Linux Audio

Check our new training course

Loading...
   1/*
   2 * acenic.c: Linux driver for the Alteon AceNIC Gigabit Ethernet card
   3 *           and other Tigon based cards.
   4 *
   5 * Copyright 1998-2002 by Jes Sorensen, <jes@trained-monkey.org>.
   6 *
   7 * Thanks to Alteon and 3Com for providing hardware and documentation
   8 * enabling me to write this driver.
   9 *
  10 * A mailing list for discussing the use of this driver has been
  11 * setup, please subscribe to the lists if you have any questions
  12 * about the driver. Send mail to linux-acenic-help@sunsite.auc.dk to
  13 * see how to subscribe.
  14 *
  15 * This program is free software; you can redistribute it and/or modify
  16 * it under the terms of the GNU General Public License as published by
  17 * the Free Software Foundation; either version 2 of the License, or
  18 * (at your option) any later version.
  19 *
  20 * Additional credits:
  21 *   Pete Wyckoff <wyckoff@ca.sandia.gov>: Initial Linux/Alpha and trace
  22 *       dump support. The trace dump support has not been
  23 *       integrated yet however.
  24 *   Troy Benjegerdes: Big Endian (PPC) patches.
  25 *   Nate Stahl: Better out of memory handling and stats support.
  26 *   Aman Singla: Nasty race between interrupt handler and tx code dealing
  27 *                with 'testing the tx_ret_csm and setting tx_full'
  28 *   David S. Miller <davem@redhat.com>: conversion to new PCI dma mapping
  29 *                                       infrastructure and Sparc support
  30 *   Pierrick Pinasseau (CERN): For lending me an Ultra 5 to test the
  31 *                              driver under Linux/Sparc64
  32 *   Matt Domsch <Matt_Domsch@dell.com>: Detect Alteon 1000baseT cards
  33 *                                       ETHTOOL_GDRVINFO support
  34 *   Chip Salzenberg <chip@valinux.com>: Fix race condition between tx
  35 *                                       handler and close() cleanup.
  36 *   Ken Aaker <kdaaker@rchland.vnet.ibm.com>: Correct check for whether
  37 *                                       memory mapped IO is enabled to
  38 *                                       make the driver work on RS/6000.
  39 *   Takayoshi Kouchi <kouchi@hpc.bs1.fc.nec.co.jp>: Identifying problem
  40 *                                       where the driver would disable
  41 *                                       bus master mode if it had to disable
  42 *                                       write and invalidate.
  43 *   Stephen Hack <stephen_hack@hp.com>: Fixed ace_set_mac_addr for little
  44 *                                       endian systems.
  45 *   Val Henson <vhenson@esscom.com>:    Reset Jumbo skb producer and
  46 *                                       rx producer index when
  47 *                                       flushing the Jumbo ring.
  48 *   Hans Grobler <grobh@sun.ac.za>:     Memory leak fixes in the
  49 *                                       driver init path.
  50 *   Grant Grundler <grundler@cup.hp.com>: PCI write posting fixes.
  51 */
  52
  53#include <linux/module.h>
  54#include <linux/moduleparam.h>
  55#include <linux/types.h>
  56#include <linux/errno.h>
  57#include <linux/ioport.h>
  58#include <linux/pci.h>
  59#include <linux/dma-mapping.h>
  60#include <linux/kernel.h>
  61#include <linux/netdevice.h>
  62#include <linux/etherdevice.h>
  63#include <linux/skbuff.h>
  64#include <linux/init.h>
  65#include <linux/delay.h>
  66#include <linux/mm.h>
  67#include <linux/highmem.h>
  68#include <linux/sockios.h>
  69#include <linux/firmware.h>
  70#include <linux/slab.h>
  71#include <linux/prefetch.h>
  72#include <linux/if_vlan.h>
  73
  74#ifdef SIOCETHTOOL
  75#include <linux/ethtool.h>
  76#endif
  77
  78#include <net/sock.h>
  79#include <net/ip.h>
  80
  81#include <asm/io.h>
  82#include <asm/irq.h>
  83#include <asm/byteorder.h>
  84#include <asm/uaccess.h>
  85
  86
  87#define DRV_NAME "acenic"
  88
  89#undef INDEX_DEBUG
  90
  91#ifdef CONFIG_ACENIC_OMIT_TIGON_I
  92#define ACE_IS_TIGON_I(ap)	0
  93#define ACE_TX_RING_ENTRIES(ap)	MAX_TX_RING_ENTRIES
  94#else
  95#define ACE_IS_TIGON_I(ap)	(ap->version == 1)
  96#define ACE_TX_RING_ENTRIES(ap)	ap->tx_ring_entries
  97#endif
  98
  99#ifndef PCI_VENDOR_ID_ALTEON
 100#define PCI_VENDOR_ID_ALTEON		0x12ae
 101#endif
 102#ifndef PCI_DEVICE_ID_ALTEON_ACENIC_FIBRE
 103#define PCI_DEVICE_ID_ALTEON_ACENIC_FIBRE  0x0001
 104#define PCI_DEVICE_ID_ALTEON_ACENIC_COPPER 0x0002
 105#endif
 106#ifndef PCI_DEVICE_ID_3COM_3C985
 107#define PCI_DEVICE_ID_3COM_3C985	0x0001
 108#endif
 109#ifndef PCI_VENDOR_ID_NETGEAR
 110#define PCI_VENDOR_ID_NETGEAR		0x1385
 111#define PCI_DEVICE_ID_NETGEAR_GA620	0x620a
 112#endif
 113#ifndef PCI_DEVICE_ID_NETGEAR_GA620T
 114#define PCI_DEVICE_ID_NETGEAR_GA620T	0x630a
 115#endif
 116
 117
 118/*
 119 * Farallon used the DEC vendor ID by mistake and they seem not
 120 * to care - stinky!
 121 */
 122#ifndef PCI_DEVICE_ID_FARALLON_PN9000SX
 123#define PCI_DEVICE_ID_FARALLON_PN9000SX	0x1a
 124#endif
 125#ifndef PCI_DEVICE_ID_FARALLON_PN9100T
 126#define PCI_DEVICE_ID_FARALLON_PN9100T  0xfa
 127#endif
 128#ifndef PCI_VENDOR_ID_SGI
 129#define PCI_VENDOR_ID_SGI		0x10a9
 130#endif
 131#ifndef PCI_DEVICE_ID_SGI_ACENIC
 132#define PCI_DEVICE_ID_SGI_ACENIC	0x0009
 133#endif
 134
 135static DEFINE_PCI_DEVICE_TABLE(acenic_pci_tbl) = {
 136	{ PCI_VENDOR_ID_ALTEON, PCI_DEVICE_ID_ALTEON_ACENIC_FIBRE,
 137	  PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
 138	{ PCI_VENDOR_ID_ALTEON, PCI_DEVICE_ID_ALTEON_ACENIC_COPPER,
 139	  PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
 140	{ PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C985,
 141	  PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
 142	{ PCI_VENDOR_ID_NETGEAR, PCI_DEVICE_ID_NETGEAR_GA620,
 143	  PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
 144	{ PCI_VENDOR_ID_NETGEAR, PCI_DEVICE_ID_NETGEAR_GA620T,
 145	  PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
 146	/*
 147	 * Farallon used the DEC vendor ID on their cards incorrectly,
 148	 * then later Alteon's ID.
 149	 */
 150	{ PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_FARALLON_PN9000SX,
 151	  PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
 152	{ PCI_VENDOR_ID_ALTEON, PCI_DEVICE_ID_FARALLON_PN9100T,
 153	  PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
 154	{ PCI_VENDOR_ID_SGI, PCI_DEVICE_ID_SGI_ACENIC,
 155	  PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
 156	{ }
 157};
 158MODULE_DEVICE_TABLE(pci, acenic_pci_tbl);
 159
 160#define ace_sync_irq(irq)	synchronize_irq(irq)
 161
 162#ifndef offset_in_page
 163#define offset_in_page(ptr)	((unsigned long)(ptr) & ~PAGE_MASK)
 164#endif
 165
 166#define ACE_MAX_MOD_PARMS	8
 167#define BOARD_IDX_STATIC	0
 168#define BOARD_IDX_OVERFLOW	-1
 169
 170#include "acenic.h"
 171
 172/*
 173 * These must be defined before the firmware is included.
 174 */
 175#define MAX_TEXT_LEN	96*1024
 176#define MAX_RODATA_LEN	8*1024
 177#define MAX_DATA_LEN	2*1024
 178
 179#ifndef tigon2FwReleaseLocal
 180#define tigon2FwReleaseLocal 0
 181#endif
 182
 183/*
 184 * This driver currently supports Tigon I and Tigon II based cards
 185 * including the Alteon AceNIC, the 3Com 3C985[B] and NetGear
 186 * GA620. The driver should also work on the SGI, DEC and Farallon
 187 * versions of the card, however I have not been able to test that
 188 * myself.
 189 *
 190 * This card is really neat, it supports receive hardware checksumming
 191 * and jumbo frames (up to 9000 bytes) and does a lot of work in the
 192 * firmware. Also the programming interface is quite neat, except for
 193 * the parts dealing with the i2c eeprom on the card ;-)
 194 *
 195 * Using jumbo frames:
 196 *
 197 * To enable jumbo frames, simply specify an mtu between 1500 and 9000
 198 * bytes to ifconfig. Jumbo frames can be enabled or disabled at any time
 199 * by running `ifconfig eth<X> mtu <MTU>' with <X> being the Ethernet
 200 * interface number and <MTU> being the MTU value.
 201 *
 202 * Module parameters:
 203 *
 204 * When compiled as a loadable module, the driver allows for a number
 205 * of module parameters to be specified. The driver supports the
 206 * following module parameters:
 207 *
 208 *  trace=<val> - Firmware trace level. This requires special traced
 209 *                firmware to replace the firmware supplied with
 210 *                the driver - for debugging purposes only.
 211 *
 212 *  link=<val>  - Link state. Normally you want to use the default link
 213 *                parameters set by the driver. This can be used to
 214 *                override these in case your switch doesn't negotiate
 215 *                the link properly. Valid values are:
 216 *         0x0001 - Force half duplex link.
 217 *         0x0002 - Do not negotiate line speed with the other end.
 218 *         0x0010 - 10Mbit/sec link.
 219 *         0x0020 - 100Mbit/sec link.
 220 *         0x0040 - 1000Mbit/sec link.
 221 *         0x0100 - Do not negotiate flow control.
 222 *         0x0200 - Enable RX flow control Y
 223 *         0x0400 - Enable TX flow control Y (Tigon II NICs only).
 224 *                Default value is 0x0270, ie. enable link+flow
 225 *                control negotiation. Negotiating the highest
 226 *                possible link speed with RX flow control enabled.
 227 *
 228 *                When disabling link speed negotiation, only one link
 229 *                speed is allowed to be specified!
 230 *
 231 *  tx_coal_tick=<val> - number of coalescing clock ticks (us) allowed
 232 *                to wait for more packets to arive before
 233 *                interrupting the host, from the time the first
 234 *                packet arrives.
 235 *
 236 *  rx_coal_tick=<val> - number of coalescing clock ticks (us) allowed
 237 *                to wait for more packets to arive in the transmit ring,
 238 *                before interrupting the host, after transmitting the
 239 *                first packet in the ring.
 240 *
 241 *  max_tx_desc=<val> - maximum number of transmit descriptors
 242 *                (packets) transmitted before interrupting the host.
 243 *
 244 *  max_rx_desc=<val> - maximum number of receive descriptors
 245 *                (packets) received before interrupting the host.
 246 *
 247 *  tx_ratio=<val> - 7 bit value (0 - 63) specifying the split in 64th
 248 *                increments of the NIC's on board memory to be used for
 249 *                transmit and receive buffers. For the 1MB NIC app. 800KB
 250 *                is available, on the 1/2MB NIC app. 300KB is available.
 251 *                68KB will always be available as a minimum for both
 252 *                directions. The default value is a 50/50 split.
 253 *  dis_pci_mem_inval=<val> - disable PCI memory write and invalidate
 254 *                operations, default (1) is to always disable this as
 255 *                that is what Alteon does on NT. I have not been able
 256 *                to measure any real performance differences with
 257 *                this on my systems. Set <val>=0 if you want to
 258 *                enable these operations.
 259 *
 260 * If you use more than one NIC, specify the parameters for the
 261 * individual NICs with a comma, ie. trace=0,0x00001fff,0 you want to
 262 * run tracing on NIC #2 but not on NIC #1 and #3.
 263 *
 264 * TODO:
 265 *
 266 * - Proper multicast support.
 267 * - NIC dump support.
 268 * - More tuning parameters.
 269 *
 270 * The mini ring is not used under Linux and I am not sure it makes sense
 271 * to actually use it.
 272 *
 273 * New interrupt handler strategy:
 274 *
 275 * The old interrupt handler worked using the traditional method of
 276 * replacing an skbuff with a new one when a packet arrives. However
 277 * the rx rings do not need to contain a static number of buffer
 278 * descriptors, thus it makes sense to move the memory allocation out
 279 * of the main interrupt handler and do it in a bottom half handler
 280 * and only allocate new buffers when the number of buffers in the
 281 * ring is below a certain threshold. In order to avoid starving the
 282 * NIC under heavy load it is however necessary to force allocation
 283 * when hitting a minimum threshold. The strategy for alloction is as
 284 * follows:
 285 *
 286 *     RX_LOW_BUF_THRES    - allocate buffers in the bottom half
 287 *     RX_PANIC_LOW_THRES  - we are very low on buffers, allocate
 288 *                           the buffers in the interrupt handler
 289 *     RX_RING_THRES       - maximum number of buffers in the rx ring
 290 *     RX_MINI_THRES       - maximum number of buffers in the mini ring
 291 *     RX_JUMBO_THRES      - maximum number of buffers in the jumbo ring
 292 *
 293 * One advantagous side effect of this allocation approach is that the
 294 * entire rx processing can be done without holding any spin lock
 295 * since the rx rings and registers are totally independent of the tx
 296 * ring and its registers.  This of course includes the kmalloc's of
 297 * new skb's. Thus start_xmit can run in parallel with rx processing
 298 * and the memory allocation on SMP systems.
 299 *
 300 * Note that running the skb reallocation in a bottom half opens up
 301 * another can of races which needs to be handled properly. In
 302 * particular it can happen that the interrupt handler tries to run
 303 * the reallocation while the bottom half is either running on another
 304 * CPU or was interrupted on the same CPU. To get around this the
 305 * driver uses bitops to prevent the reallocation routines from being
 306 * reentered.
 307 *
 308 * TX handling can also be done without holding any spin lock, wheee
 309 * this is fun! since tx_ret_csm is only written to by the interrupt
 310 * handler. The case to be aware of is when shutting down the device
 311 * and cleaning up where it is necessary to make sure that
 312 * start_xmit() is not running while this is happening. Well DaveM
 313 * informs me that this case is already protected against ... bye bye
 314 * Mr. Spin Lock, it was nice to know you.
 315 *
 316 * TX interrupts are now partly disabled so the NIC will only generate
 317 * TX interrupts for the number of coal ticks, not for the number of
 318 * TX packets in the queue. This should reduce the number of TX only,
 319 * ie. when no RX processing is done, interrupts seen.
 320 */
 321
 322/*
 323 * Threshold values for RX buffer allocation - the low water marks for
 324 * when to start refilling the rings are set to 75% of the ring
 325 * sizes. It seems to make sense to refill the rings entirely from the
 326 * intrrupt handler once it gets below the panic threshold, that way
 327 * we don't risk that the refilling is moved to another CPU when the
 328 * one running the interrupt handler just got the slab code hot in its
 329 * cache.
 330 */
 331#define RX_RING_SIZE		72
 332#define RX_MINI_SIZE		64
 333#define RX_JUMBO_SIZE		48
 334
 335#define RX_PANIC_STD_THRES	16
 336#define RX_PANIC_STD_REFILL	(3*RX_PANIC_STD_THRES)/2
 337#define RX_LOW_STD_THRES	(3*RX_RING_SIZE)/4
 338#define RX_PANIC_MINI_THRES	12
 339#define RX_PANIC_MINI_REFILL	(3*RX_PANIC_MINI_THRES)/2
 340#define RX_LOW_MINI_THRES	(3*RX_MINI_SIZE)/4
 341#define RX_PANIC_JUMBO_THRES	6
 342#define RX_PANIC_JUMBO_REFILL	(3*RX_PANIC_JUMBO_THRES)/2
 343#define RX_LOW_JUMBO_THRES	(3*RX_JUMBO_SIZE)/4
 344
 345
 346/*
 347 * Size of the mini ring entries, basically these just should be big
 348 * enough to take TCP ACKs
 349 */
 350#define ACE_MINI_SIZE		100
 351
 352#define ACE_MINI_BUFSIZE	ACE_MINI_SIZE
 353#define ACE_STD_BUFSIZE		(ACE_STD_MTU + ETH_HLEN + 4)
 354#define ACE_JUMBO_BUFSIZE	(ACE_JUMBO_MTU + ETH_HLEN + 4)
 355
 356/*
 357 * There seems to be a magic difference in the effect between 995 and 996
 358 * but little difference between 900 and 995 ... no idea why.
 359 *
 360 * There is now a default set of tuning parameters which is set, depending
 361 * on whether or not the user enables Jumbo frames. It's assumed that if
 362 * Jumbo frames are enabled, the user wants optimal tuning for that case.
 363 */
 364#define DEF_TX_COAL		400 /* 996 */
 365#define DEF_TX_MAX_DESC		60  /* was 40 */
 366#define DEF_RX_COAL		120 /* 1000 */
 367#define DEF_RX_MAX_DESC		25
 368#define DEF_TX_RATIO		21 /* 24 */
 369
 370#define DEF_JUMBO_TX_COAL	20
 371#define DEF_JUMBO_TX_MAX_DESC	60
 372#define DEF_JUMBO_RX_COAL	30
 373#define DEF_JUMBO_RX_MAX_DESC	6
 374#define DEF_JUMBO_TX_RATIO	21
 375
 376#if tigon2FwReleaseLocal < 20001118
 377/*
 378 * Standard firmware and early modifications duplicate
 379 * IRQ load without this flag (coal timer is never reset).
 380 * Note that with this flag tx_coal should be less than
 381 * time to xmit full tx ring.
 382 * 400usec is not so bad for tx ring size of 128.
 383 */
 384#define TX_COAL_INTS_ONLY	1	/* worth it */
 385#else
 386/*
 387 * With modified firmware, this is not necessary, but still useful.
 388 */
 389#define TX_COAL_INTS_ONLY	1
 390#endif
 391
 392#define DEF_TRACE		0
 393#define DEF_STAT		(2 * TICKS_PER_SEC)
 394
 395
 396static int link_state[ACE_MAX_MOD_PARMS];
 397static int trace[ACE_MAX_MOD_PARMS];
 398static int tx_coal_tick[ACE_MAX_MOD_PARMS];
 399static int rx_coal_tick[ACE_MAX_MOD_PARMS];
 400static int max_tx_desc[ACE_MAX_MOD_PARMS];
 401static int max_rx_desc[ACE_MAX_MOD_PARMS];
 402static int tx_ratio[ACE_MAX_MOD_PARMS];
 403static int dis_pci_mem_inval[ACE_MAX_MOD_PARMS] = {1, 1, 1, 1, 1, 1, 1, 1};
 404
 405MODULE_AUTHOR("Jes Sorensen <jes@trained-monkey.org>");
 406MODULE_LICENSE("GPL");
 407MODULE_DESCRIPTION("AceNIC/3C985/GA620 Gigabit Ethernet driver");
 408#ifndef CONFIG_ACENIC_OMIT_TIGON_I
 409MODULE_FIRMWARE("acenic/tg1.bin");
 410#endif
 411MODULE_FIRMWARE("acenic/tg2.bin");
 412
 413module_param_array_named(link, link_state, int, NULL, 0);
 414module_param_array(trace, int, NULL, 0);
 415module_param_array(tx_coal_tick, int, NULL, 0);
 416module_param_array(max_tx_desc, int, NULL, 0);
 417module_param_array(rx_coal_tick, int, NULL, 0);
 418module_param_array(max_rx_desc, int, NULL, 0);
 419module_param_array(tx_ratio, int, NULL, 0);
 420MODULE_PARM_DESC(link, "AceNIC/3C985/NetGear link state");
 421MODULE_PARM_DESC(trace, "AceNIC/3C985/NetGear firmware trace level");
 422MODULE_PARM_DESC(tx_coal_tick, "AceNIC/3C985/GA620 max clock ticks to wait from first tx descriptor arrives");
 423MODULE_PARM_DESC(max_tx_desc, "AceNIC/3C985/GA620 max number of transmit descriptors to wait");
 424MODULE_PARM_DESC(rx_coal_tick, "AceNIC/3C985/GA620 max clock ticks to wait from first rx descriptor arrives");
 425MODULE_PARM_DESC(max_rx_desc, "AceNIC/3C985/GA620 max number of receive descriptors to wait");
 426MODULE_PARM_DESC(tx_ratio, "AceNIC/3C985/GA620 ratio of NIC memory used for TX/RX descriptors (range 0-63)");
 427
 428
 429static const char version[] __devinitconst =
 430  "acenic.c: v0.92 08/05/2002  Jes Sorensen, linux-acenic@SunSITE.dk\n"
 431  "                            http://home.cern.ch/~jes/gige/acenic.html\n";
 432
 433static int ace_get_settings(struct net_device *, struct ethtool_cmd *);
 434static int ace_set_settings(struct net_device *, struct ethtool_cmd *);
 435static void ace_get_drvinfo(struct net_device *, struct ethtool_drvinfo *);
 436
 437static const struct ethtool_ops ace_ethtool_ops = {
 438	.get_settings = ace_get_settings,
 439	.set_settings = ace_set_settings,
 440	.get_drvinfo = ace_get_drvinfo,
 441};
 442
 443static void ace_watchdog(struct net_device *dev);
 444
 445static const struct net_device_ops ace_netdev_ops = {
 446	.ndo_open		= ace_open,
 447	.ndo_stop		= ace_close,
 448	.ndo_tx_timeout		= ace_watchdog,
 449	.ndo_get_stats		= ace_get_stats,
 450	.ndo_start_xmit		= ace_start_xmit,
 451	.ndo_set_rx_mode	= ace_set_multicast_list,
 452	.ndo_validate_addr	= eth_validate_addr,
 453	.ndo_set_mac_address	= ace_set_mac_addr,
 454	.ndo_change_mtu		= ace_change_mtu,
 455};
 456
 457static int __devinit acenic_probe_one(struct pci_dev *pdev,
 458		const struct pci_device_id *id)
 459{
 460	struct net_device *dev;
 461	struct ace_private *ap;
 462	static int boards_found;
 463
 464	dev = alloc_etherdev(sizeof(struct ace_private));
 465	if (dev == NULL)
 466		return -ENOMEM;
 467
 468	SET_NETDEV_DEV(dev, &pdev->dev);
 469
 470	ap = netdev_priv(dev);
 471	ap->pdev = pdev;
 472	ap->name = pci_name(pdev);
 473
 474	dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
 475	dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
 476
 477	dev->watchdog_timeo = 5*HZ;
 478
 479	dev->netdev_ops = &ace_netdev_ops;
 480	SET_ETHTOOL_OPS(dev, &ace_ethtool_ops);
 481
 482	/* we only display this string ONCE */
 483	if (!boards_found)
 484		printk(version);
 485
 486	if (pci_enable_device(pdev))
 487		goto fail_free_netdev;
 488
 489	/*
 490	 * Enable master mode before we start playing with the
 491	 * pci_command word since pci_set_master() will modify
 492	 * it.
 493	 */
 494	pci_set_master(pdev);
 495
 496	pci_read_config_word(pdev, PCI_COMMAND, &ap->pci_command);
 497
 498	/* OpenFirmware on Mac's does not set this - DOH.. */
 499	if (!(ap->pci_command & PCI_COMMAND_MEMORY)) {
 500		printk(KERN_INFO "%s: Enabling PCI Memory Mapped "
 501		       "access - was not enabled by BIOS/Firmware\n",
 502		       ap->name);
 503		ap->pci_command = ap->pci_command | PCI_COMMAND_MEMORY;
 504		pci_write_config_word(ap->pdev, PCI_COMMAND,
 505				      ap->pci_command);
 506		wmb();
 507	}
 508
 509	pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &ap->pci_latency);
 510	if (ap->pci_latency <= 0x40) {
 511		ap->pci_latency = 0x40;
 512		pci_write_config_byte(pdev, PCI_LATENCY_TIMER, ap->pci_latency);
 513	}
 514
 515	/*
 516	 * Remap the regs into kernel space - this is abuse of
 517	 * dev->base_addr since it was means for I/O port
 518	 * addresses but who gives a damn.
 519	 */
 520	dev->base_addr = pci_resource_start(pdev, 0);
 521	ap->regs = ioremap(dev->base_addr, 0x4000);
 522	if (!ap->regs) {
 523		printk(KERN_ERR "%s:  Unable to map I/O register, "
 524		       "AceNIC %i will be disabled.\n",
 525		       ap->name, boards_found);
 526		goto fail_free_netdev;
 527	}
 528
 529	switch(pdev->vendor) {
 530	case PCI_VENDOR_ID_ALTEON:
 531		if (pdev->device == PCI_DEVICE_ID_FARALLON_PN9100T) {
 532			printk(KERN_INFO "%s: Farallon PN9100-T ",
 533			       ap->name);
 534		} else {
 535			printk(KERN_INFO "%s: Alteon AceNIC ",
 536			       ap->name);
 537		}
 538		break;
 539	case PCI_VENDOR_ID_3COM:
 540		printk(KERN_INFO "%s: 3Com 3C985 ", ap->name);
 541		break;
 542	case PCI_VENDOR_ID_NETGEAR:
 543		printk(KERN_INFO "%s: NetGear GA620 ", ap->name);
 544		break;
 545	case PCI_VENDOR_ID_DEC:
 546		if (pdev->device == PCI_DEVICE_ID_FARALLON_PN9000SX) {
 547			printk(KERN_INFO "%s: Farallon PN9000-SX ",
 548			       ap->name);
 549			break;
 550		}
 551	case PCI_VENDOR_ID_SGI:
 552		printk(KERN_INFO "%s: SGI AceNIC ", ap->name);
 553		break;
 554	default:
 555		printk(KERN_INFO "%s: Unknown AceNIC ", ap->name);
 556		break;
 557	}
 558
 559	printk("Gigabit Ethernet at 0x%08lx, ", dev->base_addr);
 560	printk("irq %d\n", pdev->irq);
 561
 562#ifdef CONFIG_ACENIC_OMIT_TIGON_I
 563	if ((readl(&ap->regs->HostCtrl) >> 28) == 4) {
 564		printk(KERN_ERR "%s: Driver compiled without Tigon I"
 565		       " support - NIC disabled\n", dev->name);
 566		goto fail_uninit;
 567	}
 568#endif
 569
 570	if (ace_allocate_descriptors(dev))
 571		goto fail_free_netdev;
 572
 573#ifdef MODULE
 574	if (boards_found >= ACE_MAX_MOD_PARMS)
 575		ap->board_idx = BOARD_IDX_OVERFLOW;
 576	else
 577		ap->board_idx = boards_found;
 578#else
 579	ap->board_idx = BOARD_IDX_STATIC;
 580#endif
 581
 582	if (ace_init(dev))
 583		goto fail_free_netdev;
 584
 585	if (register_netdev(dev)) {
 586		printk(KERN_ERR "acenic: device registration failed\n");
 587		goto fail_uninit;
 588	}
 589	ap->name = dev->name;
 590
 591	if (ap->pci_using_dac)
 592		dev->features |= NETIF_F_HIGHDMA;
 593
 594	pci_set_drvdata(pdev, dev);
 595
 596	boards_found++;
 597	return 0;
 598
 599 fail_uninit:
 600	ace_init_cleanup(dev);
 601 fail_free_netdev:
 602	free_netdev(dev);
 603	return -ENODEV;
 604}
 605
 606static void __devexit acenic_remove_one(struct pci_dev *pdev)
 607{
 608	struct net_device *dev = pci_get_drvdata(pdev);
 609	struct ace_private *ap = netdev_priv(dev);
 610	struct ace_regs __iomem *regs = ap->regs;
 611	short i;
 612
 613	unregister_netdev(dev);
 614
 615	writel(readl(&regs->CpuCtrl) | CPU_HALT, &regs->CpuCtrl);
 616	if (ap->version >= 2)
 617		writel(readl(&regs->CpuBCtrl) | CPU_HALT, &regs->CpuBCtrl);
 618
 619	/*
 620	 * This clears any pending interrupts
 621	 */
 622	writel(1, &regs->Mb0Lo);
 623	readl(&regs->CpuCtrl);	/* flush */
 624
 625	/*
 626	 * Make sure no other CPUs are processing interrupts
 627	 * on the card before the buffers are being released.
 628	 * Otherwise one might experience some `interesting'
 629	 * effects.
 630	 *
 631	 * Then release the RX buffers - jumbo buffers were
 632	 * already released in ace_close().
 633	 */
 634	ace_sync_irq(dev->irq);
 635
 636	for (i = 0; i < RX_STD_RING_ENTRIES; i++) {
 637		struct sk_buff *skb = ap->skb->rx_std_skbuff[i].skb;
 638
 639		if (skb) {
 640			struct ring_info *ringp;
 641			dma_addr_t mapping;
 642
 643			ringp = &ap->skb->rx_std_skbuff[i];
 644			mapping = dma_unmap_addr(ringp, mapping);
 645			pci_unmap_page(ap->pdev, mapping,
 646				       ACE_STD_BUFSIZE,
 647				       PCI_DMA_FROMDEVICE);
 648
 649			ap->rx_std_ring[i].size = 0;
 650			ap->skb->rx_std_skbuff[i].skb = NULL;
 651			dev_kfree_skb(skb);
 652		}
 653	}
 654
 655	if (ap->version >= 2) {
 656		for (i = 0; i < RX_MINI_RING_ENTRIES; i++) {
 657			struct sk_buff *skb = ap->skb->rx_mini_skbuff[i].skb;
 658
 659			if (skb) {
 660				struct ring_info *ringp;
 661				dma_addr_t mapping;
 662
 663				ringp = &ap->skb->rx_mini_skbuff[i];
 664				mapping = dma_unmap_addr(ringp,mapping);
 665				pci_unmap_page(ap->pdev, mapping,
 666					       ACE_MINI_BUFSIZE,
 667					       PCI_DMA_FROMDEVICE);
 668
 669				ap->rx_mini_ring[i].size = 0;
 670				ap->skb->rx_mini_skbuff[i].skb = NULL;
 671				dev_kfree_skb(skb);
 672			}
 673		}
 674	}
 675
 676	for (i = 0; i < RX_JUMBO_RING_ENTRIES; i++) {
 677		struct sk_buff *skb = ap->skb->rx_jumbo_skbuff[i].skb;
 678		if (skb) {
 679			struct ring_info *ringp;
 680			dma_addr_t mapping;
 681
 682			ringp = &ap->skb->rx_jumbo_skbuff[i];
 683			mapping = dma_unmap_addr(ringp, mapping);
 684			pci_unmap_page(ap->pdev, mapping,
 685				       ACE_JUMBO_BUFSIZE,
 686				       PCI_DMA_FROMDEVICE);
 687
 688			ap->rx_jumbo_ring[i].size = 0;
 689			ap->skb->rx_jumbo_skbuff[i].skb = NULL;
 690			dev_kfree_skb(skb);
 691		}
 692	}
 693
 694	ace_init_cleanup(dev);
 695	free_netdev(dev);
 696}
 697
 698static struct pci_driver acenic_pci_driver = {
 699	.name		= "acenic",
 700	.id_table	= acenic_pci_tbl,
 701	.probe		= acenic_probe_one,
 702	.remove		= __devexit_p(acenic_remove_one),
 703};
 704
 705static int __init acenic_init(void)
 706{
 707	return pci_register_driver(&acenic_pci_driver);
 708}
 709
 710static void __exit acenic_exit(void)
 711{
 712	pci_unregister_driver(&acenic_pci_driver);
 713}
 714
 715module_init(acenic_init);
 716module_exit(acenic_exit);
 717
 718static void ace_free_descriptors(struct net_device *dev)
 719{
 720	struct ace_private *ap = netdev_priv(dev);
 721	int size;
 722
 723	if (ap->rx_std_ring != NULL) {
 724		size = (sizeof(struct rx_desc) *
 725			(RX_STD_RING_ENTRIES +
 726			 RX_JUMBO_RING_ENTRIES +
 727			 RX_MINI_RING_ENTRIES +
 728			 RX_RETURN_RING_ENTRIES));
 729		pci_free_consistent(ap->pdev, size, ap->rx_std_ring,
 730				    ap->rx_ring_base_dma);
 731		ap->rx_std_ring = NULL;
 732		ap->rx_jumbo_ring = NULL;
 733		ap->rx_mini_ring = NULL;
 734		ap->rx_return_ring = NULL;
 735	}
 736	if (ap->evt_ring != NULL) {
 737		size = (sizeof(struct event) * EVT_RING_ENTRIES);
 738		pci_free_consistent(ap->pdev, size, ap->evt_ring,
 739				    ap->evt_ring_dma);
 740		ap->evt_ring = NULL;
 741	}
 742	if (ap->tx_ring != NULL && !ACE_IS_TIGON_I(ap)) {
 743		size = (sizeof(struct tx_desc) * MAX_TX_RING_ENTRIES);
 744		pci_free_consistent(ap->pdev, size, ap->tx_ring,
 745				    ap->tx_ring_dma);
 746	}
 747	ap->tx_ring = NULL;
 748
 749	if (ap->evt_prd != NULL) {
 750		pci_free_consistent(ap->pdev, sizeof(u32),
 751				    (void *)ap->evt_prd, ap->evt_prd_dma);
 752		ap->evt_prd = NULL;
 753	}
 754	if (ap->rx_ret_prd != NULL) {
 755		pci_free_consistent(ap->pdev, sizeof(u32),
 756				    (void *)ap->rx_ret_prd,
 757				    ap->rx_ret_prd_dma);
 758		ap->rx_ret_prd = NULL;
 759	}
 760	if (ap->tx_csm != NULL) {
 761		pci_free_consistent(ap->pdev, sizeof(u32),
 762				    (void *)ap->tx_csm, ap->tx_csm_dma);
 763		ap->tx_csm = NULL;
 764	}
 765}
 766
 767
 768static int ace_allocate_descriptors(struct net_device *dev)
 769{
 770	struct ace_private *ap = netdev_priv(dev);
 771	int size;
 772
 773	size = (sizeof(struct rx_desc) *
 774		(RX_STD_RING_ENTRIES +
 775		 RX_JUMBO_RING_ENTRIES +
 776		 RX_MINI_RING_ENTRIES +
 777		 RX_RETURN_RING_ENTRIES));
 778
 779	ap->rx_std_ring = pci_alloc_consistent(ap->pdev, size,
 780					       &ap->rx_ring_base_dma);
 781	if (ap->rx_std_ring == NULL)
 782		goto fail;
 783
 784	ap->rx_jumbo_ring = ap->rx_std_ring + RX_STD_RING_ENTRIES;
 785	ap->rx_mini_ring = ap->rx_jumbo_ring + RX_JUMBO_RING_ENTRIES;
 786	ap->rx_return_ring = ap->rx_mini_ring + RX_MINI_RING_ENTRIES;
 787
 788	size = (sizeof(struct event) * EVT_RING_ENTRIES);
 789
 790	ap->evt_ring = pci_alloc_consistent(ap->pdev, size, &ap->evt_ring_dma);
 791
 792	if (ap->evt_ring == NULL)
 793		goto fail;
 794
 795	/*
 796	 * Only allocate a host TX ring for the Tigon II, the Tigon I
 797	 * has to use PCI registers for this ;-(
 798	 */
 799	if (!ACE_IS_TIGON_I(ap)) {
 800		size = (sizeof(struct tx_desc) * MAX_TX_RING_ENTRIES);
 801
 802		ap->tx_ring = pci_alloc_consistent(ap->pdev, size,
 803						   &ap->tx_ring_dma);
 804
 805		if (ap->tx_ring == NULL)
 806			goto fail;
 807	}
 808
 809	ap->evt_prd = pci_alloc_consistent(ap->pdev, sizeof(u32),
 810					   &ap->evt_prd_dma);
 811	if (ap->evt_prd == NULL)
 812		goto fail;
 813
 814	ap->rx_ret_prd = pci_alloc_consistent(ap->pdev, sizeof(u32),
 815					      &ap->rx_ret_prd_dma);
 816	if (ap->rx_ret_prd == NULL)
 817		goto fail;
 818
 819	ap->tx_csm = pci_alloc_consistent(ap->pdev, sizeof(u32),
 820					  &ap->tx_csm_dma);
 821	if (ap->tx_csm == NULL)
 822		goto fail;
 823
 824	return 0;
 825
 826fail:
 827	/* Clean up. */
 828	ace_init_cleanup(dev);
 829	return 1;
 830}
 831
 832
 833/*
 834 * Generic cleanup handling data allocated during init. Used when the
 835 * module is unloaded or if an error occurs during initialization
 836 */
 837static void ace_init_cleanup(struct net_device *dev)
 838{
 839	struct ace_private *ap;
 840
 841	ap = netdev_priv(dev);
 842
 843	ace_free_descriptors(dev);
 844
 845	if (ap->info)
 846		pci_free_consistent(ap->pdev, sizeof(struct ace_info),
 847				    ap->info, ap->info_dma);
 848	kfree(ap->skb);
 849	kfree(ap->trace_buf);
 850
 851	if (dev->irq)
 852		free_irq(dev->irq, dev);
 853
 854	iounmap(ap->regs);
 855}
 856
 857
 858/*
 859 * Commands are considered to be slow.
 860 */
 861static inline void ace_issue_cmd(struct ace_regs __iomem *regs, struct cmd *cmd)
 862{
 863	u32 idx;
 864
 865	idx = readl(&regs->CmdPrd);
 866
 867	writel(*(u32 *)(cmd), &regs->CmdRng[idx]);
 868	idx = (idx + 1) % CMD_RING_ENTRIES;
 869
 870	writel(idx, &regs->CmdPrd);
 871}
 872
 873
 874static int __devinit ace_init(struct net_device *dev)
 875{
 876	struct ace_private *ap;
 877	struct ace_regs __iomem *regs;
 878	struct ace_info *info = NULL;
 879	struct pci_dev *pdev;
 880	unsigned long myjif;
 881	u64 tmp_ptr;
 882	u32 tig_ver, mac1, mac2, tmp, pci_state;
 883	int board_idx, ecode = 0;
 884	short i;
 885	unsigned char cache_size;
 886
 887	ap = netdev_priv(dev);
 888	regs = ap->regs;
 889
 890	board_idx = ap->board_idx;
 891
 892	/*
 893	 * aman@sgi.com - its useful to do a NIC reset here to
 894	 * address the `Firmware not running' problem subsequent
 895	 * to any crashes involving the NIC
 896	 */
 897	writel(HW_RESET | (HW_RESET << 24), &regs->HostCtrl);
 898	readl(&regs->HostCtrl);		/* PCI write posting */
 899	udelay(5);
 900
 901	/*
 902	 * Don't access any other registers before this point!
 903	 */
 904#ifdef __BIG_ENDIAN
 905	/*
 906	 * This will most likely need BYTE_SWAP once we switch
 907	 * to using __raw_writel()
 908	 */
 909	writel((WORD_SWAP | CLR_INT | ((WORD_SWAP | CLR_INT) << 24)),
 910	       &regs->HostCtrl);
 911#else
 912	writel((CLR_INT | WORD_SWAP | ((CLR_INT | WORD_SWAP) << 24)),
 913	       &regs->HostCtrl);
 914#endif
 915	readl(&regs->HostCtrl);		/* PCI write posting */
 916
 917	/*
 918	 * Stop the NIC CPU and clear pending interrupts
 919	 */
 920	writel(readl(&regs->CpuCtrl) | CPU_HALT, &regs->CpuCtrl);
 921	readl(&regs->CpuCtrl);		/* PCI write posting */
 922	writel(0, &regs->Mb0Lo);
 923
 924	tig_ver = readl(&regs->HostCtrl) >> 28;
 925
 926	switch(tig_ver){
 927#ifndef CONFIG_ACENIC_OMIT_TIGON_I
 928	case 4:
 929	case 5:
 930		printk(KERN_INFO "  Tigon I  (Rev. %i), Firmware: %i.%i.%i, ",
 931		       tig_ver, ap->firmware_major, ap->firmware_minor,
 932		       ap->firmware_fix);
 933		writel(0, &regs->LocalCtrl);
 934		ap->version = 1;
 935		ap->tx_ring_entries = TIGON_I_TX_RING_ENTRIES;
 936		break;
 937#endif
 938	case 6:
 939		printk(KERN_INFO "  Tigon II (Rev. %i), Firmware: %i.%i.%i, ",
 940		       tig_ver, ap->firmware_major, ap->firmware_minor,
 941		       ap->firmware_fix);
 942		writel(readl(&regs->CpuBCtrl) | CPU_HALT, &regs->CpuBCtrl);
 943		readl(&regs->CpuBCtrl);		/* PCI write posting */
 944		/*
 945		 * The SRAM bank size does _not_ indicate the amount
 946		 * of memory on the card, it controls the _bank_ size!
 947		 * Ie. a 1MB AceNIC will have two banks of 512KB.
 948		 */
 949		writel(SRAM_BANK_512K, &regs->LocalCtrl);
 950		writel(SYNC_SRAM_TIMING, &regs->MiscCfg);
 951		ap->version = 2;
 952		ap->tx_ring_entries = MAX_TX_RING_ENTRIES;
 953		break;
 954	default:
 955		printk(KERN_WARNING "  Unsupported Tigon version detected "
 956		       "(%i)\n", tig_ver);
 957		ecode = -ENODEV;
 958		goto init_error;
 959	}
 960
 961	/*
 962	 * ModeStat _must_ be set after the SRAM settings as this change
 963	 * seems to corrupt the ModeStat and possible other registers.
 964	 * The SRAM settings survive resets and setting it to the same
 965	 * value a second time works as well. This is what caused the
 966	 * `Firmware not running' problem on the Tigon II.
 967	 */
 968#ifdef __BIG_ENDIAN
 969	writel(ACE_BYTE_SWAP_DMA | ACE_WARN | ACE_FATAL | ACE_BYTE_SWAP_BD |
 970	       ACE_WORD_SWAP_BD | ACE_NO_JUMBO_FRAG, &regs->ModeStat);
 971#else
 972	writel(ACE_BYTE_SWAP_DMA | ACE_WARN | ACE_FATAL |
 973	       ACE_WORD_SWAP_BD | ACE_NO_JUMBO_FRAG, &regs->ModeStat);
 974#endif
 975	readl(&regs->ModeStat);		/* PCI write posting */
 976
 977	mac1 = 0;
 978	for(i = 0; i < 4; i++) {
 979		int t;
 980
 981		mac1 = mac1 << 8;
 982		t = read_eeprom_byte(dev, 0x8c+i);
 983		if (t < 0) {
 984			ecode = -EIO;
 985			goto init_error;
 986		} else
 987			mac1 |= (t & 0xff);
 988	}
 989	mac2 = 0;
 990	for(i = 4; i < 8; i++) {
 991		int t;
 992
 993		mac2 = mac2 << 8;
 994		t = read_eeprom_byte(dev, 0x8c+i);
 995		if (t < 0) {
 996			ecode = -EIO;
 997			goto init_error;
 998		} else
 999			mac2 |= (t & 0xff);
1000	}
1001
1002	writel(mac1, &regs->MacAddrHi);
1003	writel(mac2, &regs->MacAddrLo);
1004
1005	dev->dev_addr[0] = (mac1 >> 8) & 0xff;
1006	dev->dev_addr[1] = mac1 & 0xff;
1007	dev->dev_addr[2] = (mac2 >> 24) & 0xff;
1008	dev->dev_addr[3] = (mac2 >> 16) & 0xff;
1009	dev->dev_addr[4] = (mac2 >> 8) & 0xff;
1010	dev->dev_addr[5] = mac2 & 0xff;
1011
1012	printk("MAC: %pM\n", dev->dev_addr);
1013
1014	/*
1015	 * Looks like this is necessary to deal with on all architectures,
1016	 * even this %$#%$# N440BX Intel based thing doesn't get it right.
1017	 * Ie. having two NICs in the machine, one will have the cache
1018	 * line set at boot time, the other will not.
1019	 */
1020	pdev = ap->pdev;
1021	pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE, &cache_size);
1022	cache_size <<= 2;
1023	if (cache_size != SMP_CACHE_BYTES) {
1024		printk(KERN_INFO "  PCI cache line size set incorrectly "
1025		       "(%i bytes) by BIOS/FW, ", cache_size);
1026		if (cache_size > SMP_CACHE_BYTES)
1027			printk("expecting %i\n", SMP_CACHE_BYTES);
1028		else {
1029			printk("correcting to %i\n", SMP_CACHE_BYTES);
1030			pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE,
1031					      SMP_CACHE_BYTES >> 2);
1032		}
1033	}
1034
1035	pci_state = readl(&regs->PciState);
1036	printk(KERN_INFO "  PCI bus width: %i bits, speed: %iMHz, "
1037	       "latency: %i clks\n",
1038	       	(pci_state & PCI_32BIT) ? 32 : 64,
1039		(pci_state & PCI_66MHZ) ? 66 : 33,
1040		ap->pci_latency);
1041
1042	/*
1043	 * Set the max DMA transfer size. Seems that for most systems
1044	 * the performance is better when no MAX parameter is
1045	 * set. However for systems enabling PCI write and invalidate,
1046	 * DMA writes must be set to the L1 cache line size to get
1047	 * optimal performance.
1048	 *
1049	 * The default is now to turn the PCI write and invalidate off
1050	 * - that is what Alteon does for NT.
1051	 */
1052	tmp = READ_CMD_MEM | WRITE_CMD_MEM;
1053	if (ap->version >= 2) {
1054		tmp |= (MEM_READ_MULTIPLE | (pci_state & PCI_66MHZ));
1055		/*
1056		 * Tuning parameters only supported for 8 cards
1057		 */
1058		if (board_idx == BOARD_IDX_OVERFLOW ||
1059		    dis_pci_mem_inval[board_idx]) {
1060			if (ap->pci_command & PCI_COMMAND_INVALIDATE) {
1061				ap->pci_command &= ~PCI_COMMAND_INVALIDATE;
1062				pci_write_config_word(pdev, PCI_COMMAND,
1063						      ap->pci_command);
1064				printk(KERN_INFO "  Disabling PCI memory "
1065				       "write and invalidate\n");
1066			}
1067		} else if (ap->pci_command & PCI_COMMAND_INVALIDATE) {
1068			printk(KERN_INFO "  PCI memory write & invalidate "
1069			       "enabled by BIOS, enabling counter measures\n");
1070
1071			switch(SMP_CACHE_BYTES) {
1072			case 16:
1073				tmp |= DMA_WRITE_MAX_16;
1074				break;
1075			case 32:
1076				tmp |= DMA_WRITE_MAX_32;
1077				break;
1078			case 64:
1079				tmp |= DMA_WRITE_MAX_64;
1080				break;
1081			case 128:
1082				tmp |= DMA_WRITE_MAX_128;
1083				break;
1084			default:
1085				printk(KERN_INFO "  Cache line size %i not "
1086				       "supported, PCI write and invalidate "
1087				       "disabled\n", SMP_CACHE_BYTES);
1088				ap->pci_command &= ~PCI_COMMAND_INVALIDATE;
1089				pci_write_config_word(pdev, PCI_COMMAND,
1090						      ap->pci_command);
1091			}
1092		}
1093	}
1094
1095#ifdef __sparc__
1096	/*
1097	 * On this platform, we know what the best dma settings
1098	 * are.  We use 64-byte maximum bursts, because if we
1099	 * burst larger than the cache line size (or even cross
1100	 * a 64byte boundary in a single burst) the UltraSparc
1101	 * PCI controller will disconnect at 64-byte multiples.
1102	 *
1103	 * Read-multiple will be properly enabled above, and when
1104	 * set will give the PCI controller proper hints about
1105	 * prefetching.
1106	 */
1107	tmp &= ~DMA_READ_WRITE_MASK;
1108	tmp |= DMA_READ_MAX_64;
1109	tmp |= DMA_WRITE_MAX_64;
1110#endif
1111#ifdef __alpha__
1112	tmp &= ~DMA_READ_WRITE_MASK;
1113	tmp |= DMA_READ_MAX_128;
1114	/*
1115	 * All the docs say MUST NOT. Well, I did.
1116	 * Nothing terrible happens, if we load wrong size.
1117	 * Bit w&i still works better!
1118	 */
1119	tmp |= DMA_WRITE_MAX_128;
1120#endif
1121	writel(tmp, &regs->PciState);
1122
1123#if 0
1124	/*
1125	 * The Host PCI bus controller driver has to set FBB.
1126	 * If all devices on that PCI bus support FBB, then the controller
1127	 * can enable FBB support in the Host PCI Bus controller (or on
1128	 * the PCI-PCI bridge if that applies).
1129	 * -ggg
1130	 */
1131	/*
1132	 * I have received reports from people having problems when this
1133	 * bit is enabled.
1134	 */
1135	if (!(ap->pci_command & PCI_COMMAND_FAST_BACK)) {
1136		printk(KERN_INFO "  Enabling PCI Fast Back to Back\n");
1137		ap->pci_command |= PCI_COMMAND_FAST_BACK;
1138		pci_write_config_word(pdev, PCI_COMMAND, ap->pci_command);
1139	}
1140#endif
1141
1142	/*
1143	 * Configure DMA attributes.
1144	 */
1145	if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
1146		ap->pci_using_dac = 1;
1147	} else if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) {
1148		ap->pci_using_dac = 0;
1149	} else {
1150		ecode = -ENODEV;
1151		goto init_error;
1152	}
1153
1154	/*
1155	 * Initialize the generic info block and the command+event rings
1156	 * and the control blocks for the transmit and receive rings
1157	 * as they need to be setup once and for all.
1158	 */
1159	if (!(info = pci_alloc_consistent(ap->pdev, sizeof(struct ace_info),
1160					  &ap->info_dma))) {
1161		ecode = -EAGAIN;
1162		goto init_error;
1163	}
1164	ap->info = info;
1165
1166	/*
1167	 * Get the memory for the skb rings.
1168	 */
1169	if (!(ap->skb = kmalloc(sizeof(struct ace_skb), GFP_KERNEL))) {
1170		ecode = -EAGAIN;
1171		goto init_error;
1172	}
1173
1174	ecode = request_irq(pdev->irq, ace_interrupt, IRQF_SHARED,
1175			    DRV_NAME, dev);
1176	if (ecode) {
1177		printk(KERN_WARNING "%s: Requested IRQ %d is busy\n",
1178		       DRV_NAME, pdev->irq);
1179		goto init_error;
1180	} else
1181		dev->irq = pdev->irq;
1182
1183#ifdef INDEX_DEBUG
1184	spin_lock_init(&ap->debug_lock);
1185	ap->last_tx = ACE_TX_RING_ENTRIES(ap) - 1;
1186	ap->last_std_rx = 0;
1187	ap->last_mini_rx = 0;
1188#endif
1189
1190	memset(ap->info, 0, sizeof(struct ace_info));
1191	memset(ap->skb, 0, sizeof(struct ace_skb));
1192
1193	ecode = ace_load_firmware(dev);
1194	if (ecode)
1195		goto init_error;
1196
1197	ap->fw_running = 0;
1198
1199	tmp_ptr = ap->info_dma;
1200	writel(tmp_ptr >> 32, &regs->InfoPtrHi);
1201	writel(tmp_ptr & 0xffffffff, &regs->InfoPtrLo);
1202
1203	memset(ap->evt_ring, 0, EVT_RING_ENTRIES * sizeof(struct event));
1204
1205	set_aceaddr(&info->evt_ctrl.rngptr, ap->evt_ring_dma);
1206	info->evt_ctrl.flags = 0;
1207
1208	*(ap->evt_prd) = 0;
1209	wmb();
1210	set_aceaddr(&info->evt_prd_ptr, ap->evt_prd_dma);
1211	writel(0, &regs->EvtCsm);
1212
1213	set_aceaddr(&info->cmd_ctrl.rngptr, 0x100);
1214	info->cmd_ctrl.flags = 0;
1215	info->cmd_ctrl.max_len = 0;
1216
1217	for (i = 0; i < CMD_RING_ENTRIES; i++)
1218		writel(0, &regs->CmdRng[i]);
1219
1220	writel(0, &regs->CmdPrd);
1221	writel(0, &regs->CmdCsm);
1222
1223	tmp_ptr = ap->info_dma;
1224	tmp_ptr += (unsigned long) &(((struct ace_info *)0)->s.stats);
1225	set_aceaddr(&info->stats2_ptr, (dma_addr_t) tmp_ptr);
1226
1227	set_aceaddr(&info->rx_std_ctrl.rngptr, ap->rx_ring_base_dma);
1228	info->rx_std_ctrl.max_len = ACE_STD_BUFSIZE;
1229	info->rx_std_ctrl.flags =
1230	  RCB_FLG_TCP_UDP_SUM | RCB_FLG_NO_PSEUDO_HDR | RCB_FLG_VLAN_ASSIST;
1231
1232	memset(ap->rx_std_ring, 0,
1233	       RX_STD_RING_ENTRIES * sizeof(struct rx_desc));
1234
1235	for (i = 0; i < RX_STD_RING_ENTRIES; i++)
1236		ap->rx_std_ring[i].flags = BD_FLG_TCP_UDP_SUM;
1237
1238	ap->rx_std_skbprd = 0;
1239	atomic_set(&ap->cur_rx_bufs, 0);
1240
1241	set_aceaddr(&info->rx_jumbo_ctrl.rngptr,
1242		    (ap->rx_ring_base_dma +
1243		     (sizeof(struct rx_desc) * RX_STD_RING_ENTRIES)));
1244	info->rx_jumbo_ctrl.max_len = 0;
1245	info->rx_jumbo_ctrl.flags =
1246	  RCB_FLG_TCP_UDP_SUM | RCB_FLG_NO_PSEUDO_HDR | RCB_FLG_VLAN_ASSIST;
1247
1248	memset(ap->rx_jumbo_ring, 0,
1249	       RX_JUMBO_RING_ENTRIES * sizeof(struct rx_desc));
1250
1251	for (i = 0; i < RX_JUMBO_RING_ENTRIES; i++)
1252		ap->rx_jumbo_ring[i].flags = BD_FLG_TCP_UDP_SUM | BD_FLG_JUMBO;
1253
1254	ap->rx_jumbo_skbprd = 0;
1255	atomic_set(&ap->cur_jumbo_bufs, 0);
1256
1257	memset(ap->rx_mini_ring, 0,
1258	       RX_MINI_RING_ENTRIES * sizeof(struct rx_desc));
1259
1260	if (ap->version >= 2) {
1261		set_aceaddr(&info->rx_mini_ctrl.rngptr,
1262			    (ap->rx_ring_base_dma +
1263			     (sizeof(struct rx_desc) *
1264			      (RX_STD_RING_ENTRIES +
1265			       RX_JUMBO_RING_ENTRIES))));
1266		info->rx_mini_ctrl.max_len = ACE_MINI_SIZE;
1267		info->rx_mini_ctrl.flags =
1268		  RCB_FLG_TCP_UDP_SUM|RCB_FLG_NO_PSEUDO_HDR|RCB_FLG_VLAN_ASSIST;
1269
1270		for (i = 0; i < RX_MINI_RING_ENTRIES; i++)
1271			ap->rx_mini_ring[i].flags =
1272				BD_FLG_TCP_UDP_SUM | BD_FLG_MINI;
1273	} else {
1274		set_aceaddr(&info->rx_mini_ctrl.rngptr, 0);
1275		info->rx_mini_ctrl.flags = RCB_FLG_RNG_DISABLE;
1276		info->rx_mini_ctrl.max_len = 0;
1277	}
1278
1279	ap->rx_mini_skbprd = 0;
1280	atomic_set(&ap->cur_mini_bufs, 0);
1281
1282	set_aceaddr(&info->rx_return_ctrl.rngptr,
1283		    (ap->rx_ring_base_dma +
1284		     (sizeof(struct rx_desc) *
1285		      (RX_STD_RING_ENTRIES +
1286		       RX_JUMBO_RING_ENTRIES +
1287		       RX_MINI_RING_ENTRIES))));
1288	info->rx_return_ctrl.flags = 0;
1289	info->rx_return_ctrl.max_len = RX_RETURN_RING_ENTRIES;
1290
1291	memset(ap->rx_return_ring, 0,
1292	       RX_RETURN_RING_ENTRIES * sizeof(struct rx_desc));
1293
1294	set_aceaddr(&info->rx_ret_prd_ptr, ap->rx_ret_prd_dma);
1295	*(ap->rx_ret_prd) = 0;
1296
1297	writel(TX_RING_BASE, &regs->WinBase);
1298
1299	if (ACE_IS_TIGON_I(ap)) {
1300		ap->tx_ring = (__force struct tx_desc *) regs->Window;
1301		for (i = 0; i < (TIGON_I_TX_RING_ENTRIES
1302				 * sizeof(struct tx_desc)) / sizeof(u32); i++)
1303			writel(0, (__force void __iomem *)ap->tx_ring  + i * 4);
1304
1305		set_aceaddr(&info->tx_ctrl.rngptr, TX_RING_BASE);
1306	} else {
1307		memset(ap->tx_ring, 0,
1308		       MAX_TX_RING_ENTRIES * sizeof(struct tx_desc));
1309
1310		set_aceaddr(&info->tx_ctrl.rngptr, ap->tx_ring_dma);
1311	}
1312
1313	info->tx_ctrl.max_len = ACE_TX_RING_ENTRIES(ap);
1314	tmp = RCB_FLG_TCP_UDP_SUM | RCB_FLG_NO_PSEUDO_HDR | RCB_FLG_VLAN_ASSIST;
1315
1316	/*
1317	 * The Tigon I does not like having the TX ring in host memory ;-(
1318	 */
1319	if (!ACE_IS_TIGON_I(ap))
1320		tmp |= RCB_FLG_TX_HOST_RING;
1321#if TX_COAL_INTS_ONLY
1322	tmp |= RCB_FLG_COAL_INT_ONLY;
1323#endif
1324	info->tx_ctrl.flags = tmp;
1325
1326	set_aceaddr(&info->tx_csm_ptr, ap->tx_csm_dma);
1327
1328	/*
1329	 * Potential item for tuning parameter
1330	 */
1331#if 0 /* NO */
1332	writel(DMA_THRESH_16W, &regs->DmaReadCfg);
1333	writel(DMA_THRESH_16W, &regs->DmaWriteCfg);
1334#else
1335	writel(DMA_THRESH_8W, &regs->DmaReadCfg);
1336	writel(DMA_THRESH_8W, &regs->DmaWriteCfg);
1337#endif
1338
1339	writel(0, &regs->MaskInt);
1340	writel(1, &regs->IfIdx);
1341#if 0
1342	/*
1343	 * McKinley boxes do not like us fiddling with AssistState
1344	 * this early
1345	 */
1346	writel(1, &regs->AssistState);
1347#endif
1348
1349	writel(DEF_STAT, &regs->TuneStatTicks);
1350	writel(DEF_TRACE, &regs->TuneTrace);
1351
1352	ace_set_rxtx_parms(dev, 0);
1353
1354	if (board_idx == BOARD_IDX_OVERFLOW) {
1355		printk(KERN_WARNING "%s: more than %i NICs detected, "
1356		       "ignoring module parameters!\n",
1357		       ap->name, ACE_MAX_MOD_PARMS);
1358	} else if (board_idx >= 0) {
1359		if (tx_coal_tick[board_idx])
1360			writel(tx_coal_tick[board_idx],
1361			       &regs->TuneTxCoalTicks);
1362		if (max_tx_desc[board_idx])
1363			writel(max_tx_desc[board_idx], &regs->TuneMaxTxDesc);
1364
1365		if (rx_coal_tick[board_idx])
1366			writel(rx_coal_tick[board_idx],
1367			       &regs->TuneRxCoalTicks);
1368		if (max_rx_desc[board_idx])
1369			writel(max_rx_desc[board_idx], &regs->TuneMaxRxDesc);
1370
1371		if (trace[board_idx])
1372			writel(trace[board_idx], &regs->TuneTrace);
1373
1374		if ((tx_ratio[board_idx] > 0) && (tx_ratio[board_idx] < 64))
1375			writel(tx_ratio[board_idx], &regs->TxBufRat);
1376	}
1377
1378	/*
1379	 * Default link parameters
1380	 */
1381	tmp = LNK_ENABLE | LNK_FULL_DUPLEX | LNK_1000MB | LNK_100MB |
1382		LNK_10MB | LNK_RX_FLOW_CTL_Y | LNK_NEG_FCTL | LNK_NEGOTIATE;
1383	if(ap->version >= 2)
1384		tmp |= LNK_TX_FLOW_CTL_Y;
1385
1386	/*
1387	 * Override link default parameters
1388	 */
1389	if ((board_idx >= 0) && link_state[board_idx]) {
1390		int option = link_state[board_idx];
1391
1392		tmp = LNK_ENABLE;
1393
1394		if (option & 0x01) {
1395			printk(KERN_INFO "%s: Setting half duplex link\n",
1396			       ap->name);
1397			tmp &= ~LNK_FULL_DUPLEX;
1398		}
1399		if (option & 0x02)
1400			tmp &= ~LNK_NEGOTIATE;
1401		if (option & 0x10)
1402			tmp |= LNK_10MB;
1403		if (option & 0x20)
1404			tmp |= LNK_100MB;
1405		if (option & 0x40)
1406			tmp |= LNK_1000MB;
1407		if ((option & 0x70) == 0) {
1408			printk(KERN_WARNING "%s: No media speed specified, "
1409			       "forcing auto negotiation\n", ap->name);
1410			tmp |= LNK_NEGOTIATE | LNK_1000MB |
1411				LNK_100MB | LNK_10MB;
1412		}
1413		if ((option & 0x100) == 0)
1414			tmp |= LNK_NEG_FCTL;
1415		else
1416			printk(KERN_INFO "%s: Disabling flow control "
1417			       "negotiation\n", ap->name);
1418		if (option & 0x200)
1419			tmp |= LNK_RX_FLOW_CTL_Y;
1420		if ((option & 0x400) && (ap->version >= 2)) {
1421			printk(KERN_INFO "%s: Enabling TX flow control\n",
1422			       ap->name);
1423			tmp |= LNK_TX_FLOW_CTL_Y;
1424		}
1425	}
1426
1427	ap->link = tmp;
1428	writel(tmp, &regs->TuneLink);
1429	if (ap->version >= 2)
1430		writel(tmp, &regs->TuneFastLink);
1431
1432	writel(ap->firmware_start, &regs->Pc);
1433
1434	writel(0, &regs->Mb0Lo);
1435
1436	/*
1437	 * Set tx_csm before we start receiving interrupts, otherwise
1438	 * the interrupt handler might think it is supposed to process
1439	 * tx ints before we are up and running, which may cause a null
1440	 * pointer access in the int handler.
1441	 */
1442	ap->cur_rx = 0;
1443	ap->tx_prd = *(ap->tx_csm) = ap->tx_ret_csm = 0;
1444
1445	wmb();
1446	ace_set_txprd(regs, ap, 0);
1447	writel(0, &regs->RxRetCsm);
1448
1449       /*
1450	* Enable DMA engine now.
1451	* If we do this sooner, Mckinley box pukes.
1452	* I assume it's because Tigon II DMA engine wants to check
1453	* *something* even before the CPU is started.
1454	*/
1455       writel(1, &regs->AssistState);  /* enable DMA */
1456
1457	/*
1458	 * Start the NIC CPU
1459	 */
1460	writel(readl(&regs->CpuCtrl) & ~(CPU_HALT|CPU_TRACE), &regs->CpuCtrl);
1461	readl(&regs->CpuCtrl);
1462
1463	/*
1464	 * Wait for the firmware to spin up - max 3 seconds.
1465	 */
1466	myjif = jiffies + 3 * HZ;
1467	while (time_before(jiffies, myjif) && !ap->fw_running)
1468		cpu_relax();
1469
1470	if (!ap->fw_running) {
1471		printk(KERN_ERR "%s: Firmware NOT running!\n", ap->name);
1472
1473		ace_dump_trace(ap);
1474		writel(readl(&regs->CpuCtrl) | CPU_HALT, &regs->CpuCtrl);
1475		readl(&regs->CpuCtrl);
1476
1477		/* aman@sgi.com - account for badly behaving firmware/NIC:
1478		 * - have observed that the NIC may continue to generate
1479		 *   interrupts for some reason; attempt to stop it - halt
1480		 *   second CPU for Tigon II cards, and also clear Mb0
1481		 * - if we're a module, we'll fail to load if this was
1482		 *   the only GbE card in the system => if the kernel does
1483		 *   see an interrupt from the NIC, code to handle it is
1484		 *   gone and OOps! - so free_irq also
1485		 */
1486		if (ap->version >= 2)
1487			writel(readl(&regs->CpuBCtrl) | CPU_HALT,
1488			       &regs->CpuBCtrl);
1489		writel(0, &regs->Mb0Lo);
1490		readl(&regs->Mb0Lo);
1491
1492		ecode = -EBUSY;
1493		goto init_error;
1494	}
1495
1496	/*
1497	 * We load the ring here as there seem to be no way to tell the
1498	 * firmware to wipe the ring without re-initializing it.
1499	 */
1500	if (!test_and_set_bit(0, &ap->std_refill_busy))
1501		ace_load_std_rx_ring(dev, RX_RING_SIZE);
1502	else
1503		printk(KERN_ERR "%s: Someone is busy refilling the RX ring\n",
1504		       ap->name);
1505	if (ap->version >= 2) {
1506		if (!test_and_set_bit(0, &ap->mini_refill_busy))
1507			ace_load_mini_rx_ring(dev, RX_MINI_SIZE);
1508		else
1509			printk(KERN_ERR "%s: Someone is busy refilling "
1510			       "the RX mini ring\n", ap->name);
1511	}
1512	return 0;
1513
1514 init_error:
1515	ace_init_cleanup(dev);
1516	return ecode;
1517}
1518
1519
1520static void ace_set_rxtx_parms(struct net_device *dev, int jumbo)
1521{
1522	struct ace_private *ap = netdev_priv(dev);
1523	struct ace_regs __iomem *regs = ap->regs;
1524	int board_idx = ap->board_idx;
1525
1526	if (board_idx >= 0) {
1527		if (!jumbo) {
1528			if (!tx_coal_tick[board_idx])
1529				writel(DEF_TX_COAL, &regs->TuneTxCoalTicks);
1530			if (!max_tx_desc[board_idx])
1531				writel(DEF_TX_MAX_DESC, &regs->TuneMaxTxDesc);
1532			if (!rx_coal_tick[board_idx])
1533				writel(DEF_RX_COAL, &regs->TuneRxCoalTicks);
1534			if (!max_rx_desc[board_idx])
1535				writel(DEF_RX_MAX_DESC, &regs->TuneMaxRxDesc);
1536			if (!tx_ratio[board_idx])
1537				writel(DEF_TX_RATIO, &regs->TxBufRat);
1538		} else {
1539			if (!tx_coal_tick[board_idx])
1540				writel(DEF_JUMBO_TX_COAL,
1541				       &regs->TuneTxCoalTicks);
1542			if (!max_tx_desc[board_idx])
1543				writel(DEF_JUMBO_TX_MAX_DESC,
1544				       &regs->TuneMaxTxDesc);
1545			if (!rx_coal_tick[board_idx])
1546				writel(DEF_JUMBO_RX_COAL,
1547				       &regs->TuneRxCoalTicks);
1548			if (!max_rx_desc[board_idx])
1549				writel(DEF_JUMBO_RX_MAX_DESC,
1550				       &regs->TuneMaxRxDesc);
1551			if (!tx_ratio[board_idx])
1552				writel(DEF_JUMBO_TX_RATIO, &regs->TxBufRat);
1553		}
1554	}
1555}
1556
1557
1558static void ace_watchdog(struct net_device *data)
1559{
1560	struct net_device *dev = data;
1561	struct ace_private *ap = netdev_priv(dev);
1562	struct ace_regs __iomem *regs = ap->regs;
1563
1564	/*
1565	 * We haven't received a stats update event for more than 2.5
1566	 * seconds and there is data in the transmit queue, thus we
1567	 * assume the card is stuck.
1568	 */
1569	if (*ap->tx_csm != ap->tx_ret_csm) {
1570		printk(KERN_WARNING "%s: Transmitter is stuck, %08x\n",
1571		       dev->name, (unsigned int)readl(&regs->HostCtrl));
1572		/* This can happen due to ieee flow control. */
1573	} else {
1574		printk(KERN_DEBUG "%s: BUG... transmitter died. Kicking it.\n",
1575		       dev->name);
1576#if 0
1577		netif_wake_queue(dev);
1578#endif
1579	}
1580}
1581
1582
1583static void ace_tasklet(unsigned long arg)
1584{
1585	struct net_device *dev = (struct net_device *) arg;
1586	struct ace_private *ap = netdev_priv(dev);
1587	int cur_size;
1588
1589	cur_size = atomic_read(&ap->cur_rx_bufs);
1590	if ((cur_size < RX_LOW_STD_THRES) &&
1591	    !test_and_set_bit(0, &ap->std_refill_busy)) {
1592#ifdef DEBUG
1593		printk("refilling buffers (current %i)\n", cur_size);
1594#endif
1595		ace_load_std_rx_ring(dev, RX_RING_SIZE - cur_size);
1596	}
1597
1598	if (ap->version >= 2) {
1599		cur_size = atomic_read(&ap->cur_mini_bufs);
1600		if ((cur_size < RX_LOW_MINI_THRES) &&
1601		    !test_and_set_bit(0, &ap->mini_refill_busy)) {
1602#ifdef DEBUG
1603			printk("refilling mini buffers (current %i)\n",
1604			       cur_size);
1605#endif
1606			ace_load_mini_rx_ring(dev, RX_MINI_SIZE - cur_size);
1607		}
1608	}
1609
1610	cur_size = atomic_read(&ap->cur_jumbo_bufs);
1611	if (ap->jumbo && (cur_size < RX_LOW_JUMBO_THRES) &&
1612	    !test_and_set_bit(0, &ap->jumbo_refill_busy)) {
1613#ifdef DEBUG
1614		printk("refilling jumbo buffers (current %i)\n", cur_size);
1615#endif
1616		ace_load_jumbo_rx_ring(dev, RX_JUMBO_SIZE - cur_size);
1617	}
1618	ap->tasklet_pending = 0;
1619}
1620
1621
1622/*
1623 * Copy the contents of the NIC's trace buffer to kernel memory.
1624 */
1625static void ace_dump_trace(struct ace_private *ap)
1626{
1627#if 0
1628	if (!ap->trace_buf)
1629		if (!(ap->trace_buf = kmalloc(ACE_TRACE_SIZE, GFP_KERNEL)))
1630		    return;
1631#endif
1632}
1633
1634
1635/*
1636 * Load the standard rx ring.
1637 *
1638 * Loading rings is safe without holding the spin lock since this is
1639 * done only before the device is enabled, thus no interrupts are
1640 * generated and by the interrupt handler/tasklet handler.
1641 */
1642static void ace_load_std_rx_ring(struct net_device *dev, int nr_bufs)
1643{
1644	struct ace_private *ap = netdev_priv(dev);
1645	struct ace_regs __iomem *regs = ap->regs;
1646	short i, idx;
1647
1648
1649	prefetchw(&ap->cur_rx_bufs);
1650
1651	idx = ap->rx_std_skbprd;
1652
1653	for (i = 0; i < nr_bufs; i++) {
1654		struct sk_buff *skb;
1655		struct rx_desc *rd;
1656		dma_addr_t mapping;
1657
1658		skb = netdev_alloc_skb_ip_align(dev, ACE_STD_BUFSIZE);
1659		if (!skb)
1660			break;
1661
1662		mapping = pci_map_page(ap->pdev, virt_to_page(skb->data),
1663				       offset_in_page(skb->data),
1664				       ACE_STD_BUFSIZE,
1665				       PCI_DMA_FROMDEVICE);
1666		ap->skb->rx_std_skbuff[idx].skb = skb;
1667		dma_unmap_addr_set(&ap->skb->rx_std_skbuff[idx],
1668				   mapping, mapping);
1669
1670		rd = &ap->rx_std_ring[idx];
1671		set_aceaddr(&rd->addr, mapping);
1672		rd->size = ACE_STD_BUFSIZE;
1673		rd->idx = idx;
1674		idx = (idx + 1) % RX_STD_RING_ENTRIES;
1675	}
1676
1677	if (!i)
1678		goto error_out;
1679
1680	atomic_add(i, &ap->cur_rx_bufs);
1681	ap->rx_std_skbprd = idx;
1682
1683	if (ACE_IS_TIGON_I(ap)) {
1684		struct cmd cmd;
1685		cmd.evt = C_SET_RX_PRD_IDX;
1686		cmd.code = 0;
1687		cmd.idx = ap->rx_std_skbprd;
1688		ace_issue_cmd(regs, &cmd);
1689	} else {
1690		writel(idx, &regs->RxStdPrd);
1691		wmb();
1692	}
1693
1694 out:
1695	clear_bit(0, &ap->std_refill_busy);
1696	return;
1697
1698 error_out:
1699	printk(KERN_INFO "Out of memory when allocating "
1700	       "standard receive buffers\n");
1701	goto out;
1702}
1703
1704
1705static void ace_load_mini_rx_ring(struct net_device *dev, int nr_bufs)
1706{
1707	struct ace_private *ap = netdev_priv(dev);
1708	struct ace_regs __iomem *regs = ap->regs;
1709	short i, idx;
1710
1711	prefetchw(&ap->cur_mini_bufs);
1712
1713	idx = ap->rx_mini_skbprd;
1714	for (i = 0; i < nr_bufs; i++) {
1715		struct sk_buff *skb;
1716		struct rx_desc *rd;
1717		dma_addr_t mapping;
1718
1719		skb = netdev_alloc_skb_ip_align(dev, ACE_MINI_BUFSIZE);
1720		if (!skb)
1721			break;
1722
1723		mapping = pci_map_page(ap->pdev, virt_to_page(skb->data),
1724				       offset_in_page(skb->data),
1725				       ACE_MINI_BUFSIZE,
1726				       PCI_DMA_FROMDEVICE);
1727		ap->skb->rx_mini_skbuff[idx].skb = skb;
1728		dma_unmap_addr_set(&ap->skb->rx_mini_skbuff[idx],
1729				   mapping, mapping);
1730
1731		rd = &ap->rx_mini_ring[idx];
1732		set_aceaddr(&rd->addr, mapping);
1733		rd->size = ACE_MINI_BUFSIZE;
1734		rd->idx = idx;
1735		idx = (idx + 1) % RX_MINI_RING_ENTRIES;
1736	}
1737
1738	if (!i)
1739		goto error_out;
1740
1741	atomic_add(i, &ap->cur_mini_bufs);
1742
1743	ap->rx_mini_skbprd = idx;
1744
1745	writel(idx, &regs->RxMiniPrd);
1746	wmb();
1747
1748 out:
1749	clear_bit(0, &ap->mini_refill_busy);
1750	return;
1751 error_out:
1752	printk(KERN_INFO "Out of memory when allocating "
1753	       "mini receive buffers\n");
1754	goto out;
1755}
1756
1757
1758/*
1759 * Load the jumbo rx ring, this may happen at any time if the MTU
1760 * is changed to a value > 1500.
1761 */
1762static void ace_load_jumbo_rx_ring(struct net_device *dev, int nr_bufs)
1763{
1764	struct ace_private *ap = netdev_priv(dev);
1765	struct ace_regs __iomem *regs = ap->regs;
1766	short i, idx;
1767
1768	idx = ap->rx_jumbo_skbprd;
1769
1770	for (i = 0; i < nr_bufs; i++) {
1771		struct sk_buff *skb;
1772		struct rx_desc *rd;
1773		dma_addr_t mapping;
1774
1775		skb = netdev_alloc_skb_ip_align(dev, ACE_JUMBO_BUFSIZE);
1776		if (!skb)
1777			break;
1778
1779		mapping = pci_map_page(ap->pdev, virt_to_page(skb->data),
1780				       offset_in_page(skb->data),
1781				       ACE_JUMBO_BUFSIZE,
1782				       PCI_DMA_FROMDEVICE);
1783		ap->skb->rx_jumbo_skbuff[idx].skb = skb;
1784		dma_unmap_addr_set(&ap->skb->rx_jumbo_skbuff[idx],
1785				   mapping, mapping);
1786
1787		rd = &ap->rx_jumbo_ring[idx];
1788		set_aceaddr(&rd->addr, mapping);
1789		rd->size = ACE_JUMBO_BUFSIZE;
1790		rd->idx = idx;
1791		idx = (idx + 1) % RX_JUMBO_RING_ENTRIES;
1792	}
1793
1794	if (!i)
1795		goto error_out;
1796
1797	atomic_add(i, &ap->cur_jumbo_bufs);
1798	ap->rx_jumbo_skbprd = idx;
1799
1800	if (ACE_IS_TIGON_I(ap)) {
1801		struct cmd cmd;
1802		cmd.evt = C_SET_RX_JUMBO_PRD_IDX;
1803		cmd.code = 0;
1804		cmd.idx = ap->rx_jumbo_skbprd;
1805		ace_issue_cmd(regs, &cmd);
1806	} else {
1807		writel(idx, &regs->RxJumboPrd);
1808		wmb();
1809	}
1810
1811 out:
1812	clear_bit(0, &ap->jumbo_refill_busy);
1813	return;
1814 error_out:
1815	if (net_ratelimit())
1816		printk(KERN_INFO "Out of memory when allocating "
1817		       "jumbo receive buffers\n");
1818	goto out;
1819}
1820
1821
1822/*
1823 * All events are considered to be slow (RX/TX ints do not generate
1824 * events) and are handled here, outside the main interrupt handler,
1825 * to reduce the size of the handler.
1826 */
1827static u32 ace_handle_event(struct net_device *dev, u32 evtcsm, u32 evtprd)
1828{
1829	struct ace_private *ap;
1830
1831	ap = netdev_priv(dev);
1832
1833	while (evtcsm != evtprd) {
1834		switch (ap->evt_ring[evtcsm].evt) {
1835		case E_FW_RUNNING:
1836			printk(KERN_INFO "%s: Firmware up and running\n",
1837			       ap->name);
1838			ap->fw_running = 1;
1839			wmb();
1840			break;
1841		case E_STATS_UPDATED:
1842			break;
1843		case E_LNK_STATE:
1844		{
1845			u16 code = ap->evt_ring[evtcsm].code;
1846			switch (code) {
1847			case E_C_LINK_UP:
1848			{
1849				u32 state = readl(&ap->regs->GigLnkState);
1850				printk(KERN_WARNING "%s: Optical link UP "
1851				       "(%s Duplex, Flow Control: %s%s)\n",
1852				       ap->name,
1853				       state & LNK_FULL_DUPLEX ? "Full":"Half",
1854				       state & LNK_TX_FLOW_CTL_Y ? "TX " : "",
1855				       state & LNK_RX_FLOW_CTL_Y ? "RX" : "");
1856				break;
1857			}
1858			case E_C_LINK_DOWN:
1859				printk(KERN_WARNING "%s: Optical link DOWN\n",
1860				       ap->name);
1861				break;
1862			case E_C_LINK_10_100:
1863				printk(KERN_WARNING "%s: 10/100BaseT link "
1864				       "UP\n", ap->name);
1865				break;
1866			default:
1867				printk(KERN_ERR "%s: Unknown optical link "
1868				       "state %02x\n", ap->name, code);
1869			}
1870			break;
1871		}
1872		case E_ERROR:
1873			switch(ap->evt_ring[evtcsm].code) {
1874			case E_C_ERR_INVAL_CMD:
1875				printk(KERN_ERR "%s: invalid command error\n",
1876				       ap->name);
1877				break;
1878			case E_C_ERR_UNIMP_CMD:
1879				printk(KERN_ERR "%s: unimplemented command "
1880				       "error\n", ap->name);
1881				break;
1882			case E_C_ERR_BAD_CFG:
1883				printk(KERN_ERR "%s: bad config error\n",
1884				       ap->name);
1885				break;
1886			default:
1887				printk(KERN_ERR "%s: unknown error %02x\n",
1888				       ap->name, ap->evt_ring[evtcsm].code);
1889			}
1890			break;
1891		case E_RESET_JUMBO_RNG:
1892		{
1893			int i;
1894			for (i = 0; i < RX_JUMBO_RING_ENTRIES; i++) {
1895				if (ap->skb->rx_jumbo_skbuff[i].skb) {
1896					ap->rx_jumbo_ring[i].size = 0;
1897					set_aceaddr(&ap->rx_jumbo_ring[i].addr, 0);
1898					dev_kfree_skb(ap->skb->rx_jumbo_skbuff[i].skb);
1899					ap->skb->rx_jumbo_skbuff[i].skb = NULL;
1900				}
1901			}
1902
1903 			if (ACE_IS_TIGON_I(ap)) {
1904 				struct cmd cmd;
1905 				cmd.evt = C_SET_RX_JUMBO_PRD_IDX;
1906 				cmd.code = 0;
1907 				cmd.idx = 0;
1908 				ace_issue_cmd(ap->regs, &cmd);
1909 			} else {
1910 				writel(0, &((ap->regs)->RxJumboPrd));
1911 				wmb();
1912 			}
1913
1914			ap->jumbo = 0;
1915			ap->rx_jumbo_skbprd = 0;
1916			printk(KERN_INFO "%s: Jumbo ring flushed\n",
1917			       ap->name);
1918			clear_bit(0, &ap->jumbo_refill_busy);
1919			break;
1920		}
1921		default:
1922			printk(KERN_ERR "%s: Unhandled event 0x%02x\n",
1923			       ap->name, ap->evt_ring[evtcsm].evt);
1924		}
1925		evtcsm = (evtcsm + 1) % EVT_RING_ENTRIES;
1926	}
1927
1928	return evtcsm;
1929}
1930
1931
1932static void ace_rx_int(struct net_device *dev, u32 rxretprd, u32 rxretcsm)
1933{
1934	struct ace_private *ap = netdev_priv(dev);
1935	u32 idx;
1936	int mini_count = 0, std_count = 0;
1937
1938	idx = rxretcsm;
1939
1940	prefetchw(&ap->cur_rx_bufs);
1941	prefetchw(&ap->cur_mini_bufs);
1942
1943	while (idx != rxretprd) {
1944		struct ring_info *rip;
1945		struct sk_buff *skb;
1946		struct rx_desc *rxdesc, *retdesc;
1947		u32 skbidx;
1948		int bd_flags, desc_type, mapsize;
1949		u16 csum;
1950
1951
1952		/* make sure the rx descriptor isn't read before rxretprd */
1953		if (idx == rxretcsm)
1954			rmb();
1955
1956		retdesc = &ap->rx_return_ring[idx];
1957		skbidx = retdesc->idx;
1958		bd_flags = retdesc->flags;
1959		desc_type = bd_flags & (BD_FLG_JUMBO | BD_FLG_MINI);
1960
1961		switch(desc_type) {
1962			/*
1963			 * Normal frames do not have any flags set
1964			 *
1965			 * Mini and normal frames arrive frequently,
1966			 * so use a local counter to avoid doing
1967			 * atomic operations for each packet arriving.
1968			 */
1969		case 0:
1970			rip = &ap->skb->rx_std_skbuff[skbidx];
1971			mapsize = ACE_STD_BUFSIZE;
1972			rxdesc = &ap->rx_std_ring[skbidx];
1973			std_count++;
1974			break;
1975		case BD_FLG_JUMBO:
1976			rip = &ap->skb->rx_jumbo_skbuff[skbidx];
1977			mapsize = ACE_JUMBO_BUFSIZE;
1978			rxdesc = &ap->rx_jumbo_ring[skbidx];
1979			atomic_dec(&ap->cur_jumbo_bufs);
1980			break;
1981		case BD_FLG_MINI:
1982			rip = &ap->skb->rx_mini_skbuff[skbidx];
1983			mapsize = ACE_MINI_BUFSIZE;
1984			rxdesc = &ap->rx_mini_ring[skbidx];
1985			mini_count++;
1986			break;
1987		default:
1988			printk(KERN_INFO "%s: unknown frame type (0x%02x) "
1989			       "returned by NIC\n", dev->name,
1990			       retdesc->flags);
1991			goto error;
1992		}
1993
1994		skb = rip->skb;
1995		rip->skb = NULL;
1996		pci_unmap_page(ap->pdev,
1997			       dma_unmap_addr(rip, mapping),
1998			       mapsize,
1999			       PCI_DMA_FROMDEVICE);
2000		skb_put(skb, retdesc->size);
2001
2002		/*
2003		 * Fly baby, fly!
2004		 */
2005		csum = retdesc->tcp_udp_csum;
2006
2007		skb->protocol = eth_type_trans(skb, dev);
2008
2009		/*
2010		 * Instead of forcing the poor tigon mips cpu to calculate
2011		 * pseudo hdr checksum, we do this ourselves.
2012		 */
2013		if (bd_flags & BD_FLG_TCP_UDP_SUM) {
2014			skb->csum = htons(csum);
2015			skb->ip_summed = CHECKSUM_COMPLETE;
2016		} else {
2017			skb_checksum_none_assert(skb);
2018		}
2019
2020		/* send it up */
2021		if ((bd_flags & BD_FLG_VLAN_TAG))
2022			__vlan_hwaccel_put_tag(skb, retdesc->vlan);
2023		netif_rx(skb);
2024
2025		dev->stats.rx_packets++;
2026		dev->stats.rx_bytes += retdesc->size;
2027
2028		idx = (idx + 1) % RX_RETURN_RING_ENTRIES;
2029	}
2030
2031	atomic_sub(std_count, &ap->cur_rx_bufs);
2032	if (!ACE_IS_TIGON_I(ap))
2033		atomic_sub(mini_count, &ap->cur_mini_bufs);
2034
2035 out:
2036	/*
2037	 * According to the documentation RxRetCsm is obsolete with
2038	 * the 12.3.x Firmware - my Tigon I NICs seem to disagree!
2039	 */
2040	if (ACE_IS_TIGON_I(ap)) {
2041		writel(idx, &ap->regs->RxRetCsm);
2042	}
2043	ap->cur_rx = idx;
2044
2045	return;
2046 error:
2047	idx = rxretprd;
2048	goto out;
2049}
2050
2051
2052static inline void ace_tx_int(struct net_device *dev,
2053			      u32 txcsm, u32 idx)
2054{
2055	struct ace_private *ap = netdev_priv(dev);
2056
2057	do {
2058		struct sk_buff *skb;
2059		struct tx_ring_info *info;
2060
2061		info = ap->skb->tx_skbuff + idx;
2062		skb = info->skb;
2063
2064		if (dma_unmap_len(info, maplen)) {
2065			pci_unmap_page(ap->pdev, dma_unmap_addr(info, mapping),
2066				       dma_unmap_len(info, maplen),
2067				       PCI_DMA_TODEVICE);
2068			dma_unmap_len_set(info, maplen, 0);
2069		}
2070
2071		if (skb) {
2072			dev->stats.tx_packets++;
2073			dev->stats.tx_bytes += skb->len;
2074			dev_kfree_skb_irq(skb);
2075			info->skb = NULL;
2076		}
2077
2078		idx = (idx + 1) % ACE_TX_RING_ENTRIES(ap);
2079	} while (idx != txcsm);
2080
2081	if (netif_queue_stopped(dev))
2082		netif_wake_queue(dev);
2083
2084	wmb();
2085	ap->tx_ret_csm = txcsm;
2086
2087	/* So... tx_ret_csm is advanced _after_ check for device wakeup.
2088	 *
2089	 * We could try to make it before. In this case we would get
2090	 * the following race condition: hard_start_xmit on other cpu
2091	 * enters after we advanced tx_ret_csm and fills space,
2092	 * which we have just freed, so that we make illegal device wakeup.
2093	 * There is no good way to workaround this (at entry
2094	 * to ace_start_xmit detects this condition and prevents
2095	 * ring corruption, but it is not a good workaround.)
2096	 *
2097	 * When tx_ret_csm is advanced after, we wake up device _only_
2098	 * if we really have some space in ring (though the core doing
2099	 * hard_start_xmit can see full ring for some period and has to
2100	 * synchronize.) Superb.
2101	 * BUT! We get another subtle race condition. hard_start_xmit
2102	 * may think that ring is full between wakeup and advancing
2103	 * tx_ret_csm and will stop device instantly! It is not so bad.
2104	 * We are guaranteed that there is something in ring, so that
2105	 * the next irq will resume transmission. To speedup this we could
2106	 * mark descriptor, which closes ring with BD_FLG_COAL_NOW
2107	 * (see ace_start_xmit).
2108	 *
2109	 * Well, this dilemma exists in all lock-free devices.
2110	 * We, following scheme used in drivers by Donald Becker,
2111	 * select the least dangerous.
2112	 *							--ANK
2113	 */
2114}
2115
2116
2117static irqreturn_t ace_interrupt(int irq, void *dev_id)
2118{
2119	struct net_device *dev = (struct net_device *)dev_id;
2120	struct ace_private *ap = netdev_priv(dev);
2121	struct ace_regs __iomem *regs = ap->regs;
2122	u32 idx;
2123	u32 txcsm, rxretcsm, rxretprd;
2124	u32 evtcsm, evtprd;
2125
2126	/*
2127	 * In case of PCI shared interrupts or spurious interrupts,
2128	 * we want to make sure it is actually our interrupt before
2129	 * spending any time in here.
2130	 */
2131	if (!(readl(&regs->HostCtrl) & IN_INT))
2132		return IRQ_NONE;
2133
2134	/*
2135	 * ACK intr now. Otherwise we will lose updates to rx_ret_prd,
2136	 * which happened _after_ rxretprd = *ap->rx_ret_prd; but before
2137	 * writel(0, &regs->Mb0Lo).
2138	 *
2139	 * "IRQ avoidance" recommended in docs applies to IRQs served
2140	 * threads and it is wrong even for that case.
2141	 */
2142	writel(0, &regs->Mb0Lo);
2143	readl(&regs->Mb0Lo);
2144
2145	/*
2146	 * There is no conflict between transmit handling in
2147	 * start_xmit and receive processing, thus there is no reason
2148	 * to take a spin lock for RX handling. Wait until we start
2149	 * working on the other stuff - hey we don't need a spin lock
2150	 * anymore.
2151	 */
2152	rxretprd = *ap->rx_ret_prd;
2153	rxretcsm = ap->cur_rx;
2154
2155	if (rxretprd != rxretcsm)
2156		ace_rx_int(dev, rxretprd, rxretcsm);
2157
2158	txcsm = *ap->tx_csm;
2159	idx = ap->tx_ret_csm;
2160
2161	if (txcsm != idx) {
2162		/*
2163		 * If each skb takes only one descriptor this check degenerates
2164		 * to identity, because new space has just been opened.
2165		 * But if skbs are fragmented we must check that this index
2166		 * update releases enough of space, otherwise we just
2167		 * wait for device to make more work.
2168		 */
2169		if (!tx_ring_full(ap, txcsm, ap->tx_prd))
2170			ace_tx_int(dev, txcsm, idx);
2171	}
2172
2173	evtcsm = readl(&regs->EvtCsm);
2174	evtprd = *ap->evt_prd;
2175
2176	if (evtcsm != evtprd) {
2177		evtcsm = ace_handle_event(dev, evtcsm, evtprd);
2178		writel(evtcsm, &regs->EvtCsm);
2179	}
2180
2181	/*
2182	 * This has to go last in the interrupt handler and run with
2183	 * the spin lock released ... what lock?
2184	 */
2185	if (netif_running(dev)) {
2186		int cur_size;
2187		int run_tasklet = 0;
2188
2189		cur_size = atomic_read(&ap->cur_rx_bufs);
2190		if (cur_size < RX_LOW_STD_THRES) {
2191			if ((cur_size < RX_PANIC_STD_THRES) &&
2192			    !test_and_set_bit(0, &ap->std_refill_busy)) {
2193#ifdef DEBUG
2194				printk("low on std buffers %i\n", cur_size);
2195#endif
2196				ace_load_std_rx_ring(dev,
2197						     RX_RING_SIZE - cur_size);
2198			} else
2199				run_tasklet = 1;
2200		}
2201
2202		if (!ACE_IS_TIGON_I(ap)) {
2203			cur_size = atomic_read(&ap->cur_mini_bufs);
2204			if (cur_size < RX_LOW_MINI_THRES) {
2205				if ((cur_size < RX_PANIC_MINI_THRES) &&
2206				    !test_and_set_bit(0,
2207						      &ap->mini_refill_busy)) {
2208#ifdef DEBUG
2209					printk("low on mini buffers %i\n",
2210					       cur_size);
2211#endif
2212					ace_load_mini_rx_ring(dev,
2213							      RX_MINI_SIZE - cur_size);
2214				} else
2215					run_tasklet = 1;
2216			}
2217		}
2218
2219		if (ap->jumbo) {
2220			cur_size = atomic_read(&ap->cur_jumbo_bufs);
2221			if (cur_size < RX_LOW_JUMBO_THRES) {
2222				if ((cur_size < RX_PANIC_JUMBO_THRES) &&
2223				    !test_and_set_bit(0,
2224						      &ap->jumbo_refill_busy)){
2225#ifdef DEBUG
2226					printk("low on jumbo buffers %i\n",
2227					       cur_size);
2228#endif
2229					ace_load_jumbo_rx_ring(dev,
2230							       RX_JUMBO_SIZE - cur_size);
2231				} else
2232					run_tasklet = 1;
2233			}
2234		}
2235		if (run_tasklet && !ap->tasklet_pending) {
2236			ap->tasklet_pending = 1;
2237			tasklet_schedule(&ap->ace_tasklet);
2238		}
2239	}
2240
2241	return IRQ_HANDLED;
2242}
2243
2244static int ace_open(struct net_device *dev)
2245{
2246	struct ace_private *ap = netdev_priv(dev);
2247	struct ace_regs __iomem *regs = ap->regs;
2248	struct cmd cmd;
2249
2250	if (!(ap->fw_running)) {
2251		printk(KERN_WARNING "%s: Firmware not running!\n", dev->name);
2252		return -EBUSY;
2253	}
2254
2255	writel(dev->mtu + ETH_HLEN + 4, &regs->IfMtu);
2256
2257	cmd.evt = C_CLEAR_STATS;
2258	cmd.code = 0;
2259	cmd.idx = 0;
2260	ace_issue_cmd(regs, &cmd);
2261
2262	cmd.evt = C_HOST_STATE;
2263	cmd.code = C_C_STACK_UP;
2264	cmd.idx = 0;
2265	ace_issue_cmd(regs, &cmd);
2266
2267	if (ap->jumbo &&
2268	    !test_and_set_bit(0, &ap->jumbo_refill_busy))
2269		ace_load_jumbo_rx_ring(dev, RX_JUMBO_SIZE);
2270
2271	if (dev->flags & IFF_PROMISC) {
2272		cmd.evt = C_SET_PROMISC_MODE;
2273		cmd.code = C_C_PROMISC_ENABLE;
2274		cmd.idx = 0;
2275		ace_issue_cmd(regs, &cmd);
2276
2277		ap->promisc = 1;
2278	}else
2279		ap->promisc = 0;
2280	ap->mcast_all = 0;
2281
2282#if 0
2283	cmd.evt = C_LNK_NEGOTIATION;
2284	cmd.code = 0;
2285	cmd.idx = 0;
2286	ace_issue_cmd(regs, &cmd);
2287#endif
2288
2289	netif_start_queue(dev);
2290
2291	/*
2292	 * Setup the bottom half rx ring refill handler
2293	 */
2294	tasklet_init(&ap->ace_tasklet, ace_tasklet, (unsigned long)dev);
2295	return 0;
2296}
2297
2298
2299static int ace_close(struct net_device *dev)
2300{
2301	struct ace_private *ap = netdev_priv(dev);
2302	struct ace_regs __iomem *regs = ap->regs;
2303	struct cmd cmd;
2304	unsigned long flags;
2305	short i;
2306
2307	/*
2308	 * Without (or before) releasing irq and stopping hardware, this
2309	 * is an absolute non-sense, by the way. It will be reset instantly
2310	 * by the first irq.
2311	 */
2312	netif_stop_queue(dev);
2313
2314
2315	if (ap->promisc) {
2316		cmd.evt = C_SET_PROMISC_MODE;
2317		cmd.code = C_C_PROMISC_DISABLE;
2318		cmd.idx = 0;
2319		ace_issue_cmd(regs, &cmd);
2320		ap->promisc = 0;
2321	}
2322
2323	cmd.evt = C_HOST_STATE;
2324	cmd.code = C_C_STACK_DOWN;
2325	cmd.idx = 0;
2326	ace_issue_cmd(regs, &cmd);
2327
2328	tasklet_kill(&ap->ace_tasklet);
2329
2330	/*
2331	 * Make sure one CPU is not processing packets while
2332	 * buffers are being released by another.
2333	 */
2334
2335	local_irq_save(flags);
2336	ace_mask_irq(dev);
2337
2338	for (i = 0; i < ACE_TX_RING_ENTRIES(ap); i++) {
2339		struct sk_buff *skb;
2340		struct tx_ring_info *info;
2341
2342		info = ap->skb->tx_skbuff + i;
2343		skb = info->skb;
2344
2345		if (dma_unmap_len(info, maplen)) {
2346			if (ACE_IS_TIGON_I(ap)) {
2347				/* NB: TIGON_1 is special, tx_ring is in io space */
2348				struct tx_desc __iomem *tx;
2349				tx = (__force struct tx_desc __iomem *) &ap->tx_ring[i];
2350				writel(0, &tx->addr.addrhi);
2351				writel(0, &tx->addr.addrlo);
2352				writel(0, &tx->flagsize);
2353			} else
2354				memset(ap->tx_ring + i, 0,
2355				       sizeof(struct tx_desc));
2356			pci_unmap_page(ap->pdev, dma_unmap_addr(info, mapping),
2357				       dma_unmap_len(info, maplen),
2358				       PCI_DMA_TODEVICE);
2359			dma_unmap_len_set(info, maplen, 0);
2360		}
2361		if (skb) {
2362			dev_kfree_skb(skb);
2363			info->skb = NULL;
2364		}
2365	}
2366
2367	if (ap->jumbo) {
2368		cmd.evt = C_RESET_JUMBO_RNG;
2369		cmd.code = 0;
2370		cmd.idx = 0;
2371		ace_issue_cmd(regs, &cmd);
2372	}
2373
2374	ace_unmask_irq(dev);
2375	local_irq_restore(flags);
2376
2377	return 0;
2378}
2379
2380
2381static inline dma_addr_t
2382ace_map_tx_skb(struct ace_private *ap, struct sk_buff *skb,
2383	       struct sk_buff *tail, u32 idx)
2384{
2385	dma_addr_t mapping;
2386	struct tx_ring_info *info;
2387
2388	mapping = pci_map_page(ap->pdev, virt_to_page(skb->data),
2389			       offset_in_page(skb->data),
2390			       skb->len, PCI_DMA_TODEVICE);
2391
2392	info = ap->skb->tx_skbuff + idx;
2393	info->skb = tail;
2394	dma_unmap_addr_set(info, mapping, mapping);
2395	dma_unmap_len_set(info, maplen, skb->len);
2396	return mapping;
2397}
2398
2399
2400static inline void
2401ace_load_tx_bd(struct ace_private *ap, struct tx_desc *desc, u64 addr,
2402	       u32 flagsize, u32 vlan_tag)
2403{
2404#if !USE_TX_COAL_NOW
2405	flagsize &= ~BD_FLG_COAL_NOW;
2406#endif
2407
2408	if (ACE_IS_TIGON_I(ap)) {
2409		struct tx_desc __iomem *io = (__force struct tx_desc __iomem *) desc;
2410		writel(addr >> 32, &io->addr.addrhi);
2411		writel(addr & 0xffffffff, &io->addr.addrlo);
2412		writel(flagsize, &io->flagsize);
2413		writel(vlan_tag, &io->vlanres);
2414	} else {
2415		desc->addr.addrhi = addr >> 32;
2416		desc->addr.addrlo = addr;
2417		desc->flagsize = flagsize;
2418		desc->vlanres = vlan_tag;
2419	}
2420}
2421
2422
2423static netdev_tx_t ace_start_xmit(struct sk_buff *skb,
2424				  struct net_device *dev)
2425{
2426	struct ace_private *ap = netdev_priv(dev);
2427	struct ace_regs __iomem *regs = ap->regs;
2428	struct tx_desc *desc;
2429	u32 idx, flagsize;
2430	unsigned long maxjiff = jiffies + 3*HZ;
2431
2432restart:
2433	idx = ap->tx_prd;
2434
2435	if (tx_ring_full(ap, ap->tx_ret_csm, idx))
2436		goto overflow;
2437
2438	if (!skb_shinfo(skb)->nr_frags)	{
2439		dma_addr_t mapping;
2440		u32 vlan_tag = 0;
2441
2442		mapping = ace_map_tx_skb(ap, skb, skb, idx);
2443		flagsize = (skb->len << 16) | (BD_FLG_END);
2444		if (skb->ip_summed == CHECKSUM_PARTIAL)
2445			flagsize |= BD_FLG_TCP_UDP_SUM;
2446		if (vlan_tx_tag_present(skb)) {
2447			flagsize |= BD_FLG_VLAN_TAG;
2448			vlan_tag = vlan_tx_tag_get(skb);
2449		}
2450		desc = ap->tx_ring + idx;
2451		idx = (idx + 1) % ACE_TX_RING_ENTRIES(ap);
2452
2453		/* Look at ace_tx_int for explanations. */
2454		if (tx_ring_full(ap, ap->tx_ret_csm, idx))
2455			flagsize |= BD_FLG_COAL_NOW;
2456
2457		ace_load_tx_bd(ap, desc, mapping, flagsize, vlan_tag);
2458	} else {
2459		dma_addr_t mapping;
2460		u32 vlan_tag = 0;
2461		int i, len = 0;
2462
2463		mapping = ace_map_tx_skb(ap, skb, NULL, idx);
2464		flagsize = (skb_headlen(skb) << 16);
2465		if (skb->ip_summed == CHECKSUM_PARTIAL)
2466			flagsize |= BD_FLG_TCP_UDP_SUM;
2467		if (vlan_tx_tag_present(skb)) {
2468			flagsize |= BD_FLG_VLAN_TAG;
2469			vlan_tag = vlan_tx_tag_get(skb);
2470		}
2471
2472		ace_load_tx_bd(ap, ap->tx_ring + idx, mapping, flagsize, vlan_tag);
2473
2474		idx = (idx + 1) % ACE_TX_RING_ENTRIES(ap);
2475
2476		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2477			const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2478			struct tx_ring_info *info;
2479
2480			len += skb_frag_size(frag);
2481			info = ap->skb->tx_skbuff + idx;
2482			desc = ap->tx_ring + idx;
2483
2484			mapping = skb_frag_dma_map(&ap->pdev->dev, frag, 0,
2485						   skb_frag_size(frag),
2486						   DMA_TO_DEVICE);
2487
2488			flagsize = skb_frag_size(frag) << 16;
2489			if (skb->ip_summed == CHECKSUM_PARTIAL)
2490				flagsize |= BD_FLG_TCP_UDP_SUM;
2491			idx = (idx + 1) % ACE_TX_RING_ENTRIES(ap);
2492
2493			if (i == skb_shinfo(skb)->nr_frags - 1) {
2494				flagsize |= BD_FLG_END;
2495				if (tx_ring_full(ap, ap->tx_ret_csm, idx))
2496					flagsize |= BD_FLG_COAL_NOW;
2497
2498				/*
2499				 * Only the last fragment frees
2500				 * the skb!
2501				 */
2502				info->skb = skb;
2503			} else {
2504				info->skb = NULL;
2505			}
2506			dma_unmap_addr_set(info, mapping, mapping);
2507			dma_unmap_len_set(info, maplen, skb_frag_size(frag));
2508			ace_load_tx_bd(ap, desc, mapping, flagsize, vlan_tag);
2509		}
2510	}
2511
2512 	wmb();
2513 	ap->tx_prd = idx;
2514 	ace_set_txprd(regs, ap, idx);
2515
2516	if (flagsize & BD_FLG_COAL_NOW) {
2517		netif_stop_queue(dev);
2518
2519		/*
2520		 * A TX-descriptor producer (an IRQ) might have gotten
2521		 * between, making the ring free again. Since xmit is
2522		 * serialized, this is the only situation we have to
2523		 * re-test.
2524		 */
2525		if (!tx_ring_full(ap, ap->tx_ret_csm, idx))
2526			netif_wake_queue(dev);
2527	}
2528
2529	return NETDEV_TX_OK;
2530
2531overflow:
2532	/*
2533	 * This race condition is unavoidable with lock-free drivers.
2534	 * We wake up the queue _before_ tx_prd is advanced, so that we can
2535	 * enter hard_start_xmit too early, while tx ring still looks closed.
2536	 * This happens ~1-4 times per 100000 packets, so that we can allow
2537	 * to loop syncing to other CPU. Probably, we need an additional
2538	 * wmb() in ace_tx_intr as well.
2539	 *
2540	 * Note that this race is relieved by reserving one more entry
2541	 * in tx ring than it is necessary (see original non-SG driver).
2542	 * However, with SG we need to reserve 2*MAX_SKB_FRAGS+1, which
2543	 * is already overkill.
2544	 *
2545	 * Alternative is to return with 1 not throttling queue. In this
2546	 * case loop becomes longer, no more useful effects.
2547	 */
2548	if (time_before(jiffies, maxjiff)) {
2549		barrier();
2550		cpu_relax();
2551		goto restart;
2552	}
2553
2554	/* The ring is stuck full. */
2555	printk(KERN_WARNING "%s: Transmit ring stuck full\n", dev->name);
2556	return NETDEV_TX_BUSY;
2557}
2558
2559
2560static int ace_change_mtu(struct net_device *dev, int new_mtu)
2561{
2562	struct ace_private *ap = netdev_priv(dev);
2563	struct ace_regs __iomem *regs = ap->regs;
2564
2565	if (new_mtu > ACE_JUMBO_MTU)
2566		return -EINVAL;
2567
2568	writel(new_mtu + ETH_HLEN + 4, &regs->IfMtu);
2569	dev->mtu = new_mtu;
2570
2571	if (new_mtu > ACE_STD_MTU) {
2572		if (!(ap->jumbo)) {
2573			printk(KERN_INFO "%s: Enabling Jumbo frame "
2574			       "support\n", dev->name);
2575			ap->jumbo = 1;
2576			if (!test_and_set_bit(0, &ap->jumbo_refill_busy))
2577				ace_load_jumbo_rx_ring(dev, RX_JUMBO_SIZE);
2578			ace_set_rxtx_parms(dev, 1);
2579		}
2580	} else {
2581		while (test_and_set_bit(0, &ap->jumbo_refill_busy));
2582		ace_sync_irq(dev->irq);
2583		ace_set_rxtx_parms(dev, 0);
2584		if (ap->jumbo) {
2585			struct cmd cmd;
2586
2587			cmd.evt = C_RESET_JUMBO_RNG;
2588			cmd.code = 0;
2589			cmd.idx = 0;
2590			ace_issue_cmd(regs, &cmd);
2591		}
2592	}
2593
2594	return 0;
2595}
2596
2597static int ace_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
2598{
2599	struct ace_private *ap = netdev_priv(dev);
2600	struct ace_regs __iomem *regs = ap->regs;
2601	u32 link;
2602
2603	memset(ecmd, 0, sizeof(struct ethtool_cmd));
2604	ecmd->supported =
2605		(SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
2606		 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
2607		 SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full |
2608		 SUPPORTED_Autoneg | SUPPORTED_FIBRE);
2609
2610	ecmd->port = PORT_FIBRE;
2611	ecmd->transceiver = XCVR_INTERNAL;
2612
2613	link = readl(&regs->GigLnkState);
2614	if (link & LNK_1000MB)
2615		ethtool_cmd_speed_set(ecmd, SPEED_1000);
2616	else {
2617		link = readl(&regs->FastLnkState);
2618		if (link & LNK_100MB)
2619			ethtool_cmd_speed_set(ecmd, SPEED_100);
2620		else if (link & LNK_10MB)
2621			ethtool_cmd_speed_set(ecmd, SPEED_10);
2622		else
2623			ethtool_cmd_speed_set(ecmd, 0);
2624	}
2625	if (link & LNK_FULL_DUPLEX)
2626		ecmd->duplex = DUPLEX_FULL;
2627	else
2628		ecmd->duplex = DUPLEX_HALF;
2629
2630	if (link & LNK_NEGOTIATE)
2631		ecmd->autoneg = AUTONEG_ENABLE;
2632	else
2633		ecmd->autoneg = AUTONEG_DISABLE;
2634
2635#if 0
2636	/*
2637	 * Current struct ethtool_cmd is insufficient
2638	 */
2639	ecmd->trace = readl(&regs->TuneTrace);
2640
2641	ecmd->txcoal = readl(&regs->TuneTxCoalTicks);
2642	ecmd->rxcoal = readl(&regs->TuneRxCoalTicks);
2643#endif
2644	ecmd->maxtxpkt = readl(&regs->TuneMaxTxDesc);
2645	ecmd->maxrxpkt = readl(&regs->TuneMaxRxDesc);
2646
2647	return 0;
2648}
2649
2650static int ace_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
2651{
2652	struct ace_private *ap = netdev_priv(dev);
2653	struct ace_regs __iomem *regs = ap->regs;
2654	u32 link, speed;
2655
2656	link = readl(&regs->GigLnkState);
2657	if (link & LNK_1000MB)
2658		speed = SPEED_1000;
2659	else {
2660		link = readl(&regs->FastLnkState);
2661		if (link & LNK_100MB)
2662			speed = SPEED_100;
2663		else if (link & LNK_10MB)
2664			speed = SPEED_10;
2665		else
2666			speed = SPEED_100;
2667	}
2668
2669	link = LNK_ENABLE | LNK_1000MB | LNK_100MB | LNK_10MB |
2670		LNK_RX_FLOW_CTL_Y | LNK_NEG_FCTL;
2671	if (!ACE_IS_TIGON_I(ap))
2672		link |= LNK_TX_FLOW_CTL_Y;
2673	if (ecmd->autoneg == AUTONEG_ENABLE)
2674		link |= LNK_NEGOTIATE;
2675	if (ethtool_cmd_speed(ecmd) != speed) {
2676		link &= ~(LNK_1000MB | LNK_100MB | LNK_10MB);
2677		switch (ethtool_cmd_speed(ecmd)) {
2678		case SPEED_1000:
2679			link |= LNK_1000MB;
2680			break;
2681		case SPEED_100:
2682			link |= LNK_100MB;
2683			break;
2684		case SPEED_10:
2685			link |= LNK_10MB;
2686			break;
2687		}
2688	}
2689
2690	if (ecmd->duplex == DUPLEX_FULL)
2691		link |= LNK_FULL_DUPLEX;
2692
2693	if (link != ap->link) {
2694		struct cmd cmd;
2695		printk(KERN_INFO "%s: Renegotiating link state\n",
2696		       dev->name);
2697
2698		ap->link = link;
2699		writel(link, &regs->TuneLink);
2700		if (!ACE_IS_TIGON_I(ap))
2701			writel(link, &regs->TuneFastLink);
2702		wmb();
2703
2704		cmd.evt = C_LNK_NEGOTIATION;
2705		cmd.code = 0;
2706		cmd.idx = 0;
2707		ace_issue_cmd(regs, &cmd);
2708	}
2709	return 0;
2710}
2711
2712static void ace_get_drvinfo(struct net_device *dev,
2713			    struct ethtool_drvinfo *info)
2714{
2715	struct ace_private *ap = netdev_priv(dev);
2716
2717	strlcpy(info->driver, "acenic", sizeof(info->driver));
2718	snprintf(info->version, sizeof(info->version), "%i.%i.%i",
2719		 ap->firmware_major, ap->firmware_minor,
2720		 ap->firmware_fix);
2721
2722	if (ap->pdev)
2723		strlcpy(info->bus_info, pci_name(ap->pdev),
2724			sizeof(info->bus_info));
2725
2726}
2727
2728/*
2729 * Set the hardware MAC address.
2730 */
2731static int ace_set_mac_addr(struct net_device *dev, void *p)
2732{
2733	struct ace_private *ap = netdev_priv(dev);
2734	struct ace_regs __iomem *regs = ap->regs;
2735	struct sockaddr *addr=p;
2736	u8 *da;
2737	struct cmd cmd;
2738
2739	if(netif_running(dev))
2740		return -EBUSY;
2741
2742	memcpy(dev->dev_addr, addr->sa_data,dev->addr_len);
2743
2744	da = (u8 *)dev->dev_addr;
2745
2746	writel(da[0] << 8 | da[1], &regs->MacAddrHi);
2747	writel((da[2] << 24) | (da[3] << 16) | (da[4] << 8) | da[5],
2748	       &regs->MacAddrLo);
2749
2750	cmd.evt = C_SET_MAC_ADDR;
2751	cmd.code = 0;
2752	cmd.idx = 0;
2753	ace_issue_cmd(regs, &cmd);
2754
2755	return 0;
2756}
2757
2758
2759static void ace_set_multicast_list(struct net_device *dev)
2760{
2761	struct ace_private *ap = netdev_priv(dev);
2762	struct ace_regs __iomem *regs = ap->regs;
2763	struct cmd cmd;
2764
2765	if ((dev->flags & IFF_ALLMULTI) && !(ap->mcast_all)) {
2766		cmd.evt = C_SET_MULTICAST_MODE;
2767		cmd.code = C_C_MCAST_ENABLE;
2768		cmd.idx = 0;
2769		ace_issue_cmd(regs, &cmd);
2770		ap->mcast_all = 1;
2771	} else if (ap->mcast_all) {
2772		cmd.evt = C_SET_MULTICAST_MODE;
2773		cmd.code = C_C_MCAST_DISABLE;
2774		cmd.idx = 0;
2775		ace_issue_cmd(regs, &cmd);
2776		ap->mcast_all = 0;
2777	}
2778
2779	if ((dev->flags & IFF_PROMISC) && !(ap->promisc)) {
2780		cmd.evt = C_SET_PROMISC_MODE;
2781		cmd.code = C_C_PROMISC_ENABLE;
2782		cmd.idx = 0;
2783		ace_issue_cmd(regs, &cmd);
2784		ap->promisc = 1;
2785	}else if (!(dev->flags & IFF_PROMISC) && (ap->promisc)) {
2786		cmd.evt = C_SET_PROMISC_MODE;
2787		cmd.code = C_C_PROMISC_DISABLE;
2788		cmd.idx = 0;
2789		ace_issue_cmd(regs, &cmd);
2790		ap->promisc = 0;
2791	}
2792
2793	/*
2794	 * For the time being multicast relies on the upper layers
2795	 * filtering it properly. The Firmware does not allow one to
2796	 * set the entire multicast list at a time and keeping track of
2797	 * it here is going to be messy.
2798	 */
2799	if (!netdev_mc_empty(dev) && !ap->mcast_all) {
2800		cmd.evt = C_SET_MULTICAST_MODE;
2801		cmd.code = C_C_MCAST_ENABLE;
2802		cmd.idx = 0;
2803		ace_issue_cmd(regs, &cmd);
2804	}else if (!ap->mcast_all) {
2805		cmd.evt = C_SET_MULTICAST_MODE;
2806		cmd.code = C_C_MCAST_DISABLE;
2807		cmd.idx = 0;
2808		ace_issue_cmd(regs, &cmd);
2809	}
2810}
2811
2812
2813static struct net_device_stats *ace_get_stats(struct net_device *dev)
2814{
2815	struct ace_private *ap = netdev_priv(dev);
2816	struct ace_mac_stats __iomem *mac_stats =
2817		(struct ace_mac_stats __iomem *)ap->regs->Stats;
2818
2819	dev->stats.rx_missed_errors = readl(&mac_stats->drop_space);
2820	dev->stats.multicast = readl(&mac_stats->kept_mc);
2821	dev->stats.collisions = readl(&mac_stats->coll);
2822
2823	return &dev->stats;
2824}
2825
2826
2827static void __devinit ace_copy(struct ace_regs __iomem *regs, const __be32 *src,
2828			       u32 dest, int size)
2829{
2830	void __iomem *tdest;
2831	short tsize, i;
2832
2833	if (size <= 0)
2834		return;
2835
2836	while (size > 0) {
2837		tsize = min_t(u32, ((~dest & (ACE_WINDOW_SIZE - 1)) + 1),
2838			    min_t(u32, size, ACE_WINDOW_SIZE));
2839		tdest = (void __iomem *) &regs->Window +
2840			(dest & (ACE_WINDOW_SIZE - 1));
2841		writel(dest & ~(ACE_WINDOW_SIZE - 1), &regs->WinBase);
2842		for (i = 0; i < (tsize / 4); i++) {
2843			/* Firmware is big-endian */
2844			writel(be32_to_cpup(src), tdest);
2845			src++;
2846			tdest += 4;
2847			dest += 4;
2848			size -= 4;
2849		}
2850	}
2851}
2852
2853
2854static void __devinit ace_clear(struct ace_regs __iomem *regs, u32 dest, int size)
2855{
2856	void __iomem *tdest;
2857	short tsize = 0, i;
2858
2859	if (size <= 0)
2860		return;
2861
2862	while (size > 0) {
2863		tsize = min_t(u32, ((~dest & (ACE_WINDOW_SIZE - 1)) + 1),
2864				min_t(u32, size, ACE_WINDOW_SIZE));
2865		tdest = (void __iomem *) &regs->Window +
2866			(dest & (ACE_WINDOW_SIZE - 1));
2867		writel(dest & ~(ACE_WINDOW_SIZE - 1), &regs->WinBase);
2868
2869		for (i = 0; i < (tsize / 4); i++) {
2870			writel(0, tdest + i*4);
2871		}
2872
2873		dest += tsize;
2874		size -= tsize;
2875	}
2876}
2877
2878
2879/*
2880 * Download the firmware into the SRAM on the NIC
2881 *
2882 * This operation requires the NIC to be halted and is performed with
2883 * interrupts disabled and with the spinlock hold.
2884 */
2885static int __devinit ace_load_firmware(struct net_device *dev)
2886{
2887	const struct firmware *fw;
2888	const char *fw_name = "acenic/tg2.bin";
2889	struct ace_private *ap = netdev_priv(dev);
2890	struct ace_regs __iomem *regs = ap->regs;
2891	const __be32 *fw_data;
2892	u32 load_addr;
2893	int ret;
2894
2895	if (!(readl(&regs->CpuCtrl) & CPU_HALTED)) {
2896		printk(KERN_ERR "%s: trying to download firmware while the "
2897		       "CPU is running!\n", ap->name);
2898		return -EFAULT;
2899	}
2900
2901	if (ACE_IS_TIGON_I(ap))
2902		fw_name = "acenic/tg1.bin";
2903
2904	ret = request_firmware(&fw, fw_name, &ap->pdev->dev);
2905	if (ret) {
2906		printk(KERN_ERR "%s: Failed to load firmware \"%s\"\n",
2907		       ap->name, fw_name);
2908		return ret;
2909	}
2910
2911	fw_data = (void *)fw->data;
2912
2913	/* Firmware blob starts with version numbers, followed by
2914	   load and start address. Remainder is the blob to be loaded
2915	   contiguously from load address. We don't bother to represent
2916	   the BSS/SBSS sections any more, since we were clearing the
2917	   whole thing anyway. */
2918	ap->firmware_major = fw->data[0];
2919	ap->firmware_minor = fw->data[1];
2920	ap->firmware_fix = fw->data[2];
2921
2922	ap->firmware_start = be32_to_cpu(fw_data[1]);
2923	if (ap->firmware_start < 0x4000 || ap->firmware_start >= 0x80000) {
2924		printk(KERN_ERR "%s: bogus load address %08x in \"%s\"\n",
2925		       ap->name, ap->firmware_start, fw_name);
2926		ret = -EINVAL;
2927		goto out;
2928	}
2929
2930	load_addr = be32_to_cpu(fw_data[2]);
2931	if (load_addr < 0x4000 || load_addr >= 0x80000) {
2932		printk(KERN_ERR "%s: bogus load address %08x in \"%s\"\n",
2933		       ap->name, load_addr, fw_name);
2934		ret = -EINVAL;
2935		goto out;
2936	}
2937
2938	/*
2939	 * Do not try to clear more than 512KiB or we end up seeing
2940	 * funny things on NICs with only 512KiB SRAM
2941	 */
2942	ace_clear(regs, 0x2000, 0x80000-0x2000);
2943	ace_copy(regs, &fw_data[3], load_addr, fw->size-12);
2944 out:
2945	release_firmware(fw);
2946	return ret;
2947}
2948
2949
2950/*
2951 * The eeprom on the AceNIC is an Atmel i2c EEPROM.
2952 *
2953 * Accessing the EEPROM is `interesting' to say the least - don't read
2954 * this code right after dinner.
2955 *
2956 * This is all about black magic and bit-banging the device .... I
2957 * wonder in what hospital they have put the guy who designed the i2c
2958 * specs.
2959 *
2960 * Oh yes, this is only the beginning!
2961 *
2962 * Thanks to Stevarino Webinski for helping tracking down the bugs in the
2963 * code i2c readout code by beta testing all my hacks.
2964 */
2965static void __devinit eeprom_start(struct ace_regs __iomem *regs)
2966{
2967	u32 local;
2968
2969	readl(&regs->LocalCtrl);
2970	udelay(ACE_SHORT_DELAY);
2971	local = readl(&regs->LocalCtrl);
2972	local |= EEPROM_DATA_OUT | EEPROM_WRITE_ENABLE;
2973	writel(local, &regs->LocalCtrl);
2974	readl(&regs->LocalCtrl);
2975	mb();
2976	udelay(ACE_SHORT_DELAY);
2977	local |= EEPROM_CLK_OUT;
2978	writel(local, &regs->LocalCtrl);
2979	readl(&regs->LocalCtrl);
2980	mb();
2981	udelay(ACE_SHORT_DELAY);
2982	local &= ~EEPROM_DATA_OUT;
2983	writel(local, &regs->LocalCtrl);
2984	readl(&regs->LocalCtrl);
2985	mb();
2986	udelay(ACE_SHORT_DELAY);
2987	local &= ~EEPROM_CLK_OUT;
2988	writel(local, &regs->LocalCtrl);
2989	readl(&regs->LocalCtrl);
2990	mb();
2991}
2992
2993
2994static void __devinit eeprom_prep(struct ace_regs __iomem *regs, u8 magic)
2995{
2996	short i;
2997	u32 local;
2998
2999	udelay(ACE_SHORT_DELAY);
3000	local = readl(&regs->LocalCtrl);
3001	local &= ~EEPROM_DATA_OUT;
3002	local |= EEPROM_WRITE_ENABLE;
3003	writel(local, &regs->LocalCtrl);
3004	readl(&regs->LocalCtrl);
3005	mb();
3006
3007	for (i = 0; i < 8; i++, magic <<= 1) {
3008		udelay(ACE_SHORT_DELAY);
3009		if (magic & 0x80)
3010			local |= EEPROM_DATA_OUT;
3011		else
3012			local &= ~EEPROM_DATA_OUT;
3013		writel(local, &regs->LocalCtrl);
3014		readl(&regs->LocalCtrl);
3015		mb();
3016
3017		udelay(ACE_SHORT_DELAY);
3018		local |= EEPROM_CLK_OUT;
3019		writel(local, &regs->LocalCtrl);
3020		readl(&regs->LocalCtrl);
3021		mb();
3022		udelay(ACE_SHORT_DELAY);
3023		local &= ~(EEPROM_CLK_OUT | EEPROM_DATA_OUT);
3024		writel(local, &regs->LocalCtrl);
3025		readl(&regs->LocalCtrl);
3026		mb();
3027	}
3028}
3029
3030
3031static int __devinit eeprom_check_ack(struct ace_regs __iomem *regs)
3032{
3033	int state;
3034	u32 local;
3035
3036	local = readl(&regs->LocalCtrl);
3037	local &= ~EEPROM_WRITE_ENABLE;
3038	writel(local, &regs->LocalCtrl);
3039	readl(&regs->LocalCtrl);
3040	mb();
3041	udelay(ACE_LONG_DELAY);
3042	local |= EEPROM_CLK_OUT;
3043	writel(local, &regs->LocalCtrl);
3044	readl(&regs->LocalCtrl);
3045	mb();
3046	udelay(ACE_SHORT_DELAY);
3047	/* sample data in middle of high clk */
3048	state = (readl(&regs->LocalCtrl) & EEPROM_DATA_IN) != 0;
3049	udelay(ACE_SHORT_DELAY);
3050	mb();
3051	writel(readl(&regs->LocalCtrl) & ~EEPROM_CLK_OUT, &regs->LocalCtrl);
3052	readl(&regs->LocalCtrl);
3053	mb();
3054
3055	return state;
3056}
3057
3058
3059static void __devinit eeprom_stop(struct ace_regs __iomem *regs)
3060{
3061	u32 local;
3062
3063	udelay(ACE_SHORT_DELAY);
3064	local = readl(&regs->LocalCtrl);
3065	local |= EEPROM_WRITE_ENABLE;
3066	writel(local, &regs->LocalCtrl);
3067	readl(&regs->LocalCtrl);
3068	mb();
3069	udelay(ACE_SHORT_DELAY);
3070	local &= ~EEPROM_DATA_OUT;
3071	writel(local, &regs->LocalCtrl);
3072	readl(&regs->LocalCtrl);
3073	mb();
3074	udelay(ACE_SHORT_DELAY);
3075	local |= EEPROM_CLK_OUT;
3076	writel(local, &regs->LocalCtrl);
3077	readl(&regs->LocalCtrl);
3078	mb();
3079	udelay(ACE_SHORT_DELAY);
3080	local |= EEPROM_DATA_OUT;
3081	writel(local, &regs->LocalCtrl);
3082	readl(&regs->LocalCtrl);
3083	mb();
3084	udelay(ACE_LONG_DELAY);
3085	local &= ~EEPROM_CLK_OUT;
3086	writel(local, &regs->LocalCtrl);
3087	mb();
3088}
3089
3090
3091/*
3092 * Read a whole byte from the EEPROM.
3093 */
3094static int __devinit read_eeprom_byte(struct net_device *dev,
3095				   unsigned long offset)
3096{
3097	struct ace_private *ap = netdev_priv(dev);
3098	struct ace_regs __iomem *regs = ap->regs;
3099	unsigned long flags;
3100	u32 local;
3101	int result = 0;
3102	short i;
3103
3104	/*
3105	 * Don't take interrupts on this CPU will bit banging
3106	 * the %#%#@$ I2C device
3107	 */
3108	local_irq_save(flags);
3109
3110	eeprom_start(regs);
3111
3112	eeprom_prep(regs, EEPROM_WRITE_SELECT);
3113	if (eeprom_check_ack(regs)) {
3114		local_irq_restore(flags);
3115		printk(KERN_ERR "%s: Unable to sync eeprom\n", ap->name);
3116		result = -EIO;
3117		goto eeprom_read_error;
3118	}
3119
3120	eeprom_prep(regs, (offset >> 8) & 0xff);
3121	if (eeprom_check_ack(regs)) {
3122		local_irq_restore(flags);
3123		printk(KERN_ERR "%s: Unable to set address byte 0\n",
3124		       ap->name);
3125		result = -EIO;
3126		goto eeprom_read_error;
3127	}
3128
3129	eeprom_prep(regs, offset & 0xff);
3130	if (eeprom_check_ack(regs)) {
3131		local_irq_restore(flags);
3132		printk(KERN_ERR "%s: Unable to set address byte 1\n",
3133		       ap->name);
3134		result = -EIO;
3135		goto eeprom_read_error;
3136	}
3137
3138	eeprom_start(regs);
3139	eeprom_prep(regs, EEPROM_READ_SELECT);
3140	if (eeprom_check_ack(regs)) {
3141		local_irq_restore(flags);
3142		printk(KERN_ERR "%s: Unable to set READ_SELECT\n",
3143		       ap->name);
3144		result = -EIO;
3145		goto eeprom_read_error;
3146	}
3147
3148	for (i = 0; i < 8; i++) {
3149		local = readl(&regs->LocalCtrl);
3150		local &= ~EEPROM_WRITE_ENABLE;
3151		writel(local, &regs->LocalCtrl);
3152		readl(&regs->LocalCtrl);
3153		udelay(ACE_LONG_DELAY);
3154		mb();
3155		local |= EEPROM_CLK_OUT;
3156		writel(local, &regs->LocalCtrl);
3157		readl(&regs->LocalCtrl);
3158		mb();
3159		udelay(ACE_SHORT_DELAY);
3160		/* sample data mid high clk */
3161		result = (result << 1) |
3162			((readl(&regs->LocalCtrl) & EEPROM_DATA_IN) != 0);
3163		udelay(ACE_SHORT_DELAY);
3164		mb();
3165		local = readl(&regs->LocalCtrl);
3166		local &= ~EEPROM_CLK_OUT;
3167		writel(local, &regs->LocalCtrl);
3168		readl(&regs->LocalCtrl);
3169		udelay(ACE_SHORT_DELAY);
3170		mb();
3171		if (i == 7) {
3172			local |= EEPROM_WRITE_ENABLE;
3173			writel(local, &regs->LocalCtrl);
3174			readl(&regs->LocalCtrl);
3175			mb();
3176			udelay(ACE_SHORT_DELAY);
3177		}
3178	}
3179
3180	local |= EEPROM_DATA_OUT;
3181	writel(local, &regs->LocalCtrl);
3182	readl(&regs->LocalCtrl);
3183	mb();
3184	udelay(ACE_SHORT_DELAY);
3185	writel(readl(&regs->LocalCtrl) | EEPROM_CLK_OUT, &regs->LocalCtrl);
3186	readl(&regs->LocalCtrl);
3187	udelay(ACE_LONG_DELAY);
3188	writel(readl(&regs->LocalCtrl) & ~EEPROM_CLK_OUT, &regs->LocalCtrl);
3189	readl(&regs->LocalCtrl);
3190	mb();
3191	udelay(ACE_SHORT_DELAY);
3192	eeprom_stop(regs);
3193
3194	local_irq_restore(flags);
3195 out:
3196	return result;
3197
3198 eeprom_read_error:
3199	printk(KERN_ERR "%s: Unable to read eeprom byte 0x%02lx\n",
3200	       ap->name, offset);
3201	goto out;
3202}