Linux Audio

Check our new training course

Linux debugging, profiling, tracing and performance analysis training

Mar 24-27, 2025, special US time zones
Register
Loading...
v3.15
 
   1/*
   2 * acenic.c: Linux driver for the Alteon AceNIC Gigabit Ethernet card
   3 *           and other Tigon based cards.
   4 *
   5 * Copyright 1998-2002 by Jes Sorensen, <jes@trained-monkey.org>.
   6 *
   7 * Thanks to Alteon and 3Com for providing hardware and documentation
   8 * enabling me to write this driver.
   9 *
  10 * A mailing list for discussing the use of this driver has been
  11 * setup, please subscribe to the lists if you have any questions
  12 * about the driver. Send mail to linux-acenic-help@sunsite.auc.dk to
  13 * see how to subscribe.
  14 *
  15 * This program is free software; you can redistribute it and/or modify
  16 * it under the terms of the GNU General Public License as published by
  17 * the Free Software Foundation; either version 2 of the License, or
  18 * (at your option) any later version.
  19 *
  20 * Additional credits:
  21 *   Pete Wyckoff <wyckoff@ca.sandia.gov>: Initial Linux/Alpha and trace
  22 *       dump support. The trace dump support has not been
  23 *       integrated yet however.
  24 *   Troy Benjegerdes: Big Endian (PPC) patches.
  25 *   Nate Stahl: Better out of memory handling and stats support.
  26 *   Aman Singla: Nasty race between interrupt handler and tx code dealing
  27 *                with 'testing the tx_ret_csm and setting tx_full'
  28 *   David S. Miller <davem@redhat.com>: conversion to new PCI dma mapping
  29 *                                       infrastructure and Sparc support
  30 *   Pierrick Pinasseau (CERN): For lending me an Ultra 5 to test the
  31 *                              driver under Linux/Sparc64
  32 *   Matt Domsch <Matt_Domsch@dell.com>: Detect Alteon 1000baseT cards
  33 *                                       ETHTOOL_GDRVINFO support
  34 *   Chip Salzenberg <chip@valinux.com>: Fix race condition between tx
  35 *                                       handler and close() cleanup.
  36 *   Ken Aaker <kdaaker@rchland.vnet.ibm.com>: Correct check for whether
  37 *                                       memory mapped IO is enabled to
  38 *                                       make the driver work on RS/6000.
  39 *   Takayoshi Kouchi <kouchi@hpc.bs1.fc.nec.co.jp>: Identifying problem
  40 *                                       where the driver would disable
  41 *                                       bus master mode if it had to disable
  42 *                                       write and invalidate.
  43 *   Stephen Hack <stephen_hack@hp.com>: Fixed ace_set_mac_addr for little
  44 *                                       endian systems.
  45 *   Val Henson <vhenson@esscom.com>:    Reset Jumbo skb producer and
  46 *                                       rx producer index when
  47 *                                       flushing the Jumbo ring.
  48 *   Hans Grobler <grobh@sun.ac.za>:     Memory leak fixes in the
  49 *                                       driver init path.
  50 *   Grant Grundler <grundler@cup.hp.com>: PCI write posting fixes.
  51 */
  52
  53#include <linux/module.h>
  54#include <linux/moduleparam.h>
  55#include <linux/types.h>
  56#include <linux/errno.h>
  57#include <linux/ioport.h>
  58#include <linux/pci.h>
  59#include <linux/dma-mapping.h>
  60#include <linux/kernel.h>
  61#include <linux/netdevice.h>
  62#include <linux/etherdevice.h>
  63#include <linux/skbuff.h>
  64#include <linux/delay.h>
  65#include <linux/mm.h>
  66#include <linux/highmem.h>
  67#include <linux/sockios.h>
  68#include <linux/firmware.h>
  69#include <linux/slab.h>
  70#include <linux/prefetch.h>
  71#include <linux/if_vlan.h>
  72
  73#ifdef SIOCETHTOOL
  74#include <linux/ethtool.h>
  75#endif
  76
  77#include <net/sock.h>
  78#include <net/ip.h>
  79
  80#include <asm/io.h>
  81#include <asm/irq.h>
  82#include <asm/byteorder.h>
  83#include <asm/uaccess.h>
  84
  85
  86#define DRV_NAME "acenic"
  87
  88#undef INDEX_DEBUG
  89
  90#ifdef CONFIG_ACENIC_OMIT_TIGON_I
  91#define ACE_IS_TIGON_I(ap)	0
  92#define ACE_TX_RING_ENTRIES(ap)	MAX_TX_RING_ENTRIES
  93#else
  94#define ACE_IS_TIGON_I(ap)	(ap->version == 1)
  95#define ACE_TX_RING_ENTRIES(ap)	ap->tx_ring_entries
  96#endif
  97
  98#ifndef PCI_VENDOR_ID_ALTEON
  99#define PCI_VENDOR_ID_ALTEON		0x12ae
 100#endif
 101#ifndef PCI_DEVICE_ID_ALTEON_ACENIC_FIBRE
 102#define PCI_DEVICE_ID_ALTEON_ACENIC_FIBRE  0x0001
 103#define PCI_DEVICE_ID_ALTEON_ACENIC_COPPER 0x0002
 104#endif
 105#ifndef PCI_DEVICE_ID_3COM_3C985
 106#define PCI_DEVICE_ID_3COM_3C985	0x0001
 107#endif
 108#ifndef PCI_VENDOR_ID_NETGEAR
 109#define PCI_VENDOR_ID_NETGEAR		0x1385
 110#define PCI_DEVICE_ID_NETGEAR_GA620	0x620a
 111#endif
 112#ifndef PCI_DEVICE_ID_NETGEAR_GA620T
 113#define PCI_DEVICE_ID_NETGEAR_GA620T	0x630a
 114#endif
 115
 116
 117/*
 118 * Farallon used the DEC vendor ID by mistake and they seem not
 119 * to care - stinky!
 120 */
 121#ifndef PCI_DEVICE_ID_FARALLON_PN9000SX
 122#define PCI_DEVICE_ID_FARALLON_PN9000SX	0x1a
 123#endif
 124#ifndef PCI_DEVICE_ID_FARALLON_PN9100T
 125#define PCI_DEVICE_ID_FARALLON_PN9100T  0xfa
 126#endif
 127#ifndef PCI_VENDOR_ID_SGI
 128#define PCI_VENDOR_ID_SGI		0x10a9
 129#endif
 130#ifndef PCI_DEVICE_ID_SGI_ACENIC
 131#define PCI_DEVICE_ID_SGI_ACENIC	0x0009
 132#endif
 133
 134static DEFINE_PCI_DEVICE_TABLE(acenic_pci_tbl) = {
 135	{ PCI_VENDOR_ID_ALTEON, PCI_DEVICE_ID_ALTEON_ACENIC_FIBRE,
 136	  PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
 137	{ PCI_VENDOR_ID_ALTEON, PCI_DEVICE_ID_ALTEON_ACENIC_COPPER,
 138	  PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
 139	{ PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C985,
 140	  PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
 141	{ PCI_VENDOR_ID_NETGEAR, PCI_DEVICE_ID_NETGEAR_GA620,
 142	  PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
 143	{ PCI_VENDOR_ID_NETGEAR, PCI_DEVICE_ID_NETGEAR_GA620T,
 144	  PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
 145	/*
 146	 * Farallon used the DEC vendor ID on their cards incorrectly,
 147	 * then later Alteon's ID.
 148	 */
 149	{ PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_FARALLON_PN9000SX,
 150	  PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
 151	{ PCI_VENDOR_ID_ALTEON, PCI_DEVICE_ID_FARALLON_PN9100T,
 152	  PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
 153	{ PCI_VENDOR_ID_SGI, PCI_DEVICE_ID_SGI_ACENIC,
 154	  PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
 155	{ }
 156};
 157MODULE_DEVICE_TABLE(pci, acenic_pci_tbl);
 158
 159#define ace_sync_irq(irq)	synchronize_irq(irq)
 160
 161#ifndef offset_in_page
 162#define offset_in_page(ptr)	((unsigned long)(ptr) & ~PAGE_MASK)
 163#endif
 164
 165#define ACE_MAX_MOD_PARMS	8
 166#define BOARD_IDX_STATIC	0
 167#define BOARD_IDX_OVERFLOW	-1
 168
 169#include "acenic.h"
 170
 171/*
 172 * These must be defined before the firmware is included.
 173 */
 174#define MAX_TEXT_LEN	96*1024
 175#define MAX_RODATA_LEN	8*1024
 176#define MAX_DATA_LEN	2*1024
 177
 178#ifndef tigon2FwReleaseLocal
 179#define tigon2FwReleaseLocal 0
 180#endif
 181
 182/*
 183 * This driver currently supports Tigon I and Tigon II based cards
 184 * including the Alteon AceNIC, the 3Com 3C985[B] and NetGear
 185 * GA620. The driver should also work on the SGI, DEC and Farallon
 186 * versions of the card, however I have not been able to test that
 187 * myself.
 188 *
 189 * This card is really neat, it supports receive hardware checksumming
 190 * and jumbo frames (up to 9000 bytes) and does a lot of work in the
 191 * firmware. Also the programming interface is quite neat, except for
 192 * the parts dealing with the i2c eeprom on the card ;-)
 193 *
 194 * Using jumbo frames:
 195 *
 196 * To enable jumbo frames, simply specify an mtu between 1500 and 9000
 197 * bytes to ifconfig. Jumbo frames can be enabled or disabled at any time
 198 * by running `ifconfig eth<X> mtu <MTU>' with <X> being the Ethernet
 199 * interface number and <MTU> being the MTU value.
 200 *
 201 * Module parameters:
 202 *
 203 * When compiled as a loadable module, the driver allows for a number
 204 * of module parameters to be specified. The driver supports the
 205 * following module parameters:
 206 *
 207 *  trace=<val> - Firmware trace level. This requires special traced
 208 *                firmware to replace the firmware supplied with
 209 *                the driver - for debugging purposes only.
 210 *
 211 *  link=<val>  - Link state. Normally you want to use the default link
 212 *                parameters set by the driver. This can be used to
 213 *                override these in case your switch doesn't negotiate
 214 *                the link properly. Valid values are:
 215 *         0x0001 - Force half duplex link.
 216 *         0x0002 - Do not negotiate line speed with the other end.
 217 *         0x0010 - 10Mbit/sec link.
 218 *         0x0020 - 100Mbit/sec link.
 219 *         0x0040 - 1000Mbit/sec link.
 220 *         0x0100 - Do not negotiate flow control.
 221 *         0x0200 - Enable RX flow control Y
 222 *         0x0400 - Enable TX flow control Y (Tigon II NICs only).
 223 *                Default value is 0x0270, ie. enable link+flow
 224 *                control negotiation. Negotiating the highest
 225 *                possible link speed with RX flow control enabled.
 226 *
 227 *                When disabling link speed negotiation, only one link
 228 *                speed is allowed to be specified!
 229 *
 230 *  tx_coal_tick=<val> - number of coalescing clock ticks (us) allowed
 231 *                to wait for more packets to arive before
 232 *                interrupting the host, from the time the first
 233 *                packet arrives.
 234 *
 235 *  rx_coal_tick=<val> - number of coalescing clock ticks (us) allowed
 236 *                to wait for more packets to arive in the transmit ring,
 237 *                before interrupting the host, after transmitting the
 238 *                first packet in the ring.
 239 *
 240 *  max_tx_desc=<val> - maximum number of transmit descriptors
 241 *                (packets) transmitted before interrupting the host.
 242 *
 243 *  max_rx_desc=<val> - maximum number of receive descriptors
 244 *                (packets) received before interrupting the host.
 245 *
 246 *  tx_ratio=<val> - 7 bit value (0 - 63) specifying the split in 64th
 247 *                increments of the NIC's on board memory to be used for
 248 *                transmit and receive buffers. For the 1MB NIC app. 800KB
 249 *                is available, on the 1/2MB NIC app. 300KB is available.
 250 *                68KB will always be available as a minimum for both
 251 *                directions. The default value is a 50/50 split.
 252 *  dis_pci_mem_inval=<val> - disable PCI memory write and invalidate
 253 *                operations, default (1) is to always disable this as
 254 *                that is what Alteon does on NT. I have not been able
 255 *                to measure any real performance differences with
 256 *                this on my systems. Set <val>=0 if you want to
 257 *                enable these operations.
 258 *
 259 * If you use more than one NIC, specify the parameters for the
 260 * individual NICs with a comma, ie. trace=0,0x00001fff,0 you want to
 261 * run tracing on NIC #2 but not on NIC #1 and #3.
 262 *
 263 * TODO:
 264 *
 265 * - Proper multicast support.
 266 * - NIC dump support.
 267 * - More tuning parameters.
 268 *
 269 * The mini ring is not used under Linux and I am not sure it makes sense
 270 * to actually use it.
 271 *
 272 * New interrupt handler strategy:
 273 *
 274 * The old interrupt handler worked using the traditional method of
 275 * replacing an skbuff with a new one when a packet arrives. However
 276 * the rx rings do not need to contain a static number of buffer
 277 * descriptors, thus it makes sense to move the memory allocation out
 278 * of the main interrupt handler and do it in a bottom half handler
 279 * and only allocate new buffers when the number of buffers in the
 280 * ring is below a certain threshold. In order to avoid starving the
 281 * NIC under heavy load it is however necessary to force allocation
 282 * when hitting a minimum threshold. The strategy for alloction is as
 283 * follows:
 284 *
 285 *     RX_LOW_BUF_THRES    - allocate buffers in the bottom half
 286 *     RX_PANIC_LOW_THRES  - we are very low on buffers, allocate
 287 *                           the buffers in the interrupt handler
 288 *     RX_RING_THRES       - maximum number of buffers in the rx ring
 289 *     RX_MINI_THRES       - maximum number of buffers in the mini ring
 290 *     RX_JUMBO_THRES      - maximum number of buffers in the jumbo ring
 291 *
 292 * One advantagous side effect of this allocation approach is that the
 293 * entire rx processing can be done without holding any spin lock
 294 * since the rx rings and registers are totally independent of the tx
 295 * ring and its registers.  This of course includes the kmalloc's of
 296 * new skb's. Thus start_xmit can run in parallel with rx processing
 297 * and the memory allocation on SMP systems.
 298 *
 299 * Note that running the skb reallocation in a bottom half opens up
 300 * another can of races which needs to be handled properly. In
 301 * particular it can happen that the interrupt handler tries to run
 302 * the reallocation while the bottom half is either running on another
 303 * CPU or was interrupted on the same CPU. To get around this the
 304 * driver uses bitops to prevent the reallocation routines from being
 305 * reentered.
 306 *
 307 * TX handling can also be done without holding any spin lock, wheee
 308 * this is fun! since tx_ret_csm is only written to by the interrupt
 309 * handler. The case to be aware of is when shutting down the device
 310 * and cleaning up where it is necessary to make sure that
 311 * start_xmit() is not running while this is happening. Well DaveM
 312 * informs me that this case is already protected against ... bye bye
 313 * Mr. Spin Lock, it was nice to know you.
 314 *
 315 * TX interrupts are now partly disabled so the NIC will only generate
 316 * TX interrupts for the number of coal ticks, not for the number of
 317 * TX packets in the queue. This should reduce the number of TX only,
 318 * ie. when no RX processing is done, interrupts seen.
 319 */
 320
 321/*
 322 * Threshold values for RX buffer allocation - the low water marks for
 323 * when to start refilling the rings are set to 75% of the ring
 324 * sizes. It seems to make sense to refill the rings entirely from the
 325 * intrrupt handler once it gets below the panic threshold, that way
 326 * we don't risk that the refilling is moved to another CPU when the
 327 * one running the interrupt handler just got the slab code hot in its
 328 * cache.
 329 */
 330#define RX_RING_SIZE		72
 331#define RX_MINI_SIZE		64
 332#define RX_JUMBO_SIZE		48
 333
 334#define RX_PANIC_STD_THRES	16
 335#define RX_PANIC_STD_REFILL	(3*RX_PANIC_STD_THRES)/2
 336#define RX_LOW_STD_THRES	(3*RX_RING_SIZE)/4
 337#define RX_PANIC_MINI_THRES	12
 338#define RX_PANIC_MINI_REFILL	(3*RX_PANIC_MINI_THRES)/2
 339#define RX_LOW_MINI_THRES	(3*RX_MINI_SIZE)/4
 340#define RX_PANIC_JUMBO_THRES	6
 341#define RX_PANIC_JUMBO_REFILL	(3*RX_PANIC_JUMBO_THRES)/2
 342#define RX_LOW_JUMBO_THRES	(3*RX_JUMBO_SIZE)/4
 343
 344
 345/*
 346 * Size of the mini ring entries, basically these just should be big
 347 * enough to take TCP ACKs
 348 */
 349#define ACE_MINI_SIZE		100
 350
 351#define ACE_MINI_BUFSIZE	ACE_MINI_SIZE
 352#define ACE_STD_BUFSIZE		(ACE_STD_MTU + ETH_HLEN + 4)
 353#define ACE_JUMBO_BUFSIZE	(ACE_JUMBO_MTU + ETH_HLEN + 4)
 354
 355/*
 356 * There seems to be a magic difference in the effect between 995 and 996
 357 * but little difference between 900 and 995 ... no idea why.
 358 *
 359 * There is now a default set of tuning parameters which is set, depending
 360 * on whether or not the user enables Jumbo frames. It's assumed that if
 361 * Jumbo frames are enabled, the user wants optimal tuning for that case.
 362 */
 363#define DEF_TX_COAL		400 /* 996 */
 364#define DEF_TX_MAX_DESC		60  /* was 40 */
 365#define DEF_RX_COAL		120 /* 1000 */
 366#define DEF_RX_MAX_DESC		25
 367#define DEF_TX_RATIO		21 /* 24 */
 368
 369#define DEF_JUMBO_TX_COAL	20
 370#define DEF_JUMBO_TX_MAX_DESC	60
 371#define DEF_JUMBO_RX_COAL	30
 372#define DEF_JUMBO_RX_MAX_DESC	6
 373#define DEF_JUMBO_TX_RATIO	21
 374
 375#if tigon2FwReleaseLocal < 20001118
 376/*
 377 * Standard firmware and early modifications duplicate
 378 * IRQ load without this flag (coal timer is never reset).
 379 * Note that with this flag tx_coal should be less than
 380 * time to xmit full tx ring.
 381 * 400usec is not so bad for tx ring size of 128.
 382 */
 383#define TX_COAL_INTS_ONLY	1	/* worth it */
 384#else
 385/*
 386 * With modified firmware, this is not necessary, but still useful.
 387 */
 388#define TX_COAL_INTS_ONLY	1
 389#endif
 390
 391#define DEF_TRACE		0
 392#define DEF_STAT		(2 * TICKS_PER_SEC)
 393
 394
 395static int link_state[ACE_MAX_MOD_PARMS];
 396static int trace[ACE_MAX_MOD_PARMS];
 397static int tx_coal_tick[ACE_MAX_MOD_PARMS];
 398static int rx_coal_tick[ACE_MAX_MOD_PARMS];
 399static int max_tx_desc[ACE_MAX_MOD_PARMS];
 400static int max_rx_desc[ACE_MAX_MOD_PARMS];
 401static int tx_ratio[ACE_MAX_MOD_PARMS];
 402static int dis_pci_mem_inval[ACE_MAX_MOD_PARMS] = {1, 1, 1, 1, 1, 1, 1, 1};
 403
 404MODULE_AUTHOR("Jes Sorensen <jes@trained-monkey.org>");
 405MODULE_LICENSE("GPL");
 406MODULE_DESCRIPTION("AceNIC/3C985/GA620 Gigabit Ethernet driver");
 407#ifndef CONFIG_ACENIC_OMIT_TIGON_I
 408MODULE_FIRMWARE("acenic/tg1.bin");
 409#endif
 410MODULE_FIRMWARE("acenic/tg2.bin");
 411
 412module_param_array_named(link, link_state, int, NULL, 0);
 413module_param_array(trace, int, NULL, 0);
 414module_param_array(tx_coal_tick, int, NULL, 0);
 415module_param_array(max_tx_desc, int, NULL, 0);
 416module_param_array(rx_coal_tick, int, NULL, 0);
 417module_param_array(max_rx_desc, int, NULL, 0);
 418module_param_array(tx_ratio, int, NULL, 0);
 419MODULE_PARM_DESC(link, "AceNIC/3C985/NetGear link state");
 420MODULE_PARM_DESC(trace, "AceNIC/3C985/NetGear firmware trace level");
 421MODULE_PARM_DESC(tx_coal_tick, "AceNIC/3C985/GA620 max clock ticks to wait from first tx descriptor arrives");
 422MODULE_PARM_DESC(max_tx_desc, "AceNIC/3C985/GA620 max number of transmit descriptors to wait");
 423MODULE_PARM_DESC(rx_coal_tick, "AceNIC/3C985/GA620 max clock ticks to wait from first rx descriptor arrives");
 424MODULE_PARM_DESC(max_rx_desc, "AceNIC/3C985/GA620 max number of receive descriptors to wait");
 425MODULE_PARM_DESC(tx_ratio, "AceNIC/3C985/GA620 ratio of NIC memory used for TX/RX descriptors (range 0-63)");
 426
 427
 428static const char version[] =
 429  "acenic.c: v0.92 08/05/2002  Jes Sorensen, linux-acenic@SunSITE.dk\n"
 430  "                            http://home.cern.ch/~jes/gige/acenic.html\n";
 431
 432static int ace_get_settings(struct net_device *, struct ethtool_cmd *);
 433static int ace_set_settings(struct net_device *, struct ethtool_cmd *);
 
 
 434static void ace_get_drvinfo(struct net_device *, struct ethtool_drvinfo *);
 435
 436static const struct ethtool_ops ace_ethtool_ops = {
 437	.get_settings = ace_get_settings,
 438	.set_settings = ace_set_settings,
 439	.get_drvinfo = ace_get_drvinfo,
 
 
 440};
 441
 442static void ace_watchdog(struct net_device *dev);
 443
 444static const struct net_device_ops ace_netdev_ops = {
 445	.ndo_open		= ace_open,
 446	.ndo_stop		= ace_close,
 447	.ndo_tx_timeout		= ace_watchdog,
 448	.ndo_get_stats		= ace_get_stats,
 449	.ndo_start_xmit		= ace_start_xmit,
 450	.ndo_set_rx_mode	= ace_set_multicast_list,
 451	.ndo_validate_addr	= eth_validate_addr,
 452	.ndo_set_mac_address	= ace_set_mac_addr,
 453	.ndo_change_mtu		= ace_change_mtu,
 454};
 455
 456static int acenic_probe_one(struct pci_dev *pdev,
 457			    const struct pci_device_id *id)
 458{
 459	struct net_device *dev;
 460	struct ace_private *ap;
 461	static int boards_found;
 462
 463	dev = alloc_etherdev(sizeof(struct ace_private));
 464	if (dev == NULL)
 465		return -ENOMEM;
 466
 467	SET_NETDEV_DEV(dev, &pdev->dev);
 468
 469	ap = netdev_priv(dev);
 470	ap->pdev = pdev;
 471	ap->name = pci_name(pdev);
 472
 473	dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
 474	dev->features |= NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
 475
 476	dev->watchdog_timeo = 5*HZ;
 
 
 477
 478	dev->netdev_ops = &ace_netdev_ops;
 479	SET_ETHTOOL_OPS(dev, &ace_ethtool_ops);
 480
 481	/* we only display this string ONCE */
 482	if (!boards_found)
 483		printk(version);
 484
 485	if (pci_enable_device(pdev))
 486		goto fail_free_netdev;
 487
 488	/*
 489	 * Enable master mode before we start playing with the
 490	 * pci_command word since pci_set_master() will modify
 491	 * it.
 492	 */
 493	pci_set_master(pdev);
 494
 495	pci_read_config_word(pdev, PCI_COMMAND, &ap->pci_command);
 496
 497	/* OpenFirmware on Mac's does not set this - DOH.. */
 498	if (!(ap->pci_command & PCI_COMMAND_MEMORY)) {
 499		printk(KERN_INFO "%s: Enabling PCI Memory Mapped "
 500		       "access - was not enabled by BIOS/Firmware\n",
 501		       ap->name);
 502		ap->pci_command = ap->pci_command | PCI_COMMAND_MEMORY;
 503		pci_write_config_word(ap->pdev, PCI_COMMAND,
 504				      ap->pci_command);
 505		wmb();
 506	}
 507
 508	pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &ap->pci_latency);
 509	if (ap->pci_latency <= 0x40) {
 510		ap->pci_latency = 0x40;
 511		pci_write_config_byte(pdev, PCI_LATENCY_TIMER, ap->pci_latency);
 512	}
 513
 514	/*
 515	 * Remap the regs into kernel space - this is abuse of
 516	 * dev->base_addr since it was means for I/O port
 517	 * addresses but who gives a damn.
 518	 */
 519	dev->base_addr = pci_resource_start(pdev, 0);
 520	ap->regs = ioremap(dev->base_addr, 0x4000);
 521	if (!ap->regs) {
 522		printk(KERN_ERR "%s:  Unable to map I/O register, "
 523		       "AceNIC %i will be disabled.\n",
 524		       ap->name, boards_found);
 525		goto fail_free_netdev;
 526	}
 527
 528	switch(pdev->vendor) {
 529	case PCI_VENDOR_ID_ALTEON:
 530		if (pdev->device == PCI_DEVICE_ID_FARALLON_PN9100T) {
 531			printk(KERN_INFO "%s: Farallon PN9100-T ",
 532			       ap->name);
 533		} else {
 534			printk(KERN_INFO "%s: Alteon AceNIC ",
 535			       ap->name);
 536		}
 537		break;
 538	case PCI_VENDOR_ID_3COM:
 539		printk(KERN_INFO "%s: 3Com 3C985 ", ap->name);
 540		break;
 541	case PCI_VENDOR_ID_NETGEAR:
 542		printk(KERN_INFO "%s: NetGear GA620 ", ap->name);
 543		break;
 544	case PCI_VENDOR_ID_DEC:
 545		if (pdev->device == PCI_DEVICE_ID_FARALLON_PN9000SX) {
 546			printk(KERN_INFO "%s: Farallon PN9000-SX ",
 547			       ap->name);
 548			break;
 549		}
 
 550	case PCI_VENDOR_ID_SGI:
 551		printk(KERN_INFO "%s: SGI AceNIC ", ap->name);
 552		break;
 553	default:
 554		printk(KERN_INFO "%s: Unknown AceNIC ", ap->name);
 555		break;
 556	}
 557
 558	printk("Gigabit Ethernet at 0x%08lx, ", dev->base_addr);
 559	printk("irq %d\n", pdev->irq);
 560
 561#ifdef CONFIG_ACENIC_OMIT_TIGON_I
 562	if ((readl(&ap->regs->HostCtrl) >> 28) == 4) {
 563		printk(KERN_ERR "%s: Driver compiled without Tigon I"
 564		       " support - NIC disabled\n", dev->name);
 565		goto fail_uninit;
 566	}
 567#endif
 568
 569	if (ace_allocate_descriptors(dev))
 570		goto fail_free_netdev;
 571
 572#ifdef MODULE
 573	if (boards_found >= ACE_MAX_MOD_PARMS)
 574		ap->board_idx = BOARD_IDX_OVERFLOW;
 575	else
 576		ap->board_idx = boards_found;
 577#else
 578	ap->board_idx = BOARD_IDX_STATIC;
 579#endif
 580
 581	if (ace_init(dev))
 582		goto fail_free_netdev;
 583
 584	if (register_netdev(dev)) {
 585		printk(KERN_ERR "acenic: device registration failed\n");
 586		goto fail_uninit;
 587	}
 588	ap->name = dev->name;
 589
 590	if (ap->pci_using_dac)
 591		dev->features |= NETIF_F_HIGHDMA;
 592
 593	pci_set_drvdata(pdev, dev);
 594
 595	boards_found++;
 596	return 0;
 597
 598 fail_uninit:
 599	ace_init_cleanup(dev);
 600 fail_free_netdev:
 601	free_netdev(dev);
 602	return -ENODEV;
 603}
 604
 605static void acenic_remove_one(struct pci_dev *pdev)
 606{
 607	struct net_device *dev = pci_get_drvdata(pdev);
 608	struct ace_private *ap = netdev_priv(dev);
 609	struct ace_regs __iomem *regs = ap->regs;
 610	short i;
 611
 612	unregister_netdev(dev);
 613
 614	writel(readl(&regs->CpuCtrl) | CPU_HALT, &regs->CpuCtrl);
 615	if (ap->version >= 2)
 616		writel(readl(&regs->CpuBCtrl) | CPU_HALT, &regs->CpuBCtrl);
 617
 618	/*
 619	 * This clears any pending interrupts
 620	 */
 621	writel(1, &regs->Mb0Lo);
 622	readl(&regs->CpuCtrl);	/* flush */
 623
 624	/*
 625	 * Make sure no other CPUs are processing interrupts
 626	 * on the card before the buffers are being released.
 627	 * Otherwise one might experience some `interesting'
 628	 * effects.
 629	 *
 630	 * Then release the RX buffers - jumbo buffers were
 631	 * already released in ace_close().
 632	 */
 633	ace_sync_irq(dev->irq);
 634
 635	for (i = 0; i < RX_STD_RING_ENTRIES; i++) {
 636		struct sk_buff *skb = ap->skb->rx_std_skbuff[i].skb;
 637
 638		if (skb) {
 639			struct ring_info *ringp;
 640			dma_addr_t mapping;
 641
 642			ringp = &ap->skb->rx_std_skbuff[i];
 643			mapping = dma_unmap_addr(ringp, mapping);
 644			pci_unmap_page(ap->pdev, mapping,
 645				       ACE_STD_BUFSIZE,
 646				       PCI_DMA_FROMDEVICE);
 647
 648			ap->rx_std_ring[i].size = 0;
 649			ap->skb->rx_std_skbuff[i].skb = NULL;
 650			dev_kfree_skb(skb);
 651		}
 652	}
 653
 654	if (ap->version >= 2) {
 655		for (i = 0; i < RX_MINI_RING_ENTRIES; i++) {
 656			struct sk_buff *skb = ap->skb->rx_mini_skbuff[i].skb;
 657
 658			if (skb) {
 659				struct ring_info *ringp;
 660				dma_addr_t mapping;
 661
 662				ringp = &ap->skb->rx_mini_skbuff[i];
 663				mapping = dma_unmap_addr(ringp,mapping);
 664				pci_unmap_page(ap->pdev, mapping,
 665					       ACE_MINI_BUFSIZE,
 666					       PCI_DMA_FROMDEVICE);
 667
 668				ap->rx_mini_ring[i].size = 0;
 669				ap->skb->rx_mini_skbuff[i].skb = NULL;
 670				dev_kfree_skb(skb);
 671			}
 672		}
 673	}
 674
 675	for (i = 0; i < RX_JUMBO_RING_ENTRIES; i++) {
 676		struct sk_buff *skb = ap->skb->rx_jumbo_skbuff[i].skb;
 677		if (skb) {
 678			struct ring_info *ringp;
 679			dma_addr_t mapping;
 680
 681			ringp = &ap->skb->rx_jumbo_skbuff[i];
 682			mapping = dma_unmap_addr(ringp, mapping);
 683			pci_unmap_page(ap->pdev, mapping,
 684				       ACE_JUMBO_BUFSIZE,
 685				       PCI_DMA_FROMDEVICE);
 686
 687			ap->rx_jumbo_ring[i].size = 0;
 688			ap->skb->rx_jumbo_skbuff[i].skb = NULL;
 689			dev_kfree_skb(skb);
 690		}
 691	}
 692
 693	ace_init_cleanup(dev);
 694	free_netdev(dev);
 695}
 696
 697static struct pci_driver acenic_pci_driver = {
 698	.name		= "acenic",
 699	.id_table	= acenic_pci_tbl,
 700	.probe		= acenic_probe_one,
 701	.remove		= acenic_remove_one,
 702};
 703
 704static void ace_free_descriptors(struct net_device *dev)
 705{
 706	struct ace_private *ap = netdev_priv(dev);
 707	int size;
 708
 709	if (ap->rx_std_ring != NULL) {
 710		size = (sizeof(struct rx_desc) *
 711			(RX_STD_RING_ENTRIES +
 712			 RX_JUMBO_RING_ENTRIES +
 713			 RX_MINI_RING_ENTRIES +
 714			 RX_RETURN_RING_ENTRIES));
 715		pci_free_consistent(ap->pdev, size, ap->rx_std_ring,
 716				    ap->rx_ring_base_dma);
 717		ap->rx_std_ring = NULL;
 718		ap->rx_jumbo_ring = NULL;
 719		ap->rx_mini_ring = NULL;
 720		ap->rx_return_ring = NULL;
 721	}
 722	if (ap->evt_ring != NULL) {
 723		size = (sizeof(struct event) * EVT_RING_ENTRIES);
 724		pci_free_consistent(ap->pdev, size, ap->evt_ring,
 725				    ap->evt_ring_dma);
 726		ap->evt_ring = NULL;
 727	}
 728	if (ap->tx_ring != NULL && !ACE_IS_TIGON_I(ap)) {
 729		size = (sizeof(struct tx_desc) * MAX_TX_RING_ENTRIES);
 730		pci_free_consistent(ap->pdev, size, ap->tx_ring,
 731				    ap->tx_ring_dma);
 732	}
 733	ap->tx_ring = NULL;
 734
 735	if (ap->evt_prd != NULL) {
 736		pci_free_consistent(ap->pdev, sizeof(u32),
 737				    (void *)ap->evt_prd, ap->evt_prd_dma);
 738		ap->evt_prd = NULL;
 739	}
 740	if (ap->rx_ret_prd != NULL) {
 741		pci_free_consistent(ap->pdev, sizeof(u32),
 742				    (void *)ap->rx_ret_prd,
 743				    ap->rx_ret_prd_dma);
 744		ap->rx_ret_prd = NULL;
 745	}
 746	if (ap->tx_csm != NULL) {
 747		pci_free_consistent(ap->pdev, sizeof(u32),
 748				    (void *)ap->tx_csm, ap->tx_csm_dma);
 749		ap->tx_csm = NULL;
 750	}
 751}
 752
 753
 754static int ace_allocate_descriptors(struct net_device *dev)
 755{
 756	struct ace_private *ap = netdev_priv(dev);
 757	int size;
 758
 759	size = (sizeof(struct rx_desc) *
 760		(RX_STD_RING_ENTRIES +
 761		 RX_JUMBO_RING_ENTRIES +
 762		 RX_MINI_RING_ENTRIES +
 763		 RX_RETURN_RING_ENTRIES));
 764
 765	ap->rx_std_ring = pci_alloc_consistent(ap->pdev, size,
 766					       &ap->rx_ring_base_dma);
 767	if (ap->rx_std_ring == NULL)
 768		goto fail;
 769
 770	ap->rx_jumbo_ring = ap->rx_std_ring + RX_STD_RING_ENTRIES;
 771	ap->rx_mini_ring = ap->rx_jumbo_ring + RX_JUMBO_RING_ENTRIES;
 772	ap->rx_return_ring = ap->rx_mini_ring + RX_MINI_RING_ENTRIES;
 773
 774	size = (sizeof(struct event) * EVT_RING_ENTRIES);
 775
 776	ap->evt_ring = pci_alloc_consistent(ap->pdev, size, &ap->evt_ring_dma);
 777
 778	if (ap->evt_ring == NULL)
 779		goto fail;
 780
 781	/*
 782	 * Only allocate a host TX ring for the Tigon II, the Tigon I
 783	 * has to use PCI registers for this ;-(
 784	 */
 785	if (!ACE_IS_TIGON_I(ap)) {
 786		size = (sizeof(struct tx_desc) * MAX_TX_RING_ENTRIES);
 787
 788		ap->tx_ring = pci_alloc_consistent(ap->pdev, size,
 789						   &ap->tx_ring_dma);
 790
 791		if (ap->tx_ring == NULL)
 792			goto fail;
 793	}
 794
 795	ap->evt_prd = pci_alloc_consistent(ap->pdev, sizeof(u32),
 796					   &ap->evt_prd_dma);
 797	if (ap->evt_prd == NULL)
 798		goto fail;
 799
 800	ap->rx_ret_prd = pci_alloc_consistent(ap->pdev, sizeof(u32),
 801					      &ap->rx_ret_prd_dma);
 802	if (ap->rx_ret_prd == NULL)
 803		goto fail;
 804
 805	ap->tx_csm = pci_alloc_consistent(ap->pdev, sizeof(u32),
 806					  &ap->tx_csm_dma);
 807	if (ap->tx_csm == NULL)
 808		goto fail;
 809
 810	return 0;
 811
 812fail:
 813	/* Clean up. */
 814	ace_init_cleanup(dev);
 815	return 1;
 816}
 817
 818
 819/*
 820 * Generic cleanup handling data allocated during init. Used when the
 821 * module is unloaded or if an error occurs during initialization
 822 */
 823static void ace_init_cleanup(struct net_device *dev)
 824{
 825	struct ace_private *ap;
 826
 827	ap = netdev_priv(dev);
 828
 829	ace_free_descriptors(dev);
 830
 831	if (ap->info)
 832		pci_free_consistent(ap->pdev, sizeof(struct ace_info),
 833				    ap->info, ap->info_dma);
 834	kfree(ap->skb);
 835	kfree(ap->trace_buf);
 836
 837	if (dev->irq)
 838		free_irq(dev->irq, dev);
 839
 840	iounmap(ap->regs);
 841}
 842
 843
 844/*
 845 * Commands are considered to be slow.
 846 */
 847static inline void ace_issue_cmd(struct ace_regs __iomem *regs, struct cmd *cmd)
 848{
 849	u32 idx;
 850
 851	idx = readl(&regs->CmdPrd);
 852
 853	writel(*(u32 *)(cmd), &regs->CmdRng[idx]);
 854	idx = (idx + 1) % CMD_RING_ENTRIES;
 855
 856	writel(idx, &regs->CmdPrd);
 857}
 858
 859
 860static int ace_init(struct net_device *dev)
 861{
 862	struct ace_private *ap;
 863	struct ace_regs __iomem *regs;
 864	struct ace_info *info = NULL;
 865	struct pci_dev *pdev;
 866	unsigned long myjif;
 867	u64 tmp_ptr;
 868	u32 tig_ver, mac1, mac2, tmp, pci_state;
 869	int board_idx, ecode = 0;
 870	short i;
 871	unsigned char cache_size;
 872
 873	ap = netdev_priv(dev);
 874	regs = ap->regs;
 875
 876	board_idx = ap->board_idx;
 877
 878	/*
 879	 * aman@sgi.com - its useful to do a NIC reset here to
 880	 * address the `Firmware not running' problem subsequent
 881	 * to any crashes involving the NIC
 882	 */
 883	writel(HW_RESET | (HW_RESET << 24), &regs->HostCtrl);
 884	readl(&regs->HostCtrl);		/* PCI write posting */
 885	udelay(5);
 886
 887	/*
 888	 * Don't access any other registers before this point!
 889	 */
 890#ifdef __BIG_ENDIAN
 891	/*
 892	 * This will most likely need BYTE_SWAP once we switch
 893	 * to using __raw_writel()
 894	 */
 895	writel((WORD_SWAP | CLR_INT | ((WORD_SWAP | CLR_INT) << 24)),
 896	       &regs->HostCtrl);
 897#else
 898	writel((CLR_INT | WORD_SWAP | ((CLR_INT | WORD_SWAP) << 24)),
 899	       &regs->HostCtrl);
 900#endif
 901	readl(&regs->HostCtrl);		/* PCI write posting */
 902
 903	/*
 904	 * Stop the NIC CPU and clear pending interrupts
 905	 */
 906	writel(readl(&regs->CpuCtrl) | CPU_HALT, &regs->CpuCtrl);
 907	readl(&regs->CpuCtrl);		/* PCI write posting */
 908	writel(0, &regs->Mb0Lo);
 909
 910	tig_ver = readl(&regs->HostCtrl) >> 28;
 911
 912	switch(tig_ver){
 913#ifndef CONFIG_ACENIC_OMIT_TIGON_I
 914	case 4:
 915	case 5:
 916		printk(KERN_INFO "  Tigon I  (Rev. %i), Firmware: %i.%i.%i, ",
 917		       tig_ver, ap->firmware_major, ap->firmware_minor,
 918		       ap->firmware_fix);
 919		writel(0, &regs->LocalCtrl);
 920		ap->version = 1;
 921		ap->tx_ring_entries = TIGON_I_TX_RING_ENTRIES;
 922		break;
 923#endif
 924	case 6:
 925		printk(KERN_INFO "  Tigon II (Rev. %i), Firmware: %i.%i.%i, ",
 926		       tig_ver, ap->firmware_major, ap->firmware_minor,
 927		       ap->firmware_fix);
 928		writel(readl(&regs->CpuBCtrl) | CPU_HALT, &regs->CpuBCtrl);
 929		readl(&regs->CpuBCtrl);		/* PCI write posting */
 930		/*
 931		 * The SRAM bank size does _not_ indicate the amount
 932		 * of memory on the card, it controls the _bank_ size!
 933		 * Ie. a 1MB AceNIC will have two banks of 512KB.
 934		 */
 935		writel(SRAM_BANK_512K, &regs->LocalCtrl);
 936		writel(SYNC_SRAM_TIMING, &regs->MiscCfg);
 937		ap->version = 2;
 938		ap->tx_ring_entries = MAX_TX_RING_ENTRIES;
 939		break;
 940	default:
 941		printk(KERN_WARNING "  Unsupported Tigon version detected "
 942		       "(%i)\n", tig_ver);
 943		ecode = -ENODEV;
 944		goto init_error;
 945	}
 946
 947	/*
 948	 * ModeStat _must_ be set after the SRAM settings as this change
 949	 * seems to corrupt the ModeStat and possible other registers.
 950	 * The SRAM settings survive resets and setting it to the same
 951	 * value a second time works as well. This is what caused the
 952	 * `Firmware not running' problem on the Tigon II.
 953	 */
 954#ifdef __BIG_ENDIAN
 955	writel(ACE_BYTE_SWAP_DMA | ACE_WARN | ACE_FATAL | ACE_BYTE_SWAP_BD |
 956	       ACE_WORD_SWAP_BD | ACE_NO_JUMBO_FRAG, &regs->ModeStat);
 957#else
 958	writel(ACE_BYTE_SWAP_DMA | ACE_WARN | ACE_FATAL |
 959	       ACE_WORD_SWAP_BD | ACE_NO_JUMBO_FRAG, &regs->ModeStat);
 960#endif
 961	readl(&regs->ModeStat);		/* PCI write posting */
 962
 963	mac1 = 0;
 964	for(i = 0; i < 4; i++) {
 965		int t;
 966
 967		mac1 = mac1 << 8;
 968		t = read_eeprom_byte(dev, 0x8c+i);
 969		if (t < 0) {
 970			ecode = -EIO;
 971			goto init_error;
 972		} else
 973			mac1 |= (t & 0xff);
 974	}
 975	mac2 = 0;
 976	for(i = 4; i < 8; i++) {
 977		int t;
 978
 979		mac2 = mac2 << 8;
 980		t = read_eeprom_byte(dev, 0x8c+i);
 981		if (t < 0) {
 982			ecode = -EIO;
 983			goto init_error;
 984		} else
 985			mac2 |= (t & 0xff);
 986	}
 987
 988	writel(mac1, &regs->MacAddrHi);
 989	writel(mac2, &regs->MacAddrLo);
 990
 991	dev->dev_addr[0] = (mac1 >> 8) & 0xff;
 992	dev->dev_addr[1] = mac1 & 0xff;
 993	dev->dev_addr[2] = (mac2 >> 24) & 0xff;
 994	dev->dev_addr[3] = (mac2 >> 16) & 0xff;
 995	dev->dev_addr[4] = (mac2 >> 8) & 0xff;
 996	dev->dev_addr[5] = mac2 & 0xff;
 997
 998	printk("MAC: %pM\n", dev->dev_addr);
 999
1000	/*
1001	 * Looks like this is necessary to deal with on all architectures,
1002	 * even this %$#%$# N440BX Intel based thing doesn't get it right.
1003	 * Ie. having two NICs in the machine, one will have the cache
1004	 * line set at boot time, the other will not.
1005	 */
1006	pdev = ap->pdev;
1007	pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE, &cache_size);
1008	cache_size <<= 2;
1009	if (cache_size != SMP_CACHE_BYTES) {
1010		printk(KERN_INFO "  PCI cache line size set incorrectly "
1011		       "(%i bytes) by BIOS/FW, ", cache_size);
1012		if (cache_size > SMP_CACHE_BYTES)
1013			printk("expecting %i\n", SMP_CACHE_BYTES);
1014		else {
1015			printk("correcting to %i\n", SMP_CACHE_BYTES);
1016			pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE,
1017					      SMP_CACHE_BYTES >> 2);
1018		}
1019	}
1020
1021	pci_state = readl(&regs->PciState);
1022	printk(KERN_INFO "  PCI bus width: %i bits, speed: %iMHz, "
1023	       "latency: %i clks\n",
1024	       	(pci_state & PCI_32BIT) ? 32 : 64,
1025		(pci_state & PCI_66MHZ) ? 66 : 33,
1026		ap->pci_latency);
1027
1028	/*
1029	 * Set the max DMA transfer size. Seems that for most systems
1030	 * the performance is better when no MAX parameter is
1031	 * set. However for systems enabling PCI write and invalidate,
1032	 * DMA writes must be set to the L1 cache line size to get
1033	 * optimal performance.
1034	 *
1035	 * The default is now to turn the PCI write and invalidate off
1036	 * - that is what Alteon does for NT.
1037	 */
1038	tmp = READ_CMD_MEM | WRITE_CMD_MEM;
1039	if (ap->version >= 2) {
1040		tmp |= (MEM_READ_MULTIPLE | (pci_state & PCI_66MHZ));
1041		/*
1042		 * Tuning parameters only supported for 8 cards
1043		 */
1044		if (board_idx == BOARD_IDX_OVERFLOW ||
1045		    dis_pci_mem_inval[board_idx]) {
1046			if (ap->pci_command & PCI_COMMAND_INVALIDATE) {
1047				ap->pci_command &= ~PCI_COMMAND_INVALIDATE;
1048				pci_write_config_word(pdev, PCI_COMMAND,
1049						      ap->pci_command);
1050				printk(KERN_INFO "  Disabling PCI memory "
1051				       "write and invalidate\n");
1052			}
1053		} else if (ap->pci_command & PCI_COMMAND_INVALIDATE) {
1054			printk(KERN_INFO "  PCI memory write & invalidate "
1055			       "enabled by BIOS, enabling counter measures\n");
1056
1057			switch(SMP_CACHE_BYTES) {
1058			case 16:
1059				tmp |= DMA_WRITE_MAX_16;
1060				break;
1061			case 32:
1062				tmp |= DMA_WRITE_MAX_32;
1063				break;
1064			case 64:
1065				tmp |= DMA_WRITE_MAX_64;
1066				break;
1067			case 128:
1068				tmp |= DMA_WRITE_MAX_128;
1069				break;
1070			default:
1071				printk(KERN_INFO "  Cache line size %i not "
1072				       "supported, PCI write and invalidate "
1073				       "disabled\n", SMP_CACHE_BYTES);
1074				ap->pci_command &= ~PCI_COMMAND_INVALIDATE;
1075				pci_write_config_word(pdev, PCI_COMMAND,
1076						      ap->pci_command);
1077			}
1078		}
1079	}
1080
1081#ifdef __sparc__
1082	/*
1083	 * On this platform, we know what the best dma settings
1084	 * are.  We use 64-byte maximum bursts, because if we
1085	 * burst larger than the cache line size (or even cross
1086	 * a 64byte boundary in a single burst) the UltraSparc
1087	 * PCI controller will disconnect at 64-byte multiples.
1088	 *
1089	 * Read-multiple will be properly enabled above, and when
1090	 * set will give the PCI controller proper hints about
1091	 * prefetching.
1092	 */
1093	tmp &= ~DMA_READ_WRITE_MASK;
1094	tmp |= DMA_READ_MAX_64;
1095	tmp |= DMA_WRITE_MAX_64;
1096#endif
1097#ifdef __alpha__
1098	tmp &= ~DMA_READ_WRITE_MASK;
1099	tmp |= DMA_READ_MAX_128;
1100	/*
1101	 * All the docs say MUST NOT. Well, I did.
1102	 * Nothing terrible happens, if we load wrong size.
1103	 * Bit w&i still works better!
1104	 */
1105	tmp |= DMA_WRITE_MAX_128;
1106#endif
1107	writel(tmp, &regs->PciState);
1108
1109#if 0
1110	/*
1111	 * The Host PCI bus controller driver has to set FBB.
1112	 * If all devices on that PCI bus support FBB, then the controller
1113	 * can enable FBB support in the Host PCI Bus controller (or on
1114	 * the PCI-PCI bridge if that applies).
1115	 * -ggg
1116	 */
1117	/*
1118	 * I have received reports from people having problems when this
1119	 * bit is enabled.
1120	 */
1121	if (!(ap->pci_command & PCI_COMMAND_FAST_BACK)) {
1122		printk(KERN_INFO "  Enabling PCI Fast Back to Back\n");
1123		ap->pci_command |= PCI_COMMAND_FAST_BACK;
1124		pci_write_config_word(pdev, PCI_COMMAND, ap->pci_command);
1125	}
1126#endif
1127
1128	/*
1129	 * Configure DMA attributes.
1130	 */
1131	if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
1132		ap->pci_using_dac = 1;
1133	} else if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) {
1134		ap->pci_using_dac = 0;
1135	} else {
1136		ecode = -ENODEV;
1137		goto init_error;
1138	}
1139
1140	/*
1141	 * Initialize the generic info block and the command+event rings
1142	 * and the control blocks for the transmit and receive rings
1143	 * as they need to be setup once and for all.
1144	 */
1145	if (!(info = pci_alloc_consistent(ap->pdev, sizeof(struct ace_info),
1146					  &ap->info_dma))) {
1147		ecode = -EAGAIN;
1148		goto init_error;
1149	}
1150	ap->info = info;
1151
1152	/*
1153	 * Get the memory for the skb rings.
1154	 */
1155	if (!(ap->skb = kmalloc(sizeof(struct ace_skb), GFP_KERNEL))) {
1156		ecode = -EAGAIN;
1157		goto init_error;
1158	}
1159
1160	ecode = request_irq(pdev->irq, ace_interrupt, IRQF_SHARED,
1161			    DRV_NAME, dev);
1162	if (ecode) {
1163		printk(KERN_WARNING "%s: Requested IRQ %d is busy\n",
1164		       DRV_NAME, pdev->irq);
1165		goto init_error;
1166	} else
1167		dev->irq = pdev->irq;
1168
1169#ifdef INDEX_DEBUG
1170	spin_lock_init(&ap->debug_lock);
1171	ap->last_tx = ACE_TX_RING_ENTRIES(ap) - 1;
1172	ap->last_std_rx = 0;
1173	ap->last_mini_rx = 0;
1174#endif
1175
1176	memset(ap->info, 0, sizeof(struct ace_info));
1177	memset(ap->skb, 0, sizeof(struct ace_skb));
1178
1179	ecode = ace_load_firmware(dev);
1180	if (ecode)
1181		goto init_error;
1182
1183	ap->fw_running = 0;
1184
1185	tmp_ptr = ap->info_dma;
1186	writel(tmp_ptr >> 32, &regs->InfoPtrHi);
1187	writel(tmp_ptr & 0xffffffff, &regs->InfoPtrLo);
1188
1189	memset(ap->evt_ring, 0, EVT_RING_ENTRIES * sizeof(struct event));
1190
1191	set_aceaddr(&info->evt_ctrl.rngptr, ap->evt_ring_dma);
1192	info->evt_ctrl.flags = 0;
1193
1194	*(ap->evt_prd) = 0;
1195	wmb();
1196	set_aceaddr(&info->evt_prd_ptr, ap->evt_prd_dma);
1197	writel(0, &regs->EvtCsm);
1198
1199	set_aceaddr(&info->cmd_ctrl.rngptr, 0x100);
1200	info->cmd_ctrl.flags = 0;
1201	info->cmd_ctrl.max_len = 0;
1202
1203	for (i = 0; i < CMD_RING_ENTRIES; i++)
1204		writel(0, &regs->CmdRng[i]);
1205
1206	writel(0, &regs->CmdPrd);
1207	writel(0, &regs->CmdCsm);
1208
1209	tmp_ptr = ap->info_dma;
1210	tmp_ptr += (unsigned long) &(((struct ace_info *)0)->s.stats);
1211	set_aceaddr(&info->stats2_ptr, (dma_addr_t) tmp_ptr);
1212
1213	set_aceaddr(&info->rx_std_ctrl.rngptr, ap->rx_ring_base_dma);
1214	info->rx_std_ctrl.max_len = ACE_STD_BUFSIZE;
1215	info->rx_std_ctrl.flags =
1216	  RCB_FLG_TCP_UDP_SUM | RCB_FLG_NO_PSEUDO_HDR | RCB_FLG_VLAN_ASSIST;
1217
1218	memset(ap->rx_std_ring, 0,
1219	       RX_STD_RING_ENTRIES * sizeof(struct rx_desc));
1220
1221	for (i = 0; i < RX_STD_RING_ENTRIES; i++)
1222		ap->rx_std_ring[i].flags = BD_FLG_TCP_UDP_SUM;
1223
1224	ap->rx_std_skbprd = 0;
1225	atomic_set(&ap->cur_rx_bufs, 0);
1226
1227	set_aceaddr(&info->rx_jumbo_ctrl.rngptr,
1228		    (ap->rx_ring_base_dma +
1229		     (sizeof(struct rx_desc) * RX_STD_RING_ENTRIES)));
1230	info->rx_jumbo_ctrl.max_len = 0;
1231	info->rx_jumbo_ctrl.flags =
1232	  RCB_FLG_TCP_UDP_SUM | RCB_FLG_NO_PSEUDO_HDR | RCB_FLG_VLAN_ASSIST;
1233
1234	memset(ap->rx_jumbo_ring, 0,
1235	       RX_JUMBO_RING_ENTRIES * sizeof(struct rx_desc));
1236
1237	for (i = 0; i < RX_JUMBO_RING_ENTRIES; i++)
1238		ap->rx_jumbo_ring[i].flags = BD_FLG_TCP_UDP_SUM | BD_FLG_JUMBO;
1239
1240	ap->rx_jumbo_skbprd = 0;
1241	atomic_set(&ap->cur_jumbo_bufs, 0);
1242
1243	memset(ap->rx_mini_ring, 0,
1244	       RX_MINI_RING_ENTRIES * sizeof(struct rx_desc));
1245
1246	if (ap->version >= 2) {
1247		set_aceaddr(&info->rx_mini_ctrl.rngptr,
1248			    (ap->rx_ring_base_dma +
1249			     (sizeof(struct rx_desc) *
1250			      (RX_STD_RING_ENTRIES +
1251			       RX_JUMBO_RING_ENTRIES))));
1252		info->rx_mini_ctrl.max_len = ACE_MINI_SIZE;
1253		info->rx_mini_ctrl.flags =
1254		  RCB_FLG_TCP_UDP_SUM|RCB_FLG_NO_PSEUDO_HDR|RCB_FLG_VLAN_ASSIST;
1255
1256		for (i = 0; i < RX_MINI_RING_ENTRIES; i++)
1257			ap->rx_mini_ring[i].flags =
1258				BD_FLG_TCP_UDP_SUM | BD_FLG_MINI;
1259	} else {
1260		set_aceaddr(&info->rx_mini_ctrl.rngptr, 0);
1261		info->rx_mini_ctrl.flags = RCB_FLG_RNG_DISABLE;
1262		info->rx_mini_ctrl.max_len = 0;
1263	}
1264
1265	ap->rx_mini_skbprd = 0;
1266	atomic_set(&ap->cur_mini_bufs, 0);
1267
1268	set_aceaddr(&info->rx_return_ctrl.rngptr,
1269		    (ap->rx_ring_base_dma +
1270		     (sizeof(struct rx_desc) *
1271		      (RX_STD_RING_ENTRIES +
1272		       RX_JUMBO_RING_ENTRIES +
1273		       RX_MINI_RING_ENTRIES))));
1274	info->rx_return_ctrl.flags = 0;
1275	info->rx_return_ctrl.max_len = RX_RETURN_RING_ENTRIES;
1276
1277	memset(ap->rx_return_ring, 0,
1278	       RX_RETURN_RING_ENTRIES * sizeof(struct rx_desc));
1279
1280	set_aceaddr(&info->rx_ret_prd_ptr, ap->rx_ret_prd_dma);
1281	*(ap->rx_ret_prd) = 0;
1282
1283	writel(TX_RING_BASE, &regs->WinBase);
1284
1285	if (ACE_IS_TIGON_I(ap)) {
1286		ap->tx_ring = (__force struct tx_desc *) regs->Window;
1287		for (i = 0; i < (TIGON_I_TX_RING_ENTRIES
1288				 * sizeof(struct tx_desc)) / sizeof(u32); i++)
1289			writel(0, (__force void __iomem *)ap->tx_ring  + i * 4);
1290
1291		set_aceaddr(&info->tx_ctrl.rngptr, TX_RING_BASE);
1292	} else {
1293		memset(ap->tx_ring, 0,
1294		       MAX_TX_RING_ENTRIES * sizeof(struct tx_desc));
1295
1296		set_aceaddr(&info->tx_ctrl.rngptr, ap->tx_ring_dma);
1297	}
1298
1299	info->tx_ctrl.max_len = ACE_TX_RING_ENTRIES(ap);
1300	tmp = RCB_FLG_TCP_UDP_SUM | RCB_FLG_NO_PSEUDO_HDR | RCB_FLG_VLAN_ASSIST;
1301
1302	/*
1303	 * The Tigon I does not like having the TX ring in host memory ;-(
1304	 */
1305	if (!ACE_IS_TIGON_I(ap))
1306		tmp |= RCB_FLG_TX_HOST_RING;
1307#if TX_COAL_INTS_ONLY
1308	tmp |= RCB_FLG_COAL_INT_ONLY;
1309#endif
1310	info->tx_ctrl.flags = tmp;
1311
1312	set_aceaddr(&info->tx_csm_ptr, ap->tx_csm_dma);
1313
1314	/*
1315	 * Potential item for tuning parameter
1316	 */
1317#if 0 /* NO */
1318	writel(DMA_THRESH_16W, &regs->DmaReadCfg);
1319	writel(DMA_THRESH_16W, &regs->DmaWriteCfg);
1320#else
1321	writel(DMA_THRESH_8W, &regs->DmaReadCfg);
1322	writel(DMA_THRESH_8W, &regs->DmaWriteCfg);
1323#endif
1324
1325	writel(0, &regs->MaskInt);
1326	writel(1, &regs->IfIdx);
1327#if 0
1328	/*
1329	 * McKinley boxes do not like us fiddling with AssistState
1330	 * this early
1331	 */
1332	writel(1, &regs->AssistState);
1333#endif
1334
1335	writel(DEF_STAT, &regs->TuneStatTicks);
1336	writel(DEF_TRACE, &regs->TuneTrace);
1337
1338	ace_set_rxtx_parms(dev, 0);
1339
1340	if (board_idx == BOARD_IDX_OVERFLOW) {
1341		printk(KERN_WARNING "%s: more than %i NICs detected, "
1342		       "ignoring module parameters!\n",
1343		       ap->name, ACE_MAX_MOD_PARMS);
1344	} else if (board_idx >= 0) {
1345		if (tx_coal_tick[board_idx])
1346			writel(tx_coal_tick[board_idx],
1347			       &regs->TuneTxCoalTicks);
1348		if (max_tx_desc[board_idx])
1349			writel(max_tx_desc[board_idx], &regs->TuneMaxTxDesc);
1350
1351		if (rx_coal_tick[board_idx])
1352			writel(rx_coal_tick[board_idx],
1353			       &regs->TuneRxCoalTicks);
1354		if (max_rx_desc[board_idx])
1355			writel(max_rx_desc[board_idx], &regs->TuneMaxRxDesc);
1356
1357		if (trace[board_idx])
1358			writel(trace[board_idx], &regs->TuneTrace);
1359
1360		if ((tx_ratio[board_idx] > 0) && (tx_ratio[board_idx] < 64))
1361			writel(tx_ratio[board_idx], &regs->TxBufRat);
1362	}
1363
1364	/*
1365	 * Default link parameters
1366	 */
1367	tmp = LNK_ENABLE | LNK_FULL_DUPLEX | LNK_1000MB | LNK_100MB |
1368		LNK_10MB | LNK_RX_FLOW_CTL_Y | LNK_NEG_FCTL | LNK_NEGOTIATE;
1369	if(ap->version >= 2)
1370		tmp |= LNK_TX_FLOW_CTL_Y;
1371
1372	/*
1373	 * Override link default parameters
1374	 */
1375	if ((board_idx >= 0) && link_state[board_idx]) {
1376		int option = link_state[board_idx];
1377
1378		tmp = LNK_ENABLE;
1379
1380		if (option & 0x01) {
1381			printk(KERN_INFO "%s: Setting half duplex link\n",
1382			       ap->name);
1383			tmp &= ~LNK_FULL_DUPLEX;
1384		}
1385		if (option & 0x02)
1386			tmp &= ~LNK_NEGOTIATE;
1387		if (option & 0x10)
1388			tmp |= LNK_10MB;
1389		if (option & 0x20)
1390			tmp |= LNK_100MB;
1391		if (option & 0x40)
1392			tmp |= LNK_1000MB;
1393		if ((option & 0x70) == 0) {
1394			printk(KERN_WARNING "%s: No media speed specified, "
1395			       "forcing auto negotiation\n", ap->name);
1396			tmp |= LNK_NEGOTIATE | LNK_1000MB |
1397				LNK_100MB | LNK_10MB;
1398		}
1399		if ((option & 0x100) == 0)
1400			tmp |= LNK_NEG_FCTL;
1401		else
1402			printk(KERN_INFO "%s: Disabling flow control "
1403			       "negotiation\n", ap->name);
1404		if (option & 0x200)
1405			tmp |= LNK_RX_FLOW_CTL_Y;
1406		if ((option & 0x400) && (ap->version >= 2)) {
1407			printk(KERN_INFO "%s: Enabling TX flow control\n",
1408			       ap->name);
1409			tmp |= LNK_TX_FLOW_CTL_Y;
1410		}
1411	}
1412
1413	ap->link = tmp;
1414	writel(tmp, &regs->TuneLink);
1415	if (ap->version >= 2)
1416		writel(tmp, &regs->TuneFastLink);
1417
1418	writel(ap->firmware_start, &regs->Pc);
1419
1420	writel(0, &regs->Mb0Lo);
1421
1422	/*
1423	 * Set tx_csm before we start receiving interrupts, otherwise
1424	 * the interrupt handler might think it is supposed to process
1425	 * tx ints before we are up and running, which may cause a null
1426	 * pointer access in the int handler.
1427	 */
1428	ap->cur_rx = 0;
1429	ap->tx_prd = *(ap->tx_csm) = ap->tx_ret_csm = 0;
1430
1431	wmb();
1432	ace_set_txprd(regs, ap, 0);
1433	writel(0, &regs->RxRetCsm);
1434
1435       /*
1436	* Enable DMA engine now.
1437	* If we do this sooner, Mckinley box pukes.
1438	* I assume it's because Tigon II DMA engine wants to check
1439	* *something* even before the CPU is started.
1440	*/
1441       writel(1, &regs->AssistState);  /* enable DMA */
1442
1443	/*
1444	 * Start the NIC CPU
1445	 */
1446	writel(readl(&regs->CpuCtrl) & ~(CPU_HALT|CPU_TRACE), &regs->CpuCtrl);
1447	readl(&regs->CpuCtrl);
1448
1449	/*
1450	 * Wait for the firmware to spin up - max 3 seconds.
1451	 */
1452	myjif = jiffies + 3 * HZ;
1453	while (time_before(jiffies, myjif) && !ap->fw_running)
1454		cpu_relax();
1455
1456	if (!ap->fw_running) {
1457		printk(KERN_ERR "%s: Firmware NOT running!\n", ap->name);
1458
1459		ace_dump_trace(ap);
1460		writel(readl(&regs->CpuCtrl) | CPU_HALT, &regs->CpuCtrl);
1461		readl(&regs->CpuCtrl);
1462
1463		/* aman@sgi.com - account for badly behaving firmware/NIC:
1464		 * - have observed that the NIC may continue to generate
1465		 *   interrupts for some reason; attempt to stop it - halt
1466		 *   second CPU for Tigon II cards, and also clear Mb0
1467		 * - if we're a module, we'll fail to load if this was
1468		 *   the only GbE card in the system => if the kernel does
1469		 *   see an interrupt from the NIC, code to handle it is
1470		 *   gone and OOps! - so free_irq also
1471		 */
1472		if (ap->version >= 2)
1473			writel(readl(&regs->CpuBCtrl) | CPU_HALT,
1474			       &regs->CpuBCtrl);
1475		writel(0, &regs->Mb0Lo);
1476		readl(&regs->Mb0Lo);
1477
1478		ecode = -EBUSY;
1479		goto init_error;
1480	}
1481
1482	/*
1483	 * We load the ring here as there seem to be no way to tell the
1484	 * firmware to wipe the ring without re-initializing it.
1485	 */
1486	if (!test_and_set_bit(0, &ap->std_refill_busy))
1487		ace_load_std_rx_ring(dev, RX_RING_SIZE);
1488	else
1489		printk(KERN_ERR "%s: Someone is busy refilling the RX ring\n",
1490		       ap->name);
1491	if (ap->version >= 2) {
1492		if (!test_and_set_bit(0, &ap->mini_refill_busy))
1493			ace_load_mini_rx_ring(dev, RX_MINI_SIZE);
1494		else
1495			printk(KERN_ERR "%s: Someone is busy refilling "
1496			       "the RX mini ring\n", ap->name);
1497	}
1498	return 0;
1499
1500 init_error:
1501	ace_init_cleanup(dev);
1502	return ecode;
1503}
1504
1505
1506static void ace_set_rxtx_parms(struct net_device *dev, int jumbo)
1507{
1508	struct ace_private *ap = netdev_priv(dev);
1509	struct ace_regs __iomem *regs = ap->regs;
1510	int board_idx = ap->board_idx;
1511
1512	if (board_idx >= 0) {
1513		if (!jumbo) {
1514			if (!tx_coal_tick[board_idx])
1515				writel(DEF_TX_COAL, &regs->TuneTxCoalTicks);
1516			if (!max_tx_desc[board_idx])
1517				writel(DEF_TX_MAX_DESC, &regs->TuneMaxTxDesc);
1518			if (!rx_coal_tick[board_idx])
1519				writel(DEF_RX_COAL, &regs->TuneRxCoalTicks);
1520			if (!max_rx_desc[board_idx])
1521				writel(DEF_RX_MAX_DESC, &regs->TuneMaxRxDesc);
1522			if (!tx_ratio[board_idx])
1523				writel(DEF_TX_RATIO, &regs->TxBufRat);
1524		} else {
1525			if (!tx_coal_tick[board_idx])
1526				writel(DEF_JUMBO_TX_COAL,
1527				       &regs->TuneTxCoalTicks);
1528			if (!max_tx_desc[board_idx])
1529				writel(DEF_JUMBO_TX_MAX_DESC,
1530				       &regs->TuneMaxTxDesc);
1531			if (!rx_coal_tick[board_idx])
1532				writel(DEF_JUMBO_RX_COAL,
1533				       &regs->TuneRxCoalTicks);
1534			if (!max_rx_desc[board_idx])
1535				writel(DEF_JUMBO_RX_MAX_DESC,
1536				       &regs->TuneMaxRxDesc);
1537			if (!tx_ratio[board_idx])
1538				writel(DEF_JUMBO_TX_RATIO, &regs->TxBufRat);
1539		}
1540	}
1541}
1542
1543
1544static void ace_watchdog(struct net_device *data)
1545{
1546	struct net_device *dev = data;
1547	struct ace_private *ap = netdev_priv(dev);
1548	struct ace_regs __iomem *regs = ap->regs;
1549
1550	/*
1551	 * We haven't received a stats update event for more than 2.5
1552	 * seconds and there is data in the transmit queue, thus we
1553	 * assume the card is stuck.
1554	 */
1555	if (*ap->tx_csm != ap->tx_ret_csm) {
1556		printk(KERN_WARNING "%s: Transmitter is stuck, %08x\n",
1557		       dev->name, (unsigned int)readl(&regs->HostCtrl));
1558		/* This can happen due to ieee flow control. */
1559	} else {
1560		printk(KERN_DEBUG "%s: BUG... transmitter died. Kicking it.\n",
1561		       dev->name);
1562#if 0
1563		netif_wake_queue(dev);
1564#endif
1565	}
1566}
1567
1568
1569static void ace_tasklet(unsigned long arg)
1570{
1571	struct net_device *dev = (struct net_device *) arg;
1572	struct ace_private *ap = netdev_priv(dev);
1573	int cur_size;
1574
1575	cur_size = atomic_read(&ap->cur_rx_bufs);
1576	if ((cur_size < RX_LOW_STD_THRES) &&
1577	    !test_and_set_bit(0, &ap->std_refill_busy)) {
1578#ifdef DEBUG
1579		printk("refilling buffers (current %i)\n", cur_size);
1580#endif
1581		ace_load_std_rx_ring(dev, RX_RING_SIZE - cur_size);
1582	}
1583
1584	if (ap->version >= 2) {
1585		cur_size = atomic_read(&ap->cur_mini_bufs);
1586		if ((cur_size < RX_LOW_MINI_THRES) &&
1587		    !test_and_set_bit(0, &ap->mini_refill_busy)) {
1588#ifdef DEBUG
1589			printk("refilling mini buffers (current %i)\n",
1590			       cur_size);
1591#endif
1592			ace_load_mini_rx_ring(dev, RX_MINI_SIZE - cur_size);
1593		}
1594	}
1595
1596	cur_size = atomic_read(&ap->cur_jumbo_bufs);
1597	if (ap->jumbo && (cur_size < RX_LOW_JUMBO_THRES) &&
1598	    !test_and_set_bit(0, &ap->jumbo_refill_busy)) {
1599#ifdef DEBUG
1600		printk("refilling jumbo buffers (current %i)\n", cur_size);
1601#endif
1602		ace_load_jumbo_rx_ring(dev, RX_JUMBO_SIZE - cur_size);
1603	}
1604	ap->tasklet_pending = 0;
1605}
1606
1607
1608/*
1609 * Copy the contents of the NIC's trace buffer to kernel memory.
1610 */
1611static void ace_dump_trace(struct ace_private *ap)
1612{
1613#if 0
1614	if (!ap->trace_buf)
1615		if (!(ap->trace_buf = kmalloc(ACE_TRACE_SIZE, GFP_KERNEL)))
1616		    return;
1617#endif
1618}
1619
1620
1621/*
1622 * Load the standard rx ring.
1623 *
1624 * Loading rings is safe without holding the spin lock since this is
1625 * done only before the device is enabled, thus no interrupts are
1626 * generated and by the interrupt handler/tasklet handler.
1627 */
1628static void ace_load_std_rx_ring(struct net_device *dev, int nr_bufs)
1629{
1630	struct ace_private *ap = netdev_priv(dev);
1631	struct ace_regs __iomem *regs = ap->regs;
1632	short i, idx;
1633
1634
1635	prefetchw(&ap->cur_rx_bufs);
1636
1637	idx = ap->rx_std_skbprd;
1638
1639	for (i = 0; i < nr_bufs; i++) {
1640		struct sk_buff *skb;
1641		struct rx_desc *rd;
1642		dma_addr_t mapping;
1643
1644		skb = netdev_alloc_skb_ip_align(dev, ACE_STD_BUFSIZE);
1645		if (!skb)
1646			break;
1647
1648		mapping = pci_map_page(ap->pdev, virt_to_page(skb->data),
1649				       offset_in_page(skb->data),
1650				       ACE_STD_BUFSIZE,
1651				       PCI_DMA_FROMDEVICE);
1652		ap->skb->rx_std_skbuff[idx].skb = skb;
1653		dma_unmap_addr_set(&ap->skb->rx_std_skbuff[idx],
1654				   mapping, mapping);
1655
1656		rd = &ap->rx_std_ring[idx];
1657		set_aceaddr(&rd->addr, mapping);
1658		rd->size = ACE_STD_BUFSIZE;
1659		rd->idx = idx;
1660		idx = (idx + 1) % RX_STD_RING_ENTRIES;
1661	}
1662
1663	if (!i)
1664		goto error_out;
1665
1666	atomic_add(i, &ap->cur_rx_bufs);
1667	ap->rx_std_skbprd = idx;
1668
1669	if (ACE_IS_TIGON_I(ap)) {
1670		struct cmd cmd;
1671		cmd.evt = C_SET_RX_PRD_IDX;
1672		cmd.code = 0;
1673		cmd.idx = ap->rx_std_skbprd;
1674		ace_issue_cmd(regs, &cmd);
1675	} else {
1676		writel(idx, &regs->RxStdPrd);
1677		wmb();
1678	}
1679
1680 out:
1681	clear_bit(0, &ap->std_refill_busy);
1682	return;
1683
1684 error_out:
1685	printk(KERN_INFO "Out of memory when allocating "
1686	       "standard receive buffers\n");
1687	goto out;
1688}
1689
1690
1691static void ace_load_mini_rx_ring(struct net_device *dev, int nr_bufs)
1692{
1693	struct ace_private *ap = netdev_priv(dev);
1694	struct ace_regs __iomem *regs = ap->regs;
1695	short i, idx;
1696
1697	prefetchw(&ap->cur_mini_bufs);
1698
1699	idx = ap->rx_mini_skbprd;
1700	for (i = 0; i < nr_bufs; i++) {
1701		struct sk_buff *skb;
1702		struct rx_desc *rd;
1703		dma_addr_t mapping;
1704
1705		skb = netdev_alloc_skb_ip_align(dev, ACE_MINI_BUFSIZE);
1706		if (!skb)
1707			break;
1708
1709		mapping = pci_map_page(ap->pdev, virt_to_page(skb->data),
1710				       offset_in_page(skb->data),
1711				       ACE_MINI_BUFSIZE,
1712				       PCI_DMA_FROMDEVICE);
1713		ap->skb->rx_mini_skbuff[idx].skb = skb;
1714		dma_unmap_addr_set(&ap->skb->rx_mini_skbuff[idx],
1715				   mapping, mapping);
1716
1717		rd = &ap->rx_mini_ring[idx];
1718		set_aceaddr(&rd->addr, mapping);
1719		rd->size = ACE_MINI_BUFSIZE;
1720		rd->idx = idx;
1721		idx = (idx + 1) % RX_MINI_RING_ENTRIES;
1722	}
1723
1724	if (!i)
1725		goto error_out;
1726
1727	atomic_add(i, &ap->cur_mini_bufs);
1728
1729	ap->rx_mini_skbprd = idx;
1730
1731	writel(idx, &regs->RxMiniPrd);
1732	wmb();
1733
1734 out:
1735	clear_bit(0, &ap->mini_refill_busy);
1736	return;
1737 error_out:
1738	printk(KERN_INFO "Out of memory when allocating "
1739	       "mini receive buffers\n");
1740	goto out;
1741}
1742
1743
1744/*
1745 * Load the jumbo rx ring, this may happen at any time if the MTU
1746 * is changed to a value > 1500.
1747 */
1748static void ace_load_jumbo_rx_ring(struct net_device *dev, int nr_bufs)
1749{
1750	struct ace_private *ap = netdev_priv(dev);
1751	struct ace_regs __iomem *regs = ap->regs;
1752	short i, idx;
1753
1754	idx = ap->rx_jumbo_skbprd;
1755
1756	for (i = 0; i < nr_bufs; i++) {
1757		struct sk_buff *skb;
1758		struct rx_desc *rd;
1759		dma_addr_t mapping;
1760
1761		skb = netdev_alloc_skb_ip_align(dev, ACE_JUMBO_BUFSIZE);
1762		if (!skb)
1763			break;
1764
1765		mapping = pci_map_page(ap->pdev, virt_to_page(skb->data),
1766				       offset_in_page(skb->data),
1767				       ACE_JUMBO_BUFSIZE,
1768				       PCI_DMA_FROMDEVICE);
1769		ap->skb->rx_jumbo_skbuff[idx].skb = skb;
1770		dma_unmap_addr_set(&ap->skb->rx_jumbo_skbuff[idx],
1771				   mapping, mapping);
1772
1773		rd = &ap->rx_jumbo_ring[idx];
1774		set_aceaddr(&rd->addr, mapping);
1775		rd->size = ACE_JUMBO_BUFSIZE;
1776		rd->idx = idx;
1777		idx = (idx + 1) % RX_JUMBO_RING_ENTRIES;
1778	}
1779
1780	if (!i)
1781		goto error_out;
1782
1783	atomic_add(i, &ap->cur_jumbo_bufs);
1784	ap->rx_jumbo_skbprd = idx;
1785
1786	if (ACE_IS_TIGON_I(ap)) {
1787		struct cmd cmd;
1788		cmd.evt = C_SET_RX_JUMBO_PRD_IDX;
1789		cmd.code = 0;
1790		cmd.idx = ap->rx_jumbo_skbprd;
1791		ace_issue_cmd(regs, &cmd);
1792	} else {
1793		writel(idx, &regs->RxJumboPrd);
1794		wmb();
1795	}
1796
1797 out:
1798	clear_bit(0, &ap->jumbo_refill_busy);
1799	return;
1800 error_out:
1801	if (net_ratelimit())
1802		printk(KERN_INFO "Out of memory when allocating "
1803		       "jumbo receive buffers\n");
1804	goto out;
1805}
1806
1807
1808/*
1809 * All events are considered to be slow (RX/TX ints do not generate
1810 * events) and are handled here, outside the main interrupt handler,
1811 * to reduce the size of the handler.
1812 */
1813static u32 ace_handle_event(struct net_device *dev, u32 evtcsm, u32 evtprd)
1814{
1815	struct ace_private *ap;
1816
1817	ap = netdev_priv(dev);
1818
1819	while (evtcsm != evtprd) {
1820		switch (ap->evt_ring[evtcsm].evt) {
1821		case E_FW_RUNNING:
1822			printk(KERN_INFO "%s: Firmware up and running\n",
1823			       ap->name);
1824			ap->fw_running = 1;
1825			wmb();
1826			break;
1827		case E_STATS_UPDATED:
1828			break;
1829		case E_LNK_STATE:
1830		{
1831			u16 code = ap->evt_ring[evtcsm].code;
1832			switch (code) {
1833			case E_C_LINK_UP:
1834			{
1835				u32 state = readl(&ap->regs->GigLnkState);
1836				printk(KERN_WARNING "%s: Optical link UP "
1837				       "(%s Duplex, Flow Control: %s%s)\n",
1838				       ap->name,
1839				       state & LNK_FULL_DUPLEX ? "Full":"Half",
1840				       state & LNK_TX_FLOW_CTL_Y ? "TX " : "",
1841				       state & LNK_RX_FLOW_CTL_Y ? "RX" : "");
1842				break;
1843			}
1844			case E_C_LINK_DOWN:
1845				printk(KERN_WARNING "%s: Optical link DOWN\n",
1846				       ap->name);
1847				break;
1848			case E_C_LINK_10_100:
1849				printk(KERN_WARNING "%s: 10/100BaseT link "
1850				       "UP\n", ap->name);
1851				break;
1852			default:
1853				printk(KERN_ERR "%s: Unknown optical link "
1854				       "state %02x\n", ap->name, code);
1855			}
1856			break;
1857		}
1858		case E_ERROR:
1859			switch(ap->evt_ring[evtcsm].code) {
1860			case E_C_ERR_INVAL_CMD:
1861				printk(KERN_ERR "%s: invalid command error\n",
1862				       ap->name);
1863				break;
1864			case E_C_ERR_UNIMP_CMD:
1865				printk(KERN_ERR "%s: unimplemented command "
1866				       "error\n", ap->name);
1867				break;
1868			case E_C_ERR_BAD_CFG:
1869				printk(KERN_ERR "%s: bad config error\n",
1870				       ap->name);
1871				break;
1872			default:
1873				printk(KERN_ERR "%s: unknown error %02x\n",
1874				       ap->name, ap->evt_ring[evtcsm].code);
1875			}
1876			break;
1877		case E_RESET_JUMBO_RNG:
1878		{
1879			int i;
1880			for (i = 0; i < RX_JUMBO_RING_ENTRIES; i++) {
1881				if (ap->skb->rx_jumbo_skbuff[i].skb) {
1882					ap->rx_jumbo_ring[i].size = 0;
1883					set_aceaddr(&ap->rx_jumbo_ring[i].addr, 0);
1884					dev_kfree_skb(ap->skb->rx_jumbo_skbuff[i].skb);
1885					ap->skb->rx_jumbo_skbuff[i].skb = NULL;
1886				}
1887			}
1888
1889 			if (ACE_IS_TIGON_I(ap)) {
1890 				struct cmd cmd;
1891 				cmd.evt = C_SET_RX_JUMBO_PRD_IDX;
1892 				cmd.code = 0;
1893 				cmd.idx = 0;
1894 				ace_issue_cmd(ap->regs, &cmd);
1895 			} else {
1896 				writel(0, &((ap->regs)->RxJumboPrd));
1897 				wmb();
1898 			}
1899
1900			ap->jumbo = 0;
1901			ap->rx_jumbo_skbprd = 0;
1902			printk(KERN_INFO "%s: Jumbo ring flushed\n",
1903			       ap->name);
1904			clear_bit(0, &ap->jumbo_refill_busy);
1905			break;
1906		}
1907		default:
1908			printk(KERN_ERR "%s: Unhandled event 0x%02x\n",
1909			       ap->name, ap->evt_ring[evtcsm].evt);
1910		}
1911		evtcsm = (evtcsm + 1) % EVT_RING_ENTRIES;
1912	}
1913
1914	return evtcsm;
1915}
1916
1917
1918static void ace_rx_int(struct net_device *dev, u32 rxretprd, u32 rxretcsm)
1919{
1920	struct ace_private *ap = netdev_priv(dev);
1921	u32 idx;
1922	int mini_count = 0, std_count = 0;
1923
1924	idx = rxretcsm;
1925
1926	prefetchw(&ap->cur_rx_bufs);
1927	prefetchw(&ap->cur_mini_bufs);
1928
1929	while (idx != rxretprd) {
1930		struct ring_info *rip;
1931		struct sk_buff *skb;
1932		struct rx_desc *rxdesc, *retdesc;
1933		u32 skbidx;
1934		int bd_flags, desc_type, mapsize;
1935		u16 csum;
1936
1937
1938		/* make sure the rx descriptor isn't read before rxretprd */
1939		if (idx == rxretcsm)
1940			rmb();
1941
1942		retdesc = &ap->rx_return_ring[idx];
1943		skbidx = retdesc->idx;
1944		bd_flags = retdesc->flags;
1945		desc_type = bd_flags & (BD_FLG_JUMBO | BD_FLG_MINI);
1946
1947		switch(desc_type) {
1948			/*
1949			 * Normal frames do not have any flags set
1950			 *
1951			 * Mini and normal frames arrive frequently,
1952			 * so use a local counter to avoid doing
1953			 * atomic operations for each packet arriving.
1954			 */
1955		case 0:
1956			rip = &ap->skb->rx_std_skbuff[skbidx];
1957			mapsize = ACE_STD_BUFSIZE;
1958			rxdesc = &ap->rx_std_ring[skbidx];
1959			std_count++;
1960			break;
1961		case BD_FLG_JUMBO:
1962			rip = &ap->skb->rx_jumbo_skbuff[skbidx];
1963			mapsize = ACE_JUMBO_BUFSIZE;
1964			rxdesc = &ap->rx_jumbo_ring[skbidx];
1965			atomic_dec(&ap->cur_jumbo_bufs);
1966			break;
1967		case BD_FLG_MINI:
1968			rip = &ap->skb->rx_mini_skbuff[skbidx];
1969			mapsize = ACE_MINI_BUFSIZE;
1970			rxdesc = &ap->rx_mini_ring[skbidx];
1971			mini_count++;
1972			break;
1973		default:
1974			printk(KERN_INFO "%s: unknown frame type (0x%02x) "
1975			       "returned by NIC\n", dev->name,
1976			       retdesc->flags);
1977			goto error;
1978		}
1979
1980		skb = rip->skb;
1981		rip->skb = NULL;
1982		pci_unmap_page(ap->pdev,
1983			       dma_unmap_addr(rip, mapping),
1984			       mapsize,
1985			       PCI_DMA_FROMDEVICE);
1986		skb_put(skb, retdesc->size);
1987
1988		/*
1989		 * Fly baby, fly!
1990		 */
1991		csum = retdesc->tcp_udp_csum;
1992
1993		skb->protocol = eth_type_trans(skb, dev);
1994
1995		/*
1996		 * Instead of forcing the poor tigon mips cpu to calculate
1997		 * pseudo hdr checksum, we do this ourselves.
1998		 */
1999		if (bd_flags & BD_FLG_TCP_UDP_SUM) {
2000			skb->csum = htons(csum);
2001			skb->ip_summed = CHECKSUM_COMPLETE;
2002		} else {
2003			skb_checksum_none_assert(skb);
2004		}
2005
2006		/* send it up */
2007		if ((bd_flags & BD_FLG_VLAN_TAG))
2008			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), retdesc->vlan);
2009		netif_rx(skb);
2010
2011		dev->stats.rx_packets++;
2012		dev->stats.rx_bytes += retdesc->size;
2013
2014		idx = (idx + 1) % RX_RETURN_RING_ENTRIES;
2015	}
2016
2017	atomic_sub(std_count, &ap->cur_rx_bufs);
2018	if (!ACE_IS_TIGON_I(ap))
2019		atomic_sub(mini_count, &ap->cur_mini_bufs);
2020
2021 out:
2022	/*
2023	 * According to the documentation RxRetCsm is obsolete with
2024	 * the 12.3.x Firmware - my Tigon I NICs seem to disagree!
2025	 */
2026	if (ACE_IS_TIGON_I(ap)) {
2027		writel(idx, &ap->regs->RxRetCsm);
2028	}
2029	ap->cur_rx = idx;
2030
2031	return;
2032 error:
2033	idx = rxretprd;
2034	goto out;
2035}
2036
2037
2038static inline void ace_tx_int(struct net_device *dev,
2039			      u32 txcsm, u32 idx)
2040{
2041	struct ace_private *ap = netdev_priv(dev);
2042
2043	do {
2044		struct sk_buff *skb;
2045		struct tx_ring_info *info;
2046
2047		info = ap->skb->tx_skbuff + idx;
2048		skb = info->skb;
2049
2050		if (dma_unmap_len(info, maplen)) {
2051			pci_unmap_page(ap->pdev, dma_unmap_addr(info, mapping),
2052				       dma_unmap_len(info, maplen),
2053				       PCI_DMA_TODEVICE);
2054			dma_unmap_len_set(info, maplen, 0);
2055		}
2056
2057		if (skb) {
2058			dev->stats.tx_packets++;
2059			dev->stats.tx_bytes += skb->len;
2060			dev_kfree_skb_irq(skb);
2061			info->skb = NULL;
2062		}
2063
2064		idx = (idx + 1) % ACE_TX_RING_ENTRIES(ap);
2065	} while (idx != txcsm);
2066
2067	if (netif_queue_stopped(dev))
2068		netif_wake_queue(dev);
2069
2070	wmb();
2071	ap->tx_ret_csm = txcsm;
2072
2073	/* So... tx_ret_csm is advanced _after_ check for device wakeup.
2074	 *
2075	 * We could try to make it before. In this case we would get
2076	 * the following race condition: hard_start_xmit on other cpu
2077	 * enters after we advanced tx_ret_csm and fills space,
2078	 * which we have just freed, so that we make illegal device wakeup.
2079	 * There is no good way to workaround this (at entry
2080	 * to ace_start_xmit detects this condition and prevents
2081	 * ring corruption, but it is not a good workaround.)
2082	 *
2083	 * When tx_ret_csm is advanced after, we wake up device _only_
2084	 * if we really have some space in ring (though the core doing
2085	 * hard_start_xmit can see full ring for some period and has to
2086	 * synchronize.) Superb.
2087	 * BUT! We get another subtle race condition. hard_start_xmit
2088	 * may think that ring is full between wakeup and advancing
2089	 * tx_ret_csm and will stop device instantly! It is not so bad.
2090	 * We are guaranteed that there is something in ring, so that
2091	 * the next irq will resume transmission. To speedup this we could
2092	 * mark descriptor, which closes ring with BD_FLG_COAL_NOW
2093	 * (see ace_start_xmit).
2094	 *
2095	 * Well, this dilemma exists in all lock-free devices.
2096	 * We, following scheme used in drivers by Donald Becker,
2097	 * select the least dangerous.
2098	 *							--ANK
2099	 */
2100}
2101
2102
2103static irqreturn_t ace_interrupt(int irq, void *dev_id)
2104{
2105	struct net_device *dev = (struct net_device *)dev_id;
2106	struct ace_private *ap = netdev_priv(dev);
2107	struct ace_regs __iomem *regs = ap->regs;
2108	u32 idx;
2109	u32 txcsm, rxretcsm, rxretprd;
2110	u32 evtcsm, evtprd;
2111
2112	/*
2113	 * In case of PCI shared interrupts or spurious interrupts,
2114	 * we want to make sure it is actually our interrupt before
2115	 * spending any time in here.
2116	 */
2117	if (!(readl(&regs->HostCtrl) & IN_INT))
2118		return IRQ_NONE;
2119
2120	/*
2121	 * ACK intr now. Otherwise we will lose updates to rx_ret_prd,
2122	 * which happened _after_ rxretprd = *ap->rx_ret_prd; but before
2123	 * writel(0, &regs->Mb0Lo).
2124	 *
2125	 * "IRQ avoidance" recommended in docs applies to IRQs served
2126	 * threads and it is wrong even for that case.
2127	 */
2128	writel(0, &regs->Mb0Lo);
2129	readl(&regs->Mb0Lo);
2130
2131	/*
2132	 * There is no conflict between transmit handling in
2133	 * start_xmit and receive processing, thus there is no reason
2134	 * to take a spin lock for RX handling. Wait until we start
2135	 * working on the other stuff - hey we don't need a spin lock
2136	 * anymore.
2137	 */
2138	rxretprd = *ap->rx_ret_prd;
2139	rxretcsm = ap->cur_rx;
2140
2141	if (rxretprd != rxretcsm)
2142		ace_rx_int(dev, rxretprd, rxretcsm);
2143
2144	txcsm = *ap->tx_csm;
2145	idx = ap->tx_ret_csm;
2146
2147	if (txcsm != idx) {
2148		/*
2149		 * If each skb takes only one descriptor this check degenerates
2150		 * to identity, because new space has just been opened.
2151		 * But if skbs are fragmented we must check that this index
2152		 * update releases enough of space, otherwise we just
2153		 * wait for device to make more work.
2154		 */
2155		if (!tx_ring_full(ap, txcsm, ap->tx_prd))
2156			ace_tx_int(dev, txcsm, idx);
2157	}
2158
2159	evtcsm = readl(&regs->EvtCsm);
2160	evtprd = *ap->evt_prd;
2161
2162	if (evtcsm != evtprd) {
2163		evtcsm = ace_handle_event(dev, evtcsm, evtprd);
2164		writel(evtcsm, &regs->EvtCsm);
2165	}
2166
2167	/*
2168	 * This has to go last in the interrupt handler and run with
2169	 * the spin lock released ... what lock?
2170	 */
2171	if (netif_running(dev)) {
2172		int cur_size;
2173		int run_tasklet = 0;
2174
2175		cur_size = atomic_read(&ap->cur_rx_bufs);
2176		if (cur_size < RX_LOW_STD_THRES) {
2177			if ((cur_size < RX_PANIC_STD_THRES) &&
2178			    !test_and_set_bit(0, &ap->std_refill_busy)) {
2179#ifdef DEBUG
2180				printk("low on std buffers %i\n", cur_size);
2181#endif
2182				ace_load_std_rx_ring(dev,
2183						     RX_RING_SIZE - cur_size);
2184			} else
2185				run_tasklet = 1;
2186		}
2187
2188		if (!ACE_IS_TIGON_I(ap)) {
2189			cur_size = atomic_read(&ap->cur_mini_bufs);
2190			if (cur_size < RX_LOW_MINI_THRES) {
2191				if ((cur_size < RX_PANIC_MINI_THRES) &&
2192				    !test_and_set_bit(0,
2193						      &ap->mini_refill_busy)) {
2194#ifdef DEBUG
2195					printk("low on mini buffers %i\n",
2196					       cur_size);
2197#endif
2198					ace_load_mini_rx_ring(dev,
2199							      RX_MINI_SIZE - cur_size);
2200				} else
2201					run_tasklet = 1;
2202			}
2203		}
2204
2205		if (ap->jumbo) {
2206			cur_size = atomic_read(&ap->cur_jumbo_bufs);
2207			if (cur_size < RX_LOW_JUMBO_THRES) {
2208				if ((cur_size < RX_PANIC_JUMBO_THRES) &&
2209				    !test_and_set_bit(0,
2210						      &ap->jumbo_refill_busy)){
2211#ifdef DEBUG
2212					printk("low on jumbo buffers %i\n",
2213					       cur_size);
2214#endif
2215					ace_load_jumbo_rx_ring(dev,
2216							       RX_JUMBO_SIZE - cur_size);
2217				} else
2218					run_tasklet = 1;
2219			}
2220		}
2221		if (run_tasklet && !ap->tasklet_pending) {
2222			ap->tasklet_pending = 1;
2223			tasklet_schedule(&ap->ace_tasklet);
2224		}
2225	}
2226
2227	return IRQ_HANDLED;
2228}
2229
2230static int ace_open(struct net_device *dev)
2231{
2232	struct ace_private *ap = netdev_priv(dev);
2233	struct ace_regs __iomem *regs = ap->regs;
2234	struct cmd cmd;
2235
2236	if (!(ap->fw_running)) {
2237		printk(KERN_WARNING "%s: Firmware not running!\n", dev->name);
2238		return -EBUSY;
2239	}
2240
2241	writel(dev->mtu + ETH_HLEN + 4, &regs->IfMtu);
2242
2243	cmd.evt = C_CLEAR_STATS;
2244	cmd.code = 0;
2245	cmd.idx = 0;
2246	ace_issue_cmd(regs, &cmd);
2247
2248	cmd.evt = C_HOST_STATE;
2249	cmd.code = C_C_STACK_UP;
2250	cmd.idx = 0;
2251	ace_issue_cmd(regs, &cmd);
2252
2253	if (ap->jumbo &&
2254	    !test_and_set_bit(0, &ap->jumbo_refill_busy))
2255		ace_load_jumbo_rx_ring(dev, RX_JUMBO_SIZE);
2256
2257	if (dev->flags & IFF_PROMISC) {
2258		cmd.evt = C_SET_PROMISC_MODE;
2259		cmd.code = C_C_PROMISC_ENABLE;
2260		cmd.idx = 0;
2261		ace_issue_cmd(regs, &cmd);
2262
2263		ap->promisc = 1;
2264	}else
2265		ap->promisc = 0;
2266	ap->mcast_all = 0;
2267
2268#if 0
2269	cmd.evt = C_LNK_NEGOTIATION;
2270	cmd.code = 0;
2271	cmd.idx = 0;
2272	ace_issue_cmd(regs, &cmd);
2273#endif
2274
2275	netif_start_queue(dev);
2276
2277	/*
2278	 * Setup the bottom half rx ring refill handler
2279	 */
2280	tasklet_init(&ap->ace_tasklet, ace_tasklet, (unsigned long)dev);
2281	return 0;
2282}
2283
2284
2285static int ace_close(struct net_device *dev)
2286{
2287	struct ace_private *ap = netdev_priv(dev);
2288	struct ace_regs __iomem *regs = ap->regs;
2289	struct cmd cmd;
2290	unsigned long flags;
2291	short i;
2292
2293	/*
2294	 * Without (or before) releasing irq and stopping hardware, this
2295	 * is an absolute non-sense, by the way. It will be reset instantly
2296	 * by the first irq.
2297	 */
2298	netif_stop_queue(dev);
2299
2300
2301	if (ap->promisc) {
2302		cmd.evt = C_SET_PROMISC_MODE;
2303		cmd.code = C_C_PROMISC_DISABLE;
2304		cmd.idx = 0;
2305		ace_issue_cmd(regs, &cmd);
2306		ap->promisc = 0;
2307	}
2308
2309	cmd.evt = C_HOST_STATE;
2310	cmd.code = C_C_STACK_DOWN;
2311	cmd.idx = 0;
2312	ace_issue_cmd(regs, &cmd);
2313
2314	tasklet_kill(&ap->ace_tasklet);
2315
2316	/*
2317	 * Make sure one CPU is not processing packets while
2318	 * buffers are being released by another.
2319	 */
2320
2321	local_irq_save(flags);
2322	ace_mask_irq(dev);
2323
2324	for (i = 0; i < ACE_TX_RING_ENTRIES(ap); i++) {
2325		struct sk_buff *skb;
2326		struct tx_ring_info *info;
2327
2328		info = ap->skb->tx_skbuff + i;
2329		skb = info->skb;
2330
2331		if (dma_unmap_len(info, maplen)) {
2332			if (ACE_IS_TIGON_I(ap)) {
2333				/* NB: TIGON_1 is special, tx_ring is in io space */
2334				struct tx_desc __iomem *tx;
2335				tx = (__force struct tx_desc __iomem *) &ap->tx_ring[i];
2336				writel(0, &tx->addr.addrhi);
2337				writel(0, &tx->addr.addrlo);
2338				writel(0, &tx->flagsize);
2339			} else
2340				memset(ap->tx_ring + i, 0,
2341				       sizeof(struct tx_desc));
2342			pci_unmap_page(ap->pdev, dma_unmap_addr(info, mapping),
2343				       dma_unmap_len(info, maplen),
2344				       PCI_DMA_TODEVICE);
2345			dma_unmap_len_set(info, maplen, 0);
2346		}
2347		if (skb) {
2348			dev_kfree_skb(skb);
2349			info->skb = NULL;
2350		}
2351	}
2352
2353	if (ap->jumbo) {
2354		cmd.evt = C_RESET_JUMBO_RNG;
2355		cmd.code = 0;
2356		cmd.idx = 0;
2357		ace_issue_cmd(regs, &cmd);
2358	}
2359
2360	ace_unmask_irq(dev);
2361	local_irq_restore(flags);
2362
2363	return 0;
2364}
2365
2366
2367static inline dma_addr_t
2368ace_map_tx_skb(struct ace_private *ap, struct sk_buff *skb,
2369	       struct sk_buff *tail, u32 idx)
2370{
2371	dma_addr_t mapping;
2372	struct tx_ring_info *info;
2373
2374	mapping = pci_map_page(ap->pdev, virt_to_page(skb->data),
2375			       offset_in_page(skb->data),
2376			       skb->len, PCI_DMA_TODEVICE);
2377
2378	info = ap->skb->tx_skbuff + idx;
2379	info->skb = tail;
2380	dma_unmap_addr_set(info, mapping, mapping);
2381	dma_unmap_len_set(info, maplen, skb->len);
2382	return mapping;
2383}
2384
2385
2386static inline void
2387ace_load_tx_bd(struct ace_private *ap, struct tx_desc *desc, u64 addr,
2388	       u32 flagsize, u32 vlan_tag)
2389{
2390#if !USE_TX_COAL_NOW
2391	flagsize &= ~BD_FLG_COAL_NOW;
2392#endif
2393
2394	if (ACE_IS_TIGON_I(ap)) {
2395		struct tx_desc __iomem *io = (__force struct tx_desc __iomem *) desc;
2396		writel(addr >> 32, &io->addr.addrhi);
2397		writel(addr & 0xffffffff, &io->addr.addrlo);
2398		writel(flagsize, &io->flagsize);
2399		writel(vlan_tag, &io->vlanres);
2400	} else {
2401		desc->addr.addrhi = addr >> 32;
2402		desc->addr.addrlo = addr;
2403		desc->flagsize = flagsize;
2404		desc->vlanres = vlan_tag;
2405	}
2406}
2407
2408
2409static netdev_tx_t ace_start_xmit(struct sk_buff *skb,
2410				  struct net_device *dev)
2411{
2412	struct ace_private *ap = netdev_priv(dev);
2413	struct ace_regs __iomem *regs = ap->regs;
2414	struct tx_desc *desc;
2415	u32 idx, flagsize;
2416	unsigned long maxjiff = jiffies + 3*HZ;
2417
2418restart:
2419	idx = ap->tx_prd;
2420
2421	if (tx_ring_full(ap, ap->tx_ret_csm, idx))
2422		goto overflow;
2423
2424	if (!skb_shinfo(skb)->nr_frags)	{
2425		dma_addr_t mapping;
2426		u32 vlan_tag = 0;
2427
2428		mapping = ace_map_tx_skb(ap, skb, skb, idx);
2429		flagsize = (skb->len << 16) | (BD_FLG_END);
2430		if (skb->ip_summed == CHECKSUM_PARTIAL)
2431			flagsize |= BD_FLG_TCP_UDP_SUM;
2432		if (vlan_tx_tag_present(skb)) {
2433			flagsize |= BD_FLG_VLAN_TAG;
2434			vlan_tag = vlan_tx_tag_get(skb);
2435		}
2436		desc = ap->tx_ring + idx;
2437		idx = (idx + 1) % ACE_TX_RING_ENTRIES(ap);
2438
2439		/* Look at ace_tx_int for explanations. */
2440		if (tx_ring_full(ap, ap->tx_ret_csm, idx))
2441			flagsize |= BD_FLG_COAL_NOW;
2442
2443		ace_load_tx_bd(ap, desc, mapping, flagsize, vlan_tag);
2444	} else {
2445		dma_addr_t mapping;
2446		u32 vlan_tag = 0;
2447		int i, len = 0;
2448
2449		mapping = ace_map_tx_skb(ap, skb, NULL, idx);
2450		flagsize = (skb_headlen(skb) << 16);
2451		if (skb->ip_summed == CHECKSUM_PARTIAL)
2452			flagsize |= BD_FLG_TCP_UDP_SUM;
2453		if (vlan_tx_tag_present(skb)) {
2454			flagsize |= BD_FLG_VLAN_TAG;
2455			vlan_tag = vlan_tx_tag_get(skb);
2456		}
2457
2458		ace_load_tx_bd(ap, ap->tx_ring + idx, mapping, flagsize, vlan_tag);
2459
2460		idx = (idx + 1) % ACE_TX_RING_ENTRIES(ap);
2461
2462		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2463			const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2464			struct tx_ring_info *info;
2465
2466			len += skb_frag_size(frag);
2467			info = ap->skb->tx_skbuff + idx;
2468			desc = ap->tx_ring + idx;
2469
2470			mapping = skb_frag_dma_map(&ap->pdev->dev, frag, 0,
2471						   skb_frag_size(frag),
2472						   DMA_TO_DEVICE);
2473
2474			flagsize = skb_frag_size(frag) << 16;
2475			if (skb->ip_summed == CHECKSUM_PARTIAL)
2476				flagsize |= BD_FLG_TCP_UDP_SUM;
2477			idx = (idx + 1) % ACE_TX_RING_ENTRIES(ap);
2478
2479			if (i == skb_shinfo(skb)->nr_frags - 1) {
2480				flagsize |= BD_FLG_END;
2481				if (tx_ring_full(ap, ap->tx_ret_csm, idx))
2482					flagsize |= BD_FLG_COAL_NOW;
2483
2484				/*
2485				 * Only the last fragment frees
2486				 * the skb!
2487				 */
2488				info->skb = skb;
2489			} else {
2490				info->skb = NULL;
2491			}
2492			dma_unmap_addr_set(info, mapping, mapping);
2493			dma_unmap_len_set(info, maplen, skb_frag_size(frag));
2494			ace_load_tx_bd(ap, desc, mapping, flagsize, vlan_tag);
2495		}
2496	}
2497
2498 	wmb();
2499 	ap->tx_prd = idx;
2500 	ace_set_txprd(regs, ap, idx);
2501
2502	if (flagsize & BD_FLG_COAL_NOW) {
2503		netif_stop_queue(dev);
2504
2505		/*
2506		 * A TX-descriptor producer (an IRQ) might have gotten
2507		 * between, making the ring free again. Since xmit is
2508		 * serialized, this is the only situation we have to
2509		 * re-test.
2510		 */
2511		if (!tx_ring_full(ap, ap->tx_ret_csm, idx))
2512			netif_wake_queue(dev);
2513	}
2514
2515	return NETDEV_TX_OK;
2516
2517overflow:
2518	/*
2519	 * This race condition is unavoidable with lock-free drivers.
2520	 * We wake up the queue _before_ tx_prd is advanced, so that we can
2521	 * enter hard_start_xmit too early, while tx ring still looks closed.
2522	 * This happens ~1-4 times per 100000 packets, so that we can allow
2523	 * to loop syncing to other CPU. Probably, we need an additional
2524	 * wmb() in ace_tx_intr as well.
2525	 *
2526	 * Note that this race is relieved by reserving one more entry
2527	 * in tx ring than it is necessary (see original non-SG driver).
2528	 * However, with SG we need to reserve 2*MAX_SKB_FRAGS+1, which
2529	 * is already overkill.
2530	 *
2531	 * Alternative is to return with 1 not throttling queue. In this
2532	 * case loop becomes longer, no more useful effects.
2533	 */
2534	if (time_before(jiffies, maxjiff)) {
2535		barrier();
2536		cpu_relax();
2537		goto restart;
2538	}
2539
2540	/* The ring is stuck full. */
2541	printk(KERN_WARNING "%s: Transmit ring stuck full\n", dev->name);
2542	return NETDEV_TX_BUSY;
2543}
2544
2545
2546static int ace_change_mtu(struct net_device *dev, int new_mtu)
2547{
2548	struct ace_private *ap = netdev_priv(dev);
2549	struct ace_regs __iomem *regs = ap->regs;
2550
2551	if (new_mtu > ACE_JUMBO_MTU)
2552		return -EINVAL;
2553
2554	writel(new_mtu + ETH_HLEN + 4, &regs->IfMtu);
2555	dev->mtu = new_mtu;
2556
2557	if (new_mtu > ACE_STD_MTU) {
2558		if (!(ap->jumbo)) {
2559			printk(KERN_INFO "%s: Enabling Jumbo frame "
2560			       "support\n", dev->name);
2561			ap->jumbo = 1;
2562			if (!test_and_set_bit(0, &ap->jumbo_refill_busy))
2563				ace_load_jumbo_rx_ring(dev, RX_JUMBO_SIZE);
2564			ace_set_rxtx_parms(dev, 1);
2565		}
2566	} else {
2567		while (test_and_set_bit(0, &ap->jumbo_refill_busy));
2568		ace_sync_irq(dev->irq);
2569		ace_set_rxtx_parms(dev, 0);
2570		if (ap->jumbo) {
2571			struct cmd cmd;
2572
2573			cmd.evt = C_RESET_JUMBO_RNG;
2574			cmd.code = 0;
2575			cmd.idx = 0;
2576			ace_issue_cmd(regs, &cmd);
2577		}
2578	}
2579
2580	return 0;
2581}
2582
2583static int ace_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
 
2584{
2585	struct ace_private *ap = netdev_priv(dev);
2586	struct ace_regs __iomem *regs = ap->regs;
2587	u32 link;
 
 
 
2588
2589	memset(ecmd, 0, sizeof(struct ethtool_cmd));
2590	ecmd->supported =
2591		(SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
2592		 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
2593		 SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full |
2594		 SUPPORTED_Autoneg | SUPPORTED_FIBRE);
2595
2596	ecmd->port = PORT_FIBRE;
2597	ecmd->transceiver = XCVR_INTERNAL;
2598
2599	link = readl(&regs->GigLnkState);
2600	if (link & LNK_1000MB)
2601		ethtool_cmd_speed_set(ecmd, SPEED_1000);
2602	else {
2603		link = readl(&regs->FastLnkState);
2604		if (link & LNK_100MB)
2605			ethtool_cmd_speed_set(ecmd, SPEED_100);
2606		else if (link & LNK_10MB)
2607			ethtool_cmd_speed_set(ecmd, SPEED_10);
2608		else
2609			ethtool_cmd_speed_set(ecmd, 0);
2610	}
2611	if (link & LNK_FULL_DUPLEX)
2612		ecmd->duplex = DUPLEX_FULL;
2613	else
2614		ecmd->duplex = DUPLEX_HALF;
2615
2616	if (link & LNK_NEGOTIATE)
2617		ecmd->autoneg = AUTONEG_ENABLE;
2618	else
2619		ecmd->autoneg = AUTONEG_DISABLE;
2620
2621#if 0
2622	/*
2623	 * Current struct ethtool_cmd is insufficient
2624	 */
2625	ecmd->trace = readl(&regs->TuneTrace);
2626
2627	ecmd->txcoal = readl(&regs->TuneTxCoalTicks);
2628	ecmd->rxcoal = readl(&regs->TuneRxCoalTicks);
2629#endif
2630	ecmd->maxtxpkt = readl(&regs->TuneMaxTxDesc);
2631	ecmd->maxrxpkt = readl(&regs->TuneMaxRxDesc);
 
2632
2633	return 0;
2634}
2635
2636static int ace_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
 
2637{
2638	struct ace_private *ap = netdev_priv(dev);
2639	struct ace_regs __iomem *regs = ap->regs;
2640	u32 link, speed;
2641
2642	link = readl(&regs->GigLnkState);
2643	if (link & LNK_1000MB)
2644		speed = SPEED_1000;
2645	else {
2646		link = readl(&regs->FastLnkState);
2647		if (link & LNK_100MB)
2648			speed = SPEED_100;
2649		else if (link & LNK_10MB)
2650			speed = SPEED_10;
2651		else
2652			speed = SPEED_100;
2653	}
2654
2655	link = LNK_ENABLE | LNK_1000MB | LNK_100MB | LNK_10MB |
2656		LNK_RX_FLOW_CTL_Y | LNK_NEG_FCTL;
2657	if (!ACE_IS_TIGON_I(ap))
2658		link |= LNK_TX_FLOW_CTL_Y;
2659	if (ecmd->autoneg == AUTONEG_ENABLE)
2660		link |= LNK_NEGOTIATE;
2661	if (ethtool_cmd_speed(ecmd) != speed) {
2662		link &= ~(LNK_1000MB | LNK_100MB | LNK_10MB);
2663		switch (ethtool_cmd_speed(ecmd)) {
2664		case SPEED_1000:
2665			link |= LNK_1000MB;
2666			break;
2667		case SPEED_100:
2668			link |= LNK_100MB;
2669			break;
2670		case SPEED_10:
2671			link |= LNK_10MB;
2672			break;
2673		}
2674	}
2675
2676	if (ecmd->duplex == DUPLEX_FULL)
2677		link |= LNK_FULL_DUPLEX;
2678
2679	if (link != ap->link) {
2680		struct cmd cmd;
2681		printk(KERN_INFO "%s: Renegotiating link state\n",
2682		       dev->name);
2683
2684		ap->link = link;
2685		writel(link, &regs->TuneLink);
2686		if (!ACE_IS_TIGON_I(ap))
2687			writel(link, &regs->TuneFastLink);
2688		wmb();
2689
2690		cmd.evt = C_LNK_NEGOTIATION;
2691		cmd.code = 0;
2692		cmd.idx = 0;
2693		ace_issue_cmd(regs, &cmd);
2694	}
2695	return 0;
2696}
2697
2698static void ace_get_drvinfo(struct net_device *dev,
2699			    struct ethtool_drvinfo *info)
2700{
2701	struct ace_private *ap = netdev_priv(dev);
2702
2703	strlcpy(info->driver, "acenic", sizeof(info->driver));
2704	snprintf(info->version, sizeof(info->version), "%i.%i.%i",
2705		 ap->firmware_major, ap->firmware_minor,
2706		 ap->firmware_fix);
2707
2708	if (ap->pdev)
2709		strlcpy(info->bus_info, pci_name(ap->pdev),
2710			sizeof(info->bus_info));
2711
2712}
2713
2714/*
2715 * Set the hardware MAC address.
2716 */
2717static int ace_set_mac_addr(struct net_device *dev, void *p)
2718{
2719	struct ace_private *ap = netdev_priv(dev);
2720	struct ace_regs __iomem *regs = ap->regs;
2721	struct sockaddr *addr=p;
2722	u8 *da;
2723	struct cmd cmd;
2724
2725	if(netif_running(dev))
2726		return -EBUSY;
2727
2728	memcpy(dev->dev_addr, addr->sa_data,dev->addr_len);
2729
2730	da = (u8 *)dev->dev_addr;
2731
2732	writel(da[0] << 8 | da[1], &regs->MacAddrHi);
2733	writel((da[2] << 24) | (da[3] << 16) | (da[4] << 8) | da[5],
2734	       &regs->MacAddrLo);
2735
2736	cmd.evt = C_SET_MAC_ADDR;
2737	cmd.code = 0;
2738	cmd.idx = 0;
2739	ace_issue_cmd(regs, &cmd);
2740
2741	return 0;
2742}
2743
2744
2745static void ace_set_multicast_list(struct net_device *dev)
2746{
2747	struct ace_private *ap = netdev_priv(dev);
2748	struct ace_regs __iomem *regs = ap->regs;
2749	struct cmd cmd;
2750
2751	if ((dev->flags & IFF_ALLMULTI) && !(ap->mcast_all)) {
2752		cmd.evt = C_SET_MULTICAST_MODE;
2753		cmd.code = C_C_MCAST_ENABLE;
2754		cmd.idx = 0;
2755		ace_issue_cmd(regs, &cmd);
2756		ap->mcast_all = 1;
2757	} else if (ap->mcast_all) {
2758		cmd.evt = C_SET_MULTICAST_MODE;
2759		cmd.code = C_C_MCAST_DISABLE;
2760		cmd.idx = 0;
2761		ace_issue_cmd(regs, &cmd);
2762		ap->mcast_all = 0;
2763	}
2764
2765	if ((dev->flags & IFF_PROMISC) && !(ap->promisc)) {
2766		cmd.evt = C_SET_PROMISC_MODE;
2767		cmd.code = C_C_PROMISC_ENABLE;
2768		cmd.idx = 0;
2769		ace_issue_cmd(regs, &cmd);
2770		ap->promisc = 1;
2771	}else if (!(dev->flags & IFF_PROMISC) && (ap->promisc)) {
2772		cmd.evt = C_SET_PROMISC_MODE;
2773		cmd.code = C_C_PROMISC_DISABLE;
2774		cmd.idx = 0;
2775		ace_issue_cmd(regs, &cmd);
2776		ap->promisc = 0;
2777	}
2778
2779	/*
2780	 * For the time being multicast relies on the upper layers
2781	 * filtering it properly. The Firmware does not allow one to
2782	 * set the entire multicast list at a time and keeping track of
2783	 * it here is going to be messy.
2784	 */
2785	if (!netdev_mc_empty(dev) && !ap->mcast_all) {
2786		cmd.evt = C_SET_MULTICAST_MODE;
2787		cmd.code = C_C_MCAST_ENABLE;
2788		cmd.idx = 0;
2789		ace_issue_cmd(regs, &cmd);
2790	}else if (!ap->mcast_all) {
2791		cmd.evt = C_SET_MULTICAST_MODE;
2792		cmd.code = C_C_MCAST_DISABLE;
2793		cmd.idx = 0;
2794		ace_issue_cmd(regs, &cmd);
2795	}
2796}
2797
2798
2799static struct net_device_stats *ace_get_stats(struct net_device *dev)
2800{
2801	struct ace_private *ap = netdev_priv(dev);
2802	struct ace_mac_stats __iomem *mac_stats =
2803		(struct ace_mac_stats __iomem *)ap->regs->Stats;
2804
2805	dev->stats.rx_missed_errors = readl(&mac_stats->drop_space);
2806	dev->stats.multicast = readl(&mac_stats->kept_mc);
2807	dev->stats.collisions = readl(&mac_stats->coll);
2808
2809	return &dev->stats;
2810}
2811
2812
2813static void ace_copy(struct ace_regs __iomem *regs, const __be32 *src,
2814		     u32 dest, int size)
2815{
2816	void __iomem *tdest;
2817	short tsize, i;
2818
2819	if (size <= 0)
2820		return;
2821
2822	while (size > 0) {
2823		tsize = min_t(u32, ((~dest & (ACE_WINDOW_SIZE - 1)) + 1),
2824			    min_t(u32, size, ACE_WINDOW_SIZE));
2825		tdest = (void __iomem *) &regs->Window +
2826			(dest & (ACE_WINDOW_SIZE - 1));
2827		writel(dest & ~(ACE_WINDOW_SIZE - 1), &regs->WinBase);
2828		for (i = 0; i < (tsize / 4); i++) {
2829			/* Firmware is big-endian */
2830			writel(be32_to_cpup(src), tdest);
2831			src++;
2832			tdest += 4;
2833			dest += 4;
2834			size -= 4;
2835		}
2836	}
2837}
2838
2839
2840static void ace_clear(struct ace_regs __iomem *regs, u32 dest, int size)
2841{
2842	void __iomem *tdest;
2843	short tsize = 0, i;
2844
2845	if (size <= 0)
2846		return;
2847
2848	while (size > 0) {
2849		tsize = min_t(u32, ((~dest & (ACE_WINDOW_SIZE - 1)) + 1),
2850				min_t(u32, size, ACE_WINDOW_SIZE));
2851		tdest = (void __iomem *) &regs->Window +
2852			(dest & (ACE_WINDOW_SIZE - 1));
2853		writel(dest & ~(ACE_WINDOW_SIZE - 1), &regs->WinBase);
2854
2855		for (i = 0; i < (tsize / 4); i++) {
2856			writel(0, tdest + i*4);
2857		}
2858
2859		dest += tsize;
2860		size -= tsize;
2861	}
2862}
2863
2864
2865/*
2866 * Download the firmware into the SRAM on the NIC
2867 *
2868 * This operation requires the NIC to be halted and is performed with
2869 * interrupts disabled and with the spinlock hold.
2870 */
2871static int ace_load_firmware(struct net_device *dev)
2872{
2873	const struct firmware *fw;
2874	const char *fw_name = "acenic/tg2.bin";
2875	struct ace_private *ap = netdev_priv(dev);
2876	struct ace_regs __iomem *regs = ap->regs;
2877	const __be32 *fw_data;
2878	u32 load_addr;
2879	int ret;
2880
2881	if (!(readl(&regs->CpuCtrl) & CPU_HALTED)) {
2882		printk(KERN_ERR "%s: trying to download firmware while the "
2883		       "CPU is running!\n", ap->name);
2884		return -EFAULT;
2885	}
2886
2887	if (ACE_IS_TIGON_I(ap))
2888		fw_name = "acenic/tg1.bin";
2889
2890	ret = request_firmware(&fw, fw_name, &ap->pdev->dev);
2891	if (ret) {
2892		printk(KERN_ERR "%s: Failed to load firmware \"%s\"\n",
2893		       ap->name, fw_name);
2894		return ret;
2895	}
2896
2897	fw_data = (void *)fw->data;
2898
2899	/* Firmware blob starts with version numbers, followed by
2900	   load and start address. Remainder is the blob to be loaded
2901	   contiguously from load address. We don't bother to represent
2902	   the BSS/SBSS sections any more, since we were clearing the
2903	   whole thing anyway. */
2904	ap->firmware_major = fw->data[0];
2905	ap->firmware_minor = fw->data[1];
2906	ap->firmware_fix = fw->data[2];
2907
2908	ap->firmware_start = be32_to_cpu(fw_data[1]);
2909	if (ap->firmware_start < 0x4000 || ap->firmware_start >= 0x80000) {
2910		printk(KERN_ERR "%s: bogus load address %08x in \"%s\"\n",
2911		       ap->name, ap->firmware_start, fw_name);
2912		ret = -EINVAL;
2913		goto out;
2914	}
2915
2916	load_addr = be32_to_cpu(fw_data[2]);
2917	if (load_addr < 0x4000 || load_addr >= 0x80000) {
2918		printk(KERN_ERR "%s: bogus load address %08x in \"%s\"\n",
2919		       ap->name, load_addr, fw_name);
2920		ret = -EINVAL;
2921		goto out;
2922	}
2923
2924	/*
2925	 * Do not try to clear more than 512KiB or we end up seeing
2926	 * funny things on NICs with only 512KiB SRAM
2927	 */
2928	ace_clear(regs, 0x2000, 0x80000-0x2000);
2929	ace_copy(regs, &fw_data[3], load_addr, fw->size-12);
2930 out:
2931	release_firmware(fw);
2932	return ret;
2933}
2934
2935
2936/*
2937 * The eeprom on the AceNIC is an Atmel i2c EEPROM.
2938 *
2939 * Accessing the EEPROM is `interesting' to say the least - don't read
2940 * this code right after dinner.
2941 *
2942 * This is all about black magic and bit-banging the device .... I
2943 * wonder in what hospital they have put the guy who designed the i2c
2944 * specs.
2945 *
2946 * Oh yes, this is only the beginning!
2947 *
2948 * Thanks to Stevarino Webinski for helping tracking down the bugs in the
2949 * code i2c readout code by beta testing all my hacks.
2950 */
2951static void eeprom_start(struct ace_regs __iomem *regs)
2952{
2953	u32 local;
2954
2955	readl(&regs->LocalCtrl);
2956	udelay(ACE_SHORT_DELAY);
2957	local = readl(&regs->LocalCtrl);
2958	local |= EEPROM_DATA_OUT | EEPROM_WRITE_ENABLE;
2959	writel(local, &regs->LocalCtrl);
2960	readl(&regs->LocalCtrl);
2961	mb();
2962	udelay(ACE_SHORT_DELAY);
2963	local |= EEPROM_CLK_OUT;
2964	writel(local, &regs->LocalCtrl);
2965	readl(&regs->LocalCtrl);
2966	mb();
2967	udelay(ACE_SHORT_DELAY);
2968	local &= ~EEPROM_DATA_OUT;
2969	writel(local, &regs->LocalCtrl);
2970	readl(&regs->LocalCtrl);
2971	mb();
2972	udelay(ACE_SHORT_DELAY);
2973	local &= ~EEPROM_CLK_OUT;
2974	writel(local, &regs->LocalCtrl);
2975	readl(&regs->LocalCtrl);
2976	mb();
2977}
2978
2979
2980static void eeprom_prep(struct ace_regs __iomem *regs, u8 magic)
2981{
2982	short i;
2983	u32 local;
2984
2985	udelay(ACE_SHORT_DELAY);
2986	local = readl(&regs->LocalCtrl);
2987	local &= ~EEPROM_DATA_OUT;
2988	local |= EEPROM_WRITE_ENABLE;
2989	writel(local, &regs->LocalCtrl);
2990	readl(&regs->LocalCtrl);
2991	mb();
2992
2993	for (i = 0; i < 8; i++, magic <<= 1) {
2994		udelay(ACE_SHORT_DELAY);
2995		if (magic & 0x80)
2996			local |= EEPROM_DATA_OUT;
2997		else
2998			local &= ~EEPROM_DATA_OUT;
2999		writel(local, &regs->LocalCtrl);
3000		readl(&regs->LocalCtrl);
3001		mb();
3002
3003		udelay(ACE_SHORT_DELAY);
3004		local |= EEPROM_CLK_OUT;
3005		writel(local, &regs->LocalCtrl);
3006		readl(&regs->LocalCtrl);
3007		mb();
3008		udelay(ACE_SHORT_DELAY);
3009		local &= ~(EEPROM_CLK_OUT | EEPROM_DATA_OUT);
3010		writel(local, &regs->LocalCtrl);
3011		readl(&regs->LocalCtrl);
3012		mb();
3013	}
3014}
3015
3016
3017static int eeprom_check_ack(struct ace_regs __iomem *regs)
3018{
3019	int state;
3020	u32 local;
3021
3022	local = readl(&regs->LocalCtrl);
3023	local &= ~EEPROM_WRITE_ENABLE;
3024	writel(local, &regs->LocalCtrl);
3025	readl(&regs->LocalCtrl);
3026	mb();
3027	udelay(ACE_LONG_DELAY);
3028	local |= EEPROM_CLK_OUT;
3029	writel(local, &regs->LocalCtrl);
3030	readl(&regs->LocalCtrl);
3031	mb();
3032	udelay(ACE_SHORT_DELAY);
3033	/* sample data in middle of high clk */
3034	state = (readl(&regs->LocalCtrl) & EEPROM_DATA_IN) != 0;
3035	udelay(ACE_SHORT_DELAY);
3036	mb();
3037	writel(readl(&regs->LocalCtrl) & ~EEPROM_CLK_OUT, &regs->LocalCtrl);
3038	readl(&regs->LocalCtrl);
3039	mb();
3040
3041	return state;
3042}
3043
3044
3045static void eeprom_stop(struct ace_regs __iomem *regs)
3046{
3047	u32 local;
3048
3049	udelay(ACE_SHORT_DELAY);
3050	local = readl(&regs->LocalCtrl);
3051	local |= EEPROM_WRITE_ENABLE;
3052	writel(local, &regs->LocalCtrl);
3053	readl(&regs->LocalCtrl);
3054	mb();
3055	udelay(ACE_SHORT_DELAY);
3056	local &= ~EEPROM_DATA_OUT;
3057	writel(local, &regs->LocalCtrl);
3058	readl(&regs->LocalCtrl);
3059	mb();
3060	udelay(ACE_SHORT_DELAY);
3061	local |= EEPROM_CLK_OUT;
3062	writel(local, &regs->LocalCtrl);
3063	readl(&regs->LocalCtrl);
3064	mb();
3065	udelay(ACE_SHORT_DELAY);
3066	local |= EEPROM_DATA_OUT;
3067	writel(local, &regs->LocalCtrl);
3068	readl(&regs->LocalCtrl);
3069	mb();
3070	udelay(ACE_LONG_DELAY);
3071	local &= ~EEPROM_CLK_OUT;
3072	writel(local, &regs->LocalCtrl);
3073	mb();
3074}
3075
3076
3077/*
3078 * Read a whole byte from the EEPROM.
3079 */
3080static int read_eeprom_byte(struct net_device *dev, unsigned long offset)
3081{
3082	struct ace_private *ap = netdev_priv(dev);
3083	struct ace_regs __iomem *regs = ap->regs;
3084	unsigned long flags;
3085	u32 local;
3086	int result = 0;
3087	short i;
3088
3089	/*
3090	 * Don't take interrupts on this CPU will bit banging
3091	 * the %#%#@$ I2C device
3092	 */
3093	local_irq_save(flags);
3094
3095	eeprom_start(regs);
3096
3097	eeprom_prep(regs, EEPROM_WRITE_SELECT);
3098	if (eeprom_check_ack(regs)) {
3099		local_irq_restore(flags);
3100		printk(KERN_ERR "%s: Unable to sync eeprom\n", ap->name);
3101		result = -EIO;
3102		goto eeprom_read_error;
3103	}
3104
3105	eeprom_prep(regs, (offset >> 8) & 0xff);
3106	if (eeprom_check_ack(regs)) {
3107		local_irq_restore(flags);
3108		printk(KERN_ERR "%s: Unable to set address byte 0\n",
3109		       ap->name);
3110		result = -EIO;
3111		goto eeprom_read_error;
3112	}
3113
3114	eeprom_prep(regs, offset & 0xff);
3115	if (eeprom_check_ack(regs)) {
3116		local_irq_restore(flags);
3117		printk(KERN_ERR "%s: Unable to set address byte 1\n",
3118		       ap->name);
3119		result = -EIO;
3120		goto eeprom_read_error;
3121	}
3122
3123	eeprom_start(regs);
3124	eeprom_prep(regs, EEPROM_READ_SELECT);
3125	if (eeprom_check_ack(regs)) {
3126		local_irq_restore(flags);
3127		printk(KERN_ERR "%s: Unable to set READ_SELECT\n",
3128		       ap->name);
3129		result = -EIO;
3130		goto eeprom_read_error;
3131	}
3132
3133	for (i = 0; i < 8; i++) {
3134		local = readl(&regs->LocalCtrl);
3135		local &= ~EEPROM_WRITE_ENABLE;
3136		writel(local, &regs->LocalCtrl);
3137		readl(&regs->LocalCtrl);
3138		udelay(ACE_LONG_DELAY);
3139		mb();
3140		local |= EEPROM_CLK_OUT;
3141		writel(local, &regs->LocalCtrl);
3142		readl(&regs->LocalCtrl);
3143		mb();
3144		udelay(ACE_SHORT_DELAY);
3145		/* sample data mid high clk */
3146		result = (result << 1) |
3147			((readl(&regs->LocalCtrl) & EEPROM_DATA_IN) != 0);
3148		udelay(ACE_SHORT_DELAY);
3149		mb();
3150		local = readl(&regs->LocalCtrl);
3151		local &= ~EEPROM_CLK_OUT;
3152		writel(local, &regs->LocalCtrl);
3153		readl(&regs->LocalCtrl);
3154		udelay(ACE_SHORT_DELAY);
3155		mb();
3156		if (i == 7) {
3157			local |= EEPROM_WRITE_ENABLE;
3158			writel(local, &regs->LocalCtrl);
3159			readl(&regs->LocalCtrl);
3160			mb();
3161			udelay(ACE_SHORT_DELAY);
3162		}
3163	}
3164
3165	local |= EEPROM_DATA_OUT;
3166	writel(local, &regs->LocalCtrl);
3167	readl(&regs->LocalCtrl);
3168	mb();
3169	udelay(ACE_SHORT_DELAY);
3170	writel(readl(&regs->LocalCtrl) | EEPROM_CLK_OUT, &regs->LocalCtrl);
3171	readl(&regs->LocalCtrl);
3172	udelay(ACE_LONG_DELAY);
3173	writel(readl(&regs->LocalCtrl) & ~EEPROM_CLK_OUT, &regs->LocalCtrl);
3174	readl(&regs->LocalCtrl);
3175	mb();
3176	udelay(ACE_SHORT_DELAY);
3177	eeprom_stop(regs);
3178
3179	local_irq_restore(flags);
3180 out:
3181	return result;
3182
3183 eeprom_read_error:
3184	printk(KERN_ERR "%s: Unable to read eeprom byte 0x%02lx\n",
3185	       ap->name, offset);
3186	goto out;
3187}
3188
3189module_pci_driver(acenic_pci_driver);
v5.4
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * acenic.c: Linux driver for the Alteon AceNIC Gigabit Ethernet card
   4 *           and other Tigon based cards.
   5 *
   6 * Copyright 1998-2002 by Jes Sorensen, <jes@trained-monkey.org>.
   7 *
   8 * Thanks to Alteon and 3Com for providing hardware and documentation
   9 * enabling me to write this driver.
  10 *
  11 * A mailing list for discussing the use of this driver has been
  12 * setup, please subscribe to the lists if you have any questions
  13 * about the driver. Send mail to linux-acenic-help@sunsite.auc.dk to
  14 * see how to subscribe.
  15 *
 
 
 
 
 
  16 * Additional credits:
  17 *   Pete Wyckoff <wyckoff@ca.sandia.gov>: Initial Linux/Alpha and trace
  18 *       dump support. The trace dump support has not been
  19 *       integrated yet however.
  20 *   Troy Benjegerdes: Big Endian (PPC) patches.
  21 *   Nate Stahl: Better out of memory handling and stats support.
  22 *   Aman Singla: Nasty race between interrupt handler and tx code dealing
  23 *                with 'testing the tx_ret_csm and setting tx_full'
  24 *   David S. Miller <davem@redhat.com>: conversion to new PCI dma mapping
  25 *                                       infrastructure and Sparc support
  26 *   Pierrick Pinasseau (CERN): For lending me an Ultra 5 to test the
  27 *                              driver under Linux/Sparc64
  28 *   Matt Domsch <Matt_Domsch@dell.com>: Detect Alteon 1000baseT cards
  29 *                                       ETHTOOL_GDRVINFO support
  30 *   Chip Salzenberg <chip@valinux.com>: Fix race condition between tx
  31 *                                       handler and close() cleanup.
  32 *   Ken Aaker <kdaaker@rchland.vnet.ibm.com>: Correct check for whether
  33 *                                       memory mapped IO is enabled to
  34 *                                       make the driver work on RS/6000.
  35 *   Takayoshi Kouchi <kouchi@hpc.bs1.fc.nec.co.jp>: Identifying problem
  36 *                                       where the driver would disable
  37 *                                       bus master mode if it had to disable
  38 *                                       write and invalidate.
  39 *   Stephen Hack <stephen_hack@hp.com>: Fixed ace_set_mac_addr for little
  40 *                                       endian systems.
  41 *   Val Henson <vhenson@esscom.com>:    Reset Jumbo skb producer and
  42 *                                       rx producer index when
  43 *                                       flushing the Jumbo ring.
  44 *   Hans Grobler <grobh@sun.ac.za>:     Memory leak fixes in the
  45 *                                       driver init path.
  46 *   Grant Grundler <grundler@cup.hp.com>: PCI write posting fixes.
  47 */
  48
  49#include <linux/module.h>
  50#include <linux/moduleparam.h>
  51#include <linux/types.h>
  52#include <linux/errno.h>
  53#include <linux/ioport.h>
  54#include <linux/pci.h>
  55#include <linux/dma-mapping.h>
  56#include <linux/kernel.h>
  57#include <linux/netdevice.h>
  58#include <linux/etherdevice.h>
  59#include <linux/skbuff.h>
  60#include <linux/delay.h>
  61#include <linux/mm.h>
  62#include <linux/highmem.h>
  63#include <linux/sockios.h>
  64#include <linux/firmware.h>
  65#include <linux/slab.h>
  66#include <linux/prefetch.h>
  67#include <linux/if_vlan.h>
  68
  69#ifdef SIOCETHTOOL
  70#include <linux/ethtool.h>
  71#endif
  72
  73#include <net/sock.h>
  74#include <net/ip.h>
  75
  76#include <asm/io.h>
  77#include <asm/irq.h>
  78#include <asm/byteorder.h>
  79#include <linux/uaccess.h>
  80
  81
  82#define DRV_NAME "acenic"
  83
  84#undef INDEX_DEBUG
  85
  86#ifdef CONFIG_ACENIC_OMIT_TIGON_I
  87#define ACE_IS_TIGON_I(ap)	0
  88#define ACE_TX_RING_ENTRIES(ap)	MAX_TX_RING_ENTRIES
  89#else
  90#define ACE_IS_TIGON_I(ap)	(ap->version == 1)
  91#define ACE_TX_RING_ENTRIES(ap)	ap->tx_ring_entries
  92#endif
  93
  94#ifndef PCI_VENDOR_ID_ALTEON
  95#define PCI_VENDOR_ID_ALTEON		0x12ae
  96#endif
  97#ifndef PCI_DEVICE_ID_ALTEON_ACENIC_FIBRE
  98#define PCI_DEVICE_ID_ALTEON_ACENIC_FIBRE  0x0001
  99#define PCI_DEVICE_ID_ALTEON_ACENIC_COPPER 0x0002
 100#endif
 101#ifndef PCI_DEVICE_ID_3COM_3C985
 102#define PCI_DEVICE_ID_3COM_3C985	0x0001
 103#endif
 104#ifndef PCI_VENDOR_ID_NETGEAR
 105#define PCI_VENDOR_ID_NETGEAR		0x1385
 106#define PCI_DEVICE_ID_NETGEAR_GA620	0x620a
 107#endif
 108#ifndef PCI_DEVICE_ID_NETGEAR_GA620T
 109#define PCI_DEVICE_ID_NETGEAR_GA620T	0x630a
 110#endif
 111
 112
 113/*
 114 * Farallon used the DEC vendor ID by mistake and they seem not
 115 * to care - stinky!
 116 */
 117#ifndef PCI_DEVICE_ID_FARALLON_PN9000SX
 118#define PCI_DEVICE_ID_FARALLON_PN9000SX	0x1a
 119#endif
 120#ifndef PCI_DEVICE_ID_FARALLON_PN9100T
 121#define PCI_DEVICE_ID_FARALLON_PN9100T  0xfa
 122#endif
 123#ifndef PCI_VENDOR_ID_SGI
 124#define PCI_VENDOR_ID_SGI		0x10a9
 125#endif
 126#ifndef PCI_DEVICE_ID_SGI_ACENIC
 127#define PCI_DEVICE_ID_SGI_ACENIC	0x0009
 128#endif
 129
 130static const struct pci_device_id acenic_pci_tbl[] = {
 131	{ PCI_VENDOR_ID_ALTEON, PCI_DEVICE_ID_ALTEON_ACENIC_FIBRE,
 132	  PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
 133	{ PCI_VENDOR_ID_ALTEON, PCI_DEVICE_ID_ALTEON_ACENIC_COPPER,
 134	  PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
 135	{ PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C985,
 136	  PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
 137	{ PCI_VENDOR_ID_NETGEAR, PCI_DEVICE_ID_NETGEAR_GA620,
 138	  PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
 139	{ PCI_VENDOR_ID_NETGEAR, PCI_DEVICE_ID_NETGEAR_GA620T,
 140	  PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
 141	/*
 142	 * Farallon used the DEC vendor ID on their cards incorrectly,
 143	 * then later Alteon's ID.
 144	 */
 145	{ PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_FARALLON_PN9000SX,
 146	  PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
 147	{ PCI_VENDOR_ID_ALTEON, PCI_DEVICE_ID_FARALLON_PN9100T,
 148	  PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
 149	{ PCI_VENDOR_ID_SGI, PCI_DEVICE_ID_SGI_ACENIC,
 150	  PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
 151	{ }
 152};
 153MODULE_DEVICE_TABLE(pci, acenic_pci_tbl);
 154
 155#define ace_sync_irq(irq)	synchronize_irq(irq)
 156
 157#ifndef offset_in_page
 158#define offset_in_page(ptr)	((unsigned long)(ptr) & ~PAGE_MASK)
 159#endif
 160
 161#define ACE_MAX_MOD_PARMS	8
 162#define BOARD_IDX_STATIC	0
 163#define BOARD_IDX_OVERFLOW	-1
 164
 165#include "acenic.h"
 166
 167/*
 168 * These must be defined before the firmware is included.
 169 */
 170#define MAX_TEXT_LEN	96*1024
 171#define MAX_RODATA_LEN	8*1024
 172#define MAX_DATA_LEN	2*1024
 173
 174#ifndef tigon2FwReleaseLocal
 175#define tigon2FwReleaseLocal 0
 176#endif
 177
 178/*
 179 * This driver currently supports Tigon I and Tigon II based cards
 180 * including the Alteon AceNIC, the 3Com 3C985[B] and NetGear
 181 * GA620. The driver should also work on the SGI, DEC and Farallon
 182 * versions of the card, however I have not been able to test that
 183 * myself.
 184 *
 185 * This card is really neat, it supports receive hardware checksumming
 186 * and jumbo frames (up to 9000 bytes) and does a lot of work in the
 187 * firmware. Also the programming interface is quite neat, except for
 188 * the parts dealing with the i2c eeprom on the card ;-)
 189 *
 190 * Using jumbo frames:
 191 *
 192 * To enable jumbo frames, simply specify an mtu between 1500 and 9000
 193 * bytes to ifconfig. Jumbo frames can be enabled or disabled at any time
 194 * by running `ifconfig eth<X> mtu <MTU>' with <X> being the Ethernet
 195 * interface number and <MTU> being the MTU value.
 196 *
 197 * Module parameters:
 198 *
 199 * When compiled as a loadable module, the driver allows for a number
 200 * of module parameters to be specified. The driver supports the
 201 * following module parameters:
 202 *
 203 *  trace=<val> - Firmware trace level. This requires special traced
 204 *                firmware to replace the firmware supplied with
 205 *                the driver - for debugging purposes only.
 206 *
 207 *  link=<val>  - Link state. Normally you want to use the default link
 208 *                parameters set by the driver. This can be used to
 209 *                override these in case your switch doesn't negotiate
 210 *                the link properly. Valid values are:
 211 *         0x0001 - Force half duplex link.
 212 *         0x0002 - Do not negotiate line speed with the other end.
 213 *         0x0010 - 10Mbit/sec link.
 214 *         0x0020 - 100Mbit/sec link.
 215 *         0x0040 - 1000Mbit/sec link.
 216 *         0x0100 - Do not negotiate flow control.
 217 *         0x0200 - Enable RX flow control Y
 218 *         0x0400 - Enable TX flow control Y (Tigon II NICs only).
 219 *                Default value is 0x0270, ie. enable link+flow
 220 *                control negotiation. Negotiating the highest
 221 *                possible link speed with RX flow control enabled.
 222 *
 223 *                When disabling link speed negotiation, only one link
 224 *                speed is allowed to be specified!
 225 *
 226 *  tx_coal_tick=<val> - number of coalescing clock ticks (us) allowed
 227 *                to wait for more packets to arive before
 228 *                interrupting the host, from the time the first
 229 *                packet arrives.
 230 *
 231 *  rx_coal_tick=<val> - number of coalescing clock ticks (us) allowed
 232 *                to wait for more packets to arive in the transmit ring,
 233 *                before interrupting the host, after transmitting the
 234 *                first packet in the ring.
 235 *
 236 *  max_tx_desc=<val> - maximum number of transmit descriptors
 237 *                (packets) transmitted before interrupting the host.
 238 *
 239 *  max_rx_desc=<val> - maximum number of receive descriptors
 240 *                (packets) received before interrupting the host.
 241 *
 242 *  tx_ratio=<val> - 7 bit value (0 - 63) specifying the split in 64th
 243 *                increments of the NIC's on board memory to be used for
 244 *                transmit and receive buffers. For the 1MB NIC app. 800KB
 245 *                is available, on the 1/2MB NIC app. 300KB is available.
 246 *                68KB will always be available as a minimum for both
 247 *                directions. The default value is a 50/50 split.
 248 *  dis_pci_mem_inval=<val> - disable PCI memory write and invalidate
 249 *                operations, default (1) is to always disable this as
 250 *                that is what Alteon does on NT. I have not been able
 251 *                to measure any real performance differences with
 252 *                this on my systems. Set <val>=0 if you want to
 253 *                enable these operations.
 254 *
 255 * If you use more than one NIC, specify the parameters for the
 256 * individual NICs with a comma, ie. trace=0,0x00001fff,0 you want to
 257 * run tracing on NIC #2 but not on NIC #1 and #3.
 258 *
 259 * TODO:
 260 *
 261 * - Proper multicast support.
 262 * - NIC dump support.
 263 * - More tuning parameters.
 264 *
 265 * The mini ring is not used under Linux and I am not sure it makes sense
 266 * to actually use it.
 267 *
 268 * New interrupt handler strategy:
 269 *
 270 * The old interrupt handler worked using the traditional method of
 271 * replacing an skbuff with a new one when a packet arrives. However
 272 * the rx rings do not need to contain a static number of buffer
 273 * descriptors, thus it makes sense to move the memory allocation out
 274 * of the main interrupt handler and do it in a bottom half handler
 275 * and only allocate new buffers when the number of buffers in the
 276 * ring is below a certain threshold. In order to avoid starving the
 277 * NIC under heavy load it is however necessary to force allocation
 278 * when hitting a minimum threshold. The strategy for alloction is as
 279 * follows:
 280 *
 281 *     RX_LOW_BUF_THRES    - allocate buffers in the bottom half
 282 *     RX_PANIC_LOW_THRES  - we are very low on buffers, allocate
 283 *                           the buffers in the interrupt handler
 284 *     RX_RING_THRES       - maximum number of buffers in the rx ring
 285 *     RX_MINI_THRES       - maximum number of buffers in the mini ring
 286 *     RX_JUMBO_THRES      - maximum number of buffers in the jumbo ring
 287 *
 288 * One advantagous side effect of this allocation approach is that the
 289 * entire rx processing can be done without holding any spin lock
 290 * since the rx rings and registers are totally independent of the tx
 291 * ring and its registers.  This of course includes the kmalloc's of
 292 * new skb's. Thus start_xmit can run in parallel with rx processing
 293 * and the memory allocation on SMP systems.
 294 *
 295 * Note that running the skb reallocation in a bottom half opens up
 296 * another can of races which needs to be handled properly. In
 297 * particular it can happen that the interrupt handler tries to run
 298 * the reallocation while the bottom half is either running on another
 299 * CPU or was interrupted on the same CPU. To get around this the
 300 * driver uses bitops to prevent the reallocation routines from being
 301 * reentered.
 302 *
 303 * TX handling can also be done without holding any spin lock, wheee
 304 * this is fun! since tx_ret_csm is only written to by the interrupt
 305 * handler. The case to be aware of is when shutting down the device
 306 * and cleaning up where it is necessary to make sure that
 307 * start_xmit() is not running while this is happening. Well DaveM
 308 * informs me that this case is already protected against ... bye bye
 309 * Mr. Spin Lock, it was nice to know you.
 310 *
 311 * TX interrupts are now partly disabled so the NIC will only generate
 312 * TX interrupts for the number of coal ticks, not for the number of
 313 * TX packets in the queue. This should reduce the number of TX only,
 314 * ie. when no RX processing is done, interrupts seen.
 315 */
 316
 317/*
 318 * Threshold values for RX buffer allocation - the low water marks for
 319 * when to start refilling the rings are set to 75% of the ring
 320 * sizes. It seems to make sense to refill the rings entirely from the
 321 * intrrupt handler once it gets below the panic threshold, that way
 322 * we don't risk that the refilling is moved to another CPU when the
 323 * one running the interrupt handler just got the slab code hot in its
 324 * cache.
 325 */
 326#define RX_RING_SIZE		72
 327#define RX_MINI_SIZE		64
 328#define RX_JUMBO_SIZE		48
 329
 330#define RX_PANIC_STD_THRES	16
 331#define RX_PANIC_STD_REFILL	(3*RX_PANIC_STD_THRES)/2
 332#define RX_LOW_STD_THRES	(3*RX_RING_SIZE)/4
 333#define RX_PANIC_MINI_THRES	12
 334#define RX_PANIC_MINI_REFILL	(3*RX_PANIC_MINI_THRES)/2
 335#define RX_LOW_MINI_THRES	(3*RX_MINI_SIZE)/4
 336#define RX_PANIC_JUMBO_THRES	6
 337#define RX_PANIC_JUMBO_REFILL	(3*RX_PANIC_JUMBO_THRES)/2
 338#define RX_LOW_JUMBO_THRES	(3*RX_JUMBO_SIZE)/4
 339
 340
 341/*
 342 * Size of the mini ring entries, basically these just should be big
 343 * enough to take TCP ACKs
 344 */
 345#define ACE_MINI_SIZE		100
 346
 347#define ACE_MINI_BUFSIZE	ACE_MINI_SIZE
 348#define ACE_STD_BUFSIZE		(ACE_STD_MTU + ETH_HLEN + 4)
 349#define ACE_JUMBO_BUFSIZE	(ACE_JUMBO_MTU + ETH_HLEN + 4)
 350
 351/*
 352 * There seems to be a magic difference in the effect between 995 and 996
 353 * but little difference between 900 and 995 ... no idea why.
 354 *
 355 * There is now a default set of tuning parameters which is set, depending
 356 * on whether or not the user enables Jumbo frames. It's assumed that if
 357 * Jumbo frames are enabled, the user wants optimal tuning for that case.
 358 */
 359#define DEF_TX_COAL		400 /* 996 */
 360#define DEF_TX_MAX_DESC		60  /* was 40 */
 361#define DEF_RX_COAL		120 /* 1000 */
 362#define DEF_RX_MAX_DESC		25
 363#define DEF_TX_RATIO		21 /* 24 */
 364
 365#define DEF_JUMBO_TX_COAL	20
 366#define DEF_JUMBO_TX_MAX_DESC	60
 367#define DEF_JUMBO_RX_COAL	30
 368#define DEF_JUMBO_RX_MAX_DESC	6
 369#define DEF_JUMBO_TX_RATIO	21
 370
 371#if tigon2FwReleaseLocal < 20001118
 372/*
 373 * Standard firmware and early modifications duplicate
 374 * IRQ load without this flag (coal timer is never reset).
 375 * Note that with this flag tx_coal should be less than
 376 * time to xmit full tx ring.
 377 * 400usec is not so bad for tx ring size of 128.
 378 */
 379#define TX_COAL_INTS_ONLY	1	/* worth it */
 380#else
 381/*
 382 * With modified firmware, this is not necessary, but still useful.
 383 */
 384#define TX_COAL_INTS_ONLY	1
 385#endif
 386
 387#define DEF_TRACE		0
 388#define DEF_STAT		(2 * TICKS_PER_SEC)
 389
 390
 391static int link_state[ACE_MAX_MOD_PARMS];
 392static int trace[ACE_MAX_MOD_PARMS];
 393static int tx_coal_tick[ACE_MAX_MOD_PARMS];
 394static int rx_coal_tick[ACE_MAX_MOD_PARMS];
 395static int max_tx_desc[ACE_MAX_MOD_PARMS];
 396static int max_rx_desc[ACE_MAX_MOD_PARMS];
 397static int tx_ratio[ACE_MAX_MOD_PARMS];
 398static int dis_pci_mem_inval[ACE_MAX_MOD_PARMS] = {1, 1, 1, 1, 1, 1, 1, 1};
 399
 400MODULE_AUTHOR("Jes Sorensen <jes@trained-monkey.org>");
 401MODULE_LICENSE("GPL");
 402MODULE_DESCRIPTION("AceNIC/3C985/GA620 Gigabit Ethernet driver");
 403#ifndef CONFIG_ACENIC_OMIT_TIGON_I
 404MODULE_FIRMWARE("acenic/tg1.bin");
 405#endif
 406MODULE_FIRMWARE("acenic/tg2.bin");
 407
 408module_param_array_named(link, link_state, int, NULL, 0);
 409module_param_array(trace, int, NULL, 0);
 410module_param_array(tx_coal_tick, int, NULL, 0);
 411module_param_array(max_tx_desc, int, NULL, 0);
 412module_param_array(rx_coal_tick, int, NULL, 0);
 413module_param_array(max_rx_desc, int, NULL, 0);
 414module_param_array(tx_ratio, int, NULL, 0);
 415MODULE_PARM_DESC(link, "AceNIC/3C985/NetGear link state");
 416MODULE_PARM_DESC(trace, "AceNIC/3C985/NetGear firmware trace level");
 417MODULE_PARM_DESC(tx_coal_tick, "AceNIC/3C985/GA620 max clock ticks to wait from first tx descriptor arrives");
 418MODULE_PARM_DESC(max_tx_desc, "AceNIC/3C985/GA620 max number of transmit descriptors to wait");
 419MODULE_PARM_DESC(rx_coal_tick, "AceNIC/3C985/GA620 max clock ticks to wait from first rx descriptor arrives");
 420MODULE_PARM_DESC(max_rx_desc, "AceNIC/3C985/GA620 max number of receive descriptors to wait");
 421MODULE_PARM_DESC(tx_ratio, "AceNIC/3C985/GA620 ratio of NIC memory used for TX/RX descriptors (range 0-63)");
 422
 423
 424static const char version[] =
 425  "acenic.c: v0.92 08/05/2002  Jes Sorensen, linux-acenic@SunSITE.dk\n"
 426  "                            http://home.cern.ch/~jes/gige/acenic.html\n";
 427
 428static int ace_get_link_ksettings(struct net_device *,
 429				  struct ethtool_link_ksettings *);
 430static int ace_set_link_ksettings(struct net_device *,
 431				  const struct ethtool_link_ksettings *);
 432static void ace_get_drvinfo(struct net_device *, struct ethtool_drvinfo *);
 433
 434static const struct ethtool_ops ace_ethtool_ops = {
 
 
 435	.get_drvinfo = ace_get_drvinfo,
 436	.get_link_ksettings = ace_get_link_ksettings,
 437	.set_link_ksettings = ace_set_link_ksettings,
 438};
 439
 440static void ace_watchdog(struct net_device *dev);
 441
 442static const struct net_device_ops ace_netdev_ops = {
 443	.ndo_open		= ace_open,
 444	.ndo_stop		= ace_close,
 445	.ndo_tx_timeout		= ace_watchdog,
 446	.ndo_get_stats		= ace_get_stats,
 447	.ndo_start_xmit		= ace_start_xmit,
 448	.ndo_set_rx_mode	= ace_set_multicast_list,
 449	.ndo_validate_addr	= eth_validate_addr,
 450	.ndo_set_mac_address	= ace_set_mac_addr,
 451	.ndo_change_mtu		= ace_change_mtu,
 452};
 453
 454static int acenic_probe_one(struct pci_dev *pdev,
 455			    const struct pci_device_id *id)
 456{
 457	struct net_device *dev;
 458	struct ace_private *ap;
 459	static int boards_found;
 460
 461	dev = alloc_etherdev(sizeof(struct ace_private));
 462	if (dev == NULL)
 463		return -ENOMEM;
 464
 465	SET_NETDEV_DEV(dev, &pdev->dev);
 466
 467	ap = netdev_priv(dev);
 468	ap->pdev = pdev;
 469	ap->name = pci_name(pdev);
 470
 471	dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
 472	dev->features |= NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
 473
 474	dev->watchdog_timeo = 5*HZ;
 475	dev->min_mtu = 0;
 476	dev->max_mtu = ACE_JUMBO_MTU;
 477
 478	dev->netdev_ops = &ace_netdev_ops;
 479	dev->ethtool_ops = &ace_ethtool_ops;
 480
 481	/* we only display this string ONCE */
 482	if (!boards_found)
 483		printk(version);
 484
 485	if (pci_enable_device(pdev))
 486		goto fail_free_netdev;
 487
 488	/*
 489	 * Enable master mode before we start playing with the
 490	 * pci_command word since pci_set_master() will modify
 491	 * it.
 492	 */
 493	pci_set_master(pdev);
 494
 495	pci_read_config_word(pdev, PCI_COMMAND, &ap->pci_command);
 496
 497	/* OpenFirmware on Mac's does not set this - DOH.. */
 498	if (!(ap->pci_command & PCI_COMMAND_MEMORY)) {
 499		printk(KERN_INFO "%s: Enabling PCI Memory Mapped "
 500		       "access - was not enabled by BIOS/Firmware\n",
 501		       ap->name);
 502		ap->pci_command = ap->pci_command | PCI_COMMAND_MEMORY;
 503		pci_write_config_word(ap->pdev, PCI_COMMAND,
 504				      ap->pci_command);
 505		wmb();
 506	}
 507
 508	pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &ap->pci_latency);
 509	if (ap->pci_latency <= 0x40) {
 510		ap->pci_latency = 0x40;
 511		pci_write_config_byte(pdev, PCI_LATENCY_TIMER, ap->pci_latency);
 512	}
 513
 514	/*
 515	 * Remap the regs into kernel space - this is abuse of
 516	 * dev->base_addr since it was means for I/O port
 517	 * addresses but who gives a damn.
 518	 */
 519	dev->base_addr = pci_resource_start(pdev, 0);
 520	ap->regs = ioremap(dev->base_addr, 0x4000);
 521	if (!ap->regs) {
 522		printk(KERN_ERR "%s:  Unable to map I/O register, "
 523		       "AceNIC %i will be disabled.\n",
 524		       ap->name, boards_found);
 525		goto fail_free_netdev;
 526	}
 527
 528	switch(pdev->vendor) {
 529	case PCI_VENDOR_ID_ALTEON:
 530		if (pdev->device == PCI_DEVICE_ID_FARALLON_PN9100T) {
 531			printk(KERN_INFO "%s: Farallon PN9100-T ",
 532			       ap->name);
 533		} else {
 534			printk(KERN_INFO "%s: Alteon AceNIC ",
 535			       ap->name);
 536		}
 537		break;
 538	case PCI_VENDOR_ID_3COM:
 539		printk(KERN_INFO "%s: 3Com 3C985 ", ap->name);
 540		break;
 541	case PCI_VENDOR_ID_NETGEAR:
 542		printk(KERN_INFO "%s: NetGear GA620 ", ap->name);
 543		break;
 544	case PCI_VENDOR_ID_DEC:
 545		if (pdev->device == PCI_DEVICE_ID_FARALLON_PN9000SX) {
 546			printk(KERN_INFO "%s: Farallon PN9000-SX ",
 547			       ap->name);
 548			break;
 549		}
 550		/* Fall through */
 551	case PCI_VENDOR_ID_SGI:
 552		printk(KERN_INFO "%s: SGI AceNIC ", ap->name);
 553		break;
 554	default:
 555		printk(KERN_INFO "%s: Unknown AceNIC ", ap->name);
 556		break;
 557	}
 558
 559	printk("Gigabit Ethernet at 0x%08lx, ", dev->base_addr);
 560	printk("irq %d\n", pdev->irq);
 561
 562#ifdef CONFIG_ACENIC_OMIT_TIGON_I
 563	if ((readl(&ap->regs->HostCtrl) >> 28) == 4) {
 564		printk(KERN_ERR "%s: Driver compiled without Tigon I"
 565		       " support - NIC disabled\n", dev->name);
 566		goto fail_uninit;
 567	}
 568#endif
 569
 570	if (ace_allocate_descriptors(dev))
 571		goto fail_free_netdev;
 572
 573#ifdef MODULE
 574	if (boards_found >= ACE_MAX_MOD_PARMS)
 575		ap->board_idx = BOARD_IDX_OVERFLOW;
 576	else
 577		ap->board_idx = boards_found;
 578#else
 579	ap->board_idx = BOARD_IDX_STATIC;
 580#endif
 581
 582	if (ace_init(dev))
 583		goto fail_free_netdev;
 584
 585	if (register_netdev(dev)) {
 586		printk(KERN_ERR "acenic: device registration failed\n");
 587		goto fail_uninit;
 588	}
 589	ap->name = dev->name;
 590
 591	if (ap->pci_using_dac)
 592		dev->features |= NETIF_F_HIGHDMA;
 593
 594	pci_set_drvdata(pdev, dev);
 595
 596	boards_found++;
 597	return 0;
 598
 599 fail_uninit:
 600	ace_init_cleanup(dev);
 601 fail_free_netdev:
 602	free_netdev(dev);
 603	return -ENODEV;
 604}
 605
 606static void acenic_remove_one(struct pci_dev *pdev)
 607{
 608	struct net_device *dev = pci_get_drvdata(pdev);
 609	struct ace_private *ap = netdev_priv(dev);
 610	struct ace_regs __iomem *regs = ap->regs;
 611	short i;
 612
 613	unregister_netdev(dev);
 614
 615	writel(readl(&regs->CpuCtrl) | CPU_HALT, &regs->CpuCtrl);
 616	if (ap->version >= 2)
 617		writel(readl(&regs->CpuBCtrl) | CPU_HALT, &regs->CpuBCtrl);
 618
 619	/*
 620	 * This clears any pending interrupts
 621	 */
 622	writel(1, &regs->Mb0Lo);
 623	readl(&regs->CpuCtrl);	/* flush */
 624
 625	/*
 626	 * Make sure no other CPUs are processing interrupts
 627	 * on the card before the buffers are being released.
 628	 * Otherwise one might experience some `interesting'
 629	 * effects.
 630	 *
 631	 * Then release the RX buffers - jumbo buffers were
 632	 * already released in ace_close().
 633	 */
 634	ace_sync_irq(dev->irq);
 635
 636	for (i = 0; i < RX_STD_RING_ENTRIES; i++) {
 637		struct sk_buff *skb = ap->skb->rx_std_skbuff[i].skb;
 638
 639		if (skb) {
 640			struct ring_info *ringp;
 641			dma_addr_t mapping;
 642
 643			ringp = &ap->skb->rx_std_skbuff[i];
 644			mapping = dma_unmap_addr(ringp, mapping);
 645			pci_unmap_page(ap->pdev, mapping,
 646				       ACE_STD_BUFSIZE,
 647				       PCI_DMA_FROMDEVICE);
 648
 649			ap->rx_std_ring[i].size = 0;
 650			ap->skb->rx_std_skbuff[i].skb = NULL;
 651			dev_kfree_skb(skb);
 652		}
 653	}
 654
 655	if (ap->version >= 2) {
 656		for (i = 0; i < RX_MINI_RING_ENTRIES; i++) {
 657			struct sk_buff *skb = ap->skb->rx_mini_skbuff[i].skb;
 658
 659			if (skb) {
 660				struct ring_info *ringp;
 661				dma_addr_t mapping;
 662
 663				ringp = &ap->skb->rx_mini_skbuff[i];
 664				mapping = dma_unmap_addr(ringp,mapping);
 665				pci_unmap_page(ap->pdev, mapping,
 666					       ACE_MINI_BUFSIZE,
 667					       PCI_DMA_FROMDEVICE);
 668
 669				ap->rx_mini_ring[i].size = 0;
 670				ap->skb->rx_mini_skbuff[i].skb = NULL;
 671				dev_kfree_skb(skb);
 672			}
 673		}
 674	}
 675
 676	for (i = 0; i < RX_JUMBO_RING_ENTRIES; i++) {
 677		struct sk_buff *skb = ap->skb->rx_jumbo_skbuff[i].skb;
 678		if (skb) {
 679			struct ring_info *ringp;
 680			dma_addr_t mapping;
 681
 682			ringp = &ap->skb->rx_jumbo_skbuff[i];
 683			mapping = dma_unmap_addr(ringp, mapping);
 684			pci_unmap_page(ap->pdev, mapping,
 685				       ACE_JUMBO_BUFSIZE,
 686				       PCI_DMA_FROMDEVICE);
 687
 688			ap->rx_jumbo_ring[i].size = 0;
 689			ap->skb->rx_jumbo_skbuff[i].skb = NULL;
 690			dev_kfree_skb(skb);
 691		}
 692	}
 693
 694	ace_init_cleanup(dev);
 695	free_netdev(dev);
 696}
 697
 698static struct pci_driver acenic_pci_driver = {
 699	.name		= "acenic",
 700	.id_table	= acenic_pci_tbl,
 701	.probe		= acenic_probe_one,
 702	.remove		= acenic_remove_one,
 703};
 704
 705static void ace_free_descriptors(struct net_device *dev)
 706{
 707	struct ace_private *ap = netdev_priv(dev);
 708	int size;
 709
 710	if (ap->rx_std_ring != NULL) {
 711		size = (sizeof(struct rx_desc) *
 712			(RX_STD_RING_ENTRIES +
 713			 RX_JUMBO_RING_ENTRIES +
 714			 RX_MINI_RING_ENTRIES +
 715			 RX_RETURN_RING_ENTRIES));
 716		pci_free_consistent(ap->pdev, size, ap->rx_std_ring,
 717				    ap->rx_ring_base_dma);
 718		ap->rx_std_ring = NULL;
 719		ap->rx_jumbo_ring = NULL;
 720		ap->rx_mini_ring = NULL;
 721		ap->rx_return_ring = NULL;
 722	}
 723	if (ap->evt_ring != NULL) {
 724		size = (sizeof(struct event) * EVT_RING_ENTRIES);
 725		pci_free_consistent(ap->pdev, size, ap->evt_ring,
 726				    ap->evt_ring_dma);
 727		ap->evt_ring = NULL;
 728	}
 729	if (ap->tx_ring != NULL && !ACE_IS_TIGON_I(ap)) {
 730		size = (sizeof(struct tx_desc) * MAX_TX_RING_ENTRIES);
 731		pci_free_consistent(ap->pdev, size, ap->tx_ring,
 732				    ap->tx_ring_dma);
 733	}
 734	ap->tx_ring = NULL;
 735
 736	if (ap->evt_prd != NULL) {
 737		pci_free_consistent(ap->pdev, sizeof(u32),
 738				    (void *)ap->evt_prd, ap->evt_prd_dma);
 739		ap->evt_prd = NULL;
 740	}
 741	if (ap->rx_ret_prd != NULL) {
 742		pci_free_consistent(ap->pdev, sizeof(u32),
 743				    (void *)ap->rx_ret_prd,
 744				    ap->rx_ret_prd_dma);
 745		ap->rx_ret_prd = NULL;
 746	}
 747	if (ap->tx_csm != NULL) {
 748		pci_free_consistent(ap->pdev, sizeof(u32),
 749				    (void *)ap->tx_csm, ap->tx_csm_dma);
 750		ap->tx_csm = NULL;
 751	}
 752}
 753
 754
 755static int ace_allocate_descriptors(struct net_device *dev)
 756{
 757	struct ace_private *ap = netdev_priv(dev);
 758	int size;
 759
 760	size = (sizeof(struct rx_desc) *
 761		(RX_STD_RING_ENTRIES +
 762		 RX_JUMBO_RING_ENTRIES +
 763		 RX_MINI_RING_ENTRIES +
 764		 RX_RETURN_RING_ENTRIES));
 765
 766	ap->rx_std_ring = pci_alloc_consistent(ap->pdev, size,
 767					       &ap->rx_ring_base_dma);
 768	if (ap->rx_std_ring == NULL)
 769		goto fail;
 770
 771	ap->rx_jumbo_ring = ap->rx_std_ring + RX_STD_RING_ENTRIES;
 772	ap->rx_mini_ring = ap->rx_jumbo_ring + RX_JUMBO_RING_ENTRIES;
 773	ap->rx_return_ring = ap->rx_mini_ring + RX_MINI_RING_ENTRIES;
 774
 775	size = (sizeof(struct event) * EVT_RING_ENTRIES);
 776
 777	ap->evt_ring = pci_alloc_consistent(ap->pdev, size, &ap->evt_ring_dma);
 778
 779	if (ap->evt_ring == NULL)
 780		goto fail;
 781
 782	/*
 783	 * Only allocate a host TX ring for the Tigon II, the Tigon I
 784	 * has to use PCI registers for this ;-(
 785	 */
 786	if (!ACE_IS_TIGON_I(ap)) {
 787		size = (sizeof(struct tx_desc) * MAX_TX_RING_ENTRIES);
 788
 789		ap->tx_ring = pci_alloc_consistent(ap->pdev, size,
 790						   &ap->tx_ring_dma);
 791
 792		if (ap->tx_ring == NULL)
 793			goto fail;
 794	}
 795
 796	ap->evt_prd = pci_alloc_consistent(ap->pdev, sizeof(u32),
 797					   &ap->evt_prd_dma);
 798	if (ap->evt_prd == NULL)
 799		goto fail;
 800
 801	ap->rx_ret_prd = pci_alloc_consistent(ap->pdev, sizeof(u32),
 802					      &ap->rx_ret_prd_dma);
 803	if (ap->rx_ret_prd == NULL)
 804		goto fail;
 805
 806	ap->tx_csm = pci_alloc_consistent(ap->pdev, sizeof(u32),
 807					  &ap->tx_csm_dma);
 808	if (ap->tx_csm == NULL)
 809		goto fail;
 810
 811	return 0;
 812
 813fail:
 814	/* Clean up. */
 815	ace_init_cleanup(dev);
 816	return 1;
 817}
 818
 819
 820/*
 821 * Generic cleanup handling data allocated during init. Used when the
 822 * module is unloaded or if an error occurs during initialization
 823 */
 824static void ace_init_cleanup(struct net_device *dev)
 825{
 826	struct ace_private *ap;
 827
 828	ap = netdev_priv(dev);
 829
 830	ace_free_descriptors(dev);
 831
 832	if (ap->info)
 833		pci_free_consistent(ap->pdev, sizeof(struct ace_info),
 834				    ap->info, ap->info_dma);
 835	kfree(ap->skb);
 836	kfree(ap->trace_buf);
 837
 838	if (dev->irq)
 839		free_irq(dev->irq, dev);
 840
 841	iounmap(ap->regs);
 842}
 843
 844
 845/*
 846 * Commands are considered to be slow.
 847 */
 848static inline void ace_issue_cmd(struct ace_regs __iomem *regs, struct cmd *cmd)
 849{
 850	u32 idx;
 851
 852	idx = readl(&regs->CmdPrd);
 853
 854	writel(*(u32 *)(cmd), &regs->CmdRng[idx]);
 855	idx = (idx + 1) % CMD_RING_ENTRIES;
 856
 857	writel(idx, &regs->CmdPrd);
 858}
 859
 860
 861static int ace_init(struct net_device *dev)
 862{
 863	struct ace_private *ap;
 864	struct ace_regs __iomem *regs;
 865	struct ace_info *info = NULL;
 866	struct pci_dev *pdev;
 867	unsigned long myjif;
 868	u64 tmp_ptr;
 869	u32 tig_ver, mac1, mac2, tmp, pci_state;
 870	int board_idx, ecode = 0;
 871	short i;
 872	unsigned char cache_size;
 873
 874	ap = netdev_priv(dev);
 875	regs = ap->regs;
 876
 877	board_idx = ap->board_idx;
 878
 879	/*
 880	 * aman@sgi.com - its useful to do a NIC reset here to
 881	 * address the `Firmware not running' problem subsequent
 882	 * to any crashes involving the NIC
 883	 */
 884	writel(HW_RESET | (HW_RESET << 24), &regs->HostCtrl);
 885	readl(&regs->HostCtrl);		/* PCI write posting */
 886	udelay(5);
 887
 888	/*
 889	 * Don't access any other registers before this point!
 890	 */
 891#ifdef __BIG_ENDIAN
 892	/*
 893	 * This will most likely need BYTE_SWAP once we switch
 894	 * to using __raw_writel()
 895	 */
 896	writel((WORD_SWAP | CLR_INT | ((WORD_SWAP | CLR_INT) << 24)),
 897	       &regs->HostCtrl);
 898#else
 899	writel((CLR_INT | WORD_SWAP | ((CLR_INT | WORD_SWAP) << 24)),
 900	       &regs->HostCtrl);
 901#endif
 902	readl(&regs->HostCtrl);		/* PCI write posting */
 903
 904	/*
 905	 * Stop the NIC CPU and clear pending interrupts
 906	 */
 907	writel(readl(&regs->CpuCtrl) | CPU_HALT, &regs->CpuCtrl);
 908	readl(&regs->CpuCtrl);		/* PCI write posting */
 909	writel(0, &regs->Mb0Lo);
 910
 911	tig_ver = readl(&regs->HostCtrl) >> 28;
 912
 913	switch(tig_ver){
 914#ifndef CONFIG_ACENIC_OMIT_TIGON_I
 915	case 4:
 916	case 5:
 917		printk(KERN_INFO "  Tigon I  (Rev. %i), Firmware: %i.%i.%i, ",
 918		       tig_ver, ap->firmware_major, ap->firmware_minor,
 919		       ap->firmware_fix);
 920		writel(0, &regs->LocalCtrl);
 921		ap->version = 1;
 922		ap->tx_ring_entries = TIGON_I_TX_RING_ENTRIES;
 923		break;
 924#endif
 925	case 6:
 926		printk(KERN_INFO "  Tigon II (Rev. %i), Firmware: %i.%i.%i, ",
 927		       tig_ver, ap->firmware_major, ap->firmware_minor,
 928		       ap->firmware_fix);
 929		writel(readl(&regs->CpuBCtrl) | CPU_HALT, &regs->CpuBCtrl);
 930		readl(&regs->CpuBCtrl);		/* PCI write posting */
 931		/*
 932		 * The SRAM bank size does _not_ indicate the amount
 933		 * of memory on the card, it controls the _bank_ size!
 934		 * Ie. a 1MB AceNIC will have two banks of 512KB.
 935		 */
 936		writel(SRAM_BANK_512K, &regs->LocalCtrl);
 937		writel(SYNC_SRAM_TIMING, &regs->MiscCfg);
 938		ap->version = 2;
 939		ap->tx_ring_entries = MAX_TX_RING_ENTRIES;
 940		break;
 941	default:
 942		printk(KERN_WARNING "  Unsupported Tigon version detected "
 943		       "(%i)\n", tig_ver);
 944		ecode = -ENODEV;
 945		goto init_error;
 946	}
 947
 948	/*
 949	 * ModeStat _must_ be set after the SRAM settings as this change
 950	 * seems to corrupt the ModeStat and possible other registers.
 951	 * The SRAM settings survive resets and setting it to the same
 952	 * value a second time works as well. This is what caused the
 953	 * `Firmware not running' problem on the Tigon II.
 954	 */
 955#ifdef __BIG_ENDIAN
 956	writel(ACE_BYTE_SWAP_DMA | ACE_WARN | ACE_FATAL | ACE_BYTE_SWAP_BD |
 957	       ACE_WORD_SWAP_BD | ACE_NO_JUMBO_FRAG, &regs->ModeStat);
 958#else
 959	writel(ACE_BYTE_SWAP_DMA | ACE_WARN | ACE_FATAL |
 960	       ACE_WORD_SWAP_BD | ACE_NO_JUMBO_FRAG, &regs->ModeStat);
 961#endif
 962	readl(&regs->ModeStat);		/* PCI write posting */
 963
 964	mac1 = 0;
 965	for(i = 0; i < 4; i++) {
 966		int t;
 967
 968		mac1 = mac1 << 8;
 969		t = read_eeprom_byte(dev, 0x8c+i);
 970		if (t < 0) {
 971			ecode = -EIO;
 972			goto init_error;
 973		} else
 974			mac1 |= (t & 0xff);
 975	}
 976	mac2 = 0;
 977	for(i = 4; i < 8; i++) {
 978		int t;
 979
 980		mac2 = mac2 << 8;
 981		t = read_eeprom_byte(dev, 0x8c+i);
 982		if (t < 0) {
 983			ecode = -EIO;
 984			goto init_error;
 985		} else
 986			mac2 |= (t & 0xff);
 987	}
 988
 989	writel(mac1, &regs->MacAddrHi);
 990	writel(mac2, &regs->MacAddrLo);
 991
 992	dev->dev_addr[0] = (mac1 >> 8) & 0xff;
 993	dev->dev_addr[1] = mac1 & 0xff;
 994	dev->dev_addr[2] = (mac2 >> 24) & 0xff;
 995	dev->dev_addr[3] = (mac2 >> 16) & 0xff;
 996	dev->dev_addr[4] = (mac2 >> 8) & 0xff;
 997	dev->dev_addr[5] = mac2 & 0xff;
 998
 999	printk("MAC: %pM\n", dev->dev_addr);
1000
1001	/*
1002	 * Looks like this is necessary to deal with on all architectures,
1003	 * even this %$#%$# N440BX Intel based thing doesn't get it right.
1004	 * Ie. having two NICs in the machine, one will have the cache
1005	 * line set at boot time, the other will not.
1006	 */
1007	pdev = ap->pdev;
1008	pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE, &cache_size);
1009	cache_size <<= 2;
1010	if (cache_size != SMP_CACHE_BYTES) {
1011		printk(KERN_INFO "  PCI cache line size set incorrectly "
1012		       "(%i bytes) by BIOS/FW, ", cache_size);
1013		if (cache_size > SMP_CACHE_BYTES)
1014			printk("expecting %i\n", SMP_CACHE_BYTES);
1015		else {
1016			printk("correcting to %i\n", SMP_CACHE_BYTES);
1017			pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE,
1018					      SMP_CACHE_BYTES >> 2);
1019		}
1020	}
1021
1022	pci_state = readl(&regs->PciState);
1023	printk(KERN_INFO "  PCI bus width: %i bits, speed: %iMHz, "
1024	       "latency: %i clks\n",
1025	       	(pci_state & PCI_32BIT) ? 32 : 64,
1026		(pci_state & PCI_66MHZ) ? 66 : 33,
1027		ap->pci_latency);
1028
1029	/*
1030	 * Set the max DMA transfer size. Seems that for most systems
1031	 * the performance is better when no MAX parameter is
1032	 * set. However for systems enabling PCI write and invalidate,
1033	 * DMA writes must be set to the L1 cache line size to get
1034	 * optimal performance.
1035	 *
1036	 * The default is now to turn the PCI write and invalidate off
1037	 * - that is what Alteon does for NT.
1038	 */
1039	tmp = READ_CMD_MEM | WRITE_CMD_MEM;
1040	if (ap->version >= 2) {
1041		tmp |= (MEM_READ_MULTIPLE | (pci_state & PCI_66MHZ));
1042		/*
1043		 * Tuning parameters only supported for 8 cards
1044		 */
1045		if (board_idx == BOARD_IDX_OVERFLOW ||
1046		    dis_pci_mem_inval[board_idx]) {
1047			if (ap->pci_command & PCI_COMMAND_INVALIDATE) {
1048				ap->pci_command &= ~PCI_COMMAND_INVALIDATE;
1049				pci_write_config_word(pdev, PCI_COMMAND,
1050						      ap->pci_command);
1051				printk(KERN_INFO "  Disabling PCI memory "
1052				       "write and invalidate\n");
1053			}
1054		} else if (ap->pci_command & PCI_COMMAND_INVALIDATE) {
1055			printk(KERN_INFO "  PCI memory write & invalidate "
1056			       "enabled by BIOS, enabling counter measures\n");
1057
1058			switch(SMP_CACHE_BYTES) {
1059			case 16:
1060				tmp |= DMA_WRITE_MAX_16;
1061				break;
1062			case 32:
1063				tmp |= DMA_WRITE_MAX_32;
1064				break;
1065			case 64:
1066				tmp |= DMA_WRITE_MAX_64;
1067				break;
1068			case 128:
1069				tmp |= DMA_WRITE_MAX_128;
1070				break;
1071			default:
1072				printk(KERN_INFO "  Cache line size %i not "
1073				       "supported, PCI write and invalidate "
1074				       "disabled\n", SMP_CACHE_BYTES);
1075				ap->pci_command &= ~PCI_COMMAND_INVALIDATE;
1076				pci_write_config_word(pdev, PCI_COMMAND,
1077						      ap->pci_command);
1078			}
1079		}
1080	}
1081
1082#ifdef __sparc__
1083	/*
1084	 * On this platform, we know what the best dma settings
1085	 * are.  We use 64-byte maximum bursts, because if we
1086	 * burst larger than the cache line size (or even cross
1087	 * a 64byte boundary in a single burst) the UltraSparc
1088	 * PCI controller will disconnect at 64-byte multiples.
1089	 *
1090	 * Read-multiple will be properly enabled above, and when
1091	 * set will give the PCI controller proper hints about
1092	 * prefetching.
1093	 */
1094	tmp &= ~DMA_READ_WRITE_MASK;
1095	tmp |= DMA_READ_MAX_64;
1096	tmp |= DMA_WRITE_MAX_64;
1097#endif
1098#ifdef __alpha__
1099	tmp &= ~DMA_READ_WRITE_MASK;
1100	tmp |= DMA_READ_MAX_128;
1101	/*
1102	 * All the docs say MUST NOT. Well, I did.
1103	 * Nothing terrible happens, if we load wrong size.
1104	 * Bit w&i still works better!
1105	 */
1106	tmp |= DMA_WRITE_MAX_128;
1107#endif
1108	writel(tmp, &regs->PciState);
1109
1110#if 0
1111	/*
1112	 * The Host PCI bus controller driver has to set FBB.
1113	 * If all devices on that PCI bus support FBB, then the controller
1114	 * can enable FBB support in the Host PCI Bus controller (or on
1115	 * the PCI-PCI bridge if that applies).
1116	 * -ggg
1117	 */
1118	/*
1119	 * I have received reports from people having problems when this
1120	 * bit is enabled.
1121	 */
1122	if (!(ap->pci_command & PCI_COMMAND_FAST_BACK)) {
1123		printk(KERN_INFO "  Enabling PCI Fast Back to Back\n");
1124		ap->pci_command |= PCI_COMMAND_FAST_BACK;
1125		pci_write_config_word(pdev, PCI_COMMAND, ap->pci_command);
1126	}
1127#endif
1128
1129	/*
1130	 * Configure DMA attributes.
1131	 */
1132	if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
1133		ap->pci_using_dac = 1;
1134	} else if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) {
1135		ap->pci_using_dac = 0;
1136	} else {
1137		ecode = -ENODEV;
1138		goto init_error;
1139	}
1140
1141	/*
1142	 * Initialize the generic info block and the command+event rings
1143	 * and the control blocks for the transmit and receive rings
1144	 * as they need to be setup once and for all.
1145	 */
1146	if (!(info = pci_alloc_consistent(ap->pdev, sizeof(struct ace_info),
1147					  &ap->info_dma))) {
1148		ecode = -EAGAIN;
1149		goto init_error;
1150	}
1151	ap->info = info;
1152
1153	/*
1154	 * Get the memory for the skb rings.
1155	 */
1156	if (!(ap->skb = kmalloc(sizeof(struct ace_skb), GFP_KERNEL))) {
1157		ecode = -EAGAIN;
1158		goto init_error;
1159	}
1160
1161	ecode = request_irq(pdev->irq, ace_interrupt, IRQF_SHARED,
1162			    DRV_NAME, dev);
1163	if (ecode) {
1164		printk(KERN_WARNING "%s: Requested IRQ %d is busy\n",
1165		       DRV_NAME, pdev->irq);
1166		goto init_error;
1167	} else
1168		dev->irq = pdev->irq;
1169
1170#ifdef INDEX_DEBUG
1171	spin_lock_init(&ap->debug_lock);
1172	ap->last_tx = ACE_TX_RING_ENTRIES(ap) - 1;
1173	ap->last_std_rx = 0;
1174	ap->last_mini_rx = 0;
1175#endif
1176
1177	memset(ap->info, 0, sizeof(struct ace_info));
1178	memset(ap->skb, 0, sizeof(struct ace_skb));
1179
1180	ecode = ace_load_firmware(dev);
1181	if (ecode)
1182		goto init_error;
1183
1184	ap->fw_running = 0;
1185
1186	tmp_ptr = ap->info_dma;
1187	writel(tmp_ptr >> 32, &regs->InfoPtrHi);
1188	writel(tmp_ptr & 0xffffffff, &regs->InfoPtrLo);
1189
1190	memset(ap->evt_ring, 0, EVT_RING_ENTRIES * sizeof(struct event));
1191
1192	set_aceaddr(&info->evt_ctrl.rngptr, ap->evt_ring_dma);
1193	info->evt_ctrl.flags = 0;
1194
1195	*(ap->evt_prd) = 0;
1196	wmb();
1197	set_aceaddr(&info->evt_prd_ptr, ap->evt_prd_dma);
1198	writel(0, &regs->EvtCsm);
1199
1200	set_aceaddr(&info->cmd_ctrl.rngptr, 0x100);
1201	info->cmd_ctrl.flags = 0;
1202	info->cmd_ctrl.max_len = 0;
1203
1204	for (i = 0; i < CMD_RING_ENTRIES; i++)
1205		writel(0, &regs->CmdRng[i]);
1206
1207	writel(0, &regs->CmdPrd);
1208	writel(0, &regs->CmdCsm);
1209
1210	tmp_ptr = ap->info_dma;
1211	tmp_ptr += (unsigned long) &(((struct ace_info *)0)->s.stats);
1212	set_aceaddr(&info->stats2_ptr, (dma_addr_t) tmp_ptr);
1213
1214	set_aceaddr(&info->rx_std_ctrl.rngptr, ap->rx_ring_base_dma);
1215	info->rx_std_ctrl.max_len = ACE_STD_BUFSIZE;
1216	info->rx_std_ctrl.flags =
1217	  RCB_FLG_TCP_UDP_SUM | RCB_FLG_NO_PSEUDO_HDR | RCB_FLG_VLAN_ASSIST;
1218
1219	memset(ap->rx_std_ring, 0,
1220	       RX_STD_RING_ENTRIES * sizeof(struct rx_desc));
1221
1222	for (i = 0; i < RX_STD_RING_ENTRIES; i++)
1223		ap->rx_std_ring[i].flags = BD_FLG_TCP_UDP_SUM;
1224
1225	ap->rx_std_skbprd = 0;
1226	atomic_set(&ap->cur_rx_bufs, 0);
1227
1228	set_aceaddr(&info->rx_jumbo_ctrl.rngptr,
1229		    (ap->rx_ring_base_dma +
1230		     (sizeof(struct rx_desc) * RX_STD_RING_ENTRIES)));
1231	info->rx_jumbo_ctrl.max_len = 0;
1232	info->rx_jumbo_ctrl.flags =
1233	  RCB_FLG_TCP_UDP_SUM | RCB_FLG_NO_PSEUDO_HDR | RCB_FLG_VLAN_ASSIST;
1234
1235	memset(ap->rx_jumbo_ring, 0,
1236	       RX_JUMBO_RING_ENTRIES * sizeof(struct rx_desc));
1237
1238	for (i = 0; i < RX_JUMBO_RING_ENTRIES; i++)
1239		ap->rx_jumbo_ring[i].flags = BD_FLG_TCP_UDP_SUM | BD_FLG_JUMBO;
1240
1241	ap->rx_jumbo_skbprd = 0;
1242	atomic_set(&ap->cur_jumbo_bufs, 0);
1243
1244	memset(ap->rx_mini_ring, 0,
1245	       RX_MINI_RING_ENTRIES * sizeof(struct rx_desc));
1246
1247	if (ap->version >= 2) {
1248		set_aceaddr(&info->rx_mini_ctrl.rngptr,
1249			    (ap->rx_ring_base_dma +
1250			     (sizeof(struct rx_desc) *
1251			      (RX_STD_RING_ENTRIES +
1252			       RX_JUMBO_RING_ENTRIES))));
1253		info->rx_mini_ctrl.max_len = ACE_MINI_SIZE;
1254		info->rx_mini_ctrl.flags =
1255		  RCB_FLG_TCP_UDP_SUM|RCB_FLG_NO_PSEUDO_HDR|RCB_FLG_VLAN_ASSIST;
1256
1257		for (i = 0; i < RX_MINI_RING_ENTRIES; i++)
1258			ap->rx_mini_ring[i].flags =
1259				BD_FLG_TCP_UDP_SUM | BD_FLG_MINI;
1260	} else {
1261		set_aceaddr(&info->rx_mini_ctrl.rngptr, 0);
1262		info->rx_mini_ctrl.flags = RCB_FLG_RNG_DISABLE;
1263		info->rx_mini_ctrl.max_len = 0;
1264	}
1265
1266	ap->rx_mini_skbprd = 0;
1267	atomic_set(&ap->cur_mini_bufs, 0);
1268
1269	set_aceaddr(&info->rx_return_ctrl.rngptr,
1270		    (ap->rx_ring_base_dma +
1271		     (sizeof(struct rx_desc) *
1272		      (RX_STD_RING_ENTRIES +
1273		       RX_JUMBO_RING_ENTRIES +
1274		       RX_MINI_RING_ENTRIES))));
1275	info->rx_return_ctrl.flags = 0;
1276	info->rx_return_ctrl.max_len = RX_RETURN_RING_ENTRIES;
1277
1278	memset(ap->rx_return_ring, 0,
1279	       RX_RETURN_RING_ENTRIES * sizeof(struct rx_desc));
1280
1281	set_aceaddr(&info->rx_ret_prd_ptr, ap->rx_ret_prd_dma);
1282	*(ap->rx_ret_prd) = 0;
1283
1284	writel(TX_RING_BASE, &regs->WinBase);
1285
1286	if (ACE_IS_TIGON_I(ap)) {
1287		ap->tx_ring = (__force struct tx_desc *) regs->Window;
1288		for (i = 0; i < (TIGON_I_TX_RING_ENTRIES
1289				 * sizeof(struct tx_desc)) / sizeof(u32); i++)
1290			writel(0, (__force void __iomem *)ap->tx_ring  + i * 4);
1291
1292		set_aceaddr(&info->tx_ctrl.rngptr, TX_RING_BASE);
1293	} else {
1294		memset(ap->tx_ring, 0,
1295		       MAX_TX_RING_ENTRIES * sizeof(struct tx_desc));
1296
1297		set_aceaddr(&info->tx_ctrl.rngptr, ap->tx_ring_dma);
1298	}
1299
1300	info->tx_ctrl.max_len = ACE_TX_RING_ENTRIES(ap);
1301	tmp = RCB_FLG_TCP_UDP_SUM | RCB_FLG_NO_PSEUDO_HDR | RCB_FLG_VLAN_ASSIST;
1302
1303	/*
1304	 * The Tigon I does not like having the TX ring in host memory ;-(
1305	 */
1306	if (!ACE_IS_TIGON_I(ap))
1307		tmp |= RCB_FLG_TX_HOST_RING;
1308#if TX_COAL_INTS_ONLY
1309	tmp |= RCB_FLG_COAL_INT_ONLY;
1310#endif
1311	info->tx_ctrl.flags = tmp;
1312
1313	set_aceaddr(&info->tx_csm_ptr, ap->tx_csm_dma);
1314
1315	/*
1316	 * Potential item for tuning parameter
1317	 */
1318#if 0 /* NO */
1319	writel(DMA_THRESH_16W, &regs->DmaReadCfg);
1320	writel(DMA_THRESH_16W, &regs->DmaWriteCfg);
1321#else
1322	writel(DMA_THRESH_8W, &regs->DmaReadCfg);
1323	writel(DMA_THRESH_8W, &regs->DmaWriteCfg);
1324#endif
1325
1326	writel(0, &regs->MaskInt);
1327	writel(1, &regs->IfIdx);
1328#if 0
1329	/*
1330	 * McKinley boxes do not like us fiddling with AssistState
1331	 * this early
1332	 */
1333	writel(1, &regs->AssistState);
1334#endif
1335
1336	writel(DEF_STAT, &regs->TuneStatTicks);
1337	writel(DEF_TRACE, &regs->TuneTrace);
1338
1339	ace_set_rxtx_parms(dev, 0);
1340
1341	if (board_idx == BOARD_IDX_OVERFLOW) {
1342		printk(KERN_WARNING "%s: more than %i NICs detected, "
1343		       "ignoring module parameters!\n",
1344		       ap->name, ACE_MAX_MOD_PARMS);
1345	} else if (board_idx >= 0) {
1346		if (tx_coal_tick[board_idx])
1347			writel(tx_coal_tick[board_idx],
1348			       &regs->TuneTxCoalTicks);
1349		if (max_tx_desc[board_idx])
1350			writel(max_tx_desc[board_idx], &regs->TuneMaxTxDesc);
1351
1352		if (rx_coal_tick[board_idx])
1353			writel(rx_coal_tick[board_idx],
1354			       &regs->TuneRxCoalTicks);
1355		if (max_rx_desc[board_idx])
1356			writel(max_rx_desc[board_idx], &regs->TuneMaxRxDesc);
1357
1358		if (trace[board_idx])
1359			writel(trace[board_idx], &regs->TuneTrace);
1360
1361		if ((tx_ratio[board_idx] > 0) && (tx_ratio[board_idx] < 64))
1362			writel(tx_ratio[board_idx], &regs->TxBufRat);
1363	}
1364
1365	/*
1366	 * Default link parameters
1367	 */
1368	tmp = LNK_ENABLE | LNK_FULL_DUPLEX | LNK_1000MB | LNK_100MB |
1369		LNK_10MB | LNK_RX_FLOW_CTL_Y | LNK_NEG_FCTL | LNK_NEGOTIATE;
1370	if(ap->version >= 2)
1371		tmp |= LNK_TX_FLOW_CTL_Y;
1372
1373	/*
1374	 * Override link default parameters
1375	 */
1376	if ((board_idx >= 0) && link_state[board_idx]) {
1377		int option = link_state[board_idx];
1378
1379		tmp = LNK_ENABLE;
1380
1381		if (option & 0x01) {
1382			printk(KERN_INFO "%s: Setting half duplex link\n",
1383			       ap->name);
1384			tmp &= ~LNK_FULL_DUPLEX;
1385		}
1386		if (option & 0x02)
1387			tmp &= ~LNK_NEGOTIATE;
1388		if (option & 0x10)
1389			tmp |= LNK_10MB;
1390		if (option & 0x20)
1391			tmp |= LNK_100MB;
1392		if (option & 0x40)
1393			tmp |= LNK_1000MB;
1394		if ((option & 0x70) == 0) {
1395			printk(KERN_WARNING "%s: No media speed specified, "
1396			       "forcing auto negotiation\n", ap->name);
1397			tmp |= LNK_NEGOTIATE | LNK_1000MB |
1398				LNK_100MB | LNK_10MB;
1399		}
1400		if ((option & 0x100) == 0)
1401			tmp |= LNK_NEG_FCTL;
1402		else
1403			printk(KERN_INFO "%s: Disabling flow control "
1404			       "negotiation\n", ap->name);
1405		if (option & 0x200)
1406			tmp |= LNK_RX_FLOW_CTL_Y;
1407		if ((option & 0x400) && (ap->version >= 2)) {
1408			printk(KERN_INFO "%s: Enabling TX flow control\n",
1409			       ap->name);
1410			tmp |= LNK_TX_FLOW_CTL_Y;
1411		}
1412	}
1413
1414	ap->link = tmp;
1415	writel(tmp, &regs->TuneLink);
1416	if (ap->version >= 2)
1417		writel(tmp, &regs->TuneFastLink);
1418
1419	writel(ap->firmware_start, &regs->Pc);
1420
1421	writel(0, &regs->Mb0Lo);
1422
1423	/*
1424	 * Set tx_csm before we start receiving interrupts, otherwise
1425	 * the interrupt handler might think it is supposed to process
1426	 * tx ints before we are up and running, which may cause a null
1427	 * pointer access in the int handler.
1428	 */
1429	ap->cur_rx = 0;
1430	ap->tx_prd = *(ap->tx_csm) = ap->tx_ret_csm = 0;
1431
1432	wmb();
1433	ace_set_txprd(regs, ap, 0);
1434	writel(0, &regs->RxRetCsm);
1435
1436	/*
1437	 * Enable DMA engine now.
1438	 * If we do this sooner, Mckinley box pukes.
1439	 * I assume it's because Tigon II DMA engine wants to check
1440	 * *something* even before the CPU is started.
1441	 */
1442	writel(1, &regs->AssistState);  /* enable DMA */
1443
1444	/*
1445	 * Start the NIC CPU
1446	 */
1447	writel(readl(&regs->CpuCtrl) & ~(CPU_HALT|CPU_TRACE), &regs->CpuCtrl);
1448	readl(&regs->CpuCtrl);
1449
1450	/*
1451	 * Wait for the firmware to spin up - max 3 seconds.
1452	 */
1453	myjif = jiffies + 3 * HZ;
1454	while (time_before(jiffies, myjif) && !ap->fw_running)
1455		cpu_relax();
1456
1457	if (!ap->fw_running) {
1458		printk(KERN_ERR "%s: Firmware NOT running!\n", ap->name);
1459
1460		ace_dump_trace(ap);
1461		writel(readl(&regs->CpuCtrl) | CPU_HALT, &regs->CpuCtrl);
1462		readl(&regs->CpuCtrl);
1463
1464		/* aman@sgi.com - account for badly behaving firmware/NIC:
1465		 * - have observed that the NIC may continue to generate
1466		 *   interrupts for some reason; attempt to stop it - halt
1467		 *   second CPU for Tigon II cards, and also clear Mb0
1468		 * - if we're a module, we'll fail to load if this was
1469		 *   the only GbE card in the system => if the kernel does
1470		 *   see an interrupt from the NIC, code to handle it is
1471		 *   gone and OOps! - so free_irq also
1472		 */
1473		if (ap->version >= 2)
1474			writel(readl(&regs->CpuBCtrl) | CPU_HALT,
1475			       &regs->CpuBCtrl);
1476		writel(0, &regs->Mb0Lo);
1477		readl(&regs->Mb0Lo);
1478
1479		ecode = -EBUSY;
1480		goto init_error;
1481	}
1482
1483	/*
1484	 * We load the ring here as there seem to be no way to tell the
1485	 * firmware to wipe the ring without re-initializing it.
1486	 */
1487	if (!test_and_set_bit(0, &ap->std_refill_busy))
1488		ace_load_std_rx_ring(dev, RX_RING_SIZE);
1489	else
1490		printk(KERN_ERR "%s: Someone is busy refilling the RX ring\n",
1491		       ap->name);
1492	if (ap->version >= 2) {
1493		if (!test_and_set_bit(0, &ap->mini_refill_busy))
1494			ace_load_mini_rx_ring(dev, RX_MINI_SIZE);
1495		else
1496			printk(KERN_ERR "%s: Someone is busy refilling "
1497			       "the RX mini ring\n", ap->name);
1498	}
1499	return 0;
1500
1501 init_error:
1502	ace_init_cleanup(dev);
1503	return ecode;
1504}
1505
1506
1507static void ace_set_rxtx_parms(struct net_device *dev, int jumbo)
1508{
1509	struct ace_private *ap = netdev_priv(dev);
1510	struct ace_regs __iomem *regs = ap->regs;
1511	int board_idx = ap->board_idx;
1512
1513	if (board_idx >= 0) {
1514		if (!jumbo) {
1515			if (!tx_coal_tick[board_idx])
1516				writel(DEF_TX_COAL, &regs->TuneTxCoalTicks);
1517			if (!max_tx_desc[board_idx])
1518				writel(DEF_TX_MAX_DESC, &regs->TuneMaxTxDesc);
1519			if (!rx_coal_tick[board_idx])
1520				writel(DEF_RX_COAL, &regs->TuneRxCoalTicks);
1521			if (!max_rx_desc[board_idx])
1522				writel(DEF_RX_MAX_DESC, &regs->TuneMaxRxDesc);
1523			if (!tx_ratio[board_idx])
1524				writel(DEF_TX_RATIO, &regs->TxBufRat);
1525		} else {
1526			if (!tx_coal_tick[board_idx])
1527				writel(DEF_JUMBO_TX_COAL,
1528				       &regs->TuneTxCoalTicks);
1529			if (!max_tx_desc[board_idx])
1530				writel(DEF_JUMBO_TX_MAX_DESC,
1531				       &regs->TuneMaxTxDesc);
1532			if (!rx_coal_tick[board_idx])
1533				writel(DEF_JUMBO_RX_COAL,
1534				       &regs->TuneRxCoalTicks);
1535			if (!max_rx_desc[board_idx])
1536				writel(DEF_JUMBO_RX_MAX_DESC,
1537				       &regs->TuneMaxRxDesc);
1538			if (!tx_ratio[board_idx])
1539				writel(DEF_JUMBO_TX_RATIO, &regs->TxBufRat);
1540		}
1541	}
1542}
1543
1544
1545static void ace_watchdog(struct net_device *data)
1546{
1547	struct net_device *dev = data;
1548	struct ace_private *ap = netdev_priv(dev);
1549	struct ace_regs __iomem *regs = ap->regs;
1550
1551	/*
1552	 * We haven't received a stats update event for more than 2.5
1553	 * seconds and there is data in the transmit queue, thus we
1554	 * assume the card is stuck.
1555	 */
1556	if (*ap->tx_csm != ap->tx_ret_csm) {
1557		printk(KERN_WARNING "%s: Transmitter is stuck, %08x\n",
1558		       dev->name, (unsigned int)readl(&regs->HostCtrl));
1559		/* This can happen due to ieee flow control. */
1560	} else {
1561		printk(KERN_DEBUG "%s: BUG... transmitter died. Kicking it.\n",
1562		       dev->name);
1563#if 0
1564		netif_wake_queue(dev);
1565#endif
1566	}
1567}
1568
1569
1570static void ace_tasklet(unsigned long arg)
1571{
1572	struct net_device *dev = (struct net_device *) arg;
1573	struct ace_private *ap = netdev_priv(dev);
1574	int cur_size;
1575
1576	cur_size = atomic_read(&ap->cur_rx_bufs);
1577	if ((cur_size < RX_LOW_STD_THRES) &&
1578	    !test_and_set_bit(0, &ap->std_refill_busy)) {
1579#ifdef DEBUG
1580		printk("refilling buffers (current %i)\n", cur_size);
1581#endif
1582		ace_load_std_rx_ring(dev, RX_RING_SIZE - cur_size);
1583	}
1584
1585	if (ap->version >= 2) {
1586		cur_size = atomic_read(&ap->cur_mini_bufs);
1587		if ((cur_size < RX_LOW_MINI_THRES) &&
1588		    !test_and_set_bit(0, &ap->mini_refill_busy)) {
1589#ifdef DEBUG
1590			printk("refilling mini buffers (current %i)\n",
1591			       cur_size);
1592#endif
1593			ace_load_mini_rx_ring(dev, RX_MINI_SIZE - cur_size);
1594		}
1595	}
1596
1597	cur_size = atomic_read(&ap->cur_jumbo_bufs);
1598	if (ap->jumbo && (cur_size < RX_LOW_JUMBO_THRES) &&
1599	    !test_and_set_bit(0, &ap->jumbo_refill_busy)) {
1600#ifdef DEBUG
1601		printk("refilling jumbo buffers (current %i)\n", cur_size);
1602#endif
1603		ace_load_jumbo_rx_ring(dev, RX_JUMBO_SIZE - cur_size);
1604	}
1605	ap->tasklet_pending = 0;
1606}
1607
1608
1609/*
1610 * Copy the contents of the NIC's trace buffer to kernel memory.
1611 */
1612static void ace_dump_trace(struct ace_private *ap)
1613{
1614#if 0
1615	if (!ap->trace_buf)
1616		if (!(ap->trace_buf = kmalloc(ACE_TRACE_SIZE, GFP_KERNEL)))
1617		    return;
1618#endif
1619}
1620
1621
1622/*
1623 * Load the standard rx ring.
1624 *
1625 * Loading rings is safe without holding the spin lock since this is
1626 * done only before the device is enabled, thus no interrupts are
1627 * generated and by the interrupt handler/tasklet handler.
1628 */
1629static void ace_load_std_rx_ring(struct net_device *dev, int nr_bufs)
1630{
1631	struct ace_private *ap = netdev_priv(dev);
1632	struct ace_regs __iomem *regs = ap->regs;
1633	short i, idx;
1634
1635
1636	prefetchw(&ap->cur_rx_bufs);
1637
1638	idx = ap->rx_std_skbprd;
1639
1640	for (i = 0; i < nr_bufs; i++) {
1641		struct sk_buff *skb;
1642		struct rx_desc *rd;
1643		dma_addr_t mapping;
1644
1645		skb = netdev_alloc_skb_ip_align(dev, ACE_STD_BUFSIZE);
1646		if (!skb)
1647			break;
1648
1649		mapping = pci_map_page(ap->pdev, virt_to_page(skb->data),
1650				       offset_in_page(skb->data),
1651				       ACE_STD_BUFSIZE,
1652				       PCI_DMA_FROMDEVICE);
1653		ap->skb->rx_std_skbuff[idx].skb = skb;
1654		dma_unmap_addr_set(&ap->skb->rx_std_skbuff[idx],
1655				   mapping, mapping);
1656
1657		rd = &ap->rx_std_ring[idx];
1658		set_aceaddr(&rd->addr, mapping);
1659		rd->size = ACE_STD_BUFSIZE;
1660		rd->idx = idx;
1661		idx = (idx + 1) % RX_STD_RING_ENTRIES;
1662	}
1663
1664	if (!i)
1665		goto error_out;
1666
1667	atomic_add(i, &ap->cur_rx_bufs);
1668	ap->rx_std_skbprd = idx;
1669
1670	if (ACE_IS_TIGON_I(ap)) {
1671		struct cmd cmd;
1672		cmd.evt = C_SET_RX_PRD_IDX;
1673		cmd.code = 0;
1674		cmd.idx = ap->rx_std_skbprd;
1675		ace_issue_cmd(regs, &cmd);
1676	} else {
1677		writel(idx, &regs->RxStdPrd);
1678		wmb();
1679	}
1680
1681 out:
1682	clear_bit(0, &ap->std_refill_busy);
1683	return;
1684
1685 error_out:
1686	printk(KERN_INFO "Out of memory when allocating "
1687	       "standard receive buffers\n");
1688	goto out;
1689}
1690
1691
1692static void ace_load_mini_rx_ring(struct net_device *dev, int nr_bufs)
1693{
1694	struct ace_private *ap = netdev_priv(dev);
1695	struct ace_regs __iomem *regs = ap->regs;
1696	short i, idx;
1697
1698	prefetchw(&ap->cur_mini_bufs);
1699
1700	idx = ap->rx_mini_skbprd;
1701	for (i = 0; i < nr_bufs; i++) {
1702		struct sk_buff *skb;
1703		struct rx_desc *rd;
1704		dma_addr_t mapping;
1705
1706		skb = netdev_alloc_skb_ip_align(dev, ACE_MINI_BUFSIZE);
1707		if (!skb)
1708			break;
1709
1710		mapping = pci_map_page(ap->pdev, virt_to_page(skb->data),
1711				       offset_in_page(skb->data),
1712				       ACE_MINI_BUFSIZE,
1713				       PCI_DMA_FROMDEVICE);
1714		ap->skb->rx_mini_skbuff[idx].skb = skb;
1715		dma_unmap_addr_set(&ap->skb->rx_mini_skbuff[idx],
1716				   mapping, mapping);
1717
1718		rd = &ap->rx_mini_ring[idx];
1719		set_aceaddr(&rd->addr, mapping);
1720		rd->size = ACE_MINI_BUFSIZE;
1721		rd->idx = idx;
1722		idx = (idx + 1) % RX_MINI_RING_ENTRIES;
1723	}
1724
1725	if (!i)
1726		goto error_out;
1727
1728	atomic_add(i, &ap->cur_mini_bufs);
1729
1730	ap->rx_mini_skbprd = idx;
1731
1732	writel(idx, &regs->RxMiniPrd);
1733	wmb();
1734
1735 out:
1736	clear_bit(0, &ap->mini_refill_busy);
1737	return;
1738 error_out:
1739	printk(KERN_INFO "Out of memory when allocating "
1740	       "mini receive buffers\n");
1741	goto out;
1742}
1743
1744
1745/*
1746 * Load the jumbo rx ring, this may happen at any time if the MTU
1747 * is changed to a value > 1500.
1748 */
1749static void ace_load_jumbo_rx_ring(struct net_device *dev, int nr_bufs)
1750{
1751	struct ace_private *ap = netdev_priv(dev);
1752	struct ace_regs __iomem *regs = ap->regs;
1753	short i, idx;
1754
1755	idx = ap->rx_jumbo_skbprd;
1756
1757	for (i = 0; i < nr_bufs; i++) {
1758		struct sk_buff *skb;
1759		struct rx_desc *rd;
1760		dma_addr_t mapping;
1761
1762		skb = netdev_alloc_skb_ip_align(dev, ACE_JUMBO_BUFSIZE);
1763		if (!skb)
1764			break;
1765
1766		mapping = pci_map_page(ap->pdev, virt_to_page(skb->data),
1767				       offset_in_page(skb->data),
1768				       ACE_JUMBO_BUFSIZE,
1769				       PCI_DMA_FROMDEVICE);
1770		ap->skb->rx_jumbo_skbuff[idx].skb = skb;
1771		dma_unmap_addr_set(&ap->skb->rx_jumbo_skbuff[idx],
1772				   mapping, mapping);
1773
1774		rd = &ap->rx_jumbo_ring[idx];
1775		set_aceaddr(&rd->addr, mapping);
1776		rd->size = ACE_JUMBO_BUFSIZE;
1777		rd->idx = idx;
1778		idx = (idx + 1) % RX_JUMBO_RING_ENTRIES;
1779	}
1780
1781	if (!i)
1782		goto error_out;
1783
1784	atomic_add(i, &ap->cur_jumbo_bufs);
1785	ap->rx_jumbo_skbprd = idx;
1786
1787	if (ACE_IS_TIGON_I(ap)) {
1788		struct cmd cmd;
1789		cmd.evt = C_SET_RX_JUMBO_PRD_IDX;
1790		cmd.code = 0;
1791		cmd.idx = ap->rx_jumbo_skbprd;
1792		ace_issue_cmd(regs, &cmd);
1793	} else {
1794		writel(idx, &regs->RxJumboPrd);
1795		wmb();
1796	}
1797
1798 out:
1799	clear_bit(0, &ap->jumbo_refill_busy);
1800	return;
1801 error_out:
1802	if (net_ratelimit())
1803		printk(KERN_INFO "Out of memory when allocating "
1804		       "jumbo receive buffers\n");
1805	goto out;
1806}
1807
1808
1809/*
1810 * All events are considered to be slow (RX/TX ints do not generate
1811 * events) and are handled here, outside the main interrupt handler,
1812 * to reduce the size of the handler.
1813 */
1814static u32 ace_handle_event(struct net_device *dev, u32 evtcsm, u32 evtprd)
1815{
1816	struct ace_private *ap;
1817
1818	ap = netdev_priv(dev);
1819
1820	while (evtcsm != evtprd) {
1821		switch (ap->evt_ring[evtcsm].evt) {
1822		case E_FW_RUNNING:
1823			printk(KERN_INFO "%s: Firmware up and running\n",
1824			       ap->name);
1825			ap->fw_running = 1;
1826			wmb();
1827			break;
1828		case E_STATS_UPDATED:
1829			break;
1830		case E_LNK_STATE:
1831		{
1832			u16 code = ap->evt_ring[evtcsm].code;
1833			switch (code) {
1834			case E_C_LINK_UP:
1835			{
1836				u32 state = readl(&ap->regs->GigLnkState);
1837				printk(KERN_WARNING "%s: Optical link UP "
1838				       "(%s Duplex, Flow Control: %s%s)\n",
1839				       ap->name,
1840				       state & LNK_FULL_DUPLEX ? "Full":"Half",
1841				       state & LNK_TX_FLOW_CTL_Y ? "TX " : "",
1842				       state & LNK_RX_FLOW_CTL_Y ? "RX" : "");
1843				break;
1844			}
1845			case E_C_LINK_DOWN:
1846				printk(KERN_WARNING "%s: Optical link DOWN\n",
1847				       ap->name);
1848				break;
1849			case E_C_LINK_10_100:
1850				printk(KERN_WARNING "%s: 10/100BaseT link "
1851				       "UP\n", ap->name);
1852				break;
1853			default:
1854				printk(KERN_ERR "%s: Unknown optical link "
1855				       "state %02x\n", ap->name, code);
1856			}
1857			break;
1858		}
1859		case E_ERROR:
1860			switch(ap->evt_ring[evtcsm].code) {
1861			case E_C_ERR_INVAL_CMD:
1862				printk(KERN_ERR "%s: invalid command error\n",
1863				       ap->name);
1864				break;
1865			case E_C_ERR_UNIMP_CMD:
1866				printk(KERN_ERR "%s: unimplemented command "
1867				       "error\n", ap->name);
1868				break;
1869			case E_C_ERR_BAD_CFG:
1870				printk(KERN_ERR "%s: bad config error\n",
1871				       ap->name);
1872				break;
1873			default:
1874				printk(KERN_ERR "%s: unknown error %02x\n",
1875				       ap->name, ap->evt_ring[evtcsm].code);
1876			}
1877			break;
1878		case E_RESET_JUMBO_RNG:
1879		{
1880			int i;
1881			for (i = 0; i < RX_JUMBO_RING_ENTRIES; i++) {
1882				if (ap->skb->rx_jumbo_skbuff[i].skb) {
1883					ap->rx_jumbo_ring[i].size = 0;
1884					set_aceaddr(&ap->rx_jumbo_ring[i].addr, 0);
1885					dev_kfree_skb(ap->skb->rx_jumbo_skbuff[i].skb);
1886					ap->skb->rx_jumbo_skbuff[i].skb = NULL;
1887				}
1888			}
1889
1890 			if (ACE_IS_TIGON_I(ap)) {
1891 				struct cmd cmd;
1892 				cmd.evt = C_SET_RX_JUMBO_PRD_IDX;
1893 				cmd.code = 0;
1894 				cmd.idx = 0;
1895 				ace_issue_cmd(ap->regs, &cmd);
1896 			} else {
1897 				writel(0, &((ap->regs)->RxJumboPrd));
1898 				wmb();
1899 			}
1900
1901			ap->jumbo = 0;
1902			ap->rx_jumbo_skbprd = 0;
1903			printk(KERN_INFO "%s: Jumbo ring flushed\n",
1904			       ap->name);
1905			clear_bit(0, &ap->jumbo_refill_busy);
1906			break;
1907		}
1908		default:
1909			printk(KERN_ERR "%s: Unhandled event 0x%02x\n",
1910			       ap->name, ap->evt_ring[evtcsm].evt);
1911		}
1912		evtcsm = (evtcsm + 1) % EVT_RING_ENTRIES;
1913	}
1914
1915	return evtcsm;
1916}
1917
1918
1919static void ace_rx_int(struct net_device *dev, u32 rxretprd, u32 rxretcsm)
1920{
1921	struct ace_private *ap = netdev_priv(dev);
1922	u32 idx;
1923	int mini_count = 0, std_count = 0;
1924
1925	idx = rxretcsm;
1926
1927	prefetchw(&ap->cur_rx_bufs);
1928	prefetchw(&ap->cur_mini_bufs);
1929
1930	while (idx != rxretprd) {
1931		struct ring_info *rip;
1932		struct sk_buff *skb;
1933		struct rx_desc *retdesc;
1934		u32 skbidx;
1935		int bd_flags, desc_type, mapsize;
1936		u16 csum;
1937
1938
1939		/* make sure the rx descriptor isn't read before rxretprd */
1940		if (idx == rxretcsm)
1941			rmb();
1942
1943		retdesc = &ap->rx_return_ring[idx];
1944		skbidx = retdesc->idx;
1945		bd_flags = retdesc->flags;
1946		desc_type = bd_flags & (BD_FLG_JUMBO | BD_FLG_MINI);
1947
1948		switch(desc_type) {
1949			/*
1950			 * Normal frames do not have any flags set
1951			 *
1952			 * Mini and normal frames arrive frequently,
1953			 * so use a local counter to avoid doing
1954			 * atomic operations for each packet arriving.
1955			 */
1956		case 0:
1957			rip = &ap->skb->rx_std_skbuff[skbidx];
1958			mapsize = ACE_STD_BUFSIZE;
 
1959			std_count++;
1960			break;
1961		case BD_FLG_JUMBO:
1962			rip = &ap->skb->rx_jumbo_skbuff[skbidx];
1963			mapsize = ACE_JUMBO_BUFSIZE;
 
1964			atomic_dec(&ap->cur_jumbo_bufs);
1965			break;
1966		case BD_FLG_MINI:
1967			rip = &ap->skb->rx_mini_skbuff[skbidx];
1968			mapsize = ACE_MINI_BUFSIZE;
 
1969			mini_count++;
1970			break;
1971		default:
1972			printk(KERN_INFO "%s: unknown frame type (0x%02x) "
1973			       "returned by NIC\n", dev->name,
1974			       retdesc->flags);
1975			goto error;
1976		}
1977
1978		skb = rip->skb;
1979		rip->skb = NULL;
1980		pci_unmap_page(ap->pdev,
1981			       dma_unmap_addr(rip, mapping),
1982			       mapsize,
1983			       PCI_DMA_FROMDEVICE);
1984		skb_put(skb, retdesc->size);
1985
1986		/*
1987		 * Fly baby, fly!
1988		 */
1989		csum = retdesc->tcp_udp_csum;
1990
1991		skb->protocol = eth_type_trans(skb, dev);
1992
1993		/*
1994		 * Instead of forcing the poor tigon mips cpu to calculate
1995		 * pseudo hdr checksum, we do this ourselves.
1996		 */
1997		if (bd_flags & BD_FLG_TCP_UDP_SUM) {
1998			skb->csum = htons(csum);
1999			skb->ip_summed = CHECKSUM_COMPLETE;
2000		} else {
2001			skb_checksum_none_assert(skb);
2002		}
2003
2004		/* send it up */
2005		if ((bd_flags & BD_FLG_VLAN_TAG))
2006			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), retdesc->vlan);
2007		netif_rx(skb);
2008
2009		dev->stats.rx_packets++;
2010		dev->stats.rx_bytes += retdesc->size;
2011
2012		idx = (idx + 1) % RX_RETURN_RING_ENTRIES;
2013	}
2014
2015	atomic_sub(std_count, &ap->cur_rx_bufs);
2016	if (!ACE_IS_TIGON_I(ap))
2017		atomic_sub(mini_count, &ap->cur_mini_bufs);
2018
2019 out:
2020	/*
2021	 * According to the documentation RxRetCsm is obsolete with
2022	 * the 12.3.x Firmware - my Tigon I NICs seem to disagree!
2023	 */
2024	if (ACE_IS_TIGON_I(ap)) {
2025		writel(idx, &ap->regs->RxRetCsm);
2026	}
2027	ap->cur_rx = idx;
2028
2029	return;
2030 error:
2031	idx = rxretprd;
2032	goto out;
2033}
2034
2035
2036static inline void ace_tx_int(struct net_device *dev,
2037			      u32 txcsm, u32 idx)
2038{
2039	struct ace_private *ap = netdev_priv(dev);
2040
2041	do {
2042		struct sk_buff *skb;
2043		struct tx_ring_info *info;
2044
2045		info = ap->skb->tx_skbuff + idx;
2046		skb = info->skb;
2047
2048		if (dma_unmap_len(info, maplen)) {
2049			pci_unmap_page(ap->pdev, dma_unmap_addr(info, mapping),
2050				       dma_unmap_len(info, maplen),
2051				       PCI_DMA_TODEVICE);
2052			dma_unmap_len_set(info, maplen, 0);
2053		}
2054
2055		if (skb) {
2056			dev->stats.tx_packets++;
2057			dev->stats.tx_bytes += skb->len;
2058			dev_consume_skb_irq(skb);
2059			info->skb = NULL;
2060		}
2061
2062		idx = (idx + 1) % ACE_TX_RING_ENTRIES(ap);
2063	} while (idx != txcsm);
2064
2065	if (netif_queue_stopped(dev))
2066		netif_wake_queue(dev);
2067
2068	wmb();
2069	ap->tx_ret_csm = txcsm;
2070
2071	/* So... tx_ret_csm is advanced _after_ check for device wakeup.
2072	 *
2073	 * We could try to make it before. In this case we would get
2074	 * the following race condition: hard_start_xmit on other cpu
2075	 * enters after we advanced tx_ret_csm and fills space,
2076	 * which we have just freed, so that we make illegal device wakeup.
2077	 * There is no good way to workaround this (at entry
2078	 * to ace_start_xmit detects this condition and prevents
2079	 * ring corruption, but it is not a good workaround.)
2080	 *
2081	 * When tx_ret_csm is advanced after, we wake up device _only_
2082	 * if we really have some space in ring (though the core doing
2083	 * hard_start_xmit can see full ring for some period and has to
2084	 * synchronize.) Superb.
2085	 * BUT! We get another subtle race condition. hard_start_xmit
2086	 * may think that ring is full between wakeup and advancing
2087	 * tx_ret_csm and will stop device instantly! It is not so bad.
2088	 * We are guaranteed that there is something in ring, so that
2089	 * the next irq will resume transmission. To speedup this we could
2090	 * mark descriptor, which closes ring with BD_FLG_COAL_NOW
2091	 * (see ace_start_xmit).
2092	 *
2093	 * Well, this dilemma exists in all lock-free devices.
2094	 * We, following scheme used in drivers by Donald Becker,
2095	 * select the least dangerous.
2096	 *							--ANK
2097	 */
2098}
2099
2100
2101static irqreturn_t ace_interrupt(int irq, void *dev_id)
2102{
2103	struct net_device *dev = (struct net_device *)dev_id;
2104	struct ace_private *ap = netdev_priv(dev);
2105	struct ace_regs __iomem *regs = ap->regs;
2106	u32 idx;
2107	u32 txcsm, rxretcsm, rxretprd;
2108	u32 evtcsm, evtprd;
2109
2110	/*
2111	 * In case of PCI shared interrupts or spurious interrupts,
2112	 * we want to make sure it is actually our interrupt before
2113	 * spending any time in here.
2114	 */
2115	if (!(readl(&regs->HostCtrl) & IN_INT))
2116		return IRQ_NONE;
2117
2118	/*
2119	 * ACK intr now. Otherwise we will lose updates to rx_ret_prd,
2120	 * which happened _after_ rxretprd = *ap->rx_ret_prd; but before
2121	 * writel(0, &regs->Mb0Lo).
2122	 *
2123	 * "IRQ avoidance" recommended in docs applies to IRQs served
2124	 * threads and it is wrong even for that case.
2125	 */
2126	writel(0, &regs->Mb0Lo);
2127	readl(&regs->Mb0Lo);
2128
2129	/*
2130	 * There is no conflict between transmit handling in
2131	 * start_xmit and receive processing, thus there is no reason
2132	 * to take a spin lock for RX handling. Wait until we start
2133	 * working on the other stuff - hey we don't need a spin lock
2134	 * anymore.
2135	 */
2136	rxretprd = *ap->rx_ret_prd;
2137	rxretcsm = ap->cur_rx;
2138
2139	if (rxretprd != rxretcsm)
2140		ace_rx_int(dev, rxretprd, rxretcsm);
2141
2142	txcsm = *ap->tx_csm;
2143	idx = ap->tx_ret_csm;
2144
2145	if (txcsm != idx) {
2146		/*
2147		 * If each skb takes only one descriptor this check degenerates
2148		 * to identity, because new space has just been opened.
2149		 * But if skbs are fragmented we must check that this index
2150		 * update releases enough of space, otherwise we just
2151		 * wait for device to make more work.
2152		 */
2153		if (!tx_ring_full(ap, txcsm, ap->tx_prd))
2154			ace_tx_int(dev, txcsm, idx);
2155	}
2156
2157	evtcsm = readl(&regs->EvtCsm);
2158	evtprd = *ap->evt_prd;
2159
2160	if (evtcsm != evtprd) {
2161		evtcsm = ace_handle_event(dev, evtcsm, evtprd);
2162		writel(evtcsm, &regs->EvtCsm);
2163	}
2164
2165	/*
2166	 * This has to go last in the interrupt handler and run with
2167	 * the spin lock released ... what lock?
2168	 */
2169	if (netif_running(dev)) {
2170		int cur_size;
2171		int run_tasklet = 0;
2172
2173		cur_size = atomic_read(&ap->cur_rx_bufs);
2174		if (cur_size < RX_LOW_STD_THRES) {
2175			if ((cur_size < RX_PANIC_STD_THRES) &&
2176			    !test_and_set_bit(0, &ap->std_refill_busy)) {
2177#ifdef DEBUG
2178				printk("low on std buffers %i\n", cur_size);
2179#endif
2180				ace_load_std_rx_ring(dev,
2181						     RX_RING_SIZE - cur_size);
2182			} else
2183				run_tasklet = 1;
2184		}
2185
2186		if (!ACE_IS_TIGON_I(ap)) {
2187			cur_size = atomic_read(&ap->cur_mini_bufs);
2188			if (cur_size < RX_LOW_MINI_THRES) {
2189				if ((cur_size < RX_PANIC_MINI_THRES) &&
2190				    !test_and_set_bit(0,
2191						      &ap->mini_refill_busy)) {
2192#ifdef DEBUG
2193					printk("low on mini buffers %i\n",
2194					       cur_size);
2195#endif
2196					ace_load_mini_rx_ring(dev,
2197							      RX_MINI_SIZE - cur_size);
2198				} else
2199					run_tasklet = 1;
2200			}
2201		}
2202
2203		if (ap->jumbo) {
2204			cur_size = atomic_read(&ap->cur_jumbo_bufs);
2205			if (cur_size < RX_LOW_JUMBO_THRES) {
2206				if ((cur_size < RX_PANIC_JUMBO_THRES) &&
2207				    !test_and_set_bit(0,
2208						      &ap->jumbo_refill_busy)){
2209#ifdef DEBUG
2210					printk("low on jumbo buffers %i\n",
2211					       cur_size);
2212#endif
2213					ace_load_jumbo_rx_ring(dev,
2214							       RX_JUMBO_SIZE - cur_size);
2215				} else
2216					run_tasklet = 1;
2217			}
2218		}
2219		if (run_tasklet && !ap->tasklet_pending) {
2220			ap->tasklet_pending = 1;
2221			tasklet_schedule(&ap->ace_tasklet);
2222		}
2223	}
2224
2225	return IRQ_HANDLED;
2226}
2227
2228static int ace_open(struct net_device *dev)
2229{
2230	struct ace_private *ap = netdev_priv(dev);
2231	struct ace_regs __iomem *regs = ap->regs;
2232	struct cmd cmd;
2233
2234	if (!(ap->fw_running)) {
2235		printk(KERN_WARNING "%s: Firmware not running!\n", dev->name);
2236		return -EBUSY;
2237	}
2238
2239	writel(dev->mtu + ETH_HLEN + 4, &regs->IfMtu);
2240
2241	cmd.evt = C_CLEAR_STATS;
2242	cmd.code = 0;
2243	cmd.idx = 0;
2244	ace_issue_cmd(regs, &cmd);
2245
2246	cmd.evt = C_HOST_STATE;
2247	cmd.code = C_C_STACK_UP;
2248	cmd.idx = 0;
2249	ace_issue_cmd(regs, &cmd);
2250
2251	if (ap->jumbo &&
2252	    !test_and_set_bit(0, &ap->jumbo_refill_busy))
2253		ace_load_jumbo_rx_ring(dev, RX_JUMBO_SIZE);
2254
2255	if (dev->flags & IFF_PROMISC) {
2256		cmd.evt = C_SET_PROMISC_MODE;
2257		cmd.code = C_C_PROMISC_ENABLE;
2258		cmd.idx = 0;
2259		ace_issue_cmd(regs, &cmd);
2260
2261		ap->promisc = 1;
2262	}else
2263		ap->promisc = 0;
2264	ap->mcast_all = 0;
2265
2266#if 0
2267	cmd.evt = C_LNK_NEGOTIATION;
2268	cmd.code = 0;
2269	cmd.idx = 0;
2270	ace_issue_cmd(regs, &cmd);
2271#endif
2272
2273	netif_start_queue(dev);
2274
2275	/*
2276	 * Setup the bottom half rx ring refill handler
2277	 */
2278	tasklet_init(&ap->ace_tasklet, ace_tasklet, (unsigned long)dev);
2279	return 0;
2280}
2281
2282
2283static int ace_close(struct net_device *dev)
2284{
2285	struct ace_private *ap = netdev_priv(dev);
2286	struct ace_regs __iomem *regs = ap->regs;
2287	struct cmd cmd;
2288	unsigned long flags;
2289	short i;
2290
2291	/*
2292	 * Without (or before) releasing irq and stopping hardware, this
2293	 * is an absolute non-sense, by the way. It will be reset instantly
2294	 * by the first irq.
2295	 */
2296	netif_stop_queue(dev);
2297
2298
2299	if (ap->promisc) {
2300		cmd.evt = C_SET_PROMISC_MODE;
2301		cmd.code = C_C_PROMISC_DISABLE;
2302		cmd.idx = 0;
2303		ace_issue_cmd(regs, &cmd);
2304		ap->promisc = 0;
2305	}
2306
2307	cmd.evt = C_HOST_STATE;
2308	cmd.code = C_C_STACK_DOWN;
2309	cmd.idx = 0;
2310	ace_issue_cmd(regs, &cmd);
2311
2312	tasklet_kill(&ap->ace_tasklet);
2313
2314	/*
2315	 * Make sure one CPU is not processing packets while
2316	 * buffers are being released by another.
2317	 */
2318
2319	local_irq_save(flags);
2320	ace_mask_irq(dev);
2321
2322	for (i = 0; i < ACE_TX_RING_ENTRIES(ap); i++) {
2323		struct sk_buff *skb;
2324		struct tx_ring_info *info;
2325
2326		info = ap->skb->tx_skbuff + i;
2327		skb = info->skb;
2328
2329		if (dma_unmap_len(info, maplen)) {
2330			if (ACE_IS_TIGON_I(ap)) {
2331				/* NB: TIGON_1 is special, tx_ring is in io space */
2332				struct tx_desc __iomem *tx;
2333				tx = (__force struct tx_desc __iomem *) &ap->tx_ring[i];
2334				writel(0, &tx->addr.addrhi);
2335				writel(0, &tx->addr.addrlo);
2336				writel(0, &tx->flagsize);
2337			} else
2338				memset(ap->tx_ring + i, 0,
2339				       sizeof(struct tx_desc));
2340			pci_unmap_page(ap->pdev, dma_unmap_addr(info, mapping),
2341				       dma_unmap_len(info, maplen),
2342				       PCI_DMA_TODEVICE);
2343			dma_unmap_len_set(info, maplen, 0);
2344		}
2345		if (skb) {
2346			dev_kfree_skb(skb);
2347			info->skb = NULL;
2348		}
2349	}
2350
2351	if (ap->jumbo) {
2352		cmd.evt = C_RESET_JUMBO_RNG;
2353		cmd.code = 0;
2354		cmd.idx = 0;
2355		ace_issue_cmd(regs, &cmd);
2356	}
2357
2358	ace_unmask_irq(dev);
2359	local_irq_restore(flags);
2360
2361	return 0;
2362}
2363
2364
2365static inline dma_addr_t
2366ace_map_tx_skb(struct ace_private *ap, struct sk_buff *skb,
2367	       struct sk_buff *tail, u32 idx)
2368{
2369	dma_addr_t mapping;
2370	struct tx_ring_info *info;
2371
2372	mapping = pci_map_page(ap->pdev, virt_to_page(skb->data),
2373			       offset_in_page(skb->data),
2374			       skb->len, PCI_DMA_TODEVICE);
2375
2376	info = ap->skb->tx_skbuff + idx;
2377	info->skb = tail;
2378	dma_unmap_addr_set(info, mapping, mapping);
2379	dma_unmap_len_set(info, maplen, skb->len);
2380	return mapping;
2381}
2382
2383
2384static inline void
2385ace_load_tx_bd(struct ace_private *ap, struct tx_desc *desc, u64 addr,
2386	       u32 flagsize, u32 vlan_tag)
2387{
2388#if !USE_TX_COAL_NOW
2389	flagsize &= ~BD_FLG_COAL_NOW;
2390#endif
2391
2392	if (ACE_IS_TIGON_I(ap)) {
2393		struct tx_desc __iomem *io = (__force struct tx_desc __iomem *) desc;
2394		writel(addr >> 32, &io->addr.addrhi);
2395		writel(addr & 0xffffffff, &io->addr.addrlo);
2396		writel(flagsize, &io->flagsize);
2397		writel(vlan_tag, &io->vlanres);
2398	} else {
2399		desc->addr.addrhi = addr >> 32;
2400		desc->addr.addrlo = addr;
2401		desc->flagsize = flagsize;
2402		desc->vlanres = vlan_tag;
2403	}
2404}
2405
2406
2407static netdev_tx_t ace_start_xmit(struct sk_buff *skb,
2408				  struct net_device *dev)
2409{
2410	struct ace_private *ap = netdev_priv(dev);
2411	struct ace_regs __iomem *regs = ap->regs;
2412	struct tx_desc *desc;
2413	u32 idx, flagsize;
2414	unsigned long maxjiff = jiffies + 3*HZ;
2415
2416restart:
2417	idx = ap->tx_prd;
2418
2419	if (tx_ring_full(ap, ap->tx_ret_csm, idx))
2420		goto overflow;
2421
2422	if (!skb_shinfo(skb)->nr_frags)	{
2423		dma_addr_t mapping;
2424		u32 vlan_tag = 0;
2425
2426		mapping = ace_map_tx_skb(ap, skb, skb, idx);
2427		flagsize = (skb->len << 16) | (BD_FLG_END);
2428		if (skb->ip_summed == CHECKSUM_PARTIAL)
2429			flagsize |= BD_FLG_TCP_UDP_SUM;
2430		if (skb_vlan_tag_present(skb)) {
2431			flagsize |= BD_FLG_VLAN_TAG;
2432			vlan_tag = skb_vlan_tag_get(skb);
2433		}
2434		desc = ap->tx_ring + idx;
2435		idx = (idx + 1) % ACE_TX_RING_ENTRIES(ap);
2436
2437		/* Look at ace_tx_int for explanations. */
2438		if (tx_ring_full(ap, ap->tx_ret_csm, idx))
2439			flagsize |= BD_FLG_COAL_NOW;
2440
2441		ace_load_tx_bd(ap, desc, mapping, flagsize, vlan_tag);
2442	} else {
2443		dma_addr_t mapping;
2444		u32 vlan_tag = 0;
2445		int i, len = 0;
2446
2447		mapping = ace_map_tx_skb(ap, skb, NULL, idx);
2448		flagsize = (skb_headlen(skb) << 16);
2449		if (skb->ip_summed == CHECKSUM_PARTIAL)
2450			flagsize |= BD_FLG_TCP_UDP_SUM;
2451		if (skb_vlan_tag_present(skb)) {
2452			flagsize |= BD_FLG_VLAN_TAG;
2453			vlan_tag = skb_vlan_tag_get(skb);
2454		}
2455
2456		ace_load_tx_bd(ap, ap->tx_ring + idx, mapping, flagsize, vlan_tag);
2457
2458		idx = (idx + 1) % ACE_TX_RING_ENTRIES(ap);
2459
2460		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2461			const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2462			struct tx_ring_info *info;
2463
2464			len += skb_frag_size(frag);
2465			info = ap->skb->tx_skbuff + idx;
2466			desc = ap->tx_ring + idx;
2467
2468			mapping = skb_frag_dma_map(&ap->pdev->dev, frag, 0,
2469						   skb_frag_size(frag),
2470						   DMA_TO_DEVICE);
2471
2472			flagsize = skb_frag_size(frag) << 16;
2473			if (skb->ip_summed == CHECKSUM_PARTIAL)
2474				flagsize |= BD_FLG_TCP_UDP_SUM;
2475			idx = (idx + 1) % ACE_TX_RING_ENTRIES(ap);
2476
2477			if (i == skb_shinfo(skb)->nr_frags - 1) {
2478				flagsize |= BD_FLG_END;
2479				if (tx_ring_full(ap, ap->tx_ret_csm, idx))
2480					flagsize |= BD_FLG_COAL_NOW;
2481
2482				/*
2483				 * Only the last fragment frees
2484				 * the skb!
2485				 */
2486				info->skb = skb;
2487			} else {
2488				info->skb = NULL;
2489			}
2490			dma_unmap_addr_set(info, mapping, mapping);
2491			dma_unmap_len_set(info, maplen, skb_frag_size(frag));
2492			ace_load_tx_bd(ap, desc, mapping, flagsize, vlan_tag);
2493		}
2494	}
2495
2496 	wmb();
2497 	ap->tx_prd = idx;
2498 	ace_set_txprd(regs, ap, idx);
2499
2500	if (flagsize & BD_FLG_COAL_NOW) {
2501		netif_stop_queue(dev);
2502
2503		/*
2504		 * A TX-descriptor producer (an IRQ) might have gotten
2505		 * between, making the ring free again. Since xmit is
2506		 * serialized, this is the only situation we have to
2507		 * re-test.
2508		 */
2509		if (!tx_ring_full(ap, ap->tx_ret_csm, idx))
2510			netif_wake_queue(dev);
2511	}
2512
2513	return NETDEV_TX_OK;
2514
2515overflow:
2516	/*
2517	 * This race condition is unavoidable with lock-free drivers.
2518	 * We wake up the queue _before_ tx_prd is advanced, so that we can
2519	 * enter hard_start_xmit too early, while tx ring still looks closed.
2520	 * This happens ~1-4 times per 100000 packets, so that we can allow
2521	 * to loop syncing to other CPU. Probably, we need an additional
2522	 * wmb() in ace_tx_intr as well.
2523	 *
2524	 * Note that this race is relieved by reserving one more entry
2525	 * in tx ring than it is necessary (see original non-SG driver).
2526	 * However, with SG we need to reserve 2*MAX_SKB_FRAGS+1, which
2527	 * is already overkill.
2528	 *
2529	 * Alternative is to return with 1 not throttling queue. In this
2530	 * case loop becomes longer, no more useful effects.
2531	 */
2532	if (time_before(jiffies, maxjiff)) {
2533		barrier();
2534		cpu_relax();
2535		goto restart;
2536	}
2537
2538	/* The ring is stuck full. */
2539	printk(KERN_WARNING "%s: Transmit ring stuck full\n", dev->name);
2540	return NETDEV_TX_BUSY;
2541}
2542
2543
2544static int ace_change_mtu(struct net_device *dev, int new_mtu)
2545{
2546	struct ace_private *ap = netdev_priv(dev);
2547	struct ace_regs __iomem *regs = ap->regs;
2548
 
 
 
2549	writel(new_mtu + ETH_HLEN + 4, &regs->IfMtu);
2550	dev->mtu = new_mtu;
2551
2552	if (new_mtu > ACE_STD_MTU) {
2553		if (!(ap->jumbo)) {
2554			printk(KERN_INFO "%s: Enabling Jumbo frame "
2555			       "support\n", dev->name);
2556			ap->jumbo = 1;
2557			if (!test_and_set_bit(0, &ap->jumbo_refill_busy))
2558				ace_load_jumbo_rx_ring(dev, RX_JUMBO_SIZE);
2559			ace_set_rxtx_parms(dev, 1);
2560		}
2561	} else {
2562		while (test_and_set_bit(0, &ap->jumbo_refill_busy));
2563		ace_sync_irq(dev->irq);
2564		ace_set_rxtx_parms(dev, 0);
2565		if (ap->jumbo) {
2566			struct cmd cmd;
2567
2568			cmd.evt = C_RESET_JUMBO_RNG;
2569			cmd.code = 0;
2570			cmd.idx = 0;
2571			ace_issue_cmd(regs, &cmd);
2572		}
2573	}
2574
2575	return 0;
2576}
2577
2578static int ace_get_link_ksettings(struct net_device *dev,
2579				  struct ethtool_link_ksettings *cmd)
2580{
2581	struct ace_private *ap = netdev_priv(dev);
2582	struct ace_regs __iomem *regs = ap->regs;
2583	u32 link;
2584	u32 supported;
2585
2586	memset(cmd, 0, sizeof(struct ethtool_link_ksettings));
2587
2588	supported = (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
2589		     SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
2590		     SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full |
2591		     SUPPORTED_Autoneg | SUPPORTED_FIBRE);
 
 
2592
2593	cmd->base.port = PORT_FIBRE;
 
2594
2595	link = readl(&regs->GigLnkState);
2596	if (link & LNK_1000MB) {
2597		cmd->base.speed = SPEED_1000;
2598	} else {
2599		link = readl(&regs->FastLnkState);
2600		if (link & LNK_100MB)
2601			cmd->base.speed = SPEED_100;
2602		else if (link & LNK_10MB)
2603			cmd->base.speed = SPEED_10;
2604		else
2605			cmd->base.speed = 0;
2606	}
2607	if (link & LNK_FULL_DUPLEX)
2608		cmd->base.duplex = DUPLEX_FULL;
2609	else
2610		cmd->base.duplex = DUPLEX_HALF;
2611
2612	if (link & LNK_NEGOTIATE)
2613		cmd->base.autoneg = AUTONEG_ENABLE;
2614	else
2615		cmd->base.autoneg = AUTONEG_DISABLE;
2616
2617#if 0
2618	/*
2619	 * Current struct ethtool_cmd is insufficient
2620	 */
2621	ecmd->trace = readl(&regs->TuneTrace);
2622
2623	ecmd->txcoal = readl(&regs->TuneTxCoalTicks);
2624	ecmd->rxcoal = readl(&regs->TuneRxCoalTicks);
2625#endif
2626
2627	ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported,
2628						supported);
2629
2630	return 0;
2631}
2632
2633static int ace_set_link_ksettings(struct net_device *dev,
2634				  const struct ethtool_link_ksettings *cmd)
2635{
2636	struct ace_private *ap = netdev_priv(dev);
2637	struct ace_regs __iomem *regs = ap->regs;
2638	u32 link, speed;
2639
2640	link = readl(&regs->GigLnkState);
2641	if (link & LNK_1000MB)
2642		speed = SPEED_1000;
2643	else {
2644		link = readl(&regs->FastLnkState);
2645		if (link & LNK_100MB)
2646			speed = SPEED_100;
2647		else if (link & LNK_10MB)
2648			speed = SPEED_10;
2649		else
2650			speed = SPEED_100;
2651	}
2652
2653	link = LNK_ENABLE | LNK_1000MB | LNK_100MB | LNK_10MB |
2654		LNK_RX_FLOW_CTL_Y | LNK_NEG_FCTL;
2655	if (!ACE_IS_TIGON_I(ap))
2656		link |= LNK_TX_FLOW_CTL_Y;
2657	if (cmd->base.autoneg == AUTONEG_ENABLE)
2658		link |= LNK_NEGOTIATE;
2659	if (cmd->base.speed != speed) {
2660		link &= ~(LNK_1000MB | LNK_100MB | LNK_10MB);
2661		switch (cmd->base.speed) {
2662		case SPEED_1000:
2663			link |= LNK_1000MB;
2664			break;
2665		case SPEED_100:
2666			link |= LNK_100MB;
2667			break;
2668		case SPEED_10:
2669			link |= LNK_10MB;
2670			break;
2671		}
2672	}
2673
2674	if (cmd->base.duplex == DUPLEX_FULL)
2675		link |= LNK_FULL_DUPLEX;
2676
2677	if (link != ap->link) {
2678		struct cmd cmd;
2679		printk(KERN_INFO "%s: Renegotiating link state\n",
2680		       dev->name);
2681
2682		ap->link = link;
2683		writel(link, &regs->TuneLink);
2684		if (!ACE_IS_TIGON_I(ap))
2685			writel(link, &regs->TuneFastLink);
2686		wmb();
2687
2688		cmd.evt = C_LNK_NEGOTIATION;
2689		cmd.code = 0;
2690		cmd.idx = 0;
2691		ace_issue_cmd(regs, &cmd);
2692	}
2693	return 0;
2694}
2695
2696static void ace_get_drvinfo(struct net_device *dev,
2697			    struct ethtool_drvinfo *info)
2698{
2699	struct ace_private *ap = netdev_priv(dev);
2700
2701	strlcpy(info->driver, "acenic", sizeof(info->driver));
2702	snprintf(info->version, sizeof(info->version), "%i.%i.%i",
2703		 ap->firmware_major, ap->firmware_minor,
2704		 ap->firmware_fix);
2705
2706	if (ap->pdev)
2707		strlcpy(info->bus_info, pci_name(ap->pdev),
2708			sizeof(info->bus_info));
2709
2710}
2711
2712/*
2713 * Set the hardware MAC address.
2714 */
2715static int ace_set_mac_addr(struct net_device *dev, void *p)
2716{
2717	struct ace_private *ap = netdev_priv(dev);
2718	struct ace_regs __iomem *regs = ap->regs;
2719	struct sockaddr *addr=p;
2720	u8 *da;
2721	struct cmd cmd;
2722
2723	if(netif_running(dev))
2724		return -EBUSY;
2725
2726	memcpy(dev->dev_addr, addr->sa_data,dev->addr_len);
2727
2728	da = (u8 *)dev->dev_addr;
2729
2730	writel(da[0] << 8 | da[1], &regs->MacAddrHi);
2731	writel((da[2] << 24) | (da[3] << 16) | (da[4] << 8) | da[5],
2732	       &regs->MacAddrLo);
2733
2734	cmd.evt = C_SET_MAC_ADDR;
2735	cmd.code = 0;
2736	cmd.idx = 0;
2737	ace_issue_cmd(regs, &cmd);
2738
2739	return 0;
2740}
2741
2742
2743static void ace_set_multicast_list(struct net_device *dev)
2744{
2745	struct ace_private *ap = netdev_priv(dev);
2746	struct ace_regs __iomem *regs = ap->regs;
2747	struct cmd cmd;
2748
2749	if ((dev->flags & IFF_ALLMULTI) && !(ap->mcast_all)) {
2750		cmd.evt = C_SET_MULTICAST_MODE;
2751		cmd.code = C_C_MCAST_ENABLE;
2752		cmd.idx = 0;
2753		ace_issue_cmd(regs, &cmd);
2754		ap->mcast_all = 1;
2755	} else if (ap->mcast_all) {
2756		cmd.evt = C_SET_MULTICAST_MODE;
2757		cmd.code = C_C_MCAST_DISABLE;
2758		cmd.idx = 0;
2759		ace_issue_cmd(regs, &cmd);
2760		ap->mcast_all = 0;
2761	}
2762
2763	if ((dev->flags & IFF_PROMISC) && !(ap->promisc)) {
2764		cmd.evt = C_SET_PROMISC_MODE;
2765		cmd.code = C_C_PROMISC_ENABLE;
2766		cmd.idx = 0;
2767		ace_issue_cmd(regs, &cmd);
2768		ap->promisc = 1;
2769	}else if (!(dev->flags & IFF_PROMISC) && (ap->promisc)) {
2770		cmd.evt = C_SET_PROMISC_MODE;
2771		cmd.code = C_C_PROMISC_DISABLE;
2772		cmd.idx = 0;
2773		ace_issue_cmd(regs, &cmd);
2774		ap->promisc = 0;
2775	}
2776
2777	/*
2778	 * For the time being multicast relies on the upper layers
2779	 * filtering it properly. The Firmware does not allow one to
2780	 * set the entire multicast list at a time and keeping track of
2781	 * it here is going to be messy.
2782	 */
2783	if (!netdev_mc_empty(dev) && !ap->mcast_all) {
2784		cmd.evt = C_SET_MULTICAST_MODE;
2785		cmd.code = C_C_MCAST_ENABLE;
2786		cmd.idx = 0;
2787		ace_issue_cmd(regs, &cmd);
2788	}else if (!ap->mcast_all) {
2789		cmd.evt = C_SET_MULTICAST_MODE;
2790		cmd.code = C_C_MCAST_DISABLE;
2791		cmd.idx = 0;
2792		ace_issue_cmd(regs, &cmd);
2793	}
2794}
2795
2796
2797static struct net_device_stats *ace_get_stats(struct net_device *dev)
2798{
2799	struct ace_private *ap = netdev_priv(dev);
2800	struct ace_mac_stats __iomem *mac_stats =
2801		(struct ace_mac_stats __iomem *)ap->regs->Stats;
2802
2803	dev->stats.rx_missed_errors = readl(&mac_stats->drop_space);
2804	dev->stats.multicast = readl(&mac_stats->kept_mc);
2805	dev->stats.collisions = readl(&mac_stats->coll);
2806
2807	return &dev->stats;
2808}
2809
2810
2811static void ace_copy(struct ace_regs __iomem *regs, const __be32 *src,
2812		     u32 dest, int size)
2813{
2814	void __iomem *tdest;
2815	short tsize, i;
2816
2817	if (size <= 0)
2818		return;
2819
2820	while (size > 0) {
2821		tsize = min_t(u32, ((~dest & (ACE_WINDOW_SIZE - 1)) + 1),
2822			    min_t(u32, size, ACE_WINDOW_SIZE));
2823		tdest = (void __iomem *) &regs->Window +
2824			(dest & (ACE_WINDOW_SIZE - 1));
2825		writel(dest & ~(ACE_WINDOW_SIZE - 1), &regs->WinBase);
2826		for (i = 0; i < (tsize / 4); i++) {
2827			/* Firmware is big-endian */
2828			writel(be32_to_cpup(src), tdest);
2829			src++;
2830			tdest += 4;
2831			dest += 4;
2832			size -= 4;
2833		}
2834	}
2835}
2836
2837
2838static void ace_clear(struct ace_regs __iomem *regs, u32 dest, int size)
2839{
2840	void __iomem *tdest;
2841	short tsize = 0, i;
2842
2843	if (size <= 0)
2844		return;
2845
2846	while (size > 0) {
2847		tsize = min_t(u32, ((~dest & (ACE_WINDOW_SIZE - 1)) + 1),
2848				min_t(u32, size, ACE_WINDOW_SIZE));
2849		tdest = (void __iomem *) &regs->Window +
2850			(dest & (ACE_WINDOW_SIZE - 1));
2851		writel(dest & ~(ACE_WINDOW_SIZE - 1), &regs->WinBase);
2852
2853		for (i = 0; i < (tsize / 4); i++) {
2854			writel(0, tdest + i*4);
2855		}
2856
2857		dest += tsize;
2858		size -= tsize;
2859	}
2860}
2861
2862
2863/*
2864 * Download the firmware into the SRAM on the NIC
2865 *
2866 * This operation requires the NIC to be halted and is performed with
2867 * interrupts disabled and with the spinlock hold.
2868 */
2869static int ace_load_firmware(struct net_device *dev)
2870{
2871	const struct firmware *fw;
2872	const char *fw_name = "acenic/tg2.bin";
2873	struct ace_private *ap = netdev_priv(dev);
2874	struct ace_regs __iomem *regs = ap->regs;
2875	const __be32 *fw_data;
2876	u32 load_addr;
2877	int ret;
2878
2879	if (!(readl(&regs->CpuCtrl) & CPU_HALTED)) {
2880		printk(KERN_ERR "%s: trying to download firmware while the "
2881		       "CPU is running!\n", ap->name);
2882		return -EFAULT;
2883	}
2884
2885	if (ACE_IS_TIGON_I(ap))
2886		fw_name = "acenic/tg1.bin";
2887
2888	ret = request_firmware(&fw, fw_name, &ap->pdev->dev);
2889	if (ret) {
2890		printk(KERN_ERR "%s: Failed to load firmware \"%s\"\n",
2891		       ap->name, fw_name);
2892		return ret;
2893	}
2894
2895	fw_data = (void *)fw->data;
2896
2897	/* Firmware blob starts with version numbers, followed by
2898	   load and start address. Remainder is the blob to be loaded
2899	   contiguously from load address. We don't bother to represent
2900	   the BSS/SBSS sections any more, since we were clearing the
2901	   whole thing anyway. */
2902	ap->firmware_major = fw->data[0];
2903	ap->firmware_minor = fw->data[1];
2904	ap->firmware_fix = fw->data[2];
2905
2906	ap->firmware_start = be32_to_cpu(fw_data[1]);
2907	if (ap->firmware_start < 0x4000 || ap->firmware_start >= 0x80000) {
2908		printk(KERN_ERR "%s: bogus load address %08x in \"%s\"\n",
2909		       ap->name, ap->firmware_start, fw_name);
2910		ret = -EINVAL;
2911		goto out;
2912	}
2913
2914	load_addr = be32_to_cpu(fw_data[2]);
2915	if (load_addr < 0x4000 || load_addr >= 0x80000) {
2916		printk(KERN_ERR "%s: bogus load address %08x in \"%s\"\n",
2917		       ap->name, load_addr, fw_name);
2918		ret = -EINVAL;
2919		goto out;
2920	}
2921
2922	/*
2923	 * Do not try to clear more than 512KiB or we end up seeing
2924	 * funny things on NICs with only 512KiB SRAM
2925	 */
2926	ace_clear(regs, 0x2000, 0x80000-0x2000);
2927	ace_copy(regs, &fw_data[3], load_addr, fw->size-12);
2928 out:
2929	release_firmware(fw);
2930	return ret;
2931}
2932
2933
2934/*
2935 * The eeprom on the AceNIC is an Atmel i2c EEPROM.
2936 *
2937 * Accessing the EEPROM is `interesting' to say the least - don't read
2938 * this code right after dinner.
2939 *
2940 * This is all about black magic and bit-banging the device .... I
2941 * wonder in what hospital they have put the guy who designed the i2c
2942 * specs.
2943 *
2944 * Oh yes, this is only the beginning!
2945 *
2946 * Thanks to Stevarino Webinski for helping tracking down the bugs in the
2947 * code i2c readout code by beta testing all my hacks.
2948 */
2949static void eeprom_start(struct ace_regs __iomem *regs)
2950{
2951	u32 local;
2952
2953	readl(&regs->LocalCtrl);
2954	udelay(ACE_SHORT_DELAY);
2955	local = readl(&regs->LocalCtrl);
2956	local |= EEPROM_DATA_OUT | EEPROM_WRITE_ENABLE;
2957	writel(local, &regs->LocalCtrl);
2958	readl(&regs->LocalCtrl);
2959	mb();
2960	udelay(ACE_SHORT_DELAY);
2961	local |= EEPROM_CLK_OUT;
2962	writel(local, &regs->LocalCtrl);
2963	readl(&regs->LocalCtrl);
2964	mb();
2965	udelay(ACE_SHORT_DELAY);
2966	local &= ~EEPROM_DATA_OUT;
2967	writel(local, &regs->LocalCtrl);
2968	readl(&regs->LocalCtrl);
2969	mb();
2970	udelay(ACE_SHORT_DELAY);
2971	local &= ~EEPROM_CLK_OUT;
2972	writel(local, &regs->LocalCtrl);
2973	readl(&regs->LocalCtrl);
2974	mb();
2975}
2976
2977
2978static void eeprom_prep(struct ace_regs __iomem *regs, u8 magic)
2979{
2980	short i;
2981	u32 local;
2982
2983	udelay(ACE_SHORT_DELAY);
2984	local = readl(&regs->LocalCtrl);
2985	local &= ~EEPROM_DATA_OUT;
2986	local |= EEPROM_WRITE_ENABLE;
2987	writel(local, &regs->LocalCtrl);
2988	readl(&regs->LocalCtrl);
2989	mb();
2990
2991	for (i = 0; i < 8; i++, magic <<= 1) {
2992		udelay(ACE_SHORT_DELAY);
2993		if (magic & 0x80)
2994			local |= EEPROM_DATA_OUT;
2995		else
2996			local &= ~EEPROM_DATA_OUT;
2997		writel(local, &regs->LocalCtrl);
2998		readl(&regs->LocalCtrl);
2999		mb();
3000
3001		udelay(ACE_SHORT_DELAY);
3002		local |= EEPROM_CLK_OUT;
3003		writel(local, &regs->LocalCtrl);
3004		readl(&regs->LocalCtrl);
3005		mb();
3006		udelay(ACE_SHORT_DELAY);
3007		local &= ~(EEPROM_CLK_OUT | EEPROM_DATA_OUT);
3008		writel(local, &regs->LocalCtrl);
3009		readl(&regs->LocalCtrl);
3010		mb();
3011	}
3012}
3013
3014
3015static int eeprom_check_ack(struct ace_regs __iomem *regs)
3016{
3017	int state;
3018	u32 local;
3019
3020	local = readl(&regs->LocalCtrl);
3021	local &= ~EEPROM_WRITE_ENABLE;
3022	writel(local, &regs->LocalCtrl);
3023	readl(&regs->LocalCtrl);
3024	mb();
3025	udelay(ACE_LONG_DELAY);
3026	local |= EEPROM_CLK_OUT;
3027	writel(local, &regs->LocalCtrl);
3028	readl(&regs->LocalCtrl);
3029	mb();
3030	udelay(ACE_SHORT_DELAY);
3031	/* sample data in middle of high clk */
3032	state = (readl(&regs->LocalCtrl) & EEPROM_DATA_IN) != 0;
3033	udelay(ACE_SHORT_DELAY);
3034	mb();
3035	writel(readl(&regs->LocalCtrl) & ~EEPROM_CLK_OUT, &regs->LocalCtrl);
3036	readl(&regs->LocalCtrl);
3037	mb();
3038
3039	return state;
3040}
3041
3042
3043static void eeprom_stop(struct ace_regs __iomem *regs)
3044{
3045	u32 local;
3046
3047	udelay(ACE_SHORT_DELAY);
3048	local = readl(&regs->LocalCtrl);
3049	local |= EEPROM_WRITE_ENABLE;
3050	writel(local, &regs->LocalCtrl);
3051	readl(&regs->LocalCtrl);
3052	mb();
3053	udelay(ACE_SHORT_DELAY);
3054	local &= ~EEPROM_DATA_OUT;
3055	writel(local, &regs->LocalCtrl);
3056	readl(&regs->LocalCtrl);
3057	mb();
3058	udelay(ACE_SHORT_DELAY);
3059	local |= EEPROM_CLK_OUT;
3060	writel(local, &regs->LocalCtrl);
3061	readl(&regs->LocalCtrl);
3062	mb();
3063	udelay(ACE_SHORT_DELAY);
3064	local |= EEPROM_DATA_OUT;
3065	writel(local, &regs->LocalCtrl);
3066	readl(&regs->LocalCtrl);
3067	mb();
3068	udelay(ACE_LONG_DELAY);
3069	local &= ~EEPROM_CLK_OUT;
3070	writel(local, &regs->LocalCtrl);
3071	mb();
3072}
3073
3074
3075/*
3076 * Read a whole byte from the EEPROM.
3077 */
3078static int read_eeprom_byte(struct net_device *dev, unsigned long offset)
3079{
3080	struct ace_private *ap = netdev_priv(dev);
3081	struct ace_regs __iomem *regs = ap->regs;
3082	unsigned long flags;
3083	u32 local;
3084	int result = 0;
3085	short i;
3086
3087	/*
3088	 * Don't take interrupts on this CPU will bit banging
3089	 * the %#%#@$ I2C device
3090	 */
3091	local_irq_save(flags);
3092
3093	eeprom_start(regs);
3094
3095	eeprom_prep(regs, EEPROM_WRITE_SELECT);
3096	if (eeprom_check_ack(regs)) {
3097		local_irq_restore(flags);
3098		printk(KERN_ERR "%s: Unable to sync eeprom\n", ap->name);
3099		result = -EIO;
3100		goto eeprom_read_error;
3101	}
3102
3103	eeprom_prep(regs, (offset >> 8) & 0xff);
3104	if (eeprom_check_ack(regs)) {
3105		local_irq_restore(flags);
3106		printk(KERN_ERR "%s: Unable to set address byte 0\n",
3107		       ap->name);
3108		result = -EIO;
3109		goto eeprom_read_error;
3110	}
3111
3112	eeprom_prep(regs, offset & 0xff);
3113	if (eeprom_check_ack(regs)) {
3114		local_irq_restore(flags);
3115		printk(KERN_ERR "%s: Unable to set address byte 1\n",
3116		       ap->name);
3117		result = -EIO;
3118		goto eeprom_read_error;
3119	}
3120
3121	eeprom_start(regs);
3122	eeprom_prep(regs, EEPROM_READ_SELECT);
3123	if (eeprom_check_ack(regs)) {
3124		local_irq_restore(flags);
3125		printk(KERN_ERR "%s: Unable to set READ_SELECT\n",
3126		       ap->name);
3127		result = -EIO;
3128		goto eeprom_read_error;
3129	}
3130
3131	for (i = 0; i < 8; i++) {
3132		local = readl(&regs->LocalCtrl);
3133		local &= ~EEPROM_WRITE_ENABLE;
3134		writel(local, &regs->LocalCtrl);
3135		readl(&regs->LocalCtrl);
3136		udelay(ACE_LONG_DELAY);
3137		mb();
3138		local |= EEPROM_CLK_OUT;
3139		writel(local, &regs->LocalCtrl);
3140		readl(&regs->LocalCtrl);
3141		mb();
3142		udelay(ACE_SHORT_DELAY);
3143		/* sample data mid high clk */
3144		result = (result << 1) |
3145			((readl(&regs->LocalCtrl) & EEPROM_DATA_IN) != 0);
3146		udelay(ACE_SHORT_DELAY);
3147		mb();
3148		local = readl(&regs->LocalCtrl);
3149		local &= ~EEPROM_CLK_OUT;
3150		writel(local, &regs->LocalCtrl);
3151		readl(&regs->LocalCtrl);
3152		udelay(ACE_SHORT_DELAY);
3153		mb();
3154		if (i == 7) {
3155			local |= EEPROM_WRITE_ENABLE;
3156			writel(local, &regs->LocalCtrl);
3157			readl(&regs->LocalCtrl);
3158			mb();
3159			udelay(ACE_SHORT_DELAY);
3160		}
3161	}
3162
3163	local |= EEPROM_DATA_OUT;
3164	writel(local, &regs->LocalCtrl);
3165	readl(&regs->LocalCtrl);
3166	mb();
3167	udelay(ACE_SHORT_DELAY);
3168	writel(readl(&regs->LocalCtrl) | EEPROM_CLK_OUT, &regs->LocalCtrl);
3169	readl(&regs->LocalCtrl);
3170	udelay(ACE_LONG_DELAY);
3171	writel(readl(&regs->LocalCtrl) & ~EEPROM_CLK_OUT, &regs->LocalCtrl);
3172	readl(&regs->LocalCtrl);
3173	mb();
3174	udelay(ACE_SHORT_DELAY);
3175	eeprom_stop(regs);
3176
3177	local_irq_restore(flags);
3178 out:
3179	return result;
3180
3181 eeprom_read_error:
3182	printk(KERN_ERR "%s: Unable to read eeprom byte 0x%02lx\n",
3183	       ap->name, offset);
3184	goto out;
3185}
3186
3187module_pci_driver(acenic_pci_driver);