Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.15.
   1// SPDX-License-Identifier: GPL-2.0-only
   2/* CAN bus driver for Microchip 251x/25625 CAN Controller with SPI Interface
   3 *
   4 * MCP2510 support and bug fixes by Christian Pellegrin
   5 * <chripell@evolware.org>
   6 *
   7 * Copyright 2009 Christian Pellegrin EVOL S.r.l.
   8 *
   9 * Copyright 2007 Raymarine UK, Ltd. All Rights Reserved.
  10 * Written under contract by:
  11 *   Chris Elston, Katalix Systems, Ltd.
  12 *
  13 * Based on Microchip MCP251x CAN controller driver written by
  14 * David Vrabel, Copyright 2006 Arcom Control Systems Ltd.
  15 *
  16 * Based on CAN bus driver for the CCAN controller written by
  17 * - Sascha Hauer, Marc Kleine-Budde, Pengutronix
  18 * - Simon Kallweit, intefo AG
  19 * Copyright 2007
  20 */
  21
  22#include <linux/can/core.h>
  23#include <linux/can/dev.h>
  24#include <linux/can/led.h>
  25#include <linux/can/platform/mcp251x.h>
  26#include <linux/clk.h>
  27#include <linux/completion.h>
  28#include <linux/delay.h>
  29#include <linux/device.h>
  30#include <linux/freezer.h>
  31#include <linux/interrupt.h>
  32#include <linux/io.h>
  33#include <linux/kernel.h>
  34#include <linux/module.h>
  35#include <linux/netdevice.h>
  36#include <linux/property.h>
  37#include <linux/platform_device.h>
  38#include <linux/slab.h>
  39#include <linux/spi/spi.h>
  40#include <linux/uaccess.h>
  41#include <linux/regulator/consumer.h>
  42
  43/* SPI interface instruction set */
  44#define INSTRUCTION_WRITE	0x02
  45#define INSTRUCTION_READ	0x03
  46#define INSTRUCTION_BIT_MODIFY	0x05
  47#define INSTRUCTION_LOAD_TXB(n)	(0x40 + 2 * (n))
  48#define INSTRUCTION_READ_RXB(n)	(((n) == 0) ? 0x90 : 0x94)
  49#define INSTRUCTION_RESET	0xC0
  50#define RTS_TXB0		0x01
  51#define RTS_TXB1		0x02
  52#define RTS_TXB2		0x04
  53#define INSTRUCTION_RTS(n)	(0x80 | ((n) & 0x07))
  54
  55/* MPC251x registers */
  56#define CANSTAT	      0x0e
  57#define CANCTRL	      0x0f
  58#  define CANCTRL_REQOP_MASK	    0xe0
  59#  define CANCTRL_REQOP_CONF	    0x80
  60#  define CANCTRL_REQOP_LISTEN_ONLY 0x60
  61#  define CANCTRL_REQOP_LOOPBACK    0x40
  62#  define CANCTRL_REQOP_SLEEP	    0x20
  63#  define CANCTRL_REQOP_NORMAL	    0x00
  64#  define CANCTRL_OSM		    0x08
  65#  define CANCTRL_ABAT		    0x10
  66#define TEC	      0x1c
  67#define REC	      0x1d
  68#define CNF1	      0x2a
  69#  define CNF1_SJW_SHIFT   6
  70#define CNF2	      0x29
  71#  define CNF2_BTLMODE	   0x80
  72#  define CNF2_SAM         0x40
  73#  define CNF2_PS1_SHIFT   3
  74#define CNF3	      0x28
  75#  define CNF3_SOF	   0x08
  76#  define CNF3_WAKFIL	   0x04
  77#  define CNF3_PHSEG2_MASK 0x07
  78#define CANINTE	      0x2b
  79#  define CANINTE_MERRE 0x80
  80#  define CANINTE_WAKIE 0x40
  81#  define CANINTE_ERRIE 0x20
  82#  define CANINTE_TX2IE 0x10
  83#  define CANINTE_TX1IE 0x08
  84#  define CANINTE_TX0IE 0x04
  85#  define CANINTE_RX1IE 0x02
  86#  define CANINTE_RX0IE 0x01
  87#define CANINTF	      0x2c
  88#  define CANINTF_MERRF 0x80
  89#  define CANINTF_WAKIF 0x40
  90#  define CANINTF_ERRIF 0x20
  91#  define CANINTF_TX2IF 0x10
  92#  define CANINTF_TX1IF 0x08
  93#  define CANINTF_TX0IF 0x04
  94#  define CANINTF_RX1IF 0x02
  95#  define CANINTF_RX0IF 0x01
  96#  define CANINTF_RX (CANINTF_RX0IF | CANINTF_RX1IF)
  97#  define CANINTF_TX (CANINTF_TX2IF | CANINTF_TX1IF | CANINTF_TX0IF)
  98#  define CANINTF_ERR (CANINTF_ERRIF)
  99#define EFLG	      0x2d
 100#  define EFLG_EWARN	0x01
 101#  define EFLG_RXWAR	0x02
 102#  define EFLG_TXWAR	0x04
 103#  define EFLG_RXEP	0x08
 104#  define EFLG_TXEP	0x10
 105#  define EFLG_TXBO	0x20
 106#  define EFLG_RX0OVR	0x40
 107#  define EFLG_RX1OVR	0x80
 108#define TXBCTRL(n)  (((n) * 0x10) + 0x30 + TXBCTRL_OFF)
 109#  define TXBCTRL_ABTF	0x40
 110#  define TXBCTRL_MLOA	0x20
 111#  define TXBCTRL_TXERR 0x10
 112#  define TXBCTRL_TXREQ 0x08
 113#define TXBSIDH(n)  (((n) * 0x10) + 0x30 + TXBSIDH_OFF)
 114#  define SIDH_SHIFT    3
 115#define TXBSIDL(n)  (((n) * 0x10) + 0x30 + TXBSIDL_OFF)
 116#  define SIDL_SID_MASK    7
 117#  define SIDL_SID_SHIFT   5
 118#  define SIDL_EXIDE_SHIFT 3
 119#  define SIDL_EID_SHIFT   16
 120#  define SIDL_EID_MASK    3
 121#define TXBEID8(n)  (((n) * 0x10) + 0x30 + TXBEID8_OFF)
 122#define TXBEID0(n)  (((n) * 0x10) + 0x30 + TXBEID0_OFF)
 123#define TXBDLC(n)   (((n) * 0x10) + 0x30 + TXBDLC_OFF)
 124#  define DLC_RTR_SHIFT    6
 125#define TXBCTRL_OFF 0
 126#define TXBSIDH_OFF 1
 127#define TXBSIDL_OFF 2
 128#define TXBEID8_OFF 3
 129#define TXBEID0_OFF 4
 130#define TXBDLC_OFF  5
 131#define TXBDAT_OFF  6
 132#define RXBCTRL(n)  (((n) * 0x10) + 0x60 + RXBCTRL_OFF)
 133#  define RXBCTRL_BUKT	0x04
 134#  define RXBCTRL_RXM0	0x20
 135#  define RXBCTRL_RXM1	0x40
 136#define RXBSIDH(n)  (((n) * 0x10) + 0x60 + RXBSIDH_OFF)
 137#  define RXBSIDH_SHIFT 3
 138#define RXBSIDL(n)  (((n) * 0x10) + 0x60 + RXBSIDL_OFF)
 139#  define RXBSIDL_IDE   0x08
 140#  define RXBSIDL_SRR   0x10
 141#  define RXBSIDL_EID   3
 142#  define RXBSIDL_SHIFT 5
 143#define RXBEID8(n)  (((n) * 0x10) + 0x60 + RXBEID8_OFF)
 144#define RXBEID0(n)  (((n) * 0x10) + 0x60 + RXBEID0_OFF)
 145#define RXBDLC(n)   (((n) * 0x10) + 0x60 + RXBDLC_OFF)
 146#  define RXBDLC_LEN_MASK  0x0f
 147#  define RXBDLC_RTR       0x40
 148#define RXBCTRL_OFF 0
 149#define RXBSIDH_OFF 1
 150#define RXBSIDL_OFF 2
 151#define RXBEID8_OFF 3
 152#define RXBEID0_OFF 4
 153#define RXBDLC_OFF  5
 154#define RXBDAT_OFF  6
 155#define RXFSID(n) ((n < 3) ? 0 : 4)
 156#define RXFSIDH(n) ((n) * 4 + RXFSID(n))
 157#define RXFSIDL(n) ((n) * 4 + 1 + RXFSID(n))
 158#define RXFEID8(n) ((n) * 4 + 2 + RXFSID(n))
 159#define RXFEID0(n) ((n) * 4 + 3 + RXFSID(n))
 160#define RXMSIDH(n) ((n) * 4 + 0x20)
 161#define RXMSIDL(n) ((n) * 4 + 0x21)
 162#define RXMEID8(n) ((n) * 4 + 0x22)
 163#define RXMEID0(n) ((n) * 4 + 0x23)
 164
 165#define GET_BYTE(val, byte)			\
 166	(((val) >> ((byte) * 8)) & 0xff)
 167#define SET_BYTE(val, byte)			\
 168	(((val) & 0xff) << ((byte) * 8))
 169
 170/* Buffer size required for the largest SPI transfer (i.e., reading a
 171 * frame)
 172 */
 173#define CAN_FRAME_MAX_DATA_LEN	8
 174#define SPI_TRANSFER_BUF_LEN	(6 + CAN_FRAME_MAX_DATA_LEN)
 175#define CAN_FRAME_MAX_BITS	128
 176
 177#define TX_ECHO_SKB_MAX	1
 178
 179#define MCP251X_OST_DELAY_MS	(5)
 180
 181#define DEVICE_NAME "mcp251x"
 182
 183static const struct can_bittiming_const mcp251x_bittiming_const = {
 184	.name = DEVICE_NAME,
 185	.tseg1_min = 3,
 186	.tseg1_max = 16,
 187	.tseg2_min = 2,
 188	.tseg2_max = 8,
 189	.sjw_max = 4,
 190	.brp_min = 1,
 191	.brp_max = 64,
 192	.brp_inc = 1,
 193};
 194
 195enum mcp251x_model {
 196	CAN_MCP251X_MCP2510	= 0x2510,
 197	CAN_MCP251X_MCP2515	= 0x2515,
 198	CAN_MCP251X_MCP25625	= 0x25625,
 199};
 200
 201struct mcp251x_priv {
 202	struct can_priv	   can;
 203	struct net_device *net;
 204	struct spi_device *spi;
 205	enum mcp251x_model model;
 206
 207	struct mutex mcp_lock; /* SPI device lock */
 208
 209	u8 *spi_tx_buf;
 210	u8 *spi_rx_buf;
 211
 212	struct sk_buff *tx_skb;
 213	int tx_len;
 214
 215	struct workqueue_struct *wq;
 216	struct work_struct tx_work;
 217	struct work_struct restart_work;
 218
 219	int force_quit;
 220	int after_suspend;
 221#define AFTER_SUSPEND_UP 1
 222#define AFTER_SUSPEND_DOWN 2
 223#define AFTER_SUSPEND_POWER 4
 224#define AFTER_SUSPEND_RESTART 8
 225	int restart_tx;
 226	struct regulator *power;
 227	struct regulator *transceiver;
 228	struct clk *clk;
 229};
 230
 231#define MCP251X_IS(_model) \
 232static inline int mcp251x_is_##_model(struct spi_device *spi) \
 233{ \
 234	struct mcp251x_priv *priv = spi_get_drvdata(spi); \
 235	return priv->model == CAN_MCP251X_MCP##_model; \
 236}
 237
 238MCP251X_IS(2510);
 239
 240static void mcp251x_clean(struct net_device *net)
 241{
 242	struct mcp251x_priv *priv = netdev_priv(net);
 243
 244	if (priv->tx_skb || priv->tx_len)
 245		net->stats.tx_errors++;
 246	dev_kfree_skb(priv->tx_skb);
 247	if (priv->tx_len)
 248		can_free_echo_skb(priv->net, 0);
 249	priv->tx_skb = NULL;
 250	priv->tx_len = 0;
 251}
 252
 253/* Note about handling of error return of mcp251x_spi_trans: accessing
 254 * registers via SPI is not really different conceptually than using
 255 * normal I/O assembler instructions, although it's much more
 256 * complicated from a practical POV. So it's not advisable to always
 257 * check the return value of this function. Imagine that every
 258 * read{b,l}, write{b,l} and friends would be bracketed in "if ( < 0)
 259 * error();", it would be a great mess (well there are some situation
 260 * when exception handling C++ like could be useful after all). So we
 261 * just check that transfers are OK at the beginning of our
 262 * conversation with the chip and to avoid doing really nasty things
 263 * (like injecting bogus packets in the network stack).
 264 */
 265static int mcp251x_spi_trans(struct spi_device *spi, int len)
 266{
 267	struct mcp251x_priv *priv = spi_get_drvdata(spi);
 268	struct spi_transfer t = {
 269		.tx_buf = priv->spi_tx_buf,
 270		.rx_buf = priv->spi_rx_buf,
 271		.len = len,
 272		.cs_change = 0,
 273	};
 274	struct spi_message m;
 275	int ret;
 276
 277	spi_message_init(&m);
 278	spi_message_add_tail(&t, &m);
 279
 280	ret = spi_sync(spi, &m);
 281	if (ret)
 282		dev_err(&spi->dev, "spi transfer failed: ret = %d\n", ret);
 283	return ret;
 284}
 285
 286static u8 mcp251x_read_reg(struct spi_device *spi, u8 reg)
 287{
 288	struct mcp251x_priv *priv = spi_get_drvdata(spi);
 289	u8 val = 0;
 290
 291	priv->spi_tx_buf[0] = INSTRUCTION_READ;
 292	priv->spi_tx_buf[1] = reg;
 293
 294	mcp251x_spi_trans(spi, 3);
 295	val = priv->spi_rx_buf[2];
 296
 297	return val;
 298}
 299
 300static void mcp251x_read_2regs(struct spi_device *spi, u8 reg, u8 *v1, u8 *v2)
 301{
 302	struct mcp251x_priv *priv = spi_get_drvdata(spi);
 303
 304	priv->spi_tx_buf[0] = INSTRUCTION_READ;
 305	priv->spi_tx_buf[1] = reg;
 306
 307	mcp251x_spi_trans(spi, 4);
 308
 309	*v1 = priv->spi_rx_buf[2];
 310	*v2 = priv->spi_rx_buf[3];
 311}
 312
 313static void mcp251x_write_reg(struct spi_device *spi, u8 reg, u8 val)
 314{
 315	struct mcp251x_priv *priv = spi_get_drvdata(spi);
 316
 317	priv->spi_tx_buf[0] = INSTRUCTION_WRITE;
 318	priv->spi_tx_buf[1] = reg;
 319	priv->spi_tx_buf[2] = val;
 320
 321	mcp251x_spi_trans(spi, 3);
 322}
 323
 324static void mcp251x_write_bits(struct spi_device *spi, u8 reg,
 325			       u8 mask, u8 val)
 326{
 327	struct mcp251x_priv *priv = spi_get_drvdata(spi);
 328
 329	priv->spi_tx_buf[0] = INSTRUCTION_BIT_MODIFY;
 330	priv->spi_tx_buf[1] = reg;
 331	priv->spi_tx_buf[2] = mask;
 332	priv->spi_tx_buf[3] = val;
 333
 334	mcp251x_spi_trans(spi, 4);
 335}
 336
 337static void mcp251x_hw_tx_frame(struct spi_device *spi, u8 *buf,
 338				int len, int tx_buf_idx)
 339{
 340	struct mcp251x_priv *priv = spi_get_drvdata(spi);
 341
 342	if (mcp251x_is_2510(spi)) {
 343		int i;
 344
 345		for (i = 1; i < TXBDAT_OFF + len; i++)
 346			mcp251x_write_reg(spi, TXBCTRL(tx_buf_idx) + i,
 347					  buf[i]);
 348	} else {
 349		memcpy(priv->spi_tx_buf, buf, TXBDAT_OFF + len);
 350		mcp251x_spi_trans(spi, TXBDAT_OFF + len);
 351	}
 352}
 353
 354static void mcp251x_hw_tx(struct spi_device *spi, struct can_frame *frame,
 355			  int tx_buf_idx)
 356{
 357	struct mcp251x_priv *priv = spi_get_drvdata(spi);
 358	u32 sid, eid, exide, rtr;
 359	u8 buf[SPI_TRANSFER_BUF_LEN];
 360
 361	exide = (frame->can_id & CAN_EFF_FLAG) ? 1 : 0; /* Extended ID Enable */
 362	if (exide)
 363		sid = (frame->can_id & CAN_EFF_MASK) >> 18;
 364	else
 365		sid = frame->can_id & CAN_SFF_MASK; /* Standard ID */
 366	eid = frame->can_id & CAN_EFF_MASK; /* Extended ID */
 367	rtr = (frame->can_id & CAN_RTR_FLAG) ? 1 : 0; /* Remote transmission */
 368
 369	buf[TXBCTRL_OFF] = INSTRUCTION_LOAD_TXB(tx_buf_idx);
 370	buf[TXBSIDH_OFF] = sid >> SIDH_SHIFT;
 371	buf[TXBSIDL_OFF] = ((sid & SIDL_SID_MASK) << SIDL_SID_SHIFT) |
 372		(exide << SIDL_EXIDE_SHIFT) |
 373		((eid >> SIDL_EID_SHIFT) & SIDL_EID_MASK);
 374	buf[TXBEID8_OFF] = GET_BYTE(eid, 1);
 375	buf[TXBEID0_OFF] = GET_BYTE(eid, 0);
 376	buf[TXBDLC_OFF] = (rtr << DLC_RTR_SHIFT) | frame->can_dlc;
 377	memcpy(buf + TXBDAT_OFF, frame->data, frame->can_dlc);
 378	mcp251x_hw_tx_frame(spi, buf, frame->can_dlc, tx_buf_idx);
 379
 380	/* use INSTRUCTION_RTS, to avoid "repeated frame problem" */
 381	priv->spi_tx_buf[0] = INSTRUCTION_RTS(1 << tx_buf_idx);
 382	mcp251x_spi_trans(priv->spi, 1);
 383}
 384
 385static void mcp251x_hw_rx_frame(struct spi_device *spi, u8 *buf,
 386				int buf_idx)
 387{
 388	struct mcp251x_priv *priv = spi_get_drvdata(spi);
 389
 390	if (mcp251x_is_2510(spi)) {
 391		int i, len;
 392
 393		for (i = 1; i < RXBDAT_OFF; i++)
 394			buf[i] = mcp251x_read_reg(spi, RXBCTRL(buf_idx) + i);
 395
 396		len = get_can_dlc(buf[RXBDLC_OFF] & RXBDLC_LEN_MASK);
 397		for (; i < (RXBDAT_OFF + len); i++)
 398			buf[i] = mcp251x_read_reg(spi, RXBCTRL(buf_idx) + i);
 399	} else {
 400		priv->spi_tx_buf[RXBCTRL_OFF] = INSTRUCTION_READ_RXB(buf_idx);
 401		mcp251x_spi_trans(spi, SPI_TRANSFER_BUF_LEN);
 402		memcpy(buf, priv->spi_rx_buf, SPI_TRANSFER_BUF_LEN);
 403	}
 404}
 405
 406static void mcp251x_hw_rx(struct spi_device *spi, int buf_idx)
 407{
 408	struct mcp251x_priv *priv = spi_get_drvdata(spi);
 409	struct sk_buff *skb;
 410	struct can_frame *frame;
 411	u8 buf[SPI_TRANSFER_BUF_LEN];
 412
 413	skb = alloc_can_skb(priv->net, &frame);
 414	if (!skb) {
 415		dev_err(&spi->dev, "cannot allocate RX skb\n");
 416		priv->net->stats.rx_dropped++;
 417		return;
 418	}
 419
 420	mcp251x_hw_rx_frame(spi, buf, buf_idx);
 421	if (buf[RXBSIDL_OFF] & RXBSIDL_IDE) {
 422		/* Extended ID format */
 423		frame->can_id = CAN_EFF_FLAG;
 424		frame->can_id |=
 425			/* Extended ID part */
 426			SET_BYTE(buf[RXBSIDL_OFF] & RXBSIDL_EID, 2) |
 427			SET_BYTE(buf[RXBEID8_OFF], 1) |
 428			SET_BYTE(buf[RXBEID0_OFF], 0) |
 429			/* Standard ID part */
 430			(((buf[RXBSIDH_OFF] << RXBSIDH_SHIFT) |
 431			  (buf[RXBSIDL_OFF] >> RXBSIDL_SHIFT)) << 18);
 432		/* Remote transmission request */
 433		if (buf[RXBDLC_OFF] & RXBDLC_RTR)
 434			frame->can_id |= CAN_RTR_FLAG;
 435	} else {
 436		/* Standard ID format */
 437		frame->can_id =
 438			(buf[RXBSIDH_OFF] << RXBSIDH_SHIFT) |
 439			(buf[RXBSIDL_OFF] >> RXBSIDL_SHIFT);
 440		if (buf[RXBSIDL_OFF] & RXBSIDL_SRR)
 441			frame->can_id |= CAN_RTR_FLAG;
 442	}
 443	/* Data length */
 444	frame->can_dlc = get_can_dlc(buf[RXBDLC_OFF] & RXBDLC_LEN_MASK);
 445	memcpy(frame->data, buf + RXBDAT_OFF, frame->can_dlc);
 446
 447	priv->net->stats.rx_packets++;
 448	priv->net->stats.rx_bytes += frame->can_dlc;
 449
 450	can_led_event(priv->net, CAN_LED_EVENT_RX);
 451
 452	netif_rx_ni(skb);
 453}
 454
 455static void mcp251x_hw_sleep(struct spi_device *spi)
 456{
 457	mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_SLEEP);
 458}
 459
 460static netdev_tx_t mcp251x_hard_start_xmit(struct sk_buff *skb,
 461					   struct net_device *net)
 462{
 463	struct mcp251x_priv *priv = netdev_priv(net);
 464	struct spi_device *spi = priv->spi;
 465
 466	if (priv->tx_skb || priv->tx_len) {
 467		dev_warn(&spi->dev, "hard_xmit called while tx busy\n");
 468		return NETDEV_TX_BUSY;
 469	}
 470
 471	if (can_dropped_invalid_skb(net, skb))
 472		return NETDEV_TX_OK;
 473
 474	netif_stop_queue(net);
 475	priv->tx_skb = skb;
 476	queue_work(priv->wq, &priv->tx_work);
 477
 478	return NETDEV_TX_OK;
 479}
 480
 481static int mcp251x_do_set_mode(struct net_device *net, enum can_mode mode)
 482{
 483	struct mcp251x_priv *priv = netdev_priv(net);
 484
 485	switch (mode) {
 486	case CAN_MODE_START:
 487		mcp251x_clean(net);
 488		/* We have to delay work since SPI I/O may sleep */
 489		priv->can.state = CAN_STATE_ERROR_ACTIVE;
 490		priv->restart_tx = 1;
 491		if (priv->can.restart_ms == 0)
 492			priv->after_suspend = AFTER_SUSPEND_RESTART;
 493		queue_work(priv->wq, &priv->restart_work);
 494		break;
 495	default:
 496		return -EOPNOTSUPP;
 497	}
 498
 499	return 0;
 500}
 501
 502static int mcp251x_set_normal_mode(struct spi_device *spi)
 503{
 504	struct mcp251x_priv *priv = spi_get_drvdata(spi);
 505	unsigned long timeout;
 506
 507	/* Enable interrupts */
 508	mcp251x_write_reg(spi, CANINTE,
 509			  CANINTE_ERRIE | CANINTE_TX2IE | CANINTE_TX1IE |
 510			  CANINTE_TX0IE | CANINTE_RX1IE | CANINTE_RX0IE);
 511
 512	if (priv->can.ctrlmode & CAN_CTRLMODE_LOOPBACK) {
 513		/* Put device into loopback mode */
 514		mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_LOOPBACK);
 515	} else if (priv->can.ctrlmode & CAN_CTRLMODE_LISTENONLY) {
 516		/* Put device into listen-only mode */
 517		mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_LISTEN_ONLY);
 518	} else {
 519		/* Put device into normal mode */
 520		mcp251x_write_reg(spi, CANCTRL, CANCTRL_REQOP_NORMAL);
 521
 522		/* Wait for the device to enter normal mode */
 523		timeout = jiffies + HZ;
 524		while (mcp251x_read_reg(spi, CANSTAT) & CANCTRL_REQOP_MASK) {
 525			schedule();
 526			if (time_after(jiffies, timeout)) {
 527				dev_err(&spi->dev, "MCP251x didn't enter in normal mode\n");
 528				return -EBUSY;
 529			}
 530		}
 531	}
 532	priv->can.state = CAN_STATE_ERROR_ACTIVE;
 533	return 0;
 534}
 535
 536static int mcp251x_do_set_bittiming(struct net_device *net)
 537{
 538	struct mcp251x_priv *priv = netdev_priv(net);
 539	struct can_bittiming *bt = &priv->can.bittiming;
 540	struct spi_device *spi = priv->spi;
 541
 542	mcp251x_write_reg(spi, CNF1, ((bt->sjw - 1) << CNF1_SJW_SHIFT) |
 543			  (bt->brp - 1));
 544	mcp251x_write_reg(spi, CNF2, CNF2_BTLMODE |
 545			  (priv->can.ctrlmode & CAN_CTRLMODE_3_SAMPLES ?
 546			   CNF2_SAM : 0) |
 547			  ((bt->phase_seg1 - 1) << CNF2_PS1_SHIFT) |
 548			  (bt->prop_seg - 1));
 549	mcp251x_write_bits(spi, CNF3, CNF3_PHSEG2_MASK,
 550			   (bt->phase_seg2 - 1));
 551	dev_dbg(&spi->dev, "CNF: 0x%02x 0x%02x 0x%02x\n",
 552		mcp251x_read_reg(spi, CNF1),
 553		mcp251x_read_reg(spi, CNF2),
 554		mcp251x_read_reg(spi, CNF3));
 555
 556	return 0;
 557}
 558
 559static int mcp251x_setup(struct net_device *net, struct spi_device *spi)
 560{
 561	mcp251x_do_set_bittiming(net);
 562
 563	mcp251x_write_reg(spi, RXBCTRL(0),
 564			  RXBCTRL_BUKT | RXBCTRL_RXM0 | RXBCTRL_RXM1);
 565	mcp251x_write_reg(spi, RXBCTRL(1),
 566			  RXBCTRL_RXM0 | RXBCTRL_RXM1);
 567	return 0;
 568}
 569
 570static int mcp251x_hw_reset(struct spi_device *spi)
 571{
 572	struct mcp251x_priv *priv = spi_get_drvdata(spi);
 573	unsigned long timeout;
 574	int ret;
 575
 576	/* Wait for oscillator startup timer after power up */
 577	mdelay(MCP251X_OST_DELAY_MS);
 578
 579	priv->spi_tx_buf[0] = INSTRUCTION_RESET;
 580	ret = mcp251x_spi_trans(spi, 1);
 581	if (ret)
 582		return ret;
 583
 584	/* Wait for oscillator startup timer after reset */
 585	mdelay(MCP251X_OST_DELAY_MS);
 586
 587	/* Wait for reset to finish */
 588	timeout = jiffies + HZ;
 589	while ((mcp251x_read_reg(spi, CANSTAT) & CANCTRL_REQOP_MASK) !=
 590	       CANCTRL_REQOP_CONF) {
 591		usleep_range(MCP251X_OST_DELAY_MS * 1000,
 592			     MCP251X_OST_DELAY_MS * 1000 * 2);
 593
 594		if (time_after(jiffies, timeout)) {
 595			dev_err(&spi->dev,
 596				"MCP251x didn't enter in conf mode after reset\n");
 597			return -EBUSY;
 598		}
 599	}
 600	return 0;
 601}
 602
 603static int mcp251x_hw_probe(struct spi_device *spi)
 604{
 605	u8 ctrl;
 606	int ret;
 607
 608	ret = mcp251x_hw_reset(spi);
 609	if (ret)
 610		return ret;
 611
 612	ctrl = mcp251x_read_reg(spi, CANCTRL);
 613
 614	dev_dbg(&spi->dev, "CANCTRL 0x%02x\n", ctrl);
 615
 616	/* Check for power up default value */
 617	if ((ctrl & 0x17) != 0x07)
 618		return -ENODEV;
 619
 620	return 0;
 621}
 622
 623static int mcp251x_power_enable(struct regulator *reg, int enable)
 624{
 625	if (IS_ERR_OR_NULL(reg))
 626		return 0;
 627
 628	if (enable)
 629		return regulator_enable(reg);
 630	else
 631		return regulator_disable(reg);
 632}
 633
 634static int mcp251x_stop(struct net_device *net)
 635{
 636	struct mcp251x_priv *priv = netdev_priv(net);
 637	struct spi_device *spi = priv->spi;
 638
 639	close_candev(net);
 640
 641	priv->force_quit = 1;
 642	free_irq(spi->irq, priv);
 643	destroy_workqueue(priv->wq);
 644	priv->wq = NULL;
 645
 646	mutex_lock(&priv->mcp_lock);
 647
 648	/* Disable and clear pending interrupts */
 649	mcp251x_write_reg(spi, CANINTE, 0x00);
 650	mcp251x_write_reg(spi, CANINTF, 0x00);
 651
 652	mcp251x_write_reg(spi, TXBCTRL(0), 0);
 653	mcp251x_clean(net);
 654
 655	mcp251x_hw_sleep(spi);
 656
 657	mcp251x_power_enable(priv->transceiver, 0);
 658
 659	priv->can.state = CAN_STATE_STOPPED;
 660
 661	mutex_unlock(&priv->mcp_lock);
 662
 663	can_led_event(net, CAN_LED_EVENT_STOP);
 664
 665	return 0;
 666}
 667
 668static void mcp251x_error_skb(struct net_device *net, int can_id, int data1)
 669{
 670	struct sk_buff *skb;
 671	struct can_frame *frame;
 672
 673	skb = alloc_can_err_skb(net, &frame);
 674	if (skb) {
 675		frame->can_id |= can_id;
 676		frame->data[1] = data1;
 677		netif_rx_ni(skb);
 678	} else {
 679		netdev_err(net, "cannot allocate error skb\n");
 680	}
 681}
 682
 683static void mcp251x_tx_work_handler(struct work_struct *ws)
 684{
 685	struct mcp251x_priv *priv = container_of(ws, struct mcp251x_priv,
 686						 tx_work);
 687	struct spi_device *spi = priv->spi;
 688	struct net_device *net = priv->net;
 689	struct can_frame *frame;
 690
 691	mutex_lock(&priv->mcp_lock);
 692	if (priv->tx_skb) {
 693		if (priv->can.state == CAN_STATE_BUS_OFF) {
 694			mcp251x_clean(net);
 695		} else {
 696			frame = (struct can_frame *)priv->tx_skb->data;
 697
 698			if (frame->can_dlc > CAN_FRAME_MAX_DATA_LEN)
 699				frame->can_dlc = CAN_FRAME_MAX_DATA_LEN;
 700			mcp251x_hw_tx(spi, frame, 0);
 701			priv->tx_len = 1 + frame->can_dlc;
 702			can_put_echo_skb(priv->tx_skb, net, 0);
 703			priv->tx_skb = NULL;
 704		}
 705	}
 706	mutex_unlock(&priv->mcp_lock);
 707}
 708
 709static void mcp251x_restart_work_handler(struct work_struct *ws)
 710{
 711	struct mcp251x_priv *priv = container_of(ws, struct mcp251x_priv,
 712						 restart_work);
 713	struct spi_device *spi = priv->spi;
 714	struct net_device *net = priv->net;
 715
 716	mutex_lock(&priv->mcp_lock);
 717	if (priv->after_suspend) {
 718		mcp251x_hw_reset(spi);
 719		mcp251x_setup(net, spi);
 720		priv->force_quit = 0;
 721		if (priv->after_suspend & AFTER_SUSPEND_RESTART) {
 722			mcp251x_set_normal_mode(spi);
 723		} else if (priv->after_suspend & AFTER_SUSPEND_UP) {
 724			netif_device_attach(net);
 725			mcp251x_clean(net);
 726			mcp251x_set_normal_mode(spi);
 727			netif_wake_queue(net);
 728		} else {
 729			mcp251x_hw_sleep(spi);
 730		}
 731		priv->after_suspend = 0;
 732	}
 733
 734	if (priv->restart_tx) {
 735		priv->restart_tx = 0;
 736		mcp251x_write_reg(spi, TXBCTRL(0), 0);
 737		mcp251x_clean(net);
 738		netif_wake_queue(net);
 739		mcp251x_error_skb(net, CAN_ERR_RESTARTED, 0);
 740	}
 741	mutex_unlock(&priv->mcp_lock);
 742}
 743
 744static irqreturn_t mcp251x_can_ist(int irq, void *dev_id)
 745{
 746	struct mcp251x_priv *priv = dev_id;
 747	struct spi_device *spi = priv->spi;
 748	struct net_device *net = priv->net;
 749
 750	mutex_lock(&priv->mcp_lock);
 751	while (!priv->force_quit) {
 752		enum can_state new_state;
 753		u8 intf, eflag;
 754		u8 clear_intf = 0;
 755		int can_id = 0, data1 = 0;
 756
 757		mcp251x_read_2regs(spi, CANINTF, &intf, &eflag);
 758
 759		/* mask out flags we don't care about */
 760		intf &= CANINTF_RX | CANINTF_TX | CANINTF_ERR;
 761
 762		/* receive buffer 0 */
 763		if (intf & CANINTF_RX0IF) {
 764			mcp251x_hw_rx(spi, 0);
 765			/* Free one buffer ASAP
 766			 * (The MCP2515/25625 does this automatically.)
 767			 */
 768			if (mcp251x_is_2510(spi))
 769				mcp251x_write_bits(spi, CANINTF,
 770						   CANINTF_RX0IF, 0x00);
 771		}
 772
 773		/* receive buffer 1 */
 774		if (intf & CANINTF_RX1IF) {
 775			mcp251x_hw_rx(spi, 1);
 776			/* The MCP2515/25625 does this automatically. */
 777			if (mcp251x_is_2510(spi))
 778				clear_intf |= CANINTF_RX1IF;
 779		}
 780
 781		/* any error or tx interrupt we need to clear? */
 782		if (intf & (CANINTF_ERR | CANINTF_TX))
 783			clear_intf |= intf & (CANINTF_ERR | CANINTF_TX);
 784		if (clear_intf)
 785			mcp251x_write_bits(spi, CANINTF, clear_intf, 0x00);
 786
 787		if (eflag & (EFLG_RX0OVR | EFLG_RX1OVR))
 788			mcp251x_write_bits(spi, EFLG, eflag, 0x00);
 789
 790		/* Update can state */
 791		if (eflag & EFLG_TXBO) {
 792			new_state = CAN_STATE_BUS_OFF;
 793			can_id |= CAN_ERR_BUSOFF;
 794		} else if (eflag & EFLG_TXEP) {
 795			new_state = CAN_STATE_ERROR_PASSIVE;
 796			can_id |= CAN_ERR_CRTL;
 797			data1 |= CAN_ERR_CRTL_TX_PASSIVE;
 798		} else if (eflag & EFLG_RXEP) {
 799			new_state = CAN_STATE_ERROR_PASSIVE;
 800			can_id |= CAN_ERR_CRTL;
 801			data1 |= CAN_ERR_CRTL_RX_PASSIVE;
 802		} else if (eflag & EFLG_TXWAR) {
 803			new_state = CAN_STATE_ERROR_WARNING;
 804			can_id |= CAN_ERR_CRTL;
 805			data1 |= CAN_ERR_CRTL_TX_WARNING;
 806		} else if (eflag & EFLG_RXWAR) {
 807			new_state = CAN_STATE_ERROR_WARNING;
 808			can_id |= CAN_ERR_CRTL;
 809			data1 |= CAN_ERR_CRTL_RX_WARNING;
 810		} else {
 811			new_state = CAN_STATE_ERROR_ACTIVE;
 812		}
 813
 814		/* Update can state statistics */
 815		switch (priv->can.state) {
 816		case CAN_STATE_ERROR_ACTIVE:
 817			if (new_state >= CAN_STATE_ERROR_WARNING &&
 818			    new_state <= CAN_STATE_BUS_OFF)
 819				priv->can.can_stats.error_warning++;
 820			/* fall through */
 821		case CAN_STATE_ERROR_WARNING:
 822			if (new_state >= CAN_STATE_ERROR_PASSIVE &&
 823			    new_state <= CAN_STATE_BUS_OFF)
 824				priv->can.can_stats.error_passive++;
 825			break;
 826		default:
 827			break;
 828		}
 829		priv->can.state = new_state;
 830
 831		if (intf & CANINTF_ERRIF) {
 832			/* Handle overflow counters */
 833			if (eflag & (EFLG_RX0OVR | EFLG_RX1OVR)) {
 834				if (eflag & EFLG_RX0OVR) {
 835					net->stats.rx_over_errors++;
 836					net->stats.rx_errors++;
 837				}
 838				if (eflag & EFLG_RX1OVR) {
 839					net->stats.rx_over_errors++;
 840					net->stats.rx_errors++;
 841				}
 842				can_id |= CAN_ERR_CRTL;
 843				data1 |= CAN_ERR_CRTL_RX_OVERFLOW;
 844			}
 845			mcp251x_error_skb(net, can_id, data1);
 846		}
 847
 848		if (priv->can.state == CAN_STATE_BUS_OFF) {
 849			if (priv->can.restart_ms == 0) {
 850				priv->force_quit = 1;
 851				priv->can.can_stats.bus_off++;
 852				can_bus_off(net);
 853				mcp251x_hw_sleep(spi);
 854				break;
 855			}
 856		}
 857
 858		if (intf == 0)
 859			break;
 860
 861		if (intf & CANINTF_TX) {
 862			net->stats.tx_packets++;
 863			net->stats.tx_bytes += priv->tx_len - 1;
 864			can_led_event(net, CAN_LED_EVENT_TX);
 865			if (priv->tx_len) {
 866				can_get_echo_skb(net, 0);
 867				priv->tx_len = 0;
 868			}
 869			netif_wake_queue(net);
 870		}
 871	}
 872	mutex_unlock(&priv->mcp_lock);
 873	return IRQ_HANDLED;
 874}
 875
 876static int mcp251x_open(struct net_device *net)
 877{
 878	struct mcp251x_priv *priv = netdev_priv(net);
 879	struct spi_device *spi = priv->spi;
 880	unsigned long flags = 0;
 881	int ret;
 882
 883	ret = open_candev(net);
 884	if (ret) {
 885		dev_err(&spi->dev, "unable to set initial baudrate!\n");
 886		return ret;
 887	}
 888
 889	mutex_lock(&priv->mcp_lock);
 890	mcp251x_power_enable(priv->transceiver, 1);
 891
 892	priv->force_quit = 0;
 893	priv->tx_skb = NULL;
 894	priv->tx_len = 0;
 895
 896	if (!dev_fwnode(&spi->dev))
 897		flags = IRQF_TRIGGER_FALLING;
 898
 899	ret = request_threaded_irq(spi->irq, NULL, mcp251x_can_ist,
 900				   flags | IRQF_ONESHOT, dev_name(&spi->dev),
 901				   priv);
 902	if (ret) {
 903		dev_err(&spi->dev, "failed to acquire irq %d\n", spi->irq);
 904		goto out_close;
 905	}
 906
 907	priv->wq = alloc_workqueue("mcp251x_wq", WQ_FREEZABLE | WQ_MEM_RECLAIM,
 908				   0);
 909	if (!priv->wq) {
 910		ret = -ENOMEM;
 911		goto out_clean;
 912	}
 913	INIT_WORK(&priv->tx_work, mcp251x_tx_work_handler);
 914	INIT_WORK(&priv->restart_work, mcp251x_restart_work_handler);
 915
 916	ret = mcp251x_hw_reset(spi);
 917	if (ret)
 918		goto out_free_wq;
 919	ret = mcp251x_setup(net, spi);
 920	if (ret)
 921		goto out_free_wq;
 922	ret = mcp251x_set_normal_mode(spi);
 923	if (ret)
 924		goto out_free_wq;
 925
 926	can_led_event(net, CAN_LED_EVENT_OPEN);
 927
 928	netif_wake_queue(net);
 929	mutex_unlock(&priv->mcp_lock);
 930
 931	return 0;
 932
 933out_free_wq:
 934	destroy_workqueue(priv->wq);
 935out_clean:
 936	free_irq(spi->irq, priv);
 937	mcp251x_hw_sleep(spi);
 938out_close:
 939	mcp251x_power_enable(priv->transceiver, 0);
 940	close_candev(net);
 941	mutex_unlock(&priv->mcp_lock);
 942	return ret;
 943}
 944
 945static const struct net_device_ops mcp251x_netdev_ops = {
 946	.ndo_open = mcp251x_open,
 947	.ndo_stop = mcp251x_stop,
 948	.ndo_start_xmit = mcp251x_hard_start_xmit,
 949	.ndo_change_mtu = can_change_mtu,
 950};
 951
 952static const struct of_device_id mcp251x_of_match[] = {
 953	{
 954		.compatible	= "microchip,mcp2510",
 955		.data		= (void *)CAN_MCP251X_MCP2510,
 956	},
 957	{
 958		.compatible	= "microchip,mcp2515",
 959		.data		= (void *)CAN_MCP251X_MCP2515,
 960	},
 961	{
 962		.compatible	= "microchip,mcp25625",
 963		.data		= (void *)CAN_MCP251X_MCP25625,
 964	},
 965	{ }
 966};
 967MODULE_DEVICE_TABLE(of, mcp251x_of_match);
 968
 969static const struct spi_device_id mcp251x_id_table[] = {
 970	{
 971		.name		= "mcp2510",
 972		.driver_data	= (kernel_ulong_t)CAN_MCP251X_MCP2510,
 973	},
 974	{
 975		.name		= "mcp2515",
 976		.driver_data	= (kernel_ulong_t)CAN_MCP251X_MCP2515,
 977	},
 978	{
 979		.name		= "mcp25625",
 980		.driver_data	= (kernel_ulong_t)CAN_MCP251X_MCP25625,
 981	},
 982	{ }
 983};
 984MODULE_DEVICE_TABLE(spi, mcp251x_id_table);
 985
 986static int mcp251x_can_probe(struct spi_device *spi)
 987{
 988	const void *match = device_get_match_data(&spi->dev);
 989	struct mcp251x_platform_data *pdata = dev_get_platdata(&spi->dev);
 990	struct net_device *net;
 991	struct mcp251x_priv *priv;
 992	struct clk *clk;
 993	int freq, ret;
 994
 995	clk = devm_clk_get_optional(&spi->dev, NULL);
 996	if (IS_ERR(clk))
 997		return PTR_ERR(clk);
 998
 999	freq = clk_get_rate(clk);
1000	if (freq == 0 && pdata)
1001		freq = pdata->oscillator_frequency;
1002
1003	/* Sanity check */
1004	if (freq < 1000000 || freq > 25000000)
1005		return -ERANGE;
1006
1007	/* Allocate can/net device */
1008	net = alloc_candev(sizeof(struct mcp251x_priv), TX_ECHO_SKB_MAX);
1009	if (!net)
1010		return -ENOMEM;
1011
1012	ret = clk_prepare_enable(clk);
1013	if (ret)
1014		goto out_free;
1015
1016	net->netdev_ops = &mcp251x_netdev_ops;
1017	net->flags |= IFF_ECHO;
1018
1019	priv = netdev_priv(net);
1020	priv->can.bittiming_const = &mcp251x_bittiming_const;
1021	priv->can.do_set_mode = mcp251x_do_set_mode;
1022	priv->can.clock.freq = freq / 2;
1023	priv->can.ctrlmode_supported = CAN_CTRLMODE_3_SAMPLES |
1024		CAN_CTRLMODE_LOOPBACK | CAN_CTRLMODE_LISTENONLY;
1025	if (match)
1026		priv->model = (enum mcp251x_model)match;
1027	else
1028		priv->model = spi_get_device_id(spi)->driver_data;
1029	priv->net = net;
1030	priv->clk = clk;
1031
1032	spi_set_drvdata(spi, priv);
1033
1034	/* Configure the SPI bus */
1035	spi->bits_per_word = 8;
1036	if (mcp251x_is_2510(spi))
1037		spi->max_speed_hz = spi->max_speed_hz ? : 5 * 1000 * 1000;
1038	else
1039		spi->max_speed_hz = spi->max_speed_hz ? : 10 * 1000 * 1000;
1040	ret = spi_setup(spi);
1041	if (ret)
1042		goto out_clk;
1043
1044	priv->power = devm_regulator_get_optional(&spi->dev, "vdd");
1045	priv->transceiver = devm_regulator_get_optional(&spi->dev, "xceiver");
1046	if ((PTR_ERR(priv->power) == -EPROBE_DEFER) ||
1047	    (PTR_ERR(priv->transceiver) == -EPROBE_DEFER)) {
1048		ret = -EPROBE_DEFER;
1049		goto out_clk;
1050	}
1051
1052	ret = mcp251x_power_enable(priv->power, 1);
1053	if (ret)
1054		goto out_clk;
1055
1056	priv->spi = spi;
1057	mutex_init(&priv->mcp_lock);
1058
1059	priv->spi_tx_buf = devm_kzalloc(&spi->dev, SPI_TRANSFER_BUF_LEN,
1060					GFP_KERNEL);
1061	if (!priv->spi_tx_buf) {
1062		ret = -ENOMEM;
1063		goto error_probe;
1064	}
1065
1066	priv->spi_rx_buf = devm_kzalloc(&spi->dev, SPI_TRANSFER_BUF_LEN,
1067					GFP_KERNEL);
1068	if (!priv->spi_rx_buf) {
1069		ret = -ENOMEM;
1070		goto error_probe;
1071	}
1072
1073	SET_NETDEV_DEV(net, &spi->dev);
1074
1075	/* Here is OK to not lock the MCP, no one knows about it yet */
1076	ret = mcp251x_hw_probe(spi);
1077	if (ret) {
1078		if (ret == -ENODEV)
1079			dev_err(&spi->dev, "Cannot initialize MCP%x. Wrong wiring?\n",
1080				priv->model);
1081		goto error_probe;
1082	}
1083
1084	mcp251x_hw_sleep(spi);
1085
1086	ret = register_candev(net);
1087	if (ret)
1088		goto error_probe;
1089
1090	devm_can_led_init(net);
1091
1092	netdev_info(net, "MCP%x successfully initialized.\n", priv->model);
1093	return 0;
1094
1095error_probe:
1096	mcp251x_power_enable(priv->power, 0);
1097
1098out_clk:
1099	clk_disable_unprepare(clk);
1100
1101out_free:
1102	free_candev(net);
1103
1104	dev_err(&spi->dev, "Probe failed, err=%d\n", -ret);
1105	return ret;
1106}
1107
1108static int mcp251x_can_remove(struct spi_device *spi)
1109{
1110	struct mcp251x_priv *priv = spi_get_drvdata(spi);
1111	struct net_device *net = priv->net;
1112
1113	unregister_candev(net);
1114
1115	mcp251x_power_enable(priv->power, 0);
1116
1117	clk_disable_unprepare(priv->clk);
1118
1119	free_candev(net);
1120
1121	return 0;
1122}
1123
1124static int __maybe_unused mcp251x_can_suspend(struct device *dev)
1125{
1126	struct spi_device *spi = to_spi_device(dev);
1127	struct mcp251x_priv *priv = spi_get_drvdata(spi);
1128	struct net_device *net = priv->net;
1129
1130	priv->force_quit = 1;
1131	disable_irq(spi->irq);
1132	/* Note: at this point neither IST nor workqueues are running.
1133	 * open/stop cannot be called anyway so locking is not needed
1134	 */
1135	if (netif_running(net)) {
1136		netif_device_detach(net);
1137
1138		mcp251x_hw_sleep(spi);
1139		mcp251x_power_enable(priv->transceiver, 0);
1140		priv->after_suspend = AFTER_SUSPEND_UP;
1141	} else {
1142		priv->after_suspend = AFTER_SUSPEND_DOWN;
1143	}
1144
1145	mcp251x_power_enable(priv->power, 0);
1146	priv->after_suspend |= AFTER_SUSPEND_POWER;
1147
1148	return 0;
1149}
1150
1151static int __maybe_unused mcp251x_can_resume(struct device *dev)
1152{
1153	struct spi_device *spi = to_spi_device(dev);
1154	struct mcp251x_priv *priv = spi_get_drvdata(spi);
1155
1156	if (priv->after_suspend & AFTER_SUSPEND_POWER)
1157		mcp251x_power_enable(priv->power, 1);
1158
1159	if (priv->after_suspend & AFTER_SUSPEND_UP) {
1160		mcp251x_power_enable(priv->transceiver, 1);
1161		queue_work(priv->wq, &priv->restart_work);
1162	} else {
1163		priv->after_suspend = 0;
1164	}
1165
1166	priv->force_quit = 0;
1167	enable_irq(spi->irq);
1168	return 0;
1169}
1170
1171static SIMPLE_DEV_PM_OPS(mcp251x_can_pm_ops, mcp251x_can_suspend,
1172	mcp251x_can_resume);
1173
1174static struct spi_driver mcp251x_can_driver = {
1175	.driver = {
1176		.name = DEVICE_NAME,
1177		.of_match_table = mcp251x_of_match,
1178		.pm = &mcp251x_can_pm_ops,
1179	},
1180	.id_table = mcp251x_id_table,
1181	.probe = mcp251x_can_probe,
1182	.remove = mcp251x_can_remove,
1183};
1184module_spi_driver(mcp251x_can_driver);
1185
1186MODULE_AUTHOR("Chris Elston <celston@katalix.com>, "
1187	      "Christian Pellegrin <chripell@evolware.org>");
1188MODULE_DESCRIPTION("Microchip 251x/25625 CAN driver");
1189MODULE_LICENSE("GPL v2");