Linux Audio

Check our new training course

Loading...
v3.15
   1/*
   2 * Security plug functions
   3 *
   4 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
   5 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
   6 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
   7 *
   8 *	This program is free software; you can redistribute it and/or modify
   9 *	it under the terms of the GNU General Public License as published by
  10 *	the Free Software Foundation; either version 2 of the License, or
  11 *	(at your option) any later version.
  12 */
  13
  14#include <linux/capability.h>
  15#include <linux/dcache.h>
  16#include <linux/module.h>
  17#include <linux/init.h>
  18#include <linux/kernel.h>
  19#include <linux/security.h>
  20#include <linux/integrity.h>
  21#include <linux/ima.h>
  22#include <linux/evm.h>
  23#include <linux/fsnotify.h>
  24#include <linux/mman.h>
  25#include <linux/mount.h>
  26#include <linux/personality.h>
  27#include <linux/backing-dev.h>
  28#include <net/flow.h>
  29
  30#define MAX_LSM_EVM_XATTR	2
  31
  32/* Boot-time LSM user choice */
  33static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1] =
  34	CONFIG_DEFAULT_SECURITY;
  35
 
 
 
  36static struct security_operations *security_ops;
  37static struct security_operations default_security_ops = {
  38	.name	= "default",
  39};
  40
  41static inline int __init verify(struct security_operations *ops)
  42{
  43	/* verify the security_operations structure exists */
  44	if (!ops)
  45		return -EINVAL;
  46	security_fixup_ops(ops);
  47	return 0;
  48}
  49
  50static void __init do_security_initcalls(void)
  51{
  52	initcall_t *call;
  53	call = __security_initcall_start;
  54	while (call < __security_initcall_end) {
  55		(*call) ();
  56		call++;
  57	}
  58}
  59
  60/**
  61 * security_init - initializes the security framework
  62 *
  63 * This should be called early in the kernel initialization sequence.
  64 */
  65int __init security_init(void)
  66{
  67	printk(KERN_INFO "Security Framework initialized\n");
  68
  69	security_fixup_ops(&default_security_ops);
  70	security_ops = &default_security_ops;
  71	do_security_initcalls();
  72
  73	return 0;
  74}
  75
  76void reset_security_ops(void)
  77{
  78	security_ops = &default_security_ops;
  79}
  80
  81/* Save user chosen LSM */
  82static int __init choose_lsm(char *str)
  83{
  84	strncpy(chosen_lsm, str, SECURITY_NAME_MAX);
  85	return 1;
  86}
  87__setup("security=", choose_lsm);
  88
  89/**
  90 * security_module_enable - Load given security module on boot ?
  91 * @ops: a pointer to the struct security_operations that is to be checked.
  92 *
  93 * Each LSM must pass this method before registering its own operations
  94 * to avoid security registration races. This method may also be used
  95 * to check if your LSM is currently loaded during kernel initialization.
  96 *
  97 * Return true if:
  98 *	-The passed LSM is the one chosen by user at boot time,
  99 *	-or the passed LSM is configured as the default and the user did not
 100 *	 choose an alternate LSM at boot time.
 101 * Otherwise, return false.
 102 */
 103int __init security_module_enable(struct security_operations *ops)
 104{
 105	return !strcmp(ops->name, chosen_lsm);
 106}
 107
 108/**
 109 * register_security - registers a security framework with the kernel
 110 * @ops: a pointer to the struct security_options that is to be registered
 111 *
 112 * This function allows a security module to register itself with the
 113 * kernel security subsystem.  Some rudimentary checking is done on the @ops
 114 * value passed to this function. You'll need to check first if your LSM
 115 * is allowed to register its @ops by calling security_module_enable(@ops).
 116 *
 117 * If there is already a security module registered with the kernel,
 118 * an error will be returned.  Otherwise %0 is returned on success.
 119 */
 120int __init register_security(struct security_operations *ops)
 121{
 122	if (verify(ops)) {
 123		printk(KERN_DEBUG "%s could not verify "
 124		       "security_operations structure.\n", __func__);
 125		return -EINVAL;
 126	}
 127
 128	if (security_ops != &default_security_ops)
 129		return -EAGAIN;
 130
 131	security_ops = ops;
 132
 133	return 0;
 134}
 135
 136/* Security operations */
 137
 138int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
 139{
 140#ifdef CONFIG_SECURITY_YAMA_STACKED
 141	int rc;
 142	rc = yama_ptrace_access_check(child, mode);
 143	if (rc)
 144		return rc;
 145#endif
 146	return security_ops->ptrace_access_check(child, mode);
 147}
 148
 149int security_ptrace_traceme(struct task_struct *parent)
 150{
 151#ifdef CONFIG_SECURITY_YAMA_STACKED
 152	int rc;
 153	rc = yama_ptrace_traceme(parent);
 154	if (rc)
 155		return rc;
 156#endif
 157	return security_ops->ptrace_traceme(parent);
 158}
 159
 160int security_capget(struct task_struct *target,
 161		     kernel_cap_t *effective,
 162		     kernel_cap_t *inheritable,
 163		     kernel_cap_t *permitted)
 164{
 165	return security_ops->capget(target, effective, inheritable, permitted);
 166}
 167
 168int security_capset(struct cred *new, const struct cred *old,
 169		    const kernel_cap_t *effective,
 170		    const kernel_cap_t *inheritable,
 171		    const kernel_cap_t *permitted)
 172{
 173	return security_ops->capset(new, old,
 174				    effective, inheritable, permitted);
 175}
 176
 177int security_capable(const struct cred *cred, struct user_namespace *ns,
 178		     int cap)
 179{
 180	return security_ops->capable(cred, ns, cap, SECURITY_CAP_AUDIT);
 
 181}
 182
 183int security_capable_noaudit(const struct cred *cred, struct user_namespace *ns,
 184			     int cap)
 185{
 186	return security_ops->capable(cred, ns, cap, SECURITY_CAP_NOAUDIT);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 187}
 188
 189int security_quotactl(int cmds, int type, int id, struct super_block *sb)
 190{
 191	return security_ops->quotactl(cmds, type, id, sb);
 192}
 193
 194int security_quota_on(struct dentry *dentry)
 195{
 196	return security_ops->quota_on(dentry);
 197}
 198
 199int security_syslog(int type)
 200{
 201	return security_ops->syslog(type);
 202}
 203
 204int security_settime(const struct timespec *ts, const struct timezone *tz)
 205{
 206	return security_ops->settime(ts, tz);
 207}
 208
 
 
 
 
 
 
 209int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
 210{
 
 211	return security_ops->vm_enough_memory(mm, pages);
 212}
 213
 
 
 
 
 
 
 
 214int security_bprm_set_creds(struct linux_binprm *bprm)
 215{
 216	return security_ops->bprm_set_creds(bprm);
 217}
 218
 219int security_bprm_check(struct linux_binprm *bprm)
 220{
 221	int ret;
 222
 223	ret = security_ops->bprm_check_security(bprm);
 224	if (ret)
 225		return ret;
 226	return ima_bprm_check(bprm);
 227}
 228
 229void security_bprm_committing_creds(struct linux_binprm *bprm)
 230{
 231	security_ops->bprm_committing_creds(bprm);
 232}
 233
 234void security_bprm_committed_creds(struct linux_binprm *bprm)
 235{
 236	security_ops->bprm_committed_creds(bprm);
 237}
 238
 239int security_bprm_secureexec(struct linux_binprm *bprm)
 240{
 241	return security_ops->bprm_secureexec(bprm);
 242}
 243
 244int security_sb_alloc(struct super_block *sb)
 245{
 246	return security_ops->sb_alloc_security(sb);
 247}
 248
 249void security_sb_free(struct super_block *sb)
 250{
 251	security_ops->sb_free_security(sb);
 252}
 253
 254int security_sb_copy_data(char *orig, char *copy)
 255{
 256	return security_ops->sb_copy_data(orig, copy);
 257}
 258EXPORT_SYMBOL(security_sb_copy_data);
 259
 260int security_sb_remount(struct super_block *sb, void *data)
 261{
 262	return security_ops->sb_remount(sb, data);
 263}
 264
 265int security_sb_kern_mount(struct super_block *sb, int flags, void *data)
 266{
 267	return security_ops->sb_kern_mount(sb, flags, data);
 268}
 269
 270int security_sb_show_options(struct seq_file *m, struct super_block *sb)
 271{
 272	return security_ops->sb_show_options(m, sb);
 273}
 274
 275int security_sb_statfs(struct dentry *dentry)
 276{
 277	return security_ops->sb_statfs(dentry);
 278}
 279
 280int security_sb_mount(const char *dev_name, struct path *path,
 281                       const char *type, unsigned long flags, void *data)
 282{
 283	return security_ops->sb_mount(dev_name, path, type, flags, data);
 284}
 285
 286int security_sb_umount(struct vfsmount *mnt, int flags)
 287{
 288	return security_ops->sb_umount(mnt, flags);
 289}
 290
 291int security_sb_pivotroot(struct path *old_path, struct path *new_path)
 292{
 293	return security_ops->sb_pivotroot(old_path, new_path);
 294}
 295
 296int security_sb_set_mnt_opts(struct super_block *sb,
 297				struct security_mnt_opts *opts,
 298				unsigned long kern_flags,
 299				unsigned long *set_kern_flags)
 300{
 301	return security_ops->sb_set_mnt_opts(sb, opts, kern_flags,
 302						set_kern_flags);
 303}
 304EXPORT_SYMBOL(security_sb_set_mnt_opts);
 305
 306int security_sb_clone_mnt_opts(const struct super_block *oldsb,
 307				struct super_block *newsb)
 308{
 309	return security_ops->sb_clone_mnt_opts(oldsb, newsb);
 310}
 311EXPORT_SYMBOL(security_sb_clone_mnt_opts);
 312
 313int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts)
 314{
 315	return security_ops->sb_parse_opts_str(options, opts);
 316}
 317EXPORT_SYMBOL(security_sb_parse_opts_str);
 318
 319int security_inode_alloc(struct inode *inode)
 320{
 321	inode->i_security = NULL;
 322	return security_ops->inode_alloc_security(inode);
 323}
 324
 325void security_inode_free(struct inode *inode)
 326{
 327	integrity_inode_free(inode);
 328	security_ops->inode_free_security(inode);
 329}
 330
 331int security_dentry_init_security(struct dentry *dentry, int mode,
 332					struct qstr *name, void **ctx,
 333					u32 *ctxlen)
 334{
 335	return security_ops->dentry_init_security(dentry, mode, name,
 336							ctx, ctxlen);
 337}
 338EXPORT_SYMBOL(security_dentry_init_security);
 339
 340int security_inode_init_security(struct inode *inode, struct inode *dir,
 341				 const struct qstr *qstr,
 342				 const initxattrs initxattrs, void *fs_data)
 343{
 344	struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1];
 345	struct xattr *lsm_xattr, *evm_xattr, *xattr;
 346	int ret;
 347
 348	if (unlikely(IS_PRIVATE(inode)))
 349		return 0;
 350
 351	if (!initxattrs)
 352		return security_ops->inode_init_security(inode, dir, qstr,
 353							 NULL, NULL, NULL);
 354	memset(new_xattrs, 0, sizeof(new_xattrs));
 355	lsm_xattr = new_xattrs;
 356	ret = security_ops->inode_init_security(inode, dir, qstr,
 357						&lsm_xattr->name,
 358						&lsm_xattr->value,
 359						&lsm_xattr->value_len);
 360	if (ret)
 361		goto out;
 362
 363	evm_xattr = lsm_xattr + 1;
 364	ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr);
 365	if (ret)
 366		goto out;
 367	ret = initxattrs(inode, new_xattrs, fs_data);
 368out:
 369	for (xattr = new_xattrs; xattr->value != NULL; xattr++)
 370		kfree(xattr->value);
 371	return (ret == -EOPNOTSUPP) ? 0 : ret;
 372}
 373EXPORT_SYMBOL(security_inode_init_security);
 374
 375int security_old_inode_init_security(struct inode *inode, struct inode *dir,
 376				     const struct qstr *qstr, const char **name,
 377				     void **value, size_t *len)
 378{
 379	if (unlikely(IS_PRIVATE(inode)))
 380		return -EOPNOTSUPP;
 381	return security_ops->inode_init_security(inode, dir, qstr, name, value,
 382						 len);
 383}
 384EXPORT_SYMBOL(security_old_inode_init_security);
 385
 386#ifdef CONFIG_SECURITY_PATH
 387int security_path_mknod(struct path *dir, struct dentry *dentry, umode_t mode,
 388			unsigned int dev)
 389{
 390	if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
 391		return 0;
 392	return security_ops->path_mknod(dir, dentry, mode, dev);
 393}
 394EXPORT_SYMBOL(security_path_mknod);
 395
 396int security_path_mkdir(struct path *dir, struct dentry *dentry, umode_t mode)
 397{
 398	if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
 399		return 0;
 400	return security_ops->path_mkdir(dir, dentry, mode);
 401}
 402EXPORT_SYMBOL(security_path_mkdir);
 403
 404int security_path_rmdir(struct path *dir, struct dentry *dentry)
 405{
 406	if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
 407		return 0;
 408	return security_ops->path_rmdir(dir, dentry);
 409}
 410
 411int security_path_unlink(struct path *dir, struct dentry *dentry)
 412{
 413	if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
 414		return 0;
 415	return security_ops->path_unlink(dir, dentry);
 416}
 417EXPORT_SYMBOL(security_path_unlink);
 418
 419int security_path_symlink(struct path *dir, struct dentry *dentry,
 420			  const char *old_name)
 421{
 422	if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
 423		return 0;
 424	return security_ops->path_symlink(dir, dentry, old_name);
 425}
 426
 427int security_path_link(struct dentry *old_dentry, struct path *new_dir,
 428		       struct dentry *new_dentry)
 429{
 430	if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
 431		return 0;
 432	return security_ops->path_link(old_dentry, new_dir, new_dentry);
 433}
 434
 435int security_path_rename(struct path *old_dir, struct dentry *old_dentry,
 436			 struct path *new_dir, struct dentry *new_dentry,
 437			 unsigned int flags)
 438{
 439	if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
 440		     (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
 441		return 0;
 442
 443	if (flags & RENAME_EXCHANGE) {
 444		int err = security_ops->path_rename(new_dir, new_dentry,
 445						    old_dir, old_dentry);
 446		if (err)
 447			return err;
 448	}
 449
 450	return security_ops->path_rename(old_dir, old_dentry, new_dir,
 451					 new_dentry);
 452}
 453EXPORT_SYMBOL(security_path_rename);
 454
 455int security_path_truncate(struct path *path)
 456{
 457	if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
 458		return 0;
 459	return security_ops->path_truncate(path);
 460}
 461
 462int security_path_chmod(struct path *path, umode_t mode)
 
 463{
 464	if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
 465		return 0;
 466	return security_ops->path_chmod(path, mode);
 467}
 468
 469int security_path_chown(struct path *path, kuid_t uid, kgid_t gid)
 470{
 471	if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
 472		return 0;
 473	return security_ops->path_chown(path, uid, gid);
 474}
 475
 476int security_path_chroot(struct path *path)
 477{
 478	return security_ops->path_chroot(path);
 479}
 480#endif
 481
 482int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
 483{
 484	if (unlikely(IS_PRIVATE(dir)))
 485		return 0;
 486	return security_ops->inode_create(dir, dentry, mode);
 487}
 488EXPORT_SYMBOL_GPL(security_inode_create);
 489
 490int security_inode_link(struct dentry *old_dentry, struct inode *dir,
 491			 struct dentry *new_dentry)
 492{
 493	if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
 494		return 0;
 495	return security_ops->inode_link(old_dentry, dir, new_dentry);
 496}
 497
 498int security_inode_unlink(struct inode *dir, struct dentry *dentry)
 499{
 500	if (unlikely(IS_PRIVATE(dentry->d_inode)))
 501		return 0;
 502	return security_ops->inode_unlink(dir, dentry);
 503}
 504
 505int security_inode_symlink(struct inode *dir, struct dentry *dentry,
 506			    const char *old_name)
 507{
 508	if (unlikely(IS_PRIVATE(dir)))
 509		return 0;
 510	return security_ops->inode_symlink(dir, dentry, old_name);
 511}
 512
 513int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
 514{
 515	if (unlikely(IS_PRIVATE(dir)))
 516		return 0;
 517	return security_ops->inode_mkdir(dir, dentry, mode);
 518}
 519EXPORT_SYMBOL_GPL(security_inode_mkdir);
 520
 521int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
 522{
 523	if (unlikely(IS_PRIVATE(dentry->d_inode)))
 524		return 0;
 525	return security_ops->inode_rmdir(dir, dentry);
 526}
 527
 528int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
 529{
 530	if (unlikely(IS_PRIVATE(dir)))
 531		return 0;
 532	return security_ops->inode_mknod(dir, dentry, mode, dev);
 533}
 534
 535int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
 536			   struct inode *new_dir, struct dentry *new_dentry,
 537			   unsigned int flags)
 538{
 539        if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
 540            (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
 541		return 0;
 542
 543	if (flags & RENAME_EXCHANGE) {
 544		int err = security_ops->inode_rename(new_dir, new_dentry,
 545						     old_dir, old_dentry);
 546		if (err)
 547			return err;
 548	}
 549
 550	return security_ops->inode_rename(old_dir, old_dentry,
 551					   new_dir, new_dentry);
 552}
 553
 554int security_inode_readlink(struct dentry *dentry)
 555{
 556	if (unlikely(IS_PRIVATE(dentry->d_inode)))
 557		return 0;
 558	return security_ops->inode_readlink(dentry);
 559}
 560
 561int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd)
 562{
 563	if (unlikely(IS_PRIVATE(dentry->d_inode)))
 564		return 0;
 565	return security_ops->inode_follow_link(dentry, nd);
 566}
 567
 568int security_inode_permission(struct inode *inode, int mask)
 569{
 570	if (unlikely(IS_PRIVATE(inode)))
 571		return 0;
 572	return security_ops->inode_permission(inode, mask);
 573}
 574
 575int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
 576{
 577	int ret;
 578
 579	if (unlikely(IS_PRIVATE(dentry->d_inode)))
 580		return 0;
 581	ret = security_ops->inode_setattr(dentry, attr);
 582	if (ret)
 583		return ret;
 584	return evm_inode_setattr(dentry, attr);
 585}
 586EXPORT_SYMBOL_GPL(security_inode_setattr);
 587
 588int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
 589{
 590	if (unlikely(IS_PRIVATE(dentry->d_inode)))
 591		return 0;
 592	return security_ops->inode_getattr(mnt, dentry);
 593}
 594
 595int security_inode_setxattr(struct dentry *dentry, const char *name,
 596			    const void *value, size_t size, int flags)
 597{
 598	int ret;
 599
 600	if (unlikely(IS_PRIVATE(dentry->d_inode)))
 601		return 0;
 602	ret = security_ops->inode_setxattr(dentry, name, value, size, flags);
 603	if (ret)
 604		return ret;
 605	ret = ima_inode_setxattr(dentry, name, value, size);
 606	if (ret)
 607		return ret;
 608	return evm_inode_setxattr(dentry, name, value, size);
 609}
 610
 611void security_inode_post_setxattr(struct dentry *dentry, const char *name,
 612				  const void *value, size_t size, int flags)
 613{
 614	if (unlikely(IS_PRIVATE(dentry->d_inode)))
 615		return;
 616	security_ops->inode_post_setxattr(dentry, name, value, size, flags);
 617	evm_inode_post_setxattr(dentry, name, value, size);
 618}
 619
 620int security_inode_getxattr(struct dentry *dentry, const char *name)
 621{
 622	if (unlikely(IS_PRIVATE(dentry->d_inode)))
 623		return 0;
 624	return security_ops->inode_getxattr(dentry, name);
 625}
 626
 627int security_inode_listxattr(struct dentry *dentry)
 628{
 629	if (unlikely(IS_PRIVATE(dentry->d_inode)))
 630		return 0;
 631	return security_ops->inode_listxattr(dentry);
 632}
 633
 634int security_inode_removexattr(struct dentry *dentry, const char *name)
 635{
 636	int ret;
 637
 638	if (unlikely(IS_PRIVATE(dentry->d_inode)))
 639		return 0;
 640	ret = security_ops->inode_removexattr(dentry, name);
 641	if (ret)
 642		return ret;
 643	ret = ima_inode_removexattr(dentry, name);
 644	if (ret)
 645		return ret;
 646	return evm_inode_removexattr(dentry, name);
 647}
 648
 649int security_inode_need_killpriv(struct dentry *dentry)
 650{
 651	return security_ops->inode_need_killpriv(dentry);
 652}
 653
 654int security_inode_killpriv(struct dentry *dentry)
 655{
 656	return security_ops->inode_killpriv(dentry);
 657}
 658
 659int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
 660{
 661	if (unlikely(IS_PRIVATE(inode)))
 662		return -EOPNOTSUPP;
 663	return security_ops->inode_getsecurity(inode, name, buffer, alloc);
 664}
 665
 666int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
 667{
 668	if (unlikely(IS_PRIVATE(inode)))
 669		return -EOPNOTSUPP;
 670	return security_ops->inode_setsecurity(inode, name, value, size, flags);
 671}
 672
 673int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
 674{
 675	if (unlikely(IS_PRIVATE(inode)))
 676		return 0;
 677	return security_ops->inode_listsecurity(inode, buffer, buffer_size);
 678}
 679EXPORT_SYMBOL(security_inode_listsecurity);
 680
 681void security_inode_getsecid(const struct inode *inode, u32 *secid)
 682{
 683	security_ops->inode_getsecid(inode, secid);
 684}
 685
 686int security_file_permission(struct file *file, int mask)
 687{
 688	int ret;
 689
 690	ret = security_ops->file_permission(file, mask);
 691	if (ret)
 692		return ret;
 693
 694	return fsnotify_perm(file, mask);
 695}
 696
 697int security_file_alloc(struct file *file)
 698{
 699	return security_ops->file_alloc_security(file);
 700}
 701
 702void security_file_free(struct file *file)
 703{
 704	security_ops->file_free_security(file);
 705}
 706
 707int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
 708{
 709	return security_ops->file_ioctl(file, cmd, arg);
 710}
 711
 712static inline unsigned long mmap_prot(struct file *file, unsigned long prot)
 713{
 714	/*
 715	 * Does we have PROT_READ and does the application expect
 716	 * it to imply PROT_EXEC?  If not, nothing to talk about...
 717	 */
 718	if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ)
 719		return prot;
 720	if (!(current->personality & READ_IMPLIES_EXEC))
 721		return prot;
 722	/*
 723	 * if that's an anonymous mapping, let it.
 724	 */
 725	if (!file)
 726		return prot | PROT_EXEC;
 727	/*
 728	 * ditto if it's not on noexec mount, except that on !MMU we need
 729	 * BDI_CAP_EXEC_MMAP (== VM_MAYEXEC) in this case
 730	 */
 731	if (!(file->f_path.mnt->mnt_flags & MNT_NOEXEC)) {
 732#ifndef CONFIG_MMU
 733		unsigned long caps = 0;
 734		struct address_space *mapping = file->f_mapping;
 735		if (mapping && mapping->backing_dev_info)
 736			caps = mapping->backing_dev_info->capabilities;
 737		if (!(caps & BDI_CAP_EXEC_MAP))
 738			return prot;
 739#endif
 740		return prot | PROT_EXEC;
 741	}
 742	/* anything on noexec mount won't get PROT_EXEC */
 743	return prot;
 744}
 745
 746int security_mmap_file(struct file *file, unsigned long prot,
 747			unsigned long flags)
 748{
 749	int ret;
 750	ret = security_ops->mmap_file(file, prot,
 751					mmap_prot(file, prot), flags);
 752	if (ret)
 753		return ret;
 754	return ima_file_mmap(file, prot);
 755}
 756
 757int security_mmap_addr(unsigned long addr)
 758{
 759	return security_ops->mmap_addr(addr);
 760}
 761
 762int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
 763			    unsigned long prot)
 764{
 765	return security_ops->file_mprotect(vma, reqprot, prot);
 766}
 767
 768int security_file_lock(struct file *file, unsigned int cmd)
 769{
 770	return security_ops->file_lock(file, cmd);
 771}
 772
 773int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
 774{
 775	return security_ops->file_fcntl(file, cmd, arg);
 776}
 777
 778int security_file_set_fowner(struct file *file)
 779{
 780	return security_ops->file_set_fowner(file);
 781}
 782
 783int security_file_send_sigiotask(struct task_struct *tsk,
 784				  struct fown_struct *fown, int sig)
 785{
 786	return security_ops->file_send_sigiotask(tsk, fown, sig);
 787}
 788
 789int security_file_receive(struct file *file)
 790{
 791	return security_ops->file_receive(file);
 792}
 793
 794int security_file_open(struct file *file, const struct cred *cred)
 795{
 796	int ret;
 797
 798	ret = security_ops->file_open(file, cred);
 799	if (ret)
 800		return ret;
 801
 802	return fsnotify_perm(file, MAY_OPEN);
 803}
 804
 805int security_task_create(unsigned long clone_flags)
 806{
 807	return security_ops->task_create(clone_flags);
 808}
 809
 810void security_task_free(struct task_struct *task)
 811{
 812#ifdef CONFIG_SECURITY_YAMA_STACKED
 813	yama_task_free(task);
 814#endif
 815	security_ops->task_free(task);
 816}
 817
 818int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
 819{
 820	return security_ops->cred_alloc_blank(cred, gfp);
 821}
 822
 823void security_cred_free(struct cred *cred)
 824{
 825	security_ops->cred_free(cred);
 826}
 827
 828int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
 829{
 830	return security_ops->cred_prepare(new, old, gfp);
 831}
 832
 833void security_transfer_creds(struct cred *new, const struct cred *old)
 834{
 835	security_ops->cred_transfer(new, old);
 836}
 837
 838int security_kernel_act_as(struct cred *new, u32 secid)
 839{
 840	return security_ops->kernel_act_as(new, secid);
 841}
 842
 843int security_kernel_create_files_as(struct cred *new, struct inode *inode)
 844{
 845	return security_ops->kernel_create_files_as(new, inode);
 846}
 847
 848int security_kernel_module_request(char *kmod_name)
 849{
 850	return security_ops->kernel_module_request(kmod_name);
 851}
 852
 853int security_kernel_module_from_file(struct file *file)
 854{
 855	int ret;
 856
 857	ret = security_ops->kernel_module_from_file(file);
 858	if (ret)
 859		return ret;
 860	return ima_module_check(file);
 861}
 862
 863int security_task_fix_setuid(struct cred *new, const struct cred *old,
 864			     int flags)
 865{
 866	return security_ops->task_fix_setuid(new, old, flags);
 867}
 868
 869int security_task_setpgid(struct task_struct *p, pid_t pgid)
 870{
 871	return security_ops->task_setpgid(p, pgid);
 872}
 873
 874int security_task_getpgid(struct task_struct *p)
 875{
 876	return security_ops->task_getpgid(p);
 877}
 878
 879int security_task_getsid(struct task_struct *p)
 880{
 881	return security_ops->task_getsid(p);
 882}
 883
 884void security_task_getsecid(struct task_struct *p, u32 *secid)
 885{
 886	security_ops->task_getsecid(p, secid);
 887}
 888EXPORT_SYMBOL(security_task_getsecid);
 889
 890int security_task_setnice(struct task_struct *p, int nice)
 891{
 892	return security_ops->task_setnice(p, nice);
 893}
 894
 895int security_task_setioprio(struct task_struct *p, int ioprio)
 896{
 897	return security_ops->task_setioprio(p, ioprio);
 898}
 899
 900int security_task_getioprio(struct task_struct *p)
 901{
 902	return security_ops->task_getioprio(p);
 903}
 904
 905int security_task_setrlimit(struct task_struct *p, unsigned int resource,
 906		struct rlimit *new_rlim)
 907{
 908	return security_ops->task_setrlimit(p, resource, new_rlim);
 909}
 910
 911int security_task_setscheduler(struct task_struct *p)
 912{
 913	return security_ops->task_setscheduler(p);
 914}
 915
 916int security_task_getscheduler(struct task_struct *p)
 917{
 918	return security_ops->task_getscheduler(p);
 919}
 920
 921int security_task_movememory(struct task_struct *p)
 922{
 923	return security_ops->task_movememory(p);
 924}
 925
 926int security_task_kill(struct task_struct *p, struct siginfo *info,
 927			int sig, u32 secid)
 928{
 929	return security_ops->task_kill(p, info, sig, secid);
 930}
 931
 932int security_task_wait(struct task_struct *p)
 933{
 934	return security_ops->task_wait(p);
 935}
 936
 937int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
 938			 unsigned long arg4, unsigned long arg5)
 939{
 940#ifdef CONFIG_SECURITY_YAMA_STACKED
 941	int rc;
 942	rc = yama_task_prctl(option, arg2, arg3, arg4, arg5);
 943	if (rc != -ENOSYS)
 944		return rc;
 945#endif
 946	return security_ops->task_prctl(option, arg2, arg3, arg4, arg5);
 947}
 948
 949void security_task_to_inode(struct task_struct *p, struct inode *inode)
 950{
 951	security_ops->task_to_inode(p, inode);
 952}
 953
 954int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
 955{
 956	return security_ops->ipc_permission(ipcp, flag);
 957}
 958
 959void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
 960{
 961	security_ops->ipc_getsecid(ipcp, secid);
 962}
 963
 964int security_msg_msg_alloc(struct msg_msg *msg)
 965{
 966	return security_ops->msg_msg_alloc_security(msg);
 967}
 968
 969void security_msg_msg_free(struct msg_msg *msg)
 970{
 971	security_ops->msg_msg_free_security(msg);
 972}
 973
 974int security_msg_queue_alloc(struct msg_queue *msq)
 975{
 976	return security_ops->msg_queue_alloc_security(msq);
 977}
 978
 979void security_msg_queue_free(struct msg_queue *msq)
 980{
 981	security_ops->msg_queue_free_security(msq);
 982}
 983
 984int security_msg_queue_associate(struct msg_queue *msq, int msqflg)
 985{
 986	return security_ops->msg_queue_associate(msq, msqflg);
 987}
 988
 989int security_msg_queue_msgctl(struct msg_queue *msq, int cmd)
 990{
 991	return security_ops->msg_queue_msgctl(msq, cmd);
 992}
 993
 994int security_msg_queue_msgsnd(struct msg_queue *msq,
 995			       struct msg_msg *msg, int msqflg)
 996{
 997	return security_ops->msg_queue_msgsnd(msq, msg, msqflg);
 998}
 999
1000int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
1001			       struct task_struct *target, long type, int mode)
1002{
1003	return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode);
1004}
1005
1006int security_shm_alloc(struct shmid_kernel *shp)
1007{
1008	return security_ops->shm_alloc_security(shp);
1009}
1010
1011void security_shm_free(struct shmid_kernel *shp)
1012{
1013	security_ops->shm_free_security(shp);
1014}
1015
1016int security_shm_associate(struct shmid_kernel *shp, int shmflg)
1017{
1018	return security_ops->shm_associate(shp, shmflg);
1019}
1020
1021int security_shm_shmctl(struct shmid_kernel *shp, int cmd)
1022{
1023	return security_ops->shm_shmctl(shp, cmd);
1024}
1025
1026int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg)
1027{
1028	return security_ops->shm_shmat(shp, shmaddr, shmflg);
1029}
1030
1031int security_sem_alloc(struct sem_array *sma)
1032{
1033	return security_ops->sem_alloc_security(sma);
1034}
1035
1036void security_sem_free(struct sem_array *sma)
1037{
1038	security_ops->sem_free_security(sma);
1039}
1040
1041int security_sem_associate(struct sem_array *sma, int semflg)
1042{
1043	return security_ops->sem_associate(sma, semflg);
1044}
1045
1046int security_sem_semctl(struct sem_array *sma, int cmd)
1047{
1048	return security_ops->sem_semctl(sma, cmd);
1049}
1050
1051int security_sem_semop(struct sem_array *sma, struct sembuf *sops,
1052			unsigned nsops, int alter)
1053{
1054	return security_ops->sem_semop(sma, sops, nsops, alter);
1055}
1056
1057void security_d_instantiate(struct dentry *dentry, struct inode *inode)
1058{
1059	if (unlikely(inode && IS_PRIVATE(inode)))
1060		return;
1061	security_ops->d_instantiate(dentry, inode);
1062}
1063EXPORT_SYMBOL(security_d_instantiate);
1064
1065int security_getprocattr(struct task_struct *p, char *name, char **value)
1066{
1067	return security_ops->getprocattr(p, name, value);
1068}
1069
1070int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
1071{
1072	return security_ops->setprocattr(p, name, value, size);
1073}
1074
1075int security_netlink_send(struct sock *sk, struct sk_buff *skb)
1076{
1077	return security_ops->netlink_send(sk, skb);
1078}
1079
1080int security_ismaclabel(const char *name)
1081{
1082	return security_ops->ismaclabel(name);
1083}
1084EXPORT_SYMBOL(security_ismaclabel);
1085
1086int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
1087{
1088	return security_ops->secid_to_secctx(secid, secdata, seclen);
1089}
1090EXPORT_SYMBOL(security_secid_to_secctx);
1091
1092int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
1093{
1094	return security_ops->secctx_to_secid(secdata, seclen, secid);
1095}
1096EXPORT_SYMBOL(security_secctx_to_secid);
1097
1098void security_release_secctx(char *secdata, u32 seclen)
1099{
1100	security_ops->release_secctx(secdata, seclen);
1101}
1102EXPORT_SYMBOL(security_release_secctx);
1103
1104int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
1105{
1106	return security_ops->inode_notifysecctx(inode, ctx, ctxlen);
1107}
1108EXPORT_SYMBOL(security_inode_notifysecctx);
1109
1110int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
1111{
1112	return security_ops->inode_setsecctx(dentry, ctx, ctxlen);
1113}
1114EXPORT_SYMBOL(security_inode_setsecctx);
1115
1116int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
1117{
1118	return security_ops->inode_getsecctx(inode, ctx, ctxlen);
1119}
1120EXPORT_SYMBOL(security_inode_getsecctx);
1121
1122#ifdef CONFIG_SECURITY_NETWORK
1123
1124int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
1125{
1126	return security_ops->unix_stream_connect(sock, other, newsk);
1127}
1128EXPORT_SYMBOL(security_unix_stream_connect);
1129
1130int security_unix_may_send(struct socket *sock,  struct socket *other)
1131{
1132	return security_ops->unix_may_send(sock, other);
1133}
1134EXPORT_SYMBOL(security_unix_may_send);
1135
1136int security_socket_create(int family, int type, int protocol, int kern)
1137{
1138	return security_ops->socket_create(family, type, protocol, kern);
1139}
1140
1141int security_socket_post_create(struct socket *sock, int family,
1142				int type, int protocol, int kern)
1143{
1144	return security_ops->socket_post_create(sock, family, type,
1145						protocol, kern);
1146}
1147
1148int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
1149{
1150	return security_ops->socket_bind(sock, address, addrlen);
1151}
1152
1153int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
1154{
1155	return security_ops->socket_connect(sock, address, addrlen);
1156}
1157
1158int security_socket_listen(struct socket *sock, int backlog)
1159{
1160	return security_ops->socket_listen(sock, backlog);
1161}
1162
1163int security_socket_accept(struct socket *sock, struct socket *newsock)
1164{
1165	return security_ops->socket_accept(sock, newsock);
1166}
1167
1168int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
1169{
1170	return security_ops->socket_sendmsg(sock, msg, size);
1171}
1172
1173int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
1174			    int size, int flags)
1175{
1176	return security_ops->socket_recvmsg(sock, msg, size, flags);
1177}
1178
1179int security_socket_getsockname(struct socket *sock)
1180{
1181	return security_ops->socket_getsockname(sock);
1182}
1183
1184int security_socket_getpeername(struct socket *sock)
1185{
1186	return security_ops->socket_getpeername(sock);
1187}
1188
1189int security_socket_getsockopt(struct socket *sock, int level, int optname)
1190{
1191	return security_ops->socket_getsockopt(sock, level, optname);
1192}
1193
1194int security_socket_setsockopt(struct socket *sock, int level, int optname)
1195{
1196	return security_ops->socket_setsockopt(sock, level, optname);
1197}
1198
1199int security_socket_shutdown(struct socket *sock, int how)
1200{
1201	return security_ops->socket_shutdown(sock, how);
1202}
1203
1204int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
1205{
1206	return security_ops->socket_sock_rcv_skb(sk, skb);
1207}
1208EXPORT_SYMBOL(security_sock_rcv_skb);
1209
1210int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
1211				      int __user *optlen, unsigned len)
1212{
1213	return security_ops->socket_getpeersec_stream(sock, optval, optlen, len);
1214}
1215
1216int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
1217{
1218	return security_ops->socket_getpeersec_dgram(sock, skb, secid);
1219}
1220EXPORT_SYMBOL(security_socket_getpeersec_dgram);
1221
1222int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
1223{
1224	return security_ops->sk_alloc_security(sk, family, priority);
1225}
1226
1227void security_sk_free(struct sock *sk)
1228{
1229	security_ops->sk_free_security(sk);
1230}
1231
1232void security_sk_clone(const struct sock *sk, struct sock *newsk)
1233{
1234	security_ops->sk_clone_security(sk, newsk);
1235}
1236EXPORT_SYMBOL(security_sk_clone);
1237
1238void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
1239{
1240	security_ops->sk_getsecid(sk, &fl->flowi_secid);
1241}
1242EXPORT_SYMBOL(security_sk_classify_flow);
1243
1244void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
1245{
1246	security_ops->req_classify_flow(req, fl);
1247}
1248EXPORT_SYMBOL(security_req_classify_flow);
1249
1250void security_sock_graft(struct sock *sk, struct socket *parent)
1251{
1252	security_ops->sock_graft(sk, parent);
1253}
1254EXPORT_SYMBOL(security_sock_graft);
1255
1256int security_inet_conn_request(struct sock *sk,
1257			struct sk_buff *skb, struct request_sock *req)
1258{
1259	return security_ops->inet_conn_request(sk, skb, req);
1260}
1261EXPORT_SYMBOL(security_inet_conn_request);
1262
1263void security_inet_csk_clone(struct sock *newsk,
1264			const struct request_sock *req)
1265{
1266	security_ops->inet_csk_clone(newsk, req);
1267}
1268
1269void security_inet_conn_established(struct sock *sk,
1270			struct sk_buff *skb)
1271{
1272	security_ops->inet_conn_established(sk, skb);
1273}
1274
1275int security_secmark_relabel_packet(u32 secid)
1276{
1277	return security_ops->secmark_relabel_packet(secid);
1278}
1279EXPORT_SYMBOL(security_secmark_relabel_packet);
1280
1281void security_secmark_refcount_inc(void)
1282{
1283	security_ops->secmark_refcount_inc();
1284}
1285EXPORT_SYMBOL(security_secmark_refcount_inc);
1286
1287void security_secmark_refcount_dec(void)
1288{
1289	security_ops->secmark_refcount_dec();
1290}
1291EXPORT_SYMBOL(security_secmark_refcount_dec);
1292
1293int security_tun_dev_alloc_security(void **security)
1294{
1295	return security_ops->tun_dev_alloc_security(security);
1296}
1297EXPORT_SYMBOL(security_tun_dev_alloc_security);
1298
1299void security_tun_dev_free_security(void *security)
1300{
1301	security_ops->tun_dev_free_security(security);
1302}
1303EXPORT_SYMBOL(security_tun_dev_free_security);
1304
1305int security_tun_dev_create(void)
1306{
1307	return security_ops->tun_dev_create();
1308}
1309EXPORT_SYMBOL(security_tun_dev_create);
1310
1311int security_tun_dev_attach_queue(void *security)
1312{
1313	return security_ops->tun_dev_attach_queue(security);
1314}
1315EXPORT_SYMBOL(security_tun_dev_attach_queue);
1316
1317int security_tun_dev_attach(struct sock *sk, void *security)
1318{
1319	return security_ops->tun_dev_attach(sk, security);
1320}
1321EXPORT_SYMBOL(security_tun_dev_attach);
1322
1323int security_tun_dev_open(void *security)
1324{
1325	return security_ops->tun_dev_open(security);
1326}
1327EXPORT_SYMBOL(security_tun_dev_open);
1328
1329void security_skb_owned_by(struct sk_buff *skb, struct sock *sk)
1330{
1331	security_ops->skb_owned_by(skb, sk);
1332}
1333
1334#endif	/* CONFIG_SECURITY_NETWORK */
1335
1336#ifdef CONFIG_SECURITY_NETWORK_XFRM
1337
1338int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp,
1339			       struct xfrm_user_sec_ctx *sec_ctx,
1340			       gfp_t gfp)
1341{
1342	return security_ops->xfrm_policy_alloc_security(ctxp, sec_ctx, gfp);
1343}
1344EXPORT_SYMBOL(security_xfrm_policy_alloc);
1345
1346int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
1347			      struct xfrm_sec_ctx **new_ctxp)
1348{
1349	return security_ops->xfrm_policy_clone_security(old_ctx, new_ctxp);
1350}
1351
1352void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
1353{
1354	security_ops->xfrm_policy_free_security(ctx);
1355}
1356EXPORT_SYMBOL(security_xfrm_policy_free);
1357
1358int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
1359{
1360	return security_ops->xfrm_policy_delete_security(ctx);
1361}
1362
1363int security_xfrm_state_alloc(struct xfrm_state *x,
1364			      struct xfrm_user_sec_ctx *sec_ctx)
1365{
1366	return security_ops->xfrm_state_alloc(x, sec_ctx);
1367}
1368EXPORT_SYMBOL(security_xfrm_state_alloc);
1369
1370int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
1371				      struct xfrm_sec_ctx *polsec, u32 secid)
1372{
1373	return security_ops->xfrm_state_alloc_acquire(x, polsec, secid);
 
 
 
 
 
 
1374}
1375
1376int security_xfrm_state_delete(struct xfrm_state *x)
1377{
1378	return security_ops->xfrm_state_delete_security(x);
1379}
1380EXPORT_SYMBOL(security_xfrm_state_delete);
1381
1382void security_xfrm_state_free(struct xfrm_state *x)
1383{
1384	security_ops->xfrm_state_free_security(x);
1385}
1386
1387int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
1388{
1389	return security_ops->xfrm_policy_lookup(ctx, fl_secid, dir);
1390}
1391
1392int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
1393				       struct xfrm_policy *xp,
1394				       const struct flowi *fl)
1395{
1396	return security_ops->xfrm_state_pol_flow_match(x, xp, fl);
1397}
1398
1399int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
1400{
1401	return security_ops->xfrm_decode_session(skb, secid, 1);
1402}
1403
1404void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
1405{
1406	int rc = security_ops->xfrm_decode_session(skb, &fl->flowi_secid, 0);
1407
1408	BUG_ON(rc);
1409}
1410EXPORT_SYMBOL(security_skb_classify_flow);
1411
1412#endif	/* CONFIG_SECURITY_NETWORK_XFRM */
1413
1414#ifdef CONFIG_KEYS
1415
1416int security_key_alloc(struct key *key, const struct cred *cred,
1417		       unsigned long flags)
1418{
1419	return security_ops->key_alloc(key, cred, flags);
1420}
1421
1422void security_key_free(struct key *key)
1423{
1424	security_ops->key_free(key);
1425}
1426
1427int security_key_permission(key_ref_t key_ref,
1428			    const struct cred *cred, key_perm_t perm)
1429{
1430	return security_ops->key_permission(key_ref, cred, perm);
1431}
1432
1433int security_key_getsecurity(struct key *key, char **_buffer)
1434{
1435	return security_ops->key_getsecurity(key, _buffer);
1436}
1437
1438#endif	/* CONFIG_KEYS */
1439
1440#ifdef CONFIG_AUDIT
1441
1442int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
1443{
1444	return security_ops->audit_rule_init(field, op, rulestr, lsmrule);
1445}
1446
1447int security_audit_rule_known(struct audit_krule *krule)
1448{
1449	return security_ops->audit_rule_known(krule);
1450}
1451
1452void security_audit_rule_free(void *lsmrule)
1453{
1454	security_ops->audit_rule_free(lsmrule);
1455}
1456
1457int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule,
1458			      struct audit_context *actx)
1459{
1460	return security_ops->audit_rule_match(secid, field, op, lsmrule, actx);
1461}
1462
1463#endif /* CONFIG_AUDIT */
v3.1
   1/*
   2 * Security plug functions
   3 *
   4 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
   5 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
   6 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
   7 *
   8 *	This program is free software; you can redistribute it and/or modify
   9 *	it under the terms of the GNU General Public License as published by
  10 *	the Free Software Foundation; either version 2 of the License, or
  11 *	(at your option) any later version.
  12 */
  13
  14#include <linux/capability.h>
 
  15#include <linux/module.h>
  16#include <linux/init.h>
  17#include <linux/kernel.h>
  18#include <linux/security.h>
 
  19#include <linux/ima.h>
 
 
 
 
 
 
 
 
 
  20
  21/* Boot-time LSM user choice */
  22static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1] =
  23	CONFIG_DEFAULT_SECURITY;
  24
  25/* things that live in capability.c */
  26extern void __init security_fixup_ops(struct security_operations *ops);
  27
  28static struct security_operations *security_ops;
  29static struct security_operations default_security_ops = {
  30	.name	= "default",
  31};
  32
  33static inline int __init verify(struct security_operations *ops)
  34{
  35	/* verify the security_operations structure exists */
  36	if (!ops)
  37		return -EINVAL;
  38	security_fixup_ops(ops);
  39	return 0;
  40}
  41
  42static void __init do_security_initcalls(void)
  43{
  44	initcall_t *call;
  45	call = __security_initcall_start;
  46	while (call < __security_initcall_end) {
  47		(*call) ();
  48		call++;
  49	}
  50}
  51
  52/**
  53 * security_init - initializes the security framework
  54 *
  55 * This should be called early in the kernel initialization sequence.
  56 */
  57int __init security_init(void)
  58{
  59	printk(KERN_INFO "Security Framework initialized\n");
  60
  61	security_fixup_ops(&default_security_ops);
  62	security_ops = &default_security_ops;
  63	do_security_initcalls();
  64
  65	return 0;
  66}
  67
  68void reset_security_ops(void)
  69{
  70	security_ops = &default_security_ops;
  71}
  72
  73/* Save user chosen LSM */
  74static int __init choose_lsm(char *str)
  75{
  76	strncpy(chosen_lsm, str, SECURITY_NAME_MAX);
  77	return 1;
  78}
  79__setup("security=", choose_lsm);
  80
  81/**
  82 * security_module_enable - Load given security module on boot ?
  83 * @ops: a pointer to the struct security_operations that is to be checked.
  84 *
  85 * Each LSM must pass this method before registering its own operations
  86 * to avoid security registration races. This method may also be used
  87 * to check if your LSM is currently loaded during kernel initialization.
  88 *
  89 * Return true if:
  90 *	-The passed LSM is the one chosen by user at boot time,
  91 *	-or the passed LSM is configured as the default and the user did not
  92 *	 choose an alternate LSM at boot time.
  93 * Otherwise, return false.
  94 */
  95int __init security_module_enable(struct security_operations *ops)
  96{
  97	return !strcmp(ops->name, chosen_lsm);
  98}
  99
 100/**
 101 * register_security - registers a security framework with the kernel
 102 * @ops: a pointer to the struct security_options that is to be registered
 103 *
 104 * This function allows a security module to register itself with the
 105 * kernel security subsystem.  Some rudimentary checking is done on the @ops
 106 * value passed to this function. You'll need to check first if your LSM
 107 * is allowed to register its @ops by calling security_module_enable(@ops).
 108 *
 109 * If there is already a security module registered with the kernel,
 110 * an error will be returned.  Otherwise %0 is returned on success.
 111 */
 112int __init register_security(struct security_operations *ops)
 113{
 114	if (verify(ops)) {
 115		printk(KERN_DEBUG "%s could not verify "
 116		       "security_operations structure.\n", __func__);
 117		return -EINVAL;
 118	}
 119
 120	if (security_ops != &default_security_ops)
 121		return -EAGAIN;
 122
 123	security_ops = ops;
 124
 125	return 0;
 126}
 127
 128/* Security operations */
 129
 130int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
 131{
 
 
 
 
 
 
 132	return security_ops->ptrace_access_check(child, mode);
 133}
 134
 135int security_ptrace_traceme(struct task_struct *parent)
 136{
 
 
 
 
 
 
 137	return security_ops->ptrace_traceme(parent);
 138}
 139
 140int security_capget(struct task_struct *target,
 141		     kernel_cap_t *effective,
 142		     kernel_cap_t *inheritable,
 143		     kernel_cap_t *permitted)
 144{
 145	return security_ops->capget(target, effective, inheritable, permitted);
 146}
 147
 148int security_capset(struct cred *new, const struct cred *old,
 149		    const kernel_cap_t *effective,
 150		    const kernel_cap_t *inheritable,
 151		    const kernel_cap_t *permitted)
 152{
 153	return security_ops->capset(new, old,
 154				    effective, inheritable, permitted);
 155}
 156
 157int security_capable(struct user_namespace *ns, const struct cred *cred,
 158		     int cap)
 159{
 160	return security_ops->capable(current, cred, ns, cap,
 161				     SECURITY_CAP_AUDIT);
 162}
 163
 164int security_real_capable(struct task_struct *tsk, struct user_namespace *ns,
 165			  int cap)
 166{
 167	const struct cred *cred;
 168	int ret;
 169
 170	cred = get_task_cred(tsk);
 171	ret = security_ops->capable(tsk, cred, ns, cap, SECURITY_CAP_AUDIT);
 172	put_cred(cred);
 173	return ret;
 174}
 175
 176int security_real_capable_noaudit(struct task_struct *tsk,
 177				  struct user_namespace *ns, int cap)
 178{
 179	const struct cred *cred;
 180	int ret;
 181
 182	cred = get_task_cred(tsk);
 183	ret = security_ops->capable(tsk, cred, ns, cap, SECURITY_CAP_NOAUDIT);
 184	put_cred(cred);
 185	return ret;
 186}
 187
 188int security_quotactl(int cmds, int type, int id, struct super_block *sb)
 189{
 190	return security_ops->quotactl(cmds, type, id, sb);
 191}
 192
 193int security_quota_on(struct dentry *dentry)
 194{
 195	return security_ops->quota_on(dentry);
 196}
 197
 198int security_syslog(int type)
 199{
 200	return security_ops->syslog(type);
 201}
 202
 203int security_settime(const struct timespec *ts, const struct timezone *tz)
 204{
 205	return security_ops->settime(ts, tz);
 206}
 207
 208int security_vm_enough_memory(long pages)
 209{
 210	WARN_ON(current->mm == NULL);
 211	return security_ops->vm_enough_memory(current->mm, pages);
 212}
 213
 214int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
 215{
 216	WARN_ON(mm == NULL);
 217	return security_ops->vm_enough_memory(mm, pages);
 218}
 219
 220int security_vm_enough_memory_kern(long pages)
 221{
 222	/* If current->mm is a kernel thread then we will pass NULL,
 223	   for this specific case that is fine */
 224	return security_ops->vm_enough_memory(current->mm, pages);
 225}
 226
 227int security_bprm_set_creds(struct linux_binprm *bprm)
 228{
 229	return security_ops->bprm_set_creds(bprm);
 230}
 231
 232int security_bprm_check(struct linux_binprm *bprm)
 233{
 234	int ret;
 235
 236	ret = security_ops->bprm_check_security(bprm);
 237	if (ret)
 238		return ret;
 239	return ima_bprm_check(bprm);
 240}
 241
 242void security_bprm_committing_creds(struct linux_binprm *bprm)
 243{
 244	security_ops->bprm_committing_creds(bprm);
 245}
 246
 247void security_bprm_committed_creds(struct linux_binprm *bprm)
 248{
 249	security_ops->bprm_committed_creds(bprm);
 250}
 251
 252int security_bprm_secureexec(struct linux_binprm *bprm)
 253{
 254	return security_ops->bprm_secureexec(bprm);
 255}
 256
 257int security_sb_alloc(struct super_block *sb)
 258{
 259	return security_ops->sb_alloc_security(sb);
 260}
 261
 262void security_sb_free(struct super_block *sb)
 263{
 264	security_ops->sb_free_security(sb);
 265}
 266
 267int security_sb_copy_data(char *orig, char *copy)
 268{
 269	return security_ops->sb_copy_data(orig, copy);
 270}
 271EXPORT_SYMBOL(security_sb_copy_data);
 272
 273int security_sb_remount(struct super_block *sb, void *data)
 274{
 275	return security_ops->sb_remount(sb, data);
 276}
 277
 278int security_sb_kern_mount(struct super_block *sb, int flags, void *data)
 279{
 280	return security_ops->sb_kern_mount(sb, flags, data);
 281}
 282
 283int security_sb_show_options(struct seq_file *m, struct super_block *sb)
 284{
 285	return security_ops->sb_show_options(m, sb);
 286}
 287
 288int security_sb_statfs(struct dentry *dentry)
 289{
 290	return security_ops->sb_statfs(dentry);
 291}
 292
 293int security_sb_mount(char *dev_name, struct path *path,
 294                       char *type, unsigned long flags, void *data)
 295{
 296	return security_ops->sb_mount(dev_name, path, type, flags, data);
 297}
 298
 299int security_sb_umount(struct vfsmount *mnt, int flags)
 300{
 301	return security_ops->sb_umount(mnt, flags);
 302}
 303
 304int security_sb_pivotroot(struct path *old_path, struct path *new_path)
 305{
 306	return security_ops->sb_pivotroot(old_path, new_path);
 307}
 308
 309int security_sb_set_mnt_opts(struct super_block *sb,
 310				struct security_mnt_opts *opts)
 
 
 311{
 312	return security_ops->sb_set_mnt_opts(sb, opts);
 
 313}
 314EXPORT_SYMBOL(security_sb_set_mnt_opts);
 315
 316void security_sb_clone_mnt_opts(const struct super_block *oldsb,
 317				struct super_block *newsb)
 318{
 319	security_ops->sb_clone_mnt_opts(oldsb, newsb);
 320}
 321EXPORT_SYMBOL(security_sb_clone_mnt_opts);
 322
 323int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts)
 324{
 325	return security_ops->sb_parse_opts_str(options, opts);
 326}
 327EXPORT_SYMBOL(security_sb_parse_opts_str);
 328
 329int security_inode_alloc(struct inode *inode)
 330{
 331	inode->i_security = NULL;
 332	return security_ops->inode_alloc_security(inode);
 333}
 334
 335void security_inode_free(struct inode *inode)
 336{
 337	ima_inode_free(inode);
 338	security_ops->inode_free_security(inode);
 339}
 340
 
 
 
 
 
 
 
 
 
 341int security_inode_init_security(struct inode *inode, struct inode *dir,
 342				 const struct qstr *qstr, char **name,
 343				 void **value, size_t *len)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 344{
 345	if (unlikely(IS_PRIVATE(inode)))
 346		return -EOPNOTSUPP;
 347	return security_ops->inode_init_security(inode, dir, qstr, name, value,
 348						 len);
 349}
 350EXPORT_SYMBOL(security_inode_init_security);
 351
 352#ifdef CONFIG_SECURITY_PATH
 353int security_path_mknod(struct path *dir, struct dentry *dentry, int mode,
 354			unsigned int dev)
 355{
 356	if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
 357		return 0;
 358	return security_ops->path_mknod(dir, dentry, mode, dev);
 359}
 360EXPORT_SYMBOL(security_path_mknod);
 361
 362int security_path_mkdir(struct path *dir, struct dentry *dentry, int mode)
 363{
 364	if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
 365		return 0;
 366	return security_ops->path_mkdir(dir, dentry, mode);
 367}
 368EXPORT_SYMBOL(security_path_mkdir);
 369
 370int security_path_rmdir(struct path *dir, struct dentry *dentry)
 371{
 372	if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
 373		return 0;
 374	return security_ops->path_rmdir(dir, dentry);
 375}
 376
 377int security_path_unlink(struct path *dir, struct dentry *dentry)
 378{
 379	if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
 380		return 0;
 381	return security_ops->path_unlink(dir, dentry);
 382}
 383EXPORT_SYMBOL(security_path_unlink);
 384
 385int security_path_symlink(struct path *dir, struct dentry *dentry,
 386			  const char *old_name)
 387{
 388	if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
 389		return 0;
 390	return security_ops->path_symlink(dir, dentry, old_name);
 391}
 392
 393int security_path_link(struct dentry *old_dentry, struct path *new_dir,
 394		       struct dentry *new_dentry)
 395{
 396	if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
 397		return 0;
 398	return security_ops->path_link(old_dentry, new_dir, new_dentry);
 399}
 400
 401int security_path_rename(struct path *old_dir, struct dentry *old_dentry,
 402			 struct path *new_dir, struct dentry *new_dentry)
 
 403{
 404	if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
 405		     (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
 406		return 0;
 
 
 
 
 
 
 
 
 407	return security_ops->path_rename(old_dir, old_dentry, new_dir,
 408					 new_dentry);
 409}
 410EXPORT_SYMBOL(security_path_rename);
 411
 412int security_path_truncate(struct path *path)
 413{
 414	if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
 415		return 0;
 416	return security_ops->path_truncate(path);
 417}
 418
 419int security_path_chmod(struct dentry *dentry, struct vfsmount *mnt,
 420			mode_t mode)
 421{
 422	if (unlikely(IS_PRIVATE(dentry->d_inode)))
 423		return 0;
 424	return security_ops->path_chmod(dentry, mnt, mode);
 425}
 426
 427int security_path_chown(struct path *path, uid_t uid, gid_t gid)
 428{
 429	if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
 430		return 0;
 431	return security_ops->path_chown(path, uid, gid);
 432}
 433
 434int security_path_chroot(struct path *path)
 435{
 436	return security_ops->path_chroot(path);
 437}
 438#endif
 439
 440int security_inode_create(struct inode *dir, struct dentry *dentry, int mode)
 441{
 442	if (unlikely(IS_PRIVATE(dir)))
 443		return 0;
 444	return security_ops->inode_create(dir, dentry, mode);
 445}
 446EXPORT_SYMBOL_GPL(security_inode_create);
 447
 448int security_inode_link(struct dentry *old_dentry, struct inode *dir,
 449			 struct dentry *new_dentry)
 450{
 451	if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
 452		return 0;
 453	return security_ops->inode_link(old_dentry, dir, new_dentry);
 454}
 455
 456int security_inode_unlink(struct inode *dir, struct dentry *dentry)
 457{
 458	if (unlikely(IS_PRIVATE(dentry->d_inode)))
 459		return 0;
 460	return security_ops->inode_unlink(dir, dentry);
 461}
 462
 463int security_inode_symlink(struct inode *dir, struct dentry *dentry,
 464			    const char *old_name)
 465{
 466	if (unlikely(IS_PRIVATE(dir)))
 467		return 0;
 468	return security_ops->inode_symlink(dir, dentry, old_name);
 469}
 470
 471int security_inode_mkdir(struct inode *dir, struct dentry *dentry, int mode)
 472{
 473	if (unlikely(IS_PRIVATE(dir)))
 474		return 0;
 475	return security_ops->inode_mkdir(dir, dentry, mode);
 476}
 477EXPORT_SYMBOL_GPL(security_inode_mkdir);
 478
 479int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
 480{
 481	if (unlikely(IS_PRIVATE(dentry->d_inode)))
 482		return 0;
 483	return security_ops->inode_rmdir(dir, dentry);
 484}
 485
 486int security_inode_mknod(struct inode *dir, struct dentry *dentry, int mode, dev_t dev)
 487{
 488	if (unlikely(IS_PRIVATE(dir)))
 489		return 0;
 490	return security_ops->inode_mknod(dir, dentry, mode, dev);
 491}
 492
 493int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
 494			   struct inode *new_dir, struct dentry *new_dentry)
 
 495{
 496        if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
 497            (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
 498		return 0;
 
 
 
 
 
 
 
 
 499	return security_ops->inode_rename(old_dir, old_dentry,
 500					   new_dir, new_dentry);
 501}
 502
 503int security_inode_readlink(struct dentry *dentry)
 504{
 505	if (unlikely(IS_PRIVATE(dentry->d_inode)))
 506		return 0;
 507	return security_ops->inode_readlink(dentry);
 508}
 509
 510int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd)
 511{
 512	if (unlikely(IS_PRIVATE(dentry->d_inode)))
 513		return 0;
 514	return security_ops->inode_follow_link(dentry, nd);
 515}
 516
 517int security_inode_permission(struct inode *inode, int mask)
 518{
 519	if (unlikely(IS_PRIVATE(inode)))
 520		return 0;
 521	return security_ops->inode_permission(inode, mask);
 522}
 523
 524int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
 525{
 
 
 526	if (unlikely(IS_PRIVATE(dentry->d_inode)))
 527		return 0;
 528	return security_ops->inode_setattr(dentry, attr);
 
 
 
 529}
 530EXPORT_SYMBOL_GPL(security_inode_setattr);
 531
 532int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
 533{
 534	if (unlikely(IS_PRIVATE(dentry->d_inode)))
 535		return 0;
 536	return security_ops->inode_getattr(mnt, dentry);
 537}
 538
 539int security_inode_setxattr(struct dentry *dentry, const char *name,
 540			    const void *value, size_t size, int flags)
 541{
 
 
 542	if (unlikely(IS_PRIVATE(dentry->d_inode)))
 543		return 0;
 544	return security_ops->inode_setxattr(dentry, name, value, size, flags);
 
 
 
 
 
 
 545}
 546
 547void security_inode_post_setxattr(struct dentry *dentry, const char *name,
 548				  const void *value, size_t size, int flags)
 549{
 550	if (unlikely(IS_PRIVATE(dentry->d_inode)))
 551		return;
 552	security_ops->inode_post_setxattr(dentry, name, value, size, flags);
 
 553}
 554
 555int security_inode_getxattr(struct dentry *dentry, const char *name)
 556{
 557	if (unlikely(IS_PRIVATE(dentry->d_inode)))
 558		return 0;
 559	return security_ops->inode_getxattr(dentry, name);
 560}
 561
 562int security_inode_listxattr(struct dentry *dentry)
 563{
 564	if (unlikely(IS_PRIVATE(dentry->d_inode)))
 565		return 0;
 566	return security_ops->inode_listxattr(dentry);
 567}
 568
 569int security_inode_removexattr(struct dentry *dentry, const char *name)
 570{
 
 
 571	if (unlikely(IS_PRIVATE(dentry->d_inode)))
 572		return 0;
 573	return security_ops->inode_removexattr(dentry, name);
 
 
 
 
 
 
 574}
 575
 576int security_inode_need_killpriv(struct dentry *dentry)
 577{
 578	return security_ops->inode_need_killpriv(dentry);
 579}
 580
 581int security_inode_killpriv(struct dentry *dentry)
 582{
 583	return security_ops->inode_killpriv(dentry);
 584}
 585
 586int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
 587{
 588	if (unlikely(IS_PRIVATE(inode)))
 589		return -EOPNOTSUPP;
 590	return security_ops->inode_getsecurity(inode, name, buffer, alloc);
 591}
 592
 593int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
 594{
 595	if (unlikely(IS_PRIVATE(inode)))
 596		return -EOPNOTSUPP;
 597	return security_ops->inode_setsecurity(inode, name, value, size, flags);
 598}
 599
 600int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
 601{
 602	if (unlikely(IS_PRIVATE(inode)))
 603		return 0;
 604	return security_ops->inode_listsecurity(inode, buffer, buffer_size);
 605}
 
 606
 607void security_inode_getsecid(const struct inode *inode, u32 *secid)
 608{
 609	security_ops->inode_getsecid(inode, secid);
 610}
 611
 612int security_file_permission(struct file *file, int mask)
 613{
 614	int ret;
 615
 616	ret = security_ops->file_permission(file, mask);
 617	if (ret)
 618		return ret;
 619
 620	return fsnotify_perm(file, mask);
 621}
 622
 623int security_file_alloc(struct file *file)
 624{
 625	return security_ops->file_alloc_security(file);
 626}
 627
 628void security_file_free(struct file *file)
 629{
 630	security_ops->file_free_security(file);
 631}
 632
 633int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
 634{
 635	return security_ops->file_ioctl(file, cmd, arg);
 636}
 637
 638int security_file_mmap(struct file *file, unsigned long reqprot,
 639			unsigned long prot, unsigned long flags,
 640			unsigned long addr, unsigned long addr_only)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 641{
 642	int ret;
 643
 644	ret = security_ops->file_mmap(file, reqprot, prot, flags, addr, addr_only);
 645	if (ret)
 646		return ret;
 647	return ima_file_mmap(file, prot);
 648}
 649
 
 
 
 
 
 650int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
 651			    unsigned long prot)
 652{
 653	return security_ops->file_mprotect(vma, reqprot, prot);
 654}
 655
 656int security_file_lock(struct file *file, unsigned int cmd)
 657{
 658	return security_ops->file_lock(file, cmd);
 659}
 660
 661int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
 662{
 663	return security_ops->file_fcntl(file, cmd, arg);
 664}
 665
 666int security_file_set_fowner(struct file *file)
 667{
 668	return security_ops->file_set_fowner(file);
 669}
 670
 671int security_file_send_sigiotask(struct task_struct *tsk,
 672				  struct fown_struct *fown, int sig)
 673{
 674	return security_ops->file_send_sigiotask(tsk, fown, sig);
 675}
 676
 677int security_file_receive(struct file *file)
 678{
 679	return security_ops->file_receive(file);
 680}
 681
 682int security_dentry_open(struct file *file, const struct cred *cred)
 683{
 684	int ret;
 685
 686	ret = security_ops->dentry_open(file, cred);
 687	if (ret)
 688		return ret;
 689
 690	return fsnotify_perm(file, MAY_OPEN);
 691}
 692
 693int security_task_create(unsigned long clone_flags)
 694{
 695	return security_ops->task_create(clone_flags);
 696}
 697
 
 
 
 
 
 
 
 
 698int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
 699{
 700	return security_ops->cred_alloc_blank(cred, gfp);
 701}
 702
 703void security_cred_free(struct cred *cred)
 704{
 705	security_ops->cred_free(cred);
 706}
 707
 708int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
 709{
 710	return security_ops->cred_prepare(new, old, gfp);
 711}
 712
 713void security_transfer_creds(struct cred *new, const struct cred *old)
 714{
 715	security_ops->cred_transfer(new, old);
 716}
 717
 718int security_kernel_act_as(struct cred *new, u32 secid)
 719{
 720	return security_ops->kernel_act_as(new, secid);
 721}
 722
 723int security_kernel_create_files_as(struct cred *new, struct inode *inode)
 724{
 725	return security_ops->kernel_create_files_as(new, inode);
 726}
 727
 728int security_kernel_module_request(char *kmod_name)
 729{
 730	return security_ops->kernel_module_request(kmod_name);
 731}
 732
 
 
 
 
 
 
 
 
 
 
 733int security_task_fix_setuid(struct cred *new, const struct cred *old,
 734			     int flags)
 735{
 736	return security_ops->task_fix_setuid(new, old, flags);
 737}
 738
 739int security_task_setpgid(struct task_struct *p, pid_t pgid)
 740{
 741	return security_ops->task_setpgid(p, pgid);
 742}
 743
 744int security_task_getpgid(struct task_struct *p)
 745{
 746	return security_ops->task_getpgid(p);
 747}
 748
 749int security_task_getsid(struct task_struct *p)
 750{
 751	return security_ops->task_getsid(p);
 752}
 753
 754void security_task_getsecid(struct task_struct *p, u32 *secid)
 755{
 756	security_ops->task_getsecid(p, secid);
 757}
 758EXPORT_SYMBOL(security_task_getsecid);
 759
 760int security_task_setnice(struct task_struct *p, int nice)
 761{
 762	return security_ops->task_setnice(p, nice);
 763}
 764
 765int security_task_setioprio(struct task_struct *p, int ioprio)
 766{
 767	return security_ops->task_setioprio(p, ioprio);
 768}
 769
 770int security_task_getioprio(struct task_struct *p)
 771{
 772	return security_ops->task_getioprio(p);
 773}
 774
 775int security_task_setrlimit(struct task_struct *p, unsigned int resource,
 776		struct rlimit *new_rlim)
 777{
 778	return security_ops->task_setrlimit(p, resource, new_rlim);
 779}
 780
 781int security_task_setscheduler(struct task_struct *p)
 782{
 783	return security_ops->task_setscheduler(p);
 784}
 785
 786int security_task_getscheduler(struct task_struct *p)
 787{
 788	return security_ops->task_getscheduler(p);
 789}
 790
 791int security_task_movememory(struct task_struct *p)
 792{
 793	return security_ops->task_movememory(p);
 794}
 795
 796int security_task_kill(struct task_struct *p, struct siginfo *info,
 797			int sig, u32 secid)
 798{
 799	return security_ops->task_kill(p, info, sig, secid);
 800}
 801
 802int security_task_wait(struct task_struct *p)
 803{
 804	return security_ops->task_wait(p);
 805}
 806
 807int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
 808			 unsigned long arg4, unsigned long arg5)
 809{
 
 
 
 
 
 
 810	return security_ops->task_prctl(option, arg2, arg3, arg4, arg5);
 811}
 812
 813void security_task_to_inode(struct task_struct *p, struct inode *inode)
 814{
 815	security_ops->task_to_inode(p, inode);
 816}
 817
 818int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
 819{
 820	return security_ops->ipc_permission(ipcp, flag);
 821}
 822
 823void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
 824{
 825	security_ops->ipc_getsecid(ipcp, secid);
 826}
 827
 828int security_msg_msg_alloc(struct msg_msg *msg)
 829{
 830	return security_ops->msg_msg_alloc_security(msg);
 831}
 832
 833void security_msg_msg_free(struct msg_msg *msg)
 834{
 835	security_ops->msg_msg_free_security(msg);
 836}
 837
 838int security_msg_queue_alloc(struct msg_queue *msq)
 839{
 840	return security_ops->msg_queue_alloc_security(msq);
 841}
 842
 843void security_msg_queue_free(struct msg_queue *msq)
 844{
 845	security_ops->msg_queue_free_security(msq);
 846}
 847
 848int security_msg_queue_associate(struct msg_queue *msq, int msqflg)
 849{
 850	return security_ops->msg_queue_associate(msq, msqflg);
 851}
 852
 853int security_msg_queue_msgctl(struct msg_queue *msq, int cmd)
 854{
 855	return security_ops->msg_queue_msgctl(msq, cmd);
 856}
 857
 858int security_msg_queue_msgsnd(struct msg_queue *msq,
 859			       struct msg_msg *msg, int msqflg)
 860{
 861	return security_ops->msg_queue_msgsnd(msq, msg, msqflg);
 862}
 863
 864int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
 865			       struct task_struct *target, long type, int mode)
 866{
 867	return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode);
 868}
 869
 870int security_shm_alloc(struct shmid_kernel *shp)
 871{
 872	return security_ops->shm_alloc_security(shp);
 873}
 874
 875void security_shm_free(struct shmid_kernel *shp)
 876{
 877	security_ops->shm_free_security(shp);
 878}
 879
 880int security_shm_associate(struct shmid_kernel *shp, int shmflg)
 881{
 882	return security_ops->shm_associate(shp, shmflg);
 883}
 884
 885int security_shm_shmctl(struct shmid_kernel *shp, int cmd)
 886{
 887	return security_ops->shm_shmctl(shp, cmd);
 888}
 889
 890int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg)
 891{
 892	return security_ops->shm_shmat(shp, shmaddr, shmflg);
 893}
 894
 895int security_sem_alloc(struct sem_array *sma)
 896{
 897	return security_ops->sem_alloc_security(sma);
 898}
 899
 900void security_sem_free(struct sem_array *sma)
 901{
 902	security_ops->sem_free_security(sma);
 903}
 904
 905int security_sem_associate(struct sem_array *sma, int semflg)
 906{
 907	return security_ops->sem_associate(sma, semflg);
 908}
 909
 910int security_sem_semctl(struct sem_array *sma, int cmd)
 911{
 912	return security_ops->sem_semctl(sma, cmd);
 913}
 914
 915int security_sem_semop(struct sem_array *sma, struct sembuf *sops,
 916			unsigned nsops, int alter)
 917{
 918	return security_ops->sem_semop(sma, sops, nsops, alter);
 919}
 920
 921void security_d_instantiate(struct dentry *dentry, struct inode *inode)
 922{
 923	if (unlikely(inode && IS_PRIVATE(inode)))
 924		return;
 925	security_ops->d_instantiate(dentry, inode);
 926}
 927EXPORT_SYMBOL(security_d_instantiate);
 928
 929int security_getprocattr(struct task_struct *p, char *name, char **value)
 930{
 931	return security_ops->getprocattr(p, name, value);
 932}
 933
 934int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
 935{
 936	return security_ops->setprocattr(p, name, value, size);
 937}
 938
 939int security_netlink_send(struct sock *sk, struct sk_buff *skb)
 940{
 941	return security_ops->netlink_send(sk, skb);
 942}
 943
 944int security_netlink_recv(struct sk_buff *skb, int cap)
 945{
 946	return security_ops->netlink_recv(skb, cap);
 947}
 948EXPORT_SYMBOL(security_netlink_recv);
 949
 950int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
 951{
 952	return security_ops->secid_to_secctx(secid, secdata, seclen);
 953}
 954EXPORT_SYMBOL(security_secid_to_secctx);
 955
 956int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
 957{
 958	return security_ops->secctx_to_secid(secdata, seclen, secid);
 959}
 960EXPORT_SYMBOL(security_secctx_to_secid);
 961
 962void security_release_secctx(char *secdata, u32 seclen)
 963{
 964	security_ops->release_secctx(secdata, seclen);
 965}
 966EXPORT_SYMBOL(security_release_secctx);
 967
 968int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
 969{
 970	return security_ops->inode_notifysecctx(inode, ctx, ctxlen);
 971}
 972EXPORT_SYMBOL(security_inode_notifysecctx);
 973
 974int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
 975{
 976	return security_ops->inode_setsecctx(dentry, ctx, ctxlen);
 977}
 978EXPORT_SYMBOL(security_inode_setsecctx);
 979
 980int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
 981{
 982	return security_ops->inode_getsecctx(inode, ctx, ctxlen);
 983}
 984EXPORT_SYMBOL(security_inode_getsecctx);
 985
 986#ifdef CONFIG_SECURITY_NETWORK
 987
 988int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
 989{
 990	return security_ops->unix_stream_connect(sock, other, newsk);
 991}
 992EXPORT_SYMBOL(security_unix_stream_connect);
 993
 994int security_unix_may_send(struct socket *sock,  struct socket *other)
 995{
 996	return security_ops->unix_may_send(sock, other);
 997}
 998EXPORT_SYMBOL(security_unix_may_send);
 999
1000int security_socket_create(int family, int type, int protocol, int kern)
1001{
1002	return security_ops->socket_create(family, type, protocol, kern);
1003}
1004
1005int security_socket_post_create(struct socket *sock, int family,
1006				int type, int protocol, int kern)
1007{
1008	return security_ops->socket_post_create(sock, family, type,
1009						protocol, kern);
1010}
1011
1012int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
1013{
1014	return security_ops->socket_bind(sock, address, addrlen);
1015}
1016
1017int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
1018{
1019	return security_ops->socket_connect(sock, address, addrlen);
1020}
1021
1022int security_socket_listen(struct socket *sock, int backlog)
1023{
1024	return security_ops->socket_listen(sock, backlog);
1025}
1026
1027int security_socket_accept(struct socket *sock, struct socket *newsock)
1028{
1029	return security_ops->socket_accept(sock, newsock);
1030}
1031
1032int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
1033{
1034	return security_ops->socket_sendmsg(sock, msg, size);
1035}
1036
1037int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
1038			    int size, int flags)
1039{
1040	return security_ops->socket_recvmsg(sock, msg, size, flags);
1041}
1042
1043int security_socket_getsockname(struct socket *sock)
1044{
1045	return security_ops->socket_getsockname(sock);
1046}
1047
1048int security_socket_getpeername(struct socket *sock)
1049{
1050	return security_ops->socket_getpeername(sock);
1051}
1052
1053int security_socket_getsockopt(struct socket *sock, int level, int optname)
1054{
1055	return security_ops->socket_getsockopt(sock, level, optname);
1056}
1057
1058int security_socket_setsockopt(struct socket *sock, int level, int optname)
1059{
1060	return security_ops->socket_setsockopt(sock, level, optname);
1061}
1062
1063int security_socket_shutdown(struct socket *sock, int how)
1064{
1065	return security_ops->socket_shutdown(sock, how);
1066}
1067
1068int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
1069{
1070	return security_ops->socket_sock_rcv_skb(sk, skb);
1071}
1072EXPORT_SYMBOL(security_sock_rcv_skb);
1073
1074int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
1075				      int __user *optlen, unsigned len)
1076{
1077	return security_ops->socket_getpeersec_stream(sock, optval, optlen, len);
1078}
1079
1080int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
1081{
1082	return security_ops->socket_getpeersec_dgram(sock, skb, secid);
1083}
1084EXPORT_SYMBOL(security_socket_getpeersec_dgram);
1085
1086int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
1087{
1088	return security_ops->sk_alloc_security(sk, family, priority);
1089}
1090
1091void security_sk_free(struct sock *sk)
1092{
1093	security_ops->sk_free_security(sk);
1094}
1095
1096void security_sk_clone(const struct sock *sk, struct sock *newsk)
1097{
1098	security_ops->sk_clone_security(sk, newsk);
1099}
1100EXPORT_SYMBOL(security_sk_clone);
1101
1102void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
1103{
1104	security_ops->sk_getsecid(sk, &fl->flowi_secid);
1105}
1106EXPORT_SYMBOL(security_sk_classify_flow);
1107
1108void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
1109{
1110	security_ops->req_classify_flow(req, fl);
1111}
1112EXPORT_SYMBOL(security_req_classify_flow);
1113
1114void security_sock_graft(struct sock *sk, struct socket *parent)
1115{
1116	security_ops->sock_graft(sk, parent);
1117}
1118EXPORT_SYMBOL(security_sock_graft);
1119
1120int security_inet_conn_request(struct sock *sk,
1121			struct sk_buff *skb, struct request_sock *req)
1122{
1123	return security_ops->inet_conn_request(sk, skb, req);
1124}
1125EXPORT_SYMBOL(security_inet_conn_request);
1126
1127void security_inet_csk_clone(struct sock *newsk,
1128			const struct request_sock *req)
1129{
1130	security_ops->inet_csk_clone(newsk, req);
1131}
1132
1133void security_inet_conn_established(struct sock *sk,
1134			struct sk_buff *skb)
1135{
1136	security_ops->inet_conn_established(sk, skb);
1137}
1138
1139int security_secmark_relabel_packet(u32 secid)
1140{
1141	return security_ops->secmark_relabel_packet(secid);
1142}
1143EXPORT_SYMBOL(security_secmark_relabel_packet);
1144
1145void security_secmark_refcount_inc(void)
1146{
1147	security_ops->secmark_refcount_inc();
1148}
1149EXPORT_SYMBOL(security_secmark_refcount_inc);
1150
1151void security_secmark_refcount_dec(void)
1152{
1153	security_ops->secmark_refcount_dec();
1154}
1155EXPORT_SYMBOL(security_secmark_refcount_dec);
1156
 
 
 
 
 
 
 
 
 
 
 
 
1157int security_tun_dev_create(void)
1158{
1159	return security_ops->tun_dev_create();
1160}
1161EXPORT_SYMBOL(security_tun_dev_create);
1162
1163void security_tun_dev_post_create(struct sock *sk)
1164{
1165	return security_ops->tun_dev_post_create(sk);
1166}
1167EXPORT_SYMBOL(security_tun_dev_post_create);
1168
1169int security_tun_dev_attach(struct sock *sk)
1170{
1171	return security_ops->tun_dev_attach(sk);
1172}
1173EXPORT_SYMBOL(security_tun_dev_attach);
1174
 
 
 
 
 
 
 
 
 
 
 
1175#endif	/* CONFIG_SECURITY_NETWORK */
1176
1177#ifdef CONFIG_SECURITY_NETWORK_XFRM
1178
1179int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp, struct xfrm_user_sec_ctx *sec_ctx)
 
 
1180{
1181	return security_ops->xfrm_policy_alloc_security(ctxp, sec_ctx);
1182}
1183EXPORT_SYMBOL(security_xfrm_policy_alloc);
1184
1185int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
1186			      struct xfrm_sec_ctx **new_ctxp)
1187{
1188	return security_ops->xfrm_policy_clone_security(old_ctx, new_ctxp);
1189}
1190
1191void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
1192{
1193	security_ops->xfrm_policy_free_security(ctx);
1194}
1195EXPORT_SYMBOL(security_xfrm_policy_free);
1196
1197int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
1198{
1199	return security_ops->xfrm_policy_delete_security(ctx);
1200}
1201
1202int security_xfrm_state_alloc(struct xfrm_state *x, struct xfrm_user_sec_ctx *sec_ctx)
 
1203{
1204	return security_ops->xfrm_state_alloc_security(x, sec_ctx, 0);
1205}
1206EXPORT_SYMBOL(security_xfrm_state_alloc);
1207
1208int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
1209				      struct xfrm_sec_ctx *polsec, u32 secid)
1210{
1211	if (!polsec)
1212		return 0;
1213	/*
1214	 * We want the context to be taken from secid which is usually
1215	 * from the sock.
1216	 */
1217	return security_ops->xfrm_state_alloc_security(x, NULL, secid);
1218}
1219
1220int security_xfrm_state_delete(struct xfrm_state *x)
1221{
1222	return security_ops->xfrm_state_delete_security(x);
1223}
1224EXPORT_SYMBOL(security_xfrm_state_delete);
1225
1226void security_xfrm_state_free(struct xfrm_state *x)
1227{
1228	security_ops->xfrm_state_free_security(x);
1229}
1230
1231int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
1232{
1233	return security_ops->xfrm_policy_lookup(ctx, fl_secid, dir);
1234}
1235
1236int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
1237				       struct xfrm_policy *xp,
1238				       const struct flowi *fl)
1239{
1240	return security_ops->xfrm_state_pol_flow_match(x, xp, fl);
1241}
1242
1243int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
1244{
1245	return security_ops->xfrm_decode_session(skb, secid, 1);
1246}
1247
1248void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
1249{
1250	int rc = security_ops->xfrm_decode_session(skb, &fl->flowi_secid, 0);
1251
1252	BUG_ON(rc);
1253}
1254EXPORT_SYMBOL(security_skb_classify_flow);
1255
1256#endif	/* CONFIG_SECURITY_NETWORK_XFRM */
1257
1258#ifdef CONFIG_KEYS
1259
1260int security_key_alloc(struct key *key, const struct cred *cred,
1261		       unsigned long flags)
1262{
1263	return security_ops->key_alloc(key, cred, flags);
1264}
1265
1266void security_key_free(struct key *key)
1267{
1268	security_ops->key_free(key);
1269}
1270
1271int security_key_permission(key_ref_t key_ref,
1272			    const struct cred *cred, key_perm_t perm)
1273{
1274	return security_ops->key_permission(key_ref, cred, perm);
1275}
1276
1277int security_key_getsecurity(struct key *key, char **_buffer)
1278{
1279	return security_ops->key_getsecurity(key, _buffer);
1280}
1281
1282#endif	/* CONFIG_KEYS */
1283
1284#ifdef CONFIG_AUDIT
1285
1286int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
1287{
1288	return security_ops->audit_rule_init(field, op, rulestr, lsmrule);
1289}
1290
1291int security_audit_rule_known(struct audit_krule *krule)
1292{
1293	return security_ops->audit_rule_known(krule);
1294}
1295
1296void security_audit_rule_free(void *lsmrule)
1297{
1298	security_ops->audit_rule_free(lsmrule);
1299}
1300
1301int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule,
1302			      struct audit_context *actx)
1303{
1304	return security_ops->audit_rule_match(secid, field, op, lsmrule, actx);
1305}
1306
1307#endif /* CONFIG_AUDIT */