Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.15.
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright (c)  2018 Intel Corporation */
   3
   4#include <linux/module.h>
   5#include <linux/types.h>
   6#include <linux/if_vlan.h>
   7#include <linux/aer.h>
   8#include <linux/tcp.h>
   9#include <linux/udp.h>
  10#include <linux/ip.h>
  11
  12#include <net/ipv6.h>
  13
  14#include "igc.h"
  15#include "igc_hw.h"
  16
  17#define DRV_VERSION	"0.0.1-k"
  18#define DRV_SUMMARY	"Intel(R) 2.5G Ethernet Linux Driver"
  19
  20#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK)
  21
  22static int debug = -1;
  23
  24MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
  25MODULE_DESCRIPTION(DRV_SUMMARY);
  26MODULE_LICENSE("GPL v2");
  27MODULE_VERSION(DRV_VERSION);
  28module_param(debug, int, 0);
  29MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  30
  31char igc_driver_name[] = "igc";
  32char igc_driver_version[] = DRV_VERSION;
  33static const char igc_driver_string[] = DRV_SUMMARY;
  34static const char igc_copyright[] =
  35	"Copyright(c) 2018 Intel Corporation.";
  36
  37static const struct igc_info *igc_info_tbl[] = {
  38	[board_base] = &igc_base_info,
  39};
  40
  41static const struct pci_device_id igc_pci_tbl[] = {
  42	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_LM), board_base },
  43	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_V), board_base },
  44	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_I), board_base },
  45	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I220_V), board_base },
  46	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_K), board_base },
  47	/* required last entry */
  48	{0, }
  49};
  50
  51MODULE_DEVICE_TABLE(pci, igc_pci_tbl);
  52
  53/* forward declaration */
  54static void igc_clean_tx_ring(struct igc_ring *tx_ring);
  55static int igc_sw_init(struct igc_adapter *);
  56static void igc_configure(struct igc_adapter *adapter);
  57static void igc_power_down_link(struct igc_adapter *adapter);
  58static void igc_set_default_mac_filter(struct igc_adapter *adapter);
  59static void igc_set_rx_mode(struct net_device *netdev);
  60static void igc_write_itr(struct igc_q_vector *q_vector);
  61static void igc_assign_vector(struct igc_q_vector *q_vector, int msix_vector);
  62static void igc_free_q_vector(struct igc_adapter *adapter, int v_idx);
  63static void igc_set_interrupt_capability(struct igc_adapter *adapter,
  64					 bool msix);
  65static void igc_free_q_vectors(struct igc_adapter *adapter);
  66static void igc_irq_disable(struct igc_adapter *adapter);
  67static void igc_irq_enable(struct igc_adapter *adapter);
  68static void igc_configure_msix(struct igc_adapter *adapter);
  69static bool igc_alloc_mapped_page(struct igc_ring *rx_ring,
  70				  struct igc_rx_buffer *bi);
  71
  72enum latency_range {
  73	lowest_latency = 0,
  74	low_latency = 1,
  75	bulk_latency = 2,
  76	latency_invalid = 255
  77};
  78
  79void igc_reset(struct igc_adapter *adapter)
  80{
  81	struct pci_dev *pdev = adapter->pdev;
  82	struct igc_hw *hw = &adapter->hw;
  83	struct igc_fc_info *fc = &hw->fc;
  84	u32 pba, hwm;
  85
  86	/* Repartition PBA for greater than 9k MTU if required */
  87	pba = IGC_PBA_34K;
  88
  89	/* flow control settings
  90	 * The high water mark must be low enough to fit one full frame
  91	 * after transmitting the pause frame.  As such we must have enough
  92	 * space to allow for us to complete our current transmit and then
  93	 * receive the frame that is in progress from the link partner.
  94	 * Set it to:
  95	 * - the full Rx FIFO size minus one full Tx plus one full Rx frame
  96	 */
  97	hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
  98
  99	fc->high_water = hwm & 0xFFFFFFF0;	/* 16-byte granularity */
 100	fc->low_water = fc->high_water - 16;
 101	fc->pause_time = 0xFFFF;
 102	fc->send_xon = 1;
 103	fc->current_mode = fc->requested_mode;
 104
 105	hw->mac.ops.reset_hw(hw);
 106
 107	if (hw->mac.ops.init_hw(hw))
 108		dev_err(&pdev->dev, "Hardware Error\n");
 109
 110	if (!netif_running(adapter->netdev))
 111		igc_power_down_link(adapter);
 112
 113	igc_get_phy_info(hw);
 114}
 115
 116/**
 117 * igc_power_up_link - Power up the phy/serdes link
 118 * @adapter: address of board private structure
 119 */
 120static void igc_power_up_link(struct igc_adapter *adapter)
 121{
 122	igc_reset_phy(&adapter->hw);
 123
 124	if (adapter->hw.phy.media_type == igc_media_type_copper)
 125		igc_power_up_phy_copper(&adapter->hw);
 126
 127	igc_setup_link(&adapter->hw);
 128}
 129
 130/**
 131 * igc_power_down_link - Power down the phy/serdes link
 132 * @adapter: address of board private structure
 133 */
 134static void igc_power_down_link(struct igc_adapter *adapter)
 135{
 136	if (adapter->hw.phy.media_type == igc_media_type_copper)
 137		igc_power_down_phy_copper_base(&adapter->hw);
 138}
 139
 140/**
 141 * igc_release_hw_control - release control of the h/w to f/w
 142 * @adapter: address of board private structure
 143 *
 144 * igc_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
 145 * For ASF and Pass Through versions of f/w this means that the
 146 * driver is no longer loaded.
 147 */
 148static void igc_release_hw_control(struct igc_adapter *adapter)
 149{
 150	struct igc_hw *hw = &adapter->hw;
 151	u32 ctrl_ext;
 152
 153	/* Let firmware take over control of h/w */
 154	ctrl_ext = rd32(IGC_CTRL_EXT);
 155	wr32(IGC_CTRL_EXT,
 156	     ctrl_ext & ~IGC_CTRL_EXT_DRV_LOAD);
 157}
 158
 159/**
 160 * igc_get_hw_control - get control of the h/w from f/w
 161 * @adapter: address of board private structure
 162 *
 163 * igc_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
 164 * For ASF and Pass Through versions of f/w this means that
 165 * the driver is loaded.
 166 */
 167static void igc_get_hw_control(struct igc_adapter *adapter)
 168{
 169	struct igc_hw *hw = &adapter->hw;
 170	u32 ctrl_ext;
 171
 172	/* Let firmware know the driver has taken over */
 173	ctrl_ext = rd32(IGC_CTRL_EXT);
 174	wr32(IGC_CTRL_EXT,
 175	     ctrl_ext | IGC_CTRL_EXT_DRV_LOAD);
 176}
 177
 178/**
 179 * igc_free_tx_resources - Free Tx Resources per Queue
 180 * @tx_ring: Tx descriptor ring for a specific queue
 181 *
 182 * Free all transmit software resources
 183 */
 184void igc_free_tx_resources(struct igc_ring *tx_ring)
 185{
 186	igc_clean_tx_ring(tx_ring);
 187
 188	vfree(tx_ring->tx_buffer_info);
 189	tx_ring->tx_buffer_info = NULL;
 190
 191	/* if not set, then don't free */
 192	if (!tx_ring->desc)
 193		return;
 194
 195	dma_free_coherent(tx_ring->dev, tx_ring->size,
 196			  tx_ring->desc, tx_ring->dma);
 197
 198	tx_ring->desc = NULL;
 199}
 200
 201/**
 202 * igc_free_all_tx_resources - Free Tx Resources for All Queues
 203 * @adapter: board private structure
 204 *
 205 * Free all transmit software resources
 206 */
 207static void igc_free_all_tx_resources(struct igc_adapter *adapter)
 208{
 209	int i;
 210
 211	for (i = 0; i < adapter->num_tx_queues; i++)
 212		igc_free_tx_resources(adapter->tx_ring[i]);
 213}
 214
 215/**
 216 * igc_clean_tx_ring - Free Tx Buffers
 217 * @tx_ring: ring to be cleaned
 218 */
 219static void igc_clean_tx_ring(struct igc_ring *tx_ring)
 220{
 221	u16 i = tx_ring->next_to_clean;
 222	struct igc_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i];
 223
 224	while (i != tx_ring->next_to_use) {
 225		union igc_adv_tx_desc *eop_desc, *tx_desc;
 226
 227		/* Free all the Tx ring sk_buffs */
 228		dev_kfree_skb_any(tx_buffer->skb);
 229
 230		/* unmap skb header data */
 231		dma_unmap_single(tx_ring->dev,
 232				 dma_unmap_addr(tx_buffer, dma),
 233				 dma_unmap_len(tx_buffer, len),
 234				 DMA_TO_DEVICE);
 235
 236		/* check for eop_desc to determine the end of the packet */
 237		eop_desc = tx_buffer->next_to_watch;
 238		tx_desc = IGC_TX_DESC(tx_ring, i);
 239
 240		/* unmap remaining buffers */
 241		while (tx_desc != eop_desc) {
 242			tx_buffer++;
 243			tx_desc++;
 244			i++;
 245			if (unlikely(i == tx_ring->count)) {
 246				i = 0;
 247				tx_buffer = tx_ring->tx_buffer_info;
 248				tx_desc = IGC_TX_DESC(tx_ring, 0);
 249			}
 250
 251			/* unmap any remaining paged data */
 252			if (dma_unmap_len(tx_buffer, len))
 253				dma_unmap_page(tx_ring->dev,
 254					       dma_unmap_addr(tx_buffer, dma),
 255					       dma_unmap_len(tx_buffer, len),
 256					       DMA_TO_DEVICE);
 257		}
 258
 259		/* move us one more past the eop_desc for start of next pkt */
 260		tx_buffer++;
 261		i++;
 262		if (unlikely(i == tx_ring->count)) {
 263			i = 0;
 264			tx_buffer = tx_ring->tx_buffer_info;
 265		}
 266	}
 267
 268	/* reset BQL for queue */
 269	netdev_tx_reset_queue(txring_txq(tx_ring));
 270
 271	/* reset next_to_use and next_to_clean */
 272	tx_ring->next_to_use = 0;
 273	tx_ring->next_to_clean = 0;
 274}
 275
 276/**
 277 * igc_clean_all_tx_rings - Free Tx Buffers for all queues
 278 * @adapter: board private structure
 279 */
 280static void igc_clean_all_tx_rings(struct igc_adapter *adapter)
 281{
 282	int i;
 283
 284	for (i = 0; i < adapter->num_tx_queues; i++)
 285		if (adapter->tx_ring[i])
 286			igc_clean_tx_ring(adapter->tx_ring[i]);
 287}
 288
 289/**
 290 * igc_setup_tx_resources - allocate Tx resources (Descriptors)
 291 * @tx_ring: tx descriptor ring (for a specific queue) to setup
 292 *
 293 * Return 0 on success, negative on failure
 294 */
 295int igc_setup_tx_resources(struct igc_ring *tx_ring)
 296{
 297	struct device *dev = tx_ring->dev;
 298	int size = 0;
 299
 300	size = sizeof(struct igc_tx_buffer) * tx_ring->count;
 301	tx_ring->tx_buffer_info = vzalloc(size);
 302	if (!tx_ring->tx_buffer_info)
 303		goto err;
 304
 305	/* round up to nearest 4K */
 306	tx_ring->size = tx_ring->count * sizeof(union igc_adv_tx_desc);
 307	tx_ring->size = ALIGN(tx_ring->size, 4096);
 308
 309	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
 310					   &tx_ring->dma, GFP_KERNEL);
 311
 312	if (!tx_ring->desc)
 313		goto err;
 314
 315	tx_ring->next_to_use = 0;
 316	tx_ring->next_to_clean = 0;
 317
 318	return 0;
 319
 320err:
 321	vfree(tx_ring->tx_buffer_info);
 322	dev_err(dev,
 323		"Unable to allocate memory for the transmit descriptor ring\n");
 324	return -ENOMEM;
 325}
 326
 327/**
 328 * igc_setup_all_tx_resources - wrapper to allocate Tx resources for all queues
 329 * @adapter: board private structure
 330 *
 331 * Return 0 on success, negative on failure
 332 */
 333static int igc_setup_all_tx_resources(struct igc_adapter *adapter)
 334{
 335	struct pci_dev *pdev = adapter->pdev;
 336	int i, err = 0;
 337
 338	for (i = 0; i < adapter->num_tx_queues; i++) {
 339		err = igc_setup_tx_resources(adapter->tx_ring[i]);
 340		if (err) {
 341			dev_err(&pdev->dev,
 342				"Allocation for Tx Queue %u failed\n", i);
 343			for (i--; i >= 0; i--)
 344				igc_free_tx_resources(adapter->tx_ring[i]);
 345			break;
 346		}
 347	}
 348
 349	return err;
 350}
 351
 352/**
 353 * igc_clean_rx_ring - Free Rx Buffers per Queue
 354 * @rx_ring: ring to free buffers from
 355 */
 356static void igc_clean_rx_ring(struct igc_ring *rx_ring)
 357{
 358	u16 i = rx_ring->next_to_clean;
 359
 360	dev_kfree_skb(rx_ring->skb);
 361	rx_ring->skb = NULL;
 362
 363	/* Free all the Rx ring sk_buffs */
 364	while (i != rx_ring->next_to_alloc) {
 365		struct igc_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
 366
 367		/* Invalidate cache lines that may have been written to by
 368		 * device so that we avoid corrupting memory.
 369		 */
 370		dma_sync_single_range_for_cpu(rx_ring->dev,
 371					      buffer_info->dma,
 372					      buffer_info->page_offset,
 373					      igc_rx_bufsz(rx_ring),
 374					      DMA_FROM_DEVICE);
 375
 376		/* free resources associated with mapping */
 377		dma_unmap_page_attrs(rx_ring->dev,
 378				     buffer_info->dma,
 379				     igc_rx_pg_size(rx_ring),
 380				     DMA_FROM_DEVICE,
 381				     IGC_RX_DMA_ATTR);
 382		__page_frag_cache_drain(buffer_info->page,
 383					buffer_info->pagecnt_bias);
 384
 385		i++;
 386		if (i == rx_ring->count)
 387			i = 0;
 388	}
 389
 390	rx_ring->next_to_alloc = 0;
 391	rx_ring->next_to_clean = 0;
 392	rx_ring->next_to_use = 0;
 393}
 394
 395/**
 396 * igc_clean_all_rx_rings - Free Rx Buffers for all queues
 397 * @adapter: board private structure
 398 */
 399static void igc_clean_all_rx_rings(struct igc_adapter *adapter)
 400{
 401	int i;
 402
 403	for (i = 0; i < adapter->num_rx_queues; i++)
 404		if (adapter->rx_ring[i])
 405			igc_clean_rx_ring(adapter->rx_ring[i]);
 406}
 407
 408/**
 409 * igc_free_rx_resources - Free Rx Resources
 410 * @rx_ring: ring to clean the resources from
 411 *
 412 * Free all receive software resources
 413 */
 414void igc_free_rx_resources(struct igc_ring *rx_ring)
 415{
 416	igc_clean_rx_ring(rx_ring);
 417
 418	vfree(rx_ring->rx_buffer_info);
 419	rx_ring->rx_buffer_info = NULL;
 420
 421	/* if not set, then don't free */
 422	if (!rx_ring->desc)
 423		return;
 424
 425	dma_free_coherent(rx_ring->dev, rx_ring->size,
 426			  rx_ring->desc, rx_ring->dma);
 427
 428	rx_ring->desc = NULL;
 429}
 430
 431/**
 432 * igc_free_all_rx_resources - Free Rx Resources for All Queues
 433 * @adapter: board private structure
 434 *
 435 * Free all receive software resources
 436 */
 437static void igc_free_all_rx_resources(struct igc_adapter *adapter)
 438{
 439	int i;
 440
 441	for (i = 0; i < adapter->num_rx_queues; i++)
 442		igc_free_rx_resources(adapter->rx_ring[i]);
 443}
 444
 445/**
 446 * igc_setup_rx_resources - allocate Rx resources (Descriptors)
 447 * @rx_ring:    rx descriptor ring (for a specific queue) to setup
 448 *
 449 * Returns 0 on success, negative on failure
 450 */
 451int igc_setup_rx_resources(struct igc_ring *rx_ring)
 452{
 453	struct device *dev = rx_ring->dev;
 454	int size, desc_len;
 455
 456	size = sizeof(struct igc_rx_buffer) * rx_ring->count;
 457	rx_ring->rx_buffer_info = vzalloc(size);
 458	if (!rx_ring->rx_buffer_info)
 459		goto err;
 460
 461	desc_len = sizeof(union igc_adv_rx_desc);
 462
 463	/* Round up to nearest 4K */
 464	rx_ring->size = rx_ring->count * desc_len;
 465	rx_ring->size = ALIGN(rx_ring->size, 4096);
 466
 467	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
 468					   &rx_ring->dma, GFP_KERNEL);
 469
 470	if (!rx_ring->desc)
 471		goto err;
 472
 473	rx_ring->next_to_alloc = 0;
 474	rx_ring->next_to_clean = 0;
 475	rx_ring->next_to_use = 0;
 476
 477	return 0;
 478
 479err:
 480	vfree(rx_ring->rx_buffer_info);
 481	rx_ring->rx_buffer_info = NULL;
 482	dev_err(dev,
 483		"Unable to allocate memory for the receive descriptor ring\n");
 484	return -ENOMEM;
 485}
 486
 487/**
 488 * igc_setup_all_rx_resources - wrapper to allocate Rx resources
 489 *                                (Descriptors) for all queues
 490 * @adapter: board private structure
 491 *
 492 * Return 0 on success, negative on failure
 493 */
 494static int igc_setup_all_rx_resources(struct igc_adapter *adapter)
 495{
 496	struct pci_dev *pdev = adapter->pdev;
 497	int i, err = 0;
 498
 499	for (i = 0; i < adapter->num_rx_queues; i++) {
 500		err = igc_setup_rx_resources(adapter->rx_ring[i]);
 501		if (err) {
 502			dev_err(&pdev->dev,
 503				"Allocation for Rx Queue %u failed\n", i);
 504			for (i--; i >= 0; i--)
 505				igc_free_rx_resources(adapter->rx_ring[i]);
 506			break;
 507		}
 508	}
 509
 510	return err;
 511}
 512
 513/**
 514 * igc_configure_rx_ring - Configure a receive ring after Reset
 515 * @adapter: board private structure
 516 * @ring: receive ring to be configured
 517 *
 518 * Configure the Rx unit of the MAC after a reset.
 519 */
 520static void igc_configure_rx_ring(struct igc_adapter *adapter,
 521				  struct igc_ring *ring)
 522{
 523	struct igc_hw *hw = &adapter->hw;
 524	union igc_adv_rx_desc *rx_desc;
 525	int reg_idx = ring->reg_idx;
 526	u32 srrctl = 0, rxdctl = 0;
 527	u64 rdba = ring->dma;
 528
 529	/* disable the queue */
 530	wr32(IGC_RXDCTL(reg_idx), 0);
 531
 532	/* Set DMA base address registers */
 533	wr32(IGC_RDBAL(reg_idx),
 534	     rdba & 0x00000000ffffffffULL);
 535	wr32(IGC_RDBAH(reg_idx), rdba >> 32);
 536	wr32(IGC_RDLEN(reg_idx),
 537	     ring->count * sizeof(union igc_adv_rx_desc));
 538
 539	/* initialize head and tail */
 540	ring->tail = adapter->io_addr + IGC_RDT(reg_idx);
 541	wr32(IGC_RDH(reg_idx), 0);
 542	writel(0, ring->tail);
 543
 544	/* reset next-to- use/clean to place SW in sync with hardware */
 545	ring->next_to_clean = 0;
 546	ring->next_to_use = 0;
 547
 548	/* set descriptor configuration */
 549	srrctl = IGC_RX_HDR_LEN << IGC_SRRCTL_BSIZEHDRSIZE_SHIFT;
 550	if (ring_uses_large_buffer(ring))
 551		srrctl |= IGC_RXBUFFER_3072 >> IGC_SRRCTL_BSIZEPKT_SHIFT;
 552	else
 553		srrctl |= IGC_RXBUFFER_2048 >> IGC_SRRCTL_BSIZEPKT_SHIFT;
 554	srrctl |= IGC_SRRCTL_DESCTYPE_ADV_ONEBUF;
 555
 556	wr32(IGC_SRRCTL(reg_idx), srrctl);
 557
 558	rxdctl |= IGC_RX_PTHRESH;
 559	rxdctl |= IGC_RX_HTHRESH << 8;
 560	rxdctl |= IGC_RX_WTHRESH << 16;
 561
 562	/* initialize rx_buffer_info */
 563	memset(ring->rx_buffer_info, 0,
 564	       sizeof(struct igc_rx_buffer) * ring->count);
 565
 566	/* initialize Rx descriptor 0 */
 567	rx_desc = IGC_RX_DESC(ring, 0);
 568	rx_desc->wb.upper.length = 0;
 569
 570	/* enable receive descriptor fetching */
 571	rxdctl |= IGC_RXDCTL_QUEUE_ENABLE;
 572
 573	wr32(IGC_RXDCTL(reg_idx), rxdctl);
 574}
 575
 576/**
 577 * igc_configure_rx - Configure receive Unit after Reset
 578 * @adapter: board private structure
 579 *
 580 * Configure the Rx unit of the MAC after a reset.
 581 */
 582static void igc_configure_rx(struct igc_adapter *adapter)
 583{
 584	int i;
 585
 586	/* Setup the HW Rx Head and Tail Descriptor Pointers and
 587	 * the Base and Length of the Rx Descriptor Ring
 588	 */
 589	for (i = 0; i < adapter->num_rx_queues; i++)
 590		igc_configure_rx_ring(adapter, adapter->rx_ring[i]);
 591}
 592
 593/**
 594 * igc_configure_tx_ring - Configure transmit ring after Reset
 595 * @adapter: board private structure
 596 * @ring: tx ring to configure
 597 *
 598 * Configure a transmit ring after a reset.
 599 */
 600static void igc_configure_tx_ring(struct igc_adapter *adapter,
 601				  struct igc_ring *ring)
 602{
 603	struct igc_hw *hw = &adapter->hw;
 604	int reg_idx = ring->reg_idx;
 605	u64 tdba = ring->dma;
 606	u32 txdctl = 0;
 607
 608	/* disable the queue */
 609	wr32(IGC_TXDCTL(reg_idx), 0);
 610	wrfl();
 611	mdelay(10);
 612
 613	wr32(IGC_TDLEN(reg_idx),
 614	     ring->count * sizeof(union igc_adv_tx_desc));
 615	wr32(IGC_TDBAL(reg_idx),
 616	     tdba & 0x00000000ffffffffULL);
 617	wr32(IGC_TDBAH(reg_idx), tdba >> 32);
 618
 619	ring->tail = adapter->io_addr + IGC_TDT(reg_idx);
 620	wr32(IGC_TDH(reg_idx), 0);
 621	writel(0, ring->tail);
 622
 623	txdctl |= IGC_TX_PTHRESH;
 624	txdctl |= IGC_TX_HTHRESH << 8;
 625	txdctl |= IGC_TX_WTHRESH << 16;
 626
 627	txdctl |= IGC_TXDCTL_QUEUE_ENABLE;
 628	wr32(IGC_TXDCTL(reg_idx), txdctl);
 629}
 630
 631/**
 632 * igc_configure_tx - Configure transmit Unit after Reset
 633 * @adapter: board private structure
 634 *
 635 * Configure the Tx unit of the MAC after a reset.
 636 */
 637static void igc_configure_tx(struct igc_adapter *adapter)
 638{
 639	int i;
 640
 641	for (i = 0; i < adapter->num_tx_queues; i++)
 642		igc_configure_tx_ring(adapter, adapter->tx_ring[i]);
 643}
 644
 645/**
 646 * igc_setup_mrqc - configure the multiple receive queue control registers
 647 * @adapter: Board private structure
 648 */
 649static void igc_setup_mrqc(struct igc_adapter *adapter)
 650{
 651	struct igc_hw *hw = &adapter->hw;
 652	u32 j, num_rx_queues;
 653	u32 mrqc, rxcsum;
 654	u32 rss_key[10];
 655
 656	netdev_rss_key_fill(rss_key, sizeof(rss_key));
 657	for (j = 0; j < 10; j++)
 658		wr32(IGC_RSSRK(j), rss_key[j]);
 659
 660	num_rx_queues = adapter->rss_queues;
 661
 662	if (adapter->rss_indir_tbl_init != num_rx_queues) {
 663		for (j = 0; j < IGC_RETA_SIZE; j++)
 664			adapter->rss_indir_tbl[j] =
 665			(j * num_rx_queues) / IGC_RETA_SIZE;
 666		adapter->rss_indir_tbl_init = num_rx_queues;
 667	}
 668	igc_write_rss_indir_tbl(adapter);
 669
 670	/* Disable raw packet checksumming so that RSS hash is placed in
 671	 * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
 672	 * offloads as they are enabled by default
 673	 */
 674	rxcsum = rd32(IGC_RXCSUM);
 675	rxcsum |= IGC_RXCSUM_PCSD;
 676
 677	/* Enable Receive Checksum Offload for SCTP */
 678	rxcsum |= IGC_RXCSUM_CRCOFL;
 679
 680	/* Don't need to set TUOFL or IPOFL, they default to 1 */
 681	wr32(IGC_RXCSUM, rxcsum);
 682
 683	/* Generate RSS hash based on packet types, TCP/UDP
 684	 * port numbers and/or IPv4/v6 src and dst addresses
 685	 */
 686	mrqc = IGC_MRQC_RSS_FIELD_IPV4 |
 687	       IGC_MRQC_RSS_FIELD_IPV4_TCP |
 688	       IGC_MRQC_RSS_FIELD_IPV6 |
 689	       IGC_MRQC_RSS_FIELD_IPV6_TCP |
 690	       IGC_MRQC_RSS_FIELD_IPV6_TCP_EX;
 691
 692	if (adapter->flags & IGC_FLAG_RSS_FIELD_IPV4_UDP)
 693		mrqc |= IGC_MRQC_RSS_FIELD_IPV4_UDP;
 694	if (adapter->flags & IGC_FLAG_RSS_FIELD_IPV6_UDP)
 695		mrqc |= IGC_MRQC_RSS_FIELD_IPV6_UDP;
 696
 697	mrqc |= IGC_MRQC_ENABLE_RSS_MQ;
 698
 699	wr32(IGC_MRQC, mrqc);
 700}
 701
 702/**
 703 * igc_setup_rctl - configure the receive control registers
 704 * @adapter: Board private structure
 705 */
 706static void igc_setup_rctl(struct igc_adapter *adapter)
 707{
 708	struct igc_hw *hw = &adapter->hw;
 709	u32 rctl;
 710
 711	rctl = rd32(IGC_RCTL);
 712
 713	rctl &= ~(3 << IGC_RCTL_MO_SHIFT);
 714	rctl &= ~(IGC_RCTL_LBM_TCVR | IGC_RCTL_LBM_MAC);
 715
 716	rctl |= IGC_RCTL_EN | IGC_RCTL_BAM | IGC_RCTL_RDMTS_HALF |
 717		(hw->mac.mc_filter_type << IGC_RCTL_MO_SHIFT);
 718
 719	/* enable stripping of CRC. Newer features require
 720	 * that the HW strips the CRC.
 721	 */
 722	rctl |= IGC_RCTL_SECRC;
 723
 724	/* disable store bad packets and clear size bits. */
 725	rctl &= ~(IGC_RCTL_SBP | IGC_RCTL_SZ_256);
 726
 727	/* enable LPE to allow for reception of jumbo frames */
 728	rctl |= IGC_RCTL_LPE;
 729
 730	/* disable queue 0 to prevent tail write w/o re-config */
 731	wr32(IGC_RXDCTL(0), 0);
 732
 733	/* This is useful for sniffing bad packets. */
 734	if (adapter->netdev->features & NETIF_F_RXALL) {
 735		/* UPE and MPE will be handled by normal PROMISC logic
 736		 * in set_rx_mode
 737		 */
 738		rctl |= (IGC_RCTL_SBP | /* Receive bad packets */
 739			 IGC_RCTL_BAM | /* RX All Bcast Pkts */
 740			 IGC_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
 741
 742		rctl &= ~(IGC_RCTL_DPF | /* Allow filtered pause */
 743			  IGC_RCTL_CFIEN); /* Disable VLAN CFIEN Filter */
 744	}
 745
 746	wr32(IGC_RCTL, rctl);
 747}
 748
 749/**
 750 * igc_setup_tctl - configure the transmit control registers
 751 * @adapter: Board private structure
 752 */
 753static void igc_setup_tctl(struct igc_adapter *adapter)
 754{
 755	struct igc_hw *hw = &adapter->hw;
 756	u32 tctl;
 757
 758	/* disable queue 0 which icould be enabled by default */
 759	wr32(IGC_TXDCTL(0), 0);
 760
 761	/* Program the Transmit Control Register */
 762	tctl = rd32(IGC_TCTL);
 763	tctl &= ~IGC_TCTL_CT;
 764	tctl |= IGC_TCTL_PSP | IGC_TCTL_RTLC |
 765		(IGC_COLLISION_THRESHOLD << IGC_CT_SHIFT);
 766
 767	/* Enable transmits */
 768	tctl |= IGC_TCTL_EN;
 769
 770	wr32(IGC_TCTL, tctl);
 771}
 772
 773/**
 774 * igc_set_mac - Change the Ethernet Address of the NIC
 775 * @netdev: network interface device structure
 776 * @p: pointer to an address structure
 777 *
 778 * Returns 0 on success, negative on failure
 779 */
 780static int igc_set_mac(struct net_device *netdev, void *p)
 781{
 782	struct igc_adapter *adapter = netdev_priv(netdev);
 783	struct igc_hw *hw = &adapter->hw;
 784	struct sockaddr *addr = p;
 785
 786	if (!is_valid_ether_addr(addr->sa_data))
 787		return -EADDRNOTAVAIL;
 788
 789	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
 790	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
 791
 792	/* set the correct pool for the new PF MAC address in entry 0 */
 793	igc_set_default_mac_filter(adapter);
 794
 795	return 0;
 796}
 797
 798static void igc_tx_ctxtdesc(struct igc_ring *tx_ring,
 799			    struct igc_tx_buffer *first,
 800			    u32 vlan_macip_lens, u32 type_tucmd,
 801			    u32 mss_l4len_idx)
 802{
 803	struct igc_adv_tx_context_desc *context_desc;
 804	u16 i = tx_ring->next_to_use;
 805	struct timespec64 ts;
 806
 807	context_desc = IGC_TX_CTXTDESC(tx_ring, i);
 808
 809	i++;
 810	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
 811
 812	/* set bits to identify this as an advanced context descriptor */
 813	type_tucmd |= IGC_TXD_CMD_DEXT | IGC_ADVTXD_DTYP_CTXT;
 814
 815	/* For 82575, context index must be unique per ring. */
 816	if (test_bit(IGC_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
 817		mss_l4len_idx |= tx_ring->reg_idx << 4;
 818
 819	context_desc->vlan_macip_lens	= cpu_to_le32(vlan_macip_lens);
 820	context_desc->type_tucmd_mlhl	= cpu_to_le32(type_tucmd);
 821	context_desc->mss_l4len_idx	= cpu_to_le32(mss_l4len_idx);
 822
 823	/* We assume there is always a valid Tx time available. Invalid times
 824	 * should have been handled by the upper layers.
 825	 */
 826	if (tx_ring->launchtime_enable) {
 827		ts = ktime_to_timespec64(first->skb->tstamp);
 828		first->skb->tstamp = ktime_set(0, 0);
 829		context_desc->launch_time = cpu_to_le32(ts.tv_nsec / 32);
 830	} else {
 831		context_desc->launch_time = 0;
 832	}
 833}
 834
 835static inline bool igc_ipv6_csum_is_sctp(struct sk_buff *skb)
 836{
 837	unsigned int offset = 0;
 838
 839	ipv6_find_hdr(skb, &offset, IPPROTO_SCTP, NULL, NULL);
 840
 841	return offset == skb_checksum_start_offset(skb);
 842}
 843
 844static void igc_tx_csum(struct igc_ring *tx_ring, struct igc_tx_buffer *first)
 845{
 846	struct sk_buff *skb = first->skb;
 847	u32 vlan_macip_lens = 0;
 848	u32 type_tucmd = 0;
 849
 850	if (skb->ip_summed != CHECKSUM_PARTIAL) {
 851csum_failed:
 852		if (!(first->tx_flags & IGC_TX_FLAGS_VLAN) &&
 853		    !tx_ring->launchtime_enable)
 854			return;
 855		goto no_csum;
 856	}
 857
 858	switch (skb->csum_offset) {
 859	case offsetof(struct tcphdr, check):
 860		type_tucmd = IGC_ADVTXD_TUCMD_L4T_TCP;
 861		/* fall through */
 862	case offsetof(struct udphdr, check):
 863		break;
 864	case offsetof(struct sctphdr, checksum):
 865		/* validate that this is actually an SCTP request */
 866		if ((first->protocol == htons(ETH_P_IP) &&
 867		     (ip_hdr(skb)->protocol == IPPROTO_SCTP)) ||
 868		    (first->protocol == htons(ETH_P_IPV6) &&
 869		     igc_ipv6_csum_is_sctp(skb))) {
 870			type_tucmd = IGC_ADVTXD_TUCMD_L4T_SCTP;
 871			break;
 872		}
 873		/* fall through */
 874	default:
 875		skb_checksum_help(skb);
 876		goto csum_failed;
 877	}
 878
 879	/* update TX checksum flag */
 880	first->tx_flags |= IGC_TX_FLAGS_CSUM;
 881	vlan_macip_lens = skb_checksum_start_offset(skb) -
 882			  skb_network_offset(skb);
 883no_csum:
 884	vlan_macip_lens |= skb_network_offset(skb) << IGC_ADVTXD_MACLEN_SHIFT;
 885	vlan_macip_lens |= first->tx_flags & IGC_TX_FLAGS_VLAN_MASK;
 886
 887	igc_tx_ctxtdesc(tx_ring, first, vlan_macip_lens, type_tucmd, 0);
 888}
 889
 890static int __igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size)
 891{
 892	struct net_device *netdev = tx_ring->netdev;
 893
 894	netif_stop_subqueue(netdev, tx_ring->queue_index);
 895
 896	/* memory barriier comment */
 897	smp_mb();
 898
 899	/* We need to check again in a case another CPU has just
 900	 * made room available.
 901	 */
 902	if (igc_desc_unused(tx_ring) < size)
 903		return -EBUSY;
 904
 905	/* A reprieve! */
 906	netif_wake_subqueue(netdev, tx_ring->queue_index);
 907
 908	u64_stats_update_begin(&tx_ring->tx_syncp2);
 909	tx_ring->tx_stats.restart_queue2++;
 910	u64_stats_update_end(&tx_ring->tx_syncp2);
 911
 912	return 0;
 913}
 914
 915static inline int igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size)
 916{
 917	if (igc_desc_unused(tx_ring) >= size)
 918		return 0;
 919	return __igc_maybe_stop_tx(tx_ring, size);
 920}
 921
 922static u32 igc_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
 923{
 924	/* set type for advanced descriptor with frame checksum insertion */
 925	u32 cmd_type = IGC_ADVTXD_DTYP_DATA |
 926		       IGC_ADVTXD_DCMD_DEXT |
 927		       IGC_ADVTXD_DCMD_IFCS;
 928
 929	return cmd_type;
 930}
 931
 932static void igc_tx_olinfo_status(struct igc_ring *tx_ring,
 933				 union igc_adv_tx_desc *tx_desc,
 934				 u32 tx_flags, unsigned int paylen)
 935{
 936	u32 olinfo_status = paylen << IGC_ADVTXD_PAYLEN_SHIFT;
 937
 938	/* insert L4 checksum */
 939	olinfo_status |= (tx_flags & IGC_TX_FLAGS_CSUM) *
 940			  ((IGC_TXD_POPTS_TXSM << 8) /
 941			  IGC_TX_FLAGS_CSUM);
 942
 943	/* insert IPv4 checksum */
 944	olinfo_status |= (tx_flags & IGC_TX_FLAGS_IPV4) *
 945			  (((IGC_TXD_POPTS_IXSM << 8)) /
 946			  IGC_TX_FLAGS_IPV4);
 947
 948	tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
 949}
 950
 951static int igc_tx_map(struct igc_ring *tx_ring,
 952		      struct igc_tx_buffer *first,
 953		      const u8 hdr_len)
 954{
 955	struct sk_buff *skb = first->skb;
 956	struct igc_tx_buffer *tx_buffer;
 957	union igc_adv_tx_desc *tx_desc;
 958	u32 tx_flags = first->tx_flags;
 959	skb_frag_t *frag;
 960	u16 i = tx_ring->next_to_use;
 961	unsigned int data_len, size;
 962	dma_addr_t dma;
 963	u32 cmd_type = igc_tx_cmd_type(skb, tx_flags);
 964
 965	tx_desc = IGC_TX_DESC(tx_ring, i);
 966
 967	igc_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
 968
 969	size = skb_headlen(skb);
 970	data_len = skb->data_len;
 971
 972	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
 973
 974	tx_buffer = first;
 975
 976	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
 977		if (dma_mapping_error(tx_ring->dev, dma))
 978			goto dma_error;
 979
 980		/* record length, and DMA address */
 981		dma_unmap_len_set(tx_buffer, len, size);
 982		dma_unmap_addr_set(tx_buffer, dma, dma);
 983
 984		tx_desc->read.buffer_addr = cpu_to_le64(dma);
 985
 986		while (unlikely(size > IGC_MAX_DATA_PER_TXD)) {
 987			tx_desc->read.cmd_type_len =
 988				cpu_to_le32(cmd_type ^ IGC_MAX_DATA_PER_TXD);
 989
 990			i++;
 991			tx_desc++;
 992			if (i == tx_ring->count) {
 993				tx_desc = IGC_TX_DESC(tx_ring, 0);
 994				i = 0;
 995			}
 996			tx_desc->read.olinfo_status = 0;
 997
 998			dma += IGC_MAX_DATA_PER_TXD;
 999			size -= IGC_MAX_DATA_PER_TXD;
1000
1001			tx_desc->read.buffer_addr = cpu_to_le64(dma);
1002		}
1003
1004		if (likely(!data_len))
1005			break;
1006
1007		tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
1008
1009		i++;
1010		tx_desc++;
1011		if (i == tx_ring->count) {
1012			tx_desc = IGC_TX_DESC(tx_ring, 0);
1013			i = 0;
1014		}
1015		tx_desc->read.olinfo_status = 0;
1016
1017		size = skb_frag_size(frag);
1018		data_len -= size;
1019
1020		dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
1021				       size, DMA_TO_DEVICE);
1022
1023		tx_buffer = &tx_ring->tx_buffer_info[i];
1024	}
1025
1026	/* write last descriptor with RS and EOP bits */
1027	cmd_type |= size | IGC_TXD_DCMD;
1028	tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
1029
1030	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
1031
1032	/* set the timestamp */
1033	first->time_stamp = jiffies;
1034
1035	skb_tx_timestamp(skb);
1036
1037	/* Force memory writes to complete before letting h/w know there
1038	 * are new descriptors to fetch.  (Only applicable for weak-ordered
1039	 * memory model archs, such as IA-64).
1040	 *
1041	 * We also need this memory barrier to make certain all of the
1042	 * status bits have been updated before next_to_watch is written.
1043	 */
1044	wmb();
1045
1046	/* set next_to_watch value indicating a packet is present */
1047	first->next_to_watch = tx_desc;
1048
1049	i++;
1050	if (i == tx_ring->count)
1051		i = 0;
1052
1053	tx_ring->next_to_use = i;
1054
1055	/* Make sure there is space in the ring for the next send. */
1056	igc_maybe_stop_tx(tx_ring, DESC_NEEDED);
1057
1058	if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
1059		writel(i, tx_ring->tail);
1060	}
1061
1062	return 0;
1063dma_error:
1064	dev_err(tx_ring->dev, "TX DMA map failed\n");
1065	tx_buffer = &tx_ring->tx_buffer_info[i];
1066
1067	/* clear dma mappings for failed tx_buffer_info map */
1068	while (tx_buffer != first) {
1069		if (dma_unmap_len(tx_buffer, len))
1070			dma_unmap_page(tx_ring->dev,
1071				       dma_unmap_addr(tx_buffer, dma),
1072				       dma_unmap_len(tx_buffer, len),
1073				       DMA_TO_DEVICE);
1074		dma_unmap_len_set(tx_buffer, len, 0);
1075
1076		if (i-- == 0)
1077			i += tx_ring->count;
1078		tx_buffer = &tx_ring->tx_buffer_info[i];
1079	}
1080
1081	if (dma_unmap_len(tx_buffer, len))
1082		dma_unmap_single(tx_ring->dev,
1083				 dma_unmap_addr(tx_buffer, dma),
1084				 dma_unmap_len(tx_buffer, len),
1085				 DMA_TO_DEVICE);
1086	dma_unmap_len_set(tx_buffer, len, 0);
1087
1088	dev_kfree_skb_any(tx_buffer->skb);
1089	tx_buffer->skb = NULL;
1090
1091	tx_ring->next_to_use = i;
1092
1093	return -1;
1094}
1095
1096static netdev_tx_t igc_xmit_frame_ring(struct sk_buff *skb,
1097				       struct igc_ring *tx_ring)
1098{
1099	u16 count = TXD_USE_COUNT(skb_headlen(skb));
1100	__be16 protocol = vlan_get_protocol(skb);
1101	struct igc_tx_buffer *first;
1102	u32 tx_flags = 0;
1103	unsigned short f;
1104	u8 hdr_len = 0;
1105
1106	/* need: 1 descriptor per page * PAGE_SIZE/IGC_MAX_DATA_PER_TXD,
1107	 *	+ 1 desc for skb_headlen/IGC_MAX_DATA_PER_TXD,
1108	 *	+ 2 desc gap to keep tail from touching head,
1109	 *	+ 1 desc for context descriptor,
1110	 * otherwise try next time
1111	 */
1112	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
1113		count += TXD_USE_COUNT(skb_frag_size(
1114						&skb_shinfo(skb)->frags[f]));
1115
1116	if (igc_maybe_stop_tx(tx_ring, count + 3)) {
1117		/* this is a hard error */
1118		return NETDEV_TX_BUSY;
1119	}
1120
1121	/* record the location of the first descriptor for this packet */
1122	first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
1123	first->skb = skb;
1124	first->bytecount = skb->len;
1125	first->gso_segs = 1;
1126
1127	/* record initial flags and protocol */
1128	first->tx_flags = tx_flags;
1129	first->protocol = protocol;
1130
1131	igc_tx_csum(tx_ring, first);
1132
1133	igc_tx_map(tx_ring, first, hdr_len);
1134
1135	return NETDEV_TX_OK;
1136}
1137
1138static inline struct igc_ring *igc_tx_queue_mapping(struct igc_adapter *adapter,
1139						    struct sk_buff *skb)
1140{
1141	unsigned int r_idx = skb->queue_mapping;
1142
1143	if (r_idx >= adapter->num_tx_queues)
1144		r_idx = r_idx % adapter->num_tx_queues;
1145
1146	return adapter->tx_ring[r_idx];
1147}
1148
1149static netdev_tx_t igc_xmit_frame(struct sk_buff *skb,
1150				  struct net_device *netdev)
1151{
1152	struct igc_adapter *adapter = netdev_priv(netdev);
1153
1154	/* The minimum packet size with TCTL.PSP set is 17 so pad the skb
1155	 * in order to meet this minimum size requirement.
1156	 */
1157	if (skb->len < 17) {
1158		if (skb_padto(skb, 17))
1159			return NETDEV_TX_OK;
1160		skb->len = 17;
1161	}
1162
1163	return igc_xmit_frame_ring(skb, igc_tx_queue_mapping(adapter, skb));
1164}
1165
1166static inline void igc_rx_hash(struct igc_ring *ring,
1167			       union igc_adv_rx_desc *rx_desc,
1168			       struct sk_buff *skb)
1169{
1170	if (ring->netdev->features & NETIF_F_RXHASH)
1171		skb_set_hash(skb,
1172			     le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
1173			     PKT_HASH_TYPE_L3);
1174}
1175
1176/**
1177 * igc_process_skb_fields - Populate skb header fields from Rx descriptor
1178 * @rx_ring: rx descriptor ring packet is being transacted on
1179 * @rx_desc: pointer to the EOP Rx descriptor
1180 * @skb: pointer to current skb being populated
1181 *
1182 * This function checks the ring, descriptor, and packet information in
1183 * order to populate the hash, checksum, VLAN, timestamp, protocol, and
1184 * other fields within the skb.
1185 */
1186static void igc_process_skb_fields(struct igc_ring *rx_ring,
1187				   union igc_adv_rx_desc *rx_desc,
1188				   struct sk_buff *skb)
1189{
1190	igc_rx_hash(rx_ring, rx_desc, skb);
1191
1192	skb_record_rx_queue(skb, rx_ring->queue_index);
1193
1194	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1195}
1196
1197static struct igc_rx_buffer *igc_get_rx_buffer(struct igc_ring *rx_ring,
1198					       const unsigned int size)
1199{
1200	struct igc_rx_buffer *rx_buffer;
1201
1202	rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
1203	prefetchw(rx_buffer->page);
1204
1205	/* we are reusing so sync this buffer for CPU use */
1206	dma_sync_single_range_for_cpu(rx_ring->dev,
1207				      rx_buffer->dma,
1208				      rx_buffer->page_offset,
1209				      size,
1210				      DMA_FROM_DEVICE);
1211
1212	rx_buffer->pagecnt_bias--;
1213
1214	return rx_buffer;
1215}
1216
1217/**
1218 * igc_add_rx_frag - Add contents of Rx buffer to sk_buff
1219 * @rx_ring: rx descriptor ring to transact packets on
1220 * @rx_buffer: buffer containing page to add
1221 * @skb: sk_buff to place the data into
1222 * @size: size of buffer to be added
1223 *
1224 * This function will add the data contained in rx_buffer->page to the skb.
1225 */
1226static void igc_add_rx_frag(struct igc_ring *rx_ring,
1227			    struct igc_rx_buffer *rx_buffer,
1228			    struct sk_buff *skb,
1229			    unsigned int size)
1230{
1231#if (PAGE_SIZE < 8192)
1232	unsigned int truesize = igc_rx_pg_size(rx_ring) / 2;
1233
1234	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
1235			rx_buffer->page_offset, size, truesize);
1236	rx_buffer->page_offset ^= truesize;
1237#else
1238	unsigned int truesize = ring_uses_build_skb(rx_ring) ?
1239				SKB_DATA_ALIGN(IGC_SKB_PAD + size) :
1240				SKB_DATA_ALIGN(size);
1241	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
1242			rx_buffer->page_offset, size, truesize);
1243	rx_buffer->page_offset += truesize;
1244#endif
1245}
1246
1247static struct sk_buff *igc_build_skb(struct igc_ring *rx_ring,
1248				     struct igc_rx_buffer *rx_buffer,
1249				     union igc_adv_rx_desc *rx_desc,
1250				     unsigned int size)
1251{
1252	void *va = page_address(rx_buffer->page) + rx_buffer->page_offset;
1253#if (PAGE_SIZE < 8192)
1254	unsigned int truesize = igc_rx_pg_size(rx_ring) / 2;
1255#else
1256	unsigned int truesize = SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
1257				SKB_DATA_ALIGN(IGC_SKB_PAD + size);
1258#endif
1259	struct sk_buff *skb;
1260
1261	/* prefetch first cache line of first page */
1262	prefetch(va);
1263#if L1_CACHE_BYTES < 128
1264	prefetch(va + L1_CACHE_BYTES);
1265#endif
1266
1267	/* build an skb around the page buffer */
1268	skb = build_skb(va - IGC_SKB_PAD, truesize);
1269	if (unlikely(!skb))
1270		return NULL;
1271
1272	/* update pointers within the skb to store the data */
1273	skb_reserve(skb, IGC_SKB_PAD);
1274	__skb_put(skb, size);
1275
1276	/* update buffer offset */
1277#if (PAGE_SIZE < 8192)
1278	rx_buffer->page_offset ^= truesize;
1279#else
1280	rx_buffer->page_offset += truesize;
1281#endif
1282
1283	return skb;
1284}
1285
1286static struct sk_buff *igc_construct_skb(struct igc_ring *rx_ring,
1287					 struct igc_rx_buffer *rx_buffer,
1288					 union igc_adv_rx_desc *rx_desc,
1289					 unsigned int size)
1290{
1291	void *va = page_address(rx_buffer->page) + rx_buffer->page_offset;
1292#if (PAGE_SIZE < 8192)
1293	unsigned int truesize = igc_rx_pg_size(rx_ring) / 2;
1294#else
1295	unsigned int truesize = SKB_DATA_ALIGN(size);
1296#endif
1297	unsigned int headlen;
1298	struct sk_buff *skb;
1299
1300	/* prefetch first cache line of first page */
1301	prefetch(va);
1302#if L1_CACHE_BYTES < 128
1303	prefetch(va + L1_CACHE_BYTES);
1304#endif
1305
1306	/* allocate a skb to store the frags */
1307	skb = napi_alloc_skb(&rx_ring->q_vector->napi, IGC_RX_HDR_LEN);
1308	if (unlikely(!skb))
1309		return NULL;
1310
1311	/* Determine available headroom for copy */
1312	headlen = size;
1313	if (headlen > IGC_RX_HDR_LEN)
1314		headlen = eth_get_headlen(skb->dev, va, IGC_RX_HDR_LEN);
1315
1316	/* align pull length to size of long to optimize memcpy performance */
1317	memcpy(__skb_put(skb, headlen), va, ALIGN(headlen, sizeof(long)));
1318
1319	/* update all of the pointers */
1320	size -= headlen;
1321	if (size) {
1322		skb_add_rx_frag(skb, 0, rx_buffer->page,
1323				(va + headlen) - page_address(rx_buffer->page),
1324				size, truesize);
1325#if (PAGE_SIZE < 8192)
1326		rx_buffer->page_offset ^= truesize;
1327#else
1328		rx_buffer->page_offset += truesize;
1329#endif
1330	} else {
1331		rx_buffer->pagecnt_bias++;
1332	}
1333
1334	return skb;
1335}
1336
1337/**
1338 * igc_reuse_rx_page - page flip buffer and store it back on the ring
1339 * @rx_ring: rx descriptor ring to store buffers on
1340 * @old_buff: donor buffer to have page reused
1341 *
1342 * Synchronizes page for reuse by the adapter
1343 */
1344static void igc_reuse_rx_page(struct igc_ring *rx_ring,
1345			      struct igc_rx_buffer *old_buff)
1346{
1347	u16 nta = rx_ring->next_to_alloc;
1348	struct igc_rx_buffer *new_buff;
1349
1350	new_buff = &rx_ring->rx_buffer_info[nta];
1351
1352	/* update, and store next to alloc */
1353	nta++;
1354	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
1355
1356	/* Transfer page from old buffer to new buffer.
1357	 * Move each member individually to avoid possible store
1358	 * forwarding stalls.
1359	 */
1360	new_buff->dma		= old_buff->dma;
1361	new_buff->page		= old_buff->page;
1362	new_buff->page_offset	= old_buff->page_offset;
1363	new_buff->pagecnt_bias	= old_buff->pagecnt_bias;
1364}
1365
1366static inline bool igc_page_is_reserved(struct page *page)
1367{
1368	return (page_to_nid(page) != numa_mem_id()) || page_is_pfmemalloc(page);
1369}
1370
1371static bool igc_can_reuse_rx_page(struct igc_rx_buffer *rx_buffer)
1372{
1373	unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
1374	struct page *page = rx_buffer->page;
1375
1376	/* avoid re-using remote pages */
1377	if (unlikely(igc_page_is_reserved(page)))
1378		return false;
1379
1380#if (PAGE_SIZE < 8192)
1381	/* if we are only owner of page we can reuse it */
1382	if (unlikely((page_ref_count(page) - pagecnt_bias) > 1))
1383		return false;
1384#else
1385#define IGC_LAST_OFFSET \
1386	(SKB_WITH_OVERHEAD(PAGE_SIZE) - IGC_RXBUFFER_2048)
1387
1388	if (rx_buffer->page_offset > IGC_LAST_OFFSET)
1389		return false;
1390#endif
1391
1392	/* If we have drained the page fragment pool we need to update
1393	 * the pagecnt_bias and page count so that we fully restock the
1394	 * number of references the driver holds.
1395	 */
1396	if (unlikely(!pagecnt_bias)) {
1397		page_ref_add(page, USHRT_MAX);
1398		rx_buffer->pagecnt_bias = USHRT_MAX;
1399	}
1400
1401	return true;
1402}
1403
1404/**
1405 * igc_is_non_eop - process handling of non-EOP buffers
1406 * @rx_ring: Rx ring being processed
1407 * @rx_desc: Rx descriptor for current buffer
1408 * @skb: current socket buffer containing buffer in progress
1409 *
1410 * This function updates next to clean.  If the buffer is an EOP buffer
1411 * this function exits returning false, otherwise it will place the
1412 * sk_buff in the next buffer to be chained and return true indicating
1413 * that this is in fact a non-EOP buffer.
1414 */
1415static bool igc_is_non_eop(struct igc_ring *rx_ring,
1416			   union igc_adv_rx_desc *rx_desc)
1417{
1418	u32 ntc = rx_ring->next_to_clean + 1;
1419
1420	/* fetch, update, and store next to clean */
1421	ntc = (ntc < rx_ring->count) ? ntc : 0;
1422	rx_ring->next_to_clean = ntc;
1423
1424	prefetch(IGC_RX_DESC(rx_ring, ntc));
1425
1426	if (likely(igc_test_staterr(rx_desc, IGC_RXD_STAT_EOP)))
1427		return false;
1428
1429	return true;
1430}
1431
1432/**
1433 * igc_cleanup_headers - Correct corrupted or empty headers
1434 * @rx_ring: rx descriptor ring packet is being transacted on
1435 * @rx_desc: pointer to the EOP Rx descriptor
1436 * @skb: pointer to current skb being fixed
1437 *
1438 * Address the case where we are pulling data in on pages only
1439 * and as such no data is present in the skb header.
1440 *
1441 * In addition if skb is not at least 60 bytes we need to pad it so that
1442 * it is large enough to qualify as a valid Ethernet frame.
1443 *
1444 * Returns true if an error was encountered and skb was freed.
1445 */
1446static bool igc_cleanup_headers(struct igc_ring *rx_ring,
1447				union igc_adv_rx_desc *rx_desc,
1448				struct sk_buff *skb)
1449{
1450	if (unlikely((igc_test_staterr(rx_desc,
1451				       IGC_RXDEXT_ERR_FRAME_ERR_MASK)))) {
1452		struct net_device *netdev = rx_ring->netdev;
1453
1454		if (!(netdev->features & NETIF_F_RXALL)) {
1455			dev_kfree_skb_any(skb);
1456			return true;
1457		}
1458	}
1459
1460	/* if eth_skb_pad returns an error the skb was freed */
1461	if (eth_skb_pad(skb))
1462		return true;
1463
1464	return false;
1465}
1466
1467static void igc_put_rx_buffer(struct igc_ring *rx_ring,
1468			      struct igc_rx_buffer *rx_buffer)
1469{
1470	if (igc_can_reuse_rx_page(rx_buffer)) {
1471		/* hand second half of page back to the ring */
1472		igc_reuse_rx_page(rx_ring, rx_buffer);
1473	} else {
1474		/* We are not reusing the buffer so unmap it and free
1475		 * any references we are holding to it
1476		 */
1477		dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
1478				     igc_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
1479				     IGC_RX_DMA_ATTR);
1480		__page_frag_cache_drain(rx_buffer->page,
1481					rx_buffer->pagecnt_bias);
1482	}
1483
1484	/* clear contents of rx_buffer */
1485	rx_buffer->page = NULL;
1486}
1487
1488/**
1489 * igc_alloc_rx_buffers - Replace used receive buffers; packet split
1490 * @adapter: address of board private structure
1491 */
1492static void igc_alloc_rx_buffers(struct igc_ring *rx_ring, u16 cleaned_count)
1493{
1494	union igc_adv_rx_desc *rx_desc;
1495	u16 i = rx_ring->next_to_use;
1496	struct igc_rx_buffer *bi;
1497	u16 bufsz;
1498
1499	/* nothing to do */
1500	if (!cleaned_count)
1501		return;
1502
1503	rx_desc = IGC_RX_DESC(rx_ring, i);
1504	bi = &rx_ring->rx_buffer_info[i];
1505	i -= rx_ring->count;
1506
1507	bufsz = igc_rx_bufsz(rx_ring);
1508
1509	do {
1510		if (!igc_alloc_mapped_page(rx_ring, bi))
1511			break;
1512
1513		/* sync the buffer for use by the device */
1514		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
1515						 bi->page_offset, bufsz,
1516						 DMA_FROM_DEVICE);
1517
1518		/* Refresh the desc even if buffer_addrs didn't change
1519		 * because each write-back erases this info.
1520		 */
1521		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
1522
1523		rx_desc++;
1524		bi++;
1525		i++;
1526		if (unlikely(!i)) {
1527			rx_desc = IGC_RX_DESC(rx_ring, 0);
1528			bi = rx_ring->rx_buffer_info;
1529			i -= rx_ring->count;
1530		}
1531
1532		/* clear the length for the next_to_use descriptor */
1533		rx_desc->wb.upper.length = 0;
1534
1535		cleaned_count--;
1536	} while (cleaned_count);
1537
1538	i += rx_ring->count;
1539
1540	if (rx_ring->next_to_use != i) {
1541		/* record the next descriptor to use */
1542		rx_ring->next_to_use = i;
1543
1544		/* update next to alloc since we have filled the ring */
1545		rx_ring->next_to_alloc = i;
1546
1547		/* Force memory writes to complete before letting h/w
1548		 * know there are new descriptors to fetch.  (Only
1549		 * applicable for weak-ordered memory model archs,
1550		 * such as IA-64).
1551		 */
1552		wmb();
1553		writel(i, rx_ring->tail);
1554	}
1555}
1556
1557static int igc_clean_rx_irq(struct igc_q_vector *q_vector, const int budget)
1558{
1559	unsigned int total_bytes = 0, total_packets = 0;
1560	struct igc_ring *rx_ring = q_vector->rx.ring;
1561	struct sk_buff *skb = rx_ring->skb;
1562	u16 cleaned_count = igc_desc_unused(rx_ring);
1563
1564	while (likely(total_packets < budget)) {
1565		union igc_adv_rx_desc *rx_desc;
1566		struct igc_rx_buffer *rx_buffer;
1567		unsigned int size;
1568
1569		/* return some buffers to hardware, one at a time is too slow */
1570		if (cleaned_count >= IGC_RX_BUFFER_WRITE) {
1571			igc_alloc_rx_buffers(rx_ring, cleaned_count);
1572			cleaned_count = 0;
1573		}
1574
1575		rx_desc = IGC_RX_DESC(rx_ring, rx_ring->next_to_clean);
1576		size = le16_to_cpu(rx_desc->wb.upper.length);
1577		if (!size)
1578			break;
1579
1580		/* This memory barrier is needed to keep us from reading
1581		 * any other fields out of the rx_desc until we know the
1582		 * descriptor has been written back
1583		 */
1584		dma_rmb();
1585
1586		rx_buffer = igc_get_rx_buffer(rx_ring, size);
1587
1588		/* retrieve a buffer from the ring */
1589		if (skb)
1590			igc_add_rx_frag(rx_ring, rx_buffer, skb, size);
1591		else if (ring_uses_build_skb(rx_ring))
1592			skb = igc_build_skb(rx_ring, rx_buffer, rx_desc, size);
1593		else
1594			skb = igc_construct_skb(rx_ring, rx_buffer,
1595						rx_desc, size);
1596
1597		/* exit if we failed to retrieve a buffer */
1598		if (!skb) {
1599			rx_ring->rx_stats.alloc_failed++;
1600			rx_buffer->pagecnt_bias++;
1601			break;
1602		}
1603
1604		igc_put_rx_buffer(rx_ring, rx_buffer);
1605		cleaned_count++;
1606
1607		/* fetch next buffer in frame if non-eop */
1608		if (igc_is_non_eop(rx_ring, rx_desc))
1609			continue;
1610
1611		/* verify the packet layout is correct */
1612		if (igc_cleanup_headers(rx_ring, rx_desc, skb)) {
1613			skb = NULL;
1614			continue;
1615		}
1616
1617		/* probably a little skewed due to removing CRC */
1618		total_bytes += skb->len;
1619
1620		/* populate checksum, timestamp, VLAN, and protocol */
1621		igc_process_skb_fields(rx_ring, rx_desc, skb);
1622
1623		napi_gro_receive(&q_vector->napi, skb);
1624
1625		/* reset skb pointer */
1626		skb = NULL;
1627
1628		/* update budget accounting */
1629		total_packets++;
1630	}
1631
1632	/* place incomplete frames back on ring for completion */
1633	rx_ring->skb = skb;
1634
1635	u64_stats_update_begin(&rx_ring->rx_syncp);
1636	rx_ring->rx_stats.packets += total_packets;
1637	rx_ring->rx_stats.bytes += total_bytes;
1638	u64_stats_update_end(&rx_ring->rx_syncp);
1639	q_vector->rx.total_packets += total_packets;
1640	q_vector->rx.total_bytes += total_bytes;
1641
1642	if (cleaned_count)
1643		igc_alloc_rx_buffers(rx_ring, cleaned_count);
1644
1645	return total_packets;
1646}
1647
1648static inline unsigned int igc_rx_offset(struct igc_ring *rx_ring)
1649{
1650	return ring_uses_build_skb(rx_ring) ? IGC_SKB_PAD : 0;
1651}
1652
1653static bool igc_alloc_mapped_page(struct igc_ring *rx_ring,
1654				  struct igc_rx_buffer *bi)
1655{
1656	struct page *page = bi->page;
1657	dma_addr_t dma;
1658
1659	/* since we are recycling buffers we should seldom need to alloc */
1660	if (likely(page))
1661		return true;
1662
1663	/* alloc new page for storage */
1664	page = dev_alloc_pages(igc_rx_pg_order(rx_ring));
1665	if (unlikely(!page)) {
1666		rx_ring->rx_stats.alloc_failed++;
1667		return false;
1668	}
1669
1670	/* map page for use */
1671	dma = dma_map_page_attrs(rx_ring->dev, page, 0,
1672				 igc_rx_pg_size(rx_ring),
1673				 DMA_FROM_DEVICE,
1674				 IGC_RX_DMA_ATTR);
1675
1676	/* if mapping failed free memory back to system since
1677	 * there isn't much point in holding memory we can't use
1678	 */
1679	if (dma_mapping_error(rx_ring->dev, dma)) {
1680		__free_page(page);
1681
1682		rx_ring->rx_stats.alloc_failed++;
1683		return false;
1684	}
1685
1686	bi->dma = dma;
1687	bi->page = page;
1688	bi->page_offset = igc_rx_offset(rx_ring);
1689	bi->pagecnt_bias = 1;
1690
1691	return true;
1692}
1693
1694/**
1695 * igc_clean_tx_irq - Reclaim resources after transmit completes
1696 * @q_vector: pointer to q_vector containing needed info
1697 * @napi_budget: Used to determine if we are in netpoll
1698 *
1699 * returns true if ring is completely cleaned
1700 */
1701static bool igc_clean_tx_irq(struct igc_q_vector *q_vector, int napi_budget)
1702{
1703	struct igc_adapter *adapter = q_vector->adapter;
1704	unsigned int total_bytes = 0, total_packets = 0;
1705	unsigned int budget = q_vector->tx.work_limit;
1706	struct igc_ring *tx_ring = q_vector->tx.ring;
1707	unsigned int i = tx_ring->next_to_clean;
1708	struct igc_tx_buffer *tx_buffer;
1709	union igc_adv_tx_desc *tx_desc;
1710
1711	if (test_bit(__IGC_DOWN, &adapter->state))
1712		return true;
1713
1714	tx_buffer = &tx_ring->tx_buffer_info[i];
1715	tx_desc = IGC_TX_DESC(tx_ring, i);
1716	i -= tx_ring->count;
1717
1718	do {
1719		union igc_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
1720
1721		/* if next_to_watch is not set then there is no work pending */
1722		if (!eop_desc)
1723			break;
1724
1725		/* prevent any other reads prior to eop_desc */
1726		smp_rmb();
1727
1728		/* if DD is not set pending work has not been completed */
1729		if (!(eop_desc->wb.status & cpu_to_le32(IGC_TXD_STAT_DD)))
1730			break;
1731
1732		/* clear next_to_watch to prevent false hangs */
1733		tx_buffer->next_to_watch = NULL;
1734
1735		/* update the statistics for this packet */
1736		total_bytes += tx_buffer->bytecount;
1737		total_packets += tx_buffer->gso_segs;
1738
1739		/* free the skb */
1740		napi_consume_skb(tx_buffer->skb, napi_budget);
1741
1742		/* unmap skb header data */
1743		dma_unmap_single(tx_ring->dev,
1744				 dma_unmap_addr(tx_buffer, dma),
1745				 dma_unmap_len(tx_buffer, len),
1746				 DMA_TO_DEVICE);
1747
1748		/* clear tx_buffer data */
1749		dma_unmap_len_set(tx_buffer, len, 0);
1750
1751		/* clear last DMA location and unmap remaining buffers */
1752		while (tx_desc != eop_desc) {
1753			tx_buffer++;
1754			tx_desc++;
1755			i++;
1756			if (unlikely(!i)) {
1757				i -= tx_ring->count;
1758				tx_buffer = tx_ring->tx_buffer_info;
1759				tx_desc = IGC_TX_DESC(tx_ring, 0);
1760			}
1761
1762			/* unmap any remaining paged data */
1763			if (dma_unmap_len(tx_buffer, len)) {
1764				dma_unmap_page(tx_ring->dev,
1765					       dma_unmap_addr(tx_buffer, dma),
1766					       dma_unmap_len(tx_buffer, len),
1767					       DMA_TO_DEVICE);
1768				dma_unmap_len_set(tx_buffer, len, 0);
1769			}
1770		}
1771
1772		/* move us one more past the eop_desc for start of next pkt */
1773		tx_buffer++;
1774		tx_desc++;
1775		i++;
1776		if (unlikely(!i)) {
1777			i -= tx_ring->count;
1778			tx_buffer = tx_ring->tx_buffer_info;
1779			tx_desc = IGC_TX_DESC(tx_ring, 0);
1780		}
1781
1782		/* issue prefetch for next Tx descriptor */
1783		prefetch(tx_desc);
1784
1785		/* update budget accounting */
1786		budget--;
1787	} while (likely(budget));
1788
1789	netdev_tx_completed_queue(txring_txq(tx_ring),
1790				  total_packets, total_bytes);
1791
1792	i += tx_ring->count;
1793	tx_ring->next_to_clean = i;
1794	u64_stats_update_begin(&tx_ring->tx_syncp);
1795	tx_ring->tx_stats.bytes += total_bytes;
1796	tx_ring->tx_stats.packets += total_packets;
1797	u64_stats_update_end(&tx_ring->tx_syncp);
1798	q_vector->tx.total_bytes += total_bytes;
1799	q_vector->tx.total_packets += total_packets;
1800
1801	if (test_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
1802		struct igc_hw *hw = &adapter->hw;
1803
1804		/* Detect a transmit hang in hardware, this serializes the
1805		 * check with the clearing of time_stamp and movement of i
1806		 */
1807		clear_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
1808		if (tx_buffer->next_to_watch &&
1809		    time_after(jiffies, tx_buffer->time_stamp +
1810		    (adapter->tx_timeout_factor * HZ)) &&
1811		    !(rd32(IGC_STATUS) & IGC_STATUS_TXOFF)) {
1812			/* detected Tx unit hang */
1813			dev_err(tx_ring->dev,
1814				"Detected Tx Unit Hang\n"
1815				"  Tx Queue             <%d>\n"
1816				"  TDH                  <%x>\n"
1817				"  TDT                  <%x>\n"
1818				"  next_to_use          <%x>\n"
1819				"  next_to_clean        <%x>\n"
1820				"buffer_info[next_to_clean]\n"
1821				"  time_stamp           <%lx>\n"
1822				"  next_to_watch        <%p>\n"
1823				"  jiffies              <%lx>\n"
1824				"  desc.status          <%x>\n",
1825				tx_ring->queue_index,
1826				rd32(IGC_TDH(tx_ring->reg_idx)),
1827				readl(tx_ring->tail),
1828				tx_ring->next_to_use,
1829				tx_ring->next_to_clean,
1830				tx_buffer->time_stamp,
1831				tx_buffer->next_to_watch,
1832				jiffies,
1833				tx_buffer->next_to_watch->wb.status);
1834			netif_stop_subqueue(tx_ring->netdev,
1835					    tx_ring->queue_index);
1836
1837			/* we are about to reset, no point in enabling stuff */
1838			return true;
1839		}
1840	}
1841
1842#define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
1843	if (unlikely(total_packets &&
1844		     netif_carrier_ok(tx_ring->netdev) &&
1845		     igc_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
1846		/* Make sure that anybody stopping the queue after this
1847		 * sees the new next_to_clean.
1848		 */
1849		smp_mb();
1850		if (__netif_subqueue_stopped(tx_ring->netdev,
1851					     tx_ring->queue_index) &&
1852		    !(test_bit(__IGC_DOWN, &adapter->state))) {
1853			netif_wake_subqueue(tx_ring->netdev,
1854					    tx_ring->queue_index);
1855
1856			u64_stats_update_begin(&tx_ring->tx_syncp);
1857			tx_ring->tx_stats.restart_queue++;
1858			u64_stats_update_end(&tx_ring->tx_syncp);
1859		}
1860	}
1861
1862	return !!budget;
1863}
1864
1865/**
1866 * igc_up - Open the interface and prepare it to handle traffic
1867 * @adapter: board private structure
1868 */
1869void igc_up(struct igc_adapter *adapter)
1870{
1871	struct igc_hw *hw = &adapter->hw;
1872	int i = 0;
1873
1874	/* hardware has been reset, we need to reload some things */
1875	igc_configure(adapter);
1876
1877	clear_bit(__IGC_DOWN, &adapter->state);
1878
1879	for (i = 0; i < adapter->num_q_vectors; i++)
1880		napi_enable(&adapter->q_vector[i]->napi);
1881
1882	if (adapter->msix_entries)
1883		igc_configure_msix(adapter);
1884	else
1885		igc_assign_vector(adapter->q_vector[0], 0);
1886
1887	/* Clear any pending interrupts. */
1888	rd32(IGC_ICR);
1889	igc_irq_enable(adapter);
1890
1891	netif_tx_start_all_queues(adapter->netdev);
1892
1893	/* start the watchdog. */
1894	hw->mac.get_link_status = 1;
1895	schedule_work(&adapter->watchdog_task);
1896}
1897
1898/**
1899 * igc_update_stats - Update the board statistics counters
1900 * @adapter: board private structure
1901 */
1902void igc_update_stats(struct igc_adapter *adapter)
1903{
1904	struct rtnl_link_stats64 *net_stats = &adapter->stats64;
1905	struct pci_dev *pdev = adapter->pdev;
1906	struct igc_hw *hw = &adapter->hw;
1907	u64 _bytes, _packets;
1908	u64 bytes, packets;
1909	unsigned int start;
1910	u32 mpc;
1911	int i;
1912
1913	/* Prevent stats update while adapter is being reset, or if the pci
1914	 * connection is down.
1915	 */
1916	if (adapter->link_speed == 0)
1917		return;
1918	if (pci_channel_offline(pdev))
1919		return;
1920
1921	packets = 0;
1922	bytes = 0;
1923
1924	rcu_read_lock();
1925	for (i = 0; i < adapter->num_rx_queues; i++) {
1926		struct igc_ring *ring = adapter->rx_ring[i];
1927		u32 rqdpc = rd32(IGC_RQDPC(i));
1928
1929		if (hw->mac.type >= igc_i225)
1930			wr32(IGC_RQDPC(i), 0);
1931
1932		if (rqdpc) {
1933			ring->rx_stats.drops += rqdpc;
1934			net_stats->rx_fifo_errors += rqdpc;
1935		}
1936
1937		do {
1938			start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
1939			_bytes = ring->rx_stats.bytes;
1940			_packets = ring->rx_stats.packets;
1941		} while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
1942		bytes += _bytes;
1943		packets += _packets;
1944	}
1945
1946	net_stats->rx_bytes = bytes;
1947	net_stats->rx_packets = packets;
1948
1949	packets = 0;
1950	bytes = 0;
1951	for (i = 0; i < adapter->num_tx_queues; i++) {
1952		struct igc_ring *ring = adapter->tx_ring[i];
1953
1954		do {
1955			start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
1956			_bytes = ring->tx_stats.bytes;
1957			_packets = ring->tx_stats.packets;
1958		} while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
1959		bytes += _bytes;
1960		packets += _packets;
1961	}
1962	net_stats->tx_bytes = bytes;
1963	net_stats->tx_packets = packets;
1964	rcu_read_unlock();
1965
1966	/* read stats registers */
1967	adapter->stats.crcerrs += rd32(IGC_CRCERRS);
1968	adapter->stats.gprc += rd32(IGC_GPRC);
1969	adapter->stats.gorc += rd32(IGC_GORCL);
1970	rd32(IGC_GORCH); /* clear GORCL */
1971	adapter->stats.bprc += rd32(IGC_BPRC);
1972	adapter->stats.mprc += rd32(IGC_MPRC);
1973	adapter->stats.roc += rd32(IGC_ROC);
1974
1975	adapter->stats.prc64 += rd32(IGC_PRC64);
1976	adapter->stats.prc127 += rd32(IGC_PRC127);
1977	adapter->stats.prc255 += rd32(IGC_PRC255);
1978	adapter->stats.prc511 += rd32(IGC_PRC511);
1979	adapter->stats.prc1023 += rd32(IGC_PRC1023);
1980	adapter->stats.prc1522 += rd32(IGC_PRC1522);
1981	adapter->stats.symerrs += rd32(IGC_SYMERRS);
1982	adapter->stats.sec += rd32(IGC_SEC);
1983
1984	mpc = rd32(IGC_MPC);
1985	adapter->stats.mpc += mpc;
1986	net_stats->rx_fifo_errors += mpc;
1987	adapter->stats.scc += rd32(IGC_SCC);
1988	adapter->stats.ecol += rd32(IGC_ECOL);
1989	adapter->stats.mcc += rd32(IGC_MCC);
1990	adapter->stats.latecol += rd32(IGC_LATECOL);
1991	adapter->stats.dc += rd32(IGC_DC);
1992	adapter->stats.rlec += rd32(IGC_RLEC);
1993	adapter->stats.xonrxc += rd32(IGC_XONRXC);
1994	adapter->stats.xontxc += rd32(IGC_XONTXC);
1995	adapter->stats.xoffrxc += rd32(IGC_XOFFRXC);
1996	adapter->stats.xofftxc += rd32(IGC_XOFFTXC);
1997	adapter->stats.fcruc += rd32(IGC_FCRUC);
1998	adapter->stats.gptc += rd32(IGC_GPTC);
1999	adapter->stats.gotc += rd32(IGC_GOTCL);
2000	rd32(IGC_GOTCH); /* clear GOTCL */
2001	adapter->stats.rnbc += rd32(IGC_RNBC);
2002	adapter->stats.ruc += rd32(IGC_RUC);
2003	adapter->stats.rfc += rd32(IGC_RFC);
2004	adapter->stats.rjc += rd32(IGC_RJC);
2005	adapter->stats.tor += rd32(IGC_TORH);
2006	adapter->stats.tot += rd32(IGC_TOTH);
2007	adapter->stats.tpr += rd32(IGC_TPR);
2008
2009	adapter->stats.ptc64 += rd32(IGC_PTC64);
2010	adapter->stats.ptc127 += rd32(IGC_PTC127);
2011	adapter->stats.ptc255 += rd32(IGC_PTC255);
2012	adapter->stats.ptc511 += rd32(IGC_PTC511);
2013	adapter->stats.ptc1023 += rd32(IGC_PTC1023);
2014	adapter->stats.ptc1522 += rd32(IGC_PTC1522);
2015
2016	adapter->stats.mptc += rd32(IGC_MPTC);
2017	adapter->stats.bptc += rd32(IGC_BPTC);
2018
2019	adapter->stats.tpt += rd32(IGC_TPT);
2020	adapter->stats.colc += rd32(IGC_COLC);
2021
2022	adapter->stats.algnerrc += rd32(IGC_ALGNERRC);
2023
2024	adapter->stats.tsctc += rd32(IGC_TSCTC);
2025	adapter->stats.tsctfc += rd32(IGC_TSCTFC);
2026
2027	adapter->stats.iac += rd32(IGC_IAC);
2028	adapter->stats.icrxoc += rd32(IGC_ICRXOC);
2029	adapter->stats.icrxptc += rd32(IGC_ICRXPTC);
2030	adapter->stats.icrxatc += rd32(IGC_ICRXATC);
2031	adapter->stats.ictxptc += rd32(IGC_ICTXPTC);
2032	adapter->stats.ictxatc += rd32(IGC_ICTXATC);
2033	adapter->stats.ictxqec += rd32(IGC_ICTXQEC);
2034	adapter->stats.ictxqmtc += rd32(IGC_ICTXQMTC);
2035	adapter->stats.icrxdmtc += rd32(IGC_ICRXDMTC);
2036
2037	/* Fill out the OS statistics structure */
2038	net_stats->multicast = adapter->stats.mprc;
2039	net_stats->collisions = adapter->stats.colc;
2040
2041	/* Rx Errors */
2042
2043	/* RLEC on some newer hardware can be incorrect so build
2044	 * our own version based on RUC and ROC
2045	 */
2046	net_stats->rx_errors = adapter->stats.rxerrc +
2047		adapter->stats.crcerrs + adapter->stats.algnerrc +
2048		adapter->stats.ruc + adapter->stats.roc +
2049		adapter->stats.cexterr;
2050	net_stats->rx_length_errors = adapter->stats.ruc +
2051				      adapter->stats.roc;
2052	net_stats->rx_crc_errors = adapter->stats.crcerrs;
2053	net_stats->rx_frame_errors = adapter->stats.algnerrc;
2054	net_stats->rx_missed_errors = adapter->stats.mpc;
2055
2056	/* Tx Errors */
2057	net_stats->tx_errors = adapter->stats.ecol +
2058			       adapter->stats.latecol;
2059	net_stats->tx_aborted_errors = adapter->stats.ecol;
2060	net_stats->tx_window_errors = adapter->stats.latecol;
2061	net_stats->tx_carrier_errors = adapter->stats.tncrs;
2062
2063	/* Tx Dropped needs to be maintained elsewhere */
2064
2065	/* Management Stats */
2066	adapter->stats.mgptc += rd32(IGC_MGTPTC);
2067	adapter->stats.mgprc += rd32(IGC_MGTPRC);
2068	adapter->stats.mgpdc += rd32(IGC_MGTPDC);
2069}
2070
2071static void igc_nfc_filter_exit(struct igc_adapter *adapter)
2072{
2073	struct igc_nfc_filter *rule;
2074
2075	spin_lock(&adapter->nfc_lock);
2076
2077	hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
2078		igc_erase_filter(adapter, rule);
2079
2080	hlist_for_each_entry(rule, &adapter->cls_flower_list, nfc_node)
2081		igc_erase_filter(adapter, rule);
2082
2083	spin_unlock(&adapter->nfc_lock);
2084}
2085
2086static void igc_nfc_filter_restore(struct igc_adapter *adapter)
2087{
2088	struct igc_nfc_filter *rule;
2089
2090	spin_lock(&adapter->nfc_lock);
2091
2092	hlist_for_each_entry(rule, &adapter->nfc_filter_list, nfc_node)
2093		igc_add_filter(adapter, rule);
2094
2095	spin_unlock(&adapter->nfc_lock);
2096}
2097
2098/**
2099 * igc_down - Close the interface
2100 * @adapter: board private structure
2101 */
2102void igc_down(struct igc_adapter *adapter)
2103{
2104	struct net_device *netdev = adapter->netdev;
2105	struct igc_hw *hw = &adapter->hw;
2106	u32 tctl, rctl;
2107	int i = 0;
2108
2109	set_bit(__IGC_DOWN, &adapter->state);
2110
2111	/* disable receives in the hardware */
2112	rctl = rd32(IGC_RCTL);
2113	wr32(IGC_RCTL, rctl & ~IGC_RCTL_EN);
2114	/* flush and sleep below */
2115
2116	igc_nfc_filter_exit(adapter);
2117
2118	/* set trans_start so we don't get spurious watchdogs during reset */
2119	netif_trans_update(netdev);
2120
2121	netif_carrier_off(netdev);
2122	netif_tx_stop_all_queues(netdev);
2123
2124	/* disable transmits in the hardware */
2125	tctl = rd32(IGC_TCTL);
2126	tctl &= ~IGC_TCTL_EN;
2127	wr32(IGC_TCTL, tctl);
2128	/* flush both disables and wait for them to finish */
2129	wrfl();
2130	usleep_range(10000, 20000);
2131
2132	igc_irq_disable(adapter);
2133
2134	adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
2135
2136	for (i = 0; i < adapter->num_q_vectors; i++) {
2137		if (adapter->q_vector[i]) {
2138			napi_synchronize(&adapter->q_vector[i]->napi);
2139			napi_disable(&adapter->q_vector[i]->napi);
2140		}
2141	}
2142
2143	del_timer_sync(&adapter->watchdog_timer);
2144	del_timer_sync(&adapter->phy_info_timer);
2145
2146	/* record the stats before reset*/
2147	spin_lock(&adapter->stats64_lock);
2148	igc_update_stats(adapter);
2149	spin_unlock(&adapter->stats64_lock);
2150
2151	adapter->link_speed = 0;
2152	adapter->link_duplex = 0;
2153
2154	if (!pci_channel_offline(adapter->pdev))
2155		igc_reset(adapter);
2156
2157	/* clear VLAN promisc flag so VFTA will be updated if necessary */
2158	adapter->flags &= ~IGC_FLAG_VLAN_PROMISC;
2159
2160	igc_clean_all_tx_rings(adapter);
2161	igc_clean_all_rx_rings(adapter);
2162}
2163
2164void igc_reinit_locked(struct igc_adapter *adapter)
2165{
2166	WARN_ON(in_interrupt());
2167	while (test_and_set_bit(__IGC_RESETTING, &adapter->state))
2168		usleep_range(1000, 2000);
2169	igc_down(adapter);
2170	igc_up(adapter);
2171	clear_bit(__IGC_RESETTING, &adapter->state);
2172}
2173
2174static void igc_reset_task(struct work_struct *work)
2175{
2176	struct igc_adapter *adapter;
2177
2178	adapter = container_of(work, struct igc_adapter, reset_task);
2179
2180	netdev_err(adapter->netdev, "Reset adapter\n");
2181	igc_reinit_locked(adapter);
2182}
2183
2184/**
2185 * igc_change_mtu - Change the Maximum Transfer Unit
2186 * @netdev: network interface device structure
2187 * @new_mtu: new value for maximum frame size
2188 *
2189 * Returns 0 on success, negative on failure
2190 */
2191static int igc_change_mtu(struct net_device *netdev, int new_mtu)
2192{
2193	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
2194	struct igc_adapter *adapter = netdev_priv(netdev);
2195	struct pci_dev *pdev = adapter->pdev;
2196
2197	/* adjust max frame to be at least the size of a standard frame */
2198	if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
2199		max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
2200
2201	while (test_and_set_bit(__IGC_RESETTING, &adapter->state))
2202		usleep_range(1000, 2000);
2203
2204	/* igc_down has a dependency on max_frame_size */
2205	adapter->max_frame_size = max_frame;
2206
2207	if (netif_running(netdev))
2208		igc_down(adapter);
2209
2210	dev_info(&pdev->dev, "changing MTU from %d to %d\n",
2211		 netdev->mtu, new_mtu);
2212	netdev->mtu = new_mtu;
2213
2214	if (netif_running(netdev))
2215		igc_up(adapter);
2216	else
2217		igc_reset(adapter);
2218
2219	clear_bit(__IGC_RESETTING, &adapter->state);
2220
2221	return 0;
2222}
2223
2224/**
2225 * igc_get_stats - Get System Network Statistics
2226 * @netdev: network interface device structure
2227 *
2228 * Returns the address of the device statistics structure.
2229 * The statistics are updated here and also from the timer callback.
2230 */
2231static struct net_device_stats *igc_get_stats(struct net_device *netdev)
2232{
2233	struct igc_adapter *adapter = netdev_priv(netdev);
2234
2235	if (!test_bit(__IGC_RESETTING, &adapter->state))
2236		igc_update_stats(adapter);
2237
2238	/* only return the current stats */
2239	return &netdev->stats;
2240}
2241
2242static netdev_features_t igc_fix_features(struct net_device *netdev,
2243					  netdev_features_t features)
2244{
2245	/* Since there is no support for separate Rx/Tx vlan accel
2246	 * enable/disable make sure Tx flag is always in same state as Rx.
2247	 */
2248	if (features & NETIF_F_HW_VLAN_CTAG_RX)
2249		features |= NETIF_F_HW_VLAN_CTAG_TX;
2250	else
2251		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
2252
2253	return features;
2254}
2255
2256static int igc_set_features(struct net_device *netdev,
2257			    netdev_features_t features)
2258{
2259	netdev_features_t changed = netdev->features ^ features;
2260	struct igc_adapter *adapter = netdev_priv(netdev);
2261
2262	/* Add VLAN support */
2263	if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
2264		return 0;
2265
2266	if (!(features & NETIF_F_NTUPLE)) {
2267		struct hlist_node *node2;
2268		struct igc_nfc_filter *rule;
2269
2270		spin_lock(&adapter->nfc_lock);
2271		hlist_for_each_entry_safe(rule, node2,
2272					  &adapter->nfc_filter_list, nfc_node) {
2273			igc_erase_filter(adapter, rule);
2274			hlist_del(&rule->nfc_node);
2275			kfree(rule);
2276		}
2277		spin_unlock(&adapter->nfc_lock);
2278		adapter->nfc_filter_count = 0;
2279	}
2280
2281	netdev->features = features;
2282
2283	if (netif_running(netdev))
2284		igc_reinit_locked(adapter);
2285	else
2286		igc_reset(adapter);
2287
2288	return 1;
2289}
2290
2291static netdev_features_t
2292igc_features_check(struct sk_buff *skb, struct net_device *dev,
2293		   netdev_features_t features)
2294{
2295	unsigned int network_hdr_len, mac_hdr_len;
2296
2297	/* Make certain the headers can be described by a context descriptor */
2298	mac_hdr_len = skb_network_header(skb) - skb->data;
2299	if (unlikely(mac_hdr_len > IGC_MAX_MAC_HDR_LEN))
2300		return features & ~(NETIF_F_HW_CSUM |
2301				    NETIF_F_SCTP_CRC |
2302				    NETIF_F_HW_VLAN_CTAG_TX |
2303				    NETIF_F_TSO |
2304				    NETIF_F_TSO6);
2305
2306	network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
2307	if (unlikely(network_hdr_len >  IGC_MAX_NETWORK_HDR_LEN))
2308		return features & ~(NETIF_F_HW_CSUM |
2309				    NETIF_F_SCTP_CRC |
2310				    NETIF_F_TSO |
2311				    NETIF_F_TSO6);
2312
2313	/* We can only support IPv4 TSO in tunnels if we can mangle the
2314	 * inner IP ID field, so strip TSO if MANGLEID is not supported.
2315	 */
2316	if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
2317		features &= ~NETIF_F_TSO;
2318
2319	return features;
2320}
2321
2322/**
2323 * igc_configure - configure the hardware for RX and TX
2324 * @adapter: private board structure
2325 */
2326static void igc_configure(struct igc_adapter *adapter)
2327{
2328	struct net_device *netdev = adapter->netdev;
2329	int i = 0;
2330
2331	igc_get_hw_control(adapter);
2332	igc_set_rx_mode(netdev);
2333
2334	igc_setup_tctl(adapter);
2335	igc_setup_mrqc(adapter);
2336	igc_setup_rctl(adapter);
2337
2338	igc_nfc_filter_restore(adapter);
2339	igc_configure_tx(adapter);
2340	igc_configure_rx(adapter);
2341
2342	igc_rx_fifo_flush_base(&adapter->hw);
2343
2344	/* call igc_desc_unused which always leaves
2345	 * at least 1 descriptor unused to make sure
2346	 * next_to_use != next_to_clean
2347	 */
2348	for (i = 0; i < adapter->num_rx_queues; i++) {
2349		struct igc_ring *ring = adapter->rx_ring[i];
2350
2351		igc_alloc_rx_buffers(ring, igc_desc_unused(ring));
2352	}
2353}
2354
2355/**
2356 * igc_rar_set_index - Sync RAL[index] and RAH[index] registers with MAC table
2357 * @adapter: address of board private structure
2358 * @index: Index of the RAR entry which need to be synced with MAC table
2359 */
2360static void igc_rar_set_index(struct igc_adapter *adapter, u32 index)
2361{
2362	u8 *addr = adapter->mac_table[index].addr;
2363	struct igc_hw *hw = &adapter->hw;
2364	u32 rar_low, rar_high;
2365
2366	/* HW expects these to be in network order when they are plugged
2367	 * into the registers which are little endian.  In order to guarantee
2368	 * that ordering we need to do an leXX_to_cpup here in order to be
2369	 * ready for the byteswap that occurs with writel
2370	 */
2371	rar_low = le32_to_cpup((__le32 *)(addr));
2372	rar_high = le16_to_cpup((__le16 *)(addr + 4));
2373
2374	/* Indicate to hardware the Address is Valid. */
2375	if (adapter->mac_table[index].state & IGC_MAC_STATE_IN_USE) {
2376		if (is_valid_ether_addr(addr))
2377			rar_high |= IGC_RAH_AV;
2378
2379		rar_high |= IGC_RAH_POOL_1 <<
2380			adapter->mac_table[index].queue;
2381	}
2382
2383	wr32(IGC_RAL(index), rar_low);
2384	wrfl();
2385	wr32(IGC_RAH(index), rar_high);
2386	wrfl();
2387}
2388
2389/* Set default MAC address for the PF in the first RAR entry */
2390static void igc_set_default_mac_filter(struct igc_adapter *adapter)
2391{
2392	struct igc_mac_addr *mac_table = &adapter->mac_table[0];
2393
2394	ether_addr_copy(mac_table->addr, adapter->hw.mac.addr);
2395	mac_table->state = IGC_MAC_STATE_DEFAULT | IGC_MAC_STATE_IN_USE;
2396
2397	igc_rar_set_index(adapter, 0);
2398}
2399
2400/* If the filter to be added and an already existing filter express
2401 * the same address and address type, it should be possible to only
2402 * override the other configurations, for example the queue to steer
2403 * traffic.
2404 */
2405static bool igc_mac_entry_can_be_used(const struct igc_mac_addr *entry,
2406				      const u8 *addr, const u8 flags)
2407{
2408	if (!(entry->state & IGC_MAC_STATE_IN_USE))
2409		return true;
2410
2411	if ((entry->state & IGC_MAC_STATE_SRC_ADDR) !=
2412	    (flags & IGC_MAC_STATE_SRC_ADDR))
2413		return false;
2414
2415	if (!ether_addr_equal(addr, entry->addr))
2416		return false;
2417
2418	return true;
2419}
2420
2421/* Add a MAC filter for 'addr' directing matching traffic to 'queue',
2422 * 'flags' is used to indicate what kind of match is made, match is by
2423 * default for the destination address, if matching by source address
2424 * is desired the flag IGC_MAC_STATE_SRC_ADDR can be used.
2425 */
2426static int igc_add_mac_filter_flags(struct igc_adapter *adapter,
2427				    const u8 *addr, const u8 queue,
2428				    const u8 flags)
2429{
2430	struct igc_hw *hw = &adapter->hw;
2431	int rar_entries = hw->mac.rar_entry_count;
2432	int i;
2433
2434	if (is_zero_ether_addr(addr))
2435		return -EINVAL;
2436
2437	/* Search for the first empty entry in the MAC table.
2438	 * Do not touch entries at the end of the table reserved for the VF MAC
2439	 * addresses.
2440	 */
2441	for (i = 0; i < rar_entries; i++) {
2442		if (!igc_mac_entry_can_be_used(&adapter->mac_table[i],
2443					       addr, flags))
2444			continue;
2445
2446		ether_addr_copy(adapter->mac_table[i].addr, addr);
2447		adapter->mac_table[i].queue = queue;
2448		adapter->mac_table[i].state |= IGC_MAC_STATE_IN_USE | flags;
2449
2450		igc_rar_set_index(adapter, i);
2451		return i;
2452	}
2453
2454	return -ENOSPC;
2455}
2456
2457int igc_add_mac_steering_filter(struct igc_adapter *adapter,
2458				const u8 *addr, u8 queue, u8 flags)
2459{
2460	return igc_add_mac_filter_flags(adapter, addr, queue,
2461					IGC_MAC_STATE_QUEUE_STEERING | flags);
2462}
2463
2464/* Remove a MAC filter for 'addr' directing matching traffic to
2465 * 'queue', 'flags' is used to indicate what kind of match need to be
2466 * removed, match is by default for the destination address, if
2467 * matching by source address is to be removed the flag
2468 * IGC_MAC_STATE_SRC_ADDR can be used.
2469 */
2470static int igc_del_mac_filter_flags(struct igc_adapter *adapter,
2471				    const u8 *addr, const u8 queue,
2472				    const u8 flags)
2473{
2474	struct igc_hw *hw = &adapter->hw;
2475	int rar_entries = hw->mac.rar_entry_count;
2476	int i;
2477
2478	if (is_zero_ether_addr(addr))
2479		return -EINVAL;
2480
2481	/* Search for matching entry in the MAC table based on given address
2482	 * and queue. Do not touch entries at the end of the table reserved
2483	 * for the VF MAC addresses.
2484	 */
2485	for (i = 0; i < rar_entries; i++) {
2486		if (!(adapter->mac_table[i].state & IGC_MAC_STATE_IN_USE))
2487			continue;
2488		if ((adapter->mac_table[i].state & flags) != flags)
2489			continue;
2490		if (adapter->mac_table[i].queue != queue)
2491			continue;
2492		if (!ether_addr_equal(adapter->mac_table[i].addr, addr))
2493			continue;
2494
2495		/* When a filter for the default address is "deleted",
2496		 * we return it to its initial configuration
2497		 */
2498		if (adapter->mac_table[i].state & IGC_MAC_STATE_DEFAULT) {
2499			adapter->mac_table[i].state =
2500				IGC_MAC_STATE_DEFAULT | IGC_MAC_STATE_IN_USE;
2501		} else {
2502			adapter->mac_table[i].state = 0;
2503			adapter->mac_table[i].queue = 0;
2504			memset(adapter->mac_table[i].addr, 0, ETH_ALEN);
2505		}
2506
2507		igc_rar_set_index(adapter, i);
2508		return 0;
2509	}
2510
2511	return -ENOENT;
2512}
2513
2514int igc_del_mac_steering_filter(struct igc_adapter *adapter,
2515				const u8 *addr, u8 queue, u8 flags)
2516{
2517	return igc_del_mac_filter_flags(adapter, addr, queue,
2518					IGC_MAC_STATE_QUEUE_STEERING | flags);
2519}
2520
2521/**
2522 * igc_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
2523 * @netdev: network interface device structure
2524 *
2525 * The set_rx_mode entry point is called whenever the unicast or multicast
2526 * address lists or the network interface flags are updated.  This routine is
2527 * responsible for configuring the hardware for proper unicast, multicast,
2528 * promiscuous mode, and all-multi behavior.
2529 */
2530static void igc_set_rx_mode(struct net_device *netdev)
2531{
2532}
2533
2534/**
2535 * igc_msix_other - msix other interrupt handler
2536 * @irq: interrupt number
2537 * @data: pointer to a q_vector
2538 */
2539static irqreturn_t igc_msix_other(int irq, void *data)
2540{
2541	struct igc_adapter *adapter = data;
2542	struct igc_hw *hw = &adapter->hw;
2543	u32 icr = rd32(IGC_ICR);
2544
2545	/* reading ICR causes bit 31 of EICR to be cleared */
2546	if (icr & IGC_ICR_DRSTA)
2547		schedule_work(&adapter->reset_task);
2548
2549	if (icr & IGC_ICR_DOUTSYNC) {
2550		/* HW is reporting DMA is out of sync */
2551		adapter->stats.doosync++;
2552	}
2553
2554	if (icr & IGC_ICR_LSC) {
2555		hw->mac.get_link_status = 1;
2556		/* guard against interrupt when we're going down */
2557		if (!test_bit(__IGC_DOWN, &adapter->state))
2558			mod_timer(&adapter->watchdog_timer, jiffies + 1);
2559	}
2560
2561	wr32(IGC_EIMS, adapter->eims_other);
2562
2563	return IRQ_HANDLED;
2564}
2565
2566/**
2567 * igc_write_ivar - configure ivar for given MSI-X vector
2568 * @hw: pointer to the HW structure
2569 * @msix_vector: vector number we are allocating to a given ring
2570 * @index: row index of IVAR register to write within IVAR table
2571 * @offset: column offset of in IVAR, should be multiple of 8
2572 *
2573 * The IVAR table consists of 2 columns,
2574 * each containing an cause allocation for an Rx and Tx ring, and a
2575 * variable number of rows depending on the number of queues supported.
2576 */
2577static void igc_write_ivar(struct igc_hw *hw, int msix_vector,
2578			   int index, int offset)
2579{
2580	u32 ivar = array_rd32(IGC_IVAR0, index);
2581
2582	/* clear any bits that are currently set */
2583	ivar &= ~((u32)0xFF << offset);
2584
2585	/* write vector and valid bit */
2586	ivar |= (msix_vector | IGC_IVAR_VALID) << offset;
2587
2588	array_wr32(IGC_IVAR0, index, ivar);
2589}
2590
2591static void igc_assign_vector(struct igc_q_vector *q_vector, int msix_vector)
2592{
2593	struct igc_adapter *adapter = q_vector->adapter;
2594	struct igc_hw *hw = &adapter->hw;
2595	int rx_queue = IGC_N0_QUEUE;
2596	int tx_queue = IGC_N0_QUEUE;
2597
2598	if (q_vector->rx.ring)
2599		rx_queue = q_vector->rx.ring->reg_idx;
2600	if (q_vector->tx.ring)
2601		tx_queue = q_vector->tx.ring->reg_idx;
2602
2603	switch (hw->mac.type) {
2604	case igc_i225:
2605		if (rx_queue > IGC_N0_QUEUE)
2606			igc_write_ivar(hw, msix_vector,
2607				       rx_queue >> 1,
2608				       (rx_queue & 0x1) << 4);
2609		if (tx_queue > IGC_N0_QUEUE)
2610			igc_write_ivar(hw, msix_vector,
2611				       tx_queue >> 1,
2612				       ((tx_queue & 0x1) << 4) + 8);
2613		q_vector->eims_value = BIT(msix_vector);
2614		break;
2615	default:
2616		WARN_ONCE(hw->mac.type != igc_i225, "Wrong MAC type\n");
2617		break;
2618	}
2619
2620	/* add q_vector eims value to global eims_enable_mask */
2621	adapter->eims_enable_mask |= q_vector->eims_value;
2622
2623	/* configure q_vector to set itr on first interrupt */
2624	q_vector->set_itr = 1;
2625}
2626
2627/**
2628 * igc_configure_msix - Configure MSI-X hardware
2629 * @adapter: Pointer to adapter structure
2630 *
2631 * igc_configure_msix sets up the hardware to properly
2632 * generate MSI-X interrupts.
2633 */
2634static void igc_configure_msix(struct igc_adapter *adapter)
2635{
2636	struct igc_hw *hw = &adapter->hw;
2637	int i, vector = 0;
2638	u32 tmp;
2639
2640	adapter->eims_enable_mask = 0;
2641
2642	/* set vector for other causes, i.e. link changes */
2643	switch (hw->mac.type) {
2644	case igc_i225:
2645		/* Turn on MSI-X capability first, or our settings
2646		 * won't stick.  And it will take days to debug.
2647		 */
2648		wr32(IGC_GPIE, IGC_GPIE_MSIX_MODE |
2649		     IGC_GPIE_PBA | IGC_GPIE_EIAME |
2650		     IGC_GPIE_NSICR);
2651
2652		/* enable msix_other interrupt */
2653		adapter->eims_other = BIT(vector);
2654		tmp = (vector++ | IGC_IVAR_VALID) << 8;
2655
2656		wr32(IGC_IVAR_MISC, tmp);
2657		break;
2658	default:
2659		/* do nothing, since nothing else supports MSI-X */
2660		break;
2661	} /* switch (hw->mac.type) */
2662
2663	adapter->eims_enable_mask |= adapter->eims_other;
2664
2665	for (i = 0; i < adapter->num_q_vectors; i++)
2666		igc_assign_vector(adapter->q_vector[i], vector++);
2667
2668	wrfl();
2669}
2670
2671static irqreturn_t igc_msix_ring(int irq, void *data)
2672{
2673	struct igc_q_vector *q_vector = data;
2674
2675	/* Write the ITR value calculated from the previous interrupt. */
2676	igc_write_itr(q_vector);
2677
2678	napi_schedule(&q_vector->napi);
2679
2680	return IRQ_HANDLED;
2681}
2682
2683/**
2684 * igc_request_msix - Initialize MSI-X interrupts
2685 * @adapter: Pointer to adapter structure
2686 *
2687 * igc_request_msix allocates MSI-X vectors and requests interrupts from the
2688 * kernel.
2689 */
2690static int igc_request_msix(struct igc_adapter *adapter)
2691{
2692	int i = 0, err = 0, vector = 0, free_vector = 0;
2693	struct net_device *netdev = adapter->netdev;
2694
2695	err = request_irq(adapter->msix_entries[vector].vector,
2696			  &igc_msix_other, 0, netdev->name, adapter);
2697	if (err)
2698		goto err_out;
2699
2700	for (i = 0; i < adapter->num_q_vectors; i++) {
2701		struct igc_q_vector *q_vector = adapter->q_vector[i];
2702
2703		vector++;
2704
2705		q_vector->itr_register = adapter->io_addr + IGC_EITR(vector);
2706
2707		if (q_vector->rx.ring && q_vector->tx.ring)
2708			sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
2709				q_vector->rx.ring->queue_index);
2710		else if (q_vector->tx.ring)
2711			sprintf(q_vector->name, "%s-tx-%u", netdev->name,
2712				q_vector->tx.ring->queue_index);
2713		else if (q_vector->rx.ring)
2714			sprintf(q_vector->name, "%s-rx-%u", netdev->name,
2715				q_vector->rx.ring->queue_index);
2716		else
2717			sprintf(q_vector->name, "%s-unused", netdev->name);
2718
2719		err = request_irq(adapter->msix_entries[vector].vector,
2720				  igc_msix_ring, 0, q_vector->name,
2721				  q_vector);
2722		if (err)
2723			goto err_free;
2724	}
2725
2726	igc_configure_msix(adapter);
2727	return 0;
2728
2729err_free:
2730	/* free already assigned IRQs */
2731	free_irq(adapter->msix_entries[free_vector++].vector, adapter);
2732
2733	vector--;
2734	for (i = 0; i < vector; i++) {
2735		free_irq(adapter->msix_entries[free_vector++].vector,
2736			 adapter->q_vector[i]);
2737	}
2738err_out:
2739	return err;
2740}
2741
2742/**
2743 * igc_reset_q_vector - Reset config for interrupt vector
2744 * @adapter: board private structure to initialize
2745 * @v_idx: Index of vector to be reset
2746 *
2747 * If NAPI is enabled it will delete any references to the
2748 * NAPI struct. This is preparation for igc_free_q_vector.
2749 */
2750static void igc_reset_q_vector(struct igc_adapter *adapter, int v_idx)
2751{
2752	struct igc_q_vector *q_vector = adapter->q_vector[v_idx];
2753
2754	/* if we're coming from igc_set_interrupt_capability, the vectors are
2755	 * not yet allocated
2756	 */
2757	if (!q_vector)
2758		return;
2759
2760	if (q_vector->tx.ring)
2761		adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
2762
2763	if (q_vector->rx.ring)
2764		adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
2765
2766	netif_napi_del(&q_vector->napi);
2767}
2768
2769static void igc_reset_interrupt_capability(struct igc_adapter *adapter)
2770{
2771	int v_idx = adapter->num_q_vectors;
2772
2773	if (adapter->msix_entries) {
2774		pci_disable_msix(adapter->pdev);
2775		kfree(adapter->msix_entries);
2776		adapter->msix_entries = NULL;
2777	} else if (adapter->flags & IGC_FLAG_HAS_MSI) {
2778		pci_disable_msi(adapter->pdev);
2779	}
2780
2781	while (v_idx--)
2782		igc_reset_q_vector(adapter, v_idx);
2783}
2784
2785/**
2786 * igc_clear_interrupt_scheme - reset the device to a state of no interrupts
2787 * @adapter: Pointer to adapter structure
2788 *
2789 * This function resets the device so that it has 0 rx queues, tx queues, and
2790 * MSI-X interrupts allocated.
2791 */
2792static void igc_clear_interrupt_scheme(struct igc_adapter *adapter)
2793{
2794	igc_free_q_vectors(adapter);
2795	igc_reset_interrupt_capability(adapter);
2796}
2797
2798/**
2799 * igc_free_q_vectors - Free memory allocated for interrupt vectors
2800 * @adapter: board private structure to initialize
2801 *
2802 * This function frees the memory allocated to the q_vectors.  In addition if
2803 * NAPI is enabled it will delete any references to the NAPI struct prior
2804 * to freeing the q_vector.
2805 */
2806static void igc_free_q_vectors(struct igc_adapter *adapter)
2807{
2808	int v_idx = adapter->num_q_vectors;
2809
2810	adapter->num_tx_queues = 0;
2811	adapter->num_rx_queues = 0;
2812	adapter->num_q_vectors = 0;
2813
2814	while (v_idx--) {
2815		igc_reset_q_vector(adapter, v_idx);
2816		igc_free_q_vector(adapter, v_idx);
2817	}
2818}
2819
2820/**
2821 * igc_free_q_vector - Free memory allocated for specific interrupt vector
2822 * @adapter: board private structure to initialize
2823 * @v_idx: Index of vector to be freed
2824 *
2825 * This function frees the memory allocated to the q_vector.
2826 */
2827static void igc_free_q_vector(struct igc_adapter *adapter, int v_idx)
2828{
2829	struct igc_q_vector *q_vector = adapter->q_vector[v_idx];
2830
2831	adapter->q_vector[v_idx] = NULL;
2832
2833	/* igc_get_stats64() might access the rings on this vector,
2834	 * we must wait a grace period before freeing it.
2835	 */
2836	if (q_vector)
2837		kfree_rcu(q_vector, rcu);
2838}
2839
2840/* Need to wait a few seconds after link up to get diagnostic information from
2841 * the phy
2842 */
2843static void igc_update_phy_info(struct timer_list *t)
2844{
2845	struct igc_adapter *adapter = from_timer(adapter, t, phy_info_timer);
2846
2847	igc_get_phy_info(&adapter->hw);
2848}
2849
2850/**
2851 * igc_has_link - check shared code for link and determine up/down
2852 * @adapter: pointer to driver private info
2853 */
2854bool igc_has_link(struct igc_adapter *adapter)
2855{
2856	struct igc_hw *hw = &adapter->hw;
2857	bool link_active = false;
2858
2859	/* get_link_status is set on LSC (link status) interrupt or
2860	 * rx sequence error interrupt.  get_link_status will stay
2861	 * false until the igc_check_for_link establishes link
2862	 * for copper adapters ONLY
2863	 */
2864	switch (hw->phy.media_type) {
2865	case igc_media_type_copper:
2866		if (!hw->mac.get_link_status)
2867			return true;
2868		hw->mac.ops.check_for_link(hw);
2869		link_active = !hw->mac.get_link_status;
2870		break;
2871	default:
2872	case igc_media_type_unknown:
2873		break;
2874	}
2875
2876	if (hw->mac.type == igc_i225 &&
2877	    hw->phy.id == I225_I_PHY_ID) {
2878		if (!netif_carrier_ok(adapter->netdev)) {
2879			adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
2880		} else if (!(adapter->flags & IGC_FLAG_NEED_LINK_UPDATE)) {
2881			adapter->flags |= IGC_FLAG_NEED_LINK_UPDATE;
2882			adapter->link_check_timeout = jiffies;
2883		}
2884	}
2885
2886	return link_active;
2887}
2888
2889/**
2890 * igc_watchdog - Timer Call-back
2891 * @data: pointer to adapter cast into an unsigned long
2892 */
2893static void igc_watchdog(struct timer_list *t)
2894{
2895	struct igc_adapter *adapter = from_timer(adapter, t, watchdog_timer);
2896	/* Do the rest outside of interrupt context */
2897	schedule_work(&adapter->watchdog_task);
2898}
2899
2900static void igc_watchdog_task(struct work_struct *work)
2901{
2902	struct igc_adapter *adapter = container_of(work,
2903						   struct igc_adapter,
2904						   watchdog_task);
2905	struct net_device *netdev = adapter->netdev;
2906	struct igc_hw *hw = &adapter->hw;
2907	struct igc_phy_info *phy = &hw->phy;
2908	u16 phy_data, retry_count = 20;
2909	u32 connsw;
2910	u32 link;
2911	int i;
2912
2913	link = igc_has_link(adapter);
2914
2915	if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE) {
2916		if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
2917			adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
2918		else
2919			link = false;
2920	}
2921
2922	/* Force link down if we have fiber to swap to */
2923	if (adapter->flags & IGC_FLAG_MAS_ENABLE) {
2924		if (hw->phy.media_type == igc_media_type_copper) {
2925			connsw = rd32(IGC_CONNSW);
2926			if (!(connsw & IGC_CONNSW_AUTOSENSE_EN))
2927				link = 0;
2928		}
2929	}
2930	if (link) {
2931		if (!netif_carrier_ok(netdev)) {
2932			u32 ctrl;
2933
2934			hw->mac.ops.get_speed_and_duplex(hw,
2935							 &adapter->link_speed,
2936							 &adapter->link_duplex);
2937
2938			ctrl = rd32(IGC_CTRL);
2939			/* Link status message must follow this format */
2940			netdev_info(netdev,
2941				    "igc: %s NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
2942				    netdev->name,
2943				    adapter->link_speed,
2944				    adapter->link_duplex == FULL_DUPLEX ?
2945				    "Full" : "Half",
2946				    (ctrl & IGC_CTRL_TFCE) &&
2947				    (ctrl & IGC_CTRL_RFCE) ? "RX/TX" :
2948				    (ctrl & IGC_CTRL_RFCE) ?  "RX" :
2949				    (ctrl & IGC_CTRL_TFCE) ?  "TX" : "None");
2950
2951			/* check if SmartSpeed worked */
2952			igc_check_downshift(hw);
2953			if (phy->speed_downgraded)
2954				netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
2955
2956			/* adjust timeout factor according to speed/duplex */
2957			adapter->tx_timeout_factor = 1;
2958			switch (adapter->link_speed) {
2959			case SPEED_10:
2960				adapter->tx_timeout_factor = 14;
2961				break;
2962			case SPEED_100:
2963				/* maybe add some timeout factor ? */
2964				break;
2965			}
2966
2967			if (adapter->link_speed != SPEED_1000)
2968				goto no_wait;
2969
2970			/* wait for Remote receiver status OK */
2971retry_read_status:
2972			if (!igc_read_phy_reg(hw, PHY_1000T_STATUS,
2973					      &phy_data)) {
2974				if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
2975				    retry_count) {
2976					msleep(100);
2977					retry_count--;
2978					goto retry_read_status;
2979				} else if (!retry_count) {
2980					dev_err(&adapter->pdev->dev, "exceed max 2 second\n");
2981				}
2982			} else {
2983				dev_err(&adapter->pdev->dev, "read 1000Base-T Status Reg\n");
2984			}
2985no_wait:
2986			netif_carrier_on(netdev);
2987
2988			/* link state has changed, schedule phy info update */
2989			if (!test_bit(__IGC_DOWN, &adapter->state))
2990				mod_timer(&adapter->phy_info_timer,
2991					  round_jiffies(jiffies + 2 * HZ));
2992		}
2993	} else {
2994		if (netif_carrier_ok(netdev)) {
2995			adapter->link_speed = 0;
2996			adapter->link_duplex = 0;
2997
2998			/* Links status message must follow this format */
2999			netdev_info(netdev, "igc: %s NIC Link is Down\n",
3000				    netdev->name);
3001			netif_carrier_off(netdev);
3002
3003			/* link state has changed, schedule phy info update */
3004			if (!test_bit(__IGC_DOWN, &adapter->state))
3005				mod_timer(&adapter->phy_info_timer,
3006					  round_jiffies(jiffies + 2 * HZ));
3007
3008			/* link is down, time to check for alternate media */
3009			if (adapter->flags & IGC_FLAG_MAS_ENABLE) {
3010				if (adapter->flags & IGC_FLAG_MEDIA_RESET) {
3011					schedule_work(&adapter->reset_task);
3012					/* return immediately */
3013					return;
3014				}
3015			}
3016
3017		/* also check for alternate media here */
3018		} else if (!netif_carrier_ok(netdev) &&
3019			   (adapter->flags & IGC_FLAG_MAS_ENABLE)) {
3020			if (adapter->flags & IGC_FLAG_MEDIA_RESET) {
3021				schedule_work(&adapter->reset_task);
3022				/* return immediately */
3023				return;
3024			}
3025		}
3026	}
3027
3028	spin_lock(&adapter->stats64_lock);
3029	igc_update_stats(adapter);
3030	spin_unlock(&adapter->stats64_lock);
3031
3032	for (i = 0; i < adapter->num_tx_queues; i++) {
3033		struct igc_ring *tx_ring = adapter->tx_ring[i];
3034
3035		if (!netif_carrier_ok(netdev)) {
3036			/* We've lost link, so the controller stops DMA,
3037			 * but we've got queued Tx work that's never going
3038			 * to get done, so reset controller to flush Tx.
3039			 * (Do the reset outside of interrupt context).
3040			 */
3041			if (igc_desc_unused(tx_ring) + 1 < tx_ring->count) {
3042				adapter->tx_timeout_count++;
3043				schedule_work(&adapter->reset_task);
3044				/* return immediately since reset is imminent */
3045				return;
3046			}
3047		}
3048
3049		/* Force detection of hung controller every watchdog period */
3050		set_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
3051	}
3052
3053	/* Cause software interrupt to ensure Rx ring is cleaned */
3054	if (adapter->flags & IGC_FLAG_HAS_MSIX) {
3055		u32 eics = 0;
3056
3057		for (i = 0; i < adapter->num_q_vectors; i++)
3058			eics |= adapter->q_vector[i]->eims_value;
3059		wr32(IGC_EICS, eics);
3060	} else {
3061		wr32(IGC_ICS, IGC_ICS_RXDMT0);
3062	}
3063
3064	/* Reset the timer */
3065	if (!test_bit(__IGC_DOWN, &adapter->state)) {
3066		if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE)
3067			mod_timer(&adapter->watchdog_timer,
3068				  round_jiffies(jiffies +  HZ));
3069		else
3070			mod_timer(&adapter->watchdog_timer,
3071				  round_jiffies(jiffies + 2 * HZ));
3072	}
3073}
3074
3075/**
3076 * igc_update_ring_itr - update the dynamic ITR value based on packet size
3077 * @q_vector: pointer to q_vector
3078 *
3079 * Stores a new ITR value based on strictly on packet size.  This
3080 * algorithm is less sophisticated than that used in igc_update_itr,
3081 * due to the difficulty of synchronizing statistics across multiple
3082 * receive rings.  The divisors and thresholds used by this function
3083 * were determined based on theoretical maximum wire speed and testing
3084 * data, in order to minimize response time while increasing bulk
3085 * throughput.
3086 * NOTE: This function is called only when operating in a multiqueue
3087 * receive environment.
3088 */
3089static void igc_update_ring_itr(struct igc_q_vector *q_vector)
3090{
3091	struct igc_adapter *adapter = q_vector->adapter;
3092	int new_val = q_vector->itr_val;
3093	int avg_wire_size = 0;
3094	unsigned int packets;
3095
3096	/* For non-gigabit speeds, just fix the interrupt rate at 4000
3097	 * ints/sec - ITR timer value of 120 ticks.
3098	 */
3099	switch (adapter->link_speed) {
3100	case SPEED_10:
3101	case SPEED_100:
3102		new_val = IGC_4K_ITR;
3103		goto set_itr_val;
3104	default:
3105		break;
3106	}
3107
3108	packets = q_vector->rx.total_packets;
3109	if (packets)
3110		avg_wire_size = q_vector->rx.total_bytes / packets;
3111
3112	packets = q_vector->tx.total_packets;
3113	if (packets)
3114		avg_wire_size = max_t(u32, avg_wire_size,
3115				      q_vector->tx.total_bytes / packets);
3116
3117	/* if avg_wire_size isn't set no work was done */
3118	if (!avg_wire_size)
3119		goto clear_counts;
3120
3121	/* Add 24 bytes to size to account for CRC, preamble, and gap */
3122	avg_wire_size += 24;
3123
3124	/* Don't starve jumbo frames */
3125	avg_wire_size = min(avg_wire_size, 3000);
3126
3127	/* Give a little boost to mid-size frames */
3128	if (avg_wire_size > 300 && avg_wire_size < 1200)
3129		new_val = avg_wire_size / 3;
3130	else
3131		new_val = avg_wire_size / 2;
3132
3133	/* conservative mode (itr 3) eliminates the lowest_latency setting */
3134	if (new_val < IGC_20K_ITR &&
3135	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
3136	    (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
3137		new_val = IGC_20K_ITR;
3138
3139set_itr_val:
3140	if (new_val != q_vector->itr_val) {
3141		q_vector->itr_val = new_val;
3142		q_vector->set_itr = 1;
3143	}
3144clear_counts:
3145	q_vector->rx.total_bytes = 0;
3146	q_vector->rx.total_packets = 0;
3147	q_vector->tx.total_bytes = 0;
3148	q_vector->tx.total_packets = 0;
3149}
3150
3151/**
3152 * igc_update_itr - update the dynamic ITR value based on statistics
3153 * @q_vector: pointer to q_vector
3154 * @ring_container: ring info to update the itr for
3155 *
3156 * Stores a new ITR value based on packets and byte
3157 * counts during the last interrupt.  The advantage of per interrupt
3158 * computation is faster updates and more accurate ITR for the current
3159 * traffic pattern.  Constants in this function were computed
3160 * based on theoretical maximum wire speed and thresholds were set based
3161 * on testing data as well as attempting to minimize response time
3162 * while increasing bulk throughput.
3163 * NOTE: These calculations are only valid when operating in a single-
3164 * queue environment.
3165 */
3166static void igc_update_itr(struct igc_q_vector *q_vector,
3167			   struct igc_ring_container *ring_container)
3168{
3169	unsigned int packets = ring_container->total_packets;
3170	unsigned int bytes = ring_container->total_bytes;
3171	u8 itrval = ring_container->itr;
3172
3173	/* no packets, exit with status unchanged */
3174	if (packets == 0)
3175		return;
3176
3177	switch (itrval) {
3178	case lowest_latency:
3179		/* handle TSO and jumbo frames */
3180		if (bytes / packets > 8000)
3181			itrval = bulk_latency;
3182		else if ((packets < 5) && (bytes > 512))
3183			itrval = low_latency;
3184		break;
3185	case low_latency:  /* 50 usec aka 20000 ints/s */
3186		if (bytes > 10000) {
3187			/* this if handles the TSO accounting */
3188			if (bytes / packets > 8000)
3189				itrval = bulk_latency;
3190			else if ((packets < 10) || ((bytes / packets) > 1200))
3191				itrval = bulk_latency;
3192			else if ((packets > 35))
3193				itrval = lowest_latency;
3194		} else if (bytes / packets > 2000) {
3195			itrval = bulk_latency;
3196		} else if (packets <= 2 && bytes < 512) {
3197			itrval = lowest_latency;
3198		}
3199		break;
3200	case bulk_latency: /* 250 usec aka 4000 ints/s */
3201		if (bytes > 25000) {
3202			if (packets > 35)
3203				itrval = low_latency;
3204		} else if (bytes < 1500) {
3205			itrval = low_latency;
3206		}
3207		break;
3208	}
3209
3210	/* clear work counters since we have the values we need */
3211	ring_container->total_bytes = 0;
3212	ring_container->total_packets = 0;
3213
3214	/* write updated itr to ring container */
3215	ring_container->itr = itrval;
3216}
3217
3218/**
3219 * igc_intr_msi - Interrupt Handler
3220 * @irq: interrupt number
3221 * @data: pointer to a network interface device structure
3222 */
3223static irqreturn_t igc_intr_msi(int irq, void *data)
3224{
3225	struct igc_adapter *adapter = data;
3226	struct igc_q_vector *q_vector = adapter->q_vector[0];
3227	struct igc_hw *hw = &adapter->hw;
3228	/* read ICR disables interrupts using IAM */
3229	u32 icr = rd32(IGC_ICR);
3230
3231	igc_write_itr(q_vector);
3232
3233	if (icr & IGC_ICR_DRSTA)
3234		schedule_work(&adapter->reset_task);
3235
3236	if (icr & IGC_ICR_DOUTSYNC) {
3237		/* HW is reporting DMA is out of sync */
3238		adapter->stats.doosync++;
3239	}
3240
3241	if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) {
3242		hw->mac.get_link_status = 1;
3243		if (!test_bit(__IGC_DOWN, &adapter->state))
3244			mod_timer(&adapter->watchdog_timer, jiffies + 1);
3245	}
3246
3247	napi_schedule(&q_vector->napi);
3248
3249	return IRQ_HANDLED;
3250}
3251
3252/**
3253 * igc_intr - Legacy Interrupt Handler
3254 * @irq: interrupt number
3255 * @data: pointer to a network interface device structure
3256 */
3257static irqreturn_t igc_intr(int irq, void *data)
3258{
3259	struct igc_adapter *adapter = data;
3260	struct igc_q_vector *q_vector = adapter->q_vector[0];
3261	struct igc_hw *hw = &adapter->hw;
3262	/* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
3263	 * need for the IMC write
3264	 */
3265	u32 icr = rd32(IGC_ICR);
3266
3267	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
3268	 * not set, then the adapter didn't send an interrupt
3269	 */
3270	if (!(icr & IGC_ICR_INT_ASSERTED))
3271		return IRQ_NONE;
3272
3273	igc_write_itr(q_vector);
3274
3275	if (icr & IGC_ICR_DRSTA)
3276		schedule_work(&adapter->reset_task);
3277
3278	if (icr & IGC_ICR_DOUTSYNC) {
3279		/* HW is reporting DMA is out of sync */
3280		adapter->stats.doosync++;
3281	}
3282
3283	if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) {
3284		hw->mac.get_link_status = 1;
3285		/* guard against interrupt when we're going down */
3286		if (!test_bit(__IGC_DOWN, &adapter->state))
3287			mod_timer(&adapter->watchdog_timer, jiffies + 1);
3288	}
3289
3290	napi_schedule(&q_vector->napi);
3291
3292	return IRQ_HANDLED;
3293}
3294
3295static void igc_set_itr(struct igc_q_vector *q_vector)
3296{
3297	struct igc_adapter *adapter = q_vector->adapter;
3298	u32 new_itr = q_vector->itr_val;
3299	u8 current_itr = 0;
3300
3301	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
3302	switch (adapter->link_speed) {
3303	case SPEED_10:
3304	case SPEED_100:
3305		current_itr = 0;
3306		new_itr = IGC_4K_ITR;
3307		goto set_itr_now;
3308	default:
3309		break;
3310	}
3311
3312	igc_update_itr(q_vector, &q_vector->tx);
3313	igc_update_itr(q_vector, &q_vector->rx);
3314
3315	current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
3316
3317	/* conservative mode (itr 3) eliminates the lowest_latency setting */
3318	if (current_itr == lowest_latency &&
3319	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
3320	    (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
3321		current_itr = low_latency;
3322
3323	switch (current_itr) {
3324	/* counts and packets in update_itr are dependent on these numbers */
3325	case lowest_latency:
3326		new_itr = IGC_70K_ITR; /* 70,000 ints/sec */
3327		break;
3328	case low_latency:
3329		new_itr = IGC_20K_ITR; /* 20,000 ints/sec */
3330		break;
3331	case bulk_latency:
3332		new_itr = IGC_4K_ITR;  /* 4,000 ints/sec */
3333		break;
3334	default:
3335		break;
3336	}
3337
3338set_itr_now:
3339	if (new_itr != q_vector->itr_val) {
3340		/* this attempts to bias the interrupt rate towards Bulk
3341		 * by adding intermediate steps when interrupt rate is
3342		 * increasing
3343		 */
3344		new_itr = new_itr > q_vector->itr_val ?
3345			  max((new_itr * q_vector->itr_val) /
3346			  (new_itr + (q_vector->itr_val >> 2)),
3347			  new_itr) : new_itr;
3348		/* Don't write the value here; it resets the adapter's
3349		 * internal timer, and causes us to delay far longer than
3350		 * we should between interrupts.  Instead, we write the ITR
3351		 * value at the beginning of the next interrupt so the timing
3352		 * ends up being correct.
3353		 */
3354		q_vector->itr_val = new_itr;
3355		q_vector->set_itr = 1;
3356	}
3357}
3358
3359static void igc_ring_irq_enable(struct igc_q_vector *q_vector)
3360{
3361	struct igc_adapter *adapter = q_vector->adapter;
3362	struct igc_hw *hw = &adapter->hw;
3363
3364	if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
3365	    (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
3366		if (adapter->num_q_vectors == 1)
3367			igc_set_itr(q_vector);
3368		else
3369			igc_update_ring_itr(q_vector);
3370	}
3371
3372	if (!test_bit(__IGC_DOWN, &adapter->state)) {
3373		if (adapter->msix_entries)
3374			wr32(IGC_EIMS, q_vector->eims_value);
3375		else
3376			igc_irq_enable(adapter);
3377	}
3378}
3379
3380/**
3381 * igc_poll - NAPI Rx polling callback
3382 * @napi: napi polling structure
3383 * @budget: count of how many packets we should handle
3384 */
3385static int igc_poll(struct napi_struct *napi, int budget)
3386{
3387	struct igc_q_vector *q_vector = container_of(napi,
3388						     struct igc_q_vector,
3389						     napi);
3390	bool clean_complete = true;
3391	int work_done = 0;
3392
3393	if (q_vector->tx.ring)
3394		clean_complete = igc_clean_tx_irq(q_vector, budget);
3395
3396	if (q_vector->rx.ring) {
3397		int cleaned = igc_clean_rx_irq(q_vector, budget);
3398
3399		work_done += cleaned;
3400		if (cleaned >= budget)
3401			clean_complete = false;
3402	}
3403
3404	/* If all work not completed, return budget and keep polling */
3405	if (!clean_complete)
3406		return budget;
3407
3408	/* Exit the polling mode, but don't re-enable interrupts if stack might
3409	 * poll us due to busy-polling
3410	 */
3411	if (likely(napi_complete_done(napi, work_done)))
3412		igc_ring_irq_enable(q_vector);
3413
3414	return min(work_done, budget - 1);
3415}
3416
3417/**
3418 * igc_set_interrupt_capability - set MSI or MSI-X if supported
3419 * @adapter: Pointer to adapter structure
3420 *
3421 * Attempt to configure interrupts using the best available
3422 * capabilities of the hardware and kernel.
3423 */
3424static void igc_set_interrupt_capability(struct igc_adapter *adapter,
3425					 bool msix)
3426{
3427	int numvecs, i;
3428	int err;
3429
3430	if (!msix)
3431		goto msi_only;
3432	adapter->flags |= IGC_FLAG_HAS_MSIX;
3433
3434	/* Number of supported queues. */
3435	adapter->num_rx_queues = adapter->rss_queues;
3436
3437	adapter->num_tx_queues = adapter->rss_queues;
3438
3439	/* start with one vector for every Rx queue */
3440	numvecs = adapter->num_rx_queues;
3441
3442	/* if Tx handler is separate add 1 for every Tx queue */
3443	if (!(adapter->flags & IGC_FLAG_QUEUE_PAIRS))
3444		numvecs += adapter->num_tx_queues;
3445
3446	/* store the number of vectors reserved for queues */
3447	adapter->num_q_vectors = numvecs;
3448
3449	/* add 1 vector for link status interrupts */
3450	numvecs++;
3451
3452	adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
3453					GFP_KERNEL);
3454
3455	if (!adapter->msix_entries)
3456		return;
3457
3458	/* populate entry values */
3459	for (i = 0; i < numvecs; i++)
3460		adapter->msix_entries[i].entry = i;
3461
3462	err = pci_enable_msix_range(adapter->pdev,
3463				    adapter->msix_entries,
3464				    numvecs,
3465				    numvecs);
3466	if (err > 0)
3467		return;
3468
3469	kfree(adapter->msix_entries);
3470	adapter->msix_entries = NULL;
3471
3472	igc_reset_interrupt_capability(adapter);
3473
3474msi_only:
3475	adapter->flags &= ~IGC_FLAG_HAS_MSIX;
3476
3477	adapter->rss_queues = 1;
3478	adapter->flags |= IGC_FLAG_QUEUE_PAIRS;
3479	adapter->num_rx_queues = 1;
3480	adapter->num_tx_queues = 1;
3481	adapter->num_q_vectors = 1;
3482	if (!pci_enable_msi(adapter->pdev))
3483		adapter->flags |= IGC_FLAG_HAS_MSI;
3484}
3485
3486static void igc_add_ring(struct igc_ring *ring,
3487			 struct igc_ring_container *head)
3488{
3489	head->ring = ring;
3490	head->count++;
3491}
3492
3493/**
3494 * igc_alloc_q_vector - Allocate memory for a single interrupt vector
3495 * @adapter: board private structure to initialize
3496 * @v_count: q_vectors allocated on adapter, used for ring interleaving
3497 * @v_idx: index of vector in adapter struct
3498 * @txr_count: total number of Tx rings to allocate
3499 * @txr_idx: index of first Tx ring to allocate
3500 * @rxr_count: total number of Rx rings to allocate
3501 * @rxr_idx: index of first Rx ring to allocate
3502 *
3503 * We allocate one q_vector.  If allocation fails we return -ENOMEM.
3504 */
3505static int igc_alloc_q_vector(struct igc_adapter *adapter,
3506			      unsigned int v_count, unsigned int v_idx,
3507			      unsigned int txr_count, unsigned int txr_idx,
3508			      unsigned int rxr_count, unsigned int rxr_idx)
3509{
3510	struct igc_q_vector *q_vector;
3511	struct igc_ring *ring;
3512	int ring_count;
3513
3514	/* igc only supports 1 Tx and/or 1 Rx queue per vector */
3515	if (txr_count > 1 || rxr_count > 1)
3516		return -ENOMEM;
3517
3518	ring_count = txr_count + rxr_count;
3519
3520	/* allocate q_vector and rings */
3521	q_vector = adapter->q_vector[v_idx];
3522	if (!q_vector)
3523		q_vector = kzalloc(struct_size(q_vector, ring, ring_count),
3524				   GFP_KERNEL);
3525	else
3526		memset(q_vector, 0, struct_size(q_vector, ring, ring_count));
3527	if (!q_vector)
3528		return -ENOMEM;
3529
3530	/* initialize NAPI */
3531	netif_napi_add(adapter->netdev, &q_vector->napi,
3532		       igc_poll, 64);
3533
3534	/* tie q_vector and adapter together */
3535	adapter->q_vector[v_idx] = q_vector;
3536	q_vector->adapter = adapter;
3537
3538	/* initialize work limits */
3539	q_vector->tx.work_limit = adapter->tx_work_limit;
3540
3541	/* initialize ITR configuration */
3542	q_vector->itr_register = adapter->io_addr + IGC_EITR(0);
3543	q_vector->itr_val = IGC_START_ITR;
3544
3545	/* initialize pointer to rings */
3546	ring = q_vector->ring;
3547
3548	/* initialize ITR */
3549	if (rxr_count) {
3550		/* rx or rx/tx vector */
3551		if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
3552			q_vector->itr_val = adapter->rx_itr_setting;
3553	} else {
3554		/* tx only vector */
3555		if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
3556			q_vector->itr_val = adapter->tx_itr_setting;
3557	}
3558
3559	if (txr_count) {
3560		/* assign generic ring traits */
3561		ring->dev = &adapter->pdev->dev;
3562		ring->netdev = adapter->netdev;
3563
3564		/* configure backlink on ring */
3565		ring->q_vector = q_vector;
3566
3567		/* update q_vector Tx values */
3568		igc_add_ring(ring, &q_vector->tx);
3569
3570		/* apply Tx specific ring traits */
3571		ring->count = adapter->tx_ring_count;
3572		ring->queue_index = txr_idx;
3573
3574		/* assign ring to adapter */
3575		adapter->tx_ring[txr_idx] = ring;
3576
3577		/* push pointer to next ring */
3578		ring++;
3579	}
3580
3581	if (rxr_count) {
3582		/* assign generic ring traits */
3583		ring->dev = &adapter->pdev->dev;
3584		ring->netdev = adapter->netdev;
3585
3586		/* configure backlink on ring */
3587		ring->q_vector = q_vector;
3588
3589		/* update q_vector Rx values */
3590		igc_add_ring(ring, &q_vector->rx);
3591
3592		/* apply Rx specific ring traits */
3593		ring->count = adapter->rx_ring_count;
3594		ring->queue_index = rxr_idx;
3595
3596		/* assign ring to adapter */
3597		adapter->rx_ring[rxr_idx] = ring;
3598	}
3599
3600	return 0;
3601}
3602
3603/**
3604 * igc_alloc_q_vectors - Allocate memory for interrupt vectors
3605 * @adapter: board private structure to initialize
3606 *
3607 * We allocate one q_vector per queue interrupt.  If allocation fails we
3608 * return -ENOMEM.
3609 */
3610static int igc_alloc_q_vectors(struct igc_adapter *adapter)
3611{
3612	int rxr_remaining = adapter->num_rx_queues;
3613	int txr_remaining = adapter->num_tx_queues;
3614	int rxr_idx = 0, txr_idx = 0, v_idx = 0;
3615	int q_vectors = adapter->num_q_vectors;
3616	int err;
3617
3618	if (q_vectors >= (rxr_remaining + txr_remaining)) {
3619		for (; rxr_remaining; v_idx++) {
3620			err = igc_alloc_q_vector(adapter, q_vectors, v_idx,
3621						 0, 0, 1, rxr_idx);
3622
3623			if (err)
3624				goto err_out;
3625
3626			/* update counts and index */
3627			rxr_remaining--;
3628			rxr_idx++;
3629		}
3630	}
3631
3632	for (; v_idx < q_vectors; v_idx++) {
3633		int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
3634		int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
3635
3636		err = igc_alloc_q_vector(adapter, q_vectors, v_idx,
3637					 tqpv, txr_idx, rqpv, rxr_idx);
3638
3639		if (err)
3640			goto err_out;
3641
3642		/* update counts and index */
3643		rxr_remaining -= rqpv;
3644		txr_remaining -= tqpv;
3645		rxr_idx++;
3646		txr_idx++;
3647	}
3648
3649	return 0;
3650
3651err_out:
3652	adapter->num_tx_queues = 0;
3653	adapter->num_rx_queues = 0;
3654	adapter->num_q_vectors = 0;
3655
3656	while (v_idx--)
3657		igc_free_q_vector(adapter, v_idx);
3658
3659	return -ENOMEM;
3660}
3661
3662/**
3663 * igc_cache_ring_register - Descriptor ring to register mapping
3664 * @adapter: board private structure to initialize
3665 *
3666 * Once we know the feature-set enabled for the device, we'll cache
3667 * the register offset the descriptor ring is assigned to.
3668 */
3669static void igc_cache_ring_register(struct igc_adapter *adapter)
3670{
3671	int i = 0, j = 0;
3672
3673	switch (adapter->hw.mac.type) {
3674	case igc_i225:
3675	/* Fall through */
3676	default:
3677		for (; i < adapter->num_rx_queues; i++)
3678			adapter->rx_ring[i]->reg_idx = i;
3679		for (; j < adapter->num_tx_queues; j++)
3680			adapter->tx_ring[j]->reg_idx = j;
3681		break;
3682	}
3683}
3684
3685/**
3686 * igc_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
3687 * @adapter: Pointer to adapter structure
3688 *
3689 * This function initializes the interrupts and allocates all of the queues.
3690 */
3691static int igc_init_interrupt_scheme(struct igc_adapter *adapter, bool msix)
3692{
3693	struct pci_dev *pdev = adapter->pdev;
3694	int err = 0;
3695
3696	igc_set_interrupt_capability(adapter, msix);
3697
3698	err = igc_alloc_q_vectors(adapter);
3699	if (err) {
3700		dev_err(&pdev->dev, "Unable to allocate memory for vectors\n");
3701		goto err_alloc_q_vectors;
3702	}
3703
3704	igc_cache_ring_register(adapter);
3705
3706	return 0;
3707
3708err_alloc_q_vectors:
3709	igc_reset_interrupt_capability(adapter);
3710	return err;
3711}
3712
3713static void igc_free_irq(struct igc_adapter *adapter)
3714{
3715	if (adapter->msix_entries) {
3716		int vector = 0, i;
3717
3718		free_irq(adapter->msix_entries[vector++].vector, adapter);
3719
3720		for (i = 0; i < adapter->num_q_vectors; i++)
3721			free_irq(adapter->msix_entries[vector++].vector,
3722				 adapter->q_vector[i]);
3723	} else {
3724		free_irq(adapter->pdev->irq, adapter);
3725	}
3726}
3727
3728/**
3729 * igc_irq_disable - Mask off interrupt generation on the NIC
3730 * @adapter: board private structure
3731 */
3732static void igc_irq_disable(struct igc_adapter *adapter)
3733{
3734	struct igc_hw *hw = &adapter->hw;
3735
3736	if (adapter->msix_entries) {
3737		u32 regval = rd32(IGC_EIAM);
3738
3739		wr32(IGC_EIAM, regval & ~adapter->eims_enable_mask);
3740		wr32(IGC_EIMC, adapter->eims_enable_mask);
3741		regval = rd32(IGC_EIAC);
3742		wr32(IGC_EIAC, regval & ~adapter->eims_enable_mask);
3743	}
3744
3745	wr32(IGC_IAM, 0);
3746	wr32(IGC_IMC, ~0);
3747	wrfl();
3748
3749	if (adapter->msix_entries) {
3750		int vector = 0, i;
3751
3752		synchronize_irq(adapter->msix_entries[vector++].vector);
3753
3754		for (i = 0; i < adapter->num_q_vectors; i++)
3755			synchronize_irq(adapter->msix_entries[vector++].vector);
3756	} else {
3757		synchronize_irq(adapter->pdev->irq);
3758	}
3759}
3760
3761/**
3762 * igc_irq_enable - Enable default interrupt generation settings
3763 * @adapter: board private structure
3764 */
3765static void igc_irq_enable(struct igc_adapter *adapter)
3766{
3767	struct igc_hw *hw = &adapter->hw;
3768
3769	if (adapter->msix_entries) {
3770		u32 ims = IGC_IMS_LSC | IGC_IMS_DOUTSYNC | IGC_IMS_DRSTA;
3771		u32 regval = rd32(IGC_EIAC);
3772
3773		wr32(IGC_EIAC, regval | adapter->eims_enable_mask);
3774		regval = rd32(IGC_EIAM);
3775		wr32(IGC_EIAM, regval | adapter->eims_enable_mask);
3776		wr32(IGC_EIMS, adapter->eims_enable_mask);
3777		wr32(IGC_IMS, ims);
3778	} else {
3779		wr32(IGC_IMS, IMS_ENABLE_MASK | IGC_IMS_DRSTA);
3780		wr32(IGC_IAM, IMS_ENABLE_MASK | IGC_IMS_DRSTA);
3781	}
3782}
3783
3784/**
3785 * igc_request_irq - initialize interrupts
3786 * @adapter: Pointer to adapter structure
3787 *
3788 * Attempts to configure interrupts using the best available
3789 * capabilities of the hardware and kernel.
3790 */
3791static int igc_request_irq(struct igc_adapter *adapter)
3792{
3793	struct net_device *netdev = adapter->netdev;
3794	struct pci_dev *pdev = adapter->pdev;
3795	int err = 0;
3796
3797	if (adapter->flags & IGC_FLAG_HAS_MSIX) {
3798		err = igc_request_msix(adapter);
3799		if (!err)
3800			goto request_done;
3801		/* fall back to MSI */
3802		igc_free_all_tx_resources(adapter);
3803		igc_free_all_rx_resources(adapter);
3804
3805		igc_clear_interrupt_scheme(adapter);
3806		err = igc_init_interrupt_scheme(adapter, false);
3807		if (err)
3808			goto request_done;
3809		igc_setup_all_tx_resources(adapter);
3810		igc_setup_all_rx_resources(adapter);
3811		igc_configure(adapter);
3812	}
3813
3814	igc_assign_vector(adapter->q_vector[0], 0);
3815
3816	if (adapter->flags & IGC_FLAG_HAS_MSI) {
3817		err = request_irq(pdev->irq, &igc_intr_msi, 0,
3818				  netdev->name, adapter);
3819		if (!err)
3820			goto request_done;
3821
3822		/* fall back to legacy interrupts */
3823		igc_reset_interrupt_capability(adapter);
3824		adapter->flags &= ~IGC_FLAG_HAS_MSI;
3825	}
3826
3827	err = request_irq(pdev->irq, &igc_intr, IRQF_SHARED,
3828			  netdev->name, adapter);
3829
3830	if (err)
3831		dev_err(&pdev->dev, "Error %d getting interrupt\n",
3832			err);
3833
3834request_done:
3835	return err;
3836}
3837
3838static void igc_write_itr(struct igc_q_vector *q_vector)
3839{
3840	u32 itr_val = q_vector->itr_val & IGC_QVECTOR_MASK;
3841
3842	if (!q_vector->set_itr)
3843		return;
3844
3845	if (!itr_val)
3846		itr_val = IGC_ITR_VAL_MASK;
3847
3848	itr_val |= IGC_EITR_CNT_IGNR;
3849
3850	writel(itr_val, q_vector->itr_register);
3851	q_vector->set_itr = 0;
3852}
3853
3854/**
3855 * igc_open - Called when a network interface is made active
3856 * @netdev: network interface device structure
3857 *
3858 * Returns 0 on success, negative value on failure
3859 *
3860 * The open entry point is called when a network interface is made
3861 * active by the system (IFF_UP).  At this point all resources needed
3862 * for transmit and receive operations are allocated, the interrupt
3863 * handler is registered with the OS, the watchdog timer is started,
3864 * and the stack is notified that the interface is ready.
3865 */
3866static int __igc_open(struct net_device *netdev, bool resuming)
3867{
3868	struct igc_adapter *adapter = netdev_priv(netdev);
3869	struct igc_hw *hw = &adapter->hw;
3870	int err = 0;
3871	int i = 0;
3872
3873	/* disallow open during test */
3874
3875	if (test_bit(__IGC_TESTING, &adapter->state)) {
3876		WARN_ON(resuming);
3877		return -EBUSY;
3878	}
3879
3880	netif_carrier_off(netdev);
3881
3882	/* allocate transmit descriptors */
3883	err = igc_setup_all_tx_resources(adapter);
3884	if (err)
3885		goto err_setup_tx;
3886
3887	/* allocate receive descriptors */
3888	err = igc_setup_all_rx_resources(adapter);
3889	if (err)
3890		goto err_setup_rx;
3891
3892	igc_power_up_link(adapter);
3893
3894	igc_configure(adapter);
3895
3896	err = igc_request_irq(adapter);
3897	if (err)
3898		goto err_req_irq;
3899
3900	/* Notify the stack of the actual queue counts. */
3901	err = netif_set_real_num_tx_queues(netdev, adapter->num_tx_queues);
3902	if (err)
3903		goto err_set_queues;
3904
3905	err = netif_set_real_num_rx_queues(netdev, adapter->num_rx_queues);
3906	if (err)
3907		goto err_set_queues;
3908
3909	clear_bit(__IGC_DOWN, &adapter->state);
3910
3911	for (i = 0; i < adapter->num_q_vectors; i++)
3912		napi_enable(&adapter->q_vector[i]->napi);
3913
3914	/* Clear any pending interrupts. */
3915	rd32(IGC_ICR);
3916	igc_irq_enable(adapter);
3917
3918	netif_tx_start_all_queues(netdev);
3919
3920	/* start the watchdog. */
3921	hw->mac.get_link_status = 1;
3922	schedule_work(&adapter->watchdog_task);
3923
3924	return IGC_SUCCESS;
3925
3926err_set_queues:
3927	igc_free_irq(adapter);
3928err_req_irq:
3929	igc_release_hw_control(adapter);
3930	igc_power_down_link(adapter);
3931	igc_free_all_rx_resources(adapter);
3932err_setup_rx:
3933	igc_free_all_tx_resources(adapter);
3934err_setup_tx:
3935	igc_reset(adapter);
3936
3937	return err;
3938}
3939
3940static int igc_open(struct net_device *netdev)
3941{
3942	return __igc_open(netdev, false);
3943}
3944
3945/**
3946 * igc_close - Disables a network interface
3947 * @netdev: network interface device structure
3948 *
3949 * Returns 0, this is not allowed to fail
3950 *
3951 * The close entry point is called when an interface is de-activated
3952 * by the OS.  The hardware is still under the driver's control, but
3953 * needs to be disabled.  A global MAC reset is issued to stop the
3954 * hardware, and all transmit and receive resources are freed.
3955 */
3956static int __igc_close(struct net_device *netdev, bool suspending)
3957{
3958	struct igc_adapter *adapter = netdev_priv(netdev);
3959
3960	WARN_ON(test_bit(__IGC_RESETTING, &adapter->state));
3961
3962	igc_down(adapter);
3963
3964	igc_release_hw_control(adapter);
3965
3966	igc_free_irq(adapter);
3967
3968	igc_free_all_tx_resources(adapter);
3969	igc_free_all_rx_resources(adapter);
3970
3971	return 0;
3972}
3973
3974static int igc_close(struct net_device *netdev)
3975{
3976	if (netif_device_present(netdev) || netdev->dismantle)
3977		return __igc_close(netdev, false);
3978	return 0;
3979}
3980
3981static const struct net_device_ops igc_netdev_ops = {
3982	.ndo_open		= igc_open,
3983	.ndo_stop		= igc_close,
3984	.ndo_start_xmit		= igc_xmit_frame,
3985	.ndo_set_mac_address	= igc_set_mac,
3986	.ndo_change_mtu		= igc_change_mtu,
3987	.ndo_get_stats		= igc_get_stats,
3988	.ndo_fix_features	= igc_fix_features,
3989	.ndo_set_features	= igc_set_features,
3990	.ndo_features_check	= igc_features_check,
3991};
3992
3993/* PCIe configuration access */
3994void igc_read_pci_cfg(struct igc_hw *hw, u32 reg, u16 *value)
3995{
3996	struct igc_adapter *adapter = hw->back;
3997
3998	pci_read_config_word(adapter->pdev, reg, value);
3999}
4000
4001void igc_write_pci_cfg(struct igc_hw *hw, u32 reg, u16 *value)
4002{
4003	struct igc_adapter *adapter = hw->back;
4004
4005	pci_write_config_word(adapter->pdev, reg, *value);
4006}
4007
4008s32 igc_read_pcie_cap_reg(struct igc_hw *hw, u32 reg, u16 *value)
4009{
4010	struct igc_adapter *adapter = hw->back;
4011
4012	if (!pci_is_pcie(adapter->pdev))
4013		return -IGC_ERR_CONFIG;
4014
4015	pcie_capability_read_word(adapter->pdev, reg, value);
4016
4017	return IGC_SUCCESS;
4018}
4019
4020s32 igc_write_pcie_cap_reg(struct igc_hw *hw, u32 reg, u16 *value)
4021{
4022	struct igc_adapter *adapter = hw->back;
4023
4024	if (!pci_is_pcie(adapter->pdev))
4025		return -IGC_ERR_CONFIG;
4026
4027	pcie_capability_write_word(adapter->pdev, reg, *value);
4028
4029	return IGC_SUCCESS;
4030}
4031
4032u32 igc_rd32(struct igc_hw *hw, u32 reg)
4033{
4034	struct igc_adapter *igc = container_of(hw, struct igc_adapter, hw);
4035	u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr);
4036	u32 value = 0;
4037
4038	if (IGC_REMOVED(hw_addr))
4039		return ~value;
4040
4041	value = readl(&hw_addr[reg]);
4042
4043	/* reads should not return all F's */
4044	if (!(~value) && (!reg || !(~readl(hw_addr)))) {
4045		struct net_device *netdev = igc->netdev;
4046
4047		hw->hw_addr = NULL;
4048		netif_device_detach(netdev);
4049		netdev_err(netdev, "PCIe link lost, device now detached\n");
4050		WARN(pci_device_is_present(igc->pdev),
4051		     "igc: Failed to read reg 0x%x!\n", reg);
4052	}
4053
4054	return value;
4055}
4056
4057int igc_set_spd_dplx(struct igc_adapter *adapter, u32 spd, u8 dplx)
4058{
4059	struct pci_dev *pdev = adapter->pdev;
4060	struct igc_mac_info *mac = &adapter->hw.mac;
4061
4062	mac->autoneg = 0;
4063
4064	/* Make sure dplx is at most 1 bit and lsb of speed is not set
4065	 * for the switch() below to work
4066	 */
4067	if ((spd & 1) || (dplx & ~1))
4068		goto err_inval;
4069
4070	switch (spd + dplx) {
4071	case SPEED_10 + DUPLEX_HALF:
4072		mac->forced_speed_duplex = ADVERTISE_10_HALF;
4073		break;
4074	case SPEED_10 + DUPLEX_FULL:
4075		mac->forced_speed_duplex = ADVERTISE_10_FULL;
4076		break;
4077	case SPEED_100 + DUPLEX_HALF:
4078		mac->forced_speed_duplex = ADVERTISE_100_HALF;
4079		break;
4080	case SPEED_100 + DUPLEX_FULL:
4081		mac->forced_speed_duplex = ADVERTISE_100_FULL;
4082		break;
4083	case SPEED_1000 + DUPLEX_FULL:
4084		mac->autoneg = 1;
4085		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
4086		break;
4087	case SPEED_1000 + DUPLEX_HALF: /* not supported */
4088		goto err_inval;
4089	case SPEED_2500 + DUPLEX_FULL:
4090		mac->autoneg = 1;
4091		adapter->hw.phy.autoneg_advertised = ADVERTISE_2500_FULL;
4092		break;
4093	case SPEED_2500 + DUPLEX_HALF: /* not supported */
4094	default:
4095		goto err_inval;
4096	}
4097
4098	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
4099	adapter->hw.phy.mdix = AUTO_ALL_MODES;
4100
4101	return 0;
4102
4103err_inval:
4104	dev_err(&pdev->dev, "Unsupported Speed/Duplex configuration\n");
4105	return -EINVAL;
4106}
4107
4108/**
4109 * igc_probe - Device Initialization Routine
4110 * @pdev: PCI device information struct
4111 * @ent: entry in igc_pci_tbl
4112 *
4113 * Returns 0 on success, negative on failure
4114 *
4115 * igc_probe initializes an adapter identified by a pci_dev structure.
4116 * The OS initialization, configuring the adapter private structure,
4117 * and a hardware reset occur.
4118 */
4119static int igc_probe(struct pci_dev *pdev,
4120		     const struct pci_device_id *ent)
4121{
4122	struct igc_adapter *adapter;
4123	struct net_device *netdev;
4124	struct igc_hw *hw;
4125	const struct igc_info *ei = igc_info_tbl[ent->driver_data];
4126	int err;
4127
4128	err = pci_enable_device_mem(pdev);
4129	if (err)
4130		return err;
4131
4132	err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(64));
4133	if (!err) {
4134		err = dma_set_coherent_mask(&pdev->dev,
4135					    DMA_BIT_MASK(64));
4136	} else {
4137		err = dma_set_mask(&pdev->dev, DMA_BIT_MASK(32));
4138		if (err) {
4139			err = dma_set_coherent_mask(&pdev->dev,
4140						    DMA_BIT_MASK(32));
4141			if (err) {
4142				dev_err(&pdev->dev, "igc: Wrong DMA config\n");
4143				goto err_dma;
4144			}
4145		}
4146	}
4147
4148	err = pci_request_selected_regions(pdev,
4149					   pci_select_bars(pdev,
4150							   IORESOURCE_MEM),
4151					   igc_driver_name);
4152	if (err)
4153		goto err_pci_reg;
4154
4155	pci_enable_pcie_error_reporting(pdev);
4156
4157	pci_set_master(pdev);
4158
4159	err = -ENOMEM;
4160	netdev = alloc_etherdev_mq(sizeof(struct igc_adapter),
4161				   IGC_MAX_TX_QUEUES);
4162
4163	if (!netdev)
4164		goto err_alloc_etherdev;
4165
4166	SET_NETDEV_DEV(netdev, &pdev->dev);
4167
4168	pci_set_drvdata(pdev, netdev);
4169	adapter = netdev_priv(netdev);
4170	adapter->netdev = netdev;
4171	adapter->pdev = pdev;
4172	hw = &adapter->hw;
4173	hw->back = adapter;
4174	adapter->port_num = hw->bus.func;
4175	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
4176
4177	err = pci_save_state(pdev);
4178	if (err)
4179		goto err_ioremap;
4180
4181	err = -EIO;
4182	adapter->io_addr = ioremap(pci_resource_start(pdev, 0),
4183				   pci_resource_len(pdev, 0));
4184	if (!adapter->io_addr)
4185		goto err_ioremap;
4186
4187	/* hw->hw_addr can be zeroed, so use adapter->io_addr for unmap */
4188	hw->hw_addr = adapter->io_addr;
4189
4190	netdev->netdev_ops = &igc_netdev_ops;
4191	igc_set_ethtool_ops(netdev);
4192	netdev->watchdog_timeo = 5 * HZ;
4193
4194	netdev->mem_start = pci_resource_start(pdev, 0);
4195	netdev->mem_end = pci_resource_end(pdev, 0);
4196
4197	/* PCI config space info */
4198	hw->vendor_id = pdev->vendor;
4199	hw->device_id = pdev->device;
4200	hw->revision_id = pdev->revision;
4201	hw->subsystem_vendor_id = pdev->subsystem_vendor;
4202	hw->subsystem_device_id = pdev->subsystem_device;
4203
4204	/* Copy the default MAC and PHY function pointers */
4205	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
4206	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
4207
4208	/* Initialize skew-specific constants */
4209	err = ei->get_invariants(hw);
4210	if (err)
4211		goto err_sw_init;
4212
4213	/* Add supported features to the features list*/
4214	netdev->features |= NETIF_F_HW_CSUM;
4215
4216	/* setup the private structure */
4217	err = igc_sw_init(adapter);
4218	if (err)
4219		goto err_sw_init;
4220
4221	/* copy netdev features into list of user selectable features */
4222	netdev->hw_features |= NETIF_F_NTUPLE;
4223	netdev->hw_features |= netdev->features;
4224
4225	/* MTU range: 68 - 9216 */
4226	netdev->min_mtu = ETH_MIN_MTU;
4227	netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
4228
4229	/* before reading the NVM, reset the controller to put the device in a
4230	 * known good starting state
4231	 */
4232	hw->mac.ops.reset_hw(hw);
4233
4234	if (igc_get_flash_presence_i225(hw)) {
4235		if (hw->nvm.ops.validate(hw) < 0) {
4236			dev_err(&pdev->dev,
4237				"The NVM Checksum Is Not Valid\n");
4238			err = -EIO;
4239			goto err_eeprom;
4240		}
4241	}
4242
4243	if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) {
4244		/* copy the MAC address out of the NVM */
4245		if (hw->mac.ops.read_mac_addr(hw))
4246			dev_err(&pdev->dev, "NVM Read Error\n");
4247	}
4248
4249	memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
4250
4251	if (!is_valid_ether_addr(netdev->dev_addr)) {
4252		dev_err(&pdev->dev, "Invalid MAC Address\n");
4253		err = -EIO;
4254		goto err_eeprom;
4255	}
4256
4257	/* configure RXPBSIZE and TXPBSIZE */
4258	wr32(IGC_RXPBS, I225_RXPBSIZE_DEFAULT);
4259	wr32(IGC_TXPBS, I225_TXPBSIZE_DEFAULT);
4260
4261	timer_setup(&adapter->watchdog_timer, igc_watchdog, 0);
4262	timer_setup(&adapter->phy_info_timer, igc_update_phy_info, 0);
4263
4264	INIT_WORK(&adapter->reset_task, igc_reset_task);
4265	INIT_WORK(&adapter->watchdog_task, igc_watchdog_task);
4266
4267	/* Initialize link properties that are user-changeable */
4268	adapter->fc_autoneg = true;
4269	hw->mac.autoneg = true;
4270	hw->phy.autoneg_advertised = 0xaf;
4271
4272	hw->fc.requested_mode = igc_fc_default;
4273	hw->fc.current_mode = igc_fc_default;
4274
4275	/* reset the hardware with the new settings */
4276	igc_reset(adapter);
4277
4278	/* let the f/w know that the h/w is now under the control of the
4279	 * driver.
4280	 */
4281	igc_get_hw_control(adapter);
4282
4283	strncpy(netdev->name, "eth%d", IFNAMSIZ);
4284	err = register_netdev(netdev);
4285	if (err)
4286		goto err_register;
4287
4288	 /* carrier off reporting is important to ethtool even BEFORE open */
4289	netif_carrier_off(netdev);
4290
4291	/* Check if Media Autosense is enabled */
4292	adapter->ei = *ei;
4293
4294	/* print pcie link status and MAC address */
4295	pcie_print_link_status(pdev);
4296	netdev_info(netdev, "MAC: %pM\n", netdev->dev_addr);
4297
4298	return 0;
4299
4300err_register:
4301	igc_release_hw_control(adapter);
4302err_eeprom:
4303	if (!igc_check_reset_block(hw))
4304		igc_reset_phy(hw);
4305err_sw_init:
4306	igc_clear_interrupt_scheme(adapter);
4307	iounmap(adapter->io_addr);
4308err_ioremap:
4309	free_netdev(netdev);
4310err_alloc_etherdev:
4311	pci_release_selected_regions(pdev,
4312				     pci_select_bars(pdev, IORESOURCE_MEM));
4313err_pci_reg:
4314err_dma:
4315	pci_disable_device(pdev);
4316	return err;
4317}
4318
4319/**
4320 * igc_remove - Device Removal Routine
4321 * @pdev: PCI device information struct
4322 *
4323 * igc_remove is called by the PCI subsystem to alert the driver
4324 * that it should release a PCI device.  This could be caused by a
4325 * Hot-Plug event, or because the driver is going to be removed from
4326 * memory.
4327 */
4328static void igc_remove(struct pci_dev *pdev)
4329{
4330	struct net_device *netdev = pci_get_drvdata(pdev);
4331	struct igc_adapter *adapter = netdev_priv(netdev);
4332
4333	set_bit(__IGC_DOWN, &adapter->state);
4334
4335	del_timer_sync(&adapter->watchdog_timer);
4336	del_timer_sync(&adapter->phy_info_timer);
4337
4338	cancel_work_sync(&adapter->reset_task);
4339	cancel_work_sync(&adapter->watchdog_task);
4340
4341	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
4342	 * would have already happened in close and is redundant.
4343	 */
4344	igc_release_hw_control(adapter);
4345	unregister_netdev(netdev);
4346
4347	igc_clear_interrupt_scheme(adapter);
4348	pci_iounmap(pdev, adapter->io_addr);
4349	pci_release_mem_regions(pdev);
4350
4351	kfree(adapter->mac_table);
4352	kfree(adapter->shadow_vfta);
4353	free_netdev(netdev);
4354
4355	pci_disable_pcie_error_reporting(pdev);
4356
4357	pci_disable_device(pdev);
4358}
4359
4360static struct pci_driver igc_driver = {
4361	.name     = igc_driver_name,
4362	.id_table = igc_pci_tbl,
4363	.probe    = igc_probe,
4364	.remove   = igc_remove,
4365};
4366
4367void igc_set_flag_queue_pairs(struct igc_adapter *adapter,
4368			      const u32 max_rss_queues)
4369{
4370	/* Determine if we need to pair queues. */
4371	/* If rss_queues > half of max_rss_queues, pair the queues in
4372	 * order to conserve interrupts due to limited supply.
4373	 */
4374	if (adapter->rss_queues > (max_rss_queues / 2))
4375		adapter->flags |= IGC_FLAG_QUEUE_PAIRS;
4376	else
4377		adapter->flags &= ~IGC_FLAG_QUEUE_PAIRS;
4378}
4379
4380unsigned int igc_get_max_rss_queues(struct igc_adapter *adapter)
4381{
4382	unsigned int max_rss_queues;
4383
4384	/* Determine the maximum number of RSS queues supported. */
4385	max_rss_queues = IGC_MAX_RX_QUEUES;
4386
4387	return max_rss_queues;
4388}
4389
4390static void igc_init_queue_configuration(struct igc_adapter *adapter)
4391{
4392	u32 max_rss_queues;
4393
4394	max_rss_queues = igc_get_max_rss_queues(adapter);
4395	adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
4396
4397	igc_set_flag_queue_pairs(adapter, max_rss_queues);
4398}
4399
4400/**
4401 * igc_sw_init - Initialize general software structures (struct igc_adapter)
4402 * @adapter: board private structure to initialize
4403 *
4404 * igc_sw_init initializes the Adapter private data structure.
4405 * Fields are initialized based on PCI device information and
4406 * OS network device settings (MTU size).
4407 */
4408static int igc_sw_init(struct igc_adapter *adapter)
4409{
4410	struct net_device *netdev = adapter->netdev;
4411	struct pci_dev *pdev = adapter->pdev;
4412	struct igc_hw *hw = &adapter->hw;
4413
4414	int size = sizeof(struct igc_mac_addr) * hw->mac.rar_entry_count;
4415
4416	pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
4417
4418	/* set default ring sizes */
4419	adapter->tx_ring_count = IGC_DEFAULT_TXD;
4420	adapter->rx_ring_count = IGC_DEFAULT_RXD;
4421
4422	/* set default ITR values */
4423	adapter->rx_itr_setting = IGC_DEFAULT_ITR;
4424	adapter->tx_itr_setting = IGC_DEFAULT_ITR;
4425
4426	/* set default work limits */
4427	adapter->tx_work_limit = IGC_DEFAULT_TX_WORK;
4428
4429	/* adjust max frame to be at least the size of a standard frame */
4430	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
4431				VLAN_HLEN;
4432	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
4433
4434	spin_lock_init(&adapter->nfc_lock);
4435	spin_lock_init(&adapter->stats64_lock);
4436	/* Assume MSI-X interrupts, will be checked during IRQ allocation */
4437	adapter->flags |= IGC_FLAG_HAS_MSIX;
4438
4439	adapter->mac_table = kzalloc(size, GFP_ATOMIC);
4440	if (!adapter->mac_table)
4441		return -ENOMEM;
4442
4443	igc_init_queue_configuration(adapter);
4444
4445	/* This call may decrease the number of queues */
4446	if (igc_init_interrupt_scheme(adapter, true)) {
4447		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
4448		return -ENOMEM;
4449	}
4450
4451	/* Explicitly disable IRQ since the NIC can be in any state. */
4452	igc_irq_disable(adapter);
4453
4454	set_bit(__IGC_DOWN, &adapter->state);
4455
4456	return 0;
4457}
4458
4459/**
4460 * igc_reinit_queues - return error
4461 * @adapter: pointer to adapter structure
4462 */
4463int igc_reinit_queues(struct igc_adapter *adapter)
4464{
4465	struct net_device *netdev = adapter->netdev;
4466	struct pci_dev *pdev = adapter->pdev;
4467	int err = 0;
4468
4469	if (netif_running(netdev))
4470		igc_close(netdev);
4471
4472	igc_reset_interrupt_capability(adapter);
4473
4474	if (igc_init_interrupt_scheme(adapter, true)) {
4475		dev_err(&pdev->dev, "Unable to allocate memory for queues\n");
4476		return -ENOMEM;
4477	}
4478
4479	if (netif_running(netdev))
4480		err = igc_open(netdev);
4481
4482	return err;
4483}
4484
4485/**
4486 * igc_get_hw_dev - return device
4487 * @hw: pointer to hardware structure
4488 *
4489 * used by hardware layer to print debugging information
4490 */
4491struct net_device *igc_get_hw_dev(struct igc_hw *hw)
4492{
4493	struct igc_adapter *adapter = hw->back;
4494
4495	return adapter->netdev;
4496}
4497
4498/**
4499 * igc_init_module - Driver Registration Routine
4500 *
4501 * igc_init_module is the first routine called when the driver is
4502 * loaded. All it does is register with the PCI subsystem.
4503 */
4504static int __init igc_init_module(void)
4505{
4506	int ret;
4507
4508	pr_info("%s - version %s\n",
4509		igc_driver_string, igc_driver_version);
4510
4511	pr_info("%s\n", igc_copyright);
4512
4513	ret = pci_register_driver(&igc_driver);
4514	return ret;
4515}
4516
4517module_init(igc_init_module);
4518
4519/**
4520 * igc_exit_module - Driver Exit Cleanup Routine
4521 *
4522 * igc_exit_module is called just before the driver is removed
4523 * from memory.
4524 */
4525static void __exit igc_exit_module(void)
4526{
4527	pci_unregister_driver(&igc_driver);
4528}
4529
4530module_exit(igc_exit_module);
4531/* igc_main.c */