 if (!lsm->enabled)
67 return false;
68
69 return *lsm->enabled;
70}
71
72/* Mark an LSM's enabled flag. */
73static int lsm_enabled_true __initdata = 1;
74static int lsm_enabled_false __initdata = 0;
75static void __init set_enabled(struct lsm_info *lsm, bool enabled)
76{
77 /*
78 * When an LSM hasn't configured an enable variable, we can use
79 * a hard-coded location for storing the default enabled state.
80 */
81 if (!lsm->enabled) {
82 if (enabled)
83 lsm->enabled = &lsm_enabled_true;
84 else
85 lsm->enabled = &lsm_enabled_false;
86 } else if (lsm->enabled == &lsm_enabled_true) {
87 if (!enabled)
88 lsm->enabled = &lsm_enabled_false;
89 } else if (lsm->enabled == &lsm_enabled_false) {
90 if (enabled)
91 lsm->enabled = &lsm_enabled_true;
92 } else {
93 *lsm->enabled = enabled;
94 }
95}
96
97/* Is an LSM already listed in the ordered LSMs list? */
98static bool __init exists_ordered_lsm(struct lsm_info *lsm)
99{
100 struct lsm_info **check;
101
102 for (check = ordered_lsms; *check; check++)
103 if (*check == lsm)
104 return true;
105
106 return false;
107}
108
109/* Append an LSM to the list of ordered LSMs to initialize. */
110static int last_lsm __initdata;
111static void __init append_ordered_lsm(struct lsm_info *lsm, const char *from)
112{
113 /* Ignore duplicate selections. */
114 if (exists_ordered_lsm(lsm))
115 return;
116
117 if (WARN(last_lsm == LSM_COUNT, "%s: out of LSM slots!?\n", from))
118 return;
119
120 /* Enable this LSM, if it is not already set. */
121 if (!lsm->enabled)
122 lsm->enabled = &lsm_enabled_true;
123 ordered_lsms[last_lsm++] = lsm;
124
125 init_debug("%s ordering: %s (%sabled)\n", from, lsm->name,
126 is_enabled(lsm) ? "en" : "dis");
127}
128
129/* Is an LSM allowed to be initialized? */
130static bool __init lsm_allowed(struct lsm_info *lsm)
131{
132 /* Skip if the LSM is disabled. */
133 if (!is_enabled(lsm))
134 return false;
135
136 /* Not allowed if another exclusive LSM already initialized. */
137 if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && exclusive) {
138 init_debug("exclusive disabled: %s\n", lsm->name);
139 return false;
140 }
141
142 return true;
143}
144
145static void __init lsm_set_blob_size(int *need, int *lbs)
146{
147 int offset;
148
149 if (*need > 0) {
150 offset = *lbs;
151 *lbs += *need;
152 *need = offset;
153 }
154}
155
156static void __init lsm_set_blob_sizes(struct lsm_blob_sizes *needed)
157{
158 if (!needed)
159 return;
160
161 lsm_set_blob_size(&needed->lbs_cred, &blob_sizes.lbs_cred);
162 lsm_set_blob_size(&needed->lbs_file, &blob_sizes.lbs_file);
163 /*
164 * The inode blob gets an rcu_head in addition to
165 * what the modules might need.
166 */
167 if (needed->lbs_inode && blob_sizes.lbs_inode == 0)
168 blob_sizes.lbs_inode = sizeof(struct rcu_head);
169 lsm_set_blob_size(&needed->lbs_inode, &blob_sizes.lbs_inode);
170 lsm_set_blob_size(&needed->lbs_ipc, &blob_sizes.lbs_ipc);
171 lsm_set_blob_size(&needed->lbs_msg_msg, &blob_sizes.lbs_msg_msg);
172 lsm_set_blob_size(&needed->lbs_task, &blob_sizes.lbs_task);
173}
174
175/* Prepare LSM for initialization. */
176static void __init prepare_lsm(struct lsm_info *lsm)
177{
178 int enabled = lsm_allowed(lsm);
179
180 /* Record enablement (to handle any following exclusive LSMs). */
181 set_enabled(lsm, enabled);
182
183 /* If enabled, do pre-initialization work. */
184 if (enabled) {
185 if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && !exclusive) {
186 exclusive = lsm;
187 init_debug("exclusive chosen: %s\n", lsm->name);
188 }
189
190 lsm_set_blob_sizes(lsm->blobs);
191 }
192}
193
194/* Initialize a given LSM, if it is enabled. */
195static void __init initialize_lsm(struct lsm_info *lsm)
196{
197 if (is_enabled(lsm)) {
198 int ret;
199
200 init_debug("initializing %s\n", lsm->name);
201 ret = lsm->init();
202 WARN(ret, "%s failed to initialize: %d\n", lsm->name, ret);
203 }
204}
205
206/* Populate ordered LSMs list from comma-separated LSM name list. */
207static void __init ordered_lsm_parse(const char *order, const char *origin)
208{
209 struct lsm_info *lsm;
210 char *sep, *name, *next;
211
212 /* LSM_ORDER_FIRST is always first. */
213 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
214 if (lsm->order == LSM_ORDER_FIRST)
215 append_ordered_lsm(lsm, "first");
216 }
217
218 /* Process "security=", if given. */
219 if (chosen_major_lsm) {
220 struct lsm_info *major;
221
222 /*
223 * To match the original "security=" behavior, this
224 * explicitly does NOT fallback to another Legacy Major
225 * if the selected one was separately disabled: disable
226 * all non-matching Legacy Major LSMs.
227 */
228 for (major = __start_lsm_info; major < __end_lsm_info;
229 major++) {
230 if ((major->flags & LSM_FLAG_LEGACY_MAJOR) &&
231 strcmp(major->name, chosen_major_lsm) != 0) {
232 set_enabled(major, false);
233 init_debug("security=%s disabled: %s\n",
234 chosen_major_lsm, major->name);
235 }
236 }
237 }
238
239 sep = kstrdup(order, GFP_KERNEL);
240 next = sep;
241 /* Walk the list, looking for matching LSMs. */
242 while ((name = strsep(&next, ",")) != NULL) {
243 bool found = false;
244
245 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
246 if (lsm->order == LSM_ORDER_MUTABLE &&
247 strcmp(lsm->name, name) == 0) {
248 append_ordered_lsm(lsm, origin);
249 found = true;
250 }
251 }
252
253 if (!found)
254 init_debug("%s ignored: %s\n", origin, name);
255 }
256
257 /* Process "security=", if given. */
258 if (chosen_major_lsm) {
259 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
260 if (exists_ordered_lsm(lsm))
261 continue;
262 if (strcmp(lsm->name, chosen_major_lsm) == 0)
263 append_ordered_lsm(lsm, "security=");
264 }
265 }
266
267 /* Disable all LSMs not in the ordered list. */
268 for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
269 if (exists_ordered_lsm(lsm))
270 continue;
271 set_enabled(lsm, false);
272 init_debug("%s disabled: %s\n", origin, lsm->name);
273 }
274
275 kfree(sep);
276}
277
278static void __init lsm_early_cred(struct cred *cred);
279static void __init lsm_early_task(struct task_struct *task);
280
281static int lsm_append(const char *new, char **result);
282
283static void __init ordered_lsm_init(void)
284{
285 struct lsm_info **lsm;
286
287 ordered_lsms = kcalloc(LSM_COUNT + 1, sizeof(*ordered_lsms),
288 GFP_KERNEL);
289
290 if (chosen_lsm_order) {
291 if (chosen_major_lsm) {
292 pr_info("security= is ignored because it is superseded by lsm=\n");
293 chosen_major_lsm = NULL;
294 }
295 ordered_lsm_parse(chosen_lsm_order, "cmdline");
296 } else
297 ordered_lsm_parse(builtin_lsm_order, "builtin");
298
299 for (lsm = ordered_lsms; *lsm; lsm++)
300 prepare_lsm(*lsm);
301
302 init_debug("cred blob size = %d\n", blob_sizes.lbs_cred);
303 init_debug("file blob size = %d\n", blob_sizes.lbs_file);
304 init_debug("inode blob size = %d\n", blob_sizes.lbs_inode);
305 init_debug("ipc blob size = %d\n", blob_sizes.lbs_ipc);
306 init_debug("msg_msg blob size = %d\n", blob_sizes.lbs_msg_msg);
307 init_debug("task blob size = %d\n", blob_sizes.lbs_task);
308
309 /*
310 * Create any kmem_caches needed for blobs
311 */
312 if (blob_sizes.lbs_file)
313 lsm_file_cache = kmem_cache_create("lsm_file_cache",
314 blob_sizes.lbs_file, 0,
315 SLAB_PANIC, NULL);
316 if (blob_sizes.lbs_inode)
317 lsm_inode_cache = kmem_cache_create("lsm_inode_cache",
318 blob_sizes.lbs_inode, 0,
319 SLAB_PANIC, NULL);
320
321 lsm_early_cred((struct cred *) current->cred);
322 lsm_early_task(current);
323 for (lsm = ordered_lsms; *lsm; lsm++)
324 initialize_lsm(*lsm);
325
326 kfree(ordered_lsms);
327}
328
329int __init early_security_init(void)
330{
331 int i;
332 struct hlist_head *list = (struct hlist_head *) &security_hook_heads;
333 struct lsm_info *lsm;
334
335 for (i = 0; i < sizeof(security_hook_heads) / sizeof(struct hlist_head);
336 i++)
337 INIT_HLIST_HEAD(&list[i]);
338
339 for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
340 if (!lsm->enabled)
341 lsm->enabled = &lsm_enabled_true;
342 prepare_lsm(lsm);
343 initialize_lsm(lsm);
344 }
345
346 return 0;
347}
348
349/**
350 * security_init - initializes the security framework
351 *
352 * This should be called early in the kernel initialization sequence.
353 */
354int __init security_init(void)
355{
356 struct lsm_info *lsm;
357
358 pr_info("Security Framework initializing\n");
359
360 /*
361 * Append the names of the early LSM modules now that kmalloc() is
362 * available
363 */
364 for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
365 if (lsm->enabled)
366 lsm_append(lsm->name, &lsm_names);
367 }
368
369 /* Load LSMs in specified order. */
370 ordered_lsm_init();
371
372 return 0;
373}
374
375/* Save user chosen LSM */
376static int __init choose_major_lsm(char *str)
377{
378 chosen_major_lsm = str;
379 return 1;
380}
381__setup("security=", choose_major_lsm);
382
383/* Explicitly choose LSM initialization order. */
384static int __init choose_lsm_order(char *str)
385{
386 chosen_lsm_order = str;
387 return 1;
388}
389__setup("lsm=", choose_lsm_order);
390
391/* Enable LSM order debugging. */
392static int __init enable_debug(char *str)
393{
394 debug = true;
395 return 1;
396}
397__setup("lsm.debug", enable_debug);
398
399static bool match_last_lsm(const char *list, const char *lsm)
400{
401 const char *last;
402
403 if (WARN_ON(!list || !lsm))
404 return false;
405 last = strrchr(list, ',');
406 if (last)
407 /* Pass the comma, strcmp() will check for '\0' */
408 last++;
409 else
410 last = list;
411 return !strcmp(last, lsm);
412}
413
414static int lsm_append(const char *new, char **result)
415{
416 char *cp;
417
418 if (*result == NULL) {
419 *result = kstrdup(new, GFP_KERNEL);
420 if (*result == NULL)
421 return -ENOMEM;
422 } else {
423 /* Check if it is the last registered name */
424 if (match_last_lsm(*result, new))
425 return 0;
426 cp = kasprintf(GFP_KERNEL, "%s,%s", *result, new);
427 if (cp == NULL)
428 return -ENOMEM;
429 kfree(*result);
430 *result = cp;
431 }
432 return 0;
433}
434
435/**
436 * security_add_hooks - Add a modules hooks to the hook lists.
437 * @hooks: the hooks to add
438 * @count: the number of hooks to add
439 * @lsm: the name of the security module
440 *
441 * Each LSM has to register its hooks with the infrastructure.
442 */
443void __init security_add_hooks(struct security_hook_list *hooks, int count,
444 char *lsm)
445{
446 int i;
447
448 for (i = 0; i < count; i++) {
449 hooks[i].lsm = lsm;
450 hlist_add_tail_rcu(&hooks[i].list, hooks[i].head);
451 }
452
453 /*
454 * Don't try to append during early_security_init(), we'll come back
455 * and fix this up afterwards.
456 */
457 if (slab_is_available()) {
458 if (lsm_append(lsm, &lsm_names) < 0)
459 panic("%s - Cannot get early memory.\n", __func__);
460 }
461}
462
463int call_blocking_lsm_notifier(enum lsm_event event, void *data)
464{
465 return blocking_notifier_call_chain(&blocking_lsm_notifier_chain,
466 event, data);
467}
468EXPORT_SYMBOL(call_blocking_lsm_notifier);
469
470int register_blocking_lsm_notifier(struct notifier_block *nb)
471{
472 return blocking_notifier_chain_register(&blocking_lsm_notifier_chain,
473 nb);
474}
475EXPORT_SYMBOL(register_blocking_lsm_notifier);
476
477int unregister_blocking_lsm_notifier(struct notifier_block *nb)
478{
479 return blocking_notifier_chain_unregister(&blocking_lsm_notifier_chain,
480 nb);
481}
482EXPORT_SYMBOL(unregister_blocking_lsm_notifier);
483
484/**
485 * lsm_cred_alloc - allocate a composite cred blob
486 * @cred: the cred that needs a blob
487 * @gfp: allocation type
488 *
489 * Allocate the cred blob for all the modules
490 *
491 * Returns 0, or -ENOMEM if memory can't be allocated.
492 */
493static int lsm_cred_alloc(struct cred *cred, gfp_t gfp)
494{
495 if (blob_sizes.lbs_cred == 0) {
496 cred->security = NULL;
497 return 0;
498 }
499
500 cred->security = kzalloc(blob_sizes.lbs_cred, gfp);
501 if (cred->security == NULL)
502 return -ENOMEM;
503 return 0;
504}
505
506/**
507 * lsm_early_cred - during initialization allocate a composite cred blob
508 * @cred: the cred that needs a blob
509 *
510 * Allocate the cred blob for all the modules
511 */
512static void __init lsm_early_cred(struct cred *cred)
513{
514 int rc = lsm_cred_alloc(cred, GFP_KERNEL);
515
516 if (rc)
517 panic("%s: Early cred alloc failed.\n", __func__);
518}
519
520/**
521 * lsm_file_alloc - allocate a composite file blob
522 * @file: the file that needs a blob
523 *
524 * Allocate the file blob for all the modules
525 *
526 * Returns 0, or -ENOMEM if memory can't be allocated.
527 */
528static int lsm_file_alloc(struct file *file)
529{
530 if (!lsm_file_cache) {
531 file->f_security = NULL;
532 return 0;
533 }
534
535 file->f_security = kmem_cache_zalloc(lsm_file_cache, GFP_KERNEL);
536 if (file->f_security == NULL)
537 return -ENOMEM;
538 return 0;
539}
540
541/**
542 * lsm_inode_alloc - allocate a composite inode blob
543 * @inode: the inode that needs a blob
544 *
545 * Allocate the inode blob for all the modules
546 *
547 * Returns 0, or -ENOMEM if memory can't be allocated.
548 */
549int lsm_inode_alloc(struct inode *inode)
550{
551 if (!lsm_inode_cache) {
552 inode->i_security = NULL;
553 return 0;
554 }
555
556 inode->i_security = kmem_cache_zalloc(lsm_inode_cache, GFP_NOFS);
557 if (inode->i_security == NULL)
558 return -ENOMEM;
559 return 0;
560}
561
562/**
563 * lsm_task_alloc - allocate a composite task blob
564 * @task: the task that needs a blob
565 *
566 * Allocate the task blob for all the modules
567 *
568 * Returns 0, or -ENOMEM if memory can't be allocated.
569 */
570static int lsm_task_alloc(struct task_struct *task)
571{
572 if (blob_sizes.lbs_task == 0) {
573 task->security = NULL;
574 return 0;
575 }
576
577 task->security = kzalloc(blob_sizes.lbs_task, GFP_KERNEL);
578 if (task->security == NULL)
579 return -ENOMEM;
580 return 0;
581}
582
583/**
584 * lsm_ipc_alloc - allocate a composite ipc blob
585 * @kip: the ipc that needs a blob
586 *
587 * Allocate the ipc blob for all the modules
588 *
589 * Returns 0, or -ENOMEM if memory can't be allocated.
590 */
591static int lsm_ipc_alloc(struct kern_ipc_perm *kip)
592{
593 if (blob_sizes.lbs_ipc == 0) {
594 kip->security = NULL;
595 return 0;
596 }
597
598 kip->security = kzalloc(blob_sizes.lbs_ipc, GFP_KERNEL);
599 if (kip->security == NULL)
600 return -ENOMEM;
601 return 0;
602}
603
604/**
605 * lsm_msg_msg_alloc - allocate a composite msg_msg blob
606 * @mp: the msg_msg that needs a blob
607 *
608 * Allocate the ipc blob for all the modules
609 *
610 * Returns 0, or -ENOMEM if memory can't be allocated.
611 */
612static int lsm_msg_msg_alloc(struct msg_msg *mp)
613{
614 if (blob_sizes.lbs_msg_msg == 0) {
615 mp->security = NULL;
616 return 0;
617 }
618
619 mp->security = kzalloc(blob_sizes.lbs_msg_msg, GFP_KERNEL);
620 if (mp->security == NULL)
621 return -ENOMEM;
622 return 0;
623}
624
625/**
626 * lsm_early_task - during initialization allocate a composite task blob
627 * @task: the task that needs a blob
628 *
629 * Allocate the task blob for all the modules
630 */
631static void __init lsm_early_task(struct task_struct *task)
632{
633 int rc = lsm_task_alloc(task);
634
635 if (rc)
636 panic("%s: Early task alloc failed.\n", __func__);
637}
638
639/*
640 * Hook list operation macros.
641 *
642 * call_void_hook:
643 * This is a hook that does not return a value.
644 *
645 * call_int_hook:
646 * This is a hook that returns a value.
647 */
648
649#define call_void_hook(FUNC, ...) \
650 do { \
651 struct security_hook_list *P; \
652 \
653 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) \
654 P->hook.FUNC(__VA_ARGS__); \
655 } while (0)
656
657#define call_int_hook(FUNC, IRC, ...) ({ \
658 int RC = IRC; \
659 do { \
660 struct security_hook_list *P; \
661 \
662 hlist_for_each_entry(P, &security_hook_heads.FUNC, list) { \
663 RC = P->hook.FUNC(__VA_ARGS__); \
664 if (RC != 0) \
665 break; \
666 } \
667 } while (0); \
668 RC; \
669})
670
671/* Security operations */
672
673int security_binder_set_context_mgr(struct task_struct *mgr)
674{
675 return call_int_hook(binder_set_context_mgr, 0, mgr);
676}
677
678int security_binder_transaction(struct task_struct *from,
679 struct task_struct *to)
680{
681 return call_int_hook(binder_transaction, 0, from, to);
682}
683
684int security_binder_transfer_binder(struct task_struct *from,
685 struct task_struct *to)
686{
687 return call_int_hook(binder_transfer_binder, 0, from, to);
688}
689
690int security_binder_transfer_file(struct task_struct *from,
691 struct task_struct *to, struct file *file)
692{
693 return call_int_hook(binder_transfer_file, 0, from, to, file);
694}
695
696int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
697{
698 return call_int_hook(ptrace_access_check, 0, child, mode);
699}
700
701int security_ptrace_traceme(struct task_struct *parent)
702{
703 return call_int_hook(ptrace_traceme, 0, parent);
704}
705
706int security_capget(struct task_struct *target,
707 kernel_cap_t *effective,
708 kernel_cap_t *inheritable,
709 kernel_cap_t *permitted)
710{
711 return call_int_hook(capget, 0, target,
712 effective, inheritable, permitted);
713}
714
715int security_capset(struct cred *new, const struct cred *old,
716 const kernel_cap_t *effective,
717 const kernel_cap_t *inheritable,
718 const kernel_cap_t *permitted)
719{
720 return call_int_hook(capset, 0, new, old,
721 effective, inheritable, permitted);
722}
723
724int security_capable(const struct cred *cred,
725 struct user_namespace *ns,
726 int cap,
727 unsigned int opts)
728{
729 return call_int_hook(capable, 0, cred, ns, cap, opts);
730}
731
732int security_quotactl(int cmds, int type, int id, struct super_block *sb)
733{
734 return call_int_hook(quotactl, 0, cmds, type, id, sb);
735}
736
737int security_quota_on(struct dentry *dentry)
738{
739 return call_int_hook(quota_on, 0, dentry);
740}
741
742int security_syslog(int type)
743{
744 return call_int_hook(syslog, 0, type);
745}
746
747int security_settime64(const struct timespec64 *ts, const struct timezone *tz)
748{
749 return call_int_hook(settime, 0, ts, tz);
750}
751
752int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
753{
754 struct security_hook_list *hp;
755 int cap_sys_admin = 1;
756 int rc;
757
758 /*
759 * The module will respond with a positive value if
760 * it thinks the __vm_enough_memory() call should be
761 * made with the cap_sys_admin set. If all of the modules
762 * agree that it should be set it will. If any module
763 * thinks it should not be set it won't.
764 */
765 hlist_for_each_entry(hp, &security_hook_heads.vm_enough_memory, list) {
766 rc = hp->hook.vm_enough_memory(mm, pages);
767 if (rc <= 0) {
768 cap_sys_admin = 0;
769 break;
770 }
771 }
772 return __vm_enough_memory(mm, pages, cap_sys_admin);
773}
774
775int security_bprm_set_creds(struct linux_binprm *bprm)
776{
777 return call_int_hook(bprm_set_creds, 0, bprm);
778}
779
780int security_bprm_check(struct linux_binprm *bprm)
781{
782 int ret;
783
784 ret = call_int_hook(bprm_check_security, 0, bprm);
785 if (ret)
786 return ret;
787 return ima_bprm_check(bprm);
788}
789
790void security_bprm_committing_creds(struct linux_binprm *bprm)
791{
792 call_void_hook(bprm_committing_creds, bprm);
793}
794
795void security_bprm_committed_creds(struct linux_binprm *bprm)
796{
797 call_void_hook(bprm_committed_creds, bprm);
798}
799
800int security_fs_context_dup(struct fs_context *fc, struct fs_context *src_fc)
801{
802 return call_int_hook(fs_context_dup, 0, fc, src_fc);
803}
804
805int security_fs_context_parse_param(struct fs_context *fc, struct fs_parameter *param)
806{
807 return call_int_hook(fs_context_parse_param, -ENOPARAM, fc, param);
808}
809
810int security_sb_alloc(struct super_block *sb)
811{
812 return call_int_hook(sb_alloc_security, 0, sb);
813}
814
815void security_sb_free(struct super_block *sb)
816{
817 call_void_hook(sb_free_security, sb);
818}
819
820void security_free_mnt_opts(void **mnt_opts)
821{
822 if (!*mnt_opts)
823 return;
824 call_void_hook(sb_free_mnt_opts, *mnt_opts);
825 *mnt_opts = NULL;
826}
827EXPORT_SYMBOL(security_free_mnt_opts);
828
829int security_sb_eat_lsm_opts(char *options, void **mnt_opts)
830{
831 return call_int_hook(sb_eat_lsm_opts, 0, options, mnt_opts);
832}
833EXPORT_SYMBOL(security_sb_eat_lsm_opts);
834
835int security_sb_remount(struct super_block *sb,
836 void *mnt_opts)
837{
838 return call_int_hook(sb_remount, 0, sb, mnt_opts);
839}
840EXPORT_SYMBOL(security_sb_remount);
841
842int security_sb_kern_mount(struct super_block *sb)
843{
844 return call_int_hook(sb_kern_mount, 0, sb);
845}
846
847int security_sb_show_options(struct seq_file *m, struct super_block *sb)
848{
849 return call_int_hook(sb_show_options, 0, m, sb);
850}
851
852int security_sb_statfs(struct dentry *dentry)
853{
854 return call_int_hook(sb_statfs, 0, dentry);
855}
856
857int security_sb_mount(const char *dev_name, const struct path *path,
858 const char *type, unsigned long flags, void *data)
859{
860 return call_int_hook(sb_mount, 0, dev_name, path, type, flags, data);
861}
862
863int security_sb_umount(struct vfsmount *mnt, int flags)
864{
865 return call_int_hook(sb_umount, 0, mnt, flags);
866}
867
868int security_sb_pivotroot(const struct path *old_path, const struct path *new_path)
869{
870 return call_int_hook(sb_pivotroot, 0, old_path, new_path);
871}
872
873int security_sb_set_mnt_opts(struct super_block *sb,
874 void *mnt_opts,
875 unsigned long kern_flags,
876 unsigned long *set_kern_flags)
877{
878 return call_int_hook(sb_set_mnt_opts,
879 mnt_opts ? -EOPNOTSUPP : 0, sb,
880 mnt_opts, kern_flags, set_kern_flags);
881}
882EXPORT_SYMBOL(security_sb_set_mnt_opts);
883
884int security_sb_clone_mnt_opts(const struct super_block *oldsb,
885 struct super_block *newsb,
886 unsigned long kern_flags,
887 unsigned long *set_kern_flags)
888{
889 return call_int_hook(sb_clone_mnt_opts, 0, oldsb, newsb,
890 kern_flags, set_kern_flags);
891}
892EXPORT_SYMBOL(security_sb_clone_mnt_opts);
893
894int security_add_mnt_opt(const char *option, const char *val, int len,
895 void **mnt_opts)
896{
897 return call_int_hook(sb_add_mnt_opt, -EINVAL,
898 option, val, len, mnt_opts);
899}
900EXPORT_SYMBOL(security_add_mnt_opt);
901
902int security_move_mount(const struct path *from_path, const struct path *to_path)
903{
904 return call_int_hook(move_mount, 0, from_path, to_path);
905}
906
907int security_path_notify(const struct path *path, u64 mask,
908 unsigned int obj_type)
909{
910 return call_int_hook(path_notify, 0, path, mask, obj_type);
911}
912
913int security_inode_alloc(struct inode *inode)
914{
915 int rc = lsm_inode_alloc(inode);
916
917 if (unlikely(rc))
918 return rc;
919 rc = call_int_hook(inode_alloc_security, 0, inode);
920 if (unlikely(rc))
921 security_inode_free(inode);
922 return rc;
923}
924
925static void inode_free_by_rcu(struct rcu_head *head)
926{
927 /*
928 * The rcu head is at the start of the inode blob
929 */
930 kmem_cache_free(lsm_inode_cache, head);
931}
932
933void security_inode_free(struct inode *inode)
934{
935 integrity_inode_free(inode);
936 call_void_hook(inode_free_security, inode);
937 /*
938 * The inode may still be referenced in a path walk and
939 * a call to security_inode_permission() can be made
940 * after inode_free_security() is called. Ideally, the VFS
941 * wouldn't do this, but fixing that is a much harder
942 * job. For now, simply free the i_security via RCU, and
943 * leave the current inode->i_security pointer intact.
944 * The inode will be freed after the RCU grace period too.
945 */
946 if (inode->i_security)
947 call_rcu((struct rcu_head *)inode->i_security,
948 inode_free_by_rcu);
949}
950
951int security_dentry_init_security(struct dentry *dentry, int mode,
952 const struct qstr *name, void **ctx,
953 u32 *ctxlen)
954{
955 return call_int_hook(dentry_init_security, -EOPNOTSUPP, dentry, mode,
956 name, ctx, ctxlen);
957}
958EXPORT_SYMBOL(security_dentry_init_security);
959
960int security_dentry_create_files_as(struct dentry *dentry, int mode,
961 struct qstr *name,
962 const struct cred *old, struct cred *new)
963{
964 return call_int_hook(dentry_create_files_as, 0, dentry, mode,
965 name, old, new);
966}
967EXPORT_SYMBOL(security_dentry_create_files_as);
968
969int security_inode_init_security(struct inode *inode, struct inode *dir,
970 const struct qstr *qstr,
971 const initxattrs initxattrs, void *fs_data)
972{
973 struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1];
974 struct xattr *lsm_xattr, *evm_xattr, *xattr;
975 int ret;
976
977 if (unlikely(IS_PRIVATE(inode)))
978 return 0;
979
980 if (!initxattrs)
981 return call_int_hook(inode_init_security, -EOPNOTSUPP, inode,
982 dir, qstr, NULL, NULL, NULL);
983 memset(new_xattrs, 0, sizeof(new_xattrs));
984 lsm_xattr = new_xattrs;
985 ret = call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir, qstr,
986 &lsm_xattr->name,
987 &lsm_xattr->value,
988 &lsm_xattr->value_len);
989 if (ret)
990 goto out;
991
992 evm_xattr = lsm_xattr + 1;
993 ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr);
994 if (ret)
995 goto out;
996 ret = initxattrs(inode, new_xattrs, fs_data);
997out:
998 for (xattr = new_xattrs; xattr->value != NULL; xattr++)
999 kfree(xattr->value);
1000 return (ret == -EOPNOTSUPP) ? 0 : ret;
1001}
1002EXPORT_SYMBOL(security_inode_init_security);
1003
1004int security_old_inode_init_security(struct inode *inode, struct inode *dir,
1005 const struct qstr *qstr, const char **name,
1006 void **value, size_t *len)
1007{
1008 if (unlikely(IS_PRIVATE(inode)))
1009 return -EOPNOTSUPP;
1010 return call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir,
1011 qstr, name, value, len);
1012}
1013EXPORT_SYMBOL(security_old_inode_init_security);
1014
1015#ifdef CONFIG_SECURITY_PATH
1016int security_path_mknod(const struct path *dir, struct dentry *dentry, umode_t mode,
1017 unsigned int dev)
1018{
1019 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1020 return 0;
1021 return call_int_hook(path_mknod, 0, dir, dentry, mode, dev);
1022}
1023EXPORT_SYMBOL(security_path_mknod);
1024
1025int security_path_mkdir(const struct path *dir, struct dentry *dentry, umode_t mode)
1026{
1027 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1028 return 0;
1029 return call_int_hook(path_mkdir, 0, dir, dentry, mode);
1030}
1031EXPORT_SYMBOL(security_path_mkdir);
1032
1033int security_path_rmdir(const struct path *dir, struct dentry *dentry)
1034{
1035 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1036 return 0;
1037 return call_int_hook(path_rmdir, 0, dir, dentry);
1038}
1039
1040int security_path_unlink(const struct path *dir, struct dentry *dentry)
1041{
1042 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1043 return 0;
1044 return call_int_hook(path_unlink, 0, dir, dentry);
1045}
1046EXPORT_SYMBOL(security_path_unlink);
1047
1048int security_path_symlink(const struct path *dir, struct dentry *dentry,
1049 const char *old_name)
1050{
1051 if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1052 return 0;
1053 return call_int_hook(path_symlink, 0, dir, dentry, old_name);
1054}
1055
1056int security_path_link(struct dentry *old_dentry, const struct path *new_dir,
1057 struct dentry *new_dentry)
1058{
1059 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
1060 return 0;
1061 return call_int_hook(path_link, 0, old_dentry, new_dir, new_dentry);
1062}
1063
1064int security_path_rename(const struct path *old_dir, struct dentry *old_dentry,
1065 const struct path *new_dir, struct dentry *new_dentry,
1066 unsigned int flags)
1067{
1068 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
1069 (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
1070 return 0;
1071
1072 if (flags & RENAME_EXCHANGE) {
1073 int err = call_int_hook(path_rename, 0, new_dir, new_dentry,
1074 old_dir, old_dentry);
1075 if (err)
1076 return err;
1077 }
1078
1079 return call_int_hook(path_rename, 0, old_dir, old_dentry, new_dir,
1080 new_dentry);
1081}
1082EXPORT_SYMBOL(security_path_rename);
1083
1084int security_path_truncate(const struct path *path)
1085{
1086 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1087 return 0;
1088 return call_int_hook(path_truncate, 0, path);
1089}
1090
1091int security_path_chmod(const struct path *path, umode_t mode)
1092{
1093 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1094 return 0;
1095 return call_int_hook(path_chmod, 0, path, mode);
1096}
1097
1098int security_path_chown(const struct path *path, kuid_t uid, kgid_t gid)
1099{
1100 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1101 return 0;
1102 return call_int_hook(path_chown, 0, path, uid, gid);
1103}
1104
1105int security_path_chroot(const struct path *path)
1106{
1107 return call_int_hook(path_chroot, 0, path);
1108}
1109#endif
1110
1111int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
1112{
1113 if (unlikely(IS_PRIVATE(dir)))
1114 return 0;
1115 return call_int_hook(inode_create, 0, dir, dentry, mode);
1116}
1117EXPORT_SYMBOL_GPL(security_inode_create);
1118
1119int security_inode_link(struct dentry *old_dentry, struct inode *dir,
1120 struct dentry *new_dentry)
1121{
1122 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
1123 return 0;
1124 return call_int_hook(inode_link, 0, old_dentry, dir, new_dentry);
1125}
1126
1127int security_inode_unlink(struct inode *dir, struct dentry *dentry)
1128{
1129 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1130 return 0;
1131 return call_int_hook(inode_unlink, 0, dir, dentry);
1132}
1133
1134int security_inode_symlink(struct inode *dir, struct dentry *dentry,
1135 const char *old_name)
1136{
1137 if (unlikely(IS_PRIVATE(dir)))
1138 return 0;
1139 return call_int_hook(inode_symlink, 0, dir, dentry, old_name);
1140}
1141
1142int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1143{
1144 if (unlikely(IS_PRIVATE(dir)))
1145 return 0;
1146 return call_int_hook(inode_mkdir, 0, dir, dentry, mode);
1147}
1148EXPORT_SYMBOL_GPL(security_inode_mkdir);
1149
1150int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
1151{
1152 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1153 return 0;
1154 return call_int_hook(inode_rmdir, 0, dir, dentry);
1155}
1156
1157int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1158{
1159 if (unlikely(IS_PRIVATE(dir)))
1160 return 0;
1161 return call_int_hook(inode_mknod, 0, dir, dentry, mode, dev);
1162}
1163
1164int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
1165 struct inode *new_dir, struct dentry *new_dentry,
1166 unsigned int flags)
1167{
1168 if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
1169 (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
1170 return 0;
1171
1172 if (flags & RENAME_EXCHANGE) {
1173 int err = call_int_hook(inode_rename, 0, new_dir, new_dentry,
1174 old_dir, old_dentry);
1175 if (err)
1176 return err;
1177 }
1178
1179 return call_int_hook(inode_rename, 0, old_dir, old_dentry,
1180 new_dir, new_dentry);
1181}
1182
1183int security_inode_readlink(struct dentry *dentry)
1184{
1185 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1186 return 0;
1187 return call_int_hook(inode_readlink, 0, dentry);
1188}
1189
1190int security_inode_follow_link(struct dentry *dentry, struct inode *inode,
1191 bool rcu)
1192{
1193 if (unlikely(IS_PRIVATE(inode)))
1194 return 0;
1195 return call_int_hook(inode_follow_link, 0, dentry, inode, rcu);
1196}
1197
1198int security_inode_permission(struct inode *inode, int mask)
1199{
1200 if (unlikely(IS_PRIVATE(inode)))
1201 return 0;
1202 return call_int_hook(inode_permission, 0, inode, mask);
1203}
1204
1205int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
1206{
1207 int ret;
1208
1209 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1210 return 0;
1211 ret = call_int_hook(inode_setattr, 0, dentry, attr);
1212 if (ret)
1213 return ret;
1214 return evm_inode_setattr(dentry, attr);
1215}
1216EXPORT_SYMBOL_GPL(security_inode_setattr);
1217
1218int security_inode_getattr(const struct path *path)
1219{
1220 if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1221 return 0;
1222 return call_int_hook(inode_getattr, 0, path);
1223}
1224
1225int security_inode_setxattr(struct dentry *dentry, const char *name,
1226 const void *value, size_t size, int flags)
1227{
1228 int ret;
1229
1230 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1231 return 0;
1232 /*
1233 * SELinux and Smack integrate the cap call,
1234 * so assume that all LSMs supplying this call do so.
1235 */
1236 ret = call_int_hook(inode_setxattr, 1, dentry, name, value, size,
1237 flags);
1238
1239 if (ret == 1)
1240 ret = cap_inode_setxattr(dentry, name, value, size, flags);
1241 if (ret)
1242 return ret;
1243 ret = ima_inode_setxattr(dentry, name, value, size);
1244 if (ret)
1245 return ret;
1246 return evm_inode_setxattr(dentry, name, value, size);
1247}
1248
1249void security_inode_post_setxattr(struct dentry *dentry, const char *name,
1250 const void *value, size_t size, int flags)
1251{
1252 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1253 return;
1254 call_void_hook(inode_post_setxattr, dentry, name, value, size, flags);
1255 evm_inode_post_setxattr(dentry, name, value, size);
1256}
1257
1258int security_inode_getxattr(struct dentry *dentry, const char *name)
1259{
1260 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1261 return 0;
1262 return call_int_hook(inode_getxattr, 0, dentry, name);
1263}
1264
1265int security_inode_listxattr(struct dentry *dentry)
1266{
1267 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1268 return 0;
1269 return call_int_hook(inode_listxattr, 0, dentry);
1270}
1271
1272int security_inode_removexattr(struct dentry *dentry, const char *name)
1273{
1274 int ret;
1275
1276 if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1277 return 0;
1278 /*
1279 * SELinux and Smack integrate the cap call,
1280 * so assume that all LSMs supplying this call do so.
1281 */
1282 ret = call_int_hook(inode_removexattr, 1, dentry, name);
1283 if (ret == 1)
1284 ret = cap_inode_removexattr(dentry, name);
1285 if (ret)
1286 return ret;
1287 ret = ima_inode_removexattr(dentry, name);
1288 if (ret)
1289 return ret;
1290 return evm_inode_removexattr(dentry, name);
1291}
1292
1293int security_inode_need_killpriv(struct dentry *dentry)
1294{
1295 return call_int_hook(inode_need_killpriv, 0, dentry);
1296}
1297
1298int security_inode_killpriv(struct dentry *dentry)
1299{
1300 return call_int_hook(inode_killpriv, 0, dentry);
1301}
1302
1303int security_inode_getsecurity(struct inode *inode, const char *name, void **buffer, bool alloc)
1304{
1305 struct security_hook_list *hp;
1306 int rc;
1307
1308 if (unlikely(IS_PRIVATE(inode)))
1309 return -EOPNOTSUPP;
1310 /*
1311 * Only one module will provide an attribute with a given name.
1312 */
1313 hlist_for_each_entry(hp, &security_hook_heads.inode_getsecurity, list) {
1314 rc = hp->hook.inode_getsecurity(inode, name, buffer, alloc);
1315 if (rc != -EOPNOTSUPP)
1316 return rc;
1317 }
1318 return -EOPNOTSUPP;
1319}
1320
1321int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
1322{
1323 struct security_hook_list *hp;
1324 int rc;
1325
1326 if (unlikely(IS_PRIVATE(inode)))
1327 return -EOPNOTSUPP;
1328 /*
1329 * Only one module will provide an attribute with a given name.
1330 */
1331 hlist_for_each_entry(hp, &security_hook_heads.inode_setsecurity, list) {
1332 rc = hp->hook.inode_setsecurity(inode, name, value, size,
1333 flags);
1334 if (rc != -EOPNOTSUPP)
1335 return rc;
1336 }
1337 return -EOPNOTSUPP;
1338}
1339
1340int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
1341{
1342 if (unlikely(IS_PRIVATE(inode)))
1343 return 0;
1344 return call_int_hook(inode_listsecurity, 0, inode, buffer, buffer_size);
1345}
1346EXPORT_SYMBOL(security_inode_listsecurity);
1347
1348void security_inode_getsecid(struct inode *inode, u32 *secid)
1349{
1350 call_void_hook(inode_getsecid, inode, secid);
1351}
1352
1353int security_inode_copy_up(struct dentry *src, struct cred **new)
1354{
1355 return call_int_hook(inode_copy_up, 0, src, new);
1356}
1357EXPORT_SYMBOL(security_inode_copy_up);
1358
1359int security_inode_copy_up_xattr(const char *name)
1360{
1361 return call_int_hook(inode_copy_up_xattr, -EOPNOTSUPP, name);
1362}
1363EXPORT_SYMBOL(security_inode_copy_up_xattr);
1364
1365int security_kernfs_init_security(struct kernfs_node *kn_dir,
1366 struct kernfs_node *kn)
1367{
1368 return call_int_hook(kernfs_init_security, 0, kn_dir, kn);
1369}
1370
1371int security_file_permission(struct file *file, int mask)
1372{
1373 int ret;
1374
1375 ret = call_int_hook(file_permission, 0, file, mask);
1376 if (ret)
1377 return ret;
1378
1379 return fsnotify_perm(file, mask);
1380}
1381
1382int security_file_alloc(struct file *file)
1383{
1384 int rc = lsm_file_alloc(file);
1385
1386 if (rc)
1387 return rc;
1388 rc = call_int_hook(file_alloc_security, 0, file);
1389 if (unlikely(rc))
1390 security_file_free(file);
1391 return rc;
1392}
1393
1394void security_file_free(struct file *file)
1395{
1396 void *blob;
1397
1398 call_void_hook(file_free_security, file);
1399
1400 blob = file->f_security;
1401 if (blob) {
1402 file->f_security = NULL;
1403 kmem_cache_free(lsm_file_cache, blob);
1404 }
1405}
1406
1407int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1408{
1409 return call_int_hook(file_ioctl, 0, file, cmd, arg);
1410}
1411
1412static inline unsigned long mmap_prot(struct file *file, unsigned long prot)
1413{
1414 /*
1415 * Does we have PROT_READ and does the application expect
1416 * it to imply PROT_EXEC? If not, nothing to talk about...
1417 */
1418 if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ)
1419 return prot;
1420 if (!(current->personality & READ_IMPLIES_EXEC))
1421 return prot;
1422 /*
1423 * if that's an anonymous mapping, let it.
1424 */
1425 if (!file)
1426 return prot | PROT_EXEC;
1427 /*
1428 * ditto if it's not on noexec mount, except that on !MMU we need
1429 * NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case
1430 */
1431 if (!path_noexec(&file->f_path)) {
1432#ifndef CONFIG_MMU
1433 if (file->f_op->mmap_capabilities) {
1434 unsigned caps = file->f_op->mmap_capabilities(file);
1435 if (!(caps & NOMMU_MAP_EXEC))
1436 return prot;
1437 }
1438#endif
1439 return prot | PROT_EXEC;
1440 }
1441 /* anything on noexec mount won't get PROT_EXEC */
1442 return prot;
1443}
1444
1445int security_mmap_file(struct file *file, unsigned long prot,
1446 unsigned long flags)
1447{
1448 int ret;
1449 ret = call_int_hook(mmap_file, 0, file, prot,
1450 mmap_prot(file, prot), flags);
1451 if (ret)
1452 return ret;
1453 return ima_file_mmap(file, prot);
1454}
1455
1456int security_mmap_addr(unsigned long addr)
1457{
1458 return call_int_hook(mmap_addr, 0, addr);
1459}
1460
1461int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
1462 unsigned long prot)
1463{
1464 return call_int_hook(file_mprotect, 0, vma, reqprot, prot);
1465}
1466
1467int security_file_lock(struct file *file, unsigned int cmd)
1468{
1469 return call_int_hook(file_lock, 0, file, cmd);
1470}
1471
1472int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
1473{
1474 return call_int_hook(file_fcntl, 0, file, cmd, arg);
1475}
1476
1477void security_file_set_fowner(struct file *file)
1478{
1479 call_void_hook(file_set_fowner, file);
1480}
1481
1482int security_file_send_sigiotask(struct task_struct *tsk,
1483 struct fown_struct *fown, int sig)
1484{
1485 return call_int_hook(file_send_sigiotask, 0, tsk, fown, sig);
1486}
1487
1488int security_file_receive(struct file *file)
1489{
1490 return call_int_hook(file_receive, 0, file);
1491}
1492
1493int security_file_open(struct file *file)
1494{
1495 int ret;
1496
1497 ret = call_int_hook(file_open, 0, file);
1498 if (ret)
1499 return ret;
1500
1501 return fsnotify_perm(file, MAY_OPEN);
1502}
1503
1504int security_task_alloc(struct task_struct *task, unsigned long clone_flags)
1505{
1506 int rc = lsm_task_alloc(task);
1507
1508 if (rc)
1509 return rc;
1510 rc = call_int_hook(task_alloc, 0, task, clone_flags);
1511 if (unlikely(rc))
1512 security_task_free(task);
1513 return rc;
1514}
1515
1516void security_task_free(struct task_struct *task)
1517{
1518 call_void_hook(task_free, task);
1519
1520 kfree(task->security);
1521 task->security = NULL;
1522}
1523
1524int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
1525{
1526 int rc = lsm_cred_alloc(cred, gfp);
1527
1528 if (rc)
1529 return rc;
1530
1531 rc = call_int_hook(cred_alloc_blank, 0, cred, gfp);
1532 if (unlikely(rc))
1533 security_cred_free(cred);
1534 return rc;
1535}
1536
1537void security_cred_free(struct cred *cred)
1538{
1539 /*
1540 * There is a failure case in prepare_creds() that
1541 * may result in a call here with ->security being NULL.
1542 */
1543 if (unlikely(cred->security == NULL))
1544 return;
1545
1546 call_void_hook(cred_free, cred);
1547
1548 kfree(cred->security);
1549 cred->security = NULL;
1550}
1551
1552int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
1553{
1554 int rc = lsm_cred_alloc(new, gfp);
1555
1556 if (rc)
1557 return rc;
1558
1559 rc = call_int_hook(cred_prepare, 0, new, old, gfp);
1560 if (unlikely(rc))
1561 security_cred_free(new);
1562 return rc;
1563}
1564
1565void security_transfer_creds(struct cred *new, const struct cred *old)
1566{
1567 call_void_hook(cred_transfer, new, old);
1568}
1569
1570void security_cred_getsecid(const struct cred *c, u32 *secid)
1571{
1572 *secid = 0;
1573 call_void_hook(cred_getsecid, c, secid);
1574}
1575EXPORT_SYMBOL(security_cred_getsecid);
1576
1577int security_kernel_act_as(struct cred *new, u32 secid)
1578{
1579 return call_int_hook(kernel_act_as, 0, new, secid);
1580}
1581
1582int security_kernel_create_files_as(struct cred *new, struct inode *inode)
1583{
1584 return call_int_hook(kernel_create_files_as, 0, new, inode);
1585}
1586
1587int security_kernel_module_request(char *kmod_name)
1588{
1589 int ret;
1590
1591 ret = call_int_hook(kernel_module_request, 0, kmod_name);
1592 if (ret)
1593 return ret;
1594 return integrity_kernel_module_request(kmod_name);
1595}
1596
1597int security_kernel_read_file(struct file *file, enum kernel_read_file_id id)
1598{
1599 int ret;
1600
1601 ret = call_int_hook(kernel_read_file, 0, file, id);
1602 if (ret)
1603 return ret;
1604 return ima_read_file(file, id);
1605}
1606EXPORT_SYMBOL_GPL(security_kernel_read_file);
1607
1608int security_kernel_post_read_file(struct file *file, char *buf, loff_t size,
1609 enum kernel_read_file_id id)
1610{
1611 int ret;
1612
1613 ret = call_int_hook(kernel_post_read_file, 0, file, buf, size, id);
1614 if (ret)
1615 return ret;
1616 return ima_post_read_file(file, buf, size, id);
1617}
1618EXPORT_SYMBOL_GPL(security_kernel_post_read_file);
1619
1620int security_kernel_load_data(enum kernel_load_data_id id)
1621{
1622 int ret;
1623
1624 ret = call_int_hook(kernel_load_data, 0, id);
1625 if (ret)
1626 return ret;
1627 return ima_load_data(id);
1628}
1629EXPORT_SYMBOL_GPL(security_kernel_load_data);
1630
1631int security_task_fix_setuid(struct cred *new, const struct cred *old,
1632 int flags)
1633{
1634 return call_int_hook(task_fix_setuid, 0, new, old, flags);
1635}
1636
1637int security_task_setpgid(struct task_struct *p, pid_t pgid)
1638{
1639 return call_int_hook(task_setpgid, 0, p, pgid);
1640}
1641
1642int security_task_getpgid(struct task_struct *p)
1643{
1644 return call_int_hook(task_getpgid, 0, p);
1645}
1646
1647int security_task_getsid(struct task_struct *p)
1648{
1649 return call_int_hook(task_getsid, 0, p);
1650}
1651
1652void security_task_getsecid(struct task_struct *p, u32 *secid)
1653{
1654 *secid = 0;
1655 call_void_hook(task_getsecid, p, secid);
1656}
1657EXPORT_SYMBOL(security_task_getsecid);
1658
1659int security_task_setnice(struct task_struct *p, int nice)
1660{
1661 return call_int_hook(task_setnice, 0, p, nice);
1662}
1663
1664int security_task_setioprio(struct task_struct *p, int ioprio)
1665{
1666 return call_int_hook(task_setioprio, 0, p, ioprio);
1667}
1668
1669int security_task_getioprio(struct task_struct *p)
1670{
1671 return call_int_hook(task_getioprio, 0, p);
1672}
1673
1674int security_task_prlimit(const struct cred *cred, const struct cred *tcred,
1675 unsigned int flags)
1676{
1677 return call_int_hook(task_prlimit, 0, cred, tcred, flags);
1678}
1679
1680int security_task_setrlimit(struct task_struct *p, unsigned int resource,
1681 struct rlimit *new_rlim)
1682{
1683 return call_int_hook(task_setrlimit, 0, p, resource, new_rlim);
1684}
1685
1686int security_task_setscheduler(struct task_struct *p)
1687{
1688 return call_int_hook(task_setscheduler, 0, p);
1689}
1690
1691int security_task_getscheduler(struct task_struct *p)
1692{
1693 return call_int_hook(task_getscheduler, 0, p);
1694}
1695
1696int security_task_movememory(struct task_struct *p)
1697{
1698 return call_int_hook(task_movememory, 0, p);
1699}
1700
1701int security_task_kill(struct task_struct *p, struct kernel_siginfo *info,
1702 int sig, const struct cred *cred)
1703{
1704 return call_int_hook(task_kill, 0, p, info, sig, cred);
1705}
1706
1707int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
1708 unsigned long arg4, unsigned long arg5)
1709{
1710 int thisrc;
1711 int rc = -ENOSYS;
1712 struct security_hook_list *hp;
1713
1714 hlist_for_each_entry(hp, &security_hook_heads.task_prctl, list) {
1715 thisrc = hp->hook.task_prctl(option, arg2, arg3, arg4, arg5);
1716 if (thisrc != -ENOSYS) {
1717 rc = thisrc;
1718 if (thisrc != 0)
1719 break;
1720 }
1721 }
1722 return rc;
1723}
1724
1725void security_task_to_inode(struct task_struct *p, struct inode *inode)
1726{
1727 call_void_hook(task_to_inode, p, inode);
1728}
1729
1730int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
1731{
1732 return call_int_hook(ipc_permission, 0, ipcp, flag);
1733}
1734
1735void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
1736{
1737 *secid = 0;
1738 call_void_hook(ipc_getsecid, ipcp, secid);
1739}
1740
1741int security_msg_msg_alloc(struct msg_msg *msg)
1742{
1743 int rc = lsm_msg_msg_alloc(msg);
1744
1745 if (unlikely(rc))
1746 return rc;
1747 rc = call_int_hook(msg_msg_alloc_security, 0, msg);
1748 if (unlikely(rc))
1749 security_msg_msg_free(msg);
1750 return rc;
1751}
1752
1753void security_msg_msg_free(struct msg_msg *msg)
1754{
1755 call_void_hook(msg_msg_free_security, msg);
1756 kfree(msg->security);
1757 msg->security = NULL;
1758}
1759
1760int security_msg_queue_alloc(struct kern_ipc_perm *msq)
1761{
1762 int rc = lsm_ipc_alloc(msq);
1763
1764 if (unlikely(rc))
1765 return rc;
1766 rc = call_int_hook(msg_queue_alloc_security, 0, msq);
1767 if (unlikely(rc))
1768 security_msg_queue_free(msq);
1769 return rc;
1770}
1771
1772void security_msg_queue_free(struct kern_ipc_perm *msq)
1773{
1774 call_void_hook(msg_queue_free_security, msq);
1775 kfree(msq->security);
1776 msq->security = NULL;
1777}
1778
1779int security_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
1780{
1781 return call_int_hook(msg_queue_associate, 0, msq, msqflg);
1782}
1783
1784int security_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
1785{
1786 return call_int_hook(msg_queue_msgctl, 0, msq, cmd);
1787}
1788
1789int security_msg_queue_msgsnd(struct kern_ipc_perm *msq,
1790 struct msg_msg *msg, int msqflg)
1791{
1792 return call_int_hook(msg_queue_msgsnd, 0, msq, msg, msqflg);
1793}
1794
1795int security_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
1796 struct task_struct *target, long type, int mode)
1797{
1798 return call_int_hook(msg_queue_msgrcv, 0, msq, msg, target, type, mode);
1799}
1800
1801int security_shm_alloc(struct kern_ipc_perm *shp)
1802{
1803 int rc = lsm_ipc_alloc(shp);
1804
1805 if (unlikely(rc))
1806 return rc;
1807 rc = call_int_hook(shm_alloc_security, 0, shp);
1808 if (unlikely(rc))
1809 security_shm_free(shp);
1810 return rc;
1811}
1812
1813void security_shm_free(struct kern_ipc_perm *shp)
1814{
1815 call_void_hook(shm_free_security, shp);
1816 kfree(shp->security);
1817 shp->security = NULL;
1818}
1819
1820int security_shm_associate(struct kern_ipc_perm *shp, int shmflg)
1821{
1822 return call_int_hook(shm_associate, 0, shp, shmflg);
1823}
1824
1825int security_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
1826{
1827 return call_int_hook(shm_shmctl, 0, shp, cmd);
1828}
1829
1830int security_shm_shmat(struct kern_ipc_perm *shp, char __user *shmaddr, int shmflg)
1831{
1832 return call_int_hook(shm_shmat, 0, shp, shmaddr, shmflg);
1833}
1834
1835int security_sem_alloc(struct kern_ipc_perm *sma)
1836{
1837 int rc = lsm_ipc_alloc(sma);
1838
1839 if (unlikely(rc))
1840 return rc;
1841 rc = call_int_hook(sem_alloc_security, 0, sma);
1842 if (unlikely(rc))
1843 security_sem_free(sma);
1844 return rc;
1845}
1846
1847void security_sem_free(struct kern_ipc_perm *sma)
1848{
1849 call_void_hook(sem_free_security, sma);
1850 kfree(sma->security);
1851 sma->security = NULL;
1852}
1853
1854int security_sem_associate(struct kern_ipc_perm *sma, int semflg)
1855{
1856 return call_int_hook(sem_associate, 0, sma, semflg);
1857}
1858
1859int security_sem_semctl(struct kern_ipc_perm *sma, int cmd)
1860{
1861 return call_int_hook(sem_semctl, 0, sma, cmd);
1862}
1863
1864int security_sem_semop(struct kern_ipc_perm *sma, struct sembuf *sops,
1865 unsigned nsops, int alter)
1866{
1867 return call_int_hook(sem_semop, 0, sma, sops, nsops, alter);
1868}
1869
1870void security_d_instantiate(struct dentry *dentry, struct inode *inode)
1871{
1872 if (unlikely(inode && IS_PRIVATE(inode)))
1873 return;
1874 call_void_hook(d_instantiate, dentry, inode);
1875}
1876EXPORT_SYMBOL(security_d_instantiate);
1877
1878int security_getprocattr(struct task_struct *p, const char *lsm, char *name,
1879 char **value)
1880{
1881 struct security_hook_list *hp;
1882
1883 hlist_for_each_entry(hp, &security_hook_heads.getprocattr, list) {
1884 if (lsm != NULL && strcmp(lsm, hp->lsm))
1885 continue;
1886 return hp->hook.getprocattr(p, name, value);
1887 }
1888 return -EINVAL;
1889}
1890
1891int security_setprocattr(const char *lsm, const char *name, void *value,
1892 size_t size)
1893{
1894 struct security_hook_list *hp;
1895
1896 hlist_for_each_entry(hp, &security_hook_heads.setprocattr, list) {
1897 if (lsm != NULL && strcmp(lsm, hp->lsm))
1898 continue;
1899 return hp->hook.setprocattr(name, value, size);
1900 }
1901 return -EINVAL;
1902}
1903
1904int security_netlink_send(struct sock *sk, struct sk_buff *skb)
1905{
1906 return call_int_hook(netlink_send, 0, sk, skb);
1907}
1908
1909int security_ismaclabel(const char *name)
1910{
1911 return call_int_hook(ismaclabel, 0, name);
1912}
1913EXPORT_SYMBOL(security_ismaclabel);
1914
1915int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
1916{
1917 return call_int_hook(secid_to_secctx, -EOPNOTSUPP, secid, secdata,
1918 seclen);
1919}
1920EXPORT_SYMBOL(security_secid_to_secctx);
1921
1922int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
1923{
1924 *secid = 0;
1925 return call_int_hook(secctx_to_secid, 0, secdata, seclen, secid);
1926}
1927EXPORT_SYMBOL(security_secctx_to_secid);
1928
1929void security_release_secctx(char *secdata, u32 seclen)
1930{
1931 call_void_hook(release_secctx, secdata, seclen);
1932}
1933EXPORT_SYMBOL(security_release_secctx);
1934
1935void security_inode_invalidate_secctx(struct inode *inode)
1936{
1937 call_void_hook(inode_invalidate_secctx, inode);
1938}
1939EXPORT_SYMBOL(security_inode_invalidate_secctx);
1940
1941int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
1942{
1943 return call_int_hook(inode_notifysecctx, 0, inode, ctx, ctxlen);
1944}
1945EXPORT_SYMBOL(security_inode_notifysecctx);
1946
1947int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
1948{
1949 return call_int_hook(inode_setsecctx, 0, dentry, ctx, ctxlen);
1950}
1951EXPORT_SYMBOL(security_inode_setsecctx);
1952
1953int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
1954{
1955 return call_int_hook(inode_getsecctx, -EOPNOTSUPP, inode, ctx, ctxlen);
1956}
1957EXPORT_SYMBOL(security_inode_getsecctx);
1958
1959#ifdef CONFIG_SECURITY_NETWORK
1960
1961int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
1962{
1963 return call_int_hook(unix_stream_connect, 0, sock, other, newsk);
1964}
1965EXPORT_SYMBOL(security_unix_stream_connect);
1966
1967int security_unix_may_send(struct socket *sock, struct socket *other)
1968{
1969 return call_int_hook(unix_may_send, 0, sock, other);
1970}
1971EXPORT_SYMBOL(security_unix_may_send);
1972
1973int security_socket_create(int family, int type, int protocol, int kern)
1974{
1975 return call_int_hook(socket_create, 0, family, type, protocol, kern);
1976}
1977
1978int security_socket_post_create(struct socket *sock, int family,
1979 int type, int protocol, int kern)
1980{
1981 return call_int_hook(socket_post_create, 0, sock, family, type,
1982 protocol, kern);
1983}
1984
1985int security_socket_socketpair(struct socket *socka, struct socket *sockb)
1986{
1987 return call_int_hook(socket_socketpair, 0, socka, sockb);
1988}
1989EXPORT_SYMBOL(security_socket_socketpair);
1990
1991int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
1992{
1993 return call_int_hook(socket_bind, 0, sock, address, addrlen);
1994}
1995
1996int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
1997{
1998 return call_int_hook(socket_connect, 0, sock, address, addrlen);
1999}
2000
2001int security_socket_listen(struct socket *sock, int backlog)
2002{
2003 return call_int_hook(socket_listen, 0, sock, backlog);
2004}
2005
2006int security_socket_accept(struct socket *sock, struct socket *newsock)
2007{
2008 return call_int_hook(socket_accept, 0, sock, newsock);
2009}
2010
2011int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
2012{
2013 return call_int_hook(socket_sendmsg, 0, sock, msg, size);
2014}
2015
2016int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
2017 int size, int flags)
2018{
2019 return call_int_hook(socket_recvmsg, 0, sock, msg, size, flags);
2020}
2021
2022int security_socket_getsockname(struct socket *sock)
2023{
2024 return call_int_hook(socket_getsockname, 0, sock);
2025}
2026
2027int security_socket_getpeername(struct socket *sock)
2028{
2029 return call_int_hook(socket_getpeername, 0, sock);
2030}
2031
2032int security_socket_getsockopt(struct socket *sock, int level, int optname)
2033{
2034 return call_int_hook(socket_getsockopt, 0, sock, level, optname);
2035}
2036
2037int security_socket_setsockopt(struct socket *sock, int level, int optname)
2038{
2039 return call_int_hook(socket_setsockopt, 0, sock, level, optname);
2040}
2041
2042int security_socket_shutdown(struct socket *sock, int how)
2043{
2044 return call_int_hook(socket_shutdown, 0, sock, how);
2045}
2046
2047int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
2048{
2049 return call_int_hook(socket_sock_rcv_skb, 0, sk, skb);
2050}
2051EXPORT_SYMBOL(security_sock_rcv_skb);
2052
2053int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
2054 int __user *optlen, unsigned len)
2055{
2056 return call_int_hook(socket_getpeersec_stream, -ENOPROTOOPT, sock,
2057 optval, optlen, len);
2058}
2059
2060int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
2061{
2062 return call_int_hook(socket_getpeersec_dgram, -ENOPROTOOPT, sock,
2063 skb, secid);
2064}
2065EXPORT_SYMBOL(security_socket_getpeersec_dgram);
2066
2067int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
2068{
2069 return call_int_hook(sk_alloc_security, 0, sk, family, priority);
2070}
2071
2072void security_sk_free(struct sock *sk)
2073{
2074 call_void_hook(sk_free_security, sk);
2075}
2076
2077void security_sk_clone(const struct sock *sk, struct sock *newsk)
2078{
2079 call_void_hook(sk_clone_security, sk, newsk);
2080}
2081EXPORT_SYMBOL(security_sk_clone);
2082
2083void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
2084{
2085 call_void_hook(sk_getsecid, sk, &fl->flowi_secid);
2086}
2087EXPORT_SYMBOL(security_sk_classify_flow);
2088
2089void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
2090{
2091 call_void_hook(req_classify_flow, req, fl);
2092}
2093EXPORT_SYMBOL(security_req_classify_flow);
2094
2095void security_sock_graft(struct sock *sk, struct socket *parent)
2096{
2097 call_void_hook(sock_graft, sk, parent);
2098}
2099EXPORT_SYMBOL(security_sock_graft);
2100
2101int security_inet_conn_request(struct sock *sk,
2102 struct sk_buff *skb, struct request_sock *req)
2103{
2104 return call_int_hook(inet_conn_request, 0, sk, skb, req);
2105}
2106EXPORT_SYMBOL(security_inet_conn_request);
2107
2108void security_inet_csk_clone(struct sock *newsk,
2109 const struct request_sock *req)
2110{
2111 call_void_hook(inet_csk_clone, newsk, req);
2112}
2113
2114void security_inet_conn_established(struct sock *sk,
2115 struct sk_buff *skb)
2116{
2117 call_void_hook(inet_conn_established, sk, skb);
2118}
2119EXPORT_SYMBOL(security_inet_conn_established);
2120
2121int security_secmark_relabel_packet(u32 secid)
2122{
2123 return call_int_hook(secmark_relabel_packet, 0, secid);
2124}
2125EXPORT_SYMBOL(security_secmark_relabel_packet);
2126
2127void security_secmark_refcount_inc(void)
2128{
2129 call_void_hook(secmark_refcount_inc);
2130}
2131EXPORT_SYMBOL(security_secmark_refcount_inc);
2132
2133void security_secmark_refcount_dec(void)
2134{
2135 call_void_hook(secmark_refcount_dec);
2136}
2137EXPORT_SYMBOL(security_secmark_refcount_dec);
2138
2139int security_tun_dev_alloc_security(void **security)
2140{
2141 return call_int_hook(tun_dev_alloc_security, 0, security);
2142}
2143EXPORT_SYMBOL(security_tun_dev_alloc_security);
2144
2145void security_tun_dev_free_security(void *security)
2146{
2147 call_void_hook(tun_dev_free_security, security);
2148}
2149EXPORT_SYMBOL(security_tun_dev_free_security);
2150
2151int security_tun_dev_create(void)
2152{
2153 return call_int_hook(tun_dev_create, 0);
2154}
2155EXPORT_SYMBOL(security_tun_dev_create);
2156
2157int security_tun_dev_attach_queue(void *security)
2158{
2159 return call_int_hook(tun_dev_attach_queue, 0, security);
2160}
2161EXPORT_SYMBOL(security_tun_dev_attach_queue);
2162
2163int security_tun_dev_attach(struct sock *sk, void *security)
2164{
2165 return call_int_hook(tun_dev_attach, 0, sk, security);
2166}
2167EXPORT_SYMBOL(security_tun_dev_attach);
2168
2169int security_tun_dev_open(void *security)
2170{
2171 return call_int_hook(tun_dev_open, 0, security);
2172}
2173EXPORT_SYMBOL(security_tun_dev_open);
2174
2175int security_sctp_assoc_request(struct sctp_endpoint *ep, struct sk_buff *skb)
2176{
2177 return call_int_hook(sctp_assoc_request, 0, ep, skb);
2178}
2179EXPORT_SYMBOL(security_sctp_assoc_request);
2180
2181int security_sctp_bind_connect(struct sock *sk, int optname,
2182 struct sockaddr *address, int addrlen)
2183{
2184 return call_int_hook(sctp_bind_connect, 0, sk, optname,
2185 address, addrlen);
2186}
2187EXPORT_SYMBOL(security_sctp_bind_connect);
2188
2189void security_sctp_sk_clone(struct sctp_endpoint *ep, struct sock *sk,
2190 struct sock *newsk)
2191{
2192 call_void_hook(sctp_sk_clone, ep, sk, newsk);
2193}
2194EXPORT_SYMBOL(security_sctp_sk_clone);
2195
2196#endif /* CONFIG_SECURITY_NETWORK */
2197
2198#ifdef CONFIG_SECURITY_INFINIBAND
2199
2200int security_ib_pkey_access(void *sec, u64 subnet_prefix, u16 pkey)
2201{
2202 return call_int_hook(ib_pkey_access, 0, sec, subnet_prefix, pkey);
2203}
2204EXPORT_SYMBOL(security_ib_pkey_access);
2205
2206int security_ib_endport_manage_subnet(void *sec, const char *dev_name, u8 port_num)
2207{
2208 return call_int_hook(ib_endport_manage_subnet, 0, sec, dev_name, port_num);
2209}
2210EXPORT_SYMBOL(security_ib_endport_manage_subnet);
2211
2212int security_ib_alloc_security(void **sec)
2213{
2214 return call_int_hook(ib_alloc_security, 0, sec);
2215}
2216EXPORT_SYMBOL(security_ib_alloc_security);
2217
2218void security_ib_free_security(void *sec)
2219{
2220 call_void_hook(ib_free_security, sec);
2221}
2222EXPORT_SYMBOL(security_ib_free_security);
2223#endif /* CONFIG_SECURITY_INFINIBAND */
2224
2225#ifdef CONFIG_SECURITY_NETWORK_XFRM
2226
2227int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp,
2228 struct xfrm_user_sec_ctx *sec_ctx,
2229 gfp_t gfp)
2230{
2231 return call_int_hook(xfrm_policy_alloc_security, 0, ctxp, sec_ctx, gfp);
2232}
2233EXPORT_SYMBOL(security_xfrm_policy_alloc);
2234
2235int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
2236 struct xfrm_sec_ctx **new_ctxp)
2237{
2238 return call_int_hook(xfrm_policy_clone_security, 0, old_ctx, new_ctxp);
2239}
2240
2241void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
2242{
2243 call_void_hook(xfrm_policy_free_security, ctx);
2244}
2245EXPORT_SYMBOL(security_xfrm_policy_free);
2246
2247int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
2248{
2249 return call_int_hook(xfrm_policy_delete_security, 0, ctx);
2250}
2251
2252int security_xfrm_state_alloc(struct xfrm_state *x,
2253 struct xfrm_user_sec_ctx *sec_ctx)
2254{
2255 return call_int_hook(xfrm_state_alloc, 0, x, sec_ctx);
2256}
2257EXPORT_SYMBOL(security_xfrm_state_alloc);
2258
2259int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
2260 struct xfrm_sec_ctx *polsec, u32 secid)
2261{
2262 return call_int_hook(xfrm_state_alloc_acquire, 0, x, polsec, secid);
2263}
2264
2265int security_xfrm_state_delete(struct xfrm_state *x)
2266{
2267 return call_int_hook(xfrm_state_delete_security, 0, x);
2268}
2269EXPORT_SYMBOL(security_xfrm_state_delete);
2270
2271void security_xfrm_state_free(struct xfrm_state *x)
2272{
2273 call_void_hook(xfrm_state_free_security, x);
2274}
2275
2276int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
2277{
2278 return call_int_hook(xfrm_policy_lookup, 0, ctx, fl_secid, dir);
2279}
2280
2281int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
2282 struct xfrm_policy *xp,
2283 const struct flowi *fl)
2284{
2285 struct security_hook_list *hp;
2286 int rc = 1;
2287
2288 /*
2289 * Since this function is expected to return 0 or 1, the judgment
2290 * becomes difficult if multiple LSMs supply this call. Fortunately,
2291 * we can use the first LSM's judgment because currently only SELinux
2292 * supplies this call.
2293 *
2294 * For speed optimization, we explicitly break the loop rather than
2295 * using the macro
2296 */
2297 hlist_for_each_entry(hp, &security_hook_heads.xfrm_state_pol_flow_match,
2298 list) {
2299 rc = hp->hook.xfrm_state_pol_flow_match(x, xp, fl);
2300 break;
2301 }
2302 return rc;
2303}
2304
2305int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
2306{
2307 return call_int_hook(xfrm_decode_session, 0, skb, secid, 1);
2308}
2309
2310void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
2311{
2312 int rc = call_int_hook(xfrm_decode_session, 0, skb, &fl->flowi_secid,
2313 0);
2314
2315 BUG_ON(rc);
2316}
2317EXPORT_SYMBOL(security_skb_classify_flow);
2318
2319#endif /* CONFIG_SECURITY_NETWORK_XFRM */
2320
2321#ifdef CONFIG_KEYS
2322
2323int security_key_alloc(struct key *key, const struct cred *cred,
2324 unsigned long flags)
2325{
2326 return call_int_hook(key_alloc, 0, key, cred, flags);
2327}
2328
2329void security_key_free(struct key *key)
2330{
2331 call_void_hook(key_free, key);
2332}
2333
2334int security_key_permission(key_ref_t key_ref,
2335 const struct cred *cred, unsigned perm)
2336{
2337 return call_int_hook(key_permission, 0, key_ref, cred, perm);
2338}
2339
2340int security_key_getsecurity(struct key *key, char **_buffer)
2341{
2342 *_buffer = NULL;
2343 return call_int_hook(key_getsecurity, 0, key, _buffer);
2344}
2345
2346#endif /* CONFIG_KEYS */
2347
2348#ifdef CONFIG_AUDIT
2349
2350int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
2351{
2352 return call_int_hook(audit_rule_init, 0, field, op, rulestr, lsmrule);
2353}
2354
2355int security_audit_rule_known(struct audit_krule *krule)
2356{
2357 return call_int_hook(audit_rule_known, 0, krule);
2358}
2359
2360void security_audit_rule_free(void *lsmrule)
2361{
2362 call_void_hook(audit_rule_free, lsmrule);
2363}
2364
2365int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule)
2366{
2367 return call_int_hook(audit_rule_match, 0, secid, field, op, lsmrule);
2368}
2369#endif /* CONFIG_AUDIT */
2370
2371#ifdef CONFIG_BPF_SYSCALL
2372int security_bpf(int cmd, union bpf_attr *attr, unsigned int size)
2373{
2374 return call_int_hook(bpf, 0, cmd, attr, size);
2375}
2376int security_bpf_map(struct bpf_map *map, fmode_t fmode)
2377{
2378 return call_int_hook(bpf_map, 0, map, fmode);
2379}
2380int security_bpf_prog(struct bpf_prog *prog)
2381{
2382 return call_int_hook(bpf_prog, 0, prog);
2383}
2384int security_bpf_map_alloc(struct bpf_map *map)
2385{
2386 return call_int_hook(bpf_map_alloc_security, 0, map);
2387}
2388int security_bpf_prog_alloc(struct bpf_prog_aux *aux)
2389{
2390 return call_int_hook(bpf_prog_alloc_security, 0, aux);
2391}
2392void security_bpf_map_free(struct bpf_map *map)
2393{
2394 call_void_hook(bpf_map_free_security, map);
2395}
2396void security_bpf_prog_free(struct bpf_prog_aux *aux)
2397{
2398 call_void_hook(bpf_prog_free_security, aux);
2399}
2400#endif /* CONFIG_BPF_SYSCALL */
2401
2402int security_locked_down(enum lockdown_reason what)
2403{
2404 return call_int_hook(locked_down, 0, what);
2405}
2406EXPORT_SYMBOL(security_locked_down);