Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.15.
   1// SPDX-License-Identifier: GPL-2.0
   2/* Copyright (c)  2018 Intel Corporation */
   3
   4#include <linux/module.h>
   5#include <linux/types.h>
   6#include <linux/if_vlan.h>
   7#include <linux/aer.h>
   8#include <linux/tcp.h>
   9#include <linux/udp.h>
  10#include <linux/ip.h>
  11#include <linux/pm_runtime.h>
  12#include <net/pkt_sched.h>
  13#include <linux/bpf_trace.h>
  14#include <net/xdp_sock_drv.h>
  15#include <net/ipv6.h>
  16
  17#include "igc.h"
  18#include "igc_hw.h"
  19#include "igc_tsn.h"
  20#include "igc_xdp.h"
  21
  22#define DRV_SUMMARY	"Intel(R) 2.5G Ethernet Linux Driver"
  23
  24#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV | NETIF_MSG_PROBE | NETIF_MSG_LINK)
  25
  26#define IGC_XDP_PASS		0
  27#define IGC_XDP_CONSUMED	BIT(0)
  28#define IGC_XDP_TX		BIT(1)
  29#define IGC_XDP_REDIRECT	BIT(2)
  30
  31static int debug = -1;
  32
  33MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
  34MODULE_DESCRIPTION(DRV_SUMMARY);
  35MODULE_LICENSE("GPL v2");
  36module_param(debug, int, 0);
  37MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
  38
  39char igc_driver_name[] = "igc";
  40static const char igc_driver_string[] = DRV_SUMMARY;
  41static const char igc_copyright[] =
  42	"Copyright(c) 2018 Intel Corporation.";
  43
  44static const struct igc_info *igc_info_tbl[] = {
  45	[board_base] = &igc_base_info,
  46};
  47
  48static const struct pci_device_id igc_pci_tbl[] = {
  49	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_LM), board_base },
  50	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_V), board_base },
  51	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_I), board_base },
  52	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I220_V), board_base },
  53	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_K), board_base },
  54	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_K2), board_base },
  55	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_K), board_base },
  56	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_LMVP), board_base },
  57	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_IT), board_base },
  58	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_LM), board_base },
  59	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_V), board_base },
  60	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_IT), board_base },
  61	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I221_V), board_base },
  62	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I226_BLANK_NVM), board_base },
  63	{ PCI_VDEVICE(INTEL, IGC_DEV_ID_I225_BLANK_NVM), board_base },
  64	/* required last entry */
  65	{0, }
  66};
  67
  68MODULE_DEVICE_TABLE(pci, igc_pci_tbl);
  69
  70enum latency_range {
  71	lowest_latency = 0,
  72	low_latency = 1,
  73	bulk_latency = 2,
  74	latency_invalid = 255
  75};
  76
  77void igc_reset(struct igc_adapter *adapter)
  78{
  79	struct net_device *dev = adapter->netdev;
  80	struct igc_hw *hw = &adapter->hw;
  81	struct igc_fc_info *fc = &hw->fc;
  82	u32 pba, hwm;
  83
  84	/* Repartition PBA for greater than 9k MTU if required */
  85	pba = IGC_PBA_34K;
  86
  87	/* flow control settings
  88	 * The high water mark must be low enough to fit one full frame
  89	 * after transmitting the pause frame.  As such we must have enough
  90	 * space to allow for us to complete our current transmit and then
  91	 * receive the frame that is in progress from the link partner.
  92	 * Set it to:
  93	 * - the full Rx FIFO size minus one full Tx plus one full Rx frame
  94	 */
  95	hwm = (pba << 10) - (adapter->max_frame_size + MAX_JUMBO_FRAME_SIZE);
  96
  97	fc->high_water = hwm & 0xFFFFFFF0;	/* 16-byte granularity */
  98	fc->low_water = fc->high_water - 16;
  99	fc->pause_time = 0xFFFF;
 100	fc->send_xon = 1;
 101	fc->current_mode = fc->requested_mode;
 102
 103	hw->mac.ops.reset_hw(hw);
 104
 105	if (hw->mac.ops.init_hw(hw))
 106		netdev_err(dev, "Error on hardware initialization\n");
 107
 108	/* Re-establish EEE setting */
 109	igc_set_eee_i225(hw, true, true, true);
 110
 111	if (!netif_running(adapter->netdev))
 112		igc_power_down_phy_copper_base(&adapter->hw);
 113
 114	/* Enable HW to recognize an 802.1Q VLAN Ethernet packet */
 115	wr32(IGC_VET, ETH_P_8021Q);
 116
 117	/* Re-enable PTP, where applicable. */
 118	igc_ptp_reset(adapter);
 119
 120	/* Re-enable TSN offloading, where applicable. */
 121	igc_tsn_offload_apply(adapter);
 122
 123	igc_get_phy_info(hw);
 124}
 125
 126/**
 127 * igc_power_up_link - Power up the phy link
 128 * @adapter: address of board private structure
 129 */
 130static void igc_power_up_link(struct igc_adapter *adapter)
 131{
 132	igc_reset_phy(&adapter->hw);
 133
 134	igc_power_up_phy_copper(&adapter->hw);
 135
 136	igc_setup_link(&adapter->hw);
 137}
 138
 139/**
 140 * igc_release_hw_control - release control of the h/w to f/w
 141 * @adapter: address of board private structure
 142 *
 143 * igc_release_hw_control resets CTRL_EXT:DRV_LOAD bit.
 144 * For ASF and Pass Through versions of f/w this means that the
 145 * driver is no longer loaded.
 146 */
 147static void igc_release_hw_control(struct igc_adapter *adapter)
 148{
 149	struct igc_hw *hw = &adapter->hw;
 150	u32 ctrl_ext;
 151
 152	if (!pci_device_is_present(adapter->pdev))
 153		return;
 154
 155	/* Let firmware take over control of h/w */
 156	ctrl_ext = rd32(IGC_CTRL_EXT);
 157	wr32(IGC_CTRL_EXT,
 158	     ctrl_ext & ~IGC_CTRL_EXT_DRV_LOAD);
 159}
 160
 161/**
 162 * igc_get_hw_control - get control of the h/w from f/w
 163 * @adapter: address of board private structure
 164 *
 165 * igc_get_hw_control sets CTRL_EXT:DRV_LOAD bit.
 166 * For ASF and Pass Through versions of f/w this means that
 167 * the driver is loaded.
 168 */
 169static void igc_get_hw_control(struct igc_adapter *adapter)
 170{
 171	struct igc_hw *hw = &adapter->hw;
 172	u32 ctrl_ext;
 173
 174	/* Let firmware know the driver has taken over */
 175	ctrl_ext = rd32(IGC_CTRL_EXT);
 176	wr32(IGC_CTRL_EXT,
 177	     ctrl_ext | IGC_CTRL_EXT_DRV_LOAD);
 178}
 179
 180static void igc_unmap_tx_buffer(struct device *dev, struct igc_tx_buffer *buf)
 181{
 182	dma_unmap_single(dev, dma_unmap_addr(buf, dma),
 183			 dma_unmap_len(buf, len), DMA_TO_DEVICE);
 184
 185	dma_unmap_len_set(buf, len, 0);
 186}
 187
 188/**
 189 * igc_clean_tx_ring - Free Tx Buffers
 190 * @tx_ring: ring to be cleaned
 191 */
 192static void igc_clean_tx_ring(struct igc_ring *tx_ring)
 193{
 194	u16 i = tx_ring->next_to_clean;
 195	struct igc_tx_buffer *tx_buffer = &tx_ring->tx_buffer_info[i];
 196	u32 xsk_frames = 0;
 197
 198	while (i != tx_ring->next_to_use) {
 199		union igc_adv_tx_desc *eop_desc, *tx_desc;
 200
 201		switch (tx_buffer->type) {
 202		case IGC_TX_BUFFER_TYPE_XSK:
 203			xsk_frames++;
 204			break;
 205		case IGC_TX_BUFFER_TYPE_XDP:
 206			xdp_return_frame(tx_buffer->xdpf);
 207			igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
 208			break;
 209		case IGC_TX_BUFFER_TYPE_SKB:
 210			dev_kfree_skb_any(tx_buffer->skb);
 211			igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
 212			break;
 213		default:
 214			netdev_warn_once(tx_ring->netdev, "Unknown Tx buffer type\n");
 215			break;
 216		}
 217
 218		/* check for eop_desc to determine the end of the packet */
 219		eop_desc = tx_buffer->next_to_watch;
 220		tx_desc = IGC_TX_DESC(tx_ring, i);
 221
 222		/* unmap remaining buffers */
 223		while (tx_desc != eop_desc) {
 224			tx_buffer++;
 225			tx_desc++;
 226			i++;
 227			if (unlikely(i == tx_ring->count)) {
 228				i = 0;
 229				tx_buffer = tx_ring->tx_buffer_info;
 230				tx_desc = IGC_TX_DESC(tx_ring, 0);
 231			}
 232
 233			/* unmap any remaining paged data */
 234			if (dma_unmap_len(tx_buffer, len))
 235				igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
 236		}
 237
 238		tx_buffer->next_to_watch = NULL;
 239
 240		/* move us one more past the eop_desc for start of next pkt */
 241		tx_buffer++;
 242		i++;
 243		if (unlikely(i == tx_ring->count)) {
 244			i = 0;
 245			tx_buffer = tx_ring->tx_buffer_info;
 246		}
 247	}
 248
 249	if (tx_ring->xsk_pool && xsk_frames)
 250		xsk_tx_completed(tx_ring->xsk_pool, xsk_frames);
 251
 252	/* reset BQL for queue */
 253	netdev_tx_reset_queue(txring_txq(tx_ring));
 254
 255	/* reset next_to_use and next_to_clean */
 256	tx_ring->next_to_use = 0;
 257	tx_ring->next_to_clean = 0;
 258}
 259
 260/**
 261 * igc_free_tx_resources - Free Tx Resources per Queue
 262 * @tx_ring: Tx descriptor ring for a specific queue
 263 *
 264 * Free all transmit software resources
 265 */
 266void igc_free_tx_resources(struct igc_ring *tx_ring)
 267{
 268	igc_clean_tx_ring(tx_ring);
 269
 270	vfree(tx_ring->tx_buffer_info);
 271	tx_ring->tx_buffer_info = NULL;
 272
 273	/* if not set, then don't free */
 274	if (!tx_ring->desc)
 275		return;
 276
 277	dma_free_coherent(tx_ring->dev, tx_ring->size,
 278			  tx_ring->desc, tx_ring->dma);
 279
 280	tx_ring->desc = NULL;
 281}
 282
 283/**
 284 * igc_free_all_tx_resources - Free Tx Resources for All Queues
 285 * @adapter: board private structure
 286 *
 287 * Free all transmit software resources
 288 */
 289static void igc_free_all_tx_resources(struct igc_adapter *adapter)
 290{
 291	int i;
 292
 293	for (i = 0; i < adapter->num_tx_queues; i++)
 294		igc_free_tx_resources(adapter->tx_ring[i]);
 295}
 296
 297/**
 298 * igc_clean_all_tx_rings - Free Tx Buffers for all queues
 299 * @adapter: board private structure
 300 */
 301static void igc_clean_all_tx_rings(struct igc_adapter *adapter)
 302{
 303	int i;
 304
 305	for (i = 0; i < adapter->num_tx_queues; i++)
 306		if (adapter->tx_ring[i])
 307			igc_clean_tx_ring(adapter->tx_ring[i]);
 308}
 309
 310/**
 311 * igc_setup_tx_resources - allocate Tx resources (Descriptors)
 312 * @tx_ring: tx descriptor ring (for a specific queue) to setup
 313 *
 314 * Return 0 on success, negative on failure
 315 */
 316int igc_setup_tx_resources(struct igc_ring *tx_ring)
 317{
 318	struct net_device *ndev = tx_ring->netdev;
 319	struct device *dev = tx_ring->dev;
 320	int size = 0;
 321
 322	size = sizeof(struct igc_tx_buffer) * tx_ring->count;
 323	tx_ring->tx_buffer_info = vzalloc(size);
 324	if (!tx_ring->tx_buffer_info)
 325		goto err;
 326
 327	/* round up to nearest 4K */
 328	tx_ring->size = tx_ring->count * sizeof(union igc_adv_tx_desc);
 329	tx_ring->size = ALIGN(tx_ring->size, 4096);
 330
 331	tx_ring->desc = dma_alloc_coherent(dev, tx_ring->size,
 332					   &tx_ring->dma, GFP_KERNEL);
 333
 334	if (!tx_ring->desc)
 335		goto err;
 336
 337	tx_ring->next_to_use = 0;
 338	tx_ring->next_to_clean = 0;
 339
 340	return 0;
 341
 342err:
 343	vfree(tx_ring->tx_buffer_info);
 344	netdev_err(ndev, "Unable to allocate memory for Tx descriptor ring\n");
 345	return -ENOMEM;
 346}
 347
 348/**
 349 * igc_setup_all_tx_resources - wrapper to allocate Tx resources for all queues
 350 * @adapter: board private structure
 351 *
 352 * Return 0 on success, negative on failure
 353 */
 354static int igc_setup_all_tx_resources(struct igc_adapter *adapter)
 355{
 356	struct net_device *dev = adapter->netdev;
 357	int i, err = 0;
 358
 359	for (i = 0; i < adapter->num_tx_queues; i++) {
 360		err = igc_setup_tx_resources(adapter->tx_ring[i]);
 361		if (err) {
 362			netdev_err(dev, "Error on Tx queue %u setup\n", i);
 363			for (i--; i >= 0; i--)
 364				igc_free_tx_resources(adapter->tx_ring[i]);
 365			break;
 366		}
 367	}
 368
 369	return err;
 370}
 371
 372static void igc_clean_rx_ring_page_shared(struct igc_ring *rx_ring)
 373{
 374	u16 i = rx_ring->next_to_clean;
 375
 376	dev_kfree_skb(rx_ring->skb);
 377	rx_ring->skb = NULL;
 378
 379	/* Free all the Rx ring sk_buffs */
 380	while (i != rx_ring->next_to_alloc) {
 381		struct igc_rx_buffer *buffer_info = &rx_ring->rx_buffer_info[i];
 382
 383		/* Invalidate cache lines that may have been written to by
 384		 * device so that we avoid corrupting memory.
 385		 */
 386		dma_sync_single_range_for_cpu(rx_ring->dev,
 387					      buffer_info->dma,
 388					      buffer_info->page_offset,
 389					      igc_rx_bufsz(rx_ring),
 390					      DMA_FROM_DEVICE);
 391
 392		/* free resources associated with mapping */
 393		dma_unmap_page_attrs(rx_ring->dev,
 394				     buffer_info->dma,
 395				     igc_rx_pg_size(rx_ring),
 396				     DMA_FROM_DEVICE,
 397				     IGC_RX_DMA_ATTR);
 398		__page_frag_cache_drain(buffer_info->page,
 399					buffer_info->pagecnt_bias);
 400
 401		i++;
 402		if (i == rx_ring->count)
 403			i = 0;
 404	}
 405}
 406
 407static void igc_clean_rx_ring_xsk_pool(struct igc_ring *ring)
 408{
 409	struct igc_rx_buffer *bi;
 410	u16 i;
 411
 412	for (i = 0; i < ring->count; i++) {
 413		bi = &ring->rx_buffer_info[i];
 414		if (!bi->xdp)
 415			continue;
 416
 417		xsk_buff_free(bi->xdp);
 418		bi->xdp = NULL;
 419	}
 420}
 421
 422/**
 423 * igc_clean_rx_ring - Free Rx Buffers per Queue
 424 * @ring: ring to free buffers from
 425 */
 426static void igc_clean_rx_ring(struct igc_ring *ring)
 427{
 428	if (ring->xsk_pool)
 429		igc_clean_rx_ring_xsk_pool(ring);
 430	else
 431		igc_clean_rx_ring_page_shared(ring);
 432
 433	clear_ring_uses_large_buffer(ring);
 434
 435	ring->next_to_alloc = 0;
 436	ring->next_to_clean = 0;
 437	ring->next_to_use = 0;
 438}
 439
 440/**
 441 * igc_clean_all_rx_rings - Free Rx Buffers for all queues
 442 * @adapter: board private structure
 443 */
 444static void igc_clean_all_rx_rings(struct igc_adapter *adapter)
 445{
 446	int i;
 447
 448	for (i = 0; i < adapter->num_rx_queues; i++)
 449		if (adapter->rx_ring[i])
 450			igc_clean_rx_ring(adapter->rx_ring[i]);
 451}
 452
 453/**
 454 * igc_free_rx_resources - Free Rx Resources
 455 * @rx_ring: ring to clean the resources from
 456 *
 457 * Free all receive software resources
 458 */
 459void igc_free_rx_resources(struct igc_ring *rx_ring)
 460{
 461	igc_clean_rx_ring(rx_ring);
 462
 463	xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
 464
 465	vfree(rx_ring->rx_buffer_info);
 466	rx_ring->rx_buffer_info = NULL;
 467
 468	/* if not set, then don't free */
 469	if (!rx_ring->desc)
 470		return;
 471
 472	dma_free_coherent(rx_ring->dev, rx_ring->size,
 473			  rx_ring->desc, rx_ring->dma);
 474
 475	rx_ring->desc = NULL;
 476}
 477
 478/**
 479 * igc_free_all_rx_resources - Free Rx Resources for All Queues
 480 * @adapter: board private structure
 481 *
 482 * Free all receive software resources
 483 */
 484static void igc_free_all_rx_resources(struct igc_adapter *adapter)
 485{
 486	int i;
 487
 488	for (i = 0; i < adapter->num_rx_queues; i++)
 489		igc_free_rx_resources(adapter->rx_ring[i]);
 490}
 491
 492/**
 493 * igc_setup_rx_resources - allocate Rx resources (Descriptors)
 494 * @rx_ring:    rx descriptor ring (for a specific queue) to setup
 495 *
 496 * Returns 0 on success, negative on failure
 497 */
 498int igc_setup_rx_resources(struct igc_ring *rx_ring)
 499{
 500	struct net_device *ndev = rx_ring->netdev;
 501	struct device *dev = rx_ring->dev;
 502	u8 index = rx_ring->queue_index;
 503	int size, desc_len, res;
 504
 505	res = xdp_rxq_info_reg(&rx_ring->xdp_rxq, ndev, index,
 506			       rx_ring->q_vector->napi.napi_id);
 507	if (res < 0) {
 508		netdev_err(ndev, "Failed to register xdp_rxq index %u\n",
 509			   index);
 510		return res;
 511	}
 512
 513	size = sizeof(struct igc_rx_buffer) * rx_ring->count;
 514	rx_ring->rx_buffer_info = vzalloc(size);
 515	if (!rx_ring->rx_buffer_info)
 516		goto err;
 517
 518	desc_len = sizeof(union igc_adv_rx_desc);
 519
 520	/* Round up to nearest 4K */
 521	rx_ring->size = rx_ring->count * desc_len;
 522	rx_ring->size = ALIGN(rx_ring->size, 4096);
 523
 524	rx_ring->desc = dma_alloc_coherent(dev, rx_ring->size,
 525					   &rx_ring->dma, GFP_KERNEL);
 526
 527	if (!rx_ring->desc)
 528		goto err;
 529
 530	rx_ring->next_to_alloc = 0;
 531	rx_ring->next_to_clean = 0;
 532	rx_ring->next_to_use = 0;
 533
 534	return 0;
 535
 536err:
 537	xdp_rxq_info_unreg(&rx_ring->xdp_rxq);
 538	vfree(rx_ring->rx_buffer_info);
 539	rx_ring->rx_buffer_info = NULL;
 540	netdev_err(ndev, "Unable to allocate memory for Rx descriptor ring\n");
 541	return -ENOMEM;
 542}
 543
 544/**
 545 * igc_setup_all_rx_resources - wrapper to allocate Rx resources
 546 *                                (Descriptors) for all queues
 547 * @adapter: board private structure
 548 *
 549 * Return 0 on success, negative on failure
 550 */
 551static int igc_setup_all_rx_resources(struct igc_adapter *adapter)
 552{
 553	struct net_device *dev = adapter->netdev;
 554	int i, err = 0;
 555
 556	for (i = 0; i < adapter->num_rx_queues; i++) {
 557		err = igc_setup_rx_resources(adapter->rx_ring[i]);
 558		if (err) {
 559			netdev_err(dev, "Error on Rx queue %u setup\n", i);
 560			for (i--; i >= 0; i--)
 561				igc_free_rx_resources(adapter->rx_ring[i]);
 562			break;
 563		}
 564	}
 565
 566	return err;
 567}
 568
 569static struct xsk_buff_pool *igc_get_xsk_pool(struct igc_adapter *adapter,
 570					      struct igc_ring *ring)
 571{
 572	if (!igc_xdp_is_enabled(adapter) ||
 573	    !test_bit(IGC_RING_FLAG_AF_XDP_ZC, &ring->flags))
 574		return NULL;
 575
 576	return xsk_get_pool_from_qid(ring->netdev, ring->queue_index);
 577}
 578
 579/**
 580 * igc_configure_rx_ring - Configure a receive ring after Reset
 581 * @adapter: board private structure
 582 * @ring: receive ring to be configured
 583 *
 584 * Configure the Rx unit of the MAC after a reset.
 585 */
 586static void igc_configure_rx_ring(struct igc_adapter *adapter,
 587				  struct igc_ring *ring)
 588{
 589	struct igc_hw *hw = &adapter->hw;
 590	union igc_adv_rx_desc *rx_desc;
 591	int reg_idx = ring->reg_idx;
 592	u32 srrctl = 0, rxdctl = 0;
 593	u64 rdba = ring->dma;
 594	u32 buf_size;
 595
 596	xdp_rxq_info_unreg_mem_model(&ring->xdp_rxq);
 597	ring->xsk_pool = igc_get_xsk_pool(adapter, ring);
 598	if (ring->xsk_pool) {
 599		WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
 600						   MEM_TYPE_XSK_BUFF_POOL,
 601						   NULL));
 602		xsk_pool_set_rxq_info(ring->xsk_pool, &ring->xdp_rxq);
 603	} else {
 604		WARN_ON(xdp_rxq_info_reg_mem_model(&ring->xdp_rxq,
 605						   MEM_TYPE_PAGE_SHARED,
 606						   NULL));
 607	}
 608
 609	if (igc_xdp_is_enabled(adapter))
 610		set_ring_uses_large_buffer(ring);
 611
 612	/* disable the queue */
 613	wr32(IGC_RXDCTL(reg_idx), 0);
 614
 615	/* Set DMA base address registers */
 616	wr32(IGC_RDBAL(reg_idx),
 617	     rdba & 0x00000000ffffffffULL);
 618	wr32(IGC_RDBAH(reg_idx), rdba >> 32);
 619	wr32(IGC_RDLEN(reg_idx),
 620	     ring->count * sizeof(union igc_adv_rx_desc));
 621
 622	/* initialize head and tail */
 623	ring->tail = adapter->io_addr + IGC_RDT(reg_idx);
 624	wr32(IGC_RDH(reg_idx), 0);
 625	writel(0, ring->tail);
 626
 627	/* reset next-to- use/clean to place SW in sync with hardware */
 628	ring->next_to_clean = 0;
 629	ring->next_to_use = 0;
 630
 631	if (ring->xsk_pool)
 632		buf_size = xsk_pool_get_rx_frame_size(ring->xsk_pool);
 633	else if (ring_uses_large_buffer(ring))
 634		buf_size = IGC_RXBUFFER_3072;
 635	else
 636		buf_size = IGC_RXBUFFER_2048;
 637
 638	srrctl = IGC_RX_HDR_LEN << IGC_SRRCTL_BSIZEHDRSIZE_SHIFT;
 639	srrctl |= buf_size >> IGC_SRRCTL_BSIZEPKT_SHIFT;
 640	srrctl |= IGC_SRRCTL_DESCTYPE_ADV_ONEBUF;
 641
 642	wr32(IGC_SRRCTL(reg_idx), srrctl);
 643
 644	rxdctl |= IGC_RX_PTHRESH;
 645	rxdctl |= IGC_RX_HTHRESH << 8;
 646	rxdctl |= IGC_RX_WTHRESH << 16;
 647
 648	/* initialize rx_buffer_info */
 649	memset(ring->rx_buffer_info, 0,
 650	       sizeof(struct igc_rx_buffer) * ring->count);
 651
 652	/* initialize Rx descriptor 0 */
 653	rx_desc = IGC_RX_DESC(ring, 0);
 654	rx_desc->wb.upper.length = 0;
 655
 656	/* enable receive descriptor fetching */
 657	rxdctl |= IGC_RXDCTL_QUEUE_ENABLE;
 658
 659	wr32(IGC_RXDCTL(reg_idx), rxdctl);
 660}
 661
 662/**
 663 * igc_configure_rx - Configure receive Unit after Reset
 664 * @adapter: board private structure
 665 *
 666 * Configure the Rx unit of the MAC after a reset.
 667 */
 668static void igc_configure_rx(struct igc_adapter *adapter)
 669{
 670	int i;
 671
 672	/* Setup the HW Rx Head and Tail Descriptor Pointers and
 673	 * the Base and Length of the Rx Descriptor Ring
 674	 */
 675	for (i = 0; i < adapter->num_rx_queues; i++)
 676		igc_configure_rx_ring(adapter, adapter->rx_ring[i]);
 677}
 678
 679/**
 680 * igc_configure_tx_ring - Configure transmit ring after Reset
 681 * @adapter: board private structure
 682 * @ring: tx ring to configure
 683 *
 684 * Configure a transmit ring after a reset.
 685 */
 686static void igc_configure_tx_ring(struct igc_adapter *adapter,
 687				  struct igc_ring *ring)
 688{
 689	struct igc_hw *hw = &adapter->hw;
 690	int reg_idx = ring->reg_idx;
 691	u64 tdba = ring->dma;
 692	u32 txdctl = 0;
 693
 694	ring->xsk_pool = igc_get_xsk_pool(adapter, ring);
 695
 696	/* disable the queue */
 697	wr32(IGC_TXDCTL(reg_idx), 0);
 698	wrfl();
 699	mdelay(10);
 700
 701	wr32(IGC_TDLEN(reg_idx),
 702	     ring->count * sizeof(union igc_adv_tx_desc));
 703	wr32(IGC_TDBAL(reg_idx),
 704	     tdba & 0x00000000ffffffffULL);
 705	wr32(IGC_TDBAH(reg_idx), tdba >> 32);
 706
 707	ring->tail = adapter->io_addr + IGC_TDT(reg_idx);
 708	wr32(IGC_TDH(reg_idx), 0);
 709	writel(0, ring->tail);
 710
 711	txdctl |= IGC_TX_PTHRESH;
 712	txdctl |= IGC_TX_HTHRESH << 8;
 713	txdctl |= IGC_TX_WTHRESH << 16;
 714
 715	txdctl |= IGC_TXDCTL_QUEUE_ENABLE;
 716	wr32(IGC_TXDCTL(reg_idx), txdctl);
 717}
 718
 719/**
 720 * igc_configure_tx - Configure transmit Unit after Reset
 721 * @adapter: board private structure
 722 *
 723 * Configure the Tx unit of the MAC after a reset.
 724 */
 725static void igc_configure_tx(struct igc_adapter *adapter)
 726{
 727	int i;
 728
 729	for (i = 0; i < adapter->num_tx_queues; i++)
 730		igc_configure_tx_ring(adapter, adapter->tx_ring[i]);
 731}
 732
 733/**
 734 * igc_setup_mrqc - configure the multiple receive queue control registers
 735 * @adapter: Board private structure
 736 */
 737static void igc_setup_mrqc(struct igc_adapter *adapter)
 738{
 739	struct igc_hw *hw = &adapter->hw;
 740	u32 j, num_rx_queues;
 741	u32 mrqc, rxcsum;
 742	u32 rss_key[10];
 743
 744	netdev_rss_key_fill(rss_key, sizeof(rss_key));
 745	for (j = 0; j < 10; j++)
 746		wr32(IGC_RSSRK(j), rss_key[j]);
 747
 748	num_rx_queues = adapter->rss_queues;
 749
 750	if (adapter->rss_indir_tbl_init != num_rx_queues) {
 751		for (j = 0; j < IGC_RETA_SIZE; j++)
 752			adapter->rss_indir_tbl[j] =
 753			(j * num_rx_queues) / IGC_RETA_SIZE;
 754		adapter->rss_indir_tbl_init = num_rx_queues;
 755	}
 756	igc_write_rss_indir_tbl(adapter);
 757
 758	/* Disable raw packet checksumming so that RSS hash is placed in
 759	 * descriptor on writeback.  No need to enable TCP/UDP/IP checksum
 760	 * offloads as they are enabled by default
 761	 */
 762	rxcsum = rd32(IGC_RXCSUM);
 763	rxcsum |= IGC_RXCSUM_PCSD;
 764
 765	/* Enable Receive Checksum Offload for SCTP */
 766	rxcsum |= IGC_RXCSUM_CRCOFL;
 767
 768	/* Don't need to set TUOFL or IPOFL, they default to 1 */
 769	wr32(IGC_RXCSUM, rxcsum);
 770
 771	/* Generate RSS hash based on packet types, TCP/UDP
 772	 * port numbers and/or IPv4/v6 src and dst addresses
 773	 */
 774	mrqc = IGC_MRQC_RSS_FIELD_IPV4 |
 775	       IGC_MRQC_RSS_FIELD_IPV4_TCP |
 776	       IGC_MRQC_RSS_FIELD_IPV6 |
 777	       IGC_MRQC_RSS_FIELD_IPV6_TCP |
 778	       IGC_MRQC_RSS_FIELD_IPV6_TCP_EX;
 779
 780	if (adapter->flags & IGC_FLAG_RSS_FIELD_IPV4_UDP)
 781		mrqc |= IGC_MRQC_RSS_FIELD_IPV4_UDP;
 782	if (adapter->flags & IGC_FLAG_RSS_FIELD_IPV6_UDP)
 783		mrqc |= IGC_MRQC_RSS_FIELD_IPV6_UDP;
 784
 785	mrqc |= IGC_MRQC_ENABLE_RSS_MQ;
 786
 787	wr32(IGC_MRQC, mrqc);
 788}
 789
 790/**
 791 * igc_setup_rctl - configure the receive control registers
 792 * @adapter: Board private structure
 793 */
 794static void igc_setup_rctl(struct igc_adapter *adapter)
 795{
 796	struct igc_hw *hw = &adapter->hw;
 797	u32 rctl;
 798
 799	rctl = rd32(IGC_RCTL);
 800
 801	rctl &= ~(3 << IGC_RCTL_MO_SHIFT);
 802	rctl &= ~(IGC_RCTL_LBM_TCVR | IGC_RCTL_LBM_MAC);
 803
 804	rctl |= IGC_RCTL_EN | IGC_RCTL_BAM | IGC_RCTL_RDMTS_HALF |
 805		(hw->mac.mc_filter_type << IGC_RCTL_MO_SHIFT);
 806
 807	/* enable stripping of CRC. Newer features require
 808	 * that the HW strips the CRC.
 809	 */
 810	rctl |= IGC_RCTL_SECRC;
 811
 812	/* disable store bad packets and clear size bits. */
 813	rctl &= ~(IGC_RCTL_SBP | IGC_RCTL_SZ_256);
 814
 815	/* enable LPE to allow for reception of jumbo frames */
 816	rctl |= IGC_RCTL_LPE;
 817
 818	/* disable queue 0 to prevent tail write w/o re-config */
 819	wr32(IGC_RXDCTL(0), 0);
 820
 821	/* This is useful for sniffing bad packets. */
 822	if (adapter->netdev->features & NETIF_F_RXALL) {
 823		/* UPE and MPE will be handled by normal PROMISC logic
 824		 * in set_rx_mode
 825		 */
 826		rctl |= (IGC_RCTL_SBP | /* Receive bad packets */
 827			 IGC_RCTL_BAM | /* RX All Bcast Pkts */
 828			 IGC_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
 829
 830		rctl &= ~(IGC_RCTL_DPF | /* Allow filtered pause */
 831			  IGC_RCTL_CFIEN); /* Disable VLAN CFIEN Filter */
 832	}
 833
 834	wr32(IGC_RCTL, rctl);
 835}
 836
 837/**
 838 * igc_setup_tctl - configure the transmit control registers
 839 * @adapter: Board private structure
 840 */
 841static void igc_setup_tctl(struct igc_adapter *adapter)
 842{
 843	struct igc_hw *hw = &adapter->hw;
 844	u32 tctl;
 845
 846	/* disable queue 0 which icould be enabled by default */
 847	wr32(IGC_TXDCTL(0), 0);
 848
 849	/* Program the Transmit Control Register */
 850	tctl = rd32(IGC_TCTL);
 851	tctl &= ~IGC_TCTL_CT;
 852	tctl |= IGC_TCTL_PSP | IGC_TCTL_RTLC |
 853		(IGC_COLLISION_THRESHOLD << IGC_CT_SHIFT);
 854
 855	/* Enable transmits */
 856	tctl |= IGC_TCTL_EN;
 857
 858	wr32(IGC_TCTL, tctl);
 859}
 860
 861/**
 862 * igc_set_mac_filter_hw() - Set MAC address filter in hardware
 863 * @adapter: Pointer to adapter where the filter should be set
 864 * @index: Filter index
 865 * @type: MAC address filter type (source or destination)
 866 * @addr: MAC address
 867 * @queue: If non-negative, queue assignment feature is enabled and frames
 868 *         matching the filter are enqueued onto 'queue'. Otherwise, queue
 869 *         assignment is disabled.
 870 */
 871static void igc_set_mac_filter_hw(struct igc_adapter *adapter, int index,
 872				  enum igc_mac_filter_type type,
 873				  const u8 *addr, int queue)
 874{
 875	struct net_device *dev = adapter->netdev;
 876	struct igc_hw *hw = &adapter->hw;
 877	u32 ral, rah;
 878
 879	if (WARN_ON(index >= hw->mac.rar_entry_count))
 880		return;
 881
 882	ral = le32_to_cpup((__le32 *)(addr));
 883	rah = le16_to_cpup((__le16 *)(addr + 4));
 884
 885	if (type == IGC_MAC_FILTER_TYPE_SRC) {
 886		rah &= ~IGC_RAH_ASEL_MASK;
 887		rah |= IGC_RAH_ASEL_SRC_ADDR;
 888	}
 889
 890	if (queue >= 0) {
 891		rah &= ~IGC_RAH_QSEL_MASK;
 892		rah |= (queue << IGC_RAH_QSEL_SHIFT);
 893		rah |= IGC_RAH_QSEL_ENABLE;
 894	}
 895
 896	rah |= IGC_RAH_AV;
 897
 898	wr32(IGC_RAL(index), ral);
 899	wr32(IGC_RAH(index), rah);
 900
 901	netdev_dbg(dev, "MAC address filter set in HW: index %d", index);
 902}
 903
 904/**
 905 * igc_clear_mac_filter_hw() - Clear MAC address filter in hardware
 906 * @adapter: Pointer to adapter where the filter should be cleared
 907 * @index: Filter index
 908 */
 909static void igc_clear_mac_filter_hw(struct igc_adapter *adapter, int index)
 910{
 911	struct net_device *dev = adapter->netdev;
 912	struct igc_hw *hw = &adapter->hw;
 913
 914	if (WARN_ON(index >= hw->mac.rar_entry_count))
 915		return;
 916
 917	wr32(IGC_RAL(index), 0);
 918	wr32(IGC_RAH(index), 0);
 919
 920	netdev_dbg(dev, "MAC address filter cleared in HW: index %d", index);
 921}
 922
 923/* Set default MAC address for the PF in the first RAR entry */
 924static void igc_set_default_mac_filter(struct igc_adapter *adapter)
 925{
 926	struct net_device *dev = adapter->netdev;
 927	u8 *addr = adapter->hw.mac.addr;
 928
 929	netdev_dbg(dev, "Set default MAC address filter: address %pM", addr);
 930
 931	igc_set_mac_filter_hw(adapter, 0, IGC_MAC_FILTER_TYPE_DST, addr, -1);
 932}
 933
 934/**
 935 * igc_set_mac - Change the Ethernet Address of the NIC
 936 * @netdev: network interface device structure
 937 * @p: pointer to an address structure
 938 *
 939 * Returns 0 on success, negative on failure
 940 */
 941static int igc_set_mac(struct net_device *netdev, void *p)
 942{
 943	struct igc_adapter *adapter = netdev_priv(netdev);
 944	struct igc_hw *hw = &adapter->hw;
 945	struct sockaddr *addr = p;
 946
 947	if (!is_valid_ether_addr(addr->sa_data))
 948		return -EADDRNOTAVAIL;
 949
 950	memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
 951	memcpy(hw->mac.addr, addr->sa_data, netdev->addr_len);
 952
 953	/* set the correct pool for the new PF MAC address in entry 0 */
 954	igc_set_default_mac_filter(adapter);
 955
 956	return 0;
 957}
 958
 959/**
 960 *  igc_write_mc_addr_list - write multicast addresses to MTA
 961 *  @netdev: network interface device structure
 962 *
 963 *  Writes multicast address list to the MTA hash table.
 964 *  Returns: -ENOMEM on failure
 965 *           0 on no addresses written
 966 *           X on writing X addresses to MTA
 967 **/
 968static int igc_write_mc_addr_list(struct net_device *netdev)
 969{
 970	struct igc_adapter *adapter = netdev_priv(netdev);
 971	struct igc_hw *hw = &adapter->hw;
 972	struct netdev_hw_addr *ha;
 973	u8  *mta_list;
 974	int i;
 975
 976	if (netdev_mc_empty(netdev)) {
 977		/* nothing to program, so clear mc list */
 978		igc_update_mc_addr_list(hw, NULL, 0);
 979		return 0;
 980	}
 981
 982	mta_list = kcalloc(netdev_mc_count(netdev), 6, GFP_ATOMIC);
 983	if (!mta_list)
 984		return -ENOMEM;
 985
 986	/* The shared function expects a packed array of only addresses. */
 987	i = 0;
 988	netdev_for_each_mc_addr(ha, netdev)
 989		memcpy(mta_list + (i++ * ETH_ALEN), ha->addr, ETH_ALEN);
 990
 991	igc_update_mc_addr_list(hw, mta_list, i);
 992	kfree(mta_list);
 993
 994	return netdev_mc_count(netdev);
 995}
 996
 997static __le32 igc_tx_launchtime(struct igc_adapter *adapter, ktime_t txtime)
 998{
 999	ktime_t cycle_time = adapter->cycle_time;
1000	ktime_t base_time = adapter->base_time;
1001	u32 launchtime;
1002
1003	/* FIXME: when using ETF together with taprio, we may have a
1004	 * case where 'delta' is larger than the cycle_time, this may
1005	 * cause problems if we don't read the current value of
1006	 * IGC_BASET, as the value writen into the launchtime
1007	 * descriptor field may be misinterpreted.
1008	 */
1009	div_s64_rem(ktime_sub_ns(txtime, base_time), cycle_time, &launchtime);
1010
1011	return cpu_to_le32(launchtime);
1012}
1013
1014static void igc_tx_ctxtdesc(struct igc_ring *tx_ring,
1015			    struct igc_tx_buffer *first,
1016			    u32 vlan_macip_lens, u32 type_tucmd,
1017			    u32 mss_l4len_idx)
1018{
1019	struct igc_adv_tx_context_desc *context_desc;
1020	u16 i = tx_ring->next_to_use;
1021
1022	context_desc = IGC_TX_CTXTDESC(tx_ring, i);
1023
1024	i++;
1025	tx_ring->next_to_use = (i < tx_ring->count) ? i : 0;
1026
1027	/* set bits to identify this as an advanced context descriptor */
1028	type_tucmd |= IGC_TXD_CMD_DEXT | IGC_ADVTXD_DTYP_CTXT;
1029
1030	/* For i225, context index must be unique per ring. */
1031	if (test_bit(IGC_RING_FLAG_TX_CTX_IDX, &tx_ring->flags))
1032		mss_l4len_idx |= tx_ring->reg_idx << 4;
1033
1034	context_desc->vlan_macip_lens	= cpu_to_le32(vlan_macip_lens);
1035	context_desc->type_tucmd_mlhl	= cpu_to_le32(type_tucmd);
1036	context_desc->mss_l4len_idx	= cpu_to_le32(mss_l4len_idx);
1037
1038	/* We assume there is always a valid Tx time available. Invalid times
1039	 * should have been handled by the upper layers.
1040	 */
1041	if (tx_ring->launchtime_enable) {
1042		struct igc_adapter *adapter = netdev_priv(tx_ring->netdev);
1043		ktime_t txtime = first->skb->tstamp;
1044
1045		skb_txtime_consumed(first->skb);
1046		context_desc->launch_time = igc_tx_launchtime(adapter,
1047							      txtime);
1048	} else {
1049		context_desc->launch_time = 0;
1050	}
1051}
1052
1053static void igc_tx_csum(struct igc_ring *tx_ring, struct igc_tx_buffer *first)
1054{
1055	struct sk_buff *skb = first->skb;
1056	u32 vlan_macip_lens = 0;
1057	u32 type_tucmd = 0;
1058
1059	if (skb->ip_summed != CHECKSUM_PARTIAL) {
1060csum_failed:
1061		if (!(first->tx_flags & IGC_TX_FLAGS_VLAN) &&
1062		    !tx_ring->launchtime_enable)
1063			return;
1064		goto no_csum;
1065	}
1066
1067	switch (skb->csum_offset) {
1068	case offsetof(struct tcphdr, check):
1069		type_tucmd = IGC_ADVTXD_TUCMD_L4T_TCP;
1070		fallthrough;
1071	case offsetof(struct udphdr, check):
1072		break;
1073	case offsetof(struct sctphdr, checksum):
1074		/* validate that this is actually an SCTP request */
1075		if (skb_csum_is_sctp(skb)) {
1076			type_tucmd = IGC_ADVTXD_TUCMD_L4T_SCTP;
1077			break;
1078		}
1079		fallthrough;
1080	default:
1081		skb_checksum_help(skb);
1082		goto csum_failed;
1083	}
1084
1085	/* update TX checksum flag */
1086	first->tx_flags |= IGC_TX_FLAGS_CSUM;
1087	vlan_macip_lens = skb_checksum_start_offset(skb) -
1088			  skb_network_offset(skb);
1089no_csum:
1090	vlan_macip_lens |= skb_network_offset(skb) << IGC_ADVTXD_MACLEN_SHIFT;
1091	vlan_macip_lens |= first->tx_flags & IGC_TX_FLAGS_VLAN_MASK;
1092
1093	igc_tx_ctxtdesc(tx_ring, first, vlan_macip_lens, type_tucmd, 0);
1094}
1095
1096static int __igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size)
1097{
1098	struct net_device *netdev = tx_ring->netdev;
1099
1100	netif_stop_subqueue(netdev, tx_ring->queue_index);
1101
1102	/* memory barriier comment */
1103	smp_mb();
1104
1105	/* We need to check again in a case another CPU has just
1106	 * made room available.
1107	 */
1108	if (igc_desc_unused(tx_ring) < size)
1109		return -EBUSY;
1110
1111	/* A reprieve! */
1112	netif_wake_subqueue(netdev, tx_ring->queue_index);
1113
1114	u64_stats_update_begin(&tx_ring->tx_syncp2);
1115	tx_ring->tx_stats.restart_queue2++;
1116	u64_stats_update_end(&tx_ring->tx_syncp2);
1117
1118	return 0;
1119}
1120
1121static inline int igc_maybe_stop_tx(struct igc_ring *tx_ring, const u16 size)
1122{
1123	if (igc_desc_unused(tx_ring) >= size)
1124		return 0;
1125	return __igc_maybe_stop_tx(tx_ring, size);
1126}
1127
1128#define IGC_SET_FLAG(_input, _flag, _result) \
1129	(((_flag) <= (_result)) ?				\
1130	 ((u32)((_input) & (_flag)) * ((_result) / (_flag))) :	\
1131	 ((u32)((_input) & (_flag)) / ((_flag) / (_result))))
1132
1133static u32 igc_tx_cmd_type(struct sk_buff *skb, u32 tx_flags)
1134{
1135	/* set type for advanced descriptor with frame checksum insertion */
1136	u32 cmd_type = IGC_ADVTXD_DTYP_DATA |
1137		       IGC_ADVTXD_DCMD_DEXT |
1138		       IGC_ADVTXD_DCMD_IFCS;
1139
1140	/* set HW vlan bit if vlan is present */
1141	cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_VLAN,
1142				 IGC_ADVTXD_DCMD_VLE);
1143
1144	/* set segmentation bits for TSO */
1145	cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSO,
1146				 (IGC_ADVTXD_DCMD_TSE));
1147
1148	/* set timestamp bit if present */
1149	cmd_type |= IGC_SET_FLAG(tx_flags, IGC_TX_FLAGS_TSTAMP,
1150				 (IGC_ADVTXD_MAC_TSTAMP));
1151
1152	/* insert frame checksum */
1153	cmd_type ^= IGC_SET_FLAG(skb->no_fcs, 1, IGC_ADVTXD_DCMD_IFCS);
1154
1155	return cmd_type;
1156}
1157
1158static void igc_tx_olinfo_status(struct igc_ring *tx_ring,
1159				 union igc_adv_tx_desc *tx_desc,
1160				 u32 tx_flags, unsigned int paylen)
1161{
1162	u32 olinfo_status = paylen << IGC_ADVTXD_PAYLEN_SHIFT;
1163
1164	/* insert L4 checksum */
1165	olinfo_status |= (tx_flags & IGC_TX_FLAGS_CSUM) *
1166			  ((IGC_TXD_POPTS_TXSM << 8) /
1167			  IGC_TX_FLAGS_CSUM);
1168
1169	/* insert IPv4 checksum */
1170	olinfo_status |= (tx_flags & IGC_TX_FLAGS_IPV4) *
1171			  (((IGC_TXD_POPTS_IXSM << 8)) /
1172			  IGC_TX_FLAGS_IPV4);
1173
1174	tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
1175}
1176
1177static int igc_tx_map(struct igc_ring *tx_ring,
1178		      struct igc_tx_buffer *first,
1179		      const u8 hdr_len)
1180{
1181	struct sk_buff *skb = first->skb;
1182	struct igc_tx_buffer *tx_buffer;
1183	union igc_adv_tx_desc *tx_desc;
1184	u32 tx_flags = first->tx_flags;
1185	skb_frag_t *frag;
1186	u16 i = tx_ring->next_to_use;
1187	unsigned int data_len, size;
1188	dma_addr_t dma;
1189	u32 cmd_type;
1190
1191	cmd_type = igc_tx_cmd_type(skb, tx_flags);
1192	tx_desc = IGC_TX_DESC(tx_ring, i);
1193
1194	igc_tx_olinfo_status(tx_ring, tx_desc, tx_flags, skb->len - hdr_len);
1195
1196	size = skb_headlen(skb);
1197	data_len = skb->data_len;
1198
1199	dma = dma_map_single(tx_ring->dev, skb->data, size, DMA_TO_DEVICE);
1200
1201	tx_buffer = first;
1202
1203	for (frag = &skb_shinfo(skb)->frags[0];; frag++) {
1204		if (dma_mapping_error(tx_ring->dev, dma))
1205			goto dma_error;
1206
1207		/* record length, and DMA address */
1208		dma_unmap_len_set(tx_buffer, len, size);
1209		dma_unmap_addr_set(tx_buffer, dma, dma);
1210
1211		tx_desc->read.buffer_addr = cpu_to_le64(dma);
1212
1213		while (unlikely(size > IGC_MAX_DATA_PER_TXD)) {
1214			tx_desc->read.cmd_type_len =
1215				cpu_to_le32(cmd_type ^ IGC_MAX_DATA_PER_TXD);
1216
1217			i++;
1218			tx_desc++;
1219			if (i == tx_ring->count) {
1220				tx_desc = IGC_TX_DESC(tx_ring, 0);
1221				i = 0;
1222			}
1223			tx_desc->read.olinfo_status = 0;
1224
1225			dma += IGC_MAX_DATA_PER_TXD;
1226			size -= IGC_MAX_DATA_PER_TXD;
1227
1228			tx_desc->read.buffer_addr = cpu_to_le64(dma);
1229		}
1230
1231		if (likely(!data_len))
1232			break;
1233
1234		tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type ^ size);
1235
1236		i++;
1237		tx_desc++;
1238		if (i == tx_ring->count) {
1239			tx_desc = IGC_TX_DESC(tx_ring, 0);
1240			i = 0;
1241		}
1242		tx_desc->read.olinfo_status = 0;
1243
1244		size = skb_frag_size(frag);
1245		data_len -= size;
1246
1247		dma = skb_frag_dma_map(tx_ring->dev, frag, 0,
1248				       size, DMA_TO_DEVICE);
1249
1250		tx_buffer = &tx_ring->tx_buffer_info[i];
1251	}
1252
1253	/* write last descriptor with RS and EOP bits */
1254	cmd_type |= size | IGC_TXD_DCMD;
1255	tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
1256
1257	netdev_tx_sent_queue(txring_txq(tx_ring), first->bytecount);
1258
1259	/* set the timestamp */
1260	first->time_stamp = jiffies;
1261
1262	skb_tx_timestamp(skb);
1263
1264	/* Force memory writes to complete before letting h/w know there
1265	 * are new descriptors to fetch.  (Only applicable for weak-ordered
1266	 * memory model archs, such as IA-64).
1267	 *
1268	 * We also need this memory barrier to make certain all of the
1269	 * status bits have been updated before next_to_watch is written.
1270	 */
1271	wmb();
1272
1273	/* set next_to_watch value indicating a packet is present */
1274	first->next_to_watch = tx_desc;
1275
1276	i++;
1277	if (i == tx_ring->count)
1278		i = 0;
1279
1280	tx_ring->next_to_use = i;
1281
1282	/* Make sure there is space in the ring for the next send. */
1283	igc_maybe_stop_tx(tx_ring, DESC_NEEDED);
1284
1285	if (netif_xmit_stopped(txring_txq(tx_ring)) || !netdev_xmit_more()) {
1286		writel(i, tx_ring->tail);
1287	}
1288
1289	return 0;
1290dma_error:
1291	netdev_err(tx_ring->netdev, "TX DMA map failed\n");
1292	tx_buffer = &tx_ring->tx_buffer_info[i];
1293
1294	/* clear dma mappings for failed tx_buffer_info map */
1295	while (tx_buffer != first) {
1296		if (dma_unmap_len(tx_buffer, len))
1297			igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
1298
1299		if (i-- == 0)
1300			i += tx_ring->count;
1301		tx_buffer = &tx_ring->tx_buffer_info[i];
1302	}
1303
1304	if (dma_unmap_len(tx_buffer, len))
1305		igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
1306
1307	dev_kfree_skb_any(tx_buffer->skb);
1308	tx_buffer->skb = NULL;
1309
1310	tx_ring->next_to_use = i;
1311
1312	return -1;
1313}
1314
1315static int igc_tso(struct igc_ring *tx_ring,
1316		   struct igc_tx_buffer *first,
1317		   u8 *hdr_len)
1318{
1319	u32 vlan_macip_lens, type_tucmd, mss_l4len_idx;
1320	struct sk_buff *skb = first->skb;
1321	union {
1322		struct iphdr *v4;
1323		struct ipv6hdr *v6;
1324		unsigned char *hdr;
1325	} ip;
1326	union {
1327		struct tcphdr *tcp;
1328		struct udphdr *udp;
1329		unsigned char *hdr;
1330	} l4;
1331	u32 paylen, l4_offset;
1332	int err;
1333
1334	if (skb->ip_summed != CHECKSUM_PARTIAL)
1335		return 0;
1336
1337	if (!skb_is_gso(skb))
1338		return 0;
1339
1340	err = skb_cow_head(skb, 0);
1341	if (err < 0)
1342		return err;
1343
1344	ip.hdr = skb_network_header(skb);
1345	l4.hdr = skb_checksum_start(skb);
1346
1347	/* ADV DTYP TUCMD MKRLOC/ISCSIHEDLEN */
1348	type_tucmd = IGC_ADVTXD_TUCMD_L4T_TCP;
1349
1350	/* initialize outer IP header fields */
1351	if (ip.v4->version == 4) {
1352		unsigned char *csum_start = skb_checksum_start(skb);
1353		unsigned char *trans_start = ip.hdr + (ip.v4->ihl * 4);
1354
1355		/* IP header will have to cancel out any data that
1356		 * is not a part of the outer IP header
1357		 */
1358		ip.v4->check = csum_fold(csum_partial(trans_start,
1359						      csum_start - trans_start,
1360						      0));
1361		type_tucmd |= IGC_ADVTXD_TUCMD_IPV4;
1362
1363		ip.v4->tot_len = 0;
1364		first->tx_flags |= IGC_TX_FLAGS_TSO |
1365				   IGC_TX_FLAGS_CSUM |
1366				   IGC_TX_FLAGS_IPV4;
1367	} else {
1368		ip.v6->payload_len = 0;
1369		first->tx_flags |= IGC_TX_FLAGS_TSO |
1370				   IGC_TX_FLAGS_CSUM;
1371	}
1372
1373	/* determine offset of inner transport header */
1374	l4_offset = l4.hdr - skb->data;
1375
1376	/* remove payload length from inner checksum */
1377	paylen = skb->len - l4_offset;
1378	if (type_tucmd & IGC_ADVTXD_TUCMD_L4T_TCP) {
1379		/* compute length of segmentation header */
1380		*hdr_len = (l4.tcp->doff * 4) + l4_offset;
1381		csum_replace_by_diff(&l4.tcp->check,
1382				     (__force __wsum)htonl(paylen));
1383	} else {
1384		/* compute length of segmentation header */
1385		*hdr_len = sizeof(*l4.udp) + l4_offset;
1386		csum_replace_by_diff(&l4.udp->check,
1387				     (__force __wsum)htonl(paylen));
1388	}
1389
1390	/* update gso size and bytecount with header size */
1391	first->gso_segs = skb_shinfo(skb)->gso_segs;
1392	first->bytecount += (first->gso_segs - 1) * *hdr_len;
1393
1394	/* MSS L4LEN IDX */
1395	mss_l4len_idx = (*hdr_len - l4_offset) << IGC_ADVTXD_L4LEN_SHIFT;
1396	mss_l4len_idx |= skb_shinfo(skb)->gso_size << IGC_ADVTXD_MSS_SHIFT;
1397
1398	/* VLAN MACLEN IPLEN */
1399	vlan_macip_lens = l4.hdr - ip.hdr;
1400	vlan_macip_lens |= (ip.hdr - skb->data) << IGC_ADVTXD_MACLEN_SHIFT;
1401	vlan_macip_lens |= first->tx_flags & IGC_TX_FLAGS_VLAN_MASK;
1402
1403	igc_tx_ctxtdesc(tx_ring, first, vlan_macip_lens,
1404			type_tucmd, mss_l4len_idx);
1405
1406	return 1;
1407}
1408
1409static netdev_tx_t igc_xmit_frame_ring(struct sk_buff *skb,
1410				       struct igc_ring *tx_ring)
1411{
1412	u16 count = TXD_USE_COUNT(skb_headlen(skb));
1413	__be16 protocol = vlan_get_protocol(skb);
1414	struct igc_tx_buffer *first;
1415	u32 tx_flags = 0;
1416	unsigned short f;
1417	u8 hdr_len = 0;
1418	int tso = 0;
1419
1420	/* need: 1 descriptor per page * PAGE_SIZE/IGC_MAX_DATA_PER_TXD,
1421	 *	+ 1 desc for skb_headlen/IGC_MAX_DATA_PER_TXD,
1422	 *	+ 2 desc gap to keep tail from touching head,
1423	 *	+ 1 desc for context descriptor,
1424	 * otherwise try next time
1425	 */
1426	for (f = 0; f < skb_shinfo(skb)->nr_frags; f++)
1427		count += TXD_USE_COUNT(skb_frag_size(
1428						&skb_shinfo(skb)->frags[f]));
1429
1430	if (igc_maybe_stop_tx(tx_ring, count + 3)) {
1431		/* this is a hard error */
1432		return NETDEV_TX_BUSY;
1433	}
1434
1435	/* record the location of the first descriptor for this packet */
1436	first = &tx_ring->tx_buffer_info[tx_ring->next_to_use];
1437	first->type = IGC_TX_BUFFER_TYPE_SKB;
1438	first->skb = skb;
1439	first->bytecount = skb->len;
1440	first->gso_segs = 1;
1441
1442	if (unlikely(skb_shinfo(skb)->tx_flags & SKBTX_HW_TSTAMP)) {
1443		struct igc_adapter *adapter = netdev_priv(tx_ring->netdev);
1444
1445		/* FIXME: add support for retrieving timestamps from
1446		 * the other timer registers before skipping the
1447		 * timestamping request.
1448		 */
1449		if (adapter->tstamp_config.tx_type == HWTSTAMP_TX_ON &&
1450		    !test_and_set_bit_lock(__IGC_PTP_TX_IN_PROGRESS,
1451					   &adapter->state)) {
1452			skb_shinfo(skb)->tx_flags |= SKBTX_IN_PROGRESS;
1453			tx_flags |= IGC_TX_FLAGS_TSTAMP;
1454
1455			adapter->ptp_tx_skb = skb_get(skb);
1456			adapter->ptp_tx_start = jiffies;
1457		} else {
1458			adapter->tx_hwtstamp_skipped++;
1459		}
1460	}
1461
1462	if (skb_vlan_tag_present(skb)) {
1463		tx_flags |= IGC_TX_FLAGS_VLAN;
1464		tx_flags |= (skb_vlan_tag_get(skb) << IGC_TX_FLAGS_VLAN_SHIFT);
1465	}
1466
1467	/* record initial flags and protocol */
1468	first->tx_flags = tx_flags;
1469	first->protocol = protocol;
1470
1471	tso = igc_tso(tx_ring, first, &hdr_len);
1472	if (tso < 0)
1473		goto out_drop;
1474	else if (!tso)
1475		igc_tx_csum(tx_ring, first);
1476
1477	igc_tx_map(tx_ring, first, hdr_len);
1478
1479	return NETDEV_TX_OK;
1480
1481out_drop:
1482	dev_kfree_skb_any(first->skb);
1483	first->skb = NULL;
1484
1485	return NETDEV_TX_OK;
1486}
1487
1488static inline struct igc_ring *igc_tx_queue_mapping(struct igc_adapter *adapter,
1489						    struct sk_buff *skb)
1490{
1491	unsigned int r_idx = skb->queue_mapping;
1492
1493	if (r_idx >= adapter->num_tx_queues)
1494		r_idx = r_idx % adapter->num_tx_queues;
1495
1496	return adapter->tx_ring[r_idx];
1497}
1498
1499static netdev_tx_t igc_xmit_frame(struct sk_buff *skb,
1500				  struct net_device *netdev)
1501{
1502	struct igc_adapter *adapter = netdev_priv(netdev);
1503
1504	/* The minimum packet size with TCTL.PSP set is 17 so pad the skb
1505	 * in order to meet this minimum size requirement.
1506	 */
1507	if (skb->len < 17) {
1508		if (skb_padto(skb, 17))
1509			return NETDEV_TX_OK;
1510		skb->len = 17;
1511	}
1512
1513	return igc_xmit_frame_ring(skb, igc_tx_queue_mapping(adapter, skb));
1514}
1515
1516static void igc_rx_checksum(struct igc_ring *ring,
1517			    union igc_adv_rx_desc *rx_desc,
1518			    struct sk_buff *skb)
1519{
1520	skb_checksum_none_assert(skb);
1521
1522	/* Ignore Checksum bit is set */
1523	if (igc_test_staterr(rx_desc, IGC_RXD_STAT_IXSM))
1524		return;
1525
1526	/* Rx checksum disabled via ethtool */
1527	if (!(ring->netdev->features & NETIF_F_RXCSUM))
1528		return;
1529
1530	/* TCP/UDP checksum error bit is set */
1531	if (igc_test_staterr(rx_desc,
1532			     IGC_RXDEXT_STATERR_L4E |
1533			     IGC_RXDEXT_STATERR_IPE)) {
1534		/* work around errata with sctp packets where the TCPE aka
1535		 * L4E bit is set incorrectly on 64 byte (60 byte w/o crc)
1536		 * packets (aka let the stack check the crc32c)
1537		 */
1538		if (!(skb->len == 60 &&
1539		      test_bit(IGC_RING_FLAG_RX_SCTP_CSUM, &ring->flags))) {
1540			u64_stats_update_begin(&ring->rx_syncp);
1541			ring->rx_stats.csum_err++;
1542			u64_stats_update_end(&ring->rx_syncp);
1543		}
1544		/* let the stack verify checksum errors */
1545		return;
1546	}
1547	/* It must be a TCP or UDP packet with a valid checksum */
1548	if (igc_test_staterr(rx_desc, IGC_RXD_STAT_TCPCS |
1549				      IGC_RXD_STAT_UDPCS))
1550		skb->ip_summed = CHECKSUM_UNNECESSARY;
1551
1552	netdev_dbg(ring->netdev, "cksum success: bits %08X\n",
1553		   le32_to_cpu(rx_desc->wb.upper.status_error));
1554}
1555
1556static inline void igc_rx_hash(struct igc_ring *ring,
1557			       union igc_adv_rx_desc *rx_desc,
1558			       struct sk_buff *skb)
1559{
1560	if (ring->netdev->features & NETIF_F_RXHASH)
1561		skb_set_hash(skb,
1562			     le32_to_cpu(rx_desc->wb.lower.hi_dword.rss),
1563			     PKT_HASH_TYPE_L3);
1564}
1565
1566static void igc_rx_vlan(struct igc_ring *rx_ring,
1567			union igc_adv_rx_desc *rx_desc,
1568			struct sk_buff *skb)
1569{
1570	struct net_device *dev = rx_ring->netdev;
1571	u16 vid;
1572
1573	if ((dev->features & NETIF_F_HW_VLAN_CTAG_RX) &&
1574	    igc_test_staterr(rx_desc, IGC_RXD_STAT_VP)) {
1575		if (igc_test_staterr(rx_desc, IGC_RXDEXT_STATERR_LB) &&
1576		    test_bit(IGC_RING_FLAG_RX_LB_VLAN_BSWAP, &rx_ring->flags))
1577			vid = be16_to_cpu((__force __be16)rx_desc->wb.upper.vlan);
1578		else
1579			vid = le16_to_cpu(rx_desc->wb.upper.vlan);
1580
1581		__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
1582	}
1583}
1584
1585/**
1586 * igc_process_skb_fields - Populate skb header fields from Rx descriptor
1587 * @rx_ring: rx descriptor ring packet is being transacted on
1588 * @rx_desc: pointer to the EOP Rx descriptor
1589 * @skb: pointer to current skb being populated
1590 *
1591 * This function checks the ring, descriptor, and packet information in order
1592 * to populate the hash, checksum, VLAN, protocol, and other fields within the
1593 * skb.
1594 */
1595static void igc_process_skb_fields(struct igc_ring *rx_ring,
1596				   union igc_adv_rx_desc *rx_desc,
1597				   struct sk_buff *skb)
1598{
1599	igc_rx_hash(rx_ring, rx_desc, skb);
1600
1601	igc_rx_checksum(rx_ring, rx_desc, skb);
1602
1603	igc_rx_vlan(rx_ring, rx_desc, skb);
1604
1605	skb_record_rx_queue(skb, rx_ring->queue_index);
1606
1607	skb->protocol = eth_type_trans(skb, rx_ring->netdev);
1608}
1609
1610static void igc_vlan_mode(struct net_device *netdev, netdev_features_t features)
1611{
1612	bool enable = !!(features & NETIF_F_HW_VLAN_CTAG_RX);
1613	struct igc_adapter *adapter = netdev_priv(netdev);
1614	struct igc_hw *hw = &adapter->hw;
1615	u32 ctrl;
1616
1617	ctrl = rd32(IGC_CTRL);
1618
1619	if (enable) {
1620		/* enable VLAN tag insert/strip */
1621		ctrl |= IGC_CTRL_VME;
1622	} else {
1623		/* disable VLAN tag insert/strip */
1624		ctrl &= ~IGC_CTRL_VME;
1625	}
1626	wr32(IGC_CTRL, ctrl);
1627}
1628
1629static void igc_restore_vlan(struct igc_adapter *adapter)
1630{
1631	igc_vlan_mode(adapter->netdev, adapter->netdev->features);
1632}
1633
1634static struct igc_rx_buffer *igc_get_rx_buffer(struct igc_ring *rx_ring,
1635					       const unsigned int size,
1636					       int *rx_buffer_pgcnt)
1637{
1638	struct igc_rx_buffer *rx_buffer;
1639
1640	rx_buffer = &rx_ring->rx_buffer_info[rx_ring->next_to_clean];
1641	*rx_buffer_pgcnt =
1642#if (PAGE_SIZE < 8192)
1643		page_count(rx_buffer->page);
1644#else
1645		0;
1646#endif
1647	prefetchw(rx_buffer->page);
1648
1649	/* we are reusing so sync this buffer for CPU use */
1650	dma_sync_single_range_for_cpu(rx_ring->dev,
1651				      rx_buffer->dma,
1652				      rx_buffer->page_offset,
1653				      size,
1654				      DMA_FROM_DEVICE);
1655
1656	rx_buffer->pagecnt_bias--;
1657
1658	return rx_buffer;
1659}
1660
1661static void igc_rx_buffer_flip(struct igc_rx_buffer *buffer,
1662			       unsigned int truesize)
1663{
1664#if (PAGE_SIZE < 8192)
1665	buffer->page_offset ^= truesize;
1666#else
1667	buffer->page_offset += truesize;
1668#endif
1669}
1670
1671static unsigned int igc_get_rx_frame_truesize(struct igc_ring *ring,
1672					      unsigned int size)
1673{
1674	unsigned int truesize;
1675
1676#if (PAGE_SIZE < 8192)
1677	truesize = igc_rx_pg_size(ring) / 2;
1678#else
1679	truesize = ring_uses_build_skb(ring) ?
1680		   SKB_DATA_ALIGN(sizeof(struct skb_shared_info)) +
1681		   SKB_DATA_ALIGN(IGC_SKB_PAD + size) :
1682		   SKB_DATA_ALIGN(size);
1683#endif
1684	return truesize;
1685}
1686
1687/**
1688 * igc_add_rx_frag - Add contents of Rx buffer to sk_buff
1689 * @rx_ring: rx descriptor ring to transact packets on
1690 * @rx_buffer: buffer containing page to add
1691 * @skb: sk_buff to place the data into
1692 * @size: size of buffer to be added
1693 *
1694 * This function will add the data contained in rx_buffer->page to the skb.
1695 */
1696static void igc_add_rx_frag(struct igc_ring *rx_ring,
1697			    struct igc_rx_buffer *rx_buffer,
1698			    struct sk_buff *skb,
1699			    unsigned int size)
1700{
1701	unsigned int truesize;
1702
1703#if (PAGE_SIZE < 8192)
1704	truesize = igc_rx_pg_size(rx_ring) / 2;
1705#else
1706	truesize = ring_uses_build_skb(rx_ring) ?
1707		   SKB_DATA_ALIGN(IGC_SKB_PAD + size) :
1708		   SKB_DATA_ALIGN(size);
1709#endif
1710	skb_add_rx_frag(skb, skb_shinfo(skb)->nr_frags, rx_buffer->page,
1711			rx_buffer->page_offset, size, truesize);
1712
1713	igc_rx_buffer_flip(rx_buffer, truesize);
1714}
1715
1716static struct sk_buff *igc_build_skb(struct igc_ring *rx_ring,
1717				     struct igc_rx_buffer *rx_buffer,
1718				     union igc_adv_rx_desc *rx_desc,
1719				     unsigned int size)
1720{
1721	void *va = page_address(rx_buffer->page) + rx_buffer->page_offset;
1722	unsigned int truesize = igc_get_rx_frame_truesize(rx_ring, size);
1723	struct sk_buff *skb;
1724
1725	/* prefetch first cache line of first page */
1726	net_prefetch(va);
1727
1728	/* build an skb around the page buffer */
1729	skb = build_skb(va - IGC_SKB_PAD, truesize);
1730	if (unlikely(!skb))
1731		return NULL;
1732
1733	/* update pointers within the skb to store the data */
1734	skb_reserve(skb, IGC_SKB_PAD);
1735	__skb_put(skb, size);
1736
1737	igc_rx_buffer_flip(rx_buffer, truesize);
1738	return skb;
1739}
1740
1741static struct sk_buff *igc_construct_skb(struct igc_ring *rx_ring,
1742					 struct igc_rx_buffer *rx_buffer,
1743					 struct xdp_buff *xdp,
1744					 ktime_t timestamp)
1745{
1746	unsigned int size = xdp->data_end - xdp->data;
1747	unsigned int truesize = igc_get_rx_frame_truesize(rx_ring, size);
1748	void *va = xdp->data;
1749	unsigned int headlen;
1750	struct sk_buff *skb;
1751
1752	/* prefetch first cache line of first page */
1753	net_prefetch(va);
1754
1755	/* allocate a skb to store the frags */
1756	skb = napi_alloc_skb(&rx_ring->q_vector->napi, IGC_RX_HDR_LEN);
1757	if (unlikely(!skb))
1758		return NULL;
1759
1760	if (timestamp)
1761		skb_hwtstamps(skb)->hwtstamp = timestamp;
1762
1763	/* Determine available headroom for copy */
1764	headlen = size;
1765	if (headlen > IGC_RX_HDR_LEN)
1766		headlen = eth_get_headlen(skb->dev, va, IGC_RX_HDR_LEN);
1767
1768	/* align pull length to size of long to optimize memcpy performance */
1769	memcpy(__skb_put(skb, headlen), va, ALIGN(headlen, sizeof(long)));
1770
1771	/* update all of the pointers */
1772	size -= headlen;
1773	if (size) {
1774		skb_add_rx_frag(skb, 0, rx_buffer->page,
1775				(va + headlen) - page_address(rx_buffer->page),
1776				size, truesize);
1777		igc_rx_buffer_flip(rx_buffer, truesize);
1778	} else {
1779		rx_buffer->pagecnt_bias++;
1780	}
1781
1782	return skb;
1783}
1784
1785/**
1786 * igc_reuse_rx_page - page flip buffer and store it back on the ring
1787 * @rx_ring: rx descriptor ring to store buffers on
1788 * @old_buff: donor buffer to have page reused
1789 *
1790 * Synchronizes page for reuse by the adapter
1791 */
1792static void igc_reuse_rx_page(struct igc_ring *rx_ring,
1793			      struct igc_rx_buffer *old_buff)
1794{
1795	u16 nta = rx_ring->next_to_alloc;
1796	struct igc_rx_buffer *new_buff;
1797
1798	new_buff = &rx_ring->rx_buffer_info[nta];
1799
1800	/* update, and store next to alloc */
1801	nta++;
1802	rx_ring->next_to_alloc = (nta < rx_ring->count) ? nta : 0;
1803
1804	/* Transfer page from old buffer to new buffer.
1805	 * Move each member individually to avoid possible store
1806	 * forwarding stalls.
1807	 */
1808	new_buff->dma		= old_buff->dma;
1809	new_buff->page		= old_buff->page;
1810	new_buff->page_offset	= old_buff->page_offset;
1811	new_buff->pagecnt_bias	= old_buff->pagecnt_bias;
1812}
1813
1814static bool igc_can_reuse_rx_page(struct igc_rx_buffer *rx_buffer,
1815				  int rx_buffer_pgcnt)
1816{
1817	unsigned int pagecnt_bias = rx_buffer->pagecnt_bias;
1818	struct page *page = rx_buffer->page;
1819
1820	/* avoid re-using remote and pfmemalloc pages */
1821	if (!dev_page_is_reusable(page))
1822		return false;
1823
1824#if (PAGE_SIZE < 8192)
1825	/* if we are only owner of page we can reuse it */
1826	if (unlikely((rx_buffer_pgcnt - pagecnt_bias) > 1))
1827		return false;
1828#else
1829#define IGC_LAST_OFFSET \
1830	(SKB_WITH_OVERHEAD(PAGE_SIZE) - IGC_RXBUFFER_2048)
1831
1832	if (rx_buffer->page_offset > IGC_LAST_OFFSET)
1833		return false;
1834#endif
1835
1836	/* If we have drained the page fragment pool we need to update
1837	 * the pagecnt_bias and page count so that we fully restock the
1838	 * number of references the driver holds.
1839	 */
1840	if (unlikely(pagecnt_bias == 1)) {
1841		page_ref_add(page, USHRT_MAX - 1);
1842		rx_buffer->pagecnt_bias = USHRT_MAX;
1843	}
1844
1845	return true;
1846}
1847
1848/**
1849 * igc_is_non_eop - process handling of non-EOP buffers
1850 * @rx_ring: Rx ring being processed
1851 * @rx_desc: Rx descriptor for current buffer
1852 *
1853 * This function updates next to clean.  If the buffer is an EOP buffer
1854 * this function exits returning false, otherwise it will place the
1855 * sk_buff in the next buffer to be chained and return true indicating
1856 * that this is in fact a non-EOP buffer.
1857 */
1858static bool igc_is_non_eop(struct igc_ring *rx_ring,
1859			   union igc_adv_rx_desc *rx_desc)
1860{
1861	u32 ntc = rx_ring->next_to_clean + 1;
1862
1863	/* fetch, update, and store next to clean */
1864	ntc = (ntc < rx_ring->count) ? ntc : 0;
1865	rx_ring->next_to_clean = ntc;
1866
1867	prefetch(IGC_RX_DESC(rx_ring, ntc));
1868
1869	if (likely(igc_test_staterr(rx_desc, IGC_RXD_STAT_EOP)))
1870		return false;
1871
1872	return true;
1873}
1874
1875/**
1876 * igc_cleanup_headers - Correct corrupted or empty headers
1877 * @rx_ring: rx descriptor ring packet is being transacted on
1878 * @rx_desc: pointer to the EOP Rx descriptor
1879 * @skb: pointer to current skb being fixed
1880 *
1881 * Address the case where we are pulling data in on pages only
1882 * and as such no data is present in the skb header.
1883 *
1884 * In addition if skb is not at least 60 bytes we need to pad it so that
1885 * it is large enough to qualify as a valid Ethernet frame.
1886 *
1887 * Returns true if an error was encountered and skb was freed.
1888 */
1889static bool igc_cleanup_headers(struct igc_ring *rx_ring,
1890				union igc_adv_rx_desc *rx_desc,
1891				struct sk_buff *skb)
1892{
1893	/* XDP packets use error pointer so abort at this point */
1894	if (IS_ERR(skb))
1895		return true;
1896
1897	if (unlikely(igc_test_staterr(rx_desc, IGC_RXDEXT_STATERR_RXE))) {
1898		struct net_device *netdev = rx_ring->netdev;
1899
1900		if (!(netdev->features & NETIF_F_RXALL)) {
1901			dev_kfree_skb_any(skb);
1902			return true;
1903		}
1904	}
1905
1906	/* if eth_skb_pad returns an error the skb was freed */
1907	if (eth_skb_pad(skb))
1908		return true;
1909
1910	return false;
1911}
1912
1913static void igc_put_rx_buffer(struct igc_ring *rx_ring,
1914			      struct igc_rx_buffer *rx_buffer,
1915			      int rx_buffer_pgcnt)
1916{
1917	if (igc_can_reuse_rx_page(rx_buffer, rx_buffer_pgcnt)) {
1918		/* hand second half of page back to the ring */
1919		igc_reuse_rx_page(rx_ring, rx_buffer);
1920	} else {
1921		/* We are not reusing the buffer so unmap it and free
1922		 * any references we are holding to it
1923		 */
1924		dma_unmap_page_attrs(rx_ring->dev, rx_buffer->dma,
1925				     igc_rx_pg_size(rx_ring), DMA_FROM_DEVICE,
1926				     IGC_RX_DMA_ATTR);
1927		__page_frag_cache_drain(rx_buffer->page,
1928					rx_buffer->pagecnt_bias);
1929	}
1930
1931	/* clear contents of rx_buffer */
1932	rx_buffer->page = NULL;
1933}
1934
1935static inline unsigned int igc_rx_offset(struct igc_ring *rx_ring)
1936{
1937	struct igc_adapter *adapter = rx_ring->q_vector->adapter;
1938
1939	if (ring_uses_build_skb(rx_ring))
1940		return IGC_SKB_PAD;
1941	if (igc_xdp_is_enabled(adapter))
1942		return XDP_PACKET_HEADROOM;
1943
1944	return 0;
1945}
1946
1947static bool igc_alloc_mapped_page(struct igc_ring *rx_ring,
1948				  struct igc_rx_buffer *bi)
1949{
1950	struct page *page = bi->page;
1951	dma_addr_t dma;
1952
1953	/* since we are recycling buffers we should seldom need to alloc */
1954	if (likely(page))
1955		return true;
1956
1957	/* alloc new page for storage */
1958	page = dev_alloc_pages(igc_rx_pg_order(rx_ring));
1959	if (unlikely(!page)) {
1960		rx_ring->rx_stats.alloc_failed++;
1961		return false;
1962	}
1963
1964	/* map page for use */
1965	dma = dma_map_page_attrs(rx_ring->dev, page, 0,
1966				 igc_rx_pg_size(rx_ring),
1967				 DMA_FROM_DEVICE,
1968				 IGC_RX_DMA_ATTR);
1969
1970	/* if mapping failed free memory back to system since
1971	 * there isn't much point in holding memory we can't use
1972	 */
1973	if (dma_mapping_error(rx_ring->dev, dma)) {
1974		__free_page(page);
1975
1976		rx_ring->rx_stats.alloc_failed++;
1977		return false;
1978	}
1979
1980	bi->dma = dma;
1981	bi->page = page;
1982	bi->page_offset = igc_rx_offset(rx_ring);
1983	page_ref_add(page, USHRT_MAX - 1);
1984	bi->pagecnt_bias = USHRT_MAX;
1985
1986	return true;
1987}
1988
1989/**
1990 * igc_alloc_rx_buffers - Replace used receive buffers; packet split
1991 * @rx_ring: rx descriptor ring
1992 * @cleaned_count: number of buffers to clean
1993 */
1994static void igc_alloc_rx_buffers(struct igc_ring *rx_ring, u16 cleaned_count)
1995{
1996	union igc_adv_rx_desc *rx_desc;
1997	u16 i = rx_ring->next_to_use;
1998	struct igc_rx_buffer *bi;
1999	u16 bufsz;
2000
2001	/* nothing to do */
2002	if (!cleaned_count)
2003		return;
2004
2005	rx_desc = IGC_RX_DESC(rx_ring, i);
2006	bi = &rx_ring->rx_buffer_info[i];
2007	i -= rx_ring->count;
2008
2009	bufsz = igc_rx_bufsz(rx_ring);
2010
2011	do {
2012		if (!igc_alloc_mapped_page(rx_ring, bi))
2013			break;
2014
2015		/* sync the buffer for use by the device */
2016		dma_sync_single_range_for_device(rx_ring->dev, bi->dma,
2017						 bi->page_offset, bufsz,
2018						 DMA_FROM_DEVICE);
2019
2020		/* Refresh the desc even if buffer_addrs didn't change
2021		 * because each write-back erases this info.
2022		 */
2023		rx_desc->read.pkt_addr = cpu_to_le64(bi->dma + bi->page_offset);
2024
2025		rx_desc++;
2026		bi++;
2027		i++;
2028		if (unlikely(!i)) {
2029			rx_desc = IGC_RX_DESC(rx_ring, 0);
2030			bi = rx_ring->rx_buffer_info;
2031			i -= rx_ring->count;
2032		}
2033
2034		/* clear the length for the next_to_use descriptor */
2035		rx_desc->wb.upper.length = 0;
2036
2037		cleaned_count--;
2038	} while (cleaned_count);
2039
2040	i += rx_ring->count;
2041
2042	if (rx_ring->next_to_use != i) {
2043		/* record the next descriptor to use */
2044		rx_ring->next_to_use = i;
2045
2046		/* update next to alloc since we have filled the ring */
2047		rx_ring->next_to_alloc = i;
2048
2049		/* Force memory writes to complete before letting h/w
2050		 * know there are new descriptors to fetch.  (Only
2051		 * applicable for weak-ordered memory model archs,
2052		 * such as IA-64).
2053		 */
2054		wmb();
2055		writel(i, rx_ring->tail);
2056	}
2057}
2058
2059static bool igc_alloc_rx_buffers_zc(struct igc_ring *ring, u16 count)
2060{
2061	union igc_adv_rx_desc *desc;
2062	u16 i = ring->next_to_use;
2063	struct igc_rx_buffer *bi;
2064	dma_addr_t dma;
2065	bool ok = true;
2066
2067	if (!count)
2068		return ok;
2069
2070	desc = IGC_RX_DESC(ring, i);
2071	bi = &ring->rx_buffer_info[i];
2072	i -= ring->count;
2073
2074	do {
2075		bi->xdp = xsk_buff_alloc(ring->xsk_pool);
2076		if (!bi->xdp) {
2077			ok = false;
2078			break;
2079		}
2080
2081		dma = xsk_buff_xdp_get_dma(bi->xdp);
2082		desc->read.pkt_addr = cpu_to_le64(dma);
2083
2084		desc++;
2085		bi++;
2086		i++;
2087		if (unlikely(!i)) {
2088			desc = IGC_RX_DESC(ring, 0);
2089			bi = ring->rx_buffer_info;
2090			i -= ring->count;
2091		}
2092
2093		/* Clear the length for the next_to_use descriptor. */
2094		desc->wb.upper.length = 0;
2095
2096		count--;
2097	} while (count);
2098
2099	i += ring->count;
2100
2101	if (ring->next_to_use != i) {
2102		ring->next_to_use = i;
2103
2104		/* Force memory writes to complete before letting h/w
2105		 * know there are new descriptors to fetch.  (Only
2106		 * applicable for weak-ordered memory model archs,
2107		 * such as IA-64).
2108		 */
2109		wmb();
2110		writel(i, ring->tail);
2111	}
2112
2113	return ok;
2114}
2115
2116static int igc_xdp_init_tx_buffer(struct igc_tx_buffer *buffer,
2117				  struct xdp_frame *xdpf,
2118				  struct igc_ring *ring)
2119{
2120	dma_addr_t dma;
2121
2122	dma = dma_map_single(ring->dev, xdpf->data, xdpf->len, DMA_TO_DEVICE);
2123	if (dma_mapping_error(ring->dev, dma)) {
2124		netdev_err_once(ring->netdev, "Failed to map DMA for TX\n");
2125		return -ENOMEM;
2126	}
2127
2128	buffer->type = IGC_TX_BUFFER_TYPE_XDP;
2129	buffer->xdpf = xdpf;
2130	buffer->protocol = 0;
2131	buffer->bytecount = xdpf->len;
2132	buffer->gso_segs = 1;
2133	buffer->time_stamp = jiffies;
2134	dma_unmap_len_set(buffer, len, xdpf->len);
2135	dma_unmap_addr_set(buffer, dma, dma);
2136	return 0;
2137}
2138
2139/* This function requires __netif_tx_lock is held by the caller. */
2140static int igc_xdp_init_tx_descriptor(struct igc_ring *ring,
2141				      struct xdp_frame *xdpf)
2142{
2143	struct igc_tx_buffer *buffer;
2144	union igc_adv_tx_desc *desc;
2145	u32 cmd_type, olinfo_status;
2146	int err;
2147
2148	if (!igc_desc_unused(ring))
2149		return -EBUSY;
2150
2151	buffer = &ring->tx_buffer_info[ring->next_to_use];
2152	err = igc_xdp_init_tx_buffer(buffer, xdpf, ring);
2153	if (err)
2154		return err;
2155
2156	cmd_type = IGC_ADVTXD_DTYP_DATA | IGC_ADVTXD_DCMD_DEXT |
2157		   IGC_ADVTXD_DCMD_IFCS | IGC_TXD_DCMD |
2158		   buffer->bytecount;
2159	olinfo_status = buffer->bytecount << IGC_ADVTXD_PAYLEN_SHIFT;
2160
2161	desc = IGC_TX_DESC(ring, ring->next_to_use);
2162	desc->read.cmd_type_len = cpu_to_le32(cmd_type);
2163	desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2164	desc->read.buffer_addr = cpu_to_le64(dma_unmap_addr(buffer, dma));
2165
2166	netdev_tx_sent_queue(txring_txq(ring), buffer->bytecount);
2167
2168	buffer->next_to_watch = desc;
2169
2170	ring->next_to_use++;
2171	if (ring->next_to_use == ring->count)
2172		ring->next_to_use = 0;
2173
2174	return 0;
2175}
2176
2177static struct igc_ring *igc_xdp_get_tx_ring(struct igc_adapter *adapter,
2178					    int cpu)
2179{
2180	int index = cpu;
2181
2182	if (unlikely(index < 0))
2183		index = 0;
2184
2185	while (index >= adapter->num_tx_queues)
2186		index -= adapter->num_tx_queues;
2187
2188	return adapter->tx_ring[index];
2189}
2190
2191static int igc_xdp_xmit_back(struct igc_adapter *adapter, struct xdp_buff *xdp)
2192{
2193	struct xdp_frame *xdpf = xdp_convert_buff_to_frame(xdp);
2194	int cpu = smp_processor_id();
2195	struct netdev_queue *nq;
2196	struct igc_ring *ring;
2197	int res;
2198
2199	if (unlikely(!xdpf))
2200		return -EFAULT;
2201
2202	ring = igc_xdp_get_tx_ring(adapter, cpu);
2203	nq = txring_txq(ring);
2204
2205	__netif_tx_lock(nq, cpu);
2206	res = igc_xdp_init_tx_descriptor(ring, xdpf);
2207	__netif_tx_unlock(nq);
2208	return res;
2209}
2210
2211/* This function assumes rcu_read_lock() is held by the caller. */
2212static int __igc_xdp_run_prog(struct igc_adapter *adapter,
2213			      struct bpf_prog *prog,
2214			      struct xdp_buff *xdp)
2215{
2216	u32 act = bpf_prog_run_xdp(prog, xdp);
2217
2218	switch (act) {
2219	case XDP_PASS:
2220		return IGC_XDP_PASS;
2221	case XDP_TX:
2222		if (igc_xdp_xmit_back(adapter, xdp) < 0)
2223			goto out_failure;
2224		return IGC_XDP_TX;
2225	case XDP_REDIRECT:
2226		if (xdp_do_redirect(adapter->netdev, xdp, prog) < 0)
2227			goto out_failure;
2228		return IGC_XDP_REDIRECT;
2229		break;
2230	default:
2231		bpf_warn_invalid_xdp_action(act);
2232		fallthrough;
2233	case XDP_ABORTED:
2234out_failure:
2235		trace_xdp_exception(adapter->netdev, prog, act);
2236		fallthrough;
2237	case XDP_DROP:
2238		return IGC_XDP_CONSUMED;
2239	}
2240}
2241
2242static struct sk_buff *igc_xdp_run_prog(struct igc_adapter *adapter,
2243					struct xdp_buff *xdp)
2244{
2245	struct bpf_prog *prog;
2246	int res;
2247
2248	prog = READ_ONCE(adapter->xdp_prog);
2249	if (!prog) {
2250		res = IGC_XDP_PASS;
2251		goto out;
2252	}
2253
2254	res = __igc_xdp_run_prog(adapter, prog, xdp);
2255
2256out:
2257	return ERR_PTR(-res);
2258}
2259
2260/* This function assumes __netif_tx_lock is held by the caller. */
2261static void igc_flush_tx_descriptors(struct igc_ring *ring)
2262{
2263	/* Once tail pointer is updated, hardware can fetch the descriptors
2264	 * any time so we issue a write membar here to ensure all memory
2265	 * writes are complete before the tail pointer is updated.
2266	 */
2267	wmb();
2268	writel(ring->next_to_use, ring->tail);
2269}
2270
2271static void igc_finalize_xdp(struct igc_adapter *adapter, int status)
2272{
2273	int cpu = smp_processor_id();
2274	struct netdev_queue *nq;
2275	struct igc_ring *ring;
2276
2277	if (status & IGC_XDP_TX) {
2278		ring = igc_xdp_get_tx_ring(adapter, cpu);
2279		nq = txring_txq(ring);
2280
2281		__netif_tx_lock(nq, cpu);
2282		igc_flush_tx_descriptors(ring);
2283		__netif_tx_unlock(nq);
2284	}
2285
2286	if (status & IGC_XDP_REDIRECT)
2287		xdp_do_flush();
2288}
2289
2290static void igc_update_rx_stats(struct igc_q_vector *q_vector,
2291				unsigned int packets, unsigned int bytes)
2292{
2293	struct igc_ring *ring = q_vector->rx.ring;
2294
2295	u64_stats_update_begin(&ring->rx_syncp);
2296	ring->rx_stats.packets += packets;
2297	ring->rx_stats.bytes += bytes;
2298	u64_stats_update_end(&ring->rx_syncp);
2299
2300	q_vector->rx.total_packets += packets;
2301	q_vector->rx.total_bytes += bytes;
2302}
2303
2304static int igc_clean_rx_irq(struct igc_q_vector *q_vector, const int budget)
2305{
2306	unsigned int total_bytes = 0, total_packets = 0;
2307	struct igc_adapter *adapter = q_vector->adapter;
2308	struct igc_ring *rx_ring = q_vector->rx.ring;
2309	struct sk_buff *skb = rx_ring->skb;
2310	u16 cleaned_count = igc_desc_unused(rx_ring);
2311	int xdp_status = 0, rx_buffer_pgcnt;
2312
2313	while (likely(total_packets < budget)) {
2314		union igc_adv_rx_desc *rx_desc;
2315		struct igc_rx_buffer *rx_buffer;
2316		unsigned int size, truesize;
2317		ktime_t timestamp = 0;
2318		struct xdp_buff xdp;
2319		int pkt_offset = 0;
2320		void *pktbuf;
2321
2322		/* return some buffers to hardware, one at a time is too slow */
2323		if (cleaned_count >= IGC_RX_BUFFER_WRITE) {
2324			igc_alloc_rx_buffers(rx_ring, cleaned_count);
2325			cleaned_count = 0;
2326		}
2327
2328		rx_desc = IGC_RX_DESC(rx_ring, rx_ring->next_to_clean);
2329		size = le16_to_cpu(rx_desc->wb.upper.length);
2330		if (!size)
2331			break;
2332
2333		/* This memory barrier is needed to keep us from reading
2334		 * any other fields out of the rx_desc until we know the
2335		 * descriptor has been written back
2336		 */
2337		dma_rmb();
2338
2339		rx_buffer = igc_get_rx_buffer(rx_ring, size, &rx_buffer_pgcnt);
2340		truesize = igc_get_rx_frame_truesize(rx_ring, size);
2341
2342		pktbuf = page_address(rx_buffer->page) + rx_buffer->page_offset;
2343
2344		if (igc_test_staterr(rx_desc, IGC_RXDADV_STAT_TSIP)) {
2345			timestamp = igc_ptp_rx_pktstamp(q_vector->adapter,
2346							pktbuf);
2347			pkt_offset = IGC_TS_HDR_LEN;
2348			size -= IGC_TS_HDR_LEN;
2349		}
2350
2351		if (!skb) {
2352			xdp_init_buff(&xdp, truesize, &rx_ring->xdp_rxq);
2353			xdp_prepare_buff(&xdp, pktbuf - igc_rx_offset(rx_ring),
2354					 igc_rx_offset(rx_ring) + pkt_offset, size, false);
2355
2356			skb = igc_xdp_run_prog(adapter, &xdp);
2357		}
2358
2359		if (IS_ERR(skb)) {
2360			unsigned int xdp_res = -PTR_ERR(skb);
2361
2362			switch (xdp_res) {
2363			case IGC_XDP_CONSUMED:
2364				rx_buffer->pagecnt_bias++;
2365				break;
2366			case IGC_XDP_TX:
2367			case IGC_XDP_REDIRECT:
2368				igc_rx_buffer_flip(rx_buffer, truesize);
2369				xdp_status |= xdp_res;
2370				break;
2371			}
2372
2373			total_packets++;
2374			total_bytes += size;
2375		} else if (skb)
2376			igc_add_rx_frag(rx_ring, rx_buffer, skb, size);
2377		else if (ring_uses_build_skb(rx_ring))
2378			skb = igc_build_skb(rx_ring, rx_buffer, rx_desc, size);
2379		else
2380			skb = igc_construct_skb(rx_ring, rx_buffer, &xdp,
2381						timestamp);
2382
2383		/* exit if we failed to retrieve a buffer */
2384		if (!skb) {
2385			rx_ring->rx_stats.alloc_failed++;
2386			rx_buffer->pagecnt_bias++;
2387			break;
2388		}
2389
2390		igc_put_rx_buffer(rx_ring, rx_buffer, rx_buffer_pgcnt);
2391		cleaned_count++;
2392
2393		/* fetch next buffer in frame if non-eop */
2394		if (igc_is_non_eop(rx_ring, rx_desc))
2395			continue;
2396
2397		/* verify the packet layout is correct */
2398		if (igc_cleanup_headers(rx_ring, rx_desc, skb)) {
2399			skb = NULL;
2400			continue;
2401		}
2402
2403		/* probably a little skewed due to removing CRC */
2404		total_bytes += skb->len;
2405
2406		/* populate checksum, VLAN, and protocol */
2407		igc_process_skb_fields(rx_ring, rx_desc, skb);
2408
2409		napi_gro_receive(&q_vector->napi, skb);
2410
2411		/* reset skb pointer */
2412		skb = NULL;
2413
2414		/* update budget accounting */
2415		total_packets++;
2416	}
2417
2418	if (xdp_status)
2419		igc_finalize_xdp(adapter, xdp_status);
2420
2421	/* place incomplete frames back on ring for completion */
2422	rx_ring->skb = skb;
2423
2424	igc_update_rx_stats(q_vector, total_packets, total_bytes);
2425
2426	if (cleaned_count)
2427		igc_alloc_rx_buffers(rx_ring, cleaned_count);
2428
2429	return total_packets;
2430}
2431
2432static struct sk_buff *igc_construct_skb_zc(struct igc_ring *ring,
2433					    struct xdp_buff *xdp)
2434{
2435	unsigned int metasize = xdp->data - xdp->data_meta;
2436	unsigned int datasize = xdp->data_end - xdp->data;
2437	unsigned int totalsize = metasize + datasize;
2438	struct sk_buff *skb;
2439
2440	skb = __napi_alloc_skb(&ring->q_vector->napi,
2441			       xdp->data_end - xdp->data_hard_start,
2442			       GFP_ATOMIC | __GFP_NOWARN);
2443	if (unlikely(!skb))
2444		return NULL;
2445
2446	skb_reserve(skb, xdp->data_meta - xdp->data_hard_start);
2447	memcpy(__skb_put(skb, totalsize), xdp->data_meta, totalsize);
2448	if (metasize)
2449		skb_metadata_set(skb, metasize);
2450
2451	return skb;
2452}
2453
2454static void igc_dispatch_skb_zc(struct igc_q_vector *q_vector,
2455				union igc_adv_rx_desc *desc,
2456				struct xdp_buff *xdp,
2457				ktime_t timestamp)
2458{
2459	struct igc_ring *ring = q_vector->rx.ring;
2460	struct sk_buff *skb;
2461
2462	skb = igc_construct_skb_zc(ring, xdp);
2463	if (!skb) {
2464		ring->rx_stats.alloc_failed++;
2465		return;
2466	}
2467
2468	if (timestamp)
2469		skb_hwtstamps(skb)->hwtstamp = timestamp;
2470
2471	if (igc_cleanup_headers(ring, desc, skb))
2472		return;
2473
2474	igc_process_skb_fields(ring, desc, skb);
2475	napi_gro_receive(&q_vector->napi, skb);
2476}
2477
2478static int igc_clean_rx_irq_zc(struct igc_q_vector *q_vector, const int budget)
2479{
2480	struct igc_adapter *adapter = q_vector->adapter;
2481	struct igc_ring *ring = q_vector->rx.ring;
2482	u16 cleaned_count = igc_desc_unused(ring);
2483	int total_bytes = 0, total_packets = 0;
2484	u16 ntc = ring->next_to_clean;
2485	struct bpf_prog *prog;
2486	bool failure = false;
2487	int xdp_status = 0;
2488
2489	rcu_read_lock();
2490
2491	prog = READ_ONCE(adapter->xdp_prog);
2492
2493	while (likely(total_packets < budget)) {
2494		union igc_adv_rx_desc *desc;
2495		struct igc_rx_buffer *bi;
2496		ktime_t timestamp = 0;
2497		unsigned int size;
2498		int res;
2499
2500		desc = IGC_RX_DESC(ring, ntc);
2501		size = le16_to_cpu(desc->wb.upper.length);
2502		if (!size)
2503			break;
2504
2505		/* This memory barrier is needed to keep us from reading
2506		 * any other fields out of the rx_desc until we know the
2507		 * descriptor has been written back
2508		 */
2509		dma_rmb();
2510
2511		bi = &ring->rx_buffer_info[ntc];
2512
2513		if (igc_test_staterr(desc, IGC_RXDADV_STAT_TSIP)) {
2514			timestamp = igc_ptp_rx_pktstamp(q_vector->adapter,
2515							bi->xdp->data);
2516
2517			bi->xdp->data += IGC_TS_HDR_LEN;
2518
2519			/* HW timestamp has been copied into local variable. Metadata
2520			 * length when XDP program is called should be 0.
2521			 */
2522			bi->xdp->data_meta += IGC_TS_HDR_LEN;
2523			size -= IGC_TS_HDR_LEN;
2524		}
2525
2526		bi->xdp->data_end = bi->xdp->data + size;
2527		xsk_buff_dma_sync_for_cpu(bi->xdp, ring->xsk_pool);
2528
2529		res = __igc_xdp_run_prog(adapter, prog, bi->xdp);
2530		switch (res) {
2531		case IGC_XDP_PASS:
2532			igc_dispatch_skb_zc(q_vector, desc, bi->xdp, timestamp);
2533			fallthrough;
2534		case IGC_XDP_CONSUMED:
2535			xsk_buff_free(bi->xdp);
2536			break;
2537		case IGC_XDP_TX:
2538		case IGC_XDP_REDIRECT:
2539			xdp_status |= res;
2540			break;
2541		}
2542
2543		bi->xdp = NULL;
2544		total_bytes += size;
2545		total_packets++;
2546		cleaned_count++;
2547		ntc++;
2548		if (ntc == ring->count)
2549			ntc = 0;
2550	}
2551
2552	ring->next_to_clean = ntc;
2553	rcu_read_unlock();
2554
2555	if (cleaned_count >= IGC_RX_BUFFER_WRITE)
2556		failure = !igc_alloc_rx_buffers_zc(ring, cleaned_count);
2557
2558	if (xdp_status)
2559		igc_finalize_xdp(adapter, xdp_status);
2560
2561	igc_update_rx_stats(q_vector, total_packets, total_bytes);
2562
2563	if (xsk_uses_need_wakeup(ring->xsk_pool)) {
2564		if (failure || ring->next_to_clean == ring->next_to_use)
2565			xsk_set_rx_need_wakeup(ring->xsk_pool);
2566		else
2567			xsk_clear_rx_need_wakeup(ring->xsk_pool);
2568		return total_packets;
2569	}
2570
2571	return failure ? budget : total_packets;
2572}
2573
2574static void igc_update_tx_stats(struct igc_q_vector *q_vector,
2575				unsigned int packets, unsigned int bytes)
2576{
2577	struct igc_ring *ring = q_vector->tx.ring;
2578
2579	u64_stats_update_begin(&ring->tx_syncp);
2580	ring->tx_stats.bytes += bytes;
2581	ring->tx_stats.packets += packets;
2582	u64_stats_update_end(&ring->tx_syncp);
2583
2584	q_vector->tx.total_bytes += bytes;
2585	q_vector->tx.total_packets += packets;
2586}
2587
2588static void igc_xdp_xmit_zc(struct igc_ring *ring)
2589{
2590	struct xsk_buff_pool *pool = ring->xsk_pool;
2591	struct netdev_queue *nq = txring_txq(ring);
2592	union igc_adv_tx_desc *tx_desc = NULL;
2593	int cpu = smp_processor_id();
2594	u16 ntu = ring->next_to_use;
2595	struct xdp_desc xdp_desc;
2596	u16 budget;
2597
2598	if (!netif_carrier_ok(ring->netdev))
2599		return;
2600
2601	__netif_tx_lock(nq, cpu);
2602
2603	budget = igc_desc_unused(ring);
2604
2605	while (xsk_tx_peek_desc(pool, &xdp_desc) && budget--) {
2606		u32 cmd_type, olinfo_status;
2607		struct igc_tx_buffer *bi;
2608		dma_addr_t dma;
2609
2610		cmd_type = IGC_ADVTXD_DTYP_DATA | IGC_ADVTXD_DCMD_DEXT |
2611			   IGC_ADVTXD_DCMD_IFCS | IGC_TXD_DCMD |
2612			   xdp_desc.len;
2613		olinfo_status = xdp_desc.len << IGC_ADVTXD_PAYLEN_SHIFT;
2614
2615		dma = xsk_buff_raw_get_dma(pool, xdp_desc.addr);
2616		xsk_buff_raw_dma_sync_for_device(pool, dma, xdp_desc.len);
2617
2618		tx_desc = IGC_TX_DESC(ring, ntu);
2619		tx_desc->read.cmd_type_len = cpu_to_le32(cmd_type);
2620		tx_desc->read.olinfo_status = cpu_to_le32(olinfo_status);
2621		tx_desc->read.buffer_addr = cpu_to_le64(dma);
2622
2623		bi = &ring->tx_buffer_info[ntu];
2624		bi->type = IGC_TX_BUFFER_TYPE_XSK;
2625		bi->protocol = 0;
2626		bi->bytecount = xdp_desc.len;
2627		bi->gso_segs = 1;
2628		bi->time_stamp = jiffies;
2629		bi->next_to_watch = tx_desc;
2630
2631		netdev_tx_sent_queue(txring_txq(ring), xdp_desc.len);
2632
2633		ntu++;
2634		if (ntu == ring->count)
2635			ntu = 0;
2636	}
2637
2638	ring->next_to_use = ntu;
2639	if (tx_desc) {
2640		igc_flush_tx_descriptors(ring);
2641		xsk_tx_release(pool);
2642	}
2643
2644	__netif_tx_unlock(nq);
2645}
2646
2647/**
2648 * igc_clean_tx_irq - Reclaim resources after transmit completes
2649 * @q_vector: pointer to q_vector containing needed info
2650 * @napi_budget: Used to determine if we are in netpoll
2651 *
2652 * returns true if ring is completely cleaned
2653 */
2654static bool igc_clean_tx_irq(struct igc_q_vector *q_vector, int napi_budget)
2655{
2656	struct igc_adapter *adapter = q_vector->adapter;
2657	unsigned int total_bytes = 0, total_packets = 0;
2658	unsigned int budget = q_vector->tx.work_limit;
2659	struct igc_ring *tx_ring = q_vector->tx.ring;
2660	unsigned int i = tx_ring->next_to_clean;
2661	struct igc_tx_buffer *tx_buffer;
2662	union igc_adv_tx_desc *tx_desc;
2663	u32 xsk_frames = 0;
2664
2665	if (test_bit(__IGC_DOWN, &adapter->state))
2666		return true;
2667
2668	tx_buffer = &tx_ring->tx_buffer_info[i];
2669	tx_desc = IGC_TX_DESC(tx_ring, i);
2670	i -= tx_ring->count;
2671
2672	do {
2673		union igc_adv_tx_desc *eop_desc = tx_buffer->next_to_watch;
2674
2675		/* if next_to_watch is not set then there is no work pending */
2676		if (!eop_desc)
2677			break;
2678
2679		/* prevent any other reads prior to eop_desc */
2680		smp_rmb();
2681
2682		/* if DD is not set pending work has not been completed */
2683		if (!(eop_desc->wb.status & cpu_to_le32(IGC_TXD_STAT_DD)))
2684			break;
2685
2686		/* clear next_to_watch to prevent false hangs */
2687		tx_buffer->next_to_watch = NULL;
2688
2689		/* update the statistics for this packet */
2690		total_bytes += tx_buffer->bytecount;
2691		total_packets += tx_buffer->gso_segs;
2692
2693		switch (tx_buffer->type) {
2694		case IGC_TX_BUFFER_TYPE_XSK:
2695			xsk_frames++;
2696			break;
2697		case IGC_TX_BUFFER_TYPE_XDP:
2698			xdp_return_frame(tx_buffer->xdpf);
2699			igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
2700			break;
2701		case IGC_TX_BUFFER_TYPE_SKB:
2702			napi_consume_skb(tx_buffer->skb, napi_budget);
2703			igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
2704			break;
2705		default:
2706			netdev_warn_once(tx_ring->netdev, "Unknown Tx buffer type\n");
2707			break;
2708		}
2709
2710		/* clear last DMA location and unmap remaining buffers */
2711		while (tx_desc != eop_desc) {
2712			tx_buffer++;
2713			tx_desc++;
2714			i++;
2715			if (unlikely(!i)) {
2716				i -= tx_ring->count;
2717				tx_buffer = tx_ring->tx_buffer_info;
2718				tx_desc = IGC_TX_DESC(tx_ring, 0);
2719			}
2720
2721			/* unmap any remaining paged data */
2722			if (dma_unmap_len(tx_buffer, len))
2723				igc_unmap_tx_buffer(tx_ring->dev, tx_buffer);
2724		}
2725
2726		/* move us one more past the eop_desc for start of next pkt */
2727		tx_buffer++;
2728		tx_desc++;
2729		i++;
2730		if (unlikely(!i)) {
2731			i -= tx_ring->count;
2732			tx_buffer = tx_ring->tx_buffer_info;
2733			tx_desc = IGC_TX_DESC(tx_ring, 0);
2734		}
2735
2736		/* issue prefetch for next Tx descriptor */
2737		prefetch(tx_desc);
2738
2739		/* update budget accounting */
2740		budget--;
2741	} while (likely(budget));
2742
2743	netdev_tx_completed_queue(txring_txq(tx_ring),
2744				  total_packets, total_bytes);
2745
2746	i += tx_ring->count;
2747	tx_ring->next_to_clean = i;
2748
2749	igc_update_tx_stats(q_vector, total_packets, total_bytes);
2750
2751	if (tx_ring->xsk_pool) {
2752		if (xsk_frames)
2753			xsk_tx_completed(tx_ring->xsk_pool, xsk_frames);
2754		if (xsk_uses_need_wakeup(tx_ring->xsk_pool))
2755			xsk_set_tx_need_wakeup(tx_ring->xsk_pool);
2756		igc_xdp_xmit_zc(tx_ring);
2757	}
2758
2759	if (test_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags)) {
2760		struct igc_hw *hw = &adapter->hw;
2761
2762		/* Detect a transmit hang in hardware, this serializes the
2763		 * check with the clearing of time_stamp and movement of i
2764		 */
2765		clear_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
2766		if (tx_buffer->next_to_watch &&
2767		    time_after(jiffies, tx_buffer->time_stamp +
2768		    (adapter->tx_timeout_factor * HZ)) &&
2769		    !(rd32(IGC_STATUS) & IGC_STATUS_TXOFF)) {
2770			/* detected Tx unit hang */
2771			netdev_err(tx_ring->netdev,
2772				   "Detected Tx Unit Hang\n"
2773				   "  Tx Queue             <%d>\n"
2774				   "  TDH                  <%x>\n"
2775				   "  TDT                  <%x>\n"
2776				   "  next_to_use          <%x>\n"
2777				   "  next_to_clean        <%x>\n"
2778				   "buffer_info[next_to_clean]\n"
2779				   "  time_stamp           <%lx>\n"
2780				   "  next_to_watch        <%p>\n"
2781				   "  jiffies              <%lx>\n"
2782				   "  desc.status          <%x>\n",
2783				   tx_ring->queue_index,
2784				   rd32(IGC_TDH(tx_ring->reg_idx)),
2785				   readl(tx_ring->tail),
2786				   tx_ring->next_to_use,
2787				   tx_ring->next_to_clean,
2788				   tx_buffer->time_stamp,
2789				   tx_buffer->next_to_watch,
2790				   jiffies,
2791				   tx_buffer->next_to_watch->wb.status);
2792			netif_stop_subqueue(tx_ring->netdev,
2793					    tx_ring->queue_index);
2794
2795			/* we are about to reset, no point in enabling stuff */
2796			return true;
2797		}
2798	}
2799
2800#define TX_WAKE_THRESHOLD (DESC_NEEDED * 2)
2801	if (unlikely(total_packets &&
2802		     netif_carrier_ok(tx_ring->netdev) &&
2803		     igc_desc_unused(tx_ring) >= TX_WAKE_THRESHOLD)) {
2804		/* Make sure that anybody stopping the queue after this
2805		 * sees the new next_to_clean.
2806		 */
2807		smp_mb();
2808		if (__netif_subqueue_stopped(tx_ring->netdev,
2809					     tx_ring->queue_index) &&
2810		    !(test_bit(__IGC_DOWN, &adapter->state))) {
2811			netif_wake_subqueue(tx_ring->netdev,
2812					    tx_ring->queue_index);
2813
2814			u64_stats_update_begin(&tx_ring->tx_syncp);
2815			tx_ring->tx_stats.restart_queue++;
2816			u64_stats_update_end(&tx_ring->tx_syncp);
2817		}
2818	}
2819
2820	return !!budget;
2821}
2822
2823static int igc_find_mac_filter(struct igc_adapter *adapter,
2824			       enum igc_mac_filter_type type, const u8 *addr)
2825{
2826	struct igc_hw *hw = &adapter->hw;
2827	int max_entries = hw->mac.rar_entry_count;
2828	u32 ral, rah;
2829	int i;
2830
2831	for (i = 0; i < max_entries; i++) {
2832		ral = rd32(IGC_RAL(i));
2833		rah = rd32(IGC_RAH(i));
2834
2835		if (!(rah & IGC_RAH_AV))
2836			continue;
2837		if (!!(rah & IGC_RAH_ASEL_SRC_ADDR) != type)
2838			continue;
2839		if ((rah & IGC_RAH_RAH_MASK) !=
2840		    le16_to_cpup((__le16 *)(addr + 4)))
2841			continue;
2842		if (ral != le32_to_cpup((__le32 *)(addr)))
2843			continue;
2844
2845		return i;
2846	}
2847
2848	return -1;
2849}
2850
2851static int igc_get_avail_mac_filter_slot(struct igc_adapter *adapter)
2852{
2853	struct igc_hw *hw = &adapter->hw;
2854	int max_entries = hw->mac.rar_entry_count;
2855	u32 rah;
2856	int i;
2857
2858	for (i = 0; i < max_entries; i++) {
2859		rah = rd32(IGC_RAH(i));
2860
2861		if (!(rah & IGC_RAH_AV))
2862			return i;
2863	}
2864
2865	return -1;
2866}
2867
2868/**
2869 * igc_add_mac_filter() - Add MAC address filter
2870 * @adapter: Pointer to adapter where the filter should be added
2871 * @type: MAC address filter type (source or destination)
2872 * @addr: MAC address
2873 * @queue: If non-negative, queue assignment feature is enabled and frames
2874 *         matching the filter are enqueued onto 'queue'. Otherwise, queue
2875 *         assignment is disabled.
2876 *
2877 * Return: 0 in case of success, negative errno code otherwise.
2878 */
2879static int igc_add_mac_filter(struct igc_adapter *adapter,
2880			      enum igc_mac_filter_type type, const u8 *addr,
2881			      int queue)
2882{
2883	struct net_device *dev = adapter->netdev;
2884	int index;
2885
2886	index = igc_find_mac_filter(adapter, type, addr);
2887	if (index >= 0)
2888		goto update_filter;
2889
2890	index = igc_get_avail_mac_filter_slot(adapter);
2891	if (index < 0)
2892		return -ENOSPC;
2893
2894	netdev_dbg(dev, "Add MAC address filter: index %d type %s address %pM queue %d\n",
2895		   index, type == IGC_MAC_FILTER_TYPE_DST ? "dst" : "src",
2896		   addr, queue);
2897
2898update_filter:
2899	igc_set_mac_filter_hw(adapter, index, type, addr, queue);
2900	return 0;
2901}
2902
2903/**
2904 * igc_del_mac_filter() - Delete MAC address filter
2905 * @adapter: Pointer to adapter where the filter should be deleted from
2906 * @type: MAC address filter type (source or destination)
2907 * @addr: MAC address
2908 */
2909static void igc_del_mac_filter(struct igc_adapter *adapter,
2910			       enum igc_mac_filter_type type, const u8 *addr)
2911{
2912	struct net_device *dev = adapter->netdev;
2913	int index;
2914
2915	index = igc_find_mac_filter(adapter, type, addr);
2916	if (index < 0)
2917		return;
2918
2919	if (index == 0) {
2920		/* If this is the default filter, we don't actually delete it.
2921		 * We just reset to its default value i.e. disable queue
2922		 * assignment.
2923		 */
2924		netdev_dbg(dev, "Disable default MAC filter queue assignment");
2925
2926		igc_set_mac_filter_hw(adapter, 0, type, addr, -1);
2927	} else {
2928		netdev_dbg(dev, "Delete MAC address filter: index %d type %s address %pM\n",
2929			   index,
2930			   type == IGC_MAC_FILTER_TYPE_DST ? "dst" : "src",
2931			   addr);
2932
2933		igc_clear_mac_filter_hw(adapter, index);
2934	}
2935}
2936
2937/**
2938 * igc_add_vlan_prio_filter() - Add VLAN priority filter
2939 * @adapter: Pointer to adapter where the filter should be added
2940 * @prio: VLAN priority value
2941 * @queue: Queue number which matching frames are assigned to
2942 *
2943 * Return: 0 in case of success, negative errno code otherwise.
2944 */
2945static int igc_add_vlan_prio_filter(struct igc_adapter *adapter, int prio,
2946				    int queue)
2947{
2948	struct net_device *dev = adapter->netdev;
2949	struct igc_hw *hw = &adapter->hw;
2950	u32 vlanpqf;
2951
2952	vlanpqf = rd32(IGC_VLANPQF);
2953
2954	if (vlanpqf & IGC_VLANPQF_VALID(prio)) {
2955		netdev_dbg(dev, "VLAN priority filter already in use\n");
2956		return -EEXIST;
2957	}
2958
2959	vlanpqf |= IGC_VLANPQF_QSEL(prio, queue);
2960	vlanpqf |= IGC_VLANPQF_VALID(prio);
2961
2962	wr32(IGC_VLANPQF, vlanpqf);
2963
2964	netdev_dbg(dev, "Add VLAN priority filter: prio %d queue %d\n",
2965		   prio, queue);
2966	return 0;
2967}
2968
2969/**
2970 * igc_del_vlan_prio_filter() - Delete VLAN priority filter
2971 * @adapter: Pointer to adapter where the filter should be deleted from
2972 * @prio: VLAN priority value
2973 */
2974static void igc_del_vlan_prio_filter(struct igc_adapter *adapter, int prio)
2975{
2976	struct igc_hw *hw = &adapter->hw;
2977	u32 vlanpqf;
2978
2979	vlanpqf = rd32(IGC_VLANPQF);
2980
2981	vlanpqf &= ~IGC_VLANPQF_VALID(prio);
2982	vlanpqf &= ~IGC_VLANPQF_QSEL(prio, IGC_VLANPQF_QUEUE_MASK);
2983
2984	wr32(IGC_VLANPQF, vlanpqf);
2985
2986	netdev_dbg(adapter->netdev, "Delete VLAN priority filter: prio %d\n",
2987		   prio);
2988}
2989
2990static int igc_get_avail_etype_filter_slot(struct igc_adapter *adapter)
2991{
2992	struct igc_hw *hw = &adapter->hw;
2993	int i;
2994
2995	for (i = 0; i < MAX_ETYPE_FILTER; i++) {
2996		u32 etqf = rd32(IGC_ETQF(i));
2997
2998		if (!(etqf & IGC_ETQF_FILTER_ENABLE))
2999			return i;
3000	}
3001
3002	return -1;
3003}
3004
3005/**
3006 * igc_add_etype_filter() - Add ethertype filter
3007 * @adapter: Pointer to adapter where the filter should be added
3008 * @etype: Ethertype value
3009 * @queue: If non-negative, queue assignment feature is enabled and frames
3010 *         matching the filter are enqueued onto 'queue'. Otherwise, queue
3011 *         assignment is disabled.
3012 *
3013 * Return: 0 in case of success, negative errno code otherwise.
3014 */
3015static int igc_add_etype_filter(struct igc_adapter *adapter, u16 etype,
3016				int queue)
3017{
3018	struct igc_hw *hw = &adapter->hw;
3019	int index;
3020	u32 etqf;
3021
3022	index = igc_get_avail_etype_filter_slot(adapter);
3023	if (index < 0)
3024		return -ENOSPC;
3025
3026	etqf = rd32(IGC_ETQF(index));
3027
3028	etqf &= ~IGC_ETQF_ETYPE_MASK;
3029	etqf |= etype;
3030
3031	if (queue >= 0) {
3032		etqf &= ~IGC_ETQF_QUEUE_MASK;
3033		etqf |= (queue << IGC_ETQF_QUEUE_SHIFT);
3034		etqf |= IGC_ETQF_QUEUE_ENABLE;
3035	}
3036
3037	etqf |= IGC_ETQF_FILTER_ENABLE;
3038
3039	wr32(IGC_ETQF(index), etqf);
3040
3041	netdev_dbg(adapter->netdev, "Add ethertype filter: etype %04x queue %d\n",
3042		   etype, queue);
3043	return 0;
3044}
3045
3046static int igc_find_etype_filter(struct igc_adapter *adapter, u16 etype)
3047{
3048	struct igc_hw *hw = &adapter->hw;
3049	int i;
3050
3051	for (i = 0; i < MAX_ETYPE_FILTER; i++) {
3052		u32 etqf = rd32(IGC_ETQF(i));
3053
3054		if ((etqf & IGC_ETQF_ETYPE_MASK) == etype)
3055			return i;
3056	}
3057
3058	return -1;
3059}
3060
3061/**
3062 * igc_del_etype_filter() - Delete ethertype filter
3063 * @adapter: Pointer to adapter where the filter should be deleted from
3064 * @etype: Ethertype value
3065 */
3066static void igc_del_etype_filter(struct igc_adapter *adapter, u16 etype)
3067{
3068	struct igc_hw *hw = &adapter->hw;
3069	int index;
3070
3071	index = igc_find_etype_filter(adapter, etype);
3072	if (index < 0)
3073		return;
3074
3075	wr32(IGC_ETQF(index), 0);
3076
3077	netdev_dbg(adapter->netdev, "Delete ethertype filter: etype %04x\n",
3078		   etype);
3079}
3080
3081static int igc_enable_nfc_rule(struct igc_adapter *adapter,
3082			       const struct igc_nfc_rule *rule)
3083{
3084	int err;
3085
3086	if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE) {
3087		err = igc_add_etype_filter(adapter, rule->filter.etype,
3088					   rule->action);
3089		if (err)
3090			return err;
3091	}
3092
3093	if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR) {
3094		err = igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_SRC,
3095					 rule->filter.src_addr, rule->action);
3096		if (err)
3097			return err;
3098	}
3099
3100	if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR) {
3101		err = igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST,
3102					 rule->filter.dst_addr, rule->action);
3103		if (err)
3104			return err;
3105	}
3106
3107	if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI) {
3108		int prio = (rule->filter.vlan_tci & VLAN_PRIO_MASK) >>
3109			   VLAN_PRIO_SHIFT;
3110
3111		err = igc_add_vlan_prio_filter(adapter, prio, rule->action);
3112		if (err)
3113			return err;
3114	}
3115
3116	return 0;
3117}
3118
3119static void igc_disable_nfc_rule(struct igc_adapter *adapter,
3120				 const struct igc_nfc_rule *rule)
3121{
3122	if (rule->filter.match_flags & IGC_FILTER_FLAG_ETHER_TYPE)
3123		igc_del_etype_filter(adapter, rule->filter.etype);
3124
3125	if (rule->filter.match_flags & IGC_FILTER_FLAG_VLAN_TCI) {
3126		int prio = (rule->filter.vlan_tci & VLAN_PRIO_MASK) >>
3127			   VLAN_PRIO_SHIFT;
3128
3129		igc_del_vlan_prio_filter(adapter, prio);
3130	}
3131
3132	if (rule->filter.match_flags & IGC_FILTER_FLAG_SRC_MAC_ADDR)
3133		igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_SRC,
3134				   rule->filter.src_addr);
3135
3136	if (rule->filter.match_flags & IGC_FILTER_FLAG_DST_MAC_ADDR)
3137		igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST,
3138				   rule->filter.dst_addr);
3139}
3140
3141/**
3142 * igc_get_nfc_rule() - Get NFC rule
3143 * @adapter: Pointer to adapter
3144 * @location: Rule location
3145 *
3146 * Context: Expects adapter->nfc_rule_lock to be held by caller.
3147 *
3148 * Return: Pointer to NFC rule at @location. If not found, NULL.
3149 */
3150struct igc_nfc_rule *igc_get_nfc_rule(struct igc_adapter *adapter,
3151				      u32 location)
3152{
3153	struct igc_nfc_rule *rule;
3154
3155	list_for_each_entry(rule, &adapter->nfc_rule_list, list) {
3156		if (rule->location == location)
3157			return rule;
3158		if (rule->location > location)
3159			break;
3160	}
3161
3162	return NULL;
3163}
3164
3165/**
3166 * igc_del_nfc_rule() - Delete NFC rule
3167 * @adapter: Pointer to adapter
3168 * @rule: Pointer to rule to be deleted
3169 *
3170 * Disable NFC rule in hardware and delete it from adapter.
3171 *
3172 * Context: Expects adapter->nfc_rule_lock to be held by caller.
3173 */
3174void igc_del_nfc_rule(struct igc_adapter *adapter, struct igc_nfc_rule *rule)
3175{
3176	igc_disable_nfc_rule(adapter, rule);
3177
3178	list_del(&rule->list);
3179	adapter->nfc_rule_count--;
3180
3181	kfree(rule);
3182}
3183
3184static void igc_flush_nfc_rules(struct igc_adapter *adapter)
3185{
3186	struct igc_nfc_rule *rule, *tmp;
3187
3188	mutex_lock(&adapter->nfc_rule_lock);
3189
3190	list_for_each_entry_safe(rule, tmp, &adapter->nfc_rule_list, list)
3191		igc_del_nfc_rule(adapter, rule);
3192
3193	mutex_unlock(&adapter->nfc_rule_lock);
3194}
3195
3196/**
3197 * igc_add_nfc_rule() - Add NFC rule
3198 * @adapter: Pointer to adapter
3199 * @rule: Pointer to rule to be added
3200 *
3201 * Enable NFC rule in hardware and add it to adapter.
3202 *
3203 * Context: Expects adapter->nfc_rule_lock to be held by caller.
3204 *
3205 * Return: 0 on success, negative errno on failure.
3206 */
3207int igc_add_nfc_rule(struct igc_adapter *adapter, struct igc_nfc_rule *rule)
3208{
3209	struct igc_nfc_rule *pred, *cur;
3210	int err;
3211
3212	err = igc_enable_nfc_rule(adapter, rule);
3213	if (err)
3214		return err;
3215
3216	pred = NULL;
3217	list_for_each_entry(cur, &adapter->nfc_rule_list, list) {
3218		if (cur->location >= rule->location)
3219			break;
3220		pred = cur;
3221	}
3222
3223	list_add(&rule->list, pred ? &pred->list : &adapter->nfc_rule_list);
3224	adapter->nfc_rule_count++;
3225	return 0;
3226}
3227
3228static void igc_restore_nfc_rules(struct igc_adapter *adapter)
3229{
3230	struct igc_nfc_rule *rule;
3231
3232	mutex_lock(&adapter->nfc_rule_lock);
3233
3234	list_for_each_entry_reverse(rule, &adapter->nfc_rule_list, list)
3235		igc_enable_nfc_rule(adapter, rule);
3236
3237	mutex_unlock(&adapter->nfc_rule_lock);
3238}
3239
3240static int igc_uc_sync(struct net_device *netdev, const unsigned char *addr)
3241{
3242	struct igc_adapter *adapter = netdev_priv(netdev);
3243
3244	return igc_add_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, addr, -1);
3245}
3246
3247static int igc_uc_unsync(struct net_device *netdev, const unsigned char *addr)
3248{
3249	struct igc_adapter *adapter = netdev_priv(netdev);
3250
3251	igc_del_mac_filter(adapter, IGC_MAC_FILTER_TYPE_DST, addr);
3252	return 0;
3253}
3254
3255/**
3256 * igc_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
3257 * @netdev: network interface device structure
3258 *
3259 * The set_rx_mode entry point is called whenever the unicast or multicast
3260 * address lists or the network interface flags are updated.  This routine is
3261 * responsible for configuring the hardware for proper unicast, multicast,
3262 * promiscuous mode, and all-multi behavior.
3263 */
3264static void igc_set_rx_mode(struct net_device *netdev)
3265{
3266	struct igc_adapter *adapter = netdev_priv(netdev);
3267	struct igc_hw *hw = &adapter->hw;
3268	u32 rctl = 0, rlpml = MAX_JUMBO_FRAME_SIZE;
3269	int count;
3270
3271	/* Check for Promiscuous and All Multicast modes */
3272	if (netdev->flags & IFF_PROMISC) {
3273		rctl |= IGC_RCTL_UPE | IGC_RCTL_MPE;
3274	} else {
3275		if (netdev->flags & IFF_ALLMULTI) {
3276			rctl |= IGC_RCTL_MPE;
3277		} else {
3278			/* Write addresses to the MTA, if the attempt fails
3279			 * then we should just turn on promiscuous mode so
3280			 * that we can at least receive multicast traffic
3281			 */
3282			count = igc_write_mc_addr_list(netdev);
3283			if (count < 0)
3284				rctl |= IGC_RCTL_MPE;
3285		}
3286	}
3287
3288	/* Write addresses to available RAR registers, if there is not
3289	 * sufficient space to store all the addresses then enable
3290	 * unicast promiscuous mode
3291	 */
3292	if (__dev_uc_sync(netdev, igc_uc_sync, igc_uc_unsync))
3293		rctl |= IGC_RCTL_UPE;
3294
3295	/* update state of unicast and multicast */
3296	rctl |= rd32(IGC_RCTL) & ~(IGC_RCTL_UPE | IGC_RCTL_MPE);
3297	wr32(IGC_RCTL, rctl);
3298
3299#if (PAGE_SIZE < 8192)
3300	if (adapter->max_frame_size <= IGC_MAX_FRAME_BUILD_SKB)
3301		rlpml = IGC_MAX_FRAME_BUILD_SKB;
3302#endif
3303	wr32(IGC_RLPML, rlpml);
3304}
3305
3306/**
3307 * igc_configure - configure the hardware for RX and TX
3308 * @adapter: private board structure
3309 */
3310static void igc_configure(struct igc_adapter *adapter)
3311{
3312	struct net_device *netdev = adapter->netdev;
3313	int i = 0;
3314
3315	igc_get_hw_control(adapter);
3316	igc_set_rx_mode(netdev);
3317
3318	igc_restore_vlan(adapter);
3319
3320	igc_setup_tctl(adapter);
3321	igc_setup_mrqc(adapter);
3322	igc_setup_rctl(adapter);
3323
3324	igc_set_default_mac_filter(adapter);
3325	igc_restore_nfc_rules(adapter);
3326
3327	igc_configure_tx(adapter);
3328	igc_configure_rx(adapter);
3329
3330	igc_rx_fifo_flush_base(&adapter->hw);
3331
3332	/* call igc_desc_unused which always leaves
3333	 * at least 1 descriptor unused to make sure
3334	 * next_to_use != next_to_clean
3335	 */
3336	for (i = 0; i < adapter->num_rx_queues; i++) {
3337		struct igc_ring *ring = adapter->rx_ring[i];
3338
3339		if (ring->xsk_pool)
3340			igc_alloc_rx_buffers_zc(ring, igc_desc_unused(ring));
3341		else
3342			igc_alloc_rx_buffers(ring, igc_desc_unused(ring));
3343	}
3344}
3345
3346/**
3347 * igc_write_ivar - configure ivar for given MSI-X vector
3348 * @hw: pointer to the HW structure
3349 * @msix_vector: vector number we are allocating to a given ring
3350 * @index: row index of IVAR register to write within IVAR table
3351 * @offset: column offset of in IVAR, should be multiple of 8
3352 *
3353 * The IVAR table consists of 2 columns,
3354 * each containing an cause allocation for an Rx and Tx ring, and a
3355 * variable number of rows depending on the number of queues supported.
3356 */
3357static void igc_write_ivar(struct igc_hw *hw, int msix_vector,
3358			   int index, int offset)
3359{
3360	u32 ivar = array_rd32(IGC_IVAR0, index);
3361
3362	/* clear any bits that are currently set */
3363	ivar &= ~((u32)0xFF << offset);
3364
3365	/* write vector and valid bit */
3366	ivar |= (msix_vector | IGC_IVAR_VALID) << offset;
3367
3368	array_wr32(IGC_IVAR0, index, ivar);
3369}
3370
3371static void igc_assign_vector(struct igc_q_vector *q_vector, int msix_vector)
3372{
3373	struct igc_adapter *adapter = q_vector->adapter;
3374	struct igc_hw *hw = &adapter->hw;
3375	int rx_queue = IGC_N0_QUEUE;
3376	int tx_queue = IGC_N0_QUEUE;
3377
3378	if (q_vector->rx.ring)
3379		rx_queue = q_vector->rx.ring->reg_idx;
3380	if (q_vector->tx.ring)
3381		tx_queue = q_vector->tx.ring->reg_idx;
3382
3383	switch (hw->mac.type) {
3384	case igc_i225:
3385		if (rx_queue > IGC_N0_QUEUE)
3386			igc_write_ivar(hw, msix_vector,
3387				       rx_queue >> 1,
3388				       (rx_queue & 0x1) << 4);
3389		if (tx_queue > IGC_N0_QUEUE)
3390			igc_write_ivar(hw, msix_vector,
3391				       tx_queue >> 1,
3392				       ((tx_queue & 0x1) << 4) + 8);
3393		q_vector->eims_value = BIT(msix_vector);
3394		break;
3395	default:
3396		WARN_ONCE(hw->mac.type != igc_i225, "Wrong MAC type\n");
3397		break;
3398	}
3399
3400	/* add q_vector eims value to global eims_enable_mask */
3401	adapter->eims_enable_mask |= q_vector->eims_value;
3402
3403	/* configure q_vector to set itr on first interrupt */
3404	q_vector->set_itr = 1;
3405}
3406
3407/**
3408 * igc_configure_msix - Configure MSI-X hardware
3409 * @adapter: Pointer to adapter structure
3410 *
3411 * igc_configure_msix sets up the hardware to properly
3412 * generate MSI-X interrupts.
3413 */
3414static void igc_configure_msix(struct igc_adapter *adapter)
3415{
3416	struct igc_hw *hw = &adapter->hw;
3417	int i, vector = 0;
3418	u32 tmp;
3419
3420	adapter->eims_enable_mask = 0;
3421
3422	/* set vector for other causes, i.e. link changes */
3423	switch (hw->mac.type) {
3424	case igc_i225:
3425		/* Turn on MSI-X capability first, or our settings
3426		 * won't stick.  And it will take days to debug.
3427		 */
3428		wr32(IGC_GPIE, IGC_GPIE_MSIX_MODE |
3429		     IGC_GPIE_PBA | IGC_GPIE_EIAME |
3430		     IGC_GPIE_NSICR);
3431
3432		/* enable msix_other interrupt */
3433		adapter->eims_other = BIT(vector);
3434		tmp = (vector++ | IGC_IVAR_VALID) << 8;
3435
3436		wr32(IGC_IVAR_MISC, tmp);
3437		break;
3438	default:
3439		/* do nothing, since nothing else supports MSI-X */
3440		break;
3441	} /* switch (hw->mac.type) */
3442
3443	adapter->eims_enable_mask |= adapter->eims_other;
3444
3445	for (i = 0; i < adapter->num_q_vectors; i++)
3446		igc_assign_vector(adapter->q_vector[i], vector++);
3447
3448	wrfl();
3449}
3450
3451/**
3452 * igc_irq_enable - Enable default interrupt generation settings
3453 * @adapter: board private structure
3454 */
3455static void igc_irq_enable(struct igc_adapter *adapter)
3456{
3457	struct igc_hw *hw = &adapter->hw;
3458
3459	if (adapter->msix_entries) {
3460		u32 ims = IGC_IMS_LSC | IGC_IMS_DOUTSYNC | IGC_IMS_DRSTA;
3461		u32 regval = rd32(IGC_EIAC);
3462
3463		wr32(IGC_EIAC, regval | adapter->eims_enable_mask);
3464		regval = rd32(IGC_EIAM);
3465		wr32(IGC_EIAM, regval | adapter->eims_enable_mask);
3466		wr32(IGC_EIMS, adapter->eims_enable_mask);
3467		wr32(IGC_IMS, ims);
3468	} else {
3469		wr32(IGC_IMS, IMS_ENABLE_MASK | IGC_IMS_DRSTA);
3470		wr32(IGC_IAM, IMS_ENABLE_MASK | IGC_IMS_DRSTA);
3471	}
3472}
3473
3474/**
3475 * igc_irq_disable - Mask off interrupt generation on the NIC
3476 * @adapter: board private structure
3477 */
3478static void igc_irq_disable(struct igc_adapter *adapter)
3479{
3480	struct igc_hw *hw = &adapter->hw;
3481
3482	if (adapter->msix_entries) {
3483		u32 regval = rd32(IGC_EIAM);
3484
3485		wr32(IGC_EIAM, regval & ~adapter->eims_enable_mask);
3486		wr32(IGC_EIMC, adapter->eims_enable_mask);
3487		regval = rd32(IGC_EIAC);
3488		wr32(IGC_EIAC, regval & ~adapter->eims_enable_mask);
3489	}
3490
3491	wr32(IGC_IAM, 0);
3492	wr32(IGC_IMC, ~0);
3493	wrfl();
3494
3495	if (adapter->msix_entries) {
3496		int vector = 0, i;
3497
3498		synchronize_irq(adapter->msix_entries[vector++].vector);
3499
3500		for (i = 0; i < adapter->num_q_vectors; i++)
3501			synchronize_irq(adapter->msix_entries[vector++].vector);
3502	} else {
3503		synchronize_irq(adapter->pdev->irq);
3504	}
3505}
3506
3507void igc_set_flag_queue_pairs(struct igc_adapter *adapter,
3508			      const u32 max_rss_queues)
3509{
3510	/* Determine if we need to pair queues. */
3511	/* If rss_queues > half of max_rss_queues, pair the queues in
3512	 * order to conserve interrupts due to limited supply.
3513	 */
3514	if (adapter->rss_queues > (max_rss_queues / 2))
3515		adapter->flags |= IGC_FLAG_QUEUE_PAIRS;
3516	else
3517		adapter->flags &= ~IGC_FLAG_QUEUE_PAIRS;
3518}
3519
3520unsigned int igc_get_max_rss_queues(struct igc_adapter *adapter)
3521{
3522	return IGC_MAX_RX_QUEUES;
3523}
3524
3525static void igc_init_queue_configuration(struct igc_adapter *adapter)
3526{
3527	u32 max_rss_queues;
3528
3529	max_rss_queues = igc_get_max_rss_queues(adapter);
3530	adapter->rss_queues = min_t(u32, max_rss_queues, num_online_cpus());
3531
3532	igc_set_flag_queue_pairs(adapter, max_rss_queues);
3533}
3534
3535/**
3536 * igc_reset_q_vector - Reset config for interrupt vector
3537 * @adapter: board private structure to initialize
3538 * @v_idx: Index of vector to be reset
3539 *
3540 * If NAPI is enabled it will delete any references to the
3541 * NAPI struct. This is preparation for igc_free_q_vector.
3542 */
3543static void igc_reset_q_vector(struct igc_adapter *adapter, int v_idx)
3544{
3545	struct igc_q_vector *q_vector = adapter->q_vector[v_idx];
3546
3547	/* if we're coming from igc_set_interrupt_capability, the vectors are
3548	 * not yet allocated
3549	 */
3550	if (!q_vector)
3551		return;
3552
3553	if (q_vector->tx.ring)
3554		adapter->tx_ring[q_vector->tx.ring->queue_index] = NULL;
3555
3556	if (q_vector->rx.ring)
3557		adapter->rx_ring[q_vector->rx.ring->queue_index] = NULL;
3558
3559	netif_napi_del(&q_vector->napi);
3560}
3561
3562/**
3563 * igc_free_q_vector - Free memory allocated for specific interrupt vector
3564 * @adapter: board private structure to initialize
3565 * @v_idx: Index of vector to be freed
3566 *
3567 * This function frees the memory allocated to the q_vector.
3568 */
3569static void igc_free_q_vector(struct igc_adapter *adapter, int v_idx)
3570{
3571	struct igc_q_vector *q_vector = adapter->q_vector[v_idx];
3572
3573	adapter->q_vector[v_idx] = NULL;
3574
3575	/* igc_get_stats64() might access the rings on this vector,
3576	 * we must wait a grace period before freeing it.
3577	 */
3578	if (q_vector)
3579		kfree_rcu(q_vector, rcu);
3580}
3581
3582/**
3583 * igc_free_q_vectors - Free memory allocated for interrupt vectors
3584 * @adapter: board private structure to initialize
3585 *
3586 * This function frees the memory allocated to the q_vectors.  In addition if
3587 * NAPI is enabled it will delete any references to the NAPI struct prior
3588 * to freeing the q_vector.
3589 */
3590static void igc_free_q_vectors(struct igc_adapter *adapter)
3591{
3592	int v_idx = adapter->num_q_vectors;
3593
3594	adapter->num_tx_queues = 0;
3595	adapter->num_rx_queues = 0;
3596	adapter->num_q_vectors = 0;
3597
3598	while (v_idx--) {
3599		igc_reset_q_vector(adapter, v_idx);
3600		igc_free_q_vector(adapter, v_idx);
3601	}
3602}
3603
3604/**
3605 * igc_update_itr - update the dynamic ITR value based on statistics
3606 * @q_vector: pointer to q_vector
3607 * @ring_container: ring info to update the itr for
3608 *
3609 * Stores a new ITR value based on packets and byte
3610 * counts during the last interrupt.  The advantage of per interrupt
3611 * computation is faster updates and more accurate ITR for the current
3612 * traffic pattern.  Constants in this function were computed
3613 * based on theoretical maximum wire speed and thresholds were set based
3614 * on testing data as well as attempting to minimize response time
3615 * while increasing bulk throughput.
3616 * NOTE: These calculations are only valid when operating in a single-
3617 * queue environment.
3618 */
3619static void igc_update_itr(struct igc_q_vector *q_vector,
3620			   struct igc_ring_container *ring_container)
3621{
3622	unsigned int packets = ring_container->total_packets;
3623	unsigned int bytes = ring_container->total_bytes;
3624	u8 itrval = ring_container->itr;
3625
3626	/* no packets, exit with status unchanged */
3627	if (packets == 0)
3628		return;
3629
3630	switch (itrval) {
3631	case lowest_latency:
3632		/* handle TSO and jumbo frames */
3633		if (bytes / packets > 8000)
3634			itrval = bulk_latency;
3635		else if ((packets < 5) && (bytes > 512))
3636			itrval = low_latency;
3637		break;
3638	case low_latency:  /* 50 usec aka 20000 ints/s */
3639		if (bytes > 10000) {
3640			/* this if handles the TSO accounting */
3641			if (bytes / packets > 8000)
3642				itrval = bulk_latency;
3643			else if ((packets < 10) || ((bytes / packets) > 1200))
3644				itrval = bulk_latency;
3645			else if ((packets > 35))
3646				itrval = lowest_latency;
3647		} else if (bytes / packets > 2000) {
3648			itrval = bulk_latency;
3649		} else if (packets <= 2 && bytes < 512) {
3650			itrval = lowest_latency;
3651		}
3652		break;
3653	case bulk_latency: /* 250 usec aka 4000 ints/s */
3654		if (bytes > 25000) {
3655			if (packets > 35)
3656				itrval = low_latency;
3657		} else if (bytes < 1500) {
3658			itrval = low_latency;
3659		}
3660		break;
3661	}
3662
3663	/* clear work counters since we have the values we need */
3664	ring_container->total_bytes = 0;
3665	ring_container->total_packets = 0;
3666
3667	/* write updated itr to ring container */
3668	ring_container->itr = itrval;
3669}
3670
3671static void igc_set_itr(struct igc_q_vector *q_vector)
3672{
3673	struct igc_adapter *adapter = q_vector->adapter;
3674	u32 new_itr = q_vector->itr_val;
3675	u8 current_itr = 0;
3676
3677	/* for non-gigabit speeds, just fix the interrupt rate at 4000 */
3678	switch (adapter->link_speed) {
3679	case SPEED_10:
3680	case SPEED_100:
3681		current_itr = 0;
3682		new_itr = IGC_4K_ITR;
3683		goto set_itr_now;
3684	default:
3685		break;
3686	}
3687
3688	igc_update_itr(q_vector, &q_vector->tx);
3689	igc_update_itr(q_vector, &q_vector->rx);
3690
3691	current_itr = max(q_vector->rx.itr, q_vector->tx.itr);
3692
3693	/* conservative mode (itr 3) eliminates the lowest_latency setting */
3694	if (current_itr == lowest_latency &&
3695	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
3696	    (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
3697		current_itr = low_latency;
3698
3699	switch (current_itr) {
3700	/* counts and packets in update_itr are dependent on these numbers */
3701	case lowest_latency:
3702		new_itr = IGC_70K_ITR; /* 70,000 ints/sec */
3703		break;
3704	case low_latency:
3705		new_itr = IGC_20K_ITR; /* 20,000 ints/sec */
3706		break;
3707	case bulk_latency:
3708		new_itr = IGC_4K_ITR;  /* 4,000 ints/sec */
3709		break;
3710	default:
3711		break;
3712	}
3713
3714set_itr_now:
3715	if (new_itr != q_vector->itr_val) {
3716		/* this attempts to bias the interrupt rate towards Bulk
3717		 * by adding intermediate steps when interrupt rate is
3718		 * increasing
3719		 */
3720		new_itr = new_itr > q_vector->itr_val ?
3721			  max((new_itr * q_vector->itr_val) /
3722			  (new_itr + (q_vector->itr_val >> 2)),
3723			  new_itr) : new_itr;
3724		/* Don't write the value here; it resets the adapter's
3725		 * internal timer, and causes us to delay far longer than
3726		 * we should between interrupts.  Instead, we write the ITR
3727		 * value at the beginning of the next interrupt so the timing
3728		 * ends up being correct.
3729		 */
3730		q_vector->itr_val = new_itr;
3731		q_vector->set_itr = 1;
3732	}
3733}
3734
3735static void igc_reset_interrupt_capability(struct igc_adapter *adapter)
3736{
3737	int v_idx = adapter->num_q_vectors;
3738
3739	if (adapter->msix_entries) {
3740		pci_disable_msix(adapter->pdev);
3741		kfree(adapter->msix_entries);
3742		adapter->msix_entries = NULL;
3743	} else if (adapter->flags & IGC_FLAG_HAS_MSI) {
3744		pci_disable_msi(adapter->pdev);
3745	}
3746
3747	while (v_idx--)
3748		igc_reset_q_vector(adapter, v_idx);
3749}
3750
3751/**
3752 * igc_set_interrupt_capability - set MSI or MSI-X if supported
3753 * @adapter: Pointer to adapter structure
3754 * @msix: boolean value for MSI-X capability
3755 *
3756 * Attempt to configure interrupts using the best available
3757 * capabilities of the hardware and kernel.
3758 */
3759static void igc_set_interrupt_capability(struct igc_adapter *adapter,
3760					 bool msix)
3761{
3762	int numvecs, i;
3763	int err;
3764
3765	if (!msix)
3766		goto msi_only;
3767	adapter->flags |= IGC_FLAG_HAS_MSIX;
3768
3769	/* Number of supported queues. */
3770	adapter->num_rx_queues = adapter->rss_queues;
3771
3772	adapter->num_tx_queues = adapter->rss_queues;
3773
3774	/* start with one vector for every Rx queue */
3775	numvecs = adapter->num_rx_queues;
3776
3777	/* if Tx handler is separate add 1 for every Tx queue */
3778	if (!(adapter->flags & IGC_FLAG_QUEUE_PAIRS))
3779		numvecs += adapter->num_tx_queues;
3780
3781	/* store the number of vectors reserved for queues */
3782	adapter->num_q_vectors = numvecs;
3783
3784	/* add 1 vector for link status interrupts */
3785	numvecs++;
3786
3787	adapter->msix_entries = kcalloc(numvecs, sizeof(struct msix_entry),
3788					GFP_KERNEL);
3789
3790	if (!adapter->msix_entries)
3791		return;
3792
3793	/* populate entry values */
3794	for (i = 0; i < numvecs; i++)
3795		adapter->msix_entries[i].entry = i;
3796
3797	err = pci_enable_msix_range(adapter->pdev,
3798				    adapter->msix_entries,
3799				    numvecs,
3800				    numvecs);
3801	if (err > 0)
3802		return;
3803
3804	kfree(adapter->msix_entries);
3805	adapter->msix_entries = NULL;
3806
3807	igc_reset_interrupt_capability(adapter);
3808
3809msi_only:
3810	adapter->flags &= ~IGC_FLAG_HAS_MSIX;
3811
3812	adapter->rss_queues = 1;
3813	adapter->flags |= IGC_FLAG_QUEUE_PAIRS;
3814	adapter->num_rx_queues = 1;
3815	adapter->num_tx_queues = 1;
3816	adapter->num_q_vectors = 1;
3817	if (!pci_enable_msi(adapter->pdev))
3818		adapter->flags |= IGC_FLAG_HAS_MSI;
3819}
3820
3821/**
3822 * igc_update_ring_itr - update the dynamic ITR value based on packet size
3823 * @q_vector: pointer to q_vector
3824 *
3825 * Stores a new ITR value based on strictly on packet size.  This
3826 * algorithm is less sophisticated than that used in igc_update_itr,
3827 * due to the difficulty of synchronizing statistics across multiple
3828 * receive rings.  The divisors and thresholds used by this function
3829 * were determined based on theoretical maximum wire speed and testing
3830 * data, in order to minimize response time while increasing bulk
3831 * throughput.
3832 * NOTE: This function is called only when operating in a multiqueue
3833 * receive environment.
3834 */
3835static void igc_update_ring_itr(struct igc_q_vector *q_vector)
3836{
3837	struct igc_adapter *adapter = q_vector->adapter;
3838	int new_val = q_vector->itr_val;
3839	int avg_wire_size = 0;
3840	unsigned int packets;
3841
3842	/* For non-gigabit speeds, just fix the interrupt rate at 4000
3843	 * ints/sec - ITR timer value of 120 ticks.
3844	 */
3845	switch (adapter->link_speed) {
3846	case SPEED_10:
3847	case SPEED_100:
3848		new_val = IGC_4K_ITR;
3849		goto set_itr_val;
3850	default:
3851		break;
3852	}
3853
3854	packets = q_vector->rx.total_packets;
3855	if (packets)
3856		avg_wire_size = q_vector->rx.total_bytes / packets;
3857
3858	packets = q_vector->tx.total_packets;
3859	if (packets)
3860		avg_wire_size = max_t(u32, avg_wire_size,
3861				      q_vector->tx.total_bytes / packets);
3862
3863	/* if avg_wire_size isn't set no work was done */
3864	if (!avg_wire_size)
3865		goto clear_counts;
3866
3867	/* Add 24 bytes to size to account for CRC, preamble, and gap */
3868	avg_wire_size += 24;
3869
3870	/* Don't starve jumbo frames */
3871	avg_wire_size = min(avg_wire_size, 3000);
3872
3873	/* Give a little boost to mid-size frames */
3874	if (avg_wire_size > 300 && avg_wire_size < 1200)
3875		new_val = avg_wire_size / 3;
3876	else
3877		new_val = avg_wire_size / 2;
3878
3879	/* conservative mode (itr 3) eliminates the lowest_latency setting */
3880	if (new_val < IGC_20K_ITR &&
3881	    ((q_vector->rx.ring && adapter->rx_itr_setting == 3) ||
3882	    (!q_vector->rx.ring && adapter->tx_itr_setting == 3)))
3883		new_val = IGC_20K_ITR;
3884
3885set_itr_val:
3886	if (new_val != q_vector->itr_val) {
3887		q_vector->itr_val = new_val;
3888		q_vector->set_itr = 1;
3889	}
3890clear_counts:
3891	q_vector->rx.total_bytes = 0;
3892	q_vector->rx.total_packets = 0;
3893	q_vector->tx.total_bytes = 0;
3894	q_vector->tx.total_packets = 0;
3895}
3896
3897static void igc_ring_irq_enable(struct igc_q_vector *q_vector)
3898{
3899	struct igc_adapter *adapter = q_vector->adapter;
3900	struct igc_hw *hw = &adapter->hw;
3901
3902	if ((q_vector->rx.ring && (adapter->rx_itr_setting & 3)) ||
3903	    (!q_vector->rx.ring && (adapter->tx_itr_setting & 3))) {
3904		if (adapter->num_q_vectors == 1)
3905			igc_set_itr(q_vector);
3906		else
3907			igc_update_ring_itr(q_vector);
3908	}
3909
3910	if (!test_bit(__IGC_DOWN, &adapter->state)) {
3911		if (adapter->msix_entries)
3912			wr32(IGC_EIMS, q_vector->eims_value);
3913		else
3914			igc_irq_enable(adapter);
3915	}
3916}
3917
3918static void igc_add_ring(struct igc_ring *ring,
3919			 struct igc_ring_container *head)
3920{
3921	head->ring = ring;
3922	head->count++;
3923}
3924
3925/**
3926 * igc_cache_ring_register - Descriptor ring to register mapping
3927 * @adapter: board private structure to initialize
3928 *
3929 * Once we know the feature-set enabled for the device, we'll cache
3930 * the register offset the descriptor ring is assigned to.
3931 */
3932static void igc_cache_ring_register(struct igc_adapter *adapter)
3933{
3934	int i = 0, j = 0;
3935
3936	switch (adapter->hw.mac.type) {
3937	case igc_i225:
3938	default:
3939		for (; i < adapter->num_rx_queues; i++)
3940			adapter->rx_ring[i]->reg_idx = i;
3941		for (; j < adapter->num_tx_queues; j++)
3942			adapter->tx_ring[j]->reg_idx = j;
3943		break;
3944	}
3945}
3946
3947/**
3948 * igc_poll - NAPI Rx polling callback
3949 * @napi: napi polling structure
3950 * @budget: count of how many packets we should handle
3951 */
3952static int igc_poll(struct napi_struct *napi, int budget)
3953{
3954	struct igc_q_vector *q_vector = container_of(napi,
3955						     struct igc_q_vector,
3956						     napi);
3957	struct igc_ring *rx_ring = q_vector->rx.ring;
3958	bool clean_complete = true;
3959	int work_done = 0;
3960
3961	if (q_vector->tx.ring)
3962		clean_complete = igc_clean_tx_irq(q_vector, budget);
3963
3964	if (rx_ring) {
3965		int cleaned = rx_ring->xsk_pool ?
3966			      igc_clean_rx_irq_zc(q_vector, budget) :
3967			      igc_clean_rx_irq(q_vector, budget);
3968
3969		work_done += cleaned;
3970		if (cleaned >= budget)
3971			clean_complete = false;
3972	}
3973
3974	/* If all work not completed, return budget and keep polling */
3975	if (!clean_complete)
3976		return budget;
3977
3978	/* Exit the polling mode, but don't re-enable interrupts if stack might
3979	 * poll us due to busy-polling
3980	 */
3981	if (likely(napi_complete_done(napi, work_done)))
3982		igc_ring_irq_enable(q_vector);
3983
3984	return min(work_done, budget - 1);
3985}
3986
3987/**
3988 * igc_alloc_q_vector - Allocate memory for a single interrupt vector
3989 * @adapter: board private structure to initialize
3990 * @v_count: q_vectors allocated on adapter, used for ring interleaving
3991 * @v_idx: index of vector in adapter struct
3992 * @txr_count: total number of Tx rings to allocate
3993 * @txr_idx: index of first Tx ring to allocate
3994 * @rxr_count: total number of Rx rings to allocate
3995 * @rxr_idx: index of first Rx ring to allocate
3996 *
3997 * We allocate one q_vector.  If allocation fails we return -ENOMEM.
3998 */
3999static int igc_alloc_q_vector(struct igc_adapter *adapter,
4000			      unsigned int v_count, unsigned int v_idx,
4001			      unsigned int txr_count, unsigned int txr_idx,
4002			      unsigned int rxr_count, unsigned int rxr_idx)
4003{
4004	struct igc_q_vector *q_vector;
4005	struct igc_ring *ring;
4006	int ring_count;
4007
4008	/* igc only supports 1 Tx and/or 1 Rx queue per vector */
4009	if (txr_count > 1 || rxr_count > 1)
4010		return -ENOMEM;
4011
4012	ring_count = txr_count + rxr_count;
4013
4014	/* allocate q_vector and rings */
4015	q_vector = adapter->q_vector[v_idx];
4016	if (!q_vector)
4017		q_vector = kzalloc(struct_size(q_vector, ring, ring_count),
4018				   GFP_KERNEL);
4019	else
4020		memset(q_vector, 0, struct_size(q_vector, ring, ring_count));
4021	if (!q_vector)
4022		return -ENOMEM;
4023
4024	/* initialize NAPI */
4025	netif_napi_add(adapter->netdev, &q_vector->napi,
4026		       igc_poll, 64);
4027
4028	/* tie q_vector and adapter together */
4029	adapter->q_vector[v_idx] = q_vector;
4030	q_vector->adapter = adapter;
4031
4032	/* initialize work limits */
4033	q_vector->tx.work_limit = adapter->tx_work_limit;
4034
4035	/* initialize ITR configuration */
4036	q_vector->itr_register = adapter->io_addr + IGC_EITR(0);
4037	q_vector->itr_val = IGC_START_ITR;
4038
4039	/* initialize pointer to rings */
4040	ring = q_vector->ring;
4041
4042	/* initialize ITR */
4043	if (rxr_count) {
4044		/* rx or rx/tx vector */
4045		if (!adapter->rx_itr_setting || adapter->rx_itr_setting > 3)
4046			q_vector->itr_val = adapter->rx_itr_setting;
4047	} else {
4048		/* tx only vector */
4049		if (!adapter->tx_itr_setting || adapter->tx_itr_setting > 3)
4050			q_vector->itr_val = adapter->tx_itr_setting;
4051	}
4052
4053	if (txr_count) {
4054		/* assign generic ring traits */
4055		ring->dev = &adapter->pdev->dev;
4056		ring->netdev = adapter->netdev;
4057
4058		/* configure backlink on ring */
4059		ring->q_vector = q_vector;
4060
4061		/* update q_vector Tx values */
4062		igc_add_ring(ring, &q_vector->tx);
4063
4064		/* apply Tx specific ring traits */
4065		ring->count = adapter->tx_ring_count;
4066		ring->queue_index = txr_idx;
4067
4068		/* assign ring to adapter */
4069		adapter->tx_ring[txr_idx] = ring;
4070
4071		/* push pointer to next ring */
4072		ring++;
4073	}
4074
4075	if (rxr_count) {
4076		/* assign generic ring traits */
4077		ring->dev = &adapter->pdev->dev;
4078		ring->netdev = adapter->netdev;
4079
4080		/* configure backlink on ring */
4081		ring->q_vector = q_vector;
4082
4083		/* update q_vector Rx values */
4084		igc_add_ring(ring, &q_vector->rx);
4085
4086		/* apply Rx specific ring traits */
4087		ring->count = adapter->rx_ring_count;
4088		ring->queue_index = rxr_idx;
4089
4090		/* assign ring to adapter */
4091		adapter->rx_ring[rxr_idx] = ring;
4092	}
4093
4094	return 0;
4095}
4096
4097/**
4098 * igc_alloc_q_vectors - Allocate memory for interrupt vectors
4099 * @adapter: board private structure to initialize
4100 *
4101 * We allocate one q_vector per queue interrupt.  If allocation fails we
4102 * return -ENOMEM.
4103 */
4104static int igc_alloc_q_vectors(struct igc_adapter *adapter)
4105{
4106	int rxr_remaining = adapter->num_rx_queues;
4107	int txr_remaining = adapter->num_tx_queues;
4108	int rxr_idx = 0, txr_idx = 0, v_idx = 0;
4109	int q_vectors = adapter->num_q_vectors;
4110	int err;
4111
4112	if (q_vectors >= (rxr_remaining + txr_remaining)) {
4113		for (; rxr_remaining; v_idx++) {
4114			err = igc_alloc_q_vector(adapter, q_vectors, v_idx,
4115						 0, 0, 1, rxr_idx);
4116
4117			if (err)
4118				goto err_out;
4119
4120			/* update counts and index */
4121			rxr_remaining--;
4122			rxr_idx++;
4123		}
4124	}
4125
4126	for (; v_idx < q_vectors; v_idx++) {
4127		int rqpv = DIV_ROUND_UP(rxr_remaining, q_vectors - v_idx);
4128		int tqpv = DIV_ROUND_UP(txr_remaining, q_vectors - v_idx);
4129
4130		err = igc_alloc_q_vector(adapter, q_vectors, v_idx,
4131					 tqpv, txr_idx, rqpv, rxr_idx);
4132
4133		if (err)
4134			goto err_out;
4135
4136		/* update counts and index */
4137		rxr_remaining -= rqpv;
4138		txr_remaining -= tqpv;
4139		rxr_idx++;
4140		txr_idx++;
4141	}
4142
4143	return 0;
4144
4145err_out:
4146	adapter->num_tx_queues = 0;
4147	adapter->num_rx_queues = 0;
4148	adapter->num_q_vectors = 0;
4149
4150	while (v_idx--)
4151		igc_free_q_vector(adapter, v_idx);
4152
4153	return -ENOMEM;
4154}
4155
4156/**
4157 * igc_init_interrupt_scheme - initialize interrupts, allocate queues/vectors
4158 * @adapter: Pointer to adapter structure
4159 * @msix: boolean for MSI-X capability
4160 *
4161 * This function initializes the interrupts and allocates all of the queues.
4162 */
4163static int igc_init_interrupt_scheme(struct igc_adapter *adapter, bool msix)
4164{
4165	struct net_device *dev = adapter->netdev;
4166	int err = 0;
4167
4168	igc_set_interrupt_capability(adapter, msix);
4169
4170	err = igc_alloc_q_vectors(adapter);
4171	if (err) {
4172		netdev_err(dev, "Unable to allocate memory for vectors\n");
4173		goto err_alloc_q_vectors;
4174	}
4175
4176	igc_cache_ring_register(adapter);
4177
4178	return 0;
4179
4180err_alloc_q_vectors:
4181	igc_reset_interrupt_capability(adapter);
4182	return err;
4183}
4184
4185/**
4186 * igc_sw_init - Initialize general software structures (struct igc_adapter)
4187 * @adapter: board private structure to initialize
4188 *
4189 * igc_sw_init initializes the Adapter private data structure.
4190 * Fields are initialized based on PCI device information and
4191 * OS network device settings (MTU size).
4192 */
4193static int igc_sw_init(struct igc_adapter *adapter)
4194{
4195	struct net_device *netdev = adapter->netdev;
4196	struct pci_dev *pdev = adapter->pdev;
4197	struct igc_hw *hw = &adapter->hw;
4198
4199	pci_read_config_word(pdev, PCI_COMMAND, &hw->bus.pci_cmd_word);
4200
4201	/* set default ring sizes */
4202	adapter->tx_ring_count = IGC_DEFAULT_TXD;
4203	adapter->rx_ring_count = IGC_DEFAULT_RXD;
4204
4205	/* set default ITR values */
4206	adapter->rx_itr_setting = IGC_DEFAULT_ITR;
4207	adapter->tx_itr_setting = IGC_DEFAULT_ITR;
4208
4209	/* set default work limits */
4210	adapter->tx_work_limit = IGC_DEFAULT_TX_WORK;
4211
4212	/* adjust max frame to be at least the size of a standard frame */
4213	adapter->max_frame_size = netdev->mtu + ETH_HLEN + ETH_FCS_LEN +
4214				VLAN_HLEN;
4215	adapter->min_frame_size = ETH_ZLEN + ETH_FCS_LEN;
4216
4217	mutex_init(&adapter->nfc_rule_lock);
4218	INIT_LIST_HEAD(&adapter->nfc_rule_list);
4219	adapter->nfc_rule_count = 0;
4220
4221	spin_lock_init(&adapter->stats64_lock);
4222	/* Assume MSI-X interrupts, will be checked during IRQ allocation */
4223	adapter->flags |= IGC_FLAG_HAS_MSIX;
4224
4225	igc_init_queue_configuration(adapter);
4226
4227	/* This call may decrease the number of queues */
4228	if (igc_init_interrupt_scheme(adapter, true)) {
4229		netdev_err(netdev, "Unable to allocate memory for queues\n");
4230		return -ENOMEM;
4231	}
4232
4233	/* Explicitly disable IRQ since the NIC can be in any state. */
4234	igc_irq_disable(adapter);
4235
4236	set_bit(__IGC_DOWN, &adapter->state);
4237
4238	return 0;
4239}
4240
4241/**
4242 * igc_up - Open the interface and prepare it to handle traffic
4243 * @adapter: board private structure
4244 */
4245void igc_up(struct igc_adapter *adapter)
4246{
4247	struct igc_hw *hw = &adapter->hw;
4248	int i = 0;
4249
4250	/* hardware has been reset, we need to reload some things */
4251	igc_configure(adapter);
4252
4253	clear_bit(__IGC_DOWN, &adapter->state);
4254
4255	for (i = 0; i < adapter->num_q_vectors; i++)
4256		napi_enable(&adapter->q_vector[i]->napi);
4257
4258	if (adapter->msix_entries)
4259		igc_configure_msix(adapter);
4260	else
4261		igc_assign_vector(adapter->q_vector[0], 0);
4262
4263	/* Clear any pending interrupts. */
4264	rd32(IGC_ICR);
4265	igc_irq_enable(adapter);
4266
4267	netif_tx_start_all_queues(adapter->netdev);
4268
4269	/* start the watchdog. */
4270	hw->mac.get_link_status = true;
4271	schedule_work(&adapter->watchdog_task);
4272}
4273
4274/**
4275 * igc_update_stats - Update the board statistics counters
4276 * @adapter: board private structure
4277 */
4278void igc_update_stats(struct igc_adapter *adapter)
4279{
4280	struct rtnl_link_stats64 *net_stats = &adapter->stats64;
4281	struct pci_dev *pdev = adapter->pdev;
4282	struct igc_hw *hw = &adapter->hw;
4283	u64 _bytes, _packets;
4284	u64 bytes, packets;
4285	unsigned int start;
4286	u32 mpc;
4287	int i;
4288
4289	/* Prevent stats update while adapter is being reset, or if the pci
4290	 * connection is down.
4291	 */
4292	if (adapter->link_speed == 0)
4293		return;
4294	if (pci_channel_offline(pdev))
4295		return;
4296
4297	packets = 0;
4298	bytes = 0;
4299
4300	rcu_read_lock();
4301	for (i = 0; i < adapter->num_rx_queues; i++) {
4302		struct igc_ring *ring = adapter->rx_ring[i];
4303		u32 rqdpc = rd32(IGC_RQDPC(i));
4304
4305		if (hw->mac.type >= igc_i225)
4306			wr32(IGC_RQDPC(i), 0);
4307
4308		if (rqdpc) {
4309			ring->rx_stats.drops += rqdpc;
4310			net_stats->rx_fifo_errors += rqdpc;
4311		}
4312
4313		do {
4314			start = u64_stats_fetch_begin_irq(&ring->rx_syncp);
4315			_bytes = ring->rx_stats.bytes;
4316			_packets = ring->rx_stats.packets;
4317		} while (u64_stats_fetch_retry_irq(&ring->rx_syncp, start));
4318		bytes += _bytes;
4319		packets += _packets;
4320	}
4321
4322	net_stats->rx_bytes = bytes;
4323	net_stats->rx_packets = packets;
4324
4325	packets = 0;
4326	bytes = 0;
4327	for (i = 0; i < adapter->num_tx_queues; i++) {
4328		struct igc_ring *ring = adapter->tx_ring[i];
4329
4330		do {
4331			start = u64_stats_fetch_begin_irq(&ring->tx_syncp);
4332			_bytes = ring->tx_stats.bytes;
4333			_packets = ring->tx_stats.packets;
4334		} while (u64_stats_fetch_retry_irq(&ring->tx_syncp, start));
4335		bytes += _bytes;
4336		packets += _packets;
4337	}
4338	net_stats->tx_bytes = bytes;
4339	net_stats->tx_packets = packets;
4340	rcu_read_unlock();
4341
4342	/* read stats registers */
4343	adapter->stats.crcerrs += rd32(IGC_CRCERRS);
4344	adapter->stats.gprc += rd32(IGC_GPRC);
4345	adapter->stats.gorc += rd32(IGC_GORCL);
4346	rd32(IGC_GORCH); /* clear GORCL */
4347	adapter->stats.bprc += rd32(IGC_BPRC);
4348	adapter->stats.mprc += rd32(IGC_MPRC);
4349	adapter->stats.roc += rd32(IGC_ROC);
4350
4351	adapter->stats.prc64 += rd32(IGC_PRC64);
4352	adapter->stats.prc127 += rd32(IGC_PRC127);
4353	adapter->stats.prc255 += rd32(IGC_PRC255);
4354	adapter->stats.prc511 += rd32(IGC_PRC511);
4355	adapter->stats.prc1023 += rd32(IGC_PRC1023);
4356	adapter->stats.prc1522 += rd32(IGC_PRC1522);
4357	adapter->stats.tlpic += rd32(IGC_TLPIC);
4358	adapter->stats.rlpic += rd32(IGC_RLPIC);
4359	adapter->stats.hgptc += rd32(IGC_HGPTC);
4360
4361	mpc = rd32(IGC_MPC);
4362	adapter->stats.mpc += mpc;
4363	net_stats->rx_fifo_errors += mpc;
4364	adapter->stats.scc += rd32(IGC_SCC);
4365	adapter->stats.ecol += rd32(IGC_ECOL);
4366	adapter->stats.mcc += rd32(IGC_MCC);
4367	adapter->stats.latecol += rd32(IGC_LATECOL);
4368	adapter->stats.dc += rd32(IGC_DC);
4369	adapter->stats.rlec += rd32(IGC_RLEC);
4370	adapter->stats.xonrxc += rd32(IGC_XONRXC);
4371	adapter->stats.xontxc += rd32(IGC_XONTXC);
4372	adapter->stats.xoffrxc += rd32(IGC_XOFFRXC);
4373	adapter->stats.xofftxc += rd32(IGC_XOFFTXC);
4374	adapter->stats.fcruc += rd32(IGC_FCRUC);
4375	adapter->stats.gptc += rd32(IGC_GPTC);
4376	adapter->stats.gotc += rd32(IGC_GOTCL);
4377	rd32(IGC_GOTCH); /* clear GOTCL */
4378	adapter->stats.rnbc += rd32(IGC_RNBC);
4379	adapter->stats.ruc += rd32(IGC_RUC);
4380	adapter->stats.rfc += rd32(IGC_RFC);
4381	adapter->stats.rjc += rd32(IGC_RJC);
4382	adapter->stats.tor += rd32(IGC_TORH);
4383	adapter->stats.tot += rd32(IGC_TOTH);
4384	adapter->stats.tpr += rd32(IGC_TPR);
4385
4386	adapter->stats.ptc64 += rd32(IGC_PTC64);
4387	adapter->stats.ptc127 += rd32(IGC_PTC127);
4388	adapter->stats.ptc255 += rd32(IGC_PTC255);
4389	adapter->stats.ptc511 += rd32(IGC_PTC511);
4390	adapter->stats.ptc1023 += rd32(IGC_PTC1023);
4391	adapter->stats.ptc1522 += rd32(IGC_PTC1522);
4392
4393	adapter->stats.mptc += rd32(IGC_MPTC);
4394	adapter->stats.bptc += rd32(IGC_BPTC);
4395
4396	adapter->stats.tpt += rd32(IGC_TPT);
4397	adapter->stats.colc += rd32(IGC_COLC);
4398	adapter->stats.colc += rd32(IGC_RERC);
4399
4400	adapter->stats.algnerrc += rd32(IGC_ALGNERRC);
4401
4402	adapter->stats.tsctc += rd32(IGC_TSCTC);
4403
4404	adapter->stats.iac += rd32(IGC_IAC);
4405
4406	/* Fill out the OS statistics structure */
4407	net_stats->multicast = adapter->stats.mprc;
4408	net_stats->collisions = adapter->stats.colc;
4409
4410	/* Rx Errors */
4411
4412	/* RLEC on some newer hardware can be incorrect so build
4413	 * our own version based on RUC and ROC
4414	 */
4415	net_stats->rx_errors = adapter->stats.rxerrc +
4416		adapter->stats.crcerrs + adapter->stats.algnerrc +
4417		adapter->stats.ruc + adapter->stats.roc +
4418		adapter->stats.cexterr;
4419	net_stats->rx_length_errors = adapter->stats.ruc +
4420				      adapter->stats.roc;
4421	net_stats->rx_crc_errors = adapter->stats.crcerrs;
4422	net_stats->rx_frame_errors = adapter->stats.algnerrc;
4423	net_stats->rx_missed_errors = adapter->stats.mpc;
4424
4425	/* Tx Errors */
4426	net_stats->tx_errors = adapter->stats.ecol +
4427			       adapter->stats.latecol;
4428	net_stats->tx_aborted_errors = adapter->stats.ecol;
4429	net_stats->tx_window_errors = adapter->stats.latecol;
4430	net_stats->tx_carrier_errors = adapter->stats.tncrs;
4431
4432	/* Tx Dropped needs to be maintained elsewhere */
4433
4434	/* Management Stats */
4435	adapter->stats.mgptc += rd32(IGC_MGTPTC);
4436	adapter->stats.mgprc += rd32(IGC_MGTPRC);
4437	adapter->stats.mgpdc += rd32(IGC_MGTPDC);
4438}
4439
4440/**
4441 * igc_down - Close the interface
4442 * @adapter: board private structure
4443 */
4444void igc_down(struct igc_adapter *adapter)
4445{
4446	struct net_device *netdev = adapter->netdev;
4447	struct igc_hw *hw = &adapter->hw;
4448	u32 tctl, rctl;
4449	int i = 0;
4450
4451	set_bit(__IGC_DOWN, &adapter->state);
4452
4453	igc_ptp_suspend(adapter);
4454
4455	if (pci_device_is_present(adapter->pdev)) {
4456		/* disable receives in the hardware */
4457		rctl = rd32(IGC_RCTL);
4458		wr32(IGC_RCTL, rctl & ~IGC_RCTL_EN);
4459		/* flush and sleep below */
4460	}
4461	/* set trans_start so we don't get spurious watchdogs during reset */
4462	netif_trans_update(netdev);
4463
4464	netif_carrier_off(netdev);
4465	netif_tx_stop_all_queues(netdev);
4466
4467	if (pci_device_is_present(adapter->pdev)) {
4468		/* disable transmits in the hardware */
4469		tctl = rd32(IGC_TCTL);
4470		tctl &= ~IGC_TCTL_EN;
4471		wr32(IGC_TCTL, tctl);
4472		/* flush both disables and wait for them to finish */
4473		wrfl();
4474		usleep_range(10000, 20000);
4475
4476		igc_irq_disable(adapter);
4477	}
4478
4479	adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
4480
4481	for (i = 0; i < adapter->num_q_vectors; i++) {
4482		if (adapter->q_vector[i]) {
4483			napi_synchronize(&adapter->q_vector[i]->napi);
4484			napi_disable(&adapter->q_vector[i]->napi);
4485		}
4486	}
4487
4488	del_timer_sync(&adapter->watchdog_timer);
4489	del_timer_sync(&adapter->phy_info_timer);
4490
4491	/* record the stats before reset*/
4492	spin_lock(&adapter->stats64_lock);
4493	igc_update_stats(adapter);
4494	spin_unlock(&adapter->stats64_lock);
4495
4496	adapter->link_speed = 0;
4497	adapter->link_duplex = 0;
4498
4499	if (!pci_channel_offline(adapter->pdev))
4500		igc_reset(adapter);
4501
4502	/* clear VLAN promisc flag so VFTA will be updated if necessary */
4503	adapter->flags &= ~IGC_FLAG_VLAN_PROMISC;
4504
4505	igc_clean_all_tx_rings(adapter);
4506	igc_clean_all_rx_rings(adapter);
4507}
4508
4509void igc_reinit_locked(struct igc_adapter *adapter)
4510{
4511	while (test_and_set_bit(__IGC_RESETTING, &adapter->state))
4512		usleep_range(1000, 2000);
4513	igc_down(adapter);
4514	igc_up(adapter);
4515	clear_bit(__IGC_RESETTING, &adapter->state);
4516}
4517
4518static void igc_reset_task(struct work_struct *work)
4519{
4520	struct igc_adapter *adapter;
4521
4522	adapter = container_of(work, struct igc_adapter, reset_task);
4523
4524	rtnl_lock();
4525	/* If we're already down or resetting, just bail */
4526	if (test_bit(__IGC_DOWN, &adapter->state) ||
4527	    test_bit(__IGC_RESETTING, &adapter->state)) {
4528		rtnl_unlock();
4529		return;
4530	}
4531
4532	igc_rings_dump(adapter);
4533	igc_regs_dump(adapter);
4534	netdev_err(adapter->netdev, "Reset adapter\n");
4535	igc_reinit_locked(adapter);
4536	rtnl_unlock();
4537}
4538
4539/**
4540 * igc_change_mtu - Change the Maximum Transfer Unit
4541 * @netdev: network interface device structure
4542 * @new_mtu: new value for maximum frame size
4543 *
4544 * Returns 0 on success, negative on failure
4545 */
4546static int igc_change_mtu(struct net_device *netdev, int new_mtu)
4547{
4548	int max_frame = new_mtu + ETH_HLEN + ETH_FCS_LEN + VLAN_HLEN;
4549	struct igc_adapter *adapter = netdev_priv(netdev);
4550
4551	if (igc_xdp_is_enabled(adapter) && new_mtu > ETH_DATA_LEN) {
4552		netdev_dbg(netdev, "Jumbo frames not supported with XDP");
4553		return -EINVAL;
4554	}
4555
4556	/* adjust max frame to be at least the size of a standard frame */
4557	if (max_frame < (ETH_FRAME_LEN + ETH_FCS_LEN))
4558		max_frame = ETH_FRAME_LEN + ETH_FCS_LEN;
4559
4560	while (test_and_set_bit(__IGC_RESETTING, &adapter->state))
4561		usleep_range(1000, 2000);
4562
4563	/* igc_down has a dependency on max_frame_size */
4564	adapter->max_frame_size = max_frame;
4565
4566	if (netif_running(netdev))
4567		igc_down(adapter);
4568
4569	netdev_dbg(netdev, "changing MTU from %d to %d\n", netdev->mtu, new_mtu);
4570	netdev->mtu = new_mtu;
4571
4572	if (netif_running(netdev))
4573		igc_up(adapter);
4574	else
4575		igc_reset(adapter);
4576
4577	clear_bit(__IGC_RESETTING, &adapter->state);
4578
4579	return 0;
4580}
4581
4582/**
4583 * igc_get_stats64 - Get System Network Statistics
4584 * @netdev: network interface device structure
4585 * @stats: rtnl_link_stats64 pointer
4586 *
4587 * Returns the address of the device statistics structure.
4588 * The statistics are updated here and also from the timer callback.
4589 */
4590static void igc_get_stats64(struct net_device *netdev,
4591			    struct rtnl_link_stats64 *stats)
4592{
4593	struct igc_adapter *adapter = netdev_priv(netdev);
4594
4595	spin_lock(&adapter->stats64_lock);
4596	if (!test_bit(__IGC_RESETTING, &adapter->state))
4597		igc_update_stats(adapter);
4598	memcpy(stats, &adapter->stats64, sizeof(*stats));
4599	spin_unlock(&adapter->stats64_lock);
4600}
4601
4602static netdev_features_t igc_fix_features(struct net_device *netdev,
4603					  netdev_features_t features)
4604{
4605	/* Since there is no support for separate Rx/Tx vlan accel
4606	 * enable/disable make sure Tx flag is always in same state as Rx.
4607	 */
4608	if (features & NETIF_F_HW_VLAN_CTAG_RX)
4609		features |= NETIF_F_HW_VLAN_CTAG_TX;
4610	else
4611		features &= ~NETIF_F_HW_VLAN_CTAG_TX;
4612
4613	return features;
4614}
4615
4616static int igc_set_features(struct net_device *netdev,
4617			    netdev_features_t features)
4618{
4619	netdev_features_t changed = netdev->features ^ features;
4620	struct igc_adapter *adapter = netdev_priv(netdev);
4621
4622	if (changed & NETIF_F_HW_VLAN_CTAG_RX)
4623		igc_vlan_mode(netdev, features);
4624
4625	/* Add VLAN support */
4626	if (!(changed & (NETIF_F_RXALL | NETIF_F_NTUPLE)))
4627		return 0;
4628
4629	if (!(features & NETIF_F_NTUPLE))
4630		igc_flush_nfc_rules(adapter);
4631
4632	netdev->features = features;
4633
4634	if (netif_running(netdev))
4635		igc_reinit_locked(adapter);
4636	else
4637		igc_reset(adapter);
4638
4639	return 1;
4640}
4641
4642static netdev_features_t
4643igc_features_check(struct sk_buff *skb, struct net_device *dev,
4644		   netdev_features_t features)
4645{
4646	unsigned int network_hdr_len, mac_hdr_len;
4647
4648	/* Make certain the headers can be described by a context descriptor */
4649	mac_hdr_len = skb_network_header(skb) - skb->data;
4650	if (unlikely(mac_hdr_len > IGC_MAX_MAC_HDR_LEN))
4651		return features & ~(NETIF_F_HW_CSUM |
4652				    NETIF_F_SCTP_CRC |
4653				    NETIF_F_HW_VLAN_CTAG_TX |
4654				    NETIF_F_TSO |
4655				    NETIF_F_TSO6);
4656
4657	network_hdr_len = skb_checksum_start(skb) - skb_network_header(skb);
4658	if (unlikely(network_hdr_len >  IGC_MAX_NETWORK_HDR_LEN))
4659		return features & ~(NETIF_F_HW_CSUM |
4660				    NETIF_F_SCTP_CRC |
4661				    NETIF_F_TSO |
4662				    NETIF_F_TSO6);
4663
4664	/* We can only support IPv4 TSO in tunnels if we can mangle the
4665	 * inner IP ID field, so strip TSO if MANGLEID is not supported.
4666	 */
4667	if (skb->encapsulation && !(features & NETIF_F_TSO_MANGLEID))
4668		features &= ~NETIF_F_TSO;
4669
4670	return features;
4671}
4672
4673static void igc_tsync_interrupt(struct igc_adapter *adapter)
4674{
4675	u32 ack, tsauxc, sec, nsec, tsicr;
4676	struct igc_hw *hw = &adapter->hw;
4677	struct ptp_clock_event event;
4678	struct timespec64 ts;
4679
4680	tsicr = rd32(IGC_TSICR);
4681	ack = 0;
4682
4683	if (tsicr & IGC_TSICR_SYS_WRAP) {
4684		event.type = PTP_CLOCK_PPS;
4685		if (adapter->ptp_caps.pps)
4686			ptp_clock_event(adapter->ptp_clock, &event);
4687		ack |= IGC_TSICR_SYS_WRAP;
4688	}
4689
4690	if (tsicr & IGC_TSICR_TXTS) {
4691		/* retrieve hardware timestamp */
4692		schedule_work(&adapter->ptp_tx_work);
4693		ack |= IGC_TSICR_TXTS;
4694	}
4695
4696	if (tsicr & IGC_TSICR_TT0) {
4697		spin_lock(&adapter->tmreg_lock);
4698		ts = timespec64_add(adapter->perout[0].start,
4699				    adapter->perout[0].period);
4700		wr32(IGC_TRGTTIML0, ts.tv_nsec | IGC_TT_IO_TIMER_SEL_SYSTIM0);
4701		wr32(IGC_TRGTTIMH0, (u32)ts.tv_sec);
4702		tsauxc = rd32(IGC_TSAUXC);
4703		tsauxc |= IGC_TSAUXC_EN_TT0;
4704		wr32(IGC_TSAUXC, tsauxc);
4705		adapter->perout[0].start = ts;
4706		spin_unlock(&adapter->tmreg_lock);
4707		ack |= IGC_TSICR_TT0;
4708	}
4709
4710	if (tsicr & IGC_TSICR_TT1) {
4711		spin_lock(&adapter->tmreg_lock);
4712		ts = timespec64_add(adapter->perout[1].start,
4713				    adapter->perout[1].period);
4714		wr32(IGC_TRGTTIML1, ts.tv_nsec | IGC_TT_IO_TIMER_SEL_SYSTIM0);
4715		wr32(IGC_TRGTTIMH1, (u32)ts.tv_sec);
4716		tsauxc = rd32(IGC_TSAUXC);
4717		tsauxc |= IGC_TSAUXC_EN_TT1;
4718		wr32(IGC_TSAUXC, tsauxc);
4719		adapter->perout[1].start = ts;
4720		spin_unlock(&adapter->tmreg_lock);
4721		ack |= IGC_TSICR_TT1;
4722	}
4723
4724	if (tsicr & IGC_TSICR_AUTT0) {
4725		nsec = rd32(IGC_AUXSTMPL0);
4726		sec  = rd32(IGC_AUXSTMPH0);
4727		event.type = PTP_CLOCK_EXTTS;
4728		event.index = 0;
4729		event.timestamp = sec * NSEC_PER_SEC + nsec;
4730		ptp_clock_event(adapter->ptp_clock, &event);
4731		ack |= IGC_TSICR_AUTT0;
4732	}
4733
4734	if (tsicr & IGC_TSICR_AUTT1) {
4735		nsec = rd32(IGC_AUXSTMPL1);
4736		sec  = rd32(IGC_AUXSTMPH1);
4737		event.type = PTP_CLOCK_EXTTS;
4738		event.index = 1;
4739		event.timestamp = sec * NSEC_PER_SEC + nsec;
4740		ptp_clock_event(adapter->ptp_clock, &event);
4741		ack |= IGC_TSICR_AUTT1;
4742	}
4743
4744	/* acknowledge the interrupts */
4745	wr32(IGC_TSICR, ack);
4746}
4747
4748/**
4749 * igc_msix_other - msix other interrupt handler
4750 * @irq: interrupt number
4751 * @data: pointer to a q_vector
4752 */
4753static irqreturn_t igc_msix_other(int irq, void *data)
4754{
4755	struct igc_adapter *adapter = data;
4756	struct igc_hw *hw = &adapter->hw;
4757	u32 icr = rd32(IGC_ICR);
4758
4759	/* reading ICR causes bit 31 of EICR to be cleared */
4760	if (icr & IGC_ICR_DRSTA)
4761		schedule_work(&adapter->reset_task);
4762
4763	if (icr & IGC_ICR_DOUTSYNC) {
4764		/* HW is reporting DMA is out of sync */
4765		adapter->stats.doosync++;
4766	}
4767
4768	if (icr & IGC_ICR_LSC) {
4769		hw->mac.get_link_status = true;
4770		/* guard against interrupt when we're going down */
4771		if (!test_bit(__IGC_DOWN, &adapter->state))
4772			mod_timer(&adapter->watchdog_timer, jiffies + 1);
4773	}
4774
4775	if (icr & IGC_ICR_TS)
4776		igc_tsync_interrupt(adapter);
4777
4778	wr32(IGC_EIMS, adapter->eims_other);
4779
4780	return IRQ_HANDLED;
4781}
4782
4783static void igc_write_itr(struct igc_q_vector *q_vector)
4784{
4785	u32 itr_val = q_vector->itr_val & IGC_QVECTOR_MASK;
4786
4787	if (!q_vector->set_itr)
4788		return;
4789
4790	if (!itr_val)
4791		itr_val = IGC_ITR_VAL_MASK;
4792
4793	itr_val |= IGC_EITR_CNT_IGNR;
4794
4795	writel(itr_val, q_vector->itr_register);
4796	q_vector->set_itr = 0;
4797}
4798
4799static irqreturn_t igc_msix_ring(int irq, void *data)
4800{
4801	struct igc_q_vector *q_vector = data;
4802
4803	/* Write the ITR value calculated from the previous interrupt. */
4804	igc_write_itr(q_vector);
4805
4806	napi_schedule(&q_vector->napi);
4807
4808	return IRQ_HANDLED;
4809}
4810
4811/**
4812 * igc_request_msix - Initialize MSI-X interrupts
4813 * @adapter: Pointer to adapter structure
4814 *
4815 * igc_request_msix allocates MSI-X vectors and requests interrupts from the
4816 * kernel.
4817 */
4818static int igc_request_msix(struct igc_adapter *adapter)
4819{
4820	unsigned int num_q_vectors = adapter->num_q_vectors;
4821	int i = 0, err = 0, vector = 0, free_vector = 0;
4822	struct net_device *netdev = adapter->netdev;
4823
4824	err = request_irq(adapter->msix_entries[vector].vector,
4825			  &igc_msix_other, 0, netdev->name, adapter);
4826	if (err)
4827		goto err_out;
4828
4829	if (num_q_vectors > MAX_Q_VECTORS) {
4830		num_q_vectors = MAX_Q_VECTORS;
4831		dev_warn(&adapter->pdev->dev,
4832			 "The number of queue vectors (%d) is higher than max allowed (%d)\n",
4833			 adapter->num_q_vectors, MAX_Q_VECTORS);
4834	}
4835	for (i = 0; i < num_q_vectors; i++) {
4836		struct igc_q_vector *q_vector = adapter->q_vector[i];
4837
4838		vector++;
4839
4840		q_vector->itr_register = adapter->io_addr + IGC_EITR(vector);
4841
4842		if (q_vector->rx.ring && q_vector->tx.ring)
4843			sprintf(q_vector->name, "%s-TxRx-%u", netdev->name,
4844				q_vector->rx.ring->queue_index);
4845		else if (q_vector->tx.ring)
4846			sprintf(q_vector->name, "%s-tx-%u", netdev->name,
4847				q_vector->tx.ring->queue_index);
4848		else if (q_vector->rx.ring)
4849			sprintf(q_vector->name, "%s-rx-%u", netdev->name,
4850				q_vector->rx.ring->queue_index);
4851		else
4852			sprintf(q_vector->name, "%s-unused", netdev->name);
4853
4854		err = request_irq(adapter->msix_entries[vector].vector,
4855				  igc_msix_ring, 0, q_vector->name,
4856				  q_vector);
4857		if (err)
4858			goto err_free;
4859	}
4860
4861	igc_configure_msix(adapter);
4862	return 0;
4863
4864err_free:
4865	/* free already assigned IRQs */
4866	free_irq(adapter->msix_entries[free_vector++].vector, adapter);
4867
4868	vector--;
4869	for (i = 0; i < vector; i++) {
4870		free_irq(adapter->msix_entries[free_vector++].vector,
4871			 adapter->q_vector[i]);
4872	}
4873err_out:
4874	return err;
4875}
4876
4877/**
4878 * igc_clear_interrupt_scheme - reset the device to a state of no interrupts
4879 * @adapter: Pointer to adapter structure
4880 *
4881 * This function resets the device so that it has 0 rx queues, tx queues, and
4882 * MSI-X interrupts allocated.
4883 */
4884static void igc_clear_interrupt_scheme(struct igc_adapter *adapter)
4885{
4886	igc_free_q_vectors(adapter);
4887	igc_reset_interrupt_capability(adapter);
4888}
4889
4890/* Need to wait a few seconds after link up to get diagnostic information from
4891 * the phy
4892 */
4893static void igc_update_phy_info(struct timer_list *t)
4894{
4895	struct igc_adapter *adapter = from_timer(adapter, t, phy_info_timer);
4896
4897	igc_get_phy_info(&adapter->hw);
4898}
4899
4900/**
4901 * igc_has_link - check shared code for link and determine up/down
4902 * @adapter: pointer to driver private info
4903 */
4904bool igc_has_link(struct igc_adapter *adapter)
4905{
4906	struct igc_hw *hw = &adapter->hw;
4907	bool link_active = false;
4908
4909	/* get_link_status is set on LSC (link status) interrupt or
4910	 * rx sequence error interrupt.  get_link_status will stay
4911	 * false until the igc_check_for_link establishes link
4912	 * for copper adapters ONLY
4913	 */
4914	switch (hw->phy.media_type) {
4915	case igc_media_type_copper:
4916		if (!hw->mac.get_link_status)
4917			return true;
4918		hw->mac.ops.check_for_link(hw);
4919		link_active = !hw->mac.get_link_status;
4920		break;
4921	default:
4922	case igc_media_type_unknown:
4923		break;
4924	}
4925
4926	if (hw->mac.type == igc_i225 &&
4927	    hw->phy.id == I225_I_PHY_ID) {
4928		if (!netif_carrier_ok(adapter->netdev)) {
4929			adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
4930		} else if (!(adapter->flags & IGC_FLAG_NEED_LINK_UPDATE)) {
4931			adapter->flags |= IGC_FLAG_NEED_LINK_UPDATE;
4932			adapter->link_check_timeout = jiffies;
4933		}
4934	}
4935
4936	return link_active;
4937}
4938
4939/**
4940 * igc_watchdog - Timer Call-back
4941 * @t: timer for the watchdog
4942 */
4943static void igc_watchdog(struct timer_list *t)
4944{
4945	struct igc_adapter *adapter = from_timer(adapter, t, watchdog_timer);
4946	/* Do the rest outside of interrupt context */
4947	schedule_work(&adapter->watchdog_task);
4948}
4949
4950static void igc_watchdog_task(struct work_struct *work)
4951{
4952	struct igc_adapter *adapter = container_of(work,
4953						   struct igc_adapter,
4954						   watchdog_task);
4955	struct net_device *netdev = adapter->netdev;
4956	struct igc_hw *hw = &adapter->hw;
4957	struct igc_phy_info *phy = &hw->phy;
4958	u16 phy_data, retry_count = 20;
4959	u32 link;
4960	int i;
4961
4962	link = igc_has_link(adapter);
4963
4964	if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE) {
4965		if (time_after(jiffies, (adapter->link_check_timeout + HZ)))
4966			adapter->flags &= ~IGC_FLAG_NEED_LINK_UPDATE;
4967		else
4968			link = false;
4969	}
4970
4971	if (link) {
4972		/* Cancel scheduled suspend requests. */
4973		pm_runtime_resume(netdev->dev.parent);
4974
4975		if (!netif_carrier_ok(netdev)) {
4976			u32 ctrl;
4977
4978			hw->mac.ops.get_speed_and_duplex(hw,
4979							 &adapter->link_speed,
4980							 &adapter->link_duplex);
4981
4982			ctrl = rd32(IGC_CTRL);
4983			/* Link status message must follow this format */
4984			netdev_info(netdev,
4985				    "NIC Link is Up %d Mbps %s Duplex, Flow Control: %s\n",
4986				    adapter->link_speed,
4987				    adapter->link_duplex == FULL_DUPLEX ?
4988				    "Full" : "Half",
4989				    (ctrl & IGC_CTRL_TFCE) &&
4990				    (ctrl & IGC_CTRL_RFCE) ? "RX/TX" :
4991				    (ctrl & IGC_CTRL_RFCE) ?  "RX" :
4992				    (ctrl & IGC_CTRL_TFCE) ?  "TX" : "None");
4993
4994			/* disable EEE if enabled */
4995			if ((adapter->flags & IGC_FLAG_EEE) &&
4996			    adapter->link_duplex == HALF_DUPLEX) {
4997				netdev_info(netdev,
4998					    "EEE Disabled: unsupported at half duplex. Re-enable using ethtool when at full duplex\n");
4999				adapter->hw.dev_spec._base.eee_enable = false;
5000				adapter->flags &= ~IGC_FLAG_EEE;
5001			}
5002
5003			/* check if SmartSpeed worked */
5004			igc_check_downshift(hw);
5005			if (phy->speed_downgraded)
5006				netdev_warn(netdev, "Link Speed was downgraded by SmartSpeed\n");
5007
5008			/* adjust timeout factor according to speed/duplex */
5009			adapter->tx_timeout_factor = 1;
5010			switch (adapter->link_speed) {
5011			case SPEED_10:
5012				adapter->tx_timeout_factor = 14;
5013				break;
5014			case SPEED_100:
5015				/* maybe add some timeout factor ? */
5016				break;
5017			}
5018
5019			if (adapter->link_speed != SPEED_1000)
5020				goto no_wait;
5021
5022			/* wait for Remote receiver status OK */
5023retry_read_status:
5024			if (!igc_read_phy_reg(hw, PHY_1000T_STATUS,
5025					      &phy_data)) {
5026				if (!(phy_data & SR_1000T_REMOTE_RX_STATUS) &&
5027				    retry_count) {
5028					msleep(100);
5029					retry_count--;
5030					goto retry_read_status;
5031				} else if (!retry_count) {
5032					netdev_err(netdev, "exceed max 2 second\n");
5033				}
5034			} else {
5035				netdev_err(netdev, "read 1000Base-T Status Reg\n");
5036			}
5037no_wait:
5038			netif_carrier_on(netdev);
5039
5040			/* link state has changed, schedule phy info update */
5041			if (!test_bit(__IGC_DOWN, &adapter->state))
5042				mod_timer(&adapter->phy_info_timer,
5043					  round_jiffies(jiffies + 2 * HZ));
5044		}
5045	} else {
5046		if (netif_carrier_ok(netdev)) {
5047			adapter->link_speed = 0;
5048			adapter->link_duplex = 0;
5049
5050			/* Links status message must follow this format */
5051			netdev_info(netdev, "NIC Link is Down\n");
5052			netif_carrier_off(netdev);
5053
5054			/* link state has changed, schedule phy info update */
5055			if (!test_bit(__IGC_DOWN, &adapter->state))
5056				mod_timer(&adapter->phy_info_timer,
5057					  round_jiffies(jiffies + 2 * HZ));
5058
5059			/* link is down, time to check for alternate media */
5060			if (adapter->flags & IGC_FLAG_MAS_ENABLE) {
5061				if (adapter->flags & IGC_FLAG_MEDIA_RESET) {
5062					schedule_work(&adapter->reset_task);
5063					/* return immediately */
5064					return;
5065				}
5066			}
5067			pm_schedule_suspend(netdev->dev.parent,
5068					    MSEC_PER_SEC * 5);
5069
5070		/* also check for alternate media here */
5071		} else if (!netif_carrier_ok(netdev) &&
5072			   (adapter->flags & IGC_FLAG_MAS_ENABLE)) {
5073			if (adapter->flags & IGC_FLAG_MEDIA_RESET) {
5074				schedule_work(&adapter->reset_task);
5075				/* return immediately */
5076				return;
5077			}
5078		}
5079	}
5080
5081	spin_lock(&adapter->stats64_lock);
5082	igc_update_stats(adapter);
5083	spin_unlock(&adapter->stats64_lock);
5084
5085	for (i = 0; i < adapter->num_tx_queues; i++) {
5086		struct igc_ring *tx_ring = adapter->tx_ring[i];
5087
5088		if (!netif_carrier_ok(netdev)) {
5089			/* We've lost link, so the controller stops DMA,
5090			 * but we've got queued Tx work that's never going
5091			 * to get done, so reset controller to flush Tx.
5092			 * (Do the reset outside of interrupt context).
5093			 */
5094			if (igc_desc_unused(tx_ring) + 1 < tx_ring->count) {
5095				adapter->tx_timeout_count++;
5096				schedule_work(&adapter->reset_task);
5097				/* return immediately since reset is imminent */
5098				return;
5099			}
5100		}
5101
5102		/* Force detection of hung controller every watchdog period */
5103		set_bit(IGC_RING_FLAG_TX_DETECT_HANG, &tx_ring->flags);
5104	}
5105
5106	/* Cause software interrupt to ensure Rx ring is cleaned */
5107	if (adapter->flags & IGC_FLAG_HAS_MSIX) {
5108		u32 eics = 0;
5109
5110		for (i = 0; i < adapter->num_q_vectors; i++)
5111			eics |= adapter->q_vector[i]->eims_value;
5112		wr32(IGC_EICS, eics);
5113	} else {
5114		wr32(IGC_ICS, IGC_ICS_RXDMT0);
5115	}
5116
5117	igc_ptp_tx_hang(adapter);
5118
5119	/* Reset the timer */
5120	if (!test_bit(__IGC_DOWN, &adapter->state)) {
5121		if (adapter->flags & IGC_FLAG_NEED_LINK_UPDATE)
5122			mod_timer(&adapter->watchdog_timer,
5123				  round_jiffies(jiffies +  HZ));
5124		else
5125			mod_timer(&adapter->watchdog_timer,
5126				  round_jiffies(jiffies + 2 * HZ));
5127	}
5128}
5129
5130/**
5131 * igc_intr_msi - Interrupt Handler
5132 * @irq: interrupt number
5133 * @data: pointer to a network interface device structure
5134 */
5135static irqreturn_t igc_intr_msi(int irq, void *data)
5136{
5137	struct igc_adapter *adapter = data;
5138	struct igc_q_vector *q_vector = adapter->q_vector[0];
5139	struct igc_hw *hw = &adapter->hw;
5140	/* read ICR disables interrupts using IAM */
5141	u32 icr = rd32(IGC_ICR);
5142
5143	igc_write_itr(q_vector);
5144
5145	if (icr & IGC_ICR_DRSTA)
5146		schedule_work(&adapter->reset_task);
5147
5148	if (icr & IGC_ICR_DOUTSYNC) {
5149		/* HW is reporting DMA is out of sync */
5150		adapter->stats.doosync++;
5151	}
5152
5153	if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) {
5154		hw->mac.get_link_status = true;
5155		if (!test_bit(__IGC_DOWN, &adapter->state))
5156			mod_timer(&adapter->watchdog_timer, jiffies + 1);
5157	}
5158
5159	napi_schedule(&q_vector->napi);
5160
5161	return IRQ_HANDLED;
5162}
5163
5164/**
5165 * igc_intr - Legacy Interrupt Handler
5166 * @irq: interrupt number
5167 * @data: pointer to a network interface device structure
5168 */
5169static irqreturn_t igc_intr(int irq, void *data)
5170{
5171	struct igc_adapter *adapter = data;
5172	struct igc_q_vector *q_vector = adapter->q_vector[0];
5173	struct igc_hw *hw = &adapter->hw;
5174	/* Interrupt Auto-Mask...upon reading ICR, interrupts are masked.  No
5175	 * need for the IMC write
5176	 */
5177	u32 icr = rd32(IGC_ICR);
5178
5179	/* IMS will not auto-mask if INT_ASSERTED is not set, and if it is
5180	 * not set, then the adapter didn't send an interrupt
5181	 */
5182	if (!(icr & IGC_ICR_INT_ASSERTED))
5183		return IRQ_NONE;
5184
5185	igc_write_itr(q_vector);
5186
5187	if (icr & IGC_ICR_DRSTA)
5188		schedule_work(&adapter->reset_task);
5189
5190	if (icr & IGC_ICR_DOUTSYNC) {
5191		/* HW is reporting DMA is out of sync */
5192		adapter->stats.doosync++;
5193	}
5194
5195	if (icr & (IGC_ICR_RXSEQ | IGC_ICR_LSC)) {
5196		hw->mac.get_link_status = true;
5197		/* guard against interrupt when we're going down */
5198		if (!test_bit(__IGC_DOWN, &adapter->state))
5199			mod_timer(&adapter->watchdog_timer, jiffies + 1);
5200	}
5201
5202	napi_schedule(&q_vector->napi);
5203
5204	return IRQ_HANDLED;
5205}
5206
5207static void igc_free_irq(struct igc_adapter *adapter)
5208{
5209	if (adapter->msix_entries) {
5210		int vector = 0, i;
5211
5212		free_irq(adapter->msix_entries[vector++].vector, adapter);
5213
5214		for (i = 0; i < adapter->num_q_vectors; i++)
5215			free_irq(adapter->msix_entries[vector++].vector,
5216				 adapter->q_vector[i]);
5217	} else {
5218		free_irq(adapter->pdev->irq, adapter);
5219	}
5220}
5221
5222/**
5223 * igc_request_irq - initialize interrupts
5224 * @adapter: Pointer to adapter structure
5225 *
5226 * Attempts to configure interrupts using the best available
5227 * capabilities of the hardware and kernel.
5228 */
5229static int igc_request_irq(struct igc_adapter *adapter)
5230{
5231	struct net_device *netdev = adapter->netdev;
5232	struct pci_dev *pdev = adapter->pdev;
5233	int err = 0;
5234
5235	if (adapter->flags & IGC_FLAG_HAS_MSIX) {
5236		err = igc_request_msix(adapter);
5237		if (!err)
5238			goto request_done;
5239		/* fall back to MSI */
5240		igc_free_all_tx_resources(adapter);
5241		igc_free_all_rx_resources(adapter);
5242
5243		igc_clear_interrupt_scheme(adapter);
5244		err = igc_init_interrupt_scheme(adapter, false);
5245		if (err)
5246			goto request_done;
5247		igc_setup_all_tx_resources(adapter);
5248		igc_setup_all_rx_resources(adapter);
5249		igc_configure(adapter);
5250	}
5251
5252	igc_assign_vector(adapter->q_vector[0], 0);
5253
5254	if (adapter->flags & IGC_FLAG_HAS_MSI) {
5255		err = request_irq(pdev->irq, &igc_intr_msi, 0,
5256				  netdev->name, adapter);
5257		if (!err)
5258			goto request_done;
5259
5260		/* fall back to legacy interrupts */
5261		igc_reset_interrupt_capability(adapter);
5262		adapter->flags &= ~IGC_FLAG_HAS_MSI;
5263	}
5264
5265	err = request_irq(pdev->irq, &igc_intr, IRQF_SHARED,
5266			  netdev->name, adapter);
5267
5268	if (err)
5269		netdev_err(netdev, "Error %d getting interrupt\n", err);
5270
5271request_done:
5272	return err;
5273}
5274
5275/**
5276 * __igc_open - Called when a network interface is made active
5277 * @netdev: network interface device structure
5278 * @resuming: boolean indicating if the device is resuming
5279 *
5280 * Returns 0 on success, negative value on failure
5281 *
5282 * The open entry point is called when a network interface is made
5283 * active by the system (IFF_UP).  At this point all resources needed
5284 * for transmit and receive operations are allocated, the interrupt
5285 * handler is registered with the OS, the watchdog timer is started,
5286 * and the stack is notified that the interface is ready.
5287 */
5288static int __igc_open(struct net_device *netdev, bool resuming)
5289{
5290	struct igc_adapter *adapter = netdev_priv(netdev);
5291	struct pci_dev *pdev = adapter->pdev;
5292	struct igc_hw *hw = &adapter->hw;
5293	int err = 0;
5294	int i = 0;
5295
5296	/* disallow open during test */
5297
5298	if (test_bit(__IGC_TESTING, &adapter->state)) {
5299		WARN_ON(resuming);
5300		return -EBUSY;
5301	}
5302
5303	if (!resuming)
5304		pm_runtime_get_sync(&pdev->dev);
5305
5306	netif_carrier_off(netdev);
5307
5308	/* allocate transmit descriptors */
5309	err = igc_setup_all_tx_resources(adapter);
5310	if (err)
5311		goto err_setup_tx;
5312
5313	/* allocate receive descriptors */
5314	err = igc_setup_all_rx_resources(adapter);
5315	if (err)
5316		goto err_setup_rx;
5317
5318	igc_power_up_link(adapter);
5319
5320	igc_configure(adapter);
5321
5322	err = igc_request_irq(adapter);
5323	if (err)
5324		goto err_req_irq;
5325
5326	/* Notify the stack of the actual queue counts. */
5327	err = netif_set_real_num_tx_queues(netdev, adapter->num_tx_queues);
5328	if (err)
5329		goto err_set_queues;
5330
5331	err = netif_set_real_num_rx_queues(netdev, adapter->num_rx_queues);
5332	if (err)
5333		goto err_set_queues;
5334
5335	clear_bit(__IGC_DOWN, &adapter->state);
5336
5337	for (i = 0; i < adapter->num_q_vectors; i++)
5338		napi_enable(&adapter->q_vector[i]->napi);
5339
5340	/* Clear any pending interrupts. */
5341	rd32(IGC_ICR);
5342	igc_irq_enable(adapter);
5343
5344	if (!resuming)
5345		pm_runtime_put(&pdev->dev);
5346
5347	netif_tx_start_all_queues(netdev);
5348
5349	/* start the watchdog. */
5350	hw->mac.get_link_status = true;
5351	schedule_work(&adapter->watchdog_task);
5352
5353	return IGC_SUCCESS;
5354
5355err_set_queues:
5356	igc_free_irq(adapter);
5357err_req_irq:
5358	igc_release_hw_control(adapter);
5359	igc_power_down_phy_copper_base(&adapter->hw);
5360	igc_free_all_rx_resources(adapter);
5361err_setup_rx:
5362	igc_free_all_tx_resources(adapter);
5363err_setup_tx:
5364	igc_reset(adapter);
5365	if (!resuming)
5366		pm_runtime_put(&pdev->dev);
5367
5368	return err;
5369}
5370
5371int igc_open(struct net_device *netdev)
5372{
5373	return __igc_open(netdev, false);
5374}
5375
5376/**
5377 * __igc_close - Disables a network interface
5378 * @netdev: network interface device structure
5379 * @suspending: boolean indicating the device is suspending
5380 *
5381 * Returns 0, this is not allowed to fail
5382 *
5383 * The close entry point is called when an interface is de-activated
5384 * by the OS.  The hardware is still under the driver's control, but
5385 * needs to be disabled.  A global MAC reset is issued to stop the
5386 * hardware, and all transmit and receive resources are freed.
5387 */
5388static int __igc_close(struct net_device *netdev, bool suspending)
5389{
5390	struct igc_adapter *adapter = netdev_priv(netdev);
5391	struct pci_dev *pdev = adapter->pdev;
5392
5393	WARN_ON(test_bit(__IGC_RESETTING, &adapter->state));
5394
5395	if (!suspending)
5396		pm_runtime_get_sync(&pdev->dev);
5397
5398	igc_down(adapter);
5399
5400	igc_release_hw_control(adapter);
5401
5402	igc_free_irq(adapter);
5403
5404	igc_free_all_tx_resources(adapter);
5405	igc_free_all_rx_resources(adapter);
5406
5407	if (!suspending)
5408		pm_runtime_put_sync(&pdev->dev);
5409
5410	return 0;
5411}
5412
5413int igc_close(struct net_device *netdev)
5414{
5415	if (netif_device_present(netdev) || netdev->dismantle)
5416		return __igc_close(netdev, false);
5417	return 0;
5418}
5419
5420/**
5421 * igc_ioctl - Access the hwtstamp interface
5422 * @netdev: network interface device structure
5423 * @ifr: interface request data
5424 * @cmd: ioctl command
5425 **/
5426static int igc_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
5427{
5428	switch (cmd) {
5429	case SIOCGHWTSTAMP:
5430		return igc_ptp_get_ts_config(netdev, ifr);
5431	case SIOCSHWTSTAMP:
5432		return igc_ptp_set_ts_config(netdev, ifr);
5433	default:
5434		return -EOPNOTSUPP;
5435	}
5436}
5437
5438static int igc_save_launchtime_params(struct igc_adapter *adapter, int queue,
5439				      bool enable)
5440{
5441	struct igc_ring *ring;
5442	int i;
5443
5444	if (queue < 0 || queue >= adapter->num_tx_queues)
5445		return -EINVAL;
5446
5447	ring = adapter->tx_ring[queue];
5448	ring->launchtime_enable = enable;
5449
5450	if (adapter->base_time)
5451		return 0;
5452
5453	adapter->cycle_time = NSEC_PER_SEC;
5454
5455	for (i = 0; i < adapter->num_tx_queues; i++) {
5456		ring = adapter->tx_ring[i];
5457		ring->start_time = 0;
5458		ring->end_time = NSEC_PER_SEC;
5459	}
5460
5461	return 0;
5462}
5463
5464static bool is_base_time_past(ktime_t base_time, const struct timespec64 *now)
5465{
5466	struct timespec64 b;
5467
5468	b = ktime_to_timespec64(base_time);
5469
5470	return timespec64_compare(now, &b) > 0;
5471}
5472
5473static bool validate_schedule(struct igc_adapter *adapter,
5474			      const struct tc_taprio_qopt_offload *qopt)
5475{
5476	int queue_uses[IGC_MAX_TX_QUEUES] = { };
5477	struct timespec64 now;
5478	size_t n;
5479
5480	if (qopt->cycle_time_extension)
5481		return false;
5482
5483	igc_ptp_read(adapter, &now);
5484
5485	/* If we program the controller's BASET registers with a time
5486	 * in the future, it will hold all the packets until that
5487	 * time, causing a lot of TX Hangs, so to avoid that, we
5488	 * reject schedules that would start in the future.
5489	 */
5490	if (!is_base_time_past(qopt->base_time, &now))
5491		return false;
5492
5493	for (n = 0; n < qopt->num_entries; n++) {
5494		const struct tc_taprio_sched_entry *e;
5495		int i;
5496
5497		e = &qopt->entries[n];
5498
5499		/* i225 only supports "global" frame preemption
5500		 * settings.
5501		 */
5502		if (e->command != TC_TAPRIO_CMD_SET_GATES)
5503			return false;
5504
5505		for (i = 0; i < adapter->num_tx_queues; i++) {
5506			if (e->gate_mask & BIT(i))
5507				queue_uses[i]++;
5508
5509			if (queue_uses[i] > 1)
5510				return false;
5511		}
5512	}
5513
5514	return true;
5515}
5516
5517static int igc_tsn_enable_launchtime(struct igc_adapter *adapter,
5518				     struct tc_etf_qopt_offload *qopt)
5519{
5520	struct igc_hw *hw = &adapter->hw;
5521	int err;
5522
5523	if (hw->mac.type != igc_i225)
5524		return -EOPNOTSUPP;
5525
5526	err = igc_save_launchtime_params(adapter, qopt->queue, qopt->enable);
5527	if (err)
5528		return err;
5529
5530	return igc_tsn_offload_apply(adapter);
5531}
5532
5533static int igc_save_qbv_schedule(struct igc_adapter *adapter,
5534				 struct tc_taprio_qopt_offload *qopt)
5535{
5536	u32 start_time = 0, end_time = 0;
5537	size_t n;
5538
5539	if (!qopt->enable) {
5540		adapter->base_time = 0;
5541		return 0;
5542	}
5543
5544	if (adapter->base_time)
5545		return -EALREADY;
5546
5547	if (!validate_schedule(adapter, qopt))
5548		return -EINVAL;
5549
5550	adapter->cycle_time = qopt->cycle_time;
5551	adapter->base_time = qopt->base_time;
5552
5553	/* FIXME: be a little smarter about cases when the gate for a
5554	 * queue stays open for more than one entry.
5555	 */
5556	for (n = 0; n < qopt->num_entries; n++) {
5557		struct tc_taprio_sched_entry *e = &qopt->entries[n];
5558		int i;
5559
5560		end_time += e->interval;
5561
5562		for (i = 0; i < adapter->num_tx_queues; i++) {
5563			struct igc_ring *ring = adapter->tx_ring[i];
5564
5565			if (!(e->gate_mask & BIT(i)))
5566				continue;
5567
5568			ring->start_time = start_time;
5569			ring->end_time = end_time;
5570		}
5571
5572		start_time += e->interval;
5573	}
5574
5575	return 0;
5576}
5577
5578static int igc_tsn_enable_qbv_scheduling(struct igc_adapter *adapter,
5579					 struct tc_taprio_qopt_offload *qopt)
5580{
5581	struct igc_hw *hw = &adapter->hw;
5582	int err;
5583
5584	if (hw->mac.type != igc_i225)
5585		return -EOPNOTSUPP;
5586
5587	err = igc_save_qbv_schedule(adapter, qopt);
5588	if (err)
5589		return err;
5590
5591	return igc_tsn_offload_apply(adapter);
5592}
5593
5594static int igc_setup_tc(struct net_device *dev, enum tc_setup_type type,
5595			void *type_data)
5596{
5597	struct igc_adapter *adapter = netdev_priv(dev);
5598
5599	switch (type) {
5600	case TC_SETUP_QDISC_TAPRIO:
5601		return igc_tsn_enable_qbv_scheduling(adapter, type_data);
5602
5603	case TC_SETUP_QDISC_ETF:
5604		return igc_tsn_enable_launchtime(adapter, type_data);
5605
5606	default:
5607		return -EOPNOTSUPP;
5608	}
5609}
5610
5611static int igc_bpf(struct net_device *dev, struct netdev_bpf *bpf)
5612{
5613	struct igc_adapter *adapter = netdev_priv(dev);
5614
5615	switch (bpf->command) {
5616	case XDP_SETUP_PROG:
5617		return igc_xdp_set_prog(adapter, bpf->prog, bpf->extack);
5618	case XDP_SETUP_XSK_POOL:
5619		return igc_xdp_setup_pool(adapter, bpf->xsk.pool,
5620					  bpf->xsk.queue_id);
5621	default:
5622		return -EOPNOTSUPP;
5623	}
5624}
5625
5626static int igc_xdp_xmit(struct net_device *dev, int num_frames,
5627			struct xdp_frame **frames, u32 flags)
5628{
5629	struct igc_adapter *adapter = netdev_priv(dev);
5630	int cpu = smp_processor_id();
5631	struct netdev_queue *nq;
5632	struct igc_ring *ring;
5633	int i, drops;
5634
5635	if (unlikely(test_bit(__IGC_DOWN, &adapter->state)))
5636		return -ENETDOWN;
5637
5638	if (unlikely(flags & ~XDP_XMIT_FLAGS_MASK))
5639		return -EINVAL;
5640
5641	ring = igc_xdp_get_tx_ring(adapter, cpu);
5642	nq = txring_txq(ring);
5643
5644	__netif_tx_lock(nq, cpu);
5645
5646	drops = 0;
5647	for (i = 0; i < num_frames; i++) {
5648		int err;
5649		struct xdp_frame *xdpf = frames[i];
5650
5651		err = igc_xdp_init_tx_descriptor(ring, xdpf);
5652		if (err) {
5653			xdp_return_frame_rx_napi(xdpf);
5654			drops++;
5655		}
5656	}
5657
5658	if (flags & XDP_XMIT_FLUSH)
5659		igc_flush_tx_descriptors(ring);
5660
5661	__netif_tx_unlock(nq);
5662
5663	return num_frames - drops;
5664}
5665
5666static void igc_trigger_rxtxq_interrupt(struct igc_adapter *adapter,
5667					struct igc_q_vector *q_vector)
5668{
5669	struct igc_hw *hw = &adapter->hw;
5670	u32 eics = 0;
5671
5672	eics |= q_vector->eims_value;
5673	wr32(IGC_EICS, eics);
5674}
5675
5676int igc_xsk_wakeup(struct net_device *dev, u32 queue_id, u32 flags)
5677{
5678	struct igc_adapter *adapter = netdev_priv(dev);
5679	struct igc_q_vector *q_vector;
5680	struct igc_ring *ring;
5681
5682	if (test_bit(__IGC_DOWN, &adapter->state))
5683		return -ENETDOWN;
5684
5685	if (!igc_xdp_is_enabled(adapter))
5686		return -ENXIO;
5687
5688	if (queue_id >= adapter->num_rx_queues)
5689		return -EINVAL;
5690
5691	ring = adapter->rx_ring[queue_id];
5692
5693	if (!ring->xsk_pool)
5694		return -ENXIO;
5695
5696	q_vector = adapter->q_vector[queue_id];
5697	if (!napi_if_scheduled_mark_missed(&q_vector->napi))
5698		igc_trigger_rxtxq_interrupt(adapter, q_vector);
5699
5700	return 0;
5701}
5702
5703static const struct net_device_ops igc_netdev_ops = {
5704	.ndo_open		= igc_open,
5705	.ndo_stop		= igc_close,
5706	.ndo_start_xmit		= igc_xmit_frame,
5707	.ndo_set_rx_mode	= igc_set_rx_mode,
5708	.ndo_set_mac_address	= igc_set_mac,
5709	.ndo_change_mtu		= igc_change_mtu,
5710	.ndo_get_stats64	= igc_get_stats64,
5711	.ndo_fix_features	= igc_fix_features,
5712	.ndo_set_features	= igc_set_features,
5713	.ndo_features_check	= igc_features_check,
5714	.ndo_do_ioctl		= igc_ioctl,
5715	.ndo_setup_tc		= igc_setup_tc,
5716	.ndo_bpf		= igc_bpf,
5717	.ndo_xdp_xmit		= igc_xdp_xmit,
5718	.ndo_xsk_wakeup		= igc_xsk_wakeup,
5719};
5720
5721/* PCIe configuration access */
5722void igc_read_pci_cfg(struct igc_hw *hw, u32 reg, u16 *value)
5723{
5724	struct igc_adapter *adapter = hw->back;
5725
5726	pci_read_config_word(adapter->pdev, reg, value);
5727}
5728
5729void igc_write_pci_cfg(struct igc_hw *hw, u32 reg, u16 *value)
5730{
5731	struct igc_adapter *adapter = hw->back;
5732
5733	pci_write_config_word(adapter->pdev, reg, *value);
5734}
5735
5736s32 igc_read_pcie_cap_reg(struct igc_hw *hw, u32 reg, u16 *value)
5737{
5738	struct igc_adapter *adapter = hw->back;
5739
5740	if (!pci_is_pcie(adapter->pdev))
5741		return -IGC_ERR_CONFIG;
5742
5743	pcie_capability_read_word(adapter->pdev, reg, value);
5744
5745	return IGC_SUCCESS;
5746}
5747
5748s32 igc_write_pcie_cap_reg(struct igc_hw *hw, u32 reg, u16 *value)
5749{
5750	struct igc_adapter *adapter = hw->back;
5751
5752	if (!pci_is_pcie(adapter->pdev))
5753		return -IGC_ERR_CONFIG;
5754
5755	pcie_capability_write_word(adapter->pdev, reg, *value);
5756
5757	return IGC_SUCCESS;
5758}
5759
5760u32 igc_rd32(struct igc_hw *hw, u32 reg)
5761{
5762	struct igc_adapter *igc = container_of(hw, struct igc_adapter, hw);
5763	u8 __iomem *hw_addr = READ_ONCE(hw->hw_addr);
5764	u32 value = 0;
5765
5766	value = readl(&hw_addr[reg]);
5767
5768	/* reads should not return all F's */
5769	if (!(~value) && (!reg || !(~readl(hw_addr)))) {
5770		struct net_device *netdev = igc->netdev;
5771
5772		hw->hw_addr = NULL;
5773		netif_device_detach(netdev);
5774		netdev_err(netdev, "PCIe link lost, device now detached\n");
5775		WARN(pci_device_is_present(igc->pdev),
5776		     "igc: Failed to read reg 0x%x!\n", reg);
5777	}
5778
5779	return value;
5780}
5781
5782int igc_set_spd_dplx(struct igc_adapter *adapter, u32 spd, u8 dplx)
5783{
5784	struct igc_mac_info *mac = &adapter->hw.mac;
5785
5786	mac->autoneg = false;
5787
5788	/* Make sure dplx is at most 1 bit and lsb of speed is not set
5789	 * for the switch() below to work
5790	 */
5791	if ((spd & 1) || (dplx & ~1))
5792		goto err_inval;
5793
5794	switch (spd + dplx) {
5795	case SPEED_10 + DUPLEX_HALF:
5796		mac->forced_speed_duplex = ADVERTISE_10_HALF;
5797		break;
5798	case SPEED_10 + DUPLEX_FULL:
5799		mac->forced_speed_duplex = ADVERTISE_10_FULL;
5800		break;
5801	case SPEED_100 + DUPLEX_HALF:
5802		mac->forced_speed_duplex = ADVERTISE_100_HALF;
5803		break;
5804	case SPEED_100 + DUPLEX_FULL:
5805		mac->forced_speed_duplex = ADVERTISE_100_FULL;
5806		break;
5807	case SPEED_1000 + DUPLEX_FULL:
5808		mac->autoneg = true;
5809		adapter->hw.phy.autoneg_advertised = ADVERTISE_1000_FULL;
5810		break;
5811	case SPEED_1000 + DUPLEX_HALF: /* not supported */
5812		goto err_inval;
5813	case SPEED_2500 + DUPLEX_FULL:
5814		mac->autoneg = true;
5815		adapter->hw.phy.autoneg_advertised = ADVERTISE_2500_FULL;
5816		break;
5817	case SPEED_2500 + DUPLEX_HALF: /* not supported */
5818	default:
5819		goto err_inval;
5820	}
5821
5822	/* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
5823	adapter->hw.phy.mdix = AUTO_ALL_MODES;
5824
5825	return 0;
5826
5827err_inval:
5828	netdev_err(adapter->netdev, "Unsupported Speed/Duplex configuration\n");
5829	return -EINVAL;
5830}
5831
5832/**
5833 * igc_probe - Device Initialization Routine
5834 * @pdev: PCI device information struct
5835 * @ent: entry in igc_pci_tbl
5836 *
5837 * Returns 0 on success, negative on failure
5838 *
5839 * igc_probe initializes an adapter identified by a pci_dev structure.
5840 * The OS initialization, configuring the adapter private structure,
5841 * and a hardware reset occur.
5842 */
5843static int igc_probe(struct pci_dev *pdev,
5844		     const struct pci_device_id *ent)
5845{
5846	struct igc_adapter *adapter;
5847	struct net_device *netdev;
5848	struct igc_hw *hw;
5849	const struct igc_info *ei = igc_info_tbl[ent->driver_data];
5850	int err, pci_using_dac;
5851
5852	err = pci_enable_device_mem(pdev);
5853	if (err)
5854		return err;
5855
5856	pci_using_dac = 0;
5857	err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64));
5858	if (!err) {
5859		pci_using_dac = 1;
5860	} else {
5861		err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
5862		if (err) {
5863			dev_err(&pdev->dev,
5864				"No usable DMA configuration, aborting\n");
5865			goto err_dma;
5866		}
5867	}
5868
5869	err = pci_request_mem_regions(pdev, igc_driver_name);
5870	if (err)
5871		goto err_pci_reg;
5872
5873	pci_enable_pcie_error_reporting(pdev);
5874
5875	pci_set_master(pdev);
5876
5877	err = -ENOMEM;
5878	netdev = alloc_etherdev_mq(sizeof(struct igc_adapter),
5879				   IGC_MAX_TX_QUEUES);
5880
5881	if (!netdev)
5882		goto err_alloc_etherdev;
5883
5884	SET_NETDEV_DEV(netdev, &pdev->dev);
5885
5886	pci_set_drvdata(pdev, netdev);
5887	adapter = netdev_priv(netdev);
5888	adapter->netdev = netdev;
5889	adapter->pdev = pdev;
5890	hw = &adapter->hw;
5891	hw->back = adapter;
5892	adapter->port_num = hw->bus.func;
5893	adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
5894
5895	err = pci_save_state(pdev);
5896	if (err)
5897		goto err_ioremap;
5898
5899	err = -EIO;
5900	adapter->io_addr = ioremap(pci_resource_start(pdev, 0),
5901				   pci_resource_len(pdev, 0));
5902	if (!adapter->io_addr)
5903		goto err_ioremap;
5904
5905	/* hw->hw_addr can be zeroed, so use adapter->io_addr for unmap */
5906	hw->hw_addr = adapter->io_addr;
5907
5908	netdev->netdev_ops = &igc_netdev_ops;
5909	igc_ethtool_set_ops(netdev);
5910	netdev->watchdog_timeo = 5 * HZ;
5911
5912	netdev->mem_start = pci_resource_start(pdev, 0);
5913	netdev->mem_end = pci_resource_end(pdev, 0);
5914
5915	/* PCI config space info */
5916	hw->vendor_id = pdev->vendor;
5917	hw->device_id = pdev->device;
5918	hw->revision_id = pdev->revision;
5919	hw->subsystem_vendor_id = pdev->subsystem_vendor;
5920	hw->subsystem_device_id = pdev->subsystem_device;
5921
5922	/* Copy the default MAC and PHY function pointers */
5923	memcpy(&hw->mac.ops, ei->mac_ops, sizeof(hw->mac.ops));
5924	memcpy(&hw->phy.ops, ei->phy_ops, sizeof(hw->phy.ops));
5925
5926	/* Initialize skew-specific constants */
5927	err = ei->get_invariants(hw);
5928	if (err)
5929		goto err_sw_init;
5930
5931	/* Add supported features to the features list*/
5932	netdev->features |= NETIF_F_SG;
5933	netdev->features |= NETIF_F_TSO;
5934	netdev->features |= NETIF_F_TSO6;
5935	netdev->features |= NETIF_F_TSO_ECN;
5936	netdev->features |= NETIF_F_RXCSUM;
5937	netdev->features |= NETIF_F_HW_CSUM;
5938	netdev->features |= NETIF_F_SCTP_CRC;
5939	netdev->features |= NETIF_F_HW_TC;
5940
5941#define IGC_GSO_PARTIAL_FEATURES (NETIF_F_GSO_GRE | \
5942				  NETIF_F_GSO_GRE_CSUM | \
5943				  NETIF_F_GSO_IPXIP4 | \
5944				  NETIF_F_GSO_IPXIP6 | \
5945				  NETIF_F_GSO_UDP_TUNNEL | \
5946				  NETIF_F_GSO_UDP_TUNNEL_CSUM)
5947
5948	netdev->gso_partial_features = IGC_GSO_PARTIAL_FEATURES;
5949	netdev->features |= NETIF_F_GSO_PARTIAL | IGC_GSO_PARTIAL_FEATURES;
5950
5951	/* setup the private structure */
5952	err = igc_sw_init(adapter);
5953	if (err)
5954		goto err_sw_init;
5955
5956	/* copy netdev features into list of user selectable features */
5957	netdev->hw_features |= NETIF_F_NTUPLE;
5958	netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_TX;
5959	netdev->hw_features |= NETIF_F_HW_VLAN_CTAG_RX;
5960	netdev->hw_features |= netdev->features;
5961
5962	if (pci_using_dac)
5963		netdev->features |= NETIF_F_HIGHDMA;
5964
5965	netdev->vlan_features |= netdev->features | NETIF_F_TSO_MANGLEID;
5966	netdev->mpls_features |= NETIF_F_HW_CSUM;
5967	netdev->hw_enc_features |= netdev->vlan_features;
5968
5969	/* MTU range: 68 - 9216 */
5970	netdev->min_mtu = ETH_MIN_MTU;
5971	netdev->max_mtu = MAX_STD_JUMBO_FRAME_SIZE;
5972
5973	/* before reading the NVM, reset the controller to put the device in a
5974	 * known good starting state
5975	 */
5976	hw->mac.ops.reset_hw(hw);
5977
5978	if (igc_get_flash_presence_i225(hw)) {
5979		if (hw->nvm.ops.validate(hw) < 0) {
5980			dev_err(&pdev->dev, "The NVM Checksum Is Not Valid\n");
5981			err = -EIO;
5982			goto err_eeprom;
5983		}
5984	}
5985
5986	if (eth_platform_get_mac_address(&pdev->dev, hw->mac.addr)) {
5987		/* copy the MAC address out of the NVM */
5988		if (hw->mac.ops.read_mac_addr(hw))
5989			dev_err(&pdev->dev, "NVM Read Error\n");
5990	}
5991
5992	memcpy(netdev->dev_addr, hw->mac.addr, netdev->addr_len);
5993
5994	if (!is_valid_ether_addr(netdev->dev_addr)) {
5995		dev_err(&pdev->dev, "Invalid MAC Address\n");
5996		err = -EIO;
5997		goto err_eeprom;
5998	}
5999
6000	/* configure RXPBSIZE and TXPBSIZE */
6001	wr32(IGC_RXPBS, I225_RXPBSIZE_DEFAULT);
6002	wr32(IGC_TXPBS, I225_TXPBSIZE_DEFAULT);
6003
6004	timer_setup(&adapter->watchdog_timer, igc_watchdog, 0);
6005	timer_setup(&adapter->phy_info_timer, igc_update_phy_info, 0);
6006
6007	INIT_WORK(&adapter->reset_task, igc_reset_task);
6008	INIT_WORK(&adapter->watchdog_task, igc_watchdog_task);
6009
6010	/* Initialize link properties that are user-changeable */
6011	adapter->fc_autoneg = true;
6012	hw->mac.autoneg = true;
6013	hw->phy.autoneg_advertised = 0xaf;
6014
6015	hw->fc.requested_mode = igc_fc_default;
6016	hw->fc.current_mode = igc_fc_default;
6017
6018	/* By default, support wake on port A */
6019	adapter->flags |= IGC_FLAG_WOL_SUPPORTED;
6020
6021	/* initialize the wol settings based on the eeprom settings */
6022	if (adapter->flags & IGC_FLAG_WOL_SUPPORTED)
6023		adapter->wol |= IGC_WUFC_MAG;
6024
6025	device_set_wakeup_enable(&adapter->pdev->dev,
6026				 adapter->flags & IGC_FLAG_WOL_SUPPORTED);
6027
6028	igc_ptp_init(adapter);
6029
6030	/* reset the hardware with the new settings */
6031	igc_reset(adapter);
6032
6033	/* let the f/w know that the h/w is now under the control of the
6034	 * driver.
6035	 */
6036	igc_get_hw_control(adapter);
6037
6038	strncpy(netdev->name, "eth%d", IFNAMSIZ);
6039	err = register_netdev(netdev);
6040	if (err)
6041		goto err_register;
6042
6043	 /* carrier off reporting is important to ethtool even BEFORE open */
6044	netif_carrier_off(netdev);
6045
6046	/* Check if Media Autosense is enabled */
6047	adapter->ei = *ei;
6048
6049	/* print pcie link status and MAC address */
6050	pcie_print_link_status(pdev);
6051	netdev_info(netdev, "MAC: %pM\n", netdev->dev_addr);
6052
6053	dev_pm_set_driver_flags(&pdev->dev, DPM_FLAG_NO_DIRECT_COMPLETE);
6054	/* Disable EEE for internal PHY devices */
6055	hw->dev_spec._base.eee_enable = false;
6056	adapter->flags &= ~IGC_FLAG_EEE;
6057	igc_set_eee_i225(hw, false, false, false);
6058
6059	pm_runtime_put_noidle(&pdev->dev);
6060
6061	return 0;
6062
6063err_register:
6064	igc_release_hw_control(adapter);
6065err_eeprom:
6066	if (!igc_check_reset_block(hw))
6067		igc_reset_phy(hw);
6068err_sw_init:
6069	igc_clear_interrupt_scheme(adapter);
6070	iounmap(adapter->io_addr);
6071err_ioremap:
6072	free_netdev(netdev);
6073err_alloc_etherdev:
6074	pci_disable_pcie_error_reporting(pdev);
6075	pci_release_mem_regions(pdev);
6076err_pci_reg:
6077err_dma:
6078	pci_disable_device(pdev);
6079	return err;
6080}
6081
6082/**
6083 * igc_remove - Device Removal Routine
6084 * @pdev: PCI device information struct
6085 *
6086 * igc_remove is called by the PCI subsystem to alert the driver
6087 * that it should release a PCI device.  This could be caused by a
6088 * Hot-Plug event, or because the driver is going to be removed from
6089 * memory.
6090 */
6091static void igc_remove(struct pci_dev *pdev)
6092{
6093	struct net_device *netdev = pci_get_drvdata(pdev);
6094	struct igc_adapter *adapter = netdev_priv(netdev);
6095
6096	pm_runtime_get_noresume(&pdev->dev);
6097
6098	igc_flush_nfc_rules(adapter);
6099
6100	igc_ptp_stop(adapter);
6101
6102	set_bit(__IGC_DOWN, &adapter->state);
6103
6104	del_timer_sync(&adapter->watchdog_timer);
6105	del_timer_sync(&adapter->phy_info_timer);
6106
6107	cancel_work_sync(&adapter->reset_task);
6108	cancel_work_sync(&adapter->watchdog_task);
6109
6110	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
6111	 * would have already happened in close and is redundant.
6112	 */
6113	igc_release_hw_control(adapter);
6114	unregister_netdev(netdev);
6115
6116	igc_clear_interrupt_scheme(adapter);
6117	pci_iounmap(pdev, adapter->io_addr);
6118	pci_release_mem_regions(pdev);
6119
6120	free_netdev(netdev);
6121
6122	pci_disable_pcie_error_reporting(pdev);
6123
6124	pci_disable_device(pdev);
6125}
6126
6127static int __igc_shutdown(struct pci_dev *pdev, bool *enable_wake,
6128			  bool runtime)
6129{
6130	struct net_device *netdev = pci_get_drvdata(pdev);
6131	struct igc_adapter *adapter = netdev_priv(netdev);
6132	u32 wufc = runtime ? IGC_WUFC_LNKC : adapter->wol;
6133	struct igc_hw *hw = &adapter->hw;
6134	u32 ctrl, rctl, status;
6135	bool wake;
6136
6137	rtnl_lock();
6138	netif_device_detach(netdev);
6139
6140	if (netif_running(netdev))
6141		__igc_close(netdev, true);
6142
6143	igc_ptp_suspend(adapter);
6144
6145	igc_clear_interrupt_scheme(adapter);
6146	rtnl_unlock();
6147
6148	status = rd32(IGC_STATUS);
6149	if (status & IGC_STATUS_LU)
6150		wufc &= ~IGC_WUFC_LNKC;
6151
6152	if (wufc) {
6153		igc_setup_rctl(adapter);
6154		igc_set_rx_mode(netdev);
6155
6156		/* turn on all-multi mode if wake on multicast is enabled */
6157		if (wufc & IGC_WUFC_MC) {
6158			rctl = rd32(IGC_RCTL);
6159			rctl |= IGC_RCTL_MPE;
6160			wr32(IGC_RCTL, rctl);
6161		}
6162
6163		ctrl = rd32(IGC_CTRL);
6164		ctrl |= IGC_CTRL_ADVD3WUC;
6165		wr32(IGC_CTRL, ctrl);
6166
6167		/* Allow time for pending master requests to run */
6168		igc_disable_pcie_master(hw);
6169
6170		wr32(IGC_WUC, IGC_WUC_PME_EN);
6171		wr32(IGC_WUFC, wufc);
6172	} else {
6173		wr32(IGC_WUC, 0);
6174		wr32(IGC_WUFC, 0);
6175	}
6176
6177	wake = wufc || adapter->en_mng_pt;
6178	if (!wake)
6179		igc_power_down_phy_copper_base(&adapter->hw);
6180	else
6181		igc_power_up_link(adapter);
6182
6183	if (enable_wake)
6184		*enable_wake = wake;
6185
6186	/* Release control of h/w to f/w.  If f/w is AMT enabled, this
6187	 * would have already happened in close and is redundant.
6188	 */
6189	igc_release_hw_control(adapter);
6190
6191	pci_disable_device(pdev);
6192
6193	return 0;
6194}
6195
6196#ifdef CONFIG_PM
6197static int __maybe_unused igc_runtime_suspend(struct device *dev)
6198{
6199	return __igc_shutdown(to_pci_dev(dev), NULL, 1);
6200}
6201
6202static void igc_deliver_wake_packet(struct net_device *netdev)
6203{
6204	struct igc_adapter *adapter = netdev_priv(netdev);
6205	struct igc_hw *hw = &adapter->hw;
6206	struct sk_buff *skb;
6207	u32 wupl;
6208
6209	wupl = rd32(IGC_WUPL) & IGC_WUPL_MASK;
6210
6211	/* WUPM stores only the first 128 bytes of the wake packet.
6212	 * Read the packet only if we have the whole thing.
6213	 */
6214	if (wupl == 0 || wupl > IGC_WUPM_BYTES)
6215		return;
6216
6217	skb = netdev_alloc_skb_ip_align(netdev, IGC_WUPM_BYTES);
6218	if (!skb)
6219		return;
6220
6221	skb_put(skb, wupl);
6222
6223	/* Ensure reads are 32-bit aligned */
6224	wupl = roundup(wupl, 4);
6225
6226	memcpy_fromio(skb->data, hw->hw_addr + IGC_WUPM_REG(0), wupl);
6227
6228	skb->protocol = eth_type_trans(skb, netdev);
6229	netif_rx(skb);
6230}
6231
6232static int __maybe_unused igc_resume(struct device *dev)
6233{
6234	struct pci_dev *pdev = to_pci_dev(dev);
6235	struct net_device *netdev = pci_get_drvdata(pdev);
6236	struct igc_adapter *adapter = netdev_priv(netdev);
6237	struct igc_hw *hw = &adapter->hw;
6238	u32 err, val;
6239
6240	pci_set_power_state(pdev, PCI_D0);
6241	pci_restore_state(pdev);
6242	pci_save_state(pdev);
6243
6244	if (!pci_device_is_present(pdev))
6245		return -ENODEV;
6246	err = pci_enable_device_mem(pdev);
6247	if (err) {
6248		netdev_err(netdev, "Cannot enable PCI device from suspend\n");
6249		return err;
6250	}
6251	pci_set_master(pdev);
6252
6253	pci_enable_wake(pdev, PCI_D3hot, 0);
6254	pci_enable_wake(pdev, PCI_D3cold, 0);
6255
6256	if (igc_init_interrupt_scheme(adapter, true)) {
6257		netdev_err(netdev, "Unable to allocate memory for queues\n");
6258		return -ENOMEM;
6259	}
6260
6261	igc_reset(adapter);
6262
6263	/* let the f/w know that the h/w is now under the control of the
6264	 * driver.
6265	 */
6266	igc_get_hw_control(adapter);
6267
6268	val = rd32(IGC_WUS);
6269	if (val & WAKE_PKT_WUS)
6270		igc_deliver_wake_packet(netdev);
6271
6272	wr32(IGC_WUS, ~0);
6273
6274	rtnl_lock();
6275	if (!err && netif_running(netdev))
6276		err = __igc_open(netdev, true);
6277
6278	if (!err)
6279		netif_device_attach(netdev);
6280	rtnl_unlock();
6281
6282	return err;
6283}
6284
6285static int __maybe_unused igc_runtime_resume(struct device *dev)
6286{
6287	return igc_resume(dev);
6288}
6289
6290static int __maybe_unused igc_suspend(struct device *dev)
6291{
6292	return __igc_shutdown(to_pci_dev(dev), NULL, 0);
6293}
6294
6295static int __maybe_unused igc_runtime_idle(struct device *dev)
6296{
6297	struct net_device *netdev = dev_get_drvdata(dev);
6298	struct igc_adapter *adapter = netdev_priv(netdev);
6299
6300	if (!igc_has_link(adapter))
6301		pm_schedule_suspend(dev, MSEC_PER_SEC * 5);
6302
6303	return -EBUSY;
6304}
6305#endif /* CONFIG_PM */
6306
6307static void igc_shutdown(struct pci_dev *pdev)
6308{
6309	bool wake;
6310
6311	__igc_shutdown(pdev, &wake, 0);
6312
6313	if (system_state == SYSTEM_POWER_OFF) {
6314		pci_wake_from_d3(pdev, wake);
6315		pci_set_power_state(pdev, PCI_D3hot);
6316	}
6317}
6318
6319/**
6320 *  igc_io_error_detected - called when PCI error is detected
6321 *  @pdev: Pointer to PCI device
6322 *  @state: The current PCI connection state
6323 *
6324 *  This function is called after a PCI bus error affecting
6325 *  this device has been detected.
6326 **/
6327static pci_ers_result_t igc_io_error_detected(struct pci_dev *pdev,
6328					      pci_channel_state_t state)
6329{
6330	struct net_device *netdev = pci_get_drvdata(pdev);
6331	struct igc_adapter *adapter = netdev_priv(netdev);
6332
6333	netif_device_detach(netdev);
6334
6335	if (state == pci_channel_io_perm_failure)
6336		return PCI_ERS_RESULT_DISCONNECT;
6337
6338	if (netif_running(netdev))
6339		igc_down(adapter);
6340	pci_disable_device(pdev);
6341
6342	/* Request a slot reset. */
6343	return PCI_ERS_RESULT_NEED_RESET;
6344}
6345
6346/**
6347 *  igc_io_slot_reset - called after the PCI bus has been reset.
6348 *  @pdev: Pointer to PCI device
6349 *
6350 *  Restart the card from scratch, as if from a cold-boot. Implementation
6351 *  resembles the first-half of the igc_resume routine.
6352 **/
6353static pci_ers_result_t igc_io_slot_reset(struct pci_dev *pdev)
6354{
6355	struct net_device *netdev = pci_get_drvdata(pdev);
6356	struct igc_adapter *adapter = netdev_priv(netdev);
6357	struct igc_hw *hw = &adapter->hw;
6358	pci_ers_result_t result;
6359
6360	if (pci_enable_device_mem(pdev)) {
6361		netdev_err(netdev, "Could not re-enable PCI device after reset\n");
6362		result = PCI_ERS_RESULT_DISCONNECT;
6363	} else {
6364		pci_set_master(pdev);
6365		pci_restore_state(pdev);
6366		pci_save_state(pdev);
6367
6368		pci_enable_wake(pdev, PCI_D3hot, 0);
6369		pci_enable_wake(pdev, PCI_D3cold, 0);
6370
6371		/* In case of PCI error, adapter loses its HW address
6372		 * so we should re-assign it here.
6373		 */
6374		hw->hw_addr = adapter->io_addr;
6375
6376		igc_reset(adapter);
6377		wr32(IGC_WUS, ~0);
6378		result = PCI_ERS_RESULT_RECOVERED;
6379	}
6380
6381	return result;
6382}
6383
6384/**
6385 *  igc_io_resume - called when traffic can start to flow again.
6386 *  @pdev: Pointer to PCI device
6387 *
6388 *  This callback is called when the error recovery driver tells us that
6389 *  its OK to resume normal operation. Implementation resembles the
6390 *  second-half of the igc_resume routine.
6391 */
6392static void igc_io_resume(struct pci_dev *pdev)
6393{
6394	struct net_device *netdev = pci_get_drvdata(pdev);
6395	struct igc_adapter *adapter = netdev_priv(netdev);
6396
6397	rtnl_lock();
6398	if (netif_running(netdev)) {
6399		if (igc_open(netdev)) {
6400			netdev_err(netdev, "igc_open failed after reset\n");
6401			return;
6402		}
6403	}
6404
6405	netif_device_attach(netdev);
6406
6407	/* let the f/w know that the h/w is now under the control of the
6408	 * driver.
6409	 */
6410	igc_get_hw_control(adapter);
6411	rtnl_unlock();
6412}
6413
6414static const struct pci_error_handlers igc_err_handler = {
6415	.error_detected = igc_io_error_detected,
6416	.slot_reset = igc_io_slot_reset,
6417	.resume = igc_io_resume,
6418};
6419
6420#ifdef CONFIG_PM
6421static const struct dev_pm_ops igc_pm_ops = {
6422	SET_SYSTEM_SLEEP_PM_OPS(igc_suspend, igc_resume)
6423	SET_RUNTIME_PM_OPS(igc_runtime_suspend, igc_runtime_resume,
6424			   igc_runtime_idle)
6425};
6426#endif
6427
6428static struct pci_driver igc_driver = {
6429	.name     = igc_driver_name,
6430	.id_table = igc_pci_tbl,
6431	.probe    = igc_probe,
6432	.remove   = igc_remove,
6433#ifdef CONFIG_PM
6434	.driver.pm = &igc_pm_ops,
6435#endif
6436	.shutdown = igc_shutdown,
6437	.err_handler = &igc_err_handler,
6438};
6439
6440/**
6441 * igc_reinit_queues - return error
6442 * @adapter: pointer to adapter structure
6443 */
6444int igc_reinit_queues(struct igc_adapter *adapter)
6445{
6446	struct net_device *netdev = adapter->netdev;
6447	int err = 0;
6448
6449	if (netif_running(netdev))
6450		igc_close(netdev);
6451
6452	igc_reset_interrupt_capability(adapter);
6453
6454	if (igc_init_interrupt_scheme(adapter, true)) {
6455		netdev_err(netdev, "Unable to allocate memory for queues\n");
6456		return -ENOMEM;
6457	}
6458
6459	if (netif_running(netdev))
6460		err = igc_open(netdev);
6461
6462	return err;
6463}
6464
6465/**
6466 * igc_get_hw_dev - return device
6467 * @hw: pointer to hardware structure
6468 *
6469 * used by hardware layer to print debugging information
6470 */
6471struct net_device *igc_get_hw_dev(struct igc_hw *hw)
6472{
6473	struct igc_adapter *adapter = hw->back;
6474
6475	return adapter->netdev;
6476}
6477
6478static void igc_disable_rx_ring_hw(struct igc_ring *ring)
6479{
6480	struct igc_hw *hw = &ring->q_vector->adapter->hw;
6481	u8 idx = ring->reg_idx;
6482	u32 rxdctl;
6483
6484	rxdctl = rd32(IGC_RXDCTL(idx));
6485	rxdctl &= ~IGC_RXDCTL_QUEUE_ENABLE;
6486	rxdctl |= IGC_RXDCTL_SWFLUSH;
6487	wr32(IGC_RXDCTL(idx), rxdctl);
6488}
6489
6490void igc_disable_rx_ring(struct igc_ring *ring)
6491{
6492	igc_disable_rx_ring_hw(ring);
6493	igc_clean_rx_ring(ring);
6494}
6495
6496void igc_enable_rx_ring(struct igc_ring *ring)
6497{
6498	struct igc_adapter *adapter = ring->q_vector->adapter;
6499
6500	igc_configure_rx_ring(adapter, ring);
6501
6502	if (ring->xsk_pool)
6503		igc_alloc_rx_buffers_zc(ring, igc_desc_unused(ring));
6504	else
6505		igc_alloc_rx_buffers(ring, igc_desc_unused(ring));
6506}
6507
6508static void igc_disable_tx_ring_hw(struct igc_ring *ring)
6509{
6510	struct igc_hw *hw = &ring->q_vector->adapter->hw;
6511	u8 idx = ring->reg_idx;
6512	u32 txdctl;
6513
6514	txdctl = rd32(IGC_TXDCTL(idx));
6515	txdctl &= ~IGC_TXDCTL_QUEUE_ENABLE;
6516	txdctl |= IGC_TXDCTL_SWFLUSH;
6517	wr32(IGC_TXDCTL(idx), txdctl);
6518}
6519
6520void igc_disable_tx_ring(struct igc_ring *ring)
6521{
6522	igc_disable_tx_ring_hw(ring);
6523	igc_clean_tx_ring(ring);
6524}
6525
6526void igc_enable_tx_ring(struct igc_ring *ring)
6527{
6528	struct igc_adapter *adapter = ring->q_vector->adapter;
6529
6530	igc_configure_tx_ring(adapter, ring);
6531}
6532
6533/**
6534 * igc_init_module - Driver Registration Routine
6535 *
6536 * igc_init_module is the first routine called when the driver is
6537 * loaded. All it does is register with the PCI subsystem.
6538 */
6539static int __init igc_init_module(void)
6540{
6541	int ret;
6542
6543	pr_info("%s\n", igc_driver_string);
6544	pr_info("%s\n", igc_copyright);
6545
6546	ret = pci_register_driver(&igc_driver);
6547	return ret;
6548}
6549
6550module_init(igc_init_module);
6551
6552/**
6553 * igc_exit_module - Driver Exit Cleanup Routine
6554 *
6555 * igc_exit_module is called just before the driver is removed
6556 * from memory.
6557 */
6558static void __exit igc_exit_module(void)
6559{
6560	pci_unregister_driver(&igc_driver);
6561}
6562
6563module_exit(igc_exit_module);
6564/* igc_main.c */