Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.15.
   1// SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
   2/* Copyright (c) 2018 Facebook */
   3
   4#include <endian.h>
   5#include <stdio.h>
   6#include <stdlib.h>
   7#include <string.h>
   8#include <fcntl.h>
   9#include <unistd.h>
  10#include <errno.h>
  11#include <linux/err.h>
  12#include <linux/btf.h>
  13#include <gelf.h>
  14#include "btf.h"
  15#include "bpf.h"
  16#include "libbpf.h"
  17#include "libbpf_internal.h"
  18#include "hashmap.h"
  19
  20#define BTF_MAX_NR_TYPES 0x7fffffff
  21#define BTF_MAX_STR_OFFSET 0x7fffffff
  22
  23static struct btf_type btf_void;
  24
  25struct btf {
  26	union {
  27		struct btf_header *hdr;
  28		void *data;
  29	};
  30	struct btf_type **types;
  31	const char *strings;
  32	void *nohdr_data;
  33	__u32 nr_types;
  34	__u32 types_size;
  35	__u32 data_size;
  36	int fd;
  37};
  38
  39static inline __u64 ptr_to_u64(const void *ptr)
  40{
  41	return (__u64) (unsigned long) ptr;
  42}
  43
  44static int btf_add_type(struct btf *btf, struct btf_type *t)
  45{
  46	if (btf->types_size - btf->nr_types < 2) {
  47		struct btf_type **new_types;
  48		__u32 expand_by, new_size;
  49
  50		if (btf->types_size == BTF_MAX_NR_TYPES)
  51			return -E2BIG;
  52
  53		expand_by = max(btf->types_size >> 2, 16);
  54		new_size = min(BTF_MAX_NR_TYPES, btf->types_size + expand_by);
  55
  56		new_types = realloc(btf->types, sizeof(*new_types) * new_size);
  57		if (!new_types)
  58			return -ENOMEM;
  59
  60		if (btf->nr_types == 0)
  61			new_types[0] = &btf_void;
  62
  63		btf->types = new_types;
  64		btf->types_size = new_size;
  65	}
  66
  67	btf->types[++(btf->nr_types)] = t;
  68
  69	return 0;
  70}
  71
  72static int btf_parse_hdr(struct btf *btf)
  73{
  74	const struct btf_header *hdr = btf->hdr;
  75	__u32 meta_left;
  76
  77	if (btf->data_size < sizeof(struct btf_header)) {
  78		pr_debug("BTF header not found\n");
  79		return -EINVAL;
  80	}
  81
  82	if (hdr->magic != BTF_MAGIC) {
  83		pr_debug("Invalid BTF magic:%x\n", hdr->magic);
  84		return -EINVAL;
  85	}
  86
  87	if (hdr->version != BTF_VERSION) {
  88		pr_debug("Unsupported BTF version:%u\n", hdr->version);
  89		return -ENOTSUP;
  90	}
  91
  92	if (hdr->flags) {
  93		pr_debug("Unsupported BTF flags:%x\n", hdr->flags);
  94		return -ENOTSUP;
  95	}
  96
  97	meta_left = btf->data_size - sizeof(*hdr);
  98	if (!meta_left) {
  99		pr_debug("BTF has no data\n");
 100		return -EINVAL;
 101	}
 102
 103	if (meta_left < hdr->type_off) {
 104		pr_debug("Invalid BTF type section offset:%u\n", hdr->type_off);
 105		return -EINVAL;
 106	}
 107
 108	if (meta_left < hdr->str_off) {
 109		pr_debug("Invalid BTF string section offset:%u\n", hdr->str_off);
 110		return -EINVAL;
 111	}
 112
 113	if (hdr->type_off >= hdr->str_off) {
 114		pr_debug("BTF type section offset >= string section offset. No type?\n");
 115		return -EINVAL;
 116	}
 117
 118	if (hdr->type_off & 0x02) {
 119		pr_debug("BTF type section is not aligned to 4 bytes\n");
 120		return -EINVAL;
 121	}
 122
 123	btf->nohdr_data = btf->hdr + 1;
 124
 125	return 0;
 126}
 127
 128static int btf_parse_str_sec(struct btf *btf)
 129{
 130	const struct btf_header *hdr = btf->hdr;
 131	const char *start = btf->nohdr_data + hdr->str_off;
 132	const char *end = start + btf->hdr->str_len;
 133
 134	if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_STR_OFFSET ||
 135	    start[0] || end[-1]) {
 136		pr_debug("Invalid BTF string section\n");
 137		return -EINVAL;
 138	}
 139
 140	btf->strings = start;
 141
 142	return 0;
 143}
 144
 145static int btf_type_size(struct btf_type *t)
 146{
 147	int base_size = sizeof(struct btf_type);
 148	__u16 vlen = btf_vlen(t);
 149
 150	switch (btf_kind(t)) {
 151	case BTF_KIND_FWD:
 152	case BTF_KIND_CONST:
 153	case BTF_KIND_VOLATILE:
 154	case BTF_KIND_RESTRICT:
 155	case BTF_KIND_PTR:
 156	case BTF_KIND_TYPEDEF:
 157	case BTF_KIND_FUNC:
 158		return base_size;
 159	case BTF_KIND_INT:
 160		return base_size + sizeof(__u32);
 161	case BTF_KIND_ENUM:
 162		return base_size + vlen * sizeof(struct btf_enum);
 163	case BTF_KIND_ARRAY:
 164		return base_size + sizeof(struct btf_array);
 165	case BTF_KIND_STRUCT:
 166	case BTF_KIND_UNION:
 167		return base_size + vlen * sizeof(struct btf_member);
 168	case BTF_KIND_FUNC_PROTO:
 169		return base_size + vlen * sizeof(struct btf_param);
 170	case BTF_KIND_VAR:
 171		return base_size + sizeof(struct btf_var);
 172	case BTF_KIND_DATASEC:
 173		return base_size + vlen * sizeof(struct btf_var_secinfo);
 174	default:
 175		pr_debug("Unsupported BTF_KIND:%u\n", btf_kind(t));
 176		return -EINVAL;
 177	}
 178}
 179
 180static int btf_parse_type_sec(struct btf *btf)
 181{
 182	struct btf_header *hdr = btf->hdr;
 183	void *nohdr_data = btf->nohdr_data;
 184	void *next_type = nohdr_data + hdr->type_off;
 185	void *end_type = nohdr_data + hdr->str_off;
 186
 187	while (next_type < end_type) {
 188		struct btf_type *t = next_type;
 189		int type_size;
 190		int err;
 191
 192		type_size = btf_type_size(t);
 193		if (type_size < 0)
 194			return type_size;
 195		next_type += type_size;
 196		err = btf_add_type(btf, t);
 197		if (err)
 198			return err;
 199	}
 200
 201	return 0;
 202}
 203
 204__u32 btf__get_nr_types(const struct btf *btf)
 205{
 206	return btf->nr_types;
 207}
 208
 209const struct btf_type *btf__type_by_id(const struct btf *btf, __u32 type_id)
 210{
 211	if (type_id > btf->nr_types)
 212		return NULL;
 213
 214	return btf->types[type_id];
 215}
 216
 217static bool btf_type_is_void(const struct btf_type *t)
 218{
 219	return t == &btf_void || btf_is_fwd(t);
 220}
 221
 222static bool btf_type_is_void_or_null(const struct btf_type *t)
 223{
 224	return !t || btf_type_is_void(t);
 225}
 226
 227#define MAX_RESOLVE_DEPTH 32
 228
 229__s64 btf__resolve_size(const struct btf *btf, __u32 type_id)
 230{
 231	const struct btf_array *array;
 232	const struct btf_type *t;
 233	__u32 nelems = 1;
 234	__s64 size = -1;
 235	int i;
 236
 237	t = btf__type_by_id(btf, type_id);
 238	for (i = 0; i < MAX_RESOLVE_DEPTH && !btf_type_is_void_or_null(t);
 239	     i++) {
 240		switch (btf_kind(t)) {
 241		case BTF_KIND_INT:
 242		case BTF_KIND_STRUCT:
 243		case BTF_KIND_UNION:
 244		case BTF_KIND_ENUM:
 245		case BTF_KIND_DATASEC:
 246			size = t->size;
 247			goto done;
 248		case BTF_KIND_PTR:
 249			size = sizeof(void *);
 250			goto done;
 251		case BTF_KIND_TYPEDEF:
 252		case BTF_KIND_VOLATILE:
 253		case BTF_KIND_CONST:
 254		case BTF_KIND_RESTRICT:
 255		case BTF_KIND_VAR:
 256			type_id = t->type;
 257			break;
 258		case BTF_KIND_ARRAY:
 259			array = btf_array(t);
 260			if (nelems && array->nelems > UINT32_MAX / nelems)
 261				return -E2BIG;
 262			nelems *= array->nelems;
 263			type_id = array->type;
 264			break;
 265		default:
 266			return -EINVAL;
 267		}
 268
 269		t = btf__type_by_id(btf, type_id);
 270	}
 271
 272	if (size < 0)
 273		return -EINVAL;
 274
 275done:
 276	if (nelems && size > UINT32_MAX / nelems)
 277		return -E2BIG;
 278
 279	return nelems * size;
 280}
 281
 282int btf__resolve_type(const struct btf *btf, __u32 type_id)
 283{
 284	const struct btf_type *t;
 285	int depth = 0;
 286
 287	t = btf__type_by_id(btf, type_id);
 288	while (depth < MAX_RESOLVE_DEPTH &&
 289	       !btf_type_is_void_or_null(t) &&
 290	       (btf_is_mod(t) || btf_is_typedef(t) || btf_is_var(t))) {
 291		type_id = t->type;
 292		t = btf__type_by_id(btf, type_id);
 293		depth++;
 294	}
 295
 296	if (depth == MAX_RESOLVE_DEPTH || btf_type_is_void_or_null(t))
 297		return -EINVAL;
 298
 299	return type_id;
 300}
 301
 302__s32 btf__find_by_name(const struct btf *btf, const char *type_name)
 303{
 304	__u32 i;
 305
 306	if (!strcmp(type_name, "void"))
 307		return 0;
 308
 309	for (i = 1; i <= btf->nr_types; i++) {
 310		const struct btf_type *t = btf->types[i];
 311		const char *name = btf__name_by_offset(btf, t->name_off);
 312
 313		if (name && !strcmp(type_name, name))
 314			return i;
 315	}
 316
 317	return -ENOENT;
 318}
 319
 320void btf__free(struct btf *btf)
 321{
 322	if (!btf)
 323		return;
 324
 325	if (btf->fd != -1)
 326		close(btf->fd);
 327
 328	free(btf->data);
 329	free(btf->types);
 330	free(btf);
 331}
 332
 333struct btf *btf__new(__u8 *data, __u32 size)
 334{
 335	struct btf *btf;
 336	int err;
 337
 338	btf = calloc(1, sizeof(struct btf));
 339	if (!btf)
 340		return ERR_PTR(-ENOMEM);
 341
 342	btf->fd = -1;
 343
 344	btf->data = malloc(size);
 345	if (!btf->data) {
 346		err = -ENOMEM;
 347		goto done;
 348	}
 349
 350	memcpy(btf->data, data, size);
 351	btf->data_size = size;
 352
 353	err = btf_parse_hdr(btf);
 354	if (err)
 355		goto done;
 356
 357	err = btf_parse_str_sec(btf);
 358	if (err)
 359		goto done;
 360
 361	err = btf_parse_type_sec(btf);
 362
 363done:
 364	if (err) {
 365		btf__free(btf);
 366		return ERR_PTR(err);
 367	}
 368
 369	return btf;
 370}
 371
 372static bool btf_check_endianness(const GElf_Ehdr *ehdr)
 373{
 374#if __BYTE_ORDER == __LITTLE_ENDIAN
 375	return ehdr->e_ident[EI_DATA] == ELFDATA2LSB;
 376#elif __BYTE_ORDER == __BIG_ENDIAN
 377	return ehdr->e_ident[EI_DATA] == ELFDATA2MSB;
 378#else
 379# error "Unrecognized __BYTE_ORDER__"
 380#endif
 381}
 382
 383struct btf *btf__parse_elf(const char *path, struct btf_ext **btf_ext)
 384{
 385	Elf_Data *btf_data = NULL, *btf_ext_data = NULL;
 386	int err = 0, fd = -1, idx = 0;
 387	struct btf *btf = NULL;
 388	Elf_Scn *scn = NULL;
 389	Elf *elf = NULL;
 390	GElf_Ehdr ehdr;
 391
 392	if (elf_version(EV_CURRENT) == EV_NONE) {
 393		pr_warning("failed to init libelf for %s\n", path);
 394		return ERR_PTR(-LIBBPF_ERRNO__LIBELF);
 395	}
 396
 397	fd = open(path, O_RDONLY);
 398	if (fd < 0) {
 399		err = -errno;
 400		pr_warning("failed to open %s: %s\n", path, strerror(errno));
 401		return ERR_PTR(err);
 402	}
 403
 404	err = -LIBBPF_ERRNO__FORMAT;
 405
 406	elf = elf_begin(fd, ELF_C_READ, NULL);
 407	if (!elf) {
 408		pr_warning("failed to open %s as ELF file\n", path);
 409		goto done;
 410	}
 411	if (!gelf_getehdr(elf, &ehdr)) {
 412		pr_warning("failed to get EHDR from %s\n", path);
 413		goto done;
 414	}
 415	if (!btf_check_endianness(&ehdr)) {
 416		pr_warning("non-native ELF endianness is not supported\n");
 417		goto done;
 418	}
 419	if (!elf_rawdata(elf_getscn(elf, ehdr.e_shstrndx), NULL)) {
 420		pr_warning("failed to get e_shstrndx from %s\n", path);
 421		goto done;
 422	}
 423
 424	while ((scn = elf_nextscn(elf, scn)) != NULL) {
 425		GElf_Shdr sh;
 426		char *name;
 427
 428		idx++;
 429		if (gelf_getshdr(scn, &sh) != &sh) {
 430			pr_warning("failed to get section(%d) header from %s\n",
 431				   idx, path);
 432			goto done;
 433		}
 434		name = elf_strptr(elf, ehdr.e_shstrndx, sh.sh_name);
 435		if (!name) {
 436			pr_warning("failed to get section(%d) name from %s\n",
 437				   idx, path);
 438			goto done;
 439		}
 440		if (strcmp(name, BTF_ELF_SEC) == 0) {
 441			btf_data = elf_getdata(scn, 0);
 442			if (!btf_data) {
 443				pr_warning("failed to get section(%d, %s) data from %s\n",
 444					   idx, name, path);
 445				goto done;
 446			}
 447			continue;
 448		} else if (btf_ext && strcmp(name, BTF_EXT_ELF_SEC) == 0) {
 449			btf_ext_data = elf_getdata(scn, 0);
 450			if (!btf_ext_data) {
 451				pr_warning("failed to get section(%d, %s) data from %s\n",
 452					   idx, name, path);
 453				goto done;
 454			}
 455			continue;
 456		}
 457	}
 458
 459	err = 0;
 460
 461	if (!btf_data) {
 462		err = -ENOENT;
 463		goto done;
 464	}
 465	btf = btf__new(btf_data->d_buf, btf_data->d_size);
 466	if (IS_ERR(btf))
 467		goto done;
 468
 469	if (btf_ext && btf_ext_data) {
 470		*btf_ext = btf_ext__new(btf_ext_data->d_buf,
 471					btf_ext_data->d_size);
 472		if (IS_ERR(*btf_ext))
 473			goto done;
 474	} else if (btf_ext) {
 475		*btf_ext = NULL;
 476	}
 477done:
 478	if (elf)
 479		elf_end(elf);
 480	close(fd);
 481
 482	if (err)
 483		return ERR_PTR(err);
 484	/*
 485	 * btf is always parsed before btf_ext, so no need to clean up
 486	 * btf_ext, if btf loading failed
 487	 */
 488	if (IS_ERR(btf))
 489		return btf;
 490	if (btf_ext && IS_ERR(*btf_ext)) {
 491		btf__free(btf);
 492		err = PTR_ERR(*btf_ext);
 493		return ERR_PTR(err);
 494	}
 495	return btf;
 496}
 497
 498static int compare_vsi_off(const void *_a, const void *_b)
 499{
 500	const struct btf_var_secinfo *a = _a;
 501	const struct btf_var_secinfo *b = _b;
 502
 503	return a->offset - b->offset;
 504}
 505
 506static int btf_fixup_datasec(struct bpf_object *obj, struct btf *btf,
 507			     struct btf_type *t)
 508{
 509	__u32 size = 0, off = 0, i, vars = btf_vlen(t);
 510	const char *name = btf__name_by_offset(btf, t->name_off);
 511	const struct btf_type *t_var;
 512	struct btf_var_secinfo *vsi;
 513	const struct btf_var *var;
 514	int ret;
 515
 516	if (!name) {
 517		pr_debug("No name found in string section for DATASEC kind.\n");
 518		return -ENOENT;
 519	}
 520
 521	ret = bpf_object__section_size(obj, name, &size);
 522	if (ret || !size || (t->size && t->size != size)) {
 523		pr_debug("Invalid size for section %s: %u bytes\n", name, size);
 524		return -ENOENT;
 525	}
 526
 527	t->size = size;
 528
 529	for (i = 0, vsi = btf_var_secinfos(t); i < vars; i++, vsi++) {
 530		t_var = btf__type_by_id(btf, vsi->type);
 531		var = btf_var(t_var);
 532
 533		if (!btf_is_var(t_var)) {
 534			pr_debug("Non-VAR type seen in section %s\n", name);
 535			return -EINVAL;
 536		}
 537
 538		if (var->linkage == BTF_VAR_STATIC)
 539			continue;
 540
 541		name = btf__name_by_offset(btf, t_var->name_off);
 542		if (!name) {
 543			pr_debug("No name found in string section for VAR kind\n");
 544			return -ENOENT;
 545		}
 546
 547		ret = bpf_object__variable_offset(obj, name, &off);
 548		if (ret) {
 549			pr_debug("No offset found in symbol table for VAR %s\n",
 550				 name);
 551			return -ENOENT;
 552		}
 553
 554		vsi->offset = off;
 555	}
 556
 557	qsort(t + 1, vars, sizeof(*vsi), compare_vsi_off);
 558	return 0;
 559}
 560
 561int btf__finalize_data(struct bpf_object *obj, struct btf *btf)
 562{
 563	int err = 0;
 564	__u32 i;
 565
 566	for (i = 1; i <= btf->nr_types; i++) {
 567		struct btf_type *t = btf->types[i];
 568
 569		/* Loader needs to fix up some of the things compiler
 570		 * couldn't get its hands on while emitting BTF. This
 571		 * is section size and global variable offset. We use
 572		 * the info from the ELF itself for this purpose.
 573		 */
 574		if (btf_is_datasec(t)) {
 575			err = btf_fixup_datasec(obj, btf, t);
 576			if (err)
 577				break;
 578		}
 579	}
 580
 581	return err;
 582}
 583
 584int btf__load(struct btf *btf)
 585{
 586	__u32 log_buf_size = BPF_LOG_BUF_SIZE;
 587	char *log_buf = NULL;
 588	int err = 0;
 589
 590	if (btf->fd >= 0)
 591		return -EEXIST;
 592
 593	log_buf = malloc(log_buf_size);
 594	if (!log_buf)
 595		return -ENOMEM;
 596
 597	*log_buf = 0;
 598
 599	btf->fd = bpf_load_btf(btf->data, btf->data_size,
 600			       log_buf, log_buf_size, false);
 601	if (btf->fd < 0) {
 602		err = -errno;
 603		pr_warning("Error loading BTF: %s(%d)\n", strerror(errno), errno);
 604		if (*log_buf)
 605			pr_warning("%s\n", log_buf);
 606		goto done;
 607	}
 608
 609done:
 610	free(log_buf);
 611	return err;
 612}
 613
 614int btf__fd(const struct btf *btf)
 615{
 616	return btf->fd;
 617}
 618
 619const void *btf__get_raw_data(const struct btf *btf, __u32 *size)
 620{
 621	*size = btf->data_size;
 622	return btf->data;
 623}
 624
 625const char *btf__name_by_offset(const struct btf *btf, __u32 offset)
 626{
 627	if (offset < btf->hdr->str_len)
 628		return &btf->strings[offset];
 629	else
 630		return NULL;
 631}
 632
 633int btf__get_from_id(__u32 id, struct btf **btf)
 634{
 635	struct bpf_btf_info btf_info = { 0 };
 636	__u32 len = sizeof(btf_info);
 637	__u32 last_size;
 638	int btf_fd;
 639	void *ptr;
 640	int err;
 641
 642	err = 0;
 643	*btf = NULL;
 644	btf_fd = bpf_btf_get_fd_by_id(id);
 645	if (btf_fd < 0)
 646		return 0;
 647
 648	/* we won't know btf_size until we call bpf_obj_get_info_by_fd(). so
 649	 * let's start with a sane default - 4KiB here - and resize it only if
 650	 * bpf_obj_get_info_by_fd() needs a bigger buffer.
 651	 */
 652	btf_info.btf_size = 4096;
 653	last_size = btf_info.btf_size;
 654	ptr = malloc(last_size);
 655	if (!ptr) {
 656		err = -ENOMEM;
 657		goto exit_free;
 658	}
 659
 660	memset(ptr, 0, last_size);
 661	btf_info.btf = ptr_to_u64(ptr);
 662	err = bpf_obj_get_info_by_fd(btf_fd, &btf_info, &len);
 663
 664	if (!err && btf_info.btf_size > last_size) {
 665		void *temp_ptr;
 666
 667		last_size = btf_info.btf_size;
 668		temp_ptr = realloc(ptr, last_size);
 669		if (!temp_ptr) {
 670			err = -ENOMEM;
 671			goto exit_free;
 672		}
 673		ptr = temp_ptr;
 674		memset(ptr, 0, last_size);
 675		btf_info.btf = ptr_to_u64(ptr);
 676		err = bpf_obj_get_info_by_fd(btf_fd, &btf_info, &len);
 677	}
 678
 679	if (err || btf_info.btf_size > last_size) {
 680		err = errno;
 681		goto exit_free;
 682	}
 683
 684	*btf = btf__new((__u8 *)(long)btf_info.btf, btf_info.btf_size);
 685	if (IS_ERR(*btf)) {
 686		err = PTR_ERR(*btf);
 687		*btf = NULL;
 688	}
 689
 690exit_free:
 691	close(btf_fd);
 692	free(ptr);
 693
 694	return err;
 695}
 696
 697int btf__get_map_kv_tids(const struct btf *btf, const char *map_name,
 698			 __u32 expected_key_size, __u32 expected_value_size,
 699			 __u32 *key_type_id, __u32 *value_type_id)
 700{
 701	const struct btf_type *container_type;
 702	const struct btf_member *key, *value;
 703	const size_t max_name = 256;
 704	char container_name[max_name];
 705	__s64 key_size, value_size;
 706	__s32 container_id;
 707
 708	if (snprintf(container_name, max_name, "____btf_map_%s", map_name) ==
 709	    max_name) {
 710		pr_warning("map:%s length of '____btf_map_%s' is too long\n",
 711			   map_name, map_name);
 712		return -EINVAL;
 713	}
 714
 715	container_id = btf__find_by_name(btf, container_name);
 716	if (container_id < 0) {
 717		pr_debug("map:%s container_name:%s cannot be found in BTF. Missing BPF_ANNOTATE_KV_PAIR?\n",
 718			 map_name, container_name);
 719		return container_id;
 720	}
 721
 722	container_type = btf__type_by_id(btf, container_id);
 723	if (!container_type) {
 724		pr_warning("map:%s cannot find BTF type for container_id:%u\n",
 725			   map_name, container_id);
 726		return -EINVAL;
 727	}
 728
 729	if (!btf_is_struct(container_type) || btf_vlen(container_type) < 2) {
 730		pr_warning("map:%s container_name:%s is an invalid container struct\n",
 731			   map_name, container_name);
 732		return -EINVAL;
 733	}
 734
 735	key = btf_members(container_type);
 736	value = key + 1;
 737
 738	key_size = btf__resolve_size(btf, key->type);
 739	if (key_size < 0) {
 740		pr_warning("map:%s invalid BTF key_type_size\n", map_name);
 741		return key_size;
 742	}
 743
 744	if (expected_key_size != key_size) {
 745		pr_warning("map:%s btf_key_type_size:%u != map_def_key_size:%u\n",
 746			   map_name, (__u32)key_size, expected_key_size);
 747		return -EINVAL;
 748	}
 749
 750	value_size = btf__resolve_size(btf, value->type);
 751	if (value_size < 0) {
 752		pr_warning("map:%s invalid BTF value_type_size\n", map_name);
 753		return value_size;
 754	}
 755
 756	if (expected_value_size != value_size) {
 757		pr_warning("map:%s btf_value_type_size:%u != map_def_value_size:%u\n",
 758			   map_name, (__u32)value_size, expected_value_size);
 759		return -EINVAL;
 760	}
 761
 762	*key_type_id = key->type;
 763	*value_type_id = value->type;
 764
 765	return 0;
 766}
 767
 768struct btf_ext_sec_setup_param {
 769	__u32 off;
 770	__u32 len;
 771	__u32 min_rec_size;
 772	struct btf_ext_info *ext_info;
 773	const char *desc;
 774};
 775
 776static int btf_ext_setup_info(struct btf_ext *btf_ext,
 777			      struct btf_ext_sec_setup_param *ext_sec)
 778{
 779	const struct btf_ext_info_sec *sinfo;
 780	struct btf_ext_info *ext_info;
 781	__u32 info_left, record_size;
 782	/* The start of the info sec (including the __u32 record_size). */
 783	void *info;
 784
 785	if (ext_sec->len == 0)
 786		return 0;
 787
 788	if (ext_sec->off & 0x03) {
 789		pr_debug(".BTF.ext %s section is not aligned to 4 bytes\n",
 790		     ext_sec->desc);
 791		return -EINVAL;
 792	}
 793
 794	info = btf_ext->data + btf_ext->hdr->hdr_len + ext_sec->off;
 795	info_left = ext_sec->len;
 796
 797	if (btf_ext->data + btf_ext->data_size < info + ext_sec->len) {
 798		pr_debug("%s section (off:%u len:%u) is beyond the end of the ELF section .BTF.ext\n",
 799			 ext_sec->desc, ext_sec->off, ext_sec->len);
 800		return -EINVAL;
 801	}
 802
 803	/* At least a record size */
 804	if (info_left < sizeof(__u32)) {
 805		pr_debug(".BTF.ext %s record size not found\n", ext_sec->desc);
 806		return -EINVAL;
 807	}
 808
 809	/* The record size needs to meet the minimum standard */
 810	record_size = *(__u32 *)info;
 811	if (record_size < ext_sec->min_rec_size ||
 812	    record_size & 0x03) {
 813		pr_debug("%s section in .BTF.ext has invalid record size %u\n",
 814			 ext_sec->desc, record_size);
 815		return -EINVAL;
 816	}
 817
 818	sinfo = info + sizeof(__u32);
 819	info_left -= sizeof(__u32);
 820
 821	/* If no records, return failure now so .BTF.ext won't be used. */
 822	if (!info_left) {
 823		pr_debug("%s section in .BTF.ext has no records", ext_sec->desc);
 824		return -EINVAL;
 825	}
 826
 827	while (info_left) {
 828		unsigned int sec_hdrlen = sizeof(struct btf_ext_info_sec);
 829		__u64 total_record_size;
 830		__u32 num_records;
 831
 832		if (info_left < sec_hdrlen) {
 833			pr_debug("%s section header is not found in .BTF.ext\n",
 834			     ext_sec->desc);
 835			return -EINVAL;
 836		}
 837
 838		num_records = sinfo->num_info;
 839		if (num_records == 0) {
 840			pr_debug("%s section has incorrect num_records in .BTF.ext\n",
 841			     ext_sec->desc);
 842			return -EINVAL;
 843		}
 844
 845		total_record_size = sec_hdrlen +
 846				    (__u64)num_records * record_size;
 847		if (info_left < total_record_size) {
 848			pr_debug("%s section has incorrect num_records in .BTF.ext\n",
 849			     ext_sec->desc);
 850			return -EINVAL;
 851		}
 852
 853		info_left -= total_record_size;
 854		sinfo = (void *)sinfo + total_record_size;
 855	}
 856
 857	ext_info = ext_sec->ext_info;
 858	ext_info->len = ext_sec->len - sizeof(__u32);
 859	ext_info->rec_size = record_size;
 860	ext_info->info = info + sizeof(__u32);
 861
 862	return 0;
 863}
 864
 865static int btf_ext_setup_func_info(struct btf_ext *btf_ext)
 866{
 867	struct btf_ext_sec_setup_param param = {
 868		.off = btf_ext->hdr->func_info_off,
 869		.len = btf_ext->hdr->func_info_len,
 870		.min_rec_size = sizeof(struct bpf_func_info_min),
 871		.ext_info = &btf_ext->func_info,
 872		.desc = "func_info"
 873	};
 874
 875	return btf_ext_setup_info(btf_ext, &param);
 876}
 877
 878static int btf_ext_setup_line_info(struct btf_ext *btf_ext)
 879{
 880	struct btf_ext_sec_setup_param param = {
 881		.off = btf_ext->hdr->line_info_off,
 882		.len = btf_ext->hdr->line_info_len,
 883		.min_rec_size = sizeof(struct bpf_line_info_min),
 884		.ext_info = &btf_ext->line_info,
 885		.desc = "line_info",
 886	};
 887
 888	return btf_ext_setup_info(btf_ext, &param);
 889}
 890
 891static int btf_ext_setup_offset_reloc(struct btf_ext *btf_ext)
 892{
 893	struct btf_ext_sec_setup_param param = {
 894		.off = btf_ext->hdr->offset_reloc_off,
 895		.len = btf_ext->hdr->offset_reloc_len,
 896		.min_rec_size = sizeof(struct bpf_offset_reloc),
 897		.ext_info = &btf_ext->offset_reloc_info,
 898		.desc = "offset_reloc",
 899	};
 900
 901	return btf_ext_setup_info(btf_ext, &param);
 902}
 903
 904static int btf_ext_parse_hdr(__u8 *data, __u32 data_size)
 905{
 906	const struct btf_ext_header *hdr = (struct btf_ext_header *)data;
 907
 908	if (data_size < offsetofend(struct btf_ext_header, hdr_len) ||
 909	    data_size < hdr->hdr_len) {
 910		pr_debug("BTF.ext header not found");
 911		return -EINVAL;
 912	}
 913
 914	if (hdr->magic != BTF_MAGIC) {
 915		pr_debug("Invalid BTF.ext magic:%x\n", hdr->magic);
 916		return -EINVAL;
 917	}
 918
 919	if (hdr->version != BTF_VERSION) {
 920		pr_debug("Unsupported BTF.ext version:%u\n", hdr->version);
 921		return -ENOTSUP;
 922	}
 923
 924	if (hdr->flags) {
 925		pr_debug("Unsupported BTF.ext flags:%x\n", hdr->flags);
 926		return -ENOTSUP;
 927	}
 928
 929	if (data_size == hdr->hdr_len) {
 930		pr_debug("BTF.ext has no data\n");
 931		return -EINVAL;
 932	}
 933
 934	return 0;
 935}
 936
 937void btf_ext__free(struct btf_ext *btf_ext)
 938{
 939	if (!btf_ext)
 940		return;
 941	free(btf_ext->data);
 942	free(btf_ext);
 943}
 944
 945struct btf_ext *btf_ext__new(__u8 *data, __u32 size)
 946{
 947	struct btf_ext *btf_ext;
 948	int err;
 949
 950	err = btf_ext_parse_hdr(data, size);
 951	if (err)
 952		return ERR_PTR(err);
 953
 954	btf_ext = calloc(1, sizeof(struct btf_ext));
 955	if (!btf_ext)
 956		return ERR_PTR(-ENOMEM);
 957
 958	btf_ext->data_size = size;
 959	btf_ext->data = malloc(size);
 960	if (!btf_ext->data) {
 961		err = -ENOMEM;
 962		goto done;
 963	}
 964	memcpy(btf_ext->data, data, size);
 965
 966	if (btf_ext->hdr->hdr_len <
 967	    offsetofend(struct btf_ext_header, line_info_len))
 968		goto done;
 969	err = btf_ext_setup_func_info(btf_ext);
 970	if (err)
 971		goto done;
 972
 973	err = btf_ext_setup_line_info(btf_ext);
 974	if (err)
 975		goto done;
 976
 977	if (btf_ext->hdr->hdr_len <
 978	    offsetofend(struct btf_ext_header, offset_reloc_len))
 979		goto done;
 980	err = btf_ext_setup_offset_reloc(btf_ext);
 981	if (err)
 982		goto done;
 983
 984done:
 985	if (err) {
 986		btf_ext__free(btf_ext);
 987		return ERR_PTR(err);
 988	}
 989
 990	return btf_ext;
 991}
 992
 993const void *btf_ext__get_raw_data(const struct btf_ext *btf_ext, __u32 *size)
 994{
 995	*size = btf_ext->data_size;
 996	return btf_ext->data;
 997}
 998
 999static int btf_ext_reloc_info(const struct btf *btf,
1000			      const struct btf_ext_info *ext_info,
1001			      const char *sec_name, __u32 insns_cnt,
1002			      void **info, __u32 *cnt)
1003{
1004	__u32 sec_hdrlen = sizeof(struct btf_ext_info_sec);
1005	__u32 i, record_size, existing_len, records_len;
1006	struct btf_ext_info_sec *sinfo;
1007	const char *info_sec_name;
1008	__u64 remain_len;
1009	void *data;
1010
1011	record_size = ext_info->rec_size;
1012	sinfo = ext_info->info;
1013	remain_len = ext_info->len;
1014	while (remain_len > 0) {
1015		records_len = sinfo->num_info * record_size;
1016		info_sec_name = btf__name_by_offset(btf, sinfo->sec_name_off);
1017		if (strcmp(info_sec_name, sec_name)) {
1018			remain_len -= sec_hdrlen + records_len;
1019			sinfo = (void *)sinfo + sec_hdrlen + records_len;
1020			continue;
1021		}
1022
1023		existing_len = (*cnt) * record_size;
1024		data = realloc(*info, existing_len + records_len);
1025		if (!data)
1026			return -ENOMEM;
1027
1028		memcpy(data + existing_len, sinfo->data, records_len);
1029		/* adjust insn_off only, the rest data will be passed
1030		 * to the kernel.
1031		 */
1032		for (i = 0; i < sinfo->num_info; i++) {
1033			__u32 *insn_off;
1034
1035			insn_off = data + existing_len + (i * record_size);
1036			*insn_off = *insn_off / sizeof(struct bpf_insn) +
1037				insns_cnt;
1038		}
1039		*info = data;
1040		*cnt += sinfo->num_info;
1041		return 0;
1042	}
1043
1044	return -ENOENT;
1045}
1046
1047int btf_ext__reloc_func_info(const struct btf *btf,
1048			     const struct btf_ext *btf_ext,
1049			     const char *sec_name, __u32 insns_cnt,
1050			     void **func_info, __u32 *cnt)
1051{
1052	return btf_ext_reloc_info(btf, &btf_ext->func_info, sec_name,
1053				  insns_cnt, func_info, cnt);
1054}
1055
1056int btf_ext__reloc_line_info(const struct btf *btf,
1057			     const struct btf_ext *btf_ext,
1058			     const char *sec_name, __u32 insns_cnt,
1059			     void **line_info, __u32 *cnt)
1060{
1061	return btf_ext_reloc_info(btf, &btf_ext->line_info, sec_name,
1062				  insns_cnt, line_info, cnt);
1063}
1064
1065__u32 btf_ext__func_info_rec_size(const struct btf_ext *btf_ext)
1066{
1067	return btf_ext->func_info.rec_size;
1068}
1069
1070__u32 btf_ext__line_info_rec_size(const struct btf_ext *btf_ext)
1071{
1072	return btf_ext->line_info.rec_size;
1073}
1074
1075struct btf_dedup;
1076
1077static struct btf_dedup *btf_dedup_new(struct btf *btf, struct btf_ext *btf_ext,
1078				       const struct btf_dedup_opts *opts);
1079static void btf_dedup_free(struct btf_dedup *d);
1080static int btf_dedup_strings(struct btf_dedup *d);
1081static int btf_dedup_prim_types(struct btf_dedup *d);
1082static int btf_dedup_struct_types(struct btf_dedup *d);
1083static int btf_dedup_ref_types(struct btf_dedup *d);
1084static int btf_dedup_compact_types(struct btf_dedup *d);
1085static int btf_dedup_remap_types(struct btf_dedup *d);
1086
1087/*
1088 * Deduplicate BTF types and strings.
1089 *
1090 * BTF dedup algorithm takes as an input `struct btf` representing `.BTF` ELF
1091 * section with all BTF type descriptors and string data. It overwrites that
1092 * memory in-place with deduplicated types and strings without any loss of
1093 * information. If optional `struct btf_ext` representing '.BTF.ext' ELF section
1094 * is provided, all the strings referenced from .BTF.ext section are honored
1095 * and updated to point to the right offsets after deduplication.
1096 *
1097 * If function returns with error, type/string data might be garbled and should
1098 * be discarded.
1099 *
1100 * More verbose and detailed description of both problem btf_dedup is solving,
1101 * as well as solution could be found at:
1102 * https://facebookmicrosites.github.io/bpf/blog/2018/11/14/btf-enhancement.html
1103 *
1104 * Problem description and justification
1105 * =====================================
1106 *
1107 * BTF type information is typically emitted either as a result of conversion
1108 * from DWARF to BTF or directly by compiler. In both cases, each compilation
1109 * unit contains information about a subset of all the types that are used
1110 * in an application. These subsets are frequently overlapping and contain a lot
1111 * of duplicated information when later concatenated together into a single
1112 * binary. This algorithm ensures that each unique type is represented by single
1113 * BTF type descriptor, greatly reducing resulting size of BTF data.
1114 *
1115 * Compilation unit isolation and subsequent duplication of data is not the only
1116 * problem. The same type hierarchy (e.g., struct and all the type that struct
1117 * references) in different compilation units can be represented in BTF to
1118 * various degrees of completeness (or, rather, incompleteness) due to
1119 * struct/union forward declarations.
1120 *
1121 * Let's take a look at an example, that we'll use to better understand the
1122 * problem (and solution). Suppose we have two compilation units, each using
1123 * same `struct S`, but each of them having incomplete type information about
1124 * struct's fields:
1125 *
1126 * // CU #1:
1127 * struct S;
1128 * struct A {
1129 *	int a;
1130 *	struct A* self;
1131 *	struct S* parent;
1132 * };
1133 * struct B;
1134 * struct S {
1135 *	struct A* a_ptr;
1136 *	struct B* b_ptr;
1137 * };
1138 *
1139 * // CU #2:
1140 * struct S;
1141 * struct A;
1142 * struct B {
1143 *	int b;
1144 *	struct B* self;
1145 *	struct S* parent;
1146 * };
1147 * struct S {
1148 *	struct A* a_ptr;
1149 *	struct B* b_ptr;
1150 * };
1151 *
1152 * In case of CU #1, BTF data will know only that `struct B` exist (but no
1153 * more), but will know the complete type information about `struct A`. While
1154 * for CU #2, it will know full type information about `struct B`, but will
1155 * only know about forward declaration of `struct A` (in BTF terms, it will
1156 * have `BTF_KIND_FWD` type descriptor with name `B`).
1157 *
1158 * This compilation unit isolation means that it's possible that there is no
1159 * single CU with complete type information describing structs `S`, `A`, and
1160 * `B`. Also, we might get tons of duplicated and redundant type information.
1161 *
1162 * Additional complication we need to keep in mind comes from the fact that
1163 * types, in general, can form graphs containing cycles, not just DAGs.
1164 *
1165 * While algorithm does deduplication, it also merges and resolves type
1166 * information (unless disabled throught `struct btf_opts`), whenever possible.
1167 * E.g., in the example above with two compilation units having partial type
1168 * information for structs `A` and `B`, the output of algorithm will emit
1169 * a single copy of each BTF type that describes structs `A`, `B`, and `S`
1170 * (as well as type information for `int` and pointers), as if they were defined
1171 * in a single compilation unit as:
1172 *
1173 * struct A {
1174 *	int a;
1175 *	struct A* self;
1176 *	struct S* parent;
1177 * };
1178 * struct B {
1179 *	int b;
1180 *	struct B* self;
1181 *	struct S* parent;
1182 * };
1183 * struct S {
1184 *	struct A* a_ptr;
1185 *	struct B* b_ptr;
1186 * };
1187 *
1188 * Algorithm summary
1189 * =================
1190 *
1191 * Algorithm completes its work in 6 separate passes:
1192 *
1193 * 1. Strings deduplication.
1194 * 2. Primitive types deduplication (int, enum, fwd).
1195 * 3. Struct/union types deduplication.
1196 * 4. Reference types deduplication (pointers, typedefs, arrays, funcs, func
1197 *    protos, and const/volatile/restrict modifiers).
1198 * 5. Types compaction.
1199 * 6. Types remapping.
1200 *
1201 * Algorithm determines canonical type descriptor, which is a single
1202 * representative type for each truly unique type. This canonical type is the
1203 * one that will go into final deduplicated BTF type information. For
1204 * struct/unions, it is also the type that algorithm will merge additional type
1205 * information into (while resolving FWDs), as it discovers it from data in
1206 * other CUs. Each input BTF type eventually gets either mapped to itself, if
1207 * that type is canonical, or to some other type, if that type is equivalent
1208 * and was chosen as canonical representative. This mapping is stored in
1209 * `btf_dedup->map` array. This map is also used to record STRUCT/UNION that
1210 * FWD type got resolved to.
1211 *
1212 * To facilitate fast discovery of canonical types, we also maintain canonical
1213 * index (`btf_dedup->dedup_table`), which maps type descriptor's signature hash
1214 * (i.e., hashed kind, name, size, fields, etc) into a list of canonical types
1215 * that match that signature. With sufficiently good choice of type signature
1216 * hashing function, we can limit number of canonical types for each unique type
1217 * signature to a very small number, allowing to find canonical type for any
1218 * duplicated type very quickly.
1219 *
1220 * Struct/union deduplication is the most critical part and algorithm for
1221 * deduplicating structs/unions is described in greater details in comments for
1222 * `btf_dedup_is_equiv` function.
1223 */
1224int btf__dedup(struct btf *btf, struct btf_ext *btf_ext,
1225	       const struct btf_dedup_opts *opts)
1226{
1227	struct btf_dedup *d = btf_dedup_new(btf, btf_ext, opts);
1228	int err;
1229
1230	if (IS_ERR(d)) {
1231		pr_debug("btf_dedup_new failed: %ld", PTR_ERR(d));
1232		return -EINVAL;
1233	}
1234
1235	err = btf_dedup_strings(d);
1236	if (err < 0) {
1237		pr_debug("btf_dedup_strings failed:%d\n", err);
1238		goto done;
1239	}
1240	err = btf_dedup_prim_types(d);
1241	if (err < 0) {
1242		pr_debug("btf_dedup_prim_types failed:%d\n", err);
1243		goto done;
1244	}
1245	err = btf_dedup_struct_types(d);
1246	if (err < 0) {
1247		pr_debug("btf_dedup_struct_types failed:%d\n", err);
1248		goto done;
1249	}
1250	err = btf_dedup_ref_types(d);
1251	if (err < 0) {
1252		pr_debug("btf_dedup_ref_types failed:%d\n", err);
1253		goto done;
1254	}
1255	err = btf_dedup_compact_types(d);
1256	if (err < 0) {
1257		pr_debug("btf_dedup_compact_types failed:%d\n", err);
1258		goto done;
1259	}
1260	err = btf_dedup_remap_types(d);
1261	if (err < 0) {
1262		pr_debug("btf_dedup_remap_types failed:%d\n", err);
1263		goto done;
1264	}
1265
1266done:
1267	btf_dedup_free(d);
1268	return err;
1269}
1270
1271#define BTF_UNPROCESSED_ID ((__u32)-1)
1272#define BTF_IN_PROGRESS_ID ((__u32)-2)
1273
1274struct btf_dedup {
1275	/* .BTF section to be deduped in-place */
1276	struct btf *btf;
1277	/*
1278	 * Optional .BTF.ext section. When provided, any strings referenced
1279	 * from it will be taken into account when deduping strings
1280	 */
1281	struct btf_ext *btf_ext;
1282	/*
1283	 * This is a map from any type's signature hash to a list of possible
1284	 * canonical representative type candidates. Hash collisions are
1285	 * ignored, so even types of various kinds can share same list of
1286	 * candidates, which is fine because we rely on subsequent
1287	 * btf_xxx_equal() checks to authoritatively verify type equality.
1288	 */
1289	struct hashmap *dedup_table;
1290	/* Canonical types map */
1291	__u32 *map;
1292	/* Hypothetical mapping, used during type graph equivalence checks */
1293	__u32 *hypot_map;
1294	__u32 *hypot_list;
1295	size_t hypot_cnt;
1296	size_t hypot_cap;
1297	/* Various option modifying behavior of algorithm */
1298	struct btf_dedup_opts opts;
1299};
1300
1301struct btf_str_ptr {
1302	const char *str;
1303	__u32 new_off;
1304	bool used;
1305};
1306
1307struct btf_str_ptrs {
1308	struct btf_str_ptr *ptrs;
1309	const char *data;
1310	__u32 cnt;
1311	__u32 cap;
1312};
1313
1314static long hash_combine(long h, long value)
1315{
1316	return h * 31 + value;
1317}
1318
1319#define for_each_dedup_cand(d, node, hash) \
1320	hashmap__for_each_key_entry(d->dedup_table, node, (void *)hash)
1321
1322static int btf_dedup_table_add(struct btf_dedup *d, long hash, __u32 type_id)
1323{
1324	return hashmap__append(d->dedup_table,
1325			       (void *)hash, (void *)(long)type_id);
1326}
1327
1328static int btf_dedup_hypot_map_add(struct btf_dedup *d,
1329				   __u32 from_id, __u32 to_id)
1330{
1331	if (d->hypot_cnt == d->hypot_cap) {
1332		__u32 *new_list;
1333
1334		d->hypot_cap += max(16, d->hypot_cap / 2);
1335		new_list = realloc(d->hypot_list, sizeof(__u32) * d->hypot_cap);
1336		if (!new_list)
1337			return -ENOMEM;
1338		d->hypot_list = new_list;
1339	}
1340	d->hypot_list[d->hypot_cnt++] = from_id;
1341	d->hypot_map[from_id] = to_id;
1342	return 0;
1343}
1344
1345static void btf_dedup_clear_hypot_map(struct btf_dedup *d)
1346{
1347	int i;
1348
1349	for (i = 0; i < d->hypot_cnt; i++)
1350		d->hypot_map[d->hypot_list[i]] = BTF_UNPROCESSED_ID;
1351	d->hypot_cnt = 0;
1352}
1353
1354static void btf_dedup_free(struct btf_dedup *d)
1355{
1356	hashmap__free(d->dedup_table);
1357	d->dedup_table = NULL;
1358
1359	free(d->map);
1360	d->map = NULL;
1361
1362	free(d->hypot_map);
1363	d->hypot_map = NULL;
1364
1365	free(d->hypot_list);
1366	d->hypot_list = NULL;
1367
1368	free(d);
1369}
1370
1371static size_t btf_dedup_identity_hash_fn(const void *key, void *ctx)
1372{
1373	return (size_t)key;
1374}
1375
1376static size_t btf_dedup_collision_hash_fn(const void *key, void *ctx)
1377{
1378	return 0;
1379}
1380
1381static bool btf_dedup_equal_fn(const void *k1, const void *k2, void *ctx)
1382{
1383	return k1 == k2;
1384}
1385
1386static struct btf_dedup *btf_dedup_new(struct btf *btf, struct btf_ext *btf_ext,
1387				       const struct btf_dedup_opts *opts)
1388{
1389	struct btf_dedup *d = calloc(1, sizeof(struct btf_dedup));
1390	hashmap_hash_fn hash_fn = btf_dedup_identity_hash_fn;
1391	int i, err = 0;
1392
1393	if (!d)
1394		return ERR_PTR(-ENOMEM);
1395
1396	d->opts.dont_resolve_fwds = opts && opts->dont_resolve_fwds;
1397	/* dedup_table_size is now used only to force collisions in tests */
1398	if (opts && opts->dedup_table_size == 1)
1399		hash_fn = btf_dedup_collision_hash_fn;
1400
1401	d->btf = btf;
1402	d->btf_ext = btf_ext;
1403
1404	d->dedup_table = hashmap__new(hash_fn, btf_dedup_equal_fn, NULL);
1405	if (IS_ERR(d->dedup_table)) {
1406		err = PTR_ERR(d->dedup_table);
1407		d->dedup_table = NULL;
1408		goto done;
1409	}
1410
1411	d->map = malloc(sizeof(__u32) * (1 + btf->nr_types));
1412	if (!d->map) {
1413		err = -ENOMEM;
1414		goto done;
1415	}
1416	/* special BTF "void" type is made canonical immediately */
1417	d->map[0] = 0;
1418	for (i = 1; i <= btf->nr_types; i++) {
1419		struct btf_type *t = d->btf->types[i];
1420
1421		/* VAR and DATASEC are never deduped and are self-canonical */
1422		if (btf_is_var(t) || btf_is_datasec(t))
1423			d->map[i] = i;
1424		else
1425			d->map[i] = BTF_UNPROCESSED_ID;
1426	}
1427
1428	d->hypot_map = malloc(sizeof(__u32) * (1 + btf->nr_types));
1429	if (!d->hypot_map) {
1430		err = -ENOMEM;
1431		goto done;
1432	}
1433	for (i = 0; i <= btf->nr_types; i++)
1434		d->hypot_map[i] = BTF_UNPROCESSED_ID;
1435
1436done:
1437	if (err) {
1438		btf_dedup_free(d);
1439		return ERR_PTR(err);
1440	}
1441
1442	return d;
1443}
1444
1445typedef int (*str_off_fn_t)(__u32 *str_off_ptr, void *ctx);
1446
1447/*
1448 * Iterate over all possible places in .BTF and .BTF.ext that can reference
1449 * string and pass pointer to it to a provided callback `fn`.
1450 */
1451static int btf_for_each_str_off(struct btf_dedup *d, str_off_fn_t fn, void *ctx)
1452{
1453	void *line_data_cur, *line_data_end;
1454	int i, j, r, rec_size;
1455	struct btf_type *t;
1456
1457	for (i = 1; i <= d->btf->nr_types; i++) {
1458		t = d->btf->types[i];
1459		r = fn(&t->name_off, ctx);
1460		if (r)
1461			return r;
1462
1463		switch (btf_kind(t)) {
1464		case BTF_KIND_STRUCT:
1465		case BTF_KIND_UNION: {
1466			struct btf_member *m = btf_members(t);
1467			__u16 vlen = btf_vlen(t);
1468
1469			for (j = 0; j < vlen; j++) {
1470				r = fn(&m->name_off, ctx);
1471				if (r)
1472					return r;
1473				m++;
1474			}
1475			break;
1476		}
1477		case BTF_KIND_ENUM: {
1478			struct btf_enum *m = btf_enum(t);
1479			__u16 vlen = btf_vlen(t);
1480
1481			for (j = 0; j < vlen; j++) {
1482				r = fn(&m->name_off, ctx);
1483				if (r)
1484					return r;
1485				m++;
1486			}
1487			break;
1488		}
1489		case BTF_KIND_FUNC_PROTO: {
1490			struct btf_param *m = btf_params(t);
1491			__u16 vlen = btf_vlen(t);
1492
1493			for (j = 0; j < vlen; j++) {
1494				r = fn(&m->name_off, ctx);
1495				if (r)
1496					return r;
1497				m++;
1498			}
1499			break;
1500		}
1501		default:
1502			break;
1503		}
1504	}
1505
1506	if (!d->btf_ext)
1507		return 0;
1508
1509	line_data_cur = d->btf_ext->line_info.info;
1510	line_data_end = d->btf_ext->line_info.info + d->btf_ext->line_info.len;
1511	rec_size = d->btf_ext->line_info.rec_size;
1512
1513	while (line_data_cur < line_data_end) {
1514		struct btf_ext_info_sec *sec = line_data_cur;
1515		struct bpf_line_info_min *line_info;
1516		__u32 num_info = sec->num_info;
1517
1518		r = fn(&sec->sec_name_off, ctx);
1519		if (r)
1520			return r;
1521
1522		line_data_cur += sizeof(struct btf_ext_info_sec);
1523		for (i = 0; i < num_info; i++) {
1524			line_info = line_data_cur;
1525			r = fn(&line_info->file_name_off, ctx);
1526			if (r)
1527				return r;
1528			r = fn(&line_info->line_off, ctx);
1529			if (r)
1530				return r;
1531			line_data_cur += rec_size;
1532		}
1533	}
1534
1535	return 0;
1536}
1537
1538static int str_sort_by_content(const void *a1, const void *a2)
1539{
1540	const struct btf_str_ptr *p1 = a1;
1541	const struct btf_str_ptr *p2 = a2;
1542
1543	return strcmp(p1->str, p2->str);
1544}
1545
1546static int str_sort_by_offset(const void *a1, const void *a2)
1547{
1548	const struct btf_str_ptr *p1 = a1;
1549	const struct btf_str_ptr *p2 = a2;
1550
1551	if (p1->str != p2->str)
1552		return p1->str < p2->str ? -1 : 1;
1553	return 0;
1554}
1555
1556static int btf_dedup_str_ptr_cmp(const void *str_ptr, const void *pelem)
1557{
1558	const struct btf_str_ptr *p = pelem;
1559
1560	if (str_ptr != p->str)
1561		return (const char *)str_ptr < p->str ? -1 : 1;
1562	return 0;
1563}
1564
1565static int btf_str_mark_as_used(__u32 *str_off_ptr, void *ctx)
1566{
1567	struct btf_str_ptrs *strs;
1568	struct btf_str_ptr *s;
1569
1570	if (*str_off_ptr == 0)
1571		return 0;
1572
1573	strs = ctx;
1574	s = bsearch(strs->data + *str_off_ptr, strs->ptrs, strs->cnt,
1575		    sizeof(struct btf_str_ptr), btf_dedup_str_ptr_cmp);
1576	if (!s)
1577		return -EINVAL;
1578	s->used = true;
1579	return 0;
1580}
1581
1582static int btf_str_remap_offset(__u32 *str_off_ptr, void *ctx)
1583{
1584	struct btf_str_ptrs *strs;
1585	struct btf_str_ptr *s;
1586
1587	if (*str_off_ptr == 0)
1588		return 0;
1589
1590	strs = ctx;
1591	s = bsearch(strs->data + *str_off_ptr, strs->ptrs, strs->cnt,
1592		    sizeof(struct btf_str_ptr), btf_dedup_str_ptr_cmp);
1593	if (!s)
1594		return -EINVAL;
1595	*str_off_ptr = s->new_off;
1596	return 0;
1597}
1598
1599/*
1600 * Dedup string and filter out those that are not referenced from either .BTF
1601 * or .BTF.ext (if provided) sections.
1602 *
1603 * This is done by building index of all strings in BTF's string section,
1604 * then iterating over all entities that can reference strings (e.g., type
1605 * names, struct field names, .BTF.ext line info, etc) and marking corresponding
1606 * strings as used. After that all used strings are deduped and compacted into
1607 * sequential blob of memory and new offsets are calculated. Then all the string
1608 * references are iterated again and rewritten using new offsets.
1609 */
1610static int btf_dedup_strings(struct btf_dedup *d)
1611{
1612	const struct btf_header *hdr = d->btf->hdr;
1613	char *start = (char *)d->btf->nohdr_data + hdr->str_off;
1614	char *end = start + d->btf->hdr->str_len;
1615	char *p = start, *tmp_strs = NULL;
1616	struct btf_str_ptrs strs = {
1617		.cnt = 0,
1618		.cap = 0,
1619		.ptrs = NULL,
1620		.data = start,
1621	};
1622	int i, j, err = 0, grp_idx;
1623	bool grp_used;
1624
1625	/* build index of all strings */
1626	while (p < end) {
1627		if (strs.cnt + 1 > strs.cap) {
1628			struct btf_str_ptr *new_ptrs;
1629
1630			strs.cap += max(strs.cnt / 2, 16);
1631			new_ptrs = realloc(strs.ptrs,
1632					   sizeof(strs.ptrs[0]) * strs.cap);
1633			if (!new_ptrs) {
1634				err = -ENOMEM;
1635				goto done;
1636			}
1637			strs.ptrs = new_ptrs;
1638		}
1639
1640		strs.ptrs[strs.cnt].str = p;
1641		strs.ptrs[strs.cnt].used = false;
1642
1643		p += strlen(p) + 1;
1644		strs.cnt++;
1645	}
1646
1647	/* temporary storage for deduplicated strings */
1648	tmp_strs = malloc(d->btf->hdr->str_len);
1649	if (!tmp_strs) {
1650		err = -ENOMEM;
1651		goto done;
1652	}
1653
1654	/* mark all used strings */
1655	strs.ptrs[0].used = true;
1656	err = btf_for_each_str_off(d, btf_str_mark_as_used, &strs);
1657	if (err)
1658		goto done;
1659
1660	/* sort strings by context, so that we can identify duplicates */
1661	qsort(strs.ptrs, strs.cnt, sizeof(strs.ptrs[0]), str_sort_by_content);
1662
1663	/*
1664	 * iterate groups of equal strings and if any instance in a group was
1665	 * referenced, emit single instance and remember new offset
1666	 */
1667	p = tmp_strs;
1668	grp_idx = 0;
1669	grp_used = strs.ptrs[0].used;
1670	/* iterate past end to avoid code duplication after loop */
1671	for (i = 1; i <= strs.cnt; i++) {
1672		/*
1673		 * when i == strs.cnt, we want to skip string comparison and go
1674		 * straight to handling last group of strings (otherwise we'd
1675		 * need to handle last group after the loop w/ duplicated code)
1676		 */
1677		if (i < strs.cnt &&
1678		    !strcmp(strs.ptrs[i].str, strs.ptrs[grp_idx].str)) {
1679			grp_used = grp_used || strs.ptrs[i].used;
1680			continue;
1681		}
1682
1683		/*
1684		 * this check would have been required after the loop to handle
1685		 * last group of strings, but due to <= condition in a loop
1686		 * we avoid that duplication
1687		 */
1688		if (grp_used) {
1689			int new_off = p - tmp_strs;
1690			__u32 len = strlen(strs.ptrs[grp_idx].str);
1691
1692			memmove(p, strs.ptrs[grp_idx].str, len + 1);
1693			for (j = grp_idx; j < i; j++)
1694				strs.ptrs[j].new_off = new_off;
1695			p += len + 1;
1696		}
1697
1698		if (i < strs.cnt) {
1699			grp_idx = i;
1700			grp_used = strs.ptrs[i].used;
1701		}
1702	}
1703
1704	/* replace original strings with deduped ones */
1705	d->btf->hdr->str_len = p - tmp_strs;
1706	memmove(start, tmp_strs, d->btf->hdr->str_len);
1707	end = start + d->btf->hdr->str_len;
1708
1709	/* restore original order for further binary search lookups */
1710	qsort(strs.ptrs, strs.cnt, sizeof(strs.ptrs[0]), str_sort_by_offset);
1711
1712	/* remap string offsets */
1713	err = btf_for_each_str_off(d, btf_str_remap_offset, &strs);
1714	if (err)
1715		goto done;
1716
1717	d->btf->hdr->str_len = end - start;
1718
1719done:
1720	free(tmp_strs);
1721	free(strs.ptrs);
1722	return err;
1723}
1724
1725static long btf_hash_common(struct btf_type *t)
1726{
1727	long h;
1728
1729	h = hash_combine(0, t->name_off);
1730	h = hash_combine(h, t->info);
1731	h = hash_combine(h, t->size);
1732	return h;
1733}
1734
1735static bool btf_equal_common(struct btf_type *t1, struct btf_type *t2)
1736{
1737	return t1->name_off == t2->name_off &&
1738	       t1->info == t2->info &&
1739	       t1->size == t2->size;
1740}
1741
1742/* Calculate type signature hash of INT. */
1743static long btf_hash_int(struct btf_type *t)
1744{
1745	__u32 info = *(__u32 *)(t + 1);
1746	long h;
1747
1748	h = btf_hash_common(t);
1749	h = hash_combine(h, info);
1750	return h;
1751}
1752
1753/* Check structural equality of two INTs. */
1754static bool btf_equal_int(struct btf_type *t1, struct btf_type *t2)
1755{
1756	__u32 info1, info2;
1757
1758	if (!btf_equal_common(t1, t2))
1759		return false;
1760	info1 = *(__u32 *)(t1 + 1);
1761	info2 = *(__u32 *)(t2 + 1);
1762	return info1 == info2;
1763}
1764
1765/* Calculate type signature hash of ENUM. */
1766static long btf_hash_enum(struct btf_type *t)
1767{
1768	long h;
1769
1770	/* don't hash vlen and enum members to support enum fwd resolving */
1771	h = hash_combine(0, t->name_off);
1772	h = hash_combine(h, t->info & ~0xffff);
1773	h = hash_combine(h, t->size);
1774	return h;
1775}
1776
1777/* Check structural equality of two ENUMs. */
1778static bool btf_equal_enum(struct btf_type *t1, struct btf_type *t2)
1779{
1780	const struct btf_enum *m1, *m2;
1781	__u16 vlen;
1782	int i;
1783
1784	if (!btf_equal_common(t1, t2))
1785		return false;
1786
1787	vlen = btf_vlen(t1);
1788	m1 = btf_enum(t1);
1789	m2 = btf_enum(t2);
1790	for (i = 0; i < vlen; i++) {
1791		if (m1->name_off != m2->name_off || m1->val != m2->val)
1792			return false;
1793		m1++;
1794		m2++;
1795	}
1796	return true;
1797}
1798
1799static inline bool btf_is_enum_fwd(struct btf_type *t)
1800{
1801	return btf_is_enum(t) && btf_vlen(t) == 0;
1802}
1803
1804static bool btf_compat_enum(struct btf_type *t1, struct btf_type *t2)
1805{
1806	if (!btf_is_enum_fwd(t1) && !btf_is_enum_fwd(t2))
1807		return btf_equal_enum(t1, t2);
1808	/* ignore vlen when comparing */
1809	return t1->name_off == t2->name_off &&
1810	       (t1->info & ~0xffff) == (t2->info & ~0xffff) &&
1811	       t1->size == t2->size;
1812}
1813
1814/*
1815 * Calculate type signature hash of STRUCT/UNION, ignoring referenced type IDs,
1816 * as referenced type IDs equivalence is established separately during type
1817 * graph equivalence check algorithm.
1818 */
1819static long btf_hash_struct(struct btf_type *t)
1820{
1821	const struct btf_member *member = btf_members(t);
1822	__u32 vlen = btf_vlen(t);
1823	long h = btf_hash_common(t);
1824	int i;
1825
1826	for (i = 0; i < vlen; i++) {
1827		h = hash_combine(h, member->name_off);
1828		h = hash_combine(h, member->offset);
1829		/* no hashing of referenced type ID, it can be unresolved yet */
1830		member++;
1831	}
1832	return h;
1833}
1834
1835/*
1836 * Check structural compatibility of two FUNC_PROTOs, ignoring referenced type
1837 * IDs. This check is performed during type graph equivalence check and
1838 * referenced types equivalence is checked separately.
1839 */
1840static bool btf_shallow_equal_struct(struct btf_type *t1, struct btf_type *t2)
1841{
1842	const struct btf_member *m1, *m2;
1843	__u16 vlen;
1844	int i;
1845
1846	if (!btf_equal_common(t1, t2))
1847		return false;
1848
1849	vlen = btf_vlen(t1);
1850	m1 = btf_members(t1);
1851	m2 = btf_members(t2);
1852	for (i = 0; i < vlen; i++) {
1853		if (m1->name_off != m2->name_off || m1->offset != m2->offset)
1854			return false;
1855		m1++;
1856		m2++;
1857	}
1858	return true;
1859}
1860
1861/*
1862 * Calculate type signature hash of ARRAY, including referenced type IDs,
1863 * under assumption that they were already resolved to canonical type IDs and
1864 * are not going to change.
1865 */
1866static long btf_hash_array(struct btf_type *t)
1867{
1868	const struct btf_array *info = btf_array(t);
1869	long h = btf_hash_common(t);
1870
1871	h = hash_combine(h, info->type);
1872	h = hash_combine(h, info->index_type);
1873	h = hash_combine(h, info->nelems);
1874	return h;
1875}
1876
1877/*
1878 * Check exact equality of two ARRAYs, taking into account referenced
1879 * type IDs, under assumption that they were already resolved to canonical
1880 * type IDs and are not going to change.
1881 * This function is called during reference types deduplication to compare
1882 * ARRAY to potential canonical representative.
1883 */
1884static bool btf_equal_array(struct btf_type *t1, struct btf_type *t2)
1885{
1886	const struct btf_array *info1, *info2;
1887
1888	if (!btf_equal_common(t1, t2))
1889		return false;
1890
1891	info1 = btf_array(t1);
1892	info2 = btf_array(t2);
1893	return info1->type == info2->type &&
1894	       info1->index_type == info2->index_type &&
1895	       info1->nelems == info2->nelems;
1896}
1897
1898/*
1899 * Check structural compatibility of two ARRAYs, ignoring referenced type
1900 * IDs. This check is performed during type graph equivalence check and
1901 * referenced types equivalence is checked separately.
1902 */
1903static bool btf_compat_array(struct btf_type *t1, struct btf_type *t2)
1904{
1905	if (!btf_equal_common(t1, t2))
1906		return false;
1907
1908	return btf_array(t1)->nelems == btf_array(t2)->nelems;
1909}
1910
1911/*
1912 * Calculate type signature hash of FUNC_PROTO, including referenced type IDs,
1913 * under assumption that they were already resolved to canonical type IDs and
1914 * are not going to change.
1915 */
1916static long btf_hash_fnproto(struct btf_type *t)
1917{
1918	const struct btf_param *member = btf_params(t);
1919	__u16 vlen = btf_vlen(t);
1920	long h = btf_hash_common(t);
1921	int i;
1922
1923	for (i = 0; i < vlen; i++) {
1924		h = hash_combine(h, member->name_off);
1925		h = hash_combine(h, member->type);
1926		member++;
1927	}
1928	return h;
1929}
1930
1931/*
1932 * Check exact equality of two FUNC_PROTOs, taking into account referenced
1933 * type IDs, under assumption that they were already resolved to canonical
1934 * type IDs and are not going to change.
1935 * This function is called during reference types deduplication to compare
1936 * FUNC_PROTO to potential canonical representative.
1937 */
1938static bool btf_equal_fnproto(struct btf_type *t1, struct btf_type *t2)
1939{
1940	const struct btf_param *m1, *m2;
1941	__u16 vlen;
1942	int i;
1943
1944	if (!btf_equal_common(t1, t2))
1945		return false;
1946
1947	vlen = btf_vlen(t1);
1948	m1 = btf_params(t1);
1949	m2 = btf_params(t2);
1950	for (i = 0; i < vlen; i++) {
1951		if (m1->name_off != m2->name_off || m1->type != m2->type)
1952			return false;
1953		m1++;
1954		m2++;
1955	}
1956	return true;
1957}
1958
1959/*
1960 * Check structural compatibility of two FUNC_PROTOs, ignoring referenced type
1961 * IDs. This check is performed during type graph equivalence check and
1962 * referenced types equivalence is checked separately.
1963 */
1964static bool btf_compat_fnproto(struct btf_type *t1, struct btf_type *t2)
1965{
1966	const struct btf_param *m1, *m2;
1967	__u16 vlen;
1968	int i;
1969
1970	/* skip return type ID */
1971	if (t1->name_off != t2->name_off || t1->info != t2->info)
1972		return false;
1973
1974	vlen = btf_vlen(t1);
1975	m1 = btf_params(t1);
1976	m2 = btf_params(t2);
1977	for (i = 0; i < vlen; i++) {
1978		if (m1->name_off != m2->name_off)
1979			return false;
1980		m1++;
1981		m2++;
1982	}
1983	return true;
1984}
1985
1986/*
1987 * Deduplicate primitive types, that can't reference other types, by calculating
1988 * their type signature hash and comparing them with any possible canonical
1989 * candidate. If no canonical candidate matches, type itself is marked as
1990 * canonical and is added into `btf_dedup->dedup_table` as another candidate.
1991 */
1992static int btf_dedup_prim_type(struct btf_dedup *d, __u32 type_id)
1993{
1994	struct btf_type *t = d->btf->types[type_id];
1995	struct hashmap_entry *hash_entry;
1996	struct btf_type *cand;
1997	/* if we don't find equivalent type, then we are canonical */
1998	__u32 new_id = type_id;
1999	__u32 cand_id;
2000	long h;
2001
2002	switch (btf_kind(t)) {
2003	case BTF_KIND_CONST:
2004	case BTF_KIND_VOLATILE:
2005	case BTF_KIND_RESTRICT:
2006	case BTF_KIND_PTR:
2007	case BTF_KIND_TYPEDEF:
2008	case BTF_KIND_ARRAY:
2009	case BTF_KIND_STRUCT:
2010	case BTF_KIND_UNION:
2011	case BTF_KIND_FUNC:
2012	case BTF_KIND_FUNC_PROTO:
2013	case BTF_KIND_VAR:
2014	case BTF_KIND_DATASEC:
2015		return 0;
2016
2017	case BTF_KIND_INT:
2018		h = btf_hash_int(t);
2019		for_each_dedup_cand(d, hash_entry, h) {
2020			cand_id = (__u32)(long)hash_entry->value;
2021			cand = d->btf->types[cand_id];
2022			if (btf_equal_int(t, cand)) {
2023				new_id = cand_id;
2024				break;
2025			}
2026		}
2027		break;
2028
2029	case BTF_KIND_ENUM:
2030		h = btf_hash_enum(t);
2031		for_each_dedup_cand(d, hash_entry, h) {
2032			cand_id = (__u32)(long)hash_entry->value;
2033			cand = d->btf->types[cand_id];
2034			if (btf_equal_enum(t, cand)) {
2035				new_id = cand_id;
2036				break;
2037			}
2038			if (d->opts.dont_resolve_fwds)
2039				continue;
2040			if (btf_compat_enum(t, cand)) {
2041				if (btf_is_enum_fwd(t)) {
2042					/* resolve fwd to full enum */
2043					new_id = cand_id;
2044					break;
2045				}
2046				/* resolve canonical enum fwd to full enum */
2047				d->map[cand_id] = type_id;
2048			}
2049		}
2050		break;
2051
2052	case BTF_KIND_FWD:
2053		h = btf_hash_common(t);
2054		for_each_dedup_cand(d, hash_entry, h) {
2055			cand_id = (__u32)(long)hash_entry->value;
2056			cand = d->btf->types[cand_id];
2057			if (btf_equal_common(t, cand)) {
2058				new_id = cand_id;
2059				break;
2060			}
2061		}
2062		break;
2063
2064	default:
2065		return -EINVAL;
2066	}
2067
2068	d->map[type_id] = new_id;
2069	if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
2070		return -ENOMEM;
2071
2072	return 0;
2073}
2074
2075static int btf_dedup_prim_types(struct btf_dedup *d)
2076{
2077	int i, err;
2078
2079	for (i = 1; i <= d->btf->nr_types; i++) {
2080		err = btf_dedup_prim_type(d, i);
2081		if (err)
2082			return err;
2083	}
2084	return 0;
2085}
2086
2087/*
2088 * Check whether type is already mapped into canonical one (could be to itself).
2089 */
2090static inline bool is_type_mapped(struct btf_dedup *d, uint32_t type_id)
2091{
2092	return d->map[type_id] <= BTF_MAX_NR_TYPES;
2093}
2094
2095/*
2096 * Resolve type ID into its canonical type ID, if any; otherwise return original
2097 * type ID. If type is FWD and is resolved into STRUCT/UNION already, follow
2098 * STRUCT/UNION link and resolve it into canonical type ID as well.
2099 */
2100static inline __u32 resolve_type_id(struct btf_dedup *d, __u32 type_id)
2101{
2102	while (is_type_mapped(d, type_id) && d->map[type_id] != type_id)
2103		type_id = d->map[type_id];
2104	return type_id;
2105}
2106
2107/*
2108 * Resolve FWD to underlying STRUCT/UNION, if any; otherwise return original
2109 * type ID.
2110 */
2111static uint32_t resolve_fwd_id(struct btf_dedup *d, uint32_t type_id)
2112{
2113	__u32 orig_type_id = type_id;
2114
2115	if (!btf_is_fwd(d->btf->types[type_id]))
2116		return type_id;
2117
2118	while (is_type_mapped(d, type_id) && d->map[type_id] != type_id)
2119		type_id = d->map[type_id];
2120
2121	if (!btf_is_fwd(d->btf->types[type_id]))
2122		return type_id;
2123
2124	return orig_type_id;
2125}
2126
2127
2128static inline __u16 btf_fwd_kind(struct btf_type *t)
2129{
2130	return btf_kflag(t) ? BTF_KIND_UNION : BTF_KIND_STRUCT;
2131}
2132
2133/*
2134 * Check equivalence of BTF type graph formed by candidate struct/union (we'll
2135 * call it "candidate graph" in this description for brevity) to a type graph
2136 * formed by (potential) canonical struct/union ("canonical graph" for brevity
2137 * here, though keep in mind that not all types in canonical graph are
2138 * necessarily canonical representatives themselves, some of them might be
2139 * duplicates or its uniqueness might not have been established yet).
2140 * Returns:
2141 *  - >0, if type graphs are equivalent;
2142 *  -  0, if not equivalent;
2143 *  - <0, on error.
2144 *
2145 * Algorithm performs side-by-side DFS traversal of both type graphs and checks
2146 * equivalence of BTF types at each step. If at any point BTF types in candidate
2147 * and canonical graphs are not compatible structurally, whole graphs are
2148 * incompatible. If types are structurally equivalent (i.e., all information
2149 * except referenced type IDs is exactly the same), a mapping from `canon_id` to
2150 * a `cand_id` is recored in hypothetical mapping (`btf_dedup->hypot_map`).
2151 * If a type references other types, then those referenced types are checked
2152 * for equivalence recursively.
2153 *
2154 * During DFS traversal, if we find that for current `canon_id` type we
2155 * already have some mapping in hypothetical map, we check for two possible
2156 * situations:
2157 *   - `canon_id` is mapped to exactly the same type as `cand_id`. This will
2158 *     happen when type graphs have cycles. In this case we assume those two
2159 *     types are equivalent.
2160 *   - `canon_id` is mapped to different type. This is contradiction in our
2161 *     hypothetical mapping, because same graph in canonical graph corresponds
2162 *     to two different types in candidate graph, which for equivalent type
2163 *     graphs shouldn't happen. This condition terminates equivalence check
2164 *     with negative result.
2165 *
2166 * If type graphs traversal exhausts types to check and find no contradiction,
2167 * then type graphs are equivalent.
2168 *
2169 * When checking types for equivalence, there is one special case: FWD types.
2170 * If FWD type resolution is allowed and one of the types (either from canonical
2171 * or candidate graph) is FWD and other is STRUCT/UNION (depending on FWD's kind
2172 * flag) and their names match, hypothetical mapping is updated to point from
2173 * FWD to STRUCT/UNION. If graphs will be determined as equivalent successfully,
2174 * this mapping will be used to record FWD -> STRUCT/UNION mapping permanently.
2175 *
2176 * Technically, this could lead to incorrect FWD to STRUCT/UNION resolution,
2177 * if there are two exactly named (or anonymous) structs/unions that are
2178 * compatible structurally, one of which has FWD field, while other is concrete
2179 * STRUCT/UNION, but according to C sources they are different structs/unions
2180 * that are referencing different types with the same name. This is extremely
2181 * unlikely to happen, but btf_dedup API allows to disable FWD resolution if
2182 * this logic is causing problems.
2183 *
2184 * Doing FWD resolution means that both candidate and/or canonical graphs can
2185 * consists of portions of the graph that come from multiple compilation units.
2186 * This is due to the fact that types within single compilation unit are always
2187 * deduplicated and FWDs are already resolved, if referenced struct/union
2188 * definiton is available. So, if we had unresolved FWD and found corresponding
2189 * STRUCT/UNION, they will be from different compilation units. This
2190 * consequently means that when we "link" FWD to corresponding STRUCT/UNION,
2191 * type graph will likely have at least two different BTF types that describe
2192 * same type (e.g., most probably there will be two different BTF types for the
2193 * same 'int' primitive type) and could even have "overlapping" parts of type
2194 * graph that describe same subset of types.
2195 *
2196 * This in turn means that our assumption that each type in canonical graph
2197 * must correspond to exactly one type in candidate graph might not hold
2198 * anymore and will make it harder to detect contradictions using hypothetical
2199 * map. To handle this problem, we allow to follow FWD -> STRUCT/UNION
2200 * resolution only in canonical graph. FWDs in candidate graphs are never
2201 * resolved. To see why it's OK, let's check all possible situations w.r.t. FWDs
2202 * that can occur:
2203 *   - Both types in canonical and candidate graphs are FWDs. If they are
2204 *     structurally equivalent, then they can either be both resolved to the
2205 *     same STRUCT/UNION or not resolved at all. In both cases they are
2206 *     equivalent and there is no need to resolve FWD on candidate side.
2207 *   - Both types in canonical and candidate graphs are concrete STRUCT/UNION,
2208 *     so nothing to resolve as well, algorithm will check equivalence anyway.
2209 *   - Type in canonical graph is FWD, while type in candidate is concrete
2210 *     STRUCT/UNION. In this case candidate graph comes from single compilation
2211 *     unit, so there is exactly one BTF type for each unique C type. After
2212 *     resolving FWD into STRUCT/UNION, there might be more than one BTF type
2213 *     in canonical graph mapping to single BTF type in candidate graph, but
2214 *     because hypothetical mapping maps from canonical to candidate types, it's
2215 *     alright, and we still maintain the property of having single `canon_id`
2216 *     mapping to single `cand_id` (there could be two different `canon_id`
2217 *     mapped to the same `cand_id`, but it's not contradictory).
2218 *   - Type in canonical graph is concrete STRUCT/UNION, while type in candidate
2219 *     graph is FWD. In this case we are just going to check compatibility of
2220 *     STRUCT/UNION and corresponding FWD, and if they are compatible, we'll
2221 *     assume that whatever STRUCT/UNION FWD resolves to must be equivalent to
2222 *     a concrete STRUCT/UNION from canonical graph. If the rest of type graphs
2223 *     turn out equivalent, we'll re-resolve FWD to concrete STRUCT/UNION from
2224 *     canonical graph.
2225 */
2226static int btf_dedup_is_equiv(struct btf_dedup *d, __u32 cand_id,
2227			      __u32 canon_id)
2228{
2229	struct btf_type *cand_type;
2230	struct btf_type *canon_type;
2231	__u32 hypot_type_id;
2232	__u16 cand_kind;
2233	__u16 canon_kind;
2234	int i, eq;
2235
2236	/* if both resolve to the same canonical, they must be equivalent */
2237	if (resolve_type_id(d, cand_id) == resolve_type_id(d, canon_id))
2238		return 1;
2239
2240	canon_id = resolve_fwd_id(d, canon_id);
2241
2242	hypot_type_id = d->hypot_map[canon_id];
2243	if (hypot_type_id <= BTF_MAX_NR_TYPES)
2244		return hypot_type_id == cand_id;
2245
2246	if (btf_dedup_hypot_map_add(d, canon_id, cand_id))
2247		return -ENOMEM;
2248
2249	cand_type = d->btf->types[cand_id];
2250	canon_type = d->btf->types[canon_id];
2251	cand_kind = btf_kind(cand_type);
2252	canon_kind = btf_kind(canon_type);
2253
2254	if (cand_type->name_off != canon_type->name_off)
2255		return 0;
2256
2257	/* FWD <--> STRUCT/UNION equivalence check, if enabled */
2258	if (!d->opts.dont_resolve_fwds
2259	    && (cand_kind == BTF_KIND_FWD || canon_kind == BTF_KIND_FWD)
2260	    && cand_kind != canon_kind) {
2261		__u16 real_kind;
2262		__u16 fwd_kind;
2263
2264		if (cand_kind == BTF_KIND_FWD) {
2265			real_kind = canon_kind;
2266			fwd_kind = btf_fwd_kind(cand_type);
2267		} else {
2268			real_kind = cand_kind;
2269			fwd_kind = btf_fwd_kind(canon_type);
2270		}
2271		return fwd_kind == real_kind;
2272	}
2273
2274	if (cand_kind != canon_kind)
2275		return 0;
2276
2277	switch (cand_kind) {
2278	case BTF_KIND_INT:
2279		return btf_equal_int(cand_type, canon_type);
2280
2281	case BTF_KIND_ENUM:
2282		if (d->opts.dont_resolve_fwds)
2283			return btf_equal_enum(cand_type, canon_type);
2284		else
2285			return btf_compat_enum(cand_type, canon_type);
2286
2287	case BTF_KIND_FWD:
2288		return btf_equal_common(cand_type, canon_type);
2289
2290	case BTF_KIND_CONST:
2291	case BTF_KIND_VOLATILE:
2292	case BTF_KIND_RESTRICT:
2293	case BTF_KIND_PTR:
2294	case BTF_KIND_TYPEDEF:
2295	case BTF_KIND_FUNC:
2296		if (cand_type->info != canon_type->info)
2297			return 0;
2298		return btf_dedup_is_equiv(d, cand_type->type, canon_type->type);
2299
2300	case BTF_KIND_ARRAY: {
2301		const struct btf_array *cand_arr, *canon_arr;
2302
2303		if (!btf_compat_array(cand_type, canon_type))
2304			return 0;
2305		cand_arr = btf_array(cand_type);
2306		canon_arr = btf_array(canon_type);
2307		eq = btf_dedup_is_equiv(d,
2308			cand_arr->index_type, canon_arr->index_type);
2309		if (eq <= 0)
2310			return eq;
2311		return btf_dedup_is_equiv(d, cand_arr->type, canon_arr->type);
2312	}
2313
2314	case BTF_KIND_STRUCT:
2315	case BTF_KIND_UNION: {
2316		const struct btf_member *cand_m, *canon_m;
2317		__u16 vlen;
2318
2319		if (!btf_shallow_equal_struct(cand_type, canon_type))
2320			return 0;
2321		vlen = btf_vlen(cand_type);
2322		cand_m = btf_members(cand_type);
2323		canon_m = btf_members(canon_type);
2324		for (i = 0; i < vlen; i++) {
2325			eq = btf_dedup_is_equiv(d, cand_m->type, canon_m->type);
2326			if (eq <= 0)
2327				return eq;
2328			cand_m++;
2329			canon_m++;
2330		}
2331
2332		return 1;
2333	}
2334
2335	case BTF_KIND_FUNC_PROTO: {
2336		const struct btf_param *cand_p, *canon_p;
2337		__u16 vlen;
2338
2339		if (!btf_compat_fnproto(cand_type, canon_type))
2340			return 0;
2341		eq = btf_dedup_is_equiv(d, cand_type->type, canon_type->type);
2342		if (eq <= 0)
2343			return eq;
2344		vlen = btf_vlen(cand_type);
2345		cand_p = btf_params(cand_type);
2346		canon_p = btf_params(canon_type);
2347		for (i = 0; i < vlen; i++) {
2348			eq = btf_dedup_is_equiv(d, cand_p->type, canon_p->type);
2349			if (eq <= 0)
2350				return eq;
2351			cand_p++;
2352			canon_p++;
2353		}
2354		return 1;
2355	}
2356
2357	default:
2358		return -EINVAL;
2359	}
2360	return 0;
2361}
2362
2363/*
2364 * Use hypothetical mapping, produced by successful type graph equivalence
2365 * check, to augment existing struct/union canonical mapping, where possible.
2366 *
2367 * If BTF_KIND_FWD resolution is allowed, this mapping is also used to record
2368 * FWD -> STRUCT/UNION correspondence as well. FWD resolution is bidirectional:
2369 * it doesn't matter if FWD type was part of canonical graph or candidate one,
2370 * we are recording the mapping anyway. As opposed to carefulness required
2371 * for struct/union correspondence mapping (described below), for FWD resolution
2372 * it's not important, as by the time that FWD type (reference type) will be
2373 * deduplicated all structs/unions will be deduped already anyway.
2374 *
2375 * Recording STRUCT/UNION mapping is purely a performance optimization and is
2376 * not required for correctness. It needs to be done carefully to ensure that
2377 * struct/union from candidate's type graph is not mapped into corresponding
2378 * struct/union from canonical type graph that itself hasn't been resolved into
2379 * canonical representative. The only guarantee we have is that canonical
2380 * struct/union was determined as canonical and that won't change. But any
2381 * types referenced through that struct/union fields could have been not yet
2382 * resolved, so in case like that it's too early to establish any kind of
2383 * correspondence between structs/unions.
2384 *
2385 * No canonical correspondence is derived for primitive types (they are already
2386 * deduplicated completely already anyway) or reference types (they rely on
2387 * stability of struct/union canonical relationship for equivalence checks).
2388 */
2389static void btf_dedup_merge_hypot_map(struct btf_dedup *d)
2390{
2391	__u32 cand_type_id, targ_type_id;
2392	__u16 t_kind, c_kind;
2393	__u32 t_id, c_id;
2394	int i;
2395
2396	for (i = 0; i < d->hypot_cnt; i++) {
2397		cand_type_id = d->hypot_list[i];
2398		targ_type_id = d->hypot_map[cand_type_id];
2399		t_id = resolve_type_id(d, targ_type_id);
2400		c_id = resolve_type_id(d, cand_type_id);
2401		t_kind = btf_kind(d->btf->types[t_id]);
2402		c_kind = btf_kind(d->btf->types[c_id]);
2403		/*
2404		 * Resolve FWD into STRUCT/UNION.
2405		 * It's ok to resolve FWD into STRUCT/UNION that's not yet
2406		 * mapped to canonical representative (as opposed to
2407		 * STRUCT/UNION <--> STRUCT/UNION mapping logic below), because
2408		 * eventually that struct is going to be mapped and all resolved
2409		 * FWDs will automatically resolve to correct canonical
2410		 * representative. This will happen before ref type deduping,
2411		 * which critically depends on stability of these mapping. This
2412		 * stability is not a requirement for STRUCT/UNION equivalence
2413		 * checks, though.
2414		 */
2415		if (t_kind != BTF_KIND_FWD && c_kind == BTF_KIND_FWD)
2416			d->map[c_id] = t_id;
2417		else if (t_kind == BTF_KIND_FWD && c_kind != BTF_KIND_FWD)
2418			d->map[t_id] = c_id;
2419
2420		if ((t_kind == BTF_KIND_STRUCT || t_kind == BTF_KIND_UNION) &&
2421		    c_kind != BTF_KIND_FWD &&
2422		    is_type_mapped(d, c_id) &&
2423		    !is_type_mapped(d, t_id)) {
2424			/*
2425			 * as a perf optimization, we can map struct/union
2426			 * that's part of type graph we just verified for
2427			 * equivalence. We can do that for struct/union that has
2428			 * canonical representative only, though.
2429			 */
2430			d->map[t_id] = c_id;
2431		}
2432	}
2433}
2434
2435/*
2436 * Deduplicate struct/union types.
2437 *
2438 * For each struct/union type its type signature hash is calculated, taking
2439 * into account type's name, size, number, order and names of fields, but
2440 * ignoring type ID's referenced from fields, because they might not be deduped
2441 * completely until after reference types deduplication phase. This type hash
2442 * is used to iterate over all potential canonical types, sharing same hash.
2443 * For each canonical candidate we check whether type graphs that they form
2444 * (through referenced types in fields and so on) are equivalent using algorithm
2445 * implemented in `btf_dedup_is_equiv`. If such equivalence is found and
2446 * BTF_KIND_FWD resolution is allowed, then hypothetical mapping
2447 * (btf_dedup->hypot_map) produced by aforementioned type graph equivalence
2448 * algorithm is used to record FWD -> STRUCT/UNION mapping. It's also used to
2449 * potentially map other structs/unions to their canonical representatives,
2450 * if such relationship hasn't yet been established. This speeds up algorithm
2451 * by eliminating some of the duplicate work.
2452 *
2453 * If no matching canonical representative was found, struct/union is marked
2454 * as canonical for itself and is added into btf_dedup->dedup_table hash map
2455 * for further look ups.
2456 */
2457static int btf_dedup_struct_type(struct btf_dedup *d, __u32 type_id)
2458{
2459	struct btf_type *cand_type, *t;
2460	struct hashmap_entry *hash_entry;
2461	/* if we don't find equivalent type, then we are canonical */
2462	__u32 new_id = type_id;
2463	__u16 kind;
2464	long h;
2465
2466	/* already deduped or is in process of deduping (loop detected) */
2467	if (d->map[type_id] <= BTF_MAX_NR_TYPES)
2468		return 0;
2469
2470	t = d->btf->types[type_id];
2471	kind = btf_kind(t);
2472
2473	if (kind != BTF_KIND_STRUCT && kind != BTF_KIND_UNION)
2474		return 0;
2475
2476	h = btf_hash_struct(t);
2477	for_each_dedup_cand(d, hash_entry, h) {
2478		__u32 cand_id = (__u32)(long)hash_entry->value;
2479		int eq;
2480
2481		/*
2482		 * Even though btf_dedup_is_equiv() checks for
2483		 * btf_shallow_equal_struct() internally when checking two
2484		 * structs (unions) for equivalence, we need to guard here
2485		 * from picking matching FWD type as a dedup candidate.
2486		 * This can happen due to hash collision. In such case just
2487		 * relying on btf_dedup_is_equiv() would lead to potentially
2488		 * creating a loop (FWD -> STRUCT and STRUCT -> FWD), because
2489		 * FWD and compatible STRUCT/UNION are considered equivalent.
2490		 */
2491		cand_type = d->btf->types[cand_id];
2492		if (!btf_shallow_equal_struct(t, cand_type))
2493			continue;
2494
2495		btf_dedup_clear_hypot_map(d);
2496		eq = btf_dedup_is_equiv(d, type_id, cand_id);
2497		if (eq < 0)
2498			return eq;
2499		if (!eq)
2500			continue;
2501		new_id = cand_id;
2502		btf_dedup_merge_hypot_map(d);
2503		break;
2504	}
2505
2506	d->map[type_id] = new_id;
2507	if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
2508		return -ENOMEM;
2509
2510	return 0;
2511}
2512
2513static int btf_dedup_struct_types(struct btf_dedup *d)
2514{
2515	int i, err;
2516
2517	for (i = 1; i <= d->btf->nr_types; i++) {
2518		err = btf_dedup_struct_type(d, i);
2519		if (err)
2520			return err;
2521	}
2522	return 0;
2523}
2524
2525/*
2526 * Deduplicate reference type.
2527 *
2528 * Once all primitive and struct/union types got deduplicated, we can easily
2529 * deduplicate all other (reference) BTF types. This is done in two steps:
2530 *
2531 * 1. Resolve all referenced type IDs into their canonical type IDs. This
2532 * resolution can be done either immediately for primitive or struct/union types
2533 * (because they were deduped in previous two phases) or recursively for
2534 * reference types. Recursion will always terminate at either primitive or
2535 * struct/union type, at which point we can "unwind" chain of reference types
2536 * one by one. There is no danger of encountering cycles because in C type
2537 * system the only way to form type cycle is through struct/union, so any chain
2538 * of reference types, even those taking part in a type cycle, will inevitably
2539 * reach struct/union at some point.
2540 *
2541 * 2. Once all referenced type IDs are resolved into canonical ones, BTF type
2542 * becomes "stable", in the sense that no further deduplication will cause
2543 * any changes to it. With that, it's now possible to calculate type's signature
2544 * hash (this time taking into account referenced type IDs) and loop over all
2545 * potential canonical representatives. If no match was found, current type
2546 * will become canonical representative of itself and will be added into
2547 * btf_dedup->dedup_table as another possible canonical representative.
2548 */
2549static int btf_dedup_ref_type(struct btf_dedup *d, __u32 type_id)
2550{
2551	struct hashmap_entry *hash_entry;
2552	__u32 new_id = type_id, cand_id;
2553	struct btf_type *t, *cand;
2554	/* if we don't find equivalent type, then we are representative type */
2555	int ref_type_id;
2556	long h;
2557
2558	if (d->map[type_id] == BTF_IN_PROGRESS_ID)
2559		return -ELOOP;
2560	if (d->map[type_id] <= BTF_MAX_NR_TYPES)
2561		return resolve_type_id(d, type_id);
2562
2563	t = d->btf->types[type_id];
2564	d->map[type_id] = BTF_IN_PROGRESS_ID;
2565
2566	switch (btf_kind(t)) {
2567	case BTF_KIND_CONST:
2568	case BTF_KIND_VOLATILE:
2569	case BTF_KIND_RESTRICT:
2570	case BTF_KIND_PTR:
2571	case BTF_KIND_TYPEDEF:
2572	case BTF_KIND_FUNC:
2573		ref_type_id = btf_dedup_ref_type(d, t->type);
2574		if (ref_type_id < 0)
2575			return ref_type_id;
2576		t->type = ref_type_id;
2577
2578		h = btf_hash_common(t);
2579		for_each_dedup_cand(d, hash_entry, h) {
2580			cand_id = (__u32)(long)hash_entry->value;
2581			cand = d->btf->types[cand_id];
2582			if (btf_equal_common(t, cand)) {
2583				new_id = cand_id;
2584				break;
2585			}
2586		}
2587		break;
2588
2589	case BTF_KIND_ARRAY: {
2590		struct btf_array *info = btf_array(t);
2591
2592		ref_type_id = btf_dedup_ref_type(d, info->type);
2593		if (ref_type_id < 0)
2594			return ref_type_id;
2595		info->type = ref_type_id;
2596
2597		ref_type_id = btf_dedup_ref_type(d, info->index_type);
2598		if (ref_type_id < 0)
2599			return ref_type_id;
2600		info->index_type = ref_type_id;
2601
2602		h = btf_hash_array(t);
2603		for_each_dedup_cand(d, hash_entry, h) {
2604			cand_id = (__u32)(long)hash_entry->value;
2605			cand = d->btf->types[cand_id];
2606			if (btf_equal_array(t, cand)) {
2607				new_id = cand_id;
2608				break;
2609			}
2610		}
2611		break;
2612	}
2613
2614	case BTF_KIND_FUNC_PROTO: {
2615		struct btf_param *param;
2616		__u16 vlen;
2617		int i;
2618
2619		ref_type_id = btf_dedup_ref_type(d, t->type);
2620		if (ref_type_id < 0)
2621			return ref_type_id;
2622		t->type = ref_type_id;
2623
2624		vlen = btf_vlen(t);
2625		param = btf_params(t);
2626		for (i = 0; i < vlen; i++) {
2627			ref_type_id = btf_dedup_ref_type(d, param->type);
2628			if (ref_type_id < 0)
2629				return ref_type_id;
2630			param->type = ref_type_id;
2631			param++;
2632		}
2633
2634		h = btf_hash_fnproto(t);
2635		for_each_dedup_cand(d, hash_entry, h) {
2636			cand_id = (__u32)(long)hash_entry->value;
2637			cand = d->btf->types[cand_id];
2638			if (btf_equal_fnproto(t, cand)) {
2639				new_id = cand_id;
2640				break;
2641			}
2642		}
2643		break;
2644	}
2645
2646	default:
2647		return -EINVAL;
2648	}
2649
2650	d->map[type_id] = new_id;
2651	if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
2652		return -ENOMEM;
2653
2654	return new_id;
2655}
2656
2657static int btf_dedup_ref_types(struct btf_dedup *d)
2658{
2659	int i, err;
2660
2661	for (i = 1; i <= d->btf->nr_types; i++) {
2662		err = btf_dedup_ref_type(d, i);
2663		if (err < 0)
2664			return err;
2665	}
2666	/* we won't need d->dedup_table anymore */
2667	hashmap__free(d->dedup_table);
2668	d->dedup_table = NULL;
2669	return 0;
2670}
2671
2672/*
2673 * Compact types.
2674 *
2675 * After we established for each type its corresponding canonical representative
2676 * type, we now can eliminate types that are not canonical and leave only
2677 * canonical ones layed out sequentially in memory by copying them over
2678 * duplicates. During compaction btf_dedup->hypot_map array is reused to store
2679 * a map from original type ID to a new compacted type ID, which will be used
2680 * during next phase to "fix up" type IDs, referenced from struct/union and
2681 * reference types.
2682 */
2683static int btf_dedup_compact_types(struct btf_dedup *d)
2684{
2685	struct btf_type **new_types;
2686	__u32 next_type_id = 1;
2687	char *types_start, *p;
2688	int i, len;
2689
2690	/* we are going to reuse hypot_map to store compaction remapping */
2691	d->hypot_map[0] = 0;
2692	for (i = 1; i <= d->btf->nr_types; i++)
2693		d->hypot_map[i] = BTF_UNPROCESSED_ID;
2694
2695	types_start = d->btf->nohdr_data + d->btf->hdr->type_off;
2696	p = types_start;
2697
2698	for (i = 1; i <= d->btf->nr_types; i++) {
2699		if (d->map[i] != i)
2700			continue;
2701
2702		len = btf_type_size(d->btf->types[i]);
2703		if (len < 0)
2704			return len;
2705
2706		memmove(p, d->btf->types[i], len);
2707		d->hypot_map[i] = next_type_id;
2708		d->btf->types[next_type_id] = (struct btf_type *)p;
2709		p += len;
2710		next_type_id++;
2711	}
2712
2713	/* shrink struct btf's internal types index and update btf_header */
2714	d->btf->nr_types = next_type_id - 1;
2715	d->btf->types_size = d->btf->nr_types;
2716	d->btf->hdr->type_len = p - types_start;
2717	new_types = realloc(d->btf->types,
2718			    (1 + d->btf->nr_types) * sizeof(struct btf_type *));
2719	if (!new_types)
2720		return -ENOMEM;
2721	d->btf->types = new_types;
2722
2723	/* make sure string section follows type information without gaps */
2724	d->btf->hdr->str_off = p - (char *)d->btf->nohdr_data;
2725	memmove(p, d->btf->strings, d->btf->hdr->str_len);
2726	d->btf->strings = p;
2727	p += d->btf->hdr->str_len;
2728
2729	d->btf->data_size = p - (char *)d->btf->data;
2730	return 0;
2731}
2732
2733/*
2734 * Figure out final (deduplicated and compacted) type ID for provided original
2735 * `type_id` by first resolving it into corresponding canonical type ID and
2736 * then mapping it to a deduplicated type ID, stored in btf_dedup->hypot_map,
2737 * which is populated during compaction phase.
2738 */
2739static int btf_dedup_remap_type_id(struct btf_dedup *d, __u32 type_id)
2740{
2741	__u32 resolved_type_id, new_type_id;
2742
2743	resolved_type_id = resolve_type_id(d, type_id);
2744	new_type_id = d->hypot_map[resolved_type_id];
2745	if (new_type_id > BTF_MAX_NR_TYPES)
2746		return -EINVAL;
2747	return new_type_id;
2748}
2749
2750/*
2751 * Remap referenced type IDs into deduped type IDs.
2752 *
2753 * After BTF types are deduplicated and compacted, their final type IDs may
2754 * differ from original ones. The map from original to a corresponding
2755 * deduped type ID is stored in btf_dedup->hypot_map and is populated during
2756 * compaction phase. During remapping phase we are rewriting all type IDs
2757 * referenced from any BTF type (e.g., struct fields, func proto args, etc) to
2758 * their final deduped type IDs.
2759 */
2760static int btf_dedup_remap_type(struct btf_dedup *d, __u32 type_id)
2761{
2762	struct btf_type *t = d->btf->types[type_id];
2763	int i, r;
2764
2765	switch (btf_kind(t)) {
2766	case BTF_KIND_INT:
2767	case BTF_KIND_ENUM:
2768		break;
2769
2770	case BTF_KIND_FWD:
2771	case BTF_KIND_CONST:
2772	case BTF_KIND_VOLATILE:
2773	case BTF_KIND_RESTRICT:
2774	case BTF_KIND_PTR:
2775	case BTF_KIND_TYPEDEF:
2776	case BTF_KIND_FUNC:
2777	case BTF_KIND_VAR:
2778		r = btf_dedup_remap_type_id(d, t->type);
2779		if (r < 0)
2780			return r;
2781		t->type = r;
2782		break;
2783
2784	case BTF_KIND_ARRAY: {
2785		struct btf_array *arr_info = btf_array(t);
2786
2787		r = btf_dedup_remap_type_id(d, arr_info->type);
2788		if (r < 0)
2789			return r;
2790		arr_info->type = r;
2791		r = btf_dedup_remap_type_id(d, arr_info->index_type);
2792		if (r < 0)
2793			return r;
2794		arr_info->index_type = r;
2795		break;
2796	}
2797
2798	case BTF_KIND_STRUCT:
2799	case BTF_KIND_UNION: {
2800		struct btf_member *member = btf_members(t);
2801		__u16 vlen = btf_vlen(t);
2802
2803		for (i = 0; i < vlen; i++) {
2804			r = btf_dedup_remap_type_id(d, member->type);
2805			if (r < 0)
2806				return r;
2807			member->type = r;
2808			member++;
2809		}
2810		break;
2811	}
2812
2813	case BTF_KIND_FUNC_PROTO: {
2814		struct btf_param *param = btf_params(t);
2815		__u16 vlen = btf_vlen(t);
2816
2817		r = btf_dedup_remap_type_id(d, t->type);
2818		if (r < 0)
2819			return r;
2820		t->type = r;
2821
2822		for (i = 0; i < vlen; i++) {
2823			r = btf_dedup_remap_type_id(d, param->type);
2824			if (r < 0)
2825				return r;
2826			param->type = r;
2827			param++;
2828		}
2829		break;
2830	}
2831
2832	case BTF_KIND_DATASEC: {
2833		struct btf_var_secinfo *var = btf_var_secinfos(t);
2834		__u16 vlen = btf_vlen(t);
2835
2836		for (i = 0; i < vlen; i++) {
2837			r = btf_dedup_remap_type_id(d, var->type);
2838			if (r < 0)
2839				return r;
2840			var->type = r;
2841			var++;
2842		}
2843		break;
2844	}
2845
2846	default:
2847		return -EINVAL;
2848	}
2849
2850	return 0;
2851}
2852
2853static int btf_dedup_remap_types(struct btf_dedup *d)
2854{
2855	int i, r;
2856
2857	for (i = 1; i <= d->btf->nr_types; i++) {
2858		r = btf_dedup_remap_type(d, i);
2859		if (r < 0)
2860			return r;
2861	}
2862	return 0;
2863}