Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.15.
   1// SPDX-License-Identifier: (LGPL-2.1 OR BSD-2-Clause)
   2/* Copyright (c) 2018 Facebook */
   3
   4#include <byteswap.h>
   5#include <endian.h>
   6#include <stdio.h>
   7#include <stdlib.h>
   8#include <string.h>
   9#include <fcntl.h>
  10#include <unistd.h>
  11#include <errno.h>
  12#include <sys/utsname.h>
  13#include <sys/param.h>
  14#include <sys/stat.h>
  15#include <linux/kernel.h>
  16#include <linux/err.h>
  17#include <linux/btf.h>
  18#include <gelf.h>
  19#include "btf.h"
  20#include "bpf.h"
  21#include "libbpf.h"
  22#include "libbpf_internal.h"
  23#include "hashmap.h"
  24#include "strset.h"
  25
  26#define BTF_MAX_NR_TYPES 0x7fffffffU
  27#define BTF_MAX_STR_OFFSET 0x7fffffffU
  28
  29static struct btf_type btf_void;
  30
  31struct btf {
  32	/* raw BTF data in native endianness */
  33	void *raw_data;
  34	/* raw BTF data in non-native endianness */
  35	void *raw_data_swapped;
  36	__u32 raw_size;
  37	/* whether target endianness differs from the native one */
  38	bool swapped_endian;
  39
  40	/*
  41	 * When BTF is loaded from an ELF or raw memory it is stored
  42	 * in a contiguous memory block. The hdr, type_data, and, strs_data
  43	 * point inside that memory region to their respective parts of BTF
  44	 * representation:
  45	 *
  46	 * +--------------------------------+
  47	 * |  Header  |  Types  |  Strings  |
  48	 * +--------------------------------+
  49	 * ^          ^         ^
  50	 * |          |         |
  51	 * hdr        |         |
  52	 * types_data-+         |
  53	 * strs_data------------+
  54	 *
  55	 * If BTF data is later modified, e.g., due to types added or
  56	 * removed, BTF deduplication performed, etc, this contiguous
  57	 * representation is broken up into three independently allocated
  58	 * memory regions to be able to modify them independently.
  59	 * raw_data is nulled out at that point, but can be later allocated
  60	 * and cached again if user calls btf__get_raw_data(), at which point
  61	 * raw_data will contain a contiguous copy of header, types, and
  62	 * strings:
  63	 *
  64	 * +----------+  +---------+  +-----------+
  65	 * |  Header  |  |  Types  |  |  Strings  |
  66	 * +----------+  +---------+  +-----------+
  67	 * ^             ^            ^
  68	 * |             |            |
  69	 * hdr           |            |
  70	 * types_data----+            |
  71	 * strset__data(strs_set)-----+
  72	 *
  73	 *               +----------+---------+-----------+
  74	 *               |  Header  |  Types  |  Strings  |
  75	 * raw_data----->+----------+---------+-----------+
  76	 */
  77	struct btf_header *hdr;
  78
  79	void *types_data;
  80	size_t types_data_cap; /* used size stored in hdr->type_len */
  81
  82	/* type ID to `struct btf_type *` lookup index
  83	 * type_offs[0] corresponds to the first non-VOID type:
  84	 *   - for base BTF it's type [1];
  85	 *   - for split BTF it's the first non-base BTF type.
  86	 */
  87	__u32 *type_offs;
  88	size_t type_offs_cap;
  89	/* number of types in this BTF instance:
  90	 *   - doesn't include special [0] void type;
  91	 *   - for split BTF counts number of types added on top of base BTF.
  92	 */
  93	__u32 nr_types;
  94	/* if not NULL, points to the base BTF on top of which the current
  95	 * split BTF is based
  96	 */
  97	struct btf *base_btf;
  98	/* BTF type ID of the first type in this BTF instance:
  99	 *   - for base BTF it's equal to 1;
 100	 *   - for split BTF it's equal to biggest type ID of base BTF plus 1.
 101	 */
 102	int start_id;
 103	/* logical string offset of this BTF instance:
 104	 *   - for base BTF it's equal to 0;
 105	 *   - for split BTF it's equal to total size of base BTF's string section size.
 106	 */
 107	int start_str_off;
 108
 109	/* only one of strs_data or strs_set can be non-NULL, depending on
 110	 * whether BTF is in a modifiable state (strs_set is used) or not
 111	 * (strs_data points inside raw_data)
 112	 */
 113	void *strs_data;
 114	/* a set of unique strings */
 115	struct strset *strs_set;
 116	/* whether strings are already deduplicated */
 117	bool strs_deduped;
 118
 119	/* BTF object FD, if loaded into kernel */
 120	int fd;
 121
 122	/* Pointer size (in bytes) for a target architecture of this BTF */
 123	int ptr_sz;
 124};
 125
 126static inline __u64 ptr_to_u64(const void *ptr)
 127{
 128	return (__u64) (unsigned long) ptr;
 129}
 130
 131/* Ensure given dynamically allocated memory region pointed to by *data* with
 132 * capacity of *cap_cnt* elements each taking *elem_sz* bytes has enough
 133 * memory to accomodate *add_cnt* new elements, assuming *cur_cnt* elements
 134 * are already used. At most *max_cnt* elements can be ever allocated.
 135 * If necessary, memory is reallocated and all existing data is copied over,
 136 * new pointer to the memory region is stored at *data, new memory region
 137 * capacity (in number of elements) is stored in *cap.
 138 * On success, memory pointer to the beginning of unused memory is returned.
 139 * On error, NULL is returned.
 140 */
 141void *libbpf_add_mem(void **data, size_t *cap_cnt, size_t elem_sz,
 142		     size_t cur_cnt, size_t max_cnt, size_t add_cnt)
 143{
 144	size_t new_cnt;
 145	void *new_data;
 146
 147	if (cur_cnt + add_cnt <= *cap_cnt)
 148		return *data + cur_cnt * elem_sz;
 149
 150	/* requested more than the set limit */
 151	if (cur_cnt + add_cnt > max_cnt)
 152		return NULL;
 153
 154	new_cnt = *cap_cnt;
 155	new_cnt += new_cnt / 4;		  /* expand by 25% */
 156	if (new_cnt < 16)		  /* but at least 16 elements */
 157		new_cnt = 16;
 158	if (new_cnt > max_cnt)		  /* but not exceeding a set limit */
 159		new_cnt = max_cnt;
 160	if (new_cnt < cur_cnt + add_cnt)  /* also ensure we have enough memory */
 161		new_cnt = cur_cnt + add_cnt;
 162
 163	new_data = libbpf_reallocarray(*data, new_cnt, elem_sz);
 164	if (!new_data)
 165		return NULL;
 166
 167	/* zero out newly allocated portion of memory */
 168	memset(new_data + (*cap_cnt) * elem_sz, 0, (new_cnt - *cap_cnt) * elem_sz);
 169
 170	*data = new_data;
 171	*cap_cnt = new_cnt;
 172	return new_data + cur_cnt * elem_sz;
 173}
 174
 175/* Ensure given dynamically allocated memory region has enough allocated space
 176 * to accommodate *need_cnt* elements of size *elem_sz* bytes each
 177 */
 178int libbpf_ensure_mem(void **data, size_t *cap_cnt, size_t elem_sz, size_t need_cnt)
 179{
 180	void *p;
 181
 182	if (need_cnt <= *cap_cnt)
 183		return 0;
 184
 185	p = libbpf_add_mem(data, cap_cnt, elem_sz, *cap_cnt, SIZE_MAX, need_cnt - *cap_cnt);
 186	if (!p)
 187		return -ENOMEM;
 188
 189	return 0;
 190}
 191
 192static int btf_add_type_idx_entry(struct btf *btf, __u32 type_off)
 193{
 194	__u32 *p;
 195
 196	p = libbpf_add_mem((void **)&btf->type_offs, &btf->type_offs_cap, sizeof(__u32),
 197			   btf->nr_types, BTF_MAX_NR_TYPES, 1);
 198	if (!p)
 199		return -ENOMEM;
 200
 201	*p = type_off;
 202	return 0;
 203}
 204
 205static void btf_bswap_hdr(struct btf_header *h)
 206{
 207	h->magic = bswap_16(h->magic);
 208	h->hdr_len = bswap_32(h->hdr_len);
 209	h->type_off = bswap_32(h->type_off);
 210	h->type_len = bswap_32(h->type_len);
 211	h->str_off = bswap_32(h->str_off);
 212	h->str_len = bswap_32(h->str_len);
 213}
 214
 215static int btf_parse_hdr(struct btf *btf)
 216{
 217	struct btf_header *hdr = btf->hdr;
 218	__u32 meta_left;
 219
 220	if (btf->raw_size < sizeof(struct btf_header)) {
 221		pr_debug("BTF header not found\n");
 222		return -EINVAL;
 223	}
 224
 225	if (hdr->magic == bswap_16(BTF_MAGIC)) {
 226		btf->swapped_endian = true;
 227		if (bswap_32(hdr->hdr_len) != sizeof(struct btf_header)) {
 228			pr_warn("Can't load BTF with non-native endianness due to unsupported header length %u\n",
 229				bswap_32(hdr->hdr_len));
 230			return -ENOTSUP;
 231		}
 232		btf_bswap_hdr(hdr);
 233	} else if (hdr->magic != BTF_MAGIC) {
 234		pr_debug("Invalid BTF magic:%x\n", hdr->magic);
 235		return -EINVAL;
 236	}
 237
 238	meta_left = btf->raw_size - sizeof(*hdr);
 239	if (meta_left < hdr->str_off + hdr->str_len) {
 240		pr_debug("Invalid BTF total size:%u\n", btf->raw_size);
 241		return -EINVAL;
 242	}
 243
 244	if (hdr->type_off + hdr->type_len > hdr->str_off) {
 245		pr_debug("Invalid BTF data sections layout: type data at %u + %u, strings data at %u + %u\n",
 246			 hdr->type_off, hdr->type_len, hdr->str_off, hdr->str_len);
 247		return -EINVAL;
 248	}
 249
 250	if (hdr->type_off % 4) {
 251		pr_debug("BTF type section is not aligned to 4 bytes\n");
 252		return -EINVAL;
 253	}
 254
 255	return 0;
 256}
 257
 258static int btf_parse_str_sec(struct btf *btf)
 259{
 260	const struct btf_header *hdr = btf->hdr;
 261	const char *start = btf->strs_data;
 262	const char *end = start + btf->hdr->str_len;
 263
 264	if (btf->base_btf && hdr->str_len == 0)
 265		return 0;
 266	if (!hdr->str_len || hdr->str_len - 1 > BTF_MAX_STR_OFFSET || end[-1]) {
 267		pr_debug("Invalid BTF string section\n");
 268		return -EINVAL;
 269	}
 270	if (!btf->base_btf && start[0]) {
 271		pr_debug("Invalid BTF string section\n");
 272		return -EINVAL;
 273	}
 274	return 0;
 275}
 276
 277static int btf_type_size(const struct btf_type *t)
 278{
 279	const int base_size = sizeof(struct btf_type);
 280	__u16 vlen = btf_vlen(t);
 281
 282	switch (btf_kind(t)) {
 283	case BTF_KIND_FWD:
 284	case BTF_KIND_CONST:
 285	case BTF_KIND_VOLATILE:
 286	case BTF_KIND_RESTRICT:
 287	case BTF_KIND_PTR:
 288	case BTF_KIND_TYPEDEF:
 289	case BTF_KIND_FUNC:
 290	case BTF_KIND_FLOAT:
 291		return base_size;
 292	case BTF_KIND_INT:
 293		return base_size + sizeof(__u32);
 294	case BTF_KIND_ENUM:
 295		return base_size + vlen * sizeof(struct btf_enum);
 296	case BTF_KIND_ARRAY:
 297		return base_size + sizeof(struct btf_array);
 298	case BTF_KIND_STRUCT:
 299	case BTF_KIND_UNION:
 300		return base_size + vlen * sizeof(struct btf_member);
 301	case BTF_KIND_FUNC_PROTO:
 302		return base_size + vlen * sizeof(struct btf_param);
 303	case BTF_KIND_VAR:
 304		return base_size + sizeof(struct btf_var);
 305	case BTF_KIND_DATASEC:
 306		return base_size + vlen * sizeof(struct btf_var_secinfo);
 307	default:
 308		pr_debug("Unsupported BTF_KIND:%u\n", btf_kind(t));
 309		return -EINVAL;
 310	}
 311}
 312
 313static void btf_bswap_type_base(struct btf_type *t)
 314{
 315	t->name_off = bswap_32(t->name_off);
 316	t->info = bswap_32(t->info);
 317	t->type = bswap_32(t->type);
 318}
 319
 320static int btf_bswap_type_rest(struct btf_type *t)
 321{
 322	struct btf_var_secinfo *v;
 323	struct btf_member *m;
 324	struct btf_array *a;
 325	struct btf_param *p;
 326	struct btf_enum *e;
 327	__u16 vlen = btf_vlen(t);
 328	int i;
 329
 330	switch (btf_kind(t)) {
 331	case BTF_KIND_FWD:
 332	case BTF_KIND_CONST:
 333	case BTF_KIND_VOLATILE:
 334	case BTF_KIND_RESTRICT:
 335	case BTF_KIND_PTR:
 336	case BTF_KIND_TYPEDEF:
 337	case BTF_KIND_FUNC:
 338	case BTF_KIND_FLOAT:
 339		return 0;
 340	case BTF_KIND_INT:
 341		*(__u32 *)(t + 1) = bswap_32(*(__u32 *)(t + 1));
 342		return 0;
 343	case BTF_KIND_ENUM:
 344		for (i = 0, e = btf_enum(t); i < vlen; i++, e++) {
 345			e->name_off = bswap_32(e->name_off);
 346			e->val = bswap_32(e->val);
 347		}
 348		return 0;
 349	case BTF_KIND_ARRAY:
 350		a = btf_array(t);
 351		a->type = bswap_32(a->type);
 352		a->index_type = bswap_32(a->index_type);
 353		a->nelems = bswap_32(a->nelems);
 354		return 0;
 355	case BTF_KIND_STRUCT:
 356	case BTF_KIND_UNION:
 357		for (i = 0, m = btf_members(t); i < vlen; i++, m++) {
 358			m->name_off = bswap_32(m->name_off);
 359			m->type = bswap_32(m->type);
 360			m->offset = bswap_32(m->offset);
 361		}
 362		return 0;
 363	case BTF_KIND_FUNC_PROTO:
 364		for (i = 0, p = btf_params(t); i < vlen; i++, p++) {
 365			p->name_off = bswap_32(p->name_off);
 366			p->type = bswap_32(p->type);
 367		}
 368		return 0;
 369	case BTF_KIND_VAR:
 370		btf_var(t)->linkage = bswap_32(btf_var(t)->linkage);
 371		return 0;
 372	case BTF_KIND_DATASEC:
 373		for (i = 0, v = btf_var_secinfos(t); i < vlen; i++, v++) {
 374			v->type = bswap_32(v->type);
 375			v->offset = bswap_32(v->offset);
 376			v->size = bswap_32(v->size);
 377		}
 378		return 0;
 379	default:
 380		pr_debug("Unsupported BTF_KIND:%u\n", btf_kind(t));
 381		return -EINVAL;
 382	}
 383}
 384
 385static int btf_parse_type_sec(struct btf *btf)
 386{
 387	struct btf_header *hdr = btf->hdr;
 388	void *next_type = btf->types_data;
 389	void *end_type = next_type + hdr->type_len;
 390	int err, type_size;
 391
 392	while (next_type + sizeof(struct btf_type) <= end_type) {
 393		if (btf->swapped_endian)
 394			btf_bswap_type_base(next_type);
 395
 396		type_size = btf_type_size(next_type);
 397		if (type_size < 0)
 398			return type_size;
 399		if (next_type + type_size > end_type) {
 400			pr_warn("BTF type [%d] is malformed\n", btf->start_id + btf->nr_types);
 401			return -EINVAL;
 402		}
 403
 404		if (btf->swapped_endian && btf_bswap_type_rest(next_type))
 405			return -EINVAL;
 406
 407		err = btf_add_type_idx_entry(btf, next_type - btf->types_data);
 408		if (err)
 409			return err;
 410
 411		next_type += type_size;
 412		btf->nr_types++;
 413	}
 414
 415	if (next_type != end_type) {
 416		pr_warn("BTF types data is malformed\n");
 417		return -EINVAL;
 418	}
 419
 420	return 0;
 421}
 422
 423__u32 btf__get_nr_types(const struct btf *btf)
 424{
 425	return btf->start_id + btf->nr_types - 1;
 426}
 427
 428const struct btf *btf__base_btf(const struct btf *btf)
 429{
 430	return btf->base_btf;
 431}
 432
 433/* internal helper returning non-const pointer to a type */
 434struct btf_type *btf_type_by_id(struct btf *btf, __u32 type_id)
 435{
 436	if (type_id == 0)
 437		return &btf_void;
 438	if (type_id < btf->start_id)
 439		return btf_type_by_id(btf->base_btf, type_id);
 440	return btf->types_data + btf->type_offs[type_id - btf->start_id];
 441}
 442
 443const struct btf_type *btf__type_by_id(const struct btf *btf, __u32 type_id)
 444{
 445	if (type_id >= btf->start_id + btf->nr_types)
 446		return errno = EINVAL, NULL;
 447	return btf_type_by_id((struct btf *)btf, type_id);
 448}
 449
 450static int determine_ptr_size(const struct btf *btf)
 451{
 452	const struct btf_type *t;
 453	const char *name;
 454	int i, n;
 455
 456	if (btf->base_btf && btf->base_btf->ptr_sz > 0)
 457		return btf->base_btf->ptr_sz;
 458
 459	n = btf__get_nr_types(btf);
 460	for (i = 1; i <= n; i++) {
 461		t = btf__type_by_id(btf, i);
 462		if (!btf_is_int(t))
 463			continue;
 464
 465		name = btf__name_by_offset(btf, t->name_off);
 466		if (!name)
 467			continue;
 468
 469		if (strcmp(name, "long int") == 0 ||
 470		    strcmp(name, "long unsigned int") == 0) {
 471			if (t->size != 4 && t->size != 8)
 472				continue;
 473			return t->size;
 474		}
 475	}
 476
 477	return -1;
 478}
 479
 480static size_t btf_ptr_sz(const struct btf *btf)
 481{
 482	if (!btf->ptr_sz)
 483		((struct btf *)btf)->ptr_sz = determine_ptr_size(btf);
 484	return btf->ptr_sz < 0 ? sizeof(void *) : btf->ptr_sz;
 485}
 486
 487/* Return pointer size this BTF instance assumes. The size is heuristically
 488 * determined by looking for 'long' or 'unsigned long' integer type and
 489 * recording its size in bytes. If BTF type information doesn't have any such
 490 * type, this function returns 0. In the latter case, native architecture's
 491 * pointer size is assumed, so will be either 4 or 8, depending on
 492 * architecture that libbpf was compiled for. It's possible to override
 493 * guessed value by using btf__set_pointer_size() API.
 494 */
 495size_t btf__pointer_size(const struct btf *btf)
 496{
 497	if (!btf->ptr_sz)
 498		((struct btf *)btf)->ptr_sz = determine_ptr_size(btf);
 499
 500	if (btf->ptr_sz < 0)
 501		/* not enough BTF type info to guess */
 502		return 0;
 503
 504	return btf->ptr_sz;
 505}
 506
 507/* Override or set pointer size in bytes. Only values of 4 and 8 are
 508 * supported.
 509 */
 510int btf__set_pointer_size(struct btf *btf, size_t ptr_sz)
 511{
 512	if (ptr_sz != 4 && ptr_sz != 8)
 513		return libbpf_err(-EINVAL);
 514	btf->ptr_sz = ptr_sz;
 515	return 0;
 516}
 517
 518static bool is_host_big_endian(void)
 519{
 520#if __BYTE_ORDER == __LITTLE_ENDIAN
 521	return false;
 522#elif __BYTE_ORDER == __BIG_ENDIAN
 523	return true;
 524#else
 525# error "Unrecognized __BYTE_ORDER__"
 526#endif
 527}
 528
 529enum btf_endianness btf__endianness(const struct btf *btf)
 530{
 531	if (is_host_big_endian())
 532		return btf->swapped_endian ? BTF_LITTLE_ENDIAN : BTF_BIG_ENDIAN;
 533	else
 534		return btf->swapped_endian ? BTF_BIG_ENDIAN : BTF_LITTLE_ENDIAN;
 535}
 536
 537int btf__set_endianness(struct btf *btf, enum btf_endianness endian)
 538{
 539	if (endian != BTF_LITTLE_ENDIAN && endian != BTF_BIG_ENDIAN)
 540		return libbpf_err(-EINVAL);
 541
 542	btf->swapped_endian = is_host_big_endian() != (endian == BTF_BIG_ENDIAN);
 543	if (!btf->swapped_endian) {
 544		free(btf->raw_data_swapped);
 545		btf->raw_data_swapped = NULL;
 546	}
 547	return 0;
 548}
 549
 550static bool btf_type_is_void(const struct btf_type *t)
 551{
 552	return t == &btf_void || btf_is_fwd(t);
 553}
 554
 555static bool btf_type_is_void_or_null(const struct btf_type *t)
 556{
 557	return !t || btf_type_is_void(t);
 558}
 559
 560#define MAX_RESOLVE_DEPTH 32
 561
 562__s64 btf__resolve_size(const struct btf *btf, __u32 type_id)
 563{
 564	const struct btf_array *array;
 565	const struct btf_type *t;
 566	__u32 nelems = 1;
 567	__s64 size = -1;
 568	int i;
 569
 570	t = btf__type_by_id(btf, type_id);
 571	for (i = 0; i < MAX_RESOLVE_DEPTH && !btf_type_is_void_or_null(t); i++) {
 572		switch (btf_kind(t)) {
 573		case BTF_KIND_INT:
 574		case BTF_KIND_STRUCT:
 575		case BTF_KIND_UNION:
 576		case BTF_KIND_ENUM:
 577		case BTF_KIND_DATASEC:
 578		case BTF_KIND_FLOAT:
 579			size = t->size;
 580			goto done;
 581		case BTF_KIND_PTR:
 582			size = btf_ptr_sz(btf);
 583			goto done;
 584		case BTF_KIND_TYPEDEF:
 585		case BTF_KIND_VOLATILE:
 586		case BTF_KIND_CONST:
 587		case BTF_KIND_RESTRICT:
 588		case BTF_KIND_VAR:
 589			type_id = t->type;
 590			break;
 591		case BTF_KIND_ARRAY:
 592			array = btf_array(t);
 593			if (nelems && array->nelems > UINT32_MAX / nelems)
 594				return libbpf_err(-E2BIG);
 595			nelems *= array->nelems;
 596			type_id = array->type;
 597			break;
 598		default:
 599			return libbpf_err(-EINVAL);
 600		}
 601
 602		t = btf__type_by_id(btf, type_id);
 603	}
 604
 605done:
 606	if (size < 0)
 607		return libbpf_err(-EINVAL);
 608	if (nelems && size > UINT32_MAX / nelems)
 609		return libbpf_err(-E2BIG);
 610
 611	return nelems * size;
 612}
 613
 614int btf__align_of(const struct btf *btf, __u32 id)
 615{
 616	const struct btf_type *t = btf__type_by_id(btf, id);
 617	__u16 kind = btf_kind(t);
 618
 619	switch (kind) {
 620	case BTF_KIND_INT:
 621	case BTF_KIND_ENUM:
 622	case BTF_KIND_FLOAT:
 623		return min(btf_ptr_sz(btf), (size_t)t->size);
 624	case BTF_KIND_PTR:
 625		return btf_ptr_sz(btf);
 626	case BTF_KIND_TYPEDEF:
 627	case BTF_KIND_VOLATILE:
 628	case BTF_KIND_CONST:
 629	case BTF_KIND_RESTRICT:
 630		return btf__align_of(btf, t->type);
 631	case BTF_KIND_ARRAY:
 632		return btf__align_of(btf, btf_array(t)->type);
 633	case BTF_KIND_STRUCT:
 634	case BTF_KIND_UNION: {
 635		const struct btf_member *m = btf_members(t);
 636		__u16 vlen = btf_vlen(t);
 637		int i, max_align = 1, align;
 638
 639		for (i = 0; i < vlen; i++, m++) {
 640			align = btf__align_of(btf, m->type);
 641			if (align <= 0)
 642				return libbpf_err(align);
 643			max_align = max(max_align, align);
 644		}
 645
 646		return max_align;
 647	}
 648	default:
 649		pr_warn("unsupported BTF_KIND:%u\n", btf_kind(t));
 650		return errno = EINVAL, 0;
 651	}
 652}
 653
 654int btf__resolve_type(const struct btf *btf, __u32 type_id)
 655{
 656	const struct btf_type *t;
 657	int depth = 0;
 658
 659	t = btf__type_by_id(btf, type_id);
 660	while (depth < MAX_RESOLVE_DEPTH &&
 661	       !btf_type_is_void_or_null(t) &&
 662	       (btf_is_mod(t) || btf_is_typedef(t) || btf_is_var(t))) {
 663		type_id = t->type;
 664		t = btf__type_by_id(btf, type_id);
 665		depth++;
 666	}
 667
 668	if (depth == MAX_RESOLVE_DEPTH || btf_type_is_void_or_null(t))
 669		return libbpf_err(-EINVAL);
 670
 671	return type_id;
 672}
 673
 674__s32 btf__find_by_name(const struct btf *btf, const char *type_name)
 675{
 676	__u32 i, nr_types = btf__get_nr_types(btf);
 677
 678	if (!strcmp(type_name, "void"))
 679		return 0;
 680
 681	for (i = 1; i <= nr_types; i++) {
 682		const struct btf_type *t = btf__type_by_id(btf, i);
 683		const char *name = btf__name_by_offset(btf, t->name_off);
 684
 685		if (name && !strcmp(type_name, name))
 686			return i;
 687	}
 688
 689	return libbpf_err(-ENOENT);
 690}
 691
 692__s32 btf__find_by_name_kind(const struct btf *btf, const char *type_name,
 693			     __u32 kind)
 694{
 695	__u32 i, nr_types = btf__get_nr_types(btf);
 696
 697	if (kind == BTF_KIND_UNKN || !strcmp(type_name, "void"))
 698		return 0;
 699
 700	for (i = 1; i <= nr_types; i++) {
 701		const struct btf_type *t = btf__type_by_id(btf, i);
 702		const char *name;
 703
 704		if (btf_kind(t) != kind)
 705			continue;
 706		name = btf__name_by_offset(btf, t->name_off);
 707		if (name && !strcmp(type_name, name))
 708			return i;
 709	}
 710
 711	return libbpf_err(-ENOENT);
 712}
 713
 714static bool btf_is_modifiable(const struct btf *btf)
 715{
 716	return (void *)btf->hdr != btf->raw_data;
 717}
 718
 719void btf__free(struct btf *btf)
 720{
 721	if (IS_ERR_OR_NULL(btf))
 722		return;
 723
 724	if (btf->fd >= 0)
 725		close(btf->fd);
 726
 727	if (btf_is_modifiable(btf)) {
 728		/* if BTF was modified after loading, it will have a split
 729		 * in-memory representation for header, types, and strings
 730		 * sections, so we need to free all of them individually. It
 731		 * might still have a cached contiguous raw data present,
 732		 * which will be unconditionally freed below.
 733		 */
 734		free(btf->hdr);
 735		free(btf->types_data);
 736		strset__free(btf->strs_set);
 737	}
 738	free(btf->raw_data);
 739	free(btf->raw_data_swapped);
 740	free(btf->type_offs);
 741	free(btf);
 742}
 743
 744static struct btf *btf_new_empty(struct btf *base_btf)
 745{
 746	struct btf *btf;
 747
 748	btf = calloc(1, sizeof(*btf));
 749	if (!btf)
 750		return ERR_PTR(-ENOMEM);
 751
 752	btf->nr_types = 0;
 753	btf->start_id = 1;
 754	btf->start_str_off = 0;
 755	btf->fd = -1;
 756	btf->ptr_sz = sizeof(void *);
 757	btf->swapped_endian = false;
 758
 759	if (base_btf) {
 760		btf->base_btf = base_btf;
 761		btf->start_id = btf__get_nr_types(base_btf) + 1;
 762		btf->start_str_off = base_btf->hdr->str_len;
 763	}
 764
 765	/* +1 for empty string at offset 0 */
 766	btf->raw_size = sizeof(struct btf_header) + (base_btf ? 0 : 1);
 767	btf->raw_data = calloc(1, btf->raw_size);
 768	if (!btf->raw_data) {
 769		free(btf);
 770		return ERR_PTR(-ENOMEM);
 771	}
 772
 773	btf->hdr = btf->raw_data;
 774	btf->hdr->hdr_len = sizeof(struct btf_header);
 775	btf->hdr->magic = BTF_MAGIC;
 776	btf->hdr->version = BTF_VERSION;
 777
 778	btf->types_data = btf->raw_data + btf->hdr->hdr_len;
 779	btf->strs_data = btf->raw_data + btf->hdr->hdr_len;
 780	btf->hdr->str_len = base_btf ? 0 : 1; /* empty string at offset 0 */
 781
 782	return btf;
 783}
 784
 785struct btf *btf__new_empty(void)
 786{
 787	return libbpf_ptr(btf_new_empty(NULL));
 788}
 789
 790struct btf *btf__new_empty_split(struct btf *base_btf)
 791{
 792	return libbpf_ptr(btf_new_empty(base_btf));
 793}
 794
 795static struct btf *btf_new(const void *data, __u32 size, struct btf *base_btf)
 796{
 797	struct btf *btf;
 798	int err;
 799
 800	btf = calloc(1, sizeof(struct btf));
 801	if (!btf)
 802		return ERR_PTR(-ENOMEM);
 803
 804	btf->nr_types = 0;
 805	btf->start_id = 1;
 806	btf->start_str_off = 0;
 807	btf->fd = -1;
 808
 809	if (base_btf) {
 810		btf->base_btf = base_btf;
 811		btf->start_id = btf__get_nr_types(base_btf) + 1;
 812		btf->start_str_off = base_btf->hdr->str_len;
 813	}
 814
 815	btf->raw_data = malloc(size);
 816	if (!btf->raw_data) {
 817		err = -ENOMEM;
 818		goto done;
 819	}
 820	memcpy(btf->raw_data, data, size);
 821	btf->raw_size = size;
 822
 823	btf->hdr = btf->raw_data;
 824	err = btf_parse_hdr(btf);
 825	if (err)
 826		goto done;
 827
 828	btf->strs_data = btf->raw_data + btf->hdr->hdr_len + btf->hdr->str_off;
 829	btf->types_data = btf->raw_data + btf->hdr->hdr_len + btf->hdr->type_off;
 830
 831	err = btf_parse_str_sec(btf);
 832	err = err ?: btf_parse_type_sec(btf);
 833	if (err)
 834		goto done;
 835
 836done:
 837	if (err) {
 838		btf__free(btf);
 839		return ERR_PTR(err);
 840	}
 841
 842	return btf;
 843}
 844
 845struct btf *btf__new(const void *data, __u32 size)
 846{
 847	return libbpf_ptr(btf_new(data, size, NULL));
 848}
 849
 850static struct btf *btf_parse_elf(const char *path, struct btf *base_btf,
 851				 struct btf_ext **btf_ext)
 852{
 853	Elf_Data *btf_data = NULL, *btf_ext_data = NULL;
 854	int err = 0, fd = -1, idx = 0;
 855	struct btf *btf = NULL;
 856	Elf_Scn *scn = NULL;
 857	Elf *elf = NULL;
 858	GElf_Ehdr ehdr;
 859	size_t shstrndx;
 860
 861	if (elf_version(EV_CURRENT) == EV_NONE) {
 862		pr_warn("failed to init libelf for %s\n", path);
 863		return ERR_PTR(-LIBBPF_ERRNO__LIBELF);
 864	}
 865
 866	fd = open(path, O_RDONLY);
 867	if (fd < 0) {
 868		err = -errno;
 869		pr_warn("failed to open %s: %s\n", path, strerror(errno));
 870		return ERR_PTR(err);
 871	}
 872
 873	err = -LIBBPF_ERRNO__FORMAT;
 874
 875	elf = elf_begin(fd, ELF_C_READ, NULL);
 876	if (!elf) {
 877		pr_warn("failed to open %s as ELF file\n", path);
 878		goto done;
 879	}
 880	if (!gelf_getehdr(elf, &ehdr)) {
 881		pr_warn("failed to get EHDR from %s\n", path);
 882		goto done;
 883	}
 884
 885	if (elf_getshdrstrndx(elf, &shstrndx)) {
 886		pr_warn("failed to get section names section index for %s\n",
 887			path);
 888		goto done;
 889	}
 890
 891	if (!elf_rawdata(elf_getscn(elf, shstrndx), NULL)) {
 892		pr_warn("failed to get e_shstrndx from %s\n", path);
 893		goto done;
 894	}
 895
 896	while ((scn = elf_nextscn(elf, scn)) != NULL) {
 897		GElf_Shdr sh;
 898		char *name;
 899
 900		idx++;
 901		if (gelf_getshdr(scn, &sh) != &sh) {
 902			pr_warn("failed to get section(%d) header from %s\n",
 903				idx, path);
 904			goto done;
 905		}
 906		name = elf_strptr(elf, shstrndx, sh.sh_name);
 907		if (!name) {
 908			pr_warn("failed to get section(%d) name from %s\n",
 909				idx, path);
 910			goto done;
 911		}
 912		if (strcmp(name, BTF_ELF_SEC) == 0) {
 913			btf_data = elf_getdata(scn, 0);
 914			if (!btf_data) {
 915				pr_warn("failed to get section(%d, %s) data from %s\n",
 916					idx, name, path);
 917				goto done;
 918			}
 919			continue;
 920		} else if (btf_ext && strcmp(name, BTF_EXT_ELF_SEC) == 0) {
 921			btf_ext_data = elf_getdata(scn, 0);
 922			if (!btf_ext_data) {
 923				pr_warn("failed to get section(%d, %s) data from %s\n",
 924					idx, name, path);
 925				goto done;
 926			}
 927			continue;
 928		}
 929	}
 930
 931	err = 0;
 932
 933	if (!btf_data) {
 934		err = -ENOENT;
 935		goto done;
 936	}
 937	btf = btf_new(btf_data->d_buf, btf_data->d_size, base_btf);
 938	err = libbpf_get_error(btf);
 939	if (err)
 940		goto done;
 941
 942	switch (gelf_getclass(elf)) {
 943	case ELFCLASS32:
 944		btf__set_pointer_size(btf, 4);
 945		break;
 946	case ELFCLASS64:
 947		btf__set_pointer_size(btf, 8);
 948		break;
 949	default:
 950		pr_warn("failed to get ELF class (bitness) for %s\n", path);
 951		break;
 952	}
 953
 954	if (btf_ext && btf_ext_data) {
 955		*btf_ext = btf_ext__new(btf_ext_data->d_buf, btf_ext_data->d_size);
 956		err = libbpf_get_error(*btf_ext);
 957		if (err)
 958			goto done;
 959	} else if (btf_ext) {
 960		*btf_ext = NULL;
 961	}
 962done:
 963	if (elf)
 964		elf_end(elf);
 965	close(fd);
 966
 967	if (!err)
 968		return btf;
 969
 970	if (btf_ext)
 971		btf_ext__free(*btf_ext);
 972	btf__free(btf);
 973
 974	return ERR_PTR(err);
 975}
 976
 977struct btf *btf__parse_elf(const char *path, struct btf_ext **btf_ext)
 978{
 979	return libbpf_ptr(btf_parse_elf(path, NULL, btf_ext));
 980}
 981
 982struct btf *btf__parse_elf_split(const char *path, struct btf *base_btf)
 983{
 984	return libbpf_ptr(btf_parse_elf(path, base_btf, NULL));
 985}
 986
 987static struct btf *btf_parse_raw(const char *path, struct btf *base_btf)
 988{
 989	struct btf *btf = NULL;
 990	void *data = NULL;
 991	FILE *f = NULL;
 992	__u16 magic;
 993	int err = 0;
 994	long sz;
 995
 996	f = fopen(path, "rb");
 997	if (!f) {
 998		err = -errno;
 999		goto err_out;
1000	}
1001
1002	/* check BTF magic */
1003	if (fread(&magic, 1, sizeof(magic), f) < sizeof(magic)) {
1004		err = -EIO;
1005		goto err_out;
1006	}
1007	if (magic != BTF_MAGIC && magic != bswap_16(BTF_MAGIC)) {
1008		/* definitely not a raw BTF */
1009		err = -EPROTO;
1010		goto err_out;
1011	}
1012
1013	/* get file size */
1014	if (fseek(f, 0, SEEK_END)) {
1015		err = -errno;
1016		goto err_out;
1017	}
1018	sz = ftell(f);
1019	if (sz < 0) {
1020		err = -errno;
1021		goto err_out;
1022	}
1023	/* rewind to the start */
1024	if (fseek(f, 0, SEEK_SET)) {
1025		err = -errno;
1026		goto err_out;
1027	}
1028
1029	/* pre-alloc memory and read all of BTF data */
1030	data = malloc(sz);
1031	if (!data) {
1032		err = -ENOMEM;
1033		goto err_out;
1034	}
1035	if (fread(data, 1, sz, f) < sz) {
1036		err = -EIO;
1037		goto err_out;
1038	}
1039
1040	/* finally parse BTF data */
1041	btf = btf_new(data, sz, base_btf);
1042
1043err_out:
1044	free(data);
1045	if (f)
1046		fclose(f);
1047	return err ? ERR_PTR(err) : btf;
1048}
1049
1050struct btf *btf__parse_raw(const char *path)
1051{
1052	return libbpf_ptr(btf_parse_raw(path, NULL));
1053}
1054
1055struct btf *btf__parse_raw_split(const char *path, struct btf *base_btf)
1056{
1057	return libbpf_ptr(btf_parse_raw(path, base_btf));
1058}
1059
1060static struct btf *btf_parse(const char *path, struct btf *base_btf, struct btf_ext **btf_ext)
1061{
1062	struct btf *btf;
1063	int err;
1064
1065	if (btf_ext)
1066		*btf_ext = NULL;
1067
1068	btf = btf_parse_raw(path, base_btf);
1069	err = libbpf_get_error(btf);
1070	if (!err)
1071		return btf;
1072	if (err != -EPROTO)
1073		return ERR_PTR(err);
1074	return btf_parse_elf(path, base_btf, btf_ext);
1075}
1076
1077struct btf *btf__parse(const char *path, struct btf_ext **btf_ext)
1078{
1079	return libbpf_ptr(btf_parse(path, NULL, btf_ext));
1080}
1081
1082struct btf *btf__parse_split(const char *path, struct btf *base_btf)
1083{
1084	return libbpf_ptr(btf_parse(path, base_btf, NULL));
1085}
1086
1087static int compare_vsi_off(const void *_a, const void *_b)
1088{
1089	const struct btf_var_secinfo *a = _a;
1090	const struct btf_var_secinfo *b = _b;
1091
1092	return a->offset - b->offset;
1093}
1094
1095static int btf_fixup_datasec(struct bpf_object *obj, struct btf *btf,
1096			     struct btf_type *t)
1097{
1098	__u32 size = 0, off = 0, i, vars = btf_vlen(t);
1099	const char *name = btf__name_by_offset(btf, t->name_off);
1100	const struct btf_type *t_var;
1101	struct btf_var_secinfo *vsi;
1102	const struct btf_var *var;
1103	int ret;
1104
1105	if (!name) {
1106		pr_debug("No name found in string section for DATASEC kind.\n");
1107		return -ENOENT;
1108	}
1109
1110	/* .extern datasec size and var offsets were set correctly during
1111	 * extern collection step, so just skip straight to sorting variables
1112	 */
1113	if (t->size)
1114		goto sort_vars;
1115
1116	ret = bpf_object__section_size(obj, name, &size);
1117	if (ret || !size || (t->size && t->size != size)) {
1118		pr_debug("Invalid size for section %s: %u bytes\n", name, size);
1119		return -ENOENT;
1120	}
1121
1122	t->size = size;
1123
1124	for (i = 0, vsi = btf_var_secinfos(t); i < vars; i++, vsi++) {
1125		t_var = btf__type_by_id(btf, vsi->type);
1126		var = btf_var(t_var);
1127
1128		if (!btf_is_var(t_var)) {
1129			pr_debug("Non-VAR type seen in section %s\n", name);
1130			return -EINVAL;
1131		}
1132
1133		if (var->linkage == BTF_VAR_STATIC)
1134			continue;
1135
1136		name = btf__name_by_offset(btf, t_var->name_off);
1137		if (!name) {
1138			pr_debug("No name found in string section for VAR kind\n");
1139			return -ENOENT;
1140		}
1141
1142		ret = bpf_object__variable_offset(obj, name, &off);
1143		if (ret) {
1144			pr_debug("No offset found in symbol table for VAR %s\n",
1145				 name);
1146			return -ENOENT;
1147		}
1148
1149		vsi->offset = off;
1150	}
1151
1152sort_vars:
1153	qsort(btf_var_secinfos(t), vars, sizeof(*vsi), compare_vsi_off);
1154	return 0;
1155}
1156
1157int btf__finalize_data(struct bpf_object *obj, struct btf *btf)
1158{
1159	int err = 0;
1160	__u32 i;
1161
1162	for (i = 1; i <= btf->nr_types; i++) {
1163		struct btf_type *t = btf_type_by_id(btf, i);
1164
1165		/* Loader needs to fix up some of the things compiler
1166		 * couldn't get its hands on while emitting BTF. This
1167		 * is section size and global variable offset. We use
1168		 * the info from the ELF itself for this purpose.
1169		 */
1170		if (btf_is_datasec(t)) {
1171			err = btf_fixup_datasec(obj, btf, t);
1172			if (err)
1173				break;
1174		}
1175	}
1176
1177	return libbpf_err(err);
1178}
1179
1180static void *btf_get_raw_data(const struct btf *btf, __u32 *size, bool swap_endian);
1181
1182int btf__load(struct btf *btf)
1183{
1184	__u32 log_buf_size = 0, raw_size;
1185	char *log_buf = NULL;
1186	void *raw_data;
1187	int err = 0;
1188
1189	if (btf->fd >= 0)
1190		return libbpf_err(-EEXIST);
1191
1192retry_load:
1193	if (log_buf_size) {
1194		log_buf = malloc(log_buf_size);
1195		if (!log_buf)
1196			return libbpf_err(-ENOMEM);
1197
1198		*log_buf = 0;
1199	}
1200
1201	raw_data = btf_get_raw_data(btf, &raw_size, false);
1202	if (!raw_data) {
1203		err = -ENOMEM;
1204		goto done;
1205	}
1206	/* cache native raw data representation */
1207	btf->raw_size = raw_size;
1208	btf->raw_data = raw_data;
1209
1210	btf->fd = bpf_load_btf(raw_data, raw_size, log_buf, log_buf_size, false);
1211	if (btf->fd < 0) {
1212		if (!log_buf || errno == ENOSPC) {
1213			log_buf_size = max((__u32)BPF_LOG_BUF_SIZE,
1214					   log_buf_size << 1);
1215			free(log_buf);
1216			goto retry_load;
1217		}
1218
1219		err = -errno;
1220		pr_warn("Error loading BTF: %s(%d)\n", strerror(errno), errno);
1221		if (*log_buf)
1222			pr_warn("%s\n", log_buf);
1223		goto done;
1224	}
1225
1226done:
1227	free(log_buf);
1228	return libbpf_err(err);
1229}
1230
1231int btf__fd(const struct btf *btf)
1232{
1233	return btf->fd;
1234}
1235
1236void btf__set_fd(struct btf *btf, int fd)
1237{
1238	btf->fd = fd;
1239}
1240
1241static const void *btf_strs_data(const struct btf *btf)
1242{
1243	return btf->strs_data ? btf->strs_data : strset__data(btf->strs_set);
1244}
1245
1246static void *btf_get_raw_data(const struct btf *btf, __u32 *size, bool swap_endian)
1247{
1248	struct btf_header *hdr = btf->hdr;
1249	struct btf_type *t;
1250	void *data, *p;
1251	__u32 data_sz;
1252	int i;
1253
1254	data = swap_endian ? btf->raw_data_swapped : btf->raw_data;
1255	if (data) {
1256		*size = btf->raw_size;
1257		return data;
1258	}
1259
1260	data_sz = hdr->hdr_len + hdr->type_len + hdr->str_len;
1261	data = calloc(1, data_sz);
1262	if (!data)
1263		return NULL;
1264	p = data;
1265
1266	memcpy(p, hdr, hdr->hdr_len);
1267	if (swap_endian)
1268		btf_bswap_hdr(p);
1269	p += hdr->hdr_len;
1270
1271	memcpy(p, btf->types_data, hdr->type_len);
1272	if (swap_endian) {
1273		for (i = 0; i < btf->nr_types; i++) {
1274			t = p + btf->type_offs[i];
1275			/* btf_bswap_type_rest() relies on native t->info, so
1276			 * we swap base type info after we swapped all the
1277			 * additional information
1278			 */
1279			if (btf_bswap_type_rest(t))
1280				goto err_out;
1281			btf_bswap_type_base(t);
1282		}
1283	}
1284	p += hdr->type_len;
1285
1286	memcpy(p, btf_strs_data(btf), hdr->str_len);
1287	p += hdr->str_len;
1288
1289	*size = data_sz;
1290	return data;
1291err_out:
1292	free(data);
1293	return NULL;
1294}
1295
1296const void *btf__get_raw_data(const struct btf *btf_ro, __u32 *size)
1297{
1298	struct btf *btf = (struct btf *)btf_ro;
1299	__u32 data_sz;
1300	void *data;
1301
1302	data = btf_get_raw_data(btf, &data_sz, btf->swapped_endian);
1303	if (!data)
1304		return errno = -ENOMEM, NULL;
1305
1306	btf->raw_size = data_sz;
1307	if (btf->swapped_endian)
1308		btf->raw_data_swapped = data;
1309	else
1310		btf->raw_data = data;
1311	*size = data_sz;
1312	return data;
1313}
1314
1315const char *btf__str_by_offset(const struct btf *btf, __u32 offset)
1316{
1317	if (offset < btf->start_str_off)
1318		return btf__str_by_offset(btf->base_btf, offset);
1319	else if (offset - btf->start_str_off < btf->hdr->str_len)
1320		return btf_strs_data(btf) + (offset - btf->start_str_off);
1321	else
1322		return errno = EINVAL, NULL;
1323}
1324
1325const char *btf__name_by_offset(const struct btf *btf, __u32 offset)
1326{
1327	return btf__str_by_offset(btf, offset);
1328}
1329
1330struct btf *btf_get_from_fd(int btf_fd, struct btf *base_btf)
1331{
1332	struct bpf_btf_info btf_info;
1333	__u32 len = sizeof(btf_info);
1334	__u32 last_size;
1335	struct btf *btf;
1336	void *ptr;
1337	int err;
1338
1339	/* we won't know btf_size until we call bpf_obj_get_info_by_fd(). so
1340	 * let's start with a sane default - 4KiB here - and resize it only if
1341	 * bpf_obj_get_info_by_fd() needs a bigger buffer.
1342	 */
1343	last_size = 4096;
1344	ptr = malloc(last_size);
1345	if (!ptr)
1346		return ERR_PTR(-ENOMEM);
1347
1348	memset(&btf_info, 0, sizeof(btf_info));
1349	btf_info.btf = ptr_to_u64(ptr);
1350	btf_info.btf_size = last_size;
1351	err = bpf_obj_get_info_by_fd(btf_fd, &btf_info, &len);
1352
1353	if (!err && btf_info.btf_size > last_size) {
1354		void *temp_ptr;
1355
1356		last_size = btf_info.btf_size;
1357		temp_ptr = realloc(ptr, last_size);
1358		if (!temp_ptr) {
1359			btf = ERR_PTR(-ENOMEM);
1360			goto exit_free;
1361		}
1362		ptr = temp_ptr;
1363
1364		len = sizeof(btf_info);
1365		memset(&btf_info, 0, sizeof(btf_info));
1366		btf_info.btf = ptr_to_u64(ptr);
1367		btf_info.btf_size = last_size;
1368
1369		err = bpf_obj_get_info_by_fd(btf_fd, &btf_info, &len);
1370	}
1371
1372	if (err || btf_info.btf_size > last_size) {
1373		btf = err ? ERR_PTR(-errno) : ERR_PTR(-E2BIG);
1374		goto exit_free;
1375	}
1376
1377	btf = btf_new(ptr, btf_info.btf_size, base_btf);
1378
1379exit_free:
1380	free(ptr);
1381	return btf;
1382}
1383
1384int btf__get_from_id(__u32 id, struct btf **btf)
1385{
1386	struct btf *res;
1387	int err, btf_fd;
1388
1389	*btf = NULL;
1390	btf_fd = bpf_btf_get_fd_by_id(id);
1391	if (btf_fd < 0)
1392		return libbpf_err(-errno);
1393
1394	res = btf_get_from_fd(btf_fd, NULL);
1395	err = libbpf_get_error(res);
1396
1397	close(btf_fd);
1398
1399	if (err)
1400		return libbpf_err(err);
1401
1402	*btf = res;
1403	return 0;
1404}
1405
1406int btf__get_map_kv_tids(const struct btf *btf, const char *map_name,
1407			 __u32 expected_key_size, __u32 expected_value_size,
1408			 __u32 *key_type_id, __u32 *value_type_id)
1409{
1410	const struct btf_type *container_type;
1411	const struct btf_member *key, *value;
1412	const size_t max_name = 256;
1413	char container_name[max_name];
1414	__s64 key_size, value_size;
1415	__s32 container_id;
1416
1417	if (snprintf(container_name, max_name, "____btf_map_%s", map_name) == max_name) {
1418		pr_warn("map:%s length of '____btf_map_%s' is too long\n",
1419			map_name, map_name);
1420		return libbpf_err(-EINVAL);
1421	}
1422
1423	container_id = btf__find_by_name(btf, container_name);
1424	if (container_id < 0) {
1425		pr_debug("map:%s container_name:%s cannot be found in BTF. Missing BPF_ANNOTATE_KV_PAIR?\n",
1426			 map_name, container_name);
1427		return libbpf_err(container_id);
1428	}
1429
1430	container_type = btf__type_by_id(btf, container_id);
1431	if (!container_type) {
1432		pr_warn("map:%s cannot find BTF type for container_id:%u\n",
1433			map_name, container_id);
1434		return libbpf_err(-EINVAL);
1435	}
1436
1437	if (!btf_is_struct(container_type) || btf_vlen(container_type) < 2) {
1438		pr_warn("map:%s container_name:%s is an invalid container struct\n",
1439			map_name, container_name);
1440		return libbpf_err(-EINVAL);
1441	}
1442
1443	key = btf_members(container_type);
1444	value = key + 1;
1445
1446	key_size = btf__resolve_size(btf, key->type);
1447	if (key_size < 0) {
1448		pr_warn("map:%s invalid BTF key_type_size\n", map_name);
1449		return libbpf_err(key_size);
1450	}
1451
1452	if (expected_key_size != key_size) {
1453		pr_warn("map:%s btf_key_type_size:%u != map_def_key_size:%u\n",
1454			map_name, (__u32)key_size, expected_key_size);
1455		return libbpf_err(-EINVAL);
1456	}
1457
1458	value_size = btf__resolve_size(btf, value->type);
1459	if (value_size < 0) {
1460		pr_warn("map:%s invalid BTF value_type_size\n", map_name);
1461		return libbpf_err(value_size);
1462	}
1463
1464	if (expected_value_size != value_size) {
1465		pr_warn("map:%s btf_value_type_size:%u != map_def_value_size:%u\n",
1466			map_name, (__u32)value_size, expected_value_size);
1467		return libbpf_err(-EINVAL);
1468	}
1469
1470	*key_type_id = key->type;
1471	*value_type_id = value->type;
1472
1473	return 0;
1474}
1475
1476static void btf_invalidate_raw_data(struct btf *btf)
1477{
1478	if (btf->raw_data) {
1479		free(btf->raw_data);
1480		btf->raw_data = NULL;
1481	}
1482	if (btf->raw_data_swapped) {
1483		free(btf->raw_data_swapped);
1484		btf->raw_data_swapped = NULL;
1485	}
1486}
1487
1488/* Ensure BTF is ready to be modified (by splitting into a three memory
1489 * regions for header, types, and strings). Also invalidate cached
1490 * raw_data, if any.
1491 */
1492static int btf_ensure_modifiable(struct btf *btf)
1493{
1494	void *hdr, *types;
1495	struct strset *set = NULL;
1496	int err = -ENOMEM;
1497
1498	if (btf_is_modifiable(btf)) {
1499		/* any BTF modification invalidates raw_data */
1500		btf_invalidate_raw_data(btf);
1501		return 0;
1502	}
1503
1504	/* split raw data into three memory regions */
1505	hdr = malloc(btf->hdr->hdr_len);
1506	types = malloc(btf->hdr->type_len);
1507	if (!hdr || !types)
1508		goto err_out;
1509
1510	memcpy(hdr, btf->hdr, btf->hdr->hdr_len);
1511	memcpy(types, btf->types_data, btf->hdr->type_len);
1512
1513	/* build lookup index for all strings */
1514	set = strset__new(BTF_MAX_STR_OFFSET, btf->strs_data, btf->hdr->str_len);
1515	if (IS_ERR(set)) {
1516		err = PTR_ERR(set);
1517		goto err_out;
1518	}
1519
1520	/* only when everything was successful, update internal state */
1521	btf->hdr = hdr;
1522	btf->types_data = types;
1523	btf->types_data_cap = btf->hdr->type_len;
1524	btf->strs_data = NULL;
1525	btf->strs_set = set;
1526	/* if BTF was created from scratch, all strings are guaranteed to be
1527	 * unique and deduplicated
1528	 */
1529	if (btf->hdr->str_len == 0)
1530		btf->strs_deduped = true;
1531	if (!btf->base_btf && btf->hdr->str_len == 1)
1532		btf->strs_deduped = true;
1533
1534	/* invalidate raw_data representation */
1535	btf_invalidate_raw_data(btf);
1536
1537	return 0;
1538
1539err_out:
1540	strset__free(set);
1541	free(hdr);
1542	free(types);
1543	return err;
1544}
1545
1546/* Find an offset in BTF string section that corresponds to a given string *s*.
1547 * Returns:
1548 *   - >0 offset into string section, if string is found;
1549 *   - -ENOENT, if string is not in the string section;
1550 *   - <0, on any other error.
1551 */
1552int btf__find_str(struct btf *btf, const char *s)
1553{
1554	int off;
1555
1556	if (btf->base_btf) {
1557		off = btf__find_str(btf->base_btf, s);
1558		if (off != -ENOENT)
1559			return off;
1560	}
1561
1562	/* BTF needs to be in a modifiable state to build string lookup index */
1563	if (btf_ensure_modifiable(btf))
1564		return libbpf_err(-ENOMEM);
1565
1566	off = strset__find_str(btf->strs_set, s);
1567	if (off < 0)
1568		return libbpf_err(off);
1569
1570	return btf->start_str_off + off;
1571}
1572
1573/* Add a string s to the BTF string section.
1574 * Returns:
1575 *   - > 0 offset into string section, on success;
1576 *   - < 0, on error.
1577 */
1578int btf__add_str(struct btf *btf, const char *s)
1579{
1580	int off;
1581
1582	if (btf->base_btf) {
1583		off = btf__find_str(btf->base_btf, s);
1584		if (off != -ENOENT)
1585			return off;
1586	}
1587
1588	if (btf_ensure_modifiable(btf))
1589		return libbpf_err(-ENOMEM);
1590
1591	off = strset__add_str(btf->strs_set, s);
1592	if (off < 0)
1593		return libbpf_err(off);
1594
1595	btf->hdr->str_len = strset__data_size(btf->strs_set);
1596
1597	return btf->start_str_off + off;
1598}
1599
1600static void *btf_add_type_mem(struct btf *btf, size_t add_sz)
1601{
1602	return libbpf_add_mem(&btf->types_data, &btf->types_data_cap, 1,
1603			      btf->hdr->type_len, UINT_MAX, add_sz);
1604}
1605
1606static void btf_type_inc_vlen(struct btf_type *t)
1607{
1608	t->info = btf_type_info(btf_kind(t), btf_vlen(t) + 1, btf_kflag(t));
1609}
1610
1611static int btf_commit_type(struct btf *btf, int data_sz)
1612{
1613	int err;
1614
1615	err = btf_add_type_idx_entry(btf, btf->hdr->type_len);
1616	if (err)
1617		return libbpf_err(err);
1618
1619	btf->hdr->type_len += data_sz;
1620	btf->hdr->str_off += data_sz;
1621	btf->nr_types++;
1622	return btf->start_id + btf->nr_types - 1;
1623}
1624
1625struct btf_pipe {
1626	const struct btf *src;
1627	struct btf *dst;
1628};
1629
1630static int btf_rewrite_str(__u32 *str_off, void *ctx)
1631{
1632	struct btf_pipe *p = ctx;
1633	int off;
1634
1635	if (!*str_off) /* nothing to do for empty strings */
1636		return 0;
1637
1638	off = btf__add_str(p->dst, btf__str_by_offset(p->src, *str_off));
1639	if (off < 0)
1640		return off;
1641
1642	*str_off = off;
1643	return 0;
1644}
1645
1646int btf__add_type(struct btf *btf, const struct btf *src_btf, const struct btf_type *src_type)
1647{
1648	struct btf_pipe p = { .src = src_btf, .dst = btf };
1649	struct btf_type *t;
1650	int sz, err;
1651
1652	sz = btf_type_size(src_type);
1653	if (sz < 0)
1654		return libbpf_err(sz);
1655
1656	/* deconstruct BTF, if necessary, and invalidate raw_data */
1657	if (btf_ensure_modifiable(btf))
1658		return libbpf_err(-ENOMEM);
1659
1660	t = btf_add_type_mem(btf, sz);
1661	if (!t)
1662		return libbpf_err(-ENOMEM);
1663
1664	memcpy(t, src_type, sz);
1665
1666	err = btf_type_visit_str_offs(t, btf_rewrite_str, &p);
1667	if (err)
1668		return libbpf_err(err);
1669
1670	return btf_commit_type(btf, sz);
1671}
1672
1673/*
1674 * Append new BTF_KIND_INT type with:
1675 *   - *name* - non-empty, non-NULL type name;
1676 *   - *sz* - power-of-2 (1, 2, 4, ..) size of the type, in bytes;
1677 *   - encoding is a combination of BTF_INT_SIGNED, BTF_INT_CHAR, BTF_INT_BOOL.
1678 * Returns:
1679 *   - >0, type ID of newly added BTF type;
1680 *   - <0, on error.
1681 */
1682int btf__add_int(struct btf *btf, const char *name, size_t byte_sz, int encoding)
1683{
1684	struct btf_type *t;
1685	int sz, name_off;
1686
1687	/* non-empty name */
1688	if (!name || !name[0])
1689		return libbpf_err(-EINVAL);
1690	/* byte_sz must be power of 2 */
1691	if (!byte_sz || (byte_sz & (byte_sz - 1)) || byte_sz > 16)
1692		return libbpf_err(-EINVAL);
1693	if (encoding & ~(BTF_INT_SIGNED | BTF_INT_CHAR | BTF_INT_BOOL))
1694		return libbpf_err(-EINVAL);
1695
1696	/* deconstruct BTF, if necessary, and invalidate raw_data */
1697	if (btf_ensure_modifiable(btf))
1698		return libbpf_err(-ENOMEM);
1699
1700	sz = sizeof(struct btf_type) + sizeof(int);
1701	t = btf_add_type_mem(btf, sz);
1702	if (!t)
1703		return libbpf_err(-ENOMEM);
1704
1705	/* if something goes wrong later, we might end up with an extra string,
1706	 * but that shouldn't be a problem, because BTF can't be constructed
1707	 * completely anyway and will most probably be just discarded
1708	 */
1709	name_off = btf__add_str(btf, name);
1710	if (name_off < 0)
1711		return name_off;
1712
1713	t->name_off = name_off;
1714	t->info = btf_type_info(BTF_KIND_INT, 0, 0);
1715	t->size = byte_sz;
1716	/* set INT info, we don't allow setting legacy bit offset/size */
1717	*(__u32 *)(t + 1) = (encoding << 24) | (byte_sz * 8);
1718
1719	return btf_commit_type(btf, sz);
1720}
1721
1722/*
1723 * Append new BTF_KIND_FLOAT type with:
1724 *   - *name* - non-empty, non-NULL type name;
1725 *   - *sz* - size of the type, in bytes;
1726 * Returns:
1727 *   - >0, type ID of newly added BTF type;
1728 *   - <0, on error.
1729 */
1730int btf__add_float(struct btf *btf, const char *name, size_t byte_sz)
1731{
1732	struct btf_type *t;
1733	int sz, name_off;
1734
1735	/* non-empty name */
1736	if (!name || !name[0])
1737		return libbpf_err(-EINVAL);
1738
1739	/* byte_sz must be one of the explicitly allowed values */
1740	if (byte_sz != 2 && byte_sz != 4 && byte_sz != 8 && byte_sz != 12 &&
1741	    byte_sz != 16)
1742		return libbpf_err(-EINVAL);
1743
1744	if (btf_ensure_modifiable(btf))
1745		return libbpf_err(-ENOMEM);
1746
1747	sz = sizeof(struct btf_type);
1748	t = btf_add_type_mem(btf, sz);
1749	if (!t)
1750		return libbpf_err(-ENOMEM);
1751
1752	name_off = btf__add_str(btf, name);
1753	if (name_off < 0)
1754		return name_off;
1755
1756	t->name_off = name_off;
1757	t->info = btf_type_info(BTF_KIND_FLOAT, 0, 0);
1758	t->size = byte_sz;
1759
1760	return btf_commit_type(btf, sz);
1761}
1762
1763/* it's completely legal to append BTF types with type IDs pointing forward to
1764 * types that haven't been appended yet, so we only make sure that id looks
1765 * sane, we can't guarantee that ID will always be valid
1766 */
1767static int validate_type_id(int id)
1768{
1769	if (id < 0 || id > BTF_MAX_NR_TYPES)
1770		return -EINVAL;
1771	return 0;
1772}
1773
1774/* generic append function for PTR, TYPEDEF, CONST/VOLATILE/RESTRICT */
1775static int btf_add_ref_kind(struct btf *btf, int kind, const char *name, int ref_type_id)
1776{
1777	struct btf_type *t;
1778	int sz, name_off = 0;
1779
1780	if (validate_type_id(ref_type_id))
1781		return libbpf_err(-EINVAL);
1782
1783	if (btf_ensure_modifiable(btf))
1784		return libbpf_err(-ENOMEM);
1785
1786	sz = sizeof(struct btf_type);
1787	t = btf_add_type_mem(btf, sz);
1788	if (!t)
1789		return libbpf_err(-ENOMEM);
1790
1791	if (name && name[0]) {
1792		name_off = btf__add_str(btf, name);
1793		if (name_off < 0)
1794			return name_off;
1795	}
1796
1797	t->name_off = name_off;
1798	t->info = btf_type_info(kind, 0, 0);
1799	t->type = ref_type_id;
1800
1801	return btf_commit_type(btf, sz);
1802}
1803
1804/*
1805 * Append new BTF_KIND_PTR type with:
1806 *   - *ref_type_id* - referenced type ID, it might not exist yet;
1807 * Returns:
1808 *   - >0, type ID of newly added BTF type;
1809 *   - <0, on error.
1810 */
1811int btf__add_ptr(struct btf *btf, int ref_type_id)
1812{
1813	return btf_add_ref_kind(btf, BTF_KIND_PTR, NULL, ref_type_id);
1814}
1815
1816/*
1817 * Append new BTF_KIND_ARRAY type with:
1818 *   - *index_type_id* - type ID of the type describing array index;
1819 *   - *elem_type_id* - type ID of the type describing array element;
1820 *   - *nr_elems* - the size of the array;
1821 * Returns:
1822 *   - >0, type ID of newly added BTF type;
1823 *   - <0, on error.
1824 */
1825int btf__add_array(struct btf *btf, int index_type_id, int elem_type_id, __u32 nr_elems)
1826{
1827	struct btf_type *t;
1828	struct btf_array *a;
1829	int sz;
1830
1831	if (validate_type_id(index_type_id) || validate_type_id(elem_type_id))
1832		return libbpf_err(-EINVAL);
1833
1834	if (btf_ensure_modifiable(btf))
1835		return libbpf_err(-ENOMEM);
1836
1837	sz = sizeof(struct btf_type) + sizeof(struct btf_array);
1838	t = btf_add_type_mem(btf, sz);
1839	if (!t)
1840		return libbpf_err(-ENOMEM);
1841
1842	t->name_off = 0;
1843	t->info = btf_type_info(BTF_KIND_ARRAY, 0, 0);
1844	t->size = 0;
1845
1846	a = btf_array(t);
1847	a->type = elem_type_id;
1848	a->index_type = index_type_id;
1849	a->nelems = nr_elems;
1850
1851	return btf_commit_type(btf, sz);
1852}
1853
1854/* generic STRUCT/UNION append function */
1855static int btf_add_composite(struct btf *btf, int kind, const char *name, __u32 bytes_sz)
1856{
1857	struct btf_type *t;
1858	int sz, name_off = 0;
1859
1860	if (btf_ensure_modifiable(btf))
1861		return libbpf_err(-ENOMEM);
1862
1863	sz = sizeof(struct btf_type);
1864	t = btf_add_type_mem(btf, sz);
1865	if (!t)
1866		return libbpf_err(-ENOMEM);
1867
1868	if (name && name[0]) {
1869		name_off = btf__add_str(btf, name);
1870		if (name_off < 0)
1871			return name_off;
1872	}
1873
1874	/* start out with vlen=0 and no kflag; this will be adjusted when
1875	 * adding each member
1876	 */
1877	t->name_off = name_off;
1878	t->info = btf_type_info(kind, 0, 0);
1879	t->size = bytes_sz;
1880
1881	return btf_commit_type(btf, sz);
1882}
1883
1884/*
1885 * Append new BTF_KIND_STRUCT type with:
1886 *   - *name* - name of the struct, can be NULL or empty for anonymous structs;
1887 *   - *byte_sz* - size of the struct, in bytes;
1888 *
1889 * Struct initially has no fields in it. Fields can be added by
1890 * btf__add_field() right after btf__add_struct() succeeds.
1891 *
1892 * Returns:
1893 *   - >0, type ID of newly added BTF type;
1894 *   - <0, on error.
1895 */
1896int btf__add_struct(struct btf *btf, const char *name, __u32 byte_sz)
1897{
1898	return btf_add_composite(btf, BTF_KIND_STRUCT, name, byte_sz);
1899}
1900
1901/*
1902 * Append new BTF_KIND_UNION type with:
1903 *   - *name* - name of the union, can be NULL or empty for anonymous union;
1904 *   - *byte_sz* - size of the union, in bytes;
1905 *
1906 * Union initially has no fields in it. Fields can be added by
1907 * btf__add_field() right after btf__add_union() succeeds. All fields
1908 * should have *bit_offset* of 0.
1909 *
1910 * Returns:
1911 *   - >0, type ID of newly added BTF type;
1912 *   - <0, on error.
1913 */
1914int btf__add_union(struct btf *btf, const char *name, __u32 byte_sz)
1915{
1916	return btf_add_composite(btf, BTF_KIND_UNION, name, byte_sz);
1917}
1918
1919static struct btf_type *btf_last_type(struct btf *btf)
1920{
1921	return btf_type_by_id(btf, btf__get_nr_types(btf));
1922}
1923
1924/*
1925 * Append new field for the current STRUCT/UNION type with:
1926 *   - *name* - name of the field, can be NULL or empty for anonymous field;
1927 *   - *type_id* - type ID for the type describing field type;
1928 *   - *bit_offset* - bit offset of the start of the field within struct/union;
1929 *   - *bit_size* - bit size of a bitfield, 0 for non-bitfield fields;
1930 * Returns:
1931 *   -  0, on success;
1932 *   - <0, on error.
1933 */
1934int btf__add_field(struct btf *btf, const char *name, int type_id,
1935		   __u32 bit_offset, __u32 bit_size)
1936{
1937	struct btf_type *t;
1938	struct btf_member *m;
1939	bool is_bitfield;
1940	int sz, name_off = 0;
1941
1942	/* last type should be union/struct */
1943	if (btf->nr_types == 0)
1944		return libbpf_err(-EINVAL);
1945	t = btf_last_type(btf);
1946	if (!btf_is_composite(t))
1947		return libbpf_err(-EINVAL);
1948
1949	if (validate_type_id(type_id))
1950		return libbpf_err(-EINVAL);
1951	/* best-effort bit field offset/size enforcement */
1952	is_bitfield = bit_size || (bit_offset % 8 != 0);
1953	if (is_bitfield && (bit_size == 0 || bit_size > 255 || bit_offset > 0xffffff))
1954		return libbpf_err(-EINVAL);
1955
1956	/* only offset 0 is allowed for unions */
1957	if (btf_is_union(t) && bit_offset)
1958		return libbpf_err(-EINVAL);
1959
1960	/* decompose and invalidate raw data */
1961	if (btf_ensure_modifiable(btf))
1962		return libbpf_err(-ENOMEM);
1963
1964	sz = sizeof(struct btf_member);
1965	m = btf_add_type_mem(btf, sz);
1966	if (!m)
1967		return libbpf_err(-ENOMEM);
1968
1969	if (name && name[0]) {
1970		name_off = btf__add_str(btf, name);
1971		if (name_off < 0)
1972			return name_off;
1973	}
1974
1975	m->name_off = name_off;
1976	m->type = type_id;
1977	m->offset = bit_offset | (bit_size << 24);
1978
1979	/* btf_add_type_mem can invalidate t pointer */
1980	t = btf_last_type(btf);
1981	/* update parent type's vlen and kflag */
1982	t->info = btf_type_info(btf_kind(t), btf_vlen(t) + 1, is_bitfield || btf_kflag(t));
1983
1984	btf->hdr->type_len += sz;
1985	btf->hdr->str_off += sz;
1986	return 0;
1987}
1988
1989/*
1990 * Append new BTF_KIND_ENUM type with:
1991 *   - *name* - name of the enum, can be NULL or empty for anonymous enums;
1992 *   - *byte_sz* - size of the enum, in bytes.
1993 *
1994 * Enum initially has no enum values in it (and corresponds to enum forward
1995 * declaration). Enumerator values can be added by btf__add_enum_value()
1996 * immediately after btf__add_enum() succeeds.
1997 *
1998 * Returns:
1999 *   - >0, type ID of newly added BTF type;
2000 *   - <0, on error.
2001 */
2002int btf__add_enum(struct btf *btf, const char *name, __u32 byte_sz)
2003{
2004	struct btf_type *t;
2005	int sz, name_off = 0;
2006
2007	/* byte_sz must be power of 2 */
2008	if (!byte_sz || (byte_sz & (byte_sz - 1)) || byte_sz > 8)
2009		return libbpf_err(-EINVAL);
2010
2011	if (btf_ensure_modifiable(btf))
2012		return libbpf_err(-ENOMEM);
2013
2014	sz = sizeof(struct btf_type);
2015	t = btf_add_type_mem(btf, sz);
2016	if (!t)
2017		return libbpf_err(-ENOMEM);
2018
2019	if (name && name[0]) {
2020		name_off = btf__add_str(btf, name);
2021		if (name_off < 0)
2022			return name_off;
2023	}
2024
2025	/* start out with vlen=0; it will be adjusted when adding enum values */
2026	t->name_off = name_off;
2027	t->info = btf_type_info(BTF_KIND_ENUM, 0, 0);
2028	t->size = byte_sz;
2029
2030	return btf_commit_type(btf, sz);
2031}
2032
2033/*
2034 * Append new enum value for the current ENUM type with:
2035 *   - *name* - name of the enumerator value, can't be NULL or empty;
2036 *   - *value* - integer value corresponding to enum value *name*;
2037 * Returns:
2038 *   -  0, on success;
2039 *   - <0, on error.
2040 */
2041int btf__add_enum_value(struct btf *btf, const char *name, __s64 value)
2042{
2043	struct btf_type *t;
2044	struct btf_enum *v;
2045	int sz, name_off;
2046
2047	/* last type should be BTF_KIND_ENUM */
2048	if (btf->nr_types == 0)
2049		return libbpf_err(-EINVAL);
2050	t = btf_last_type(btf);
2051	if (!btf_is_enum(t))
2052		return libbpf_err(-EINVAL);
2053
2054	/* non-empty name */
2055	if (!name || !name[0])
2056		return libbpf_err(-EINVAL);
2057	if (value < INT_MIN || value > UINT_MAX)
2058		return libbpf_err(-E2BIG);
2059
2060	/* decompose and invalidate raw data */
2061	if (btf_ensure_modifiable(btf))
2062		return libbpf_err(-ENOMEM);
2063
2064	sz = sizeof(struct btf_enum);
2065	v = btf_add_type_mem(btf, sz);
2066	if (!v)
2067		return libbpf_err(-ENOMEM);
2068
2069	name_off = btf__add_str(btf, name);
2070	if (name_off < 0)
2071		return name_off;
2072
2073	v->name_off = name_off;
2074	v->val = value;
2075
2076	/* update parent type's vlen */
2077	t = btf_last_type(btf);
2078	btf_type_inc_vlen(t);
2079
2080	btf->hdr->type_len += sz;
2081	btf->hdr->str_off += sz;
2082	return 0;
2083}
2084
2085/*
2086 * Append new BTF_KIND_FWD type with:
2087 *   - *name*, non-empty/non-NULL name;
2088 *   - *fwd_kind*, kind of forward declaration, one of BTF_FWD_STRUCT,
2089 *     BTF_FWD_UNION, or BTF_FWD_ENUM;
2090 * Returns:
2091 *   - >0, type ID of newly added BTF type;
2092 *   - <0, on error.
2093 */
2094int btf__add_fwd(struct btf *btf, const char *name, enum btf_fwd_kind fwd_kind)
2095{
2096	if (!name || !name[0])
2097		return libbpf_err(-EINVAL);
2098
2099	switch (fwd_kind) {
2100	case BTF_FWD_STRUCT:
2101	case BTF_FWD_UNION: {
2102		struct btf_type *t;
2103		int id;
2104
2105		id = btf_add_ref_kind(btf, BTF_KIND_FWD, name, 0);
2106		if (id <= 0)
2107			return id;
2108		t = btf_type_by_id(btf, id);
2109		t->info = btf_type_info(BTF_KIND_FWD, 0, fwd_kind == BTF_FWD_UNION);
2110		return id;
2111	}
2112	case BTF_FWD_ENUM:
2113		/* enum forward in BTF currently is just an enum with no enum
2114		 * values; we also assume a standard 4-byte size for it
2115		 */
2116		return btf__add_enum(btf, name, sizeof(int));
2117	default:
2118		return libbpf_err(-EINVAL);
2119	}
2120}
2121
2122/*
2123 * Append new BTF_KING_TYPEDEF type with:
2124 *   - *name*, non-empty/non-NULL name;
2125 *   - *ref_type_id* - referenced type ID, it might not exist yet;
2126 * Returns:
2127 *   - >0, type ID of newly added BTF type;
2128 *   - <0, on error.
2129 */
2130int btf__add_typedef(struct btf *btf, const char *name, int ref_type_id)
2131{
2132	if (!name || !name[0])
2133		return libbpf_err(-EINVAL);
2134
2135	return btf_add_ref_kind(btf, BTF_KIND_TYPEDEF, name, ref_type_id);
2136}
2137
2138/*
2139 * Append new BTF_KIND_VOLATILE type with:
2140 *   - *ref_type_id* - referenced type ID, it might not exist yet;
2141 * Returns:
2142 *   - >0, type ID of newly added BTF type;
2143 *   - <0, on error.
2144 */
2145int btf__add_volatile(struct btf *btf, int ref_type_id)
2146{
2147	return btf_add_ref_kind(btf, BTF_KIND_VOLATILE, NULL, ref_type_id);
2148}
2149
2150/*
2151 * Append new BTF_KIND_CONST type with:
2152 *   - *ref_type_id* - referenced type ID, it might not exist yet;
2153 * Returns:
2154 *   - >0, type ID of newly added BTF type;
2155 *   - <0, on error.
2156 */
2157int btf__add_const(struct btf *btf, int ref_type_id)
2158{
2159	return btf_add_ref_kind(btf, BTF_KIND_CONST, NULL, ref_type_id);
2160}
2161
2162/*
2163 * Append new BTF_KIND_RESTRICT type with:
2164 *   - *ref_type_id* - referenced type ID, it might not exist yet;
2165 * Returns:
2166 *   - >0, type ID of newly added BTF type;
2167 *   - <0, on error.
2168 */
2169int btf__add_restrict(struct btf *btf, int ref_type_id)
2170{
2171	return btf_add_ref_kind(btf, BTF_KIND_RESTRICT, NULL, ref_type_id);
2172}
2173
2174/*
2175 * Append new BTF_KIND_FUNC type with:
2176 *   - *name*, non-empty/non-NULL name;
2177 *   - *proto_type_id* - FUNC_PROTO's type ID, it might not exist yet;
2178 * Returns:
2179 *   - >0, type ID of newly added BTF type;
2180 *   - <0, on error.
2181 */
2182int btf__add_func(struct btf *btf, const char *name,
2183		  enum btf_func_linkage linkage, int proto_type_id)
2184{
2185	int id;
2186
2187	if (!name || !name[0])
2188		return libbpf_err(-EINVAL);
2189	if (linkage != BTF_FUNC_STATIC && linkage != BTF_FUNC_GLOBAL &&
2190	    linkage != BTF_FUNC_EXTERN)
2191		return libbpf_err(-EINVAL);
2192
2193	id = btf_add_ref_kind(btf, BTF_KIND_FUNC, name, proto_type_id);
2194	if (id > 0) {
2195		struct btf_type *t = btf_type_by_id(btf, id);
2196
2197		t->info = btf_type_info(BTF_KIND_FUNC, linkage, 0);
2198	}
2199	return libbpf_err(id);
2200}
2201
2202/*
2203 * Append new BTF_KIND_FUNC_PROTO with:
2204 *   - *ret_type_id* - type ID for return result of a function.
2205 *
2206 * Function prototype initially has no arguments, but they can be added by
2207 * btf__add_func_param() one by one, immediately after
2208 * btf__add_func_proto() succeeded.
2209 *
2210 * Returns:
2211 *   - >0, type ID of newly added BTF type;
2212 *   - <0, on error.
2213 */
2214int btf__add_func_proto(struct btf *btf, int ret_type_id)
2215{
2216	struct btf_type *t;
2217	int sz;
2218
2219	if (validate_type_id(ret_type_id))
2220		return libbpf_err(-EINVAL);
2221
2222	if (btf_ensure_modifiable(btf))
2223		return libbpf_err(-ENOMEM);
2224
2225	sz = sizeof(struct btf_type);
2226	t = btf_add_type_mem(btf, sz);
2227	if (!t)
2228		return libbpf_err(-ENOMEM);
2229
2230	/* start out with vlen=0; this will be adjusted when adding enum
2231	 * values, if necessary
2232	 */
2233	t->name_off = 0;
2234	t->info = btf_type_info(BTF_KIND_FUNC_PROTO, 0, 0);
2235	t->type = ret_type_id;
2236
2237	return btf_commit_type(btf, sz);
2238}
2239
2240/*
2241 * Append new function parameter for current FUNC_PROTO type with:
2242 *   - *name* - parameter name, can be NULL or empty;
2243 *   - *type_id* - type ID describing the type of the parameter.
2244 * Returns:
2245 *   -  0, on success;
2246 *   - <0, on error.
2247 */
2248int btf__add_func_param(struct btf *btf, const char *name, int type_id)
2249{
2250	struct btf_type *t;
2251	struct btf_param *p;
2252	int sz, name_off = 0;
2253
2254	if (validate_type_id(type_id))
2255		return libbpf_err(-EINVAL);
2256
2257	/* last type should be BTF_KIND_FUNC_PROTO */
2258	if (btf->nr_types == 0)
2259		return libbpf_err(-EINVAL);
2260	t = btf_last_type(btf);
2261	if (!btf_is_func_proto(t))
2262		return libbpf_err(-EINVAL);
2263
2264	/* decompose and invalidate raw data */
2265	if (btf_ensure_modifiable(btf))
2266		return libbpf_err(-ENOMEM);
2267
2268	sz = sizeof(struct btf_param);
2269	p = btf_add_type_mem(btf, sz);
2270	if (!p)
2271		return libbpf_err(-ENOMEM);
2272
2273	if (name && name[0]) {
2274		name_off = btf__add_str(btf, name);
2275		if (name_off < 0)
2276			return name_off;
2277	}
2278
2279	p->name_off = name_off;
2280	p->type = type_id;
2281
2282	/* update parent type's vlen */
2283	t = btf_last_type(btf);
2284	btf_type_inc_vlen(t);
2285
2286	btf->hdr->type_len += sz;
2287	btf->hdr->str_off += sz;
2288	return 0;
2289}
2290
2291/*
2292 * Append new BTF_KIND_VAR type with:
2293 *   - *name* - non-empty/non-NULL name;
2294 *   - *linkage* - variable linkage, one of BTF_VAR_STATIC,
2295 *     BTF_VAR_GLOBAL_ALLOCATED, or BTF_VAR_GLOBAL_EXTERN;
2296 *   - *type_id* - type ID of the type describing the type of the variable.
2297 * Returns:
2298 *   - >0, type ID of newly added BTF type;
2299 *   - <0, on error.
2300 */
2301int btf__add_var(struct btf *btf, const char *name, int linkage, int type_id)
2302{
2303	struct btf_type *t;
2304	struct btf_var *v;
2305	int sz, name_off;
2306
2307	/* non-empty name */
2308	if (!name || !name[0])
2309		return libbpf_err(-EINVAL);
2310	if (linkage != BTF_VAR_STATIC && linkage != BTF_VAR_GLOBAL_ALLOCATED &&
2311	    linkage != BTF_VAR_GLOBAL_EXTERN)
2312		return libbpf_err(-EINVAL);
2313	if (validate_type_id(type_id))
2314		return libbpf_err(-EINVAL);
2315
2316	/* deconstruct BTF, if necessary, and invalidate raw_data */
2317	if (btf_ensure_modifiable(btf))
2318		return libbpf_err(-ENOMEM);
2319
2320	sz = sizeof(struct btf_type) + sizeof(struct btf_var);
2321	t = btf_add_type_mem(btf, sz);
2322	if (!t)
2323		return libbpf_err(-ENOMEM);
2324
2325	name_off = btf__add_str(btf, name);
2326	if (name_off < 0)
2327		return name_off;
2328
2329	t->name_off = name_off;
2330	t->info = btf_type_info(BTF_KIND_VAR, 0, 0);
2331	t->type = type_id;
2332
2333	v = btf_var(t);
2334	v->linkage = linkage;
2335
2336	return btf_commit_type(btf, sz);
2337}
2338
2339/*
2340 * Append new BTF_KIND_DATASEC type with:
2341 *   - *name* - non-empty/non-NULL name;
2342 *   - *byte_sz* - data section size, in bytes.
2343 *
2344 * Data section is initially empty. Variables info can be added with
2345 * btf__add_datasec_var_info() calls, after btf__add_datasec() succeeds.
2346 *
2347 * Returns:
2348 *   - >0, type ID of newly added BTF type;
2349 *   - <0, on error.
2350 */
2351int btf__add_datasec(struct btf *btf, const char *name, __u32 byte_sz)
2352{
2353	struct btf_type *t;
2354	int sz, name_off;
2355
2356	/* non-empty name */
2357	if (!name || !name[0])
2358		return libbpf_err(-EINVAL);
2359
2360	if (btf_ensure_modifiable(btf))
2361		return libbpf_err(-ENOMEM);
2362
2363	sz = sizeof(struct btf_type);
2364	t = btf_add_type_mem(btf, sz);
2365	if (!t)
2366		return libbpf_err(-ENOMEM);
2367
2368	name_off = btf__add_str(btf, name);
2369	if (name_off < 0)
2370		return name_off;
2371
2372	/* start with vlen=0, which will be update as var_secinfos are added */
2373	t->name_off = name_off;
2374	t->info = btf_type_info(BTF_KIND_DATASEC, 0, 0);
2375	t->size = byte_sz;
2376
2377	return btf_commit_type(btf, sz);
2378}
2379
2380/*
2381 * Append new data section variable information entry for current DATASEC type:
2382 *   - *var_type_id* - type ID, describing type of the variable;
2383 *   - *offset* - variable offset within data section, in bytes;
2384 *   - *byte_sz* - variable size, in bytes.
2385 *
2386 * Returns:
2387 *   -  0, on success;
2388 *   - <0, on error.
2389 */
2390int btf__add_datasec_var_info(struct btf *btf, int var_type_id, __u32 offset, __u32 byte_sz)
2391{
2392	struct btf_type *t;
2393	struct btf_var_secinfo *v;
2394	int sz;
2395
2396	/* last type should be BTF_KIND_DATASEC */
2397	if (btf->nr_types == 0)
2398		return libbpf_err(-EINVAL);
2399	t = btf_last_type(btf);
2400	if (!btf_is_datasec(t))
2401		return libbpf_err(-EINVAL);
2402
2403	if (validate_type_id(var_type_id))
2404		return libbpf_err(-EINVAL);
2405
2406	/* decompose and invalidate raw data */
2407	if (btf_ensure_modifiable(btf))
2408		return libbpf_err(-ENOMEM);
2409
2410	sz = sizeof(struct btf_var_secinfo);
2411	v = btf_add_type_mem(btf, sz);
2412	if (!v)
2413		return libbpf_err(-ENOMEM);
2414
2415	v->type = var_type_id;
2416	v->offset = offset;
2417	v->size = byte_sz;
2418
2419	/* update parent type's vlen */
2420	t = btf_last_type(btf);
2421	btf_type_inc_vlen(t);
2422
2423	btf->hdr->type_len += sz;
2424	btf->hdr->str_off += sz;
2425	return 0;
2426}
2427
2428struct btf_ext_sec_setup_param {
2429	__u32 off;
2430	__u32 len;
2431	__u32 min_rec_size;
2432	struct btf_ext_info *ext_info;
2433	const char *desc;
2434};
2435
2436static int btf_ext_setup_info(struct btf_ext *btf_ext,
2437			      struct btf_ext_sec_setup_param *ext_sec)
2438{
2439	const struct btf_ext_info_sec *sinfo;
2440	struct btf_ext_info *ext_info;
2441	__u32 info_left, record_size;
2442	/* The start of the info sec (including the __u32 record_size). */
2443	void *info;
2444
2445	if (ext_sec->len == 0)
2446		return 0;
2447
2448	if (ext_sec->off & 0x03) {
2449		pr_debug(".BTF.ext %s section is not aligned to 4 bytes\n",
2450		     ext_sec->desc);
2451		return -EINVAL;
2452	}
2453
2454	info = btf_ext->data + btf_ext->hdr->hdr_len + ext_sec->off;
2455	info_left = ext_sec->len;
2456
2457	if (btf_ext->data + btf_ext->data_size < info + ext_sec->len) {
2458		pr_debug("%s section (off:%u len:%u) is beyond the end of the ELF section .BTF.ext\n",
2459			 ext_sec->desc, ext_sec->off, ext_sec->len);
2460		return -EINVAL;
2461	}
2462
2463	/* At least a record size */
2464	if (info_left < sizeof(__u32)) {
2465		pr_debug(".BTF.ext %s record size not found\n", ext_sec->desc);
2466		return -EINVAL;
2467	}
2468
2469	/* The record size needs to meet the minimum standard */
2470	record_size = *(__u32 *)info;
2471	if (record_size < ext_sec->min_rec_size ||
2472	    record_size & 0x03) {
2473		pr_debug("%s section in .BTF.ext has invalid record size %u\n",
2474			 ext_sec->desc, record_size);
2475		return -EINVAL;
2476	}
2477
2478	sinfo = info + sizeof(__u32);
2479	info_left -= sizeof(__u32);
2480
2481	/* If no records, return failure now so .BTF.ext won't be used. */
2482	if (!info_left) {
2483		pr_debug("%s section in .BTF.ext has no records", ext_sec->desc);
2484		return -EINVAL;
2485	}
2486
2487	while (info_left) {
2488		unsigned int sec_hdrlen = sizeof(struct btf_ext_info_sec);
2489		__u64 total_record_size;
2490		__u32 num_records;
2491
2492		if (info_left < sec_hdrlen) {
2493			pr_debug("%s section header is not found in .BTF.ext\n",
2494			     ext_sec->desc);
2495			return -EINVAL;
2496		}
2497
2498		num_records = sinfo->num_info;
2499		if (num_records == 0) {
2500			pr_debug("%s section has incorrect num_records in .BTF.ext\n",
2501			     ext_sec->desc);
2502			return -EINVAL;
2503		}
2504
2505		total_record_size = sec_hdrlen +
2506				    (__u64)num_records * record_size;
2507		if (info_left < total_record_size) {
2508			pr_debug("%s section has incorrect num_records in .BTF.ext\n",
2509			     ext_sec->desc);
2510			return -EINVAL;
2511		}
2512
2513		info_left -= total_record_size;
2514		sinfo = (void *)sinfo + total_record_size;
2515	}
2516
2517	ext_info = ext_sec->ext_info;
2518	ext_info->len = ext_sec->len - sizeof(__u32);
2519	ext_info->rec_size = record_size;
2520	ext_info->info = info + sizeof(__u32);
2521
2522	return 0;
2523}
2524
2525static int btf_ext_setup_func_info(struct btf_ext *btf_ext)
2526{
2527	struct btf_ext_sec_setup_param param = {
2528		.off = btf_ext->hdr->func_info_off,
2529		.len = btf_ext->hdr->func_info_len,
2530		.min_rec_size = sizeof(struct bpf_func_info_min),
2531		.ext_info = &btf_ext->func_info,
2532		.desc = "func_info"
2533	};
2534
2535	return btf_ext_setup_info(btf_ext, &param);
2536}
2537
2538static int btf_ext_setup_line_info(struct btf_ext *btf_ext)
2539{
2540	struct btf_ext_sec_setup_param param = {
2541		.off = btf_ext->hdr->line_info_off,
2542		.len = btf_ext->hdr->line_info_len,
2543		.min_rec_size = sizeof(struct bpf_line_info_min),
2544		.ext_info = &btf_ext->line_info,
2545		.desc = "line_info",
2546	};
2547
2548	return btf_ext_setup_info(btf_ext, &param);
2549}
2550
2551static int btf_ext_setup_core_relos(struct btf_ext *btf_ext)
2552{
2553	struct btf_ext_sec_setup_param param = {
2554		.off = btf_ext->hdr->core_relo_off,
2555		.len = btf_ext->hdr->core_relo_len,
2556		.min_rec_size = sizeof(struct bpf_core_relo),
2557		.ext_info = &btf_ext->core_relo_info,
2558		.desc = "core_relo",
2559	};
2560
2561	return btf_ext_setup_info(btf_ext, &param);
2562}
2563
2564static int btf_ext_parse_hdr(__u8 *data, __u32 data_size)
2565{
2566	const struct btf_ext_header *hdr = (struct btf_ext_header *)data;
2567
2568	if (data_size < offsetofend(struct btf_ext_header, hdr_len) ||
2569	    data_size < hdr->hdr_len) {
2570		pr_debug("BTF.ext header not found");
2571		return -EINVAL;
2572	}
2573
2574	if (hdr->magic == bswap_16(BTF_MAGIC)) {
2575		pr_warn("BTF.ext in non-native endianness is not supported\n");
2576		return -ENOTSUP;
2577	} else if (hdr->magic != BTF_MAGIC) {
2578		pr_debug("Invalid BTF.ext magic:%x\n", hdr->magic);
2579		return -EINVAL;
2580	}
2581
2582	if (hdr->version != BTF_VERSION) {
2583		pr_debug("Unsupported BTF.ext version:%u\n", hdr->version);
2584		return -ENOTSUP;
2585	}
2586
2587	if (hdr->flags) {
2588		pr_debug("Unsupported BTF.ext flags:%x\n", hdr->flags);
2589		return -ENOTSUP;
2590	}
2591
2592	if (data_size == hdr->hdr_len) {
2593		pr_debug("BTF.ext has no data\n");
2594		return -EINVAL;
2595	}
2596
2597	return 0;
2598}
2599
2600void btf_ext__free(struct btf_ext *btf_ext)
2601{
2602	if (IS_ERR_OR_NULL(btf_ext))
2603		return;
2604	free(btf_ext->data);
2605	free(btf_ext);
2606}
2607
2608struct btf_ext *btf_ext__new(__u8 *data, __u32 size)
2609{
2610	struct btf_ext *btf_ext;
2611	int err;
2612
2613	err = btf_ext_parse_hdr(data, size);
2614	if (err)
2615		return libbpf_err_ptr(err);
2616
2617	btf_ext = calloc(1, sizeof(struct btf_ext));
2618	if (!btf_ext)
2619		return libbpf_err_ptr(-ENOMEM);
2620
2621	btf_ext->data_size = size;
2622	btf_ext->data = malloc(size);
2623	if (!btf_ext->data) {
2624		err = -ENOMEM;
2625		goto done;
2626	}
2627	memcpy(btf_ext->data, data, size);
2628
2629	if (btf_ext->hdr->hdr_len < offsetofend(struct btf_ext_header, line_info_len)) {
2630		err = -EINVAL;
2631		goto done;
2632	}
2633
2634	err = btf_ext_setup_func_info(btf_ext);
2635	if (err)
2636		goto done;
2637
2638	err = btf_ext_setup_line_info(btf_ext);
2639	if (err)
2640		goto done;
2641
2642	if (btf_ext->hdr->hdr_len < offsetofend(struct btf_ext_header, core_relo_len)) {
2643		err = -EINVAL;
2644		goto done;
2645	}
2646
2647	err = btf_ext_setup_core_relos(btf_ext);
2648	if (err)
2649		goto done;
2650
2651done:
2652	if (err) {
2653		btf_ext__free(btf_ext);
2654		return libbpf_err_ptr(err);
2655	}
2656
2657	return btf_ext;
2658}
2659
2660const void *btf_ext__get_raw_data(const struct btf_ext *btf_ext, __u32 *size)
2661{
2662	*size = btf_ext->data_size;
2663	return btf_ext->data;
2664}
2665
2666static int btf_ext_reloc_info(const struct btf *btf,
2667			      const struct btf_ext_info *ext_info,
2668			      const char *sec_name, __u32 insns_cnt,
2669			      void **info, __u32 *cnt)
2670{
2671	__u32 sec_hdrlen = sizeof(struct btf_ext_info_sec);
2672	__u32 i, record_size, existing_len, records_len;
2673	struct btf_ext_info_sec *sinfo;
2674	const char *info_sec_name;
2675	__u64 remain_len;
2676	void *data;
2677
2678	record_size = ext_info->rec_size;
2679	sinfo = ext_info->info;
2680	remain_len = ext_info->len;
2681	while (remain_len > 0) {
2682		records_len = sinfo->num_info * record_size;
2683		info_sec_name = btf__name_by_offset(btf, sinfo->sec_name_off);
2684		if (strcmp(info_sec_name, sec_name)) {
2685			remain_len -= sec_hdrlen + records_len;
2686			sinfo = (void *)sinfo + sec_hdrlen + records_len;
2687			continue;
2688		}
2689
2690		existing_len = (*cnt) * record_size;
2691		data = realloc(*info, existing_len + records_len);
2692		if (!data)
2693			return libbpf_err(-ENOMEM);
2694
2695		memcpy(data + existing_len, sinfo->data, records_len);
2696		/* adjust insn_off only, the rest data will be passed
2697		 * to the kernel.
2698		 */
2699		for (i = 0; i < sinfo->num_info; i++) {
2700			__u32 *insn_off;
2701
2702			insn_off = data + existing_len + (i * record_size);
2703			*insn_off = *insn_off / sizeof(struct bpf_insn) + insns_cnt;
2704		}
2705		*info = data;
2706		*cnt += sinfo->num_info;
2707		return 0;
2708	}
2709
2710	return libbpf_err(-ENOENT);
2711}
2712
2713int btf_ext__reloc_func_info(const struct btf *btf,
2714			     const struct btf_ext *btf_ext,
2715			     const char *sec_name, __u32 insns_cnt,
2716			     void **func_info, __u32 *cnt)
2717{
2718	return btf_ext_reloc_info(btf, &btf_ext->func_info, sec_name,
2719				  insns_cnt, func_info, cnt);
2720}
2721
2722int btf_ext__reloc_line_info(const struct btf *btf,
2723			     const struct btf_ext *btf_ext,
2724			     const char *sec_name, __u32 insns_cnt,
2725			     void **line_info, __u32 *cnt)
2726{
2727	return btf_ext_reloc_info(btf, &btf_ext->line_info, sec_name,
2728				  insns_cnt, line_info, cnt);
2729}
2730
2731__u32 btf_ext__func_info_rec_size(const struct btf_ext *btf_ext)
2732{
2733	return btf_ext->func_info.rec_size;
2734}
2735
2736__u32 btf_ext__line_info_rec_size(const struct btf_ext *btf_ext)
2737{
2738	return btf_ext->line_info.rec_size;
2739}
2740
2741struct btf_dedup;
2742
2743static struct btf_dedup *btf_dedup_new(struct btf *btf, struct btf_ext *btf_ext,
2744				       const struct btf_dedup_opts *opts);
2745static void btf_dedup_free(struct btf_dedup *d);
2746static int btf_dedup_prep(struct btf_dedup *d);
2747static int btf_dedup_strings(struct btf_dedup *d);
2748static int btf_dedup_prim_types(struct btf_dedup *d);
2749static int btf_dedup_struct_types(struct btf_dedup *d);
2750static int btf_dedup_ref_types(struct btf_dedup *d);
2751static int btf_dedup_compact_types(struct btf_dedup *d);
2752static int btf_dedup_remap_types(struct btf_dedup *d);
2753
2754/*
2755 * Deduplicate BTF types and strings.
2756 *
2757 * BTF dedup algorithm takes as an input `struct btf` representing `.BTF` ELF
2758 * section with all BTF type descriptors and string data. It overwrites that
2759 * memory in-place with deduplicated types and strings without any loss of
2760 * information. If optional `struct btf_ext` representing '.BTF.ext' ELF section
2761 * is provided, all the strings referenced from .BTF.ext section are honored
2762 * and updated to point to the right offsets after deduplication.
2763 *
2764 * If function returns with error, type/string data might be garbled and should
2765 * be discarded.
2766 *
2767 * More verbose and detailed description of both problem btf_dedup is solving,
2768 * as well as solution could be found at:
2769 * https://facebookmicrosites.github.io/bpf/blog/2018/11/14/btf-enhancement.html
2770 *
2771 * Problem description and justification
2772 * =====================================
2773 *
2774 * BTF type information is typically emitted either as a result of conversion
2775 * from DWARF to BTF or directly by compiler. In both cases, each compilation
2776 * unit contains information about a subset of all the types that are used
2777 * in an application. These subsets are frequently overlapping and contain a lot
2778 * of duplicated information when later concatenated together into a single
2779 * binary. This algorithm ensures that each unique type is represented by single
2780 * BTF type descriptor, greatly reducing resulting size of BTF data.
2781 *
2782 * Compilation unit isolation and subsequent duplication of data is not the only
2783 * problem. The same type hierarchy (e.g., struct and all the type that struct
2784 * references) in different compilation units can be represented in BTF to
2785 * various degrees of completeness (or, rather, incompleteness) due to
2786 * struct/union forward declarations.
2787 *
2788 * Let's take a look at an example, that we'll use to better understand the
2789 * problem (and solution). Suppose we have two compilation units, each using
2790 * same `struct S`, but each of them having incomplete type information about
2791 * struct's fields:
2792 *
2793 * // CU #1:
2794 * struct S;
2795 * struct A {
2796 *	int a;
2797 *	struct A* self;
2798 *	struct S* parent;
2799 * };
2800 * struct B;
2801 * struct S {
2802 *	struct A* a_ptr;
2803 *	struct B* b_ptr;
2804 * };
2805 *
2806 * // CU #2:
2807 * struct S;
2808 * struct A;
2809 * struct B {
2810 *	int b;
2811 *	struct B* self;
2812 *	struct S* parent;
2813 * };
2814 * struct S {
2815 *	struct A* a_ptr;
2816 *	struct B* b_ptr;
2817 * };
2818 *
2819 * In case of CU #1, BTF data will know only that `struct B` exist (but no
2820 * more), but will know the complete type information about `struct A`. While
2821 * for CU #2, it will know full type information about `struct B`, but will
2822 * only know about forward declaration of `struct A` (in BTF terms, it will
2823 * have `BTF_KIND_FWD` type descriptor with name `B`).
2824 *
2825 * This compilation unit isolation means that it's possible that there is no
2826 * single CU with complete type information describing structs `S`, `A`, and
2827 * `B`. Also, we might get tons of duplicated and redundant type information.
2828 *
2829 * Additional complication we need to keep in mind comes from the fact that
2830 * types, in general, can form graphs containing cycles, not just DAGs.
2831 *
2832 * While algorithm does deduplication, it also merges and resolves type
2833 * information (unless disabled throught `struct btf_opts`), whenever possible.
2834 * E.g., in the example above with two compilation units having partial type
2835 * information for structs `A` and `B`, the output of algorithm will emit
2836 * a single copy of each BTF type that describes structs `A`, `B`, and `S`
2837 * (as well as type information for `int` and pointers), as if they were defined
2838 * in a single compilation unit as:
2839 *
2840 * struct A {
2841 *	int a;
2842 *	struct A* self;
2843 *	struct S* parent;
2844 * };
2845 * struct B {
2846 *	int b;
2847 *	struct B* self;
2848 *	struct S* parent;
2849 * };
2850 * struct S {
2851 *	struct A* a_ptr;
2852 *	struct B* b_ptr;
2853 * };
2854 *
2855 * Algorithm summary
2856 * =================
2857 *
2858 * Algorithm completes its work in 6 separate passes:
2859 *
2860 * 1. Strings deduplication.
2861 * 2. Primitive types deduplication (int, enum, fwd).
2862 * 3. Struct/union types deduplication.
2863 * 4. Reference types deduplication (pointers, typedefs, arrays, funcs, func
2864 *    protos, and const/volatile/restrict modifiers).
2865 * 5. Types compaction.
2866 * 6. Types remapping.
2867 *
2868 * Algorithm determines canonical type descriptor, which is a single
2869 * representative type for each truly unique type. This canonical type is the
2870 * one that will go into final deduplicated BTF type information. For
2871 * struct/unions, it is also the type that algorithm will merge additional type
2872 * information into (while resolving FWDs), as it discovers it from data in
2873 * other CUs. Each input BTF type eventually gets either mapped to itself, if
2874 * that type is canonical, or to some other type, if that type is equivalent
2875 * and was chosen as canonical representative. This mapping is stored in
2876 * `btf_dedup->map` array. This map is also used to record STRUCT/UNION that
2877 * FWD type got resolved to.
2878 *
2879 * To facilitate fast discovery of canonical types, we also maintain canonical
2880 * index (`btf_dedup->dedup_table`), which maps type descriptor's signature hash
2881 * (i.e., hashed kind, name, size, fields, etc) into a list of canonical types
2882 * that match that signature. With sufficiently good choice of type signature
2883 * hashing function, we can limit number of canonical types for each unique type
2884 * signature to a very small number, allowing to find canonical type for any
2885 * duplicated type very quickly.
2886 *
2887 * Struct/union deduplication is the most critical part and algorithm for
2888 * deduplicating structs/unions is described in greater details in comments for
2889 * `btf_dedup_is_equiv` function.
2890 */
2891int btf__dedup(struct btf *btf, struct btf_ext *btf_ext,
2892	       const struct btf_dedup_opts *opts)
2893{
2894	struct btf_dedup *d = btf_dedup_new(btf, btf_ext, opts);
2895	int err;
2896
2897	if (IS_ERR(d)) {
2898		pr_debug("btf_dedup_new failed: %ld", PTR_ERR(d));
2899		return libbpf_err(-EINVAL);
2900	}
2901
2902	if (btf_ensure_modifiable(btf))
2903		return libbpf_err(-ENOMEM);
2904
2905	err = btf_dedup_prep(d);
2906	if (err) {
2907		pr_debug("btf_dedup_prep failed:%d\n", err);
2908		goto done;
2909	}
2910	err = btf_dedup_strings(d);
2911	if (err < 0) {
2912		pr_debug("btf_dedup_strings failed:%d\n", err);
2913		goto done;
2914	}
2915	err = btf_dedup_prim_types(d);
2916	if (err < 0) {
2917		pr_debug("btf_dedup_prim_types failed:%d\n", err);
2918		goto done;
2919	}
2920	err = btf_dedup_struct_types(d);
2921	if (err < 0) {
2922		pr_debug("btf_dedup_struct_types failed:%d\n", err);
2923		goto done;
2924	}
2925	err = btf_dedup_ref_types(d);
2926	if (err < 0) {
2927		pr_debug("btf_dedup_ref_types failed:%d\n", err);
2928		goto done;
2929	}
2930	err = btf_dedup_compact_types(d);
2931	if (err < 0) {
2932		pr_debug("btf_dedup_compact_types failed:%d\n", err);
2933		goto done;
2934	}
2935	err = btf_dedup_remap_types(d);
2936	if (err < 0) {
2937		pr_debug("btf_dedup_remap_types failed:%d\n", err);
2938		goto done;
2939	}
2940
2941done:
2942	btf_dedup_free(d);
2943	return libbpf_err(err);
2944}
2945
2946#define BTF_UNPROCESSED_ID ((__u32)-1)
2947#define BTF_IN_PROGRESS_ID ((__u32)-2)
2948
2949struct btf_dedup {
2950	/* .BTF section to be deduped in-place */
2951	struct btf *btf;
2952	/*
2953	 * Optional .BTF.ext section. When provided, any strings referenced
2954	 * from it will be taken into account when deduping strings
2955	 */
2956	struct btf_ext *btf_ext;
2957	/*
2958	 * This is a map from any type's signature hash to a list of possible
2959	 * canonical representative type candidates. Hash collisions are
2960	 * ignored, so even types of various kinds can share same list of
2961	 * candidates, which is fine because we rely on subsequent
2962	 * btf_xxx_equal() checks to authoritatively verify type equality.
2963	 */
2964	struct hashmap *dedup_table;
2965	/* Canonical types map */
2966	__u32 *map;
2967	/* Hypothetical mapping, used during type graph equivalence checks */
2968	__u32 *hypot_map;
2969	__u32 *hypot_list;
2970	size_t hypot_cnt;
2971	size_t hypot_cap;
2972	/* Whether hypothetical mapping, if successful, would need to adjust
2973	 * already canonicalized types (due to a new forward declaration to
2974	 * concrete type resolution). In such case, during split BTF dedup
2975	 * candidate type would still be considered as different, because base
2976	 * BTF is considered to be immutable.
2977	 */
2978	bool hypot_adjust_canon;
2979	/* Various option modifying behavior of algorithm */
2980	struct btf_dedup_opts opts;
2981	/* temporary strings deduplication state */
2982	struct strset *strs_set;
2983};
2984
2985static long hash_combine(long h, long value)
2986{
2987	return h * 31 + value;
2988}
2989
2990#define for_each_dedup_cand(d, node, hash) \
2991	hashmap__for_each_key_entry(d->dedup_table, node, (void *)hash)
2992
2993static int btf_dedup_table_add(struct btf_dedup *d, long hash, __u32 type_id)
2994{
2995	return hashmap__append(d->dedup_table,
2996			       (void *)hash, (void *)(long)type_id);
2997}
2998
2999static int btf_dedup_hypot_map_add(struct btf_dedup *d,
3000				   __u32 from_id, __u32 to_id)
3001{
3002	if (d->hypot_cnt == d->hypot_cap) {
3003		__u32 *new_list;
3004
3005		d->hypot_cap += max((size_t)16, d->hypot_cap / 2);
3006		new_list = libbpf_reallocarray(d->hypot_list, d->hypot_cap, sizeof(__u32));
3007		if (!new_list)
3008			return -ENOMEM;
3009		d->hypot_list = new_list;
3010	}
3011	d->hypot_list[d->hypot_cnt++] = from_id;
3012	d->hypot_map[from_id] = to_id;
3013	return 0;
3014}
3015
3016static void btf_dedup_clear_hypot_map(struct btf_dedup *d)
3017{
3018	int i;
3019
3020	for (i = 0; i < d->hypot_cnt; i++)
3021		d->hypot_map[d->hypot_list[i]] = BTF_UNPROCESSED_ID;
3022	d->hypot_cnt = 0;
3023	d->hypot_adjust_canon = false;
3024}
3025
3026static void btf_dedup_free(struct btf_dedup *d)
3027{
3028	hashmap__free(d->dedup_table);
3029	d->dedup_table = NULL;
3030
3031	free(d->map);
3032	d->map = NULL;
3033
3034	free(d->hypot_map);
3035	d->hypot_map = NULL;
3036
3037	free(d->hypot_list);
3038	d->hypot_list = NULL;
3039
3040	free(d);
3041}
3042
3043static size_t btf_dedup_identity_hash_fn(const void *key, void *ctx)
3044{
3045	return (size_t)key;
3046}
3047
3048static size_t btf_dedup_collision_hash_fn(const void *key, void *ctx)
3049{
3050	return 0;
3051}
3052
3053static bool btf_dedup_equal_fn(const void *k1, const void *k2, void *ctx)
3054{
3055	return k1 == k2;
3056}
3057
3058static struct btf_dedup *btf_dedup_new(struct btf *btf, struct btf_ext *btf_ext,
3059				       const struct btf_dedup_opts *opts)
3060{
3061	struct btf_dedup *d = calloc(1, sizeof(struct btf_dedup));
3062	hashmap_hash_fn hash_fn = btf_dedup_identity_hash_fn;
3063	int i, err = 0, type_cnt;
3064
3065	if (!d)
3066		return ERR_PTR(-ENOMEM);
3067
3068	d->opts.dont_resolve_fwds = opts && opts->dont_resolve_fwds;
3069	/* dedup_table_size is now used only to force collisions in tests */
3070	if (opts && opts->dedup_table_size == 1)
3071		hash_fn = btf_dedup_collision_hash_fn;
3072
3073	d->btf = btf;
3074	d->btf_ext = btf_ext;
3075
3076	d->dedup_table = hashmap__new(hash_fn, btf_dedup_equal_fn, NULL);
3077	if (IS_ERR(d->dedup_table)) {
3078		err = PTR_ERR(d->dedup_table);
3079		d->dedup_table = NULL;
3080		goto done;
3081	}
3082
3083	type_cnt = btf__get_nr_types(btf) + 1;
3084	d->map = malloc(sizeof(__u32) * type_cnt);
3085	if (!d->map) {
3086		err = -ENOMEM;
3087		goto done;
3088	}
3089	/* special BTF "void" type is made canonical immediately */
3090	d->map[0] = 0;
3091	for (i = 1; i < type_cnt; i++) {
3092		struct btf_type *t = btf_type_by_id(d->btf, i);
3093
3094		/* VAR and DATASEC are never deduped and are self-canonical */
3095		if (btf_is_var(t) || btf_is_datasec(t))
3096			d->map[i] = i;
3097		else
3098			d->map[i] = BTF_UNPROCESSED_ID;
3099	}
3100
3101	d->hypot_map = malloc(sizeof(__u32) * type_cnt);
3102	if (!d->hypot_map) {
3103		err = -ENOMEM;
3104		goto done;
3105	}
3106	for (i = 0; i < type_cnt; i++)
3107		d->hypot_map[i] = BTF_UNPROCESSED_ID;
3108
3109done:
3110	if (err) {
3111		btf_dedup_free(d);
3112		return ERR_PTR(err);
3113	}
3114
3115	return d;
3116}
3117
3118/*
3119 * Iterate over all possible places in .BTF and .BTF.ext that can reference
3120 * string and pass pointer to it to a provided callback `fn`.
3121 */
3122static int btf_for_each_str_off(struct btf_dedup *d, str_off_visit_fn fn, void *ctx)
3123{
3124	int i, r;
3125
3126	for (i = 0; i < d->btf->nr_types; i++) {
3127		struct btf_type *t = btf_type_by_id(d->btf, d->btf->start_id + i);
3128
3129		r = btf_type_visit_str_offs(t, fn, ctx);
3130		if (r)
3131			return r;
3132	}
3133
3134	if (!d->btf_ext)
3135		return 0;
3136
3137	r = btf_ext_visit_str_offs(d->btf_ext, fn, ctx);
3138	if (r)
3139		return r;
3140
3141	return 0;
3142}
3143
3144static int strs_dedup_remap_str_off(__u32 *str_off_ptr, void *ctx)
3145{
3146	struct btf_dedup *d = ctx;
3147	__u32 str_off = *str_off_ptr;
3148	const char *s;
3149	int off, err;
3150
3151	/* don't touch empty string or string in main BTF */
3152	if (str_off == 0 || str_off < d->btf->start_str_off)
3153		return 0;
3154
3155	s = btf__str_by_offset(d->btf, str_off);
3156	if (d->btf->base_btf) {
3157		err = btf__find_str(d->btf->base_btf, s);
3158		if (err >= 0) {
3159			*str_off_ptr = err;
3160			return 0;
3161		}
3162		if (err != -ENOENT)
3163			return err;
3164	}
3165
3166	off = strset__add_str(d->strs_set, s);
3167	if (off < 0)
3168		return off;
3169
3170	*str_off_ptr = d->btf->start_str_off + off;
3171	return 0;
3172}
3173
3174/*
3175 * Dedup string and filter out those that are not referenced from either .BTF
3176 * or .BTF.ext (if provided) sections.
3177 *
3178 * This is done by building index of all strings in BTF's string section,
3179 * then iterating over all entities that can reference strings (e.g., type
3180 * names, struct field names, .BTF.ext line info, etc) and marking corresponding
3181 * strings as used. After that all used strings are deduped and compacted into
3182 * sequential blob of memory and new offsets are calculated. Then all the string
3183 * references are iterated again and rewritten using new offsets.
3184 */
3185static int btf_dedup_strings(struct btf_dedup *d)
3186{
3187	int err;
3188
3189	if (d->btf->strs_deduped)
3190		return 0;
3191
3192	d->strs_set = strset__new(BTF_MAX_STR_OFFSET, NULL, 0);
3193	if (IS_ERR(d->strs_set)) {
3194		err = PTR_ERR(d->strs_set);
3195		goto err_out;
3196	}
3197
3198	if (!d->btf->base_btf) {
3199		/* insert empty string; we won't be looking it up during strings
3200		 * dedup, but it's good to have it for generic BTF string lookups
3201		 */
3202		err = strset__add_str(d->strs_set, "");
3203		if (err < 0)
3204			goto err_out;
3205	}
3206
3207	/* remap string offsets */
3208	err = btf_for_each_str_off(d, strs_dedup_remap_str_off, d);
3209	if (err)
3210		goto err_out;
3211
3212	/* replace BTF string data and hash with deduped ones */
3213	strset__free(d->btf->strs_set);
3214	d->btf->hdr->str_len = strset__data_size(d->strs_set);
3215	d->btf->strs_set = d->strs_set;
3216	d->strs_set = NULL;
3217	d->btf->strs_deduped = true;
3218	return 0;
3219
3220err_out:
3221	strset__free(d->strs_set);
3222	d->strs_set = NULL;
3223
3224	return err;
3225}
3226
3227static long btf_hash_common(struct btf_type *t)
3228{
3229	long h;
3230
3231	h = hash_combine(0, t->name_off);
3232	h = hash_combine(h, t->info);
3233	h = hash_combine(h, t->size);
3234	return h;
3235}
3236
3237static bool btf_equal_common(struct btf_type *t1, struct btf_type *t2)
3238{
3239	return t1->name_off == t2->name_off &&
3240	       t1->info == t2->info &&
3241	       t1->size == t2->size;
3242}
3243
3244/* Calculate type signature hash of INT. */
3245static long btf_hash_int(struct btf_type *t)
3246{
3247	__u32 info = *(__u32 *)(t + 1);
3248	long h;
3249
3250	h = btf_hash_common(t);
3251	h = hash_combine(h, info);
3252	return h;
3253}
3254
3255/* Check structural equality of two INTs. */
3256static bool btf_equal_int(struct btf_type *t1, struct btf_type *t2)
3257{
3258	__u32 info1, info2;
3259
3260	if (!btf_equal_common(t1, t2))
3261		return false;
3262	info1 = *(__u32 *)(t1 + 1);
3263	info2 = *(__u32 *)(t2 + 1);
3264	return info1 == info2;
3265}
3266
3267/* Calculate type signature hash of ENUM. */
3268static long btf_hash_enum(struct btf_type *t)
3269{
3270	long h;
3271
3272	/* don't hash vlen and enum members to support enum fwd resolving */
3273	h = hash_combine(0, t->name_off);
3274	h = hash_combine(h, t->info & ~0xffff);
3275	h = hash_combine(h, t->size);
3276	return h;
3277}
3278
3279/* Check structural equality of two ENUMs. */
3280static bool btf_equal_enum(struct btf_type *t1, struct btf_type *t2)
3281{
3282	const struct btf_enum *m1, *m2;
3283	__u16 vlen;
3284	int i;
3285
3286	if (!btf_equal_common(t1, t2))
3287		return false;
3288
3289	vlen = btf_vlen(t1);
3290	m1 = btf_enum(t1);
3291	m2 = btf_enum(t2);
3292	for (i = 0; i < vlen; i++) {
3293		if (m1->name_off != m2->name_off || m1->val != m2->val)
3294			return false;
3295		m1++;
3296		m2++;
3297	}
3298	return true;
3299}
3300
3301static inline bool btf_is_enum_fwd(struct btf_type *t)
3302{
3303	return btf_is_enum(t) && btf_vlen(t) == 0;
3304}
3305
3306static bool btf_compat_enum(struct btf_type *t1, struct btf_type *t2)
3307{
3308	if (!btf_is_enum_fwd(t1) && !btf_is_enum_fwd(t2))
3309		return btf_equal_enum(t1, t2);
3310	/* ignore vlen when comparing */
3311	return t1->name_off == t2->name_off &&
3312	       (t1->info & ~0xffff) == (t2->info & ~0xffff) &&
3313	       t1->size == t2->size;
3314}
3315
3316/*
3317 * Calculate type signature hash of STRUCT/UNION, ignoring referenced type IDs,
3318 * as referenced type IDs equivalence is established separately during type
3319 * graph equivalence check algorithm.
3320 */
3321static long btf_hash_struct(struct btf_type *t)
3322{
3323	const struct btf_member *member = btf_members(t);
3324	__u32 vlen = btf_vlen(t);
3325	long h = btf_hash_common(t);
3326	int i;
3327
3328	for (i = 0; i < vlen; i++) {
3329		h = hash_combine(h, member->name_off);
3330		h = hash_combine(h, member->offset);
3331		/* no hashing of referenced type ID, it can be unresolved yet */
3332		member++;
3333	}
3334	return h;
3335}
3336
3337/*
3338 * Check structural compatibility of two FUNC_PROTOs, ignoring referenced type
3339 * IDs. This check is performed during type graph equivalence check and
3340 * referenced types equivalence is checked separately.
3341 */
3342static bool btf_shallow_equal_struct(struct btf_type *t1, struct btf_type *t2)
3343{
3344	const struct btf_member *m1, *m2;
3345	__u16 vlen;
3346	int i;
3347
3348	if (!btf_equal_common(t1, t2))
3349		return false;
3350
3351	vlen = btf_vlen(t1);
3352	m1 = btf_members(t1);
3353	m2 = btf_members(t2);
3354	for (i = 0; i < vlen; i++) {
3355		if (m1->name_off != m2->name_off || m1->offset != m2->offset)
3356			return false;
3357		m1++;
3358		m2++;
3359	}
3360	return true;
3361}
3362
3363/*
3364 * Calculate type signature hash of ARRAY, including referenced type IDs,
3365 * under assumption that they were already resolved to canonical type IDs and
3366 * are not going to change.
3367 */
3368static long btf_hash_array(struct btf_type *t)
3369{
3370	const struct btf_array *info = btf_array(t);
3371	long h = btf_hash_common(t);
3372
3373	h = hash_combine(h, info->type);
3374	h = hash_combine(h, info->index_type);
3375	h = hash_combine(h, info->nelems);
3376	return h;
3377}
3378
3379/*
3380 * Check exact equality of two ARRAYs, taking into account referenced
3381 * type IDs, under assumption that they were already resolved to canonical
3382 * type IDs and are not going to change.
3383 * This function is called during reference types deduplication to compare
3384 * ARRAY to potential canonical representative.
3385 */
3386static bool btf_equal_array(struct btf_type *t1, struct btf_type *t2)
3387{
3388	const struct btf_array *info1, *info2;
3389
3390	if (!btf_equal_common(t1, t2))
3391		return false;
3392
3393	info1 = btf_array(t1);
3394	info2 = btf_array(t2);
3395	return info1->type == info2->type &&
3396	       info1->index_type == info2->index_type &&
3397	       info1->nelems == info2->nelems;
3398}
3399
3400/*
3401 * Check structural compatibility of two ARRAYs, ignoring referenced type
3402 * IDs. This check is performed during type graph equivalence check and
3403 * referenced types equivalence is checked separately.
3404 */
3405static bool btf_compat_array(struct btf_type *t1, struct btf_type *t2)
3406{
3407	if (!btf_equal_common(t1, t2))
3408		return false;
3409
3410	return btf_array(t1)->nelems == btf_array(t2)->nelems;
3411}
3412
3413/*
3414 * Calculate type signature hash of FUNC_PROTO, including referenced type IDs,
3415 * under assumption that they were already resolved to canonical type IDs and
3416 * are not going to change.
3417 */
3418static long btf_hash_fnproto(struct btf_type *t)
3419{
3420	const struct btf_param *member = btf_params(t);
3421	__u16 vlen = btf_vlen(t);
3422	long h = btf_hash_common(t);
3423	int i;
3424
3425	for (i = 0; i < vlen; i++) {
3426		h = hash_combine(h, member->name_off);
3427		h = hash_combine(h, member->type);
3428		member++;
3429	}
3430	return h;
3431}
3432
3433/*
3434 * Check exact equality of two FUNC_PROTOs, taking into account referenced
3435 * type IDs, under assumption that they were already resolved to canonical
3436 * type IDs and are not going to change.
3437 * This function is called during reference types deduplication to compare
3438 * FUNC_PROTO to potential canonical representative.
3439 */
3440static bool btf_equal_fnproto(struct btf_type *t1, struct btf_type *t2)
3441{
3442	const struct btf_param *m1, *m2;
3443	__u16 vlen;
3444	int i;
3445
3446	if (!btf_equal_common(t1, t2))
3447		return false;
3448
3449	vlen = btf_vlen(t1);
3450	m1 = btf_params(t1);
3451	m2 = btf_params(t2);
3452	for (i = 0; i < vlen; i++) {
3453		if (m1->name_off != m2->name_off || m1->type != m2->type)
3454			return false;
3455		m1++;
3456		m2++;
3457	}
3458	return true;
3459}
3460
3461/*
3462 * Check structural compatibility of two FUNC_PROTOs, ignoring referenced type
3463 * IDs. This check is performed during type graph equivalence check and
3464 * referenced types equivalence is checked separately.
3465 */
3466static bool btf_compat_fnproto(struct btf_type *t1, struct btf_type *t2)
3467{
3468	const struct btf_param *m1, *m2;
3469	__u16 vlen;
3470	int i;
3471
3472	/* skip return type ID */
3473	if (t1->name_off != t2->name_off || t1->info != t2->info)
3474		return false;
3475
3476	vlen = btf_vlen(t1);
3477	m1 = btf_params(t1);
3478	m2 = btf_params(t2);
3479	for (i = 0; i < vlen; i++) {
3480		if (m1->name_off != m2->name_off)
3481			return false;
3482		m1++;
3483		m2++;
3484	}
3485	return true;
3486}
3487
3488/* Prepare split BTF for deduplication by calculating hashes of base BTF's
3489 * types and initializing the rest of the state (canonical type mapping) for
3490 * the fixed base BTF part.
3491 */
3492static int btf_dedup_prep(struct btf_dedup *d)
3493{
3494	struct btf_type *t;
3495	int type_id;
3496	long h;
3497
3498	if (!d->btf->base_btf)
3499		return 0;
3500
3501	for (type_id = 1; type_id < d->btf->start_id; type_id++) {
3502		t = btf_type_by_id(d->btf, type_id);
3503
3504		/* all base BTF types are self-canonical by definition */
3505		d->map[type_id] = type_id;
3506
3507		switch (btf_kind(t)) {
3508		case BTF_KIND_VAR:
3509		case BTF_KIND_DATASEC:
3510			/* VAR and DATASEC are never hash/deduplicated */
3511			continue;
3512		case BTF_KIND_CONST:
3513		case BTF_KIND_VOLATILE:
3514		case BTF_KIND_RESTRICT:
3515		case BTF_KIND_PTR:
3516		case BTF_KIND_FWD:
3517		case BTF_KIND_TYPEDEF:
3518		case BTF_KIND_FUNC:
3519		case BTF_KIND_FLOAT:
3520			h = btf_hash_common(t);
3521			break;
3522		case BTF_KIND_INT:
3523			h = btf_hash_int(t);
3524			break;
3525		case BTF_KIND_ENUM:
3526			h = btf_hash_enum(t);
3527			break;
3528		case BTF_KIND_STRUCT:
3529		case BTF_KIND_UNION:
3530			h = btf_hash_struct(t);
3531			break;
3532		case BTF_KIND_ARRAY:
3533			h = btf_hash_array(t);
3534			break;
3535		case BTF_KIND_FUNC_PROTO:
3536			h = btf_hash_fnproto(t);
3537			break;
3538		default:
3539			pr_debug("unknown kind %d for type [%d]\n", btf_kind(t), type_id);
3540			return -EINVAL;
3541		}
3542		if (btf_dedup_table_add(d, h, type_id))
3543			return -ENOMEM;
3544	}
3545
3546	return 0;
3547}
3548
3549/*
3550 * Deduplicate primitive types, that can't reference other types, by calculating
3551 * their type signature hash and comparing them with any possible canonical
3552 * candidate. If no canonical candidate matches, type itself is marked as
3553 * canonical and is added into `btf_dedup->dedup_table` as another candidate.
3554 */
3555static int btf_dedup_prim_type(struct btf_dedup *d, __u32 type_id)
3556{
3557	struct btf_type *t = btf_type_by_id(d->btf, type_id);
3558	struct hashmap_entry *hash_entry;
3559	struct btf_type *cand;
3560	/* if we don't find equivalent type, then we are canonical */
3561	__u32 new_id = type_id;
3562	__u32 cand_id;
3563	long h;
3564
3565	switch (btf_kind(t)) {
3566	case BTF_KIND_CONST:
3567	case BTF_KIND_VOLATILE:
3568	case BTF_KIND_RESTRICT:
3569	case BTF_KIND_PTR:
3570	case BTF_KIND_TYPEDEF:
3571	case BTF_KIND_ARRAY:
3572	case BTF_KIND_STRUCT:
3573	case BTF_KIND_UNION:
3574	case BTF_KIND_FUNC:
3575	case BTF_KIND_FUNC_PROTO:
3576	case BTF_KIND_VAR:
3577	case BTF_KIND_DATASEC:
3578		return 0;
3579
3580	case BTF_KIND_INT:
3581		h = btf_hash_int(t);
3582		for_each_dedup_cand(d, hash_entry, h) {
3583			cand_id = (__u32)(long)hash_entry->value;
3584			cand = btf_type_by_id(d->btf, cand_id);
3585			if (btf_equal_int(t, cand)) {
3586				new_id = cand_id;
3587				break;
3588			}
3589		}
3590		break;
3591
3592	case BTF_KIND_ENUM:
3593		h = btf_hash_enum(t);
3594		for_each_dedup_cand(d, hash_entry, h) {
3595			cand_id = (__u32)(long)hash_entry->value;
3596			cand = btf_type_by_id(d->btf, cand_id);
3597			if (btf_equal_enum(t, cand)) {
3598				new_id = cand_id;
3599				break;
3600			}
3601			if (d->opts.dont_resolve_fwds)
3602				continue;
3603			if (btf_compat_enum(t, cand)) {
3604				if (btf_is_enum_fwd(t)) {
3605					/* resolve fwd to full enum */
3606					new_id = cand_id;
3607					break;
3608				}
3609				/* resolve canonical enum fwd to full enum */
3610				d->map[cand_id] = type_id;
3611			}
3612		}
3613		break;
3614
3615	case BTF_KIND_FWD:
3616	case BTF_KIND_FLOAT:
3617		h = btf_hash_common(t);
3618		for_each_dedup_cand(d, hash_entry, h) {
3619			cand_id = (__u32)(long)hash_entry->value;
3620			cand = btf_type_by_id(d->btf, cand_id);
3621			if (btf_equal_common(t, cand)) {
3622				new_id = cand_id;
3623				break;
3624			}
3625		}
3626		break;
3627
3628	default:
3629		return -EINVAL;
3630	}
3631
3632	d->map[type_id] = new_id;
3633	if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
3634		return -ENOMEM;
3635
3636	return 0;
3637}
3638
3639static int btf_dedup_prim_types(struct btf_dedup *d)
3640{
3641	int i, err;
3642
3643	for (i = 0; i < d->btf->nr_types; i++) {
3644		err = btf_dedup_prim_type(d, d->btf->start_id + i);
3645		if (err)
3646			return err;
3647	}
3648	return 0;
3649}
3650
3651/*
3652 * Check whether type is already mapped into canonical one (could be to itself).
3653 */
3654static inline bool is_type_mapped(struct btf_dedup *d, uint32_t type_id)
3655{
3656	return d->map[type_id] <= BTF_MAX_NR_TYPES;
3657}
3658
3659/*
3660 * Resolve type ID into its canonical type ID, if any; otherwise return original
3661 * type ID. If type is FWD and is resolved into STRUCT/UNION already, follow
3662 * STRUCT/UNION link and resolve it into canonical type ID as well.
3663 */
3664static inline __u32 resolve_type_id(struct btf_dedup *d, __u32 type_id)
3665{
3666	while (is_type_mapped(d, type_id) && d->map[type_id] != type_id)
3667		type_id = d->map[type_id];
3668	return type_id;
3669}
3670
3671/*
3672 * Resolve FWD to underlying STRUCT/UNION, if any; otherwise return original
3673 * type ID.
3674 */
3675static uint32_t resolve_fwd_id(struct btf_dedup *d, uint32_t type_id)
3676{
3677	__u32 orig_type_id = type_id;
3678
3679	if (!btf_is_fwd(btf__type_by_id(d->btf, type_id)))
3680		return type_id;
3681
3682	while (is_type_mapped(d, type_id) && d->map[type_id] != type_id)
3683		type_id = d->map[type_id];
3684
3685	if (!btf_is_fwd(btf__type_by_id(d->btf, type_id)))
3686		return type_id;
3687
3688	return orig_type_id;
3689}
3690
3691
3692static inline __u16 btf_fwd_kind(struct btf_type *t)
3693{
3694	return btf_kflag(t) ? BTF_KIND_UNION : BTF_KIND_STRUCT;
3695}
3696
3697/* Check if given two types are identical ARRAY definitions */
3698static int btf_dedup_identical_arrays(struct btf_dedup *d, __u32 id1, __u32 id2)
3699{
3700	struct btf_type *t1, *t2;
3701
3702	t1 = btf_type_by_id(d->btf, id1);
3703	t2 = btf_type_by_id(d->btf, id2);
3704	if (!btf_is_array(t1) || !btf_is_array(t2))
3705		return 0;
3706
3707	return btf_equal_array(t1, t2);
3708}
3709
3710/*
3711 * Check equivalence of BTF type graph formed by candidate struct/union (we'll
3712 * call it "candidate graph" in this description for brevity) to a type graph
3713 * formed by (potential) canonical struct/union ("canonical graph" for brevity
3714 * here, though keep in mind that not all types in canonical graph are
3715 * necessarily canonical representatives themselves, some of them might be
3716 * duplicates or its uniqueness might not have been established yet).
3717 * Returns:
3718 *  - >0, if type graphs are equivalent;
3719 *  -  0, if not equivalent;
3720 *  - <0, on error.
3721 *
3722 * Algorithm performs side-by-side DFS traversal of both type graphs and checks
3723 * equivalence of BTF types at each step. If at any point BTF types in candidate
3724 * and canonical graphs are not compatible structurally, whole graphs are
3725 * incompatible. If types are structurally equivalent (i.e., all information
3726 * except referenced type IDs is exactly the same), a mapping from `canon_id` to
3727 * a `cand_id` is recored in hypothetical mapping (`btf_dedup->hypot_map`).
3728 * If a type references other types, then those referenced types are checked
3729 * for equivalence recursively.
3730 *
3731 * During DFS traversal, if we find that for current `canon_id` type we
3732 * already have some mapping in hypothetical map, we check for two possible
3733 * situations:
3734 *   - `canon_id` is mapped to exactly the same type as `cand_id`. This will
3735 *     happen when type graphs have cycles. In this case we assume those two
3736 *     types are equivalent.
3737 *   - `canon_id` is mapped to different type. This is contradiction in our
3738 *     hypothetical mapping, because same graph in canonical graph corresponds
3739 *     to two different types in candidate graph, which for equivalent type
3740 *     graphs shouldn't happen. This condition terminates equivalence check
3741 *     with negative result.
3742 *
3743 * If type graphs traversal exhausts types to check and find no contradiction,
3744 * then type graphs are equivalent.
3745 *
3746 * When checking types for equivalence, there is one special case: FWD types.
3747 * If FWD type resolution is allowed and one of the types (either from canonical
3748 * or candidate graph) is FWD and other is STRUCT/UNION (depending on FWD's kind
3749 * flag) and their names match, hypothetical mapping is updated to point from
3750 * FWD to STRUCT/UNION. If graphs will be determined as equivalent successfully,
3751 * this mapping will be used to record FWD -> STRUCT/UNION mapping permanently.
3752 *
3753 * Technically, this could lead to incorrect FWD to STRUCT/UNION resolution,
3754 * if there are two exactly named (or anonymous) structs/unions that are
3755 * compatible structurally, one of which has FWD field, while other is concrete
3756 * STRUCT/UNION, but according to C sources they are different structs/unions
3757 * that are referencing different types with the same name. This is extremely
3758 * unlikely to happen, but btf_dedup API allows to disable FWD resolution if
3759 * this logic is causing problems.
3760 *
3761 * Doing FWD resolution means that both candidate and/or canonical graphs can
3762 * consists of portions of the graph that come from multiple compilation units.
3763 * This is due to the fact that types within single compilation unit are always
3764 * deduplicated and FWDs are already resolved, if referenced struct/union
3765 * definiton is available. So, if we had unresolved FWD and found corresponding
3766 * STRUCT/UNION, they will be from different compilation units. This
3767 * consequently means that when we "link" FWD to corresponding STRUCT/UNION,
3768 * type graph will likely have at least two different BTF types that describe
3769 * same type (e.g., most probably there will be two different BTF types for the
3770 * same 'int' primitive type) and could even have "overlapping" parts of type
3771 * graph that describe same subset of types.
3772 *
3773 * This in turn means that our assumption that each type in canonical graph
3774 * must correspond to exactly one type in candidate graph might not hold
3775 * anymore and will make it harder to detect contradictions using hypothetical
3776 * map. To handle this problem, we allow to follow FWD -> STRUCT/UNION
3777 * resolution only in canonical graph. FWDs in candidate graphs are never
3778 * resolved. To see why it's OK, let's check all possible situations w.r.t. FWDs
3779 * that can occur:
3780 *   - Both types in canonical and candidate graphs are FWDs. If they are
3781 *     structurally equivalent, then they can either be both resolved to the
3782 *     same STRUCT/UNION or not resolved at all. In both cases they are
3783 *     equivalent and there is no need to resolve FWD on candidate side.
3784 *   - Both types in canonical and candidate graphs are concrete STRUCT/UNION,
3785 *     so nothing to resolve as well, algorithm will check equivalence anyway.
3786 *   - Type in canonical graph is FWD, while type in candidate is concrete
3787 *     STRUCT/UNION. In this case candidate graph comes from single compilation
3788 *     unit, so there is exactly one BTF type for each unique C type. After
3789 *     resolving FWD into STRUCT/UNION, there might be more than one BTF type
3790 *     in canonical graph mapping to single BTF type in candidate graph, but
3791 *     because hypothetical mapping maps from canonical to candidate types, it's
3792 *     alright, and we still maintain the property of having single `canon_id`
3793 *     mapping to single `cand_id` (there could be two different `canon_id`
3794 *     mapped to the same `cand_id`, but it's not contradictory).
3795 *   - Type in canonical graph is concrete STRUCT/UNION, while type in candidate
3796 *     graph is FWD. In this case we are just going to check compatibility of
3797 *     STRUCT/UNION and corresponding FWD, and if they are compatible, we'll
3798 *     assume that whatever STRUCT/UNION FWD resolves to must be equivalent to
3799 *     a concrete STRUCT/UNION from canonical graph. If the rest of type graphs
3800 *     turn out equivalent, we'll re-resolve FWD to concrete STRUCT/UNION from
3801 *     canonical graph.
3802 */
3803static int btf_dedup_is_equiv(struct btf_dedup *d, __u32 cand_id,
3804			      __u32 canon_id)
3805{
3806	struct btf_type *cand_type;
3807	struct btf_type *canon_type;
3808	__u32 hypot_type_id;
3809	__u16 cand_kind;
3810	__u16 canon_kind;
3811	int i, eq;
3812
3813	/* if both resolve to the same canonical, they must be equivalent */
3814	if (resolve_type_id(d, cand_id) == resolve_type_id(d, canon_id))
3815		return 1;
3816
3817	canon_id = resolve_fwd_id(d, canon_id);
3818
3819	hypot_type_id = d->hypot_map[canon_id];
3820	if (hypot_type_id <= BTF_MAX_NR_TYPES) {
3821		/* In some cases compiler will generate different DWARF types
3822		 * for *identical* array type definitions and use them for
3823		 * different fields within the *same* struct. This breaks type
3824		 * equivalence check, which makes an assumption that candidate
3825		 * types sub-graph has a consistent and deduped-by-compiler
3826		 * types within a single CU. So work around that by explicitly
3827		 * allowing identical array types here.
3828		 */
3829		return hypot_type_id == cand_id ||
3830		       btf_dedup_identical_arrays(d, hypot_type_id, cand_id);
3831	}
3832
3833	if (btf_dedup_hypot_map_add(d, canon_id, cand_id))
3834		return -ENOMEM;
3835
3836	cand_type = btf_type_by_id(d->btf, cand_id);
3837	canon_type = btf_type_by_id(d->btf, canon_id);
3838	cand_kind = btf_kind(cand_type);
3839	canon_kind = btf_kind(canon_type);
3840
3841	if (cand_type->name_off != canon_type->name_off)
3842		return 0;
3843
3844	/* FWD <--> STRUCT/UNION equivalence check, if enabled */
3845	if (!d->opts.dont_resolve_fwds
3846	    && (cand_kind == BTF_KIND_FWD || canon_kind == BTF_KIND_FWD)
3847	    && cand_kind != canon_kind) {
3848		__u16 real_kind;
3849		__u16 fwd_kind;
3850
3851		if (cand_kind == BTF_KIND_FWD) {
3852			real_kind = canon_kind;
3853			fwd_kind = btf_fwd_kind(cand_type);
3854		} else {
3855			real_kind = cand_kind;
3856			fwd_kind = btf_fwd_kind(canon_type);
3857			/* we'd need to resolve base FWD to STRUCT/UNION */
3858			if (fwd_kind == real_kind && canon_id < d->btf->start_id)
3859				d->hypot_adjust_canon = true;
3860		}
3861		return fwd_kind == real_kind;
3862	}
3863
3864	if (cand_kind != canon_kind)
3865		return 0;
3866
3867	switch (cand_kind) {
3868	case BTF_KIND_INT:
3869		return btf_equal_int(cand_type, canon_type);
3870
3871	case BTF_KIND_ENUM:
3872		if (d->opts.dont_resolve_fwds)
3873			return btf_equal_enum(cand_type, canon_type);
3874		else
3875			return btf_compat_enum(cand_type, canon_type);
3876
3877	case BTF_KIND_FWD:
3878	case BTF_KIND_FLOAT:
3879		return btf_equal_common(cand_type, canon_type);
3880
3881	case BTF_KIND_CONST:
3882	case BTF_KIND_VOLATILE:
3883	case BTF_KIND_RESTRICT:
3884	case BTF_KIND_PTR:
3885	case BTF_KIND_TYPEDEF:
3886	case BTF_KIND_FUNC:
3887		if (cand_type->info != canon_type->info)
3888			return 0;
3889		return btf_dedup_is_equiv(d, cand_type->type, canon_type->type);
3890
3891	case BTF_KIND_ARRAY: {
3892		const struct btf_array *cand_arr, *canon_arr;
3893
3894		if (!btf_compat_array(cand_type, canon_type))
3895			return 0;
3896		cand_arr = btf_array(cand_type);
3897		canon_arr = btf_array(canon_type);
3898		eq = btf_dedup_is_equiv(d, cand_arr->index_type, canon_arr->index_type);
3899		if (eq <= 0)
3900			return eq;
3901		return btf_dedup_is_equiv(d, cand_arr->type, canon_arr->type);
3902	}
3903
3904	case BTF_KIND_STRUCT:
3905	case BTF_KIND_UNION: {
3906		const struct btf_member *cand_m, *canon_m;
3907		__u16 vlen;
3908
3909		if (!btf_shallow_equal_struct(cand_type, canon_type))
3910			return 0;
3911		vlen = btf_vlen(cand_type);
3912		cand_m = btf_members(cand_type);
3913		canon_m = btf_members(canon_type);
3914		for (i = 0; i < vlen; i++) {
3915			eq = btf_dedup_is_equiv(d, cand_m->type, canon_m->type);
3916			if (eq <= 0)
3917				return eq;
3918			cand_m++;
3919			canon_m++;
3920		}
3921
3922		return 1;
3923	}
3924
3925	case BTF_KIND_FUNC_PROTO: {
3926		const struct btf_param *cand_p, *canon_p;
3927		__u16 vlen;
3928
3929		if (!btf_compat_fnproto(cand_type, canon_type))
3930			return 0;
3931		eq = btf_dedup_is_equiv(d, cand_type->type, canon_type->type);
3932		if (eq <= 0)
3933			return eq;
3934		vlen = btf_vlen(cand_type);
3935		cand_p = btf_params(cand_type);
3936		canon_p = btf_params(canon_type);
3937		for (i = 0; i < vlen; i++) {
3938			eq = btf_dedup_is_equiv(d, cand_p->type, canon_p->type);
3939			if (eq <= 0)
3940				return eq;
3941			cand_p++;
3942			canon_p++;
3943		}
3944		return 1;
3945	}
3946
3947	default:
3948		return -EINVAL;
3949	}
3950	return 0;
3951}
3952
3953/*
3954 * Use hypothetical mapping, produced by successful type graph equivalence
3955 * check, to augment existing struct/union canonical mapping, where possible.
3956 *
3957 * If BTF_KIND_FWD resolution is allowed, this mapping is also used to record
3958 * FWD -> STRUCT/UNION correspondence as well. FWD resolution is bidirectional:
3959 * it doesn't matter if FWD type was part of canonical graph or candidate one,
3960 * we are recording the mapping anyway. As opposed to carefulness required
3961 * for struct/union correspondence mapping (described below), for FWD resolution
3962 * it's not important, as by the time that FWD type (reference type) will be
3963 * deduplicated all structs/unions will be deduped already anyway.
3964 *
3965 * Recording STRUCT/UNION mapping is purely a performance optimization and is
3966 * not required for correctness. It needs to be done carefully to ensure that
3967 * struct/union from candidate's type graph is not mapped into corresponding
3968 * struct/union from canonical type graph that itself hasn't been resolved into
3969 * canonical representative. The only guarantee we have is that canonical
3970 * struct/union was determined as canonical and that won't change. But any
3971 * types referenced through that struct/union fields could have been not yet
3972 * resolved, so in case like that it's too early to establish any kind of
3973 * correspondence between structs/unions.
3974 *
3975 * No canonical correspondence is derived for primitive types (they are already
3976 * deduplicated completely already anyway) or reference types (they rely on
3977 * stability of struct/union canonical relationship for equivalence checks).
3978 */
3979static void btf_dedup_merge_hypot_map(struct btf_dedup *d)
3980{
3981	__u32 canon_type_id, targ_type_id;
3982	__u16 t_kind, c_kind;
3983	__u32 t_id, c_id;
3984	int i;
3985
3986	for (i = 0; i < d->hypot_cnt; i++) {
3987		canon_type_id = d->hypot_list[i];
3988		targ_type_id = d->hypot_map[canon_type_id];
3989		t_id = resolve_type_id(d, targ_type_id);
3990		c_id = resolve_type_id(d, canon_type_id);
3991		t_kind = btf_kind(btf__type_by_id(d->btf, t_id));
3992		c_kind = btf_kind(btf__type_by_id(d->btf, c_id));
3993		/*
3994		 * Resolve FWD into STRUCT/UNION.
3995		 * It's ok to resolve FWD into STRUCT/UNION that's not yet
3996		 * mapped to canonical representative (as opposed to
3997		 * STRUCT/UNION <--> STRUCT/UNION mapping logic below), because
3998		 * eventually that struct is going to be mapped and all resolved
3999		 * FWDs will automatically resolve to correct canonical
4000		 * representative. This will happen before ref type deduping,
4001		 * which critically depends on stability of these mapping. This
4002		 * stability is not a requirement for STRUCT/UNION equivalence
4003		 * checks, though.
4004		 */
4005
4006		/* if it's the split BTF case, we still need to point base FWD
4007		 * to STRUCT/UNION in a split BTF, because FWDs from split BTF
4008		 * will be resolved against base FWD. If we don't point base
4009		 * canonical FWD to the resolved STRUCT/UNION, then all the
4010		 * FWDs in split BTF won't be correctly resolved to a proper
4011		 * STRUCT/UNION.
4012		 */
4013		if (t_kind != BTF_KIND_FWD && c_kind == BTF_KIND_FWD)
4014			d->map[c_id] = t_id;
4015
4016		/* if graph equivalence determined that we'd need to adjust
4017		 * base canonical types, then we need to only point base FWDs
4018		 * to STRUCTs/UNIONs and do no more modifications. For all
4019		 * other purposes the type graphs were not equivalent.
4020		 */
4021		if (d->hypot_adjust_canon)
4022			continue;
4023		
4024		if (t_kind == BTF_KIND_FWD && c_kind != BTF_KIND_FWD)
4025			d->map[t_id] = c_id;
4026
4027		if ((t_kind == BTF_KIND_STRUCT || t_kind == BTF_KIND_UNION) &&
4028		    c_kind != BTF_KIND_FWD &&
4029		    is_type_mapped(d, c_id) &&
4030		    !is_type_mapped(d, t_id)) {
4031			/*
4032			 * as a perf optimization, we can map struct/union
4033			 * that's part of type graph we just verified for
4034			 * equivalence. We can do that for struct/union that has
4035			 * canonical representative only, though.
4036			 */
4037			d->map[t_id] = c_id;
4038		}
4039	}
4040}
4041
4042/*
4043 * Deduplicate struct/union types.
4044 *
4045 * For each struct/union type its type signature hash is calculated, taking
4046 * into account type's name, size, number, order and names of fields, but
4047 * ignoring type ID's referenced from fields, because they might not be deduped
4048 * completely until after reference types deduplication phase. This type hash
4049 * is used to iterate over all potential canonical types, sharing same hash.
4050 * For each canonical candidate we check whether type graphs that they form
4051 * (through referenced types in fields and so on) are equivalent using algorithm
4052 * implemented in `btf_dedup_is_equiv`. If such equivalence is found and
4053 * BTF_KIND_FWD resolution is allowed, then hypothetical mapping
4054 * (btf_dedup->hypot_map) produced by aforementioned type graph equivalence
4055 * algorithm is used to record FWD -> STRUCT/UNION mapping. It's also used to
4056 * potentially map other structs/unions to their canonical representatives,
4057 * if such relationship hasn't yet been established. This speeds up algorithm
4058 * by eliminating some of the duplicate work.
4059 *
4060 * If no matching canonical representative was found, struct/union is marked
4061 * as canonical for itself and is added into btf_dedup->dedup_table hash map
4062 * for further look ups.
4063 */
4064static int btf_dedup_struct_type(struct btf_dedup *d, __u32 type_id)
4065{
4066	struct btf_type *cand_type, *t;
4067	struct hashmap_entry *hash_entry;
4068	/* if we don't find equivalent type, then we are canonical */
4069	__u32 new_id = type_id;
4070	__u16 kind;
4071	long h;
4072
4073	/* already deduped or is in process of deduping (loop detected) */
4074	if (d->map[type_id] <= BTF_MAX_NR_TYPES)
4075		return 0;
4076
4077	t = btf_type_by_id(d->btf, type_id);
4078	kind = btf_kind(t);
4079
4080	if (kind != BTF_KIND_STRUCT && kind != BTF_KIND_UNION)
4081		return 0;
4082
4083	h = btf_hash_struct(t);
4084	for_each_dedup_cand(d, hash_entry, h) {
4085		__u32 cand_id = (__u32)(long)hash_entry->value;
4086		int eq;
4087
4088		/*
4089		 * Even though btf_dedup_is_equiv() checks for
4090		 * btf_shallow_equal_struct() internally when checking two
4091		 * structs (unions) for equivalence, we need to guard here
4092		 * from picking matching FWD type as a dedup candidate.
4093		 * This can happen due to hash collision. In such case just
4094		 * relying on btf_dedup_is_equiv() would lead to potentially
4095		 * creating a loop (FWD -> STRUCT and STRUCT -> FWD), because
4096		 * FWD and compatible STRUCT/UNION are considered equivalent.
4097		 */
4098		cand_type = btf_type_by_id(d->btf, cand_id);
4099		if (!btf_shallow_equal_struct(t, cand_type))
4100			continue;
4101
4102		btf_dedup_clear_hypot_map(d);
4103		eq = btf_dedup_is_equiv(d, type_id, cand_id);
4104		if (eq < 0)
4105			return eq;
4106		if (!eq)
4107			continue;
4108		btf_dedup_merge_hypot_map(d);
4109		if (d->hypot_adjust_canon) /* not really equivalent */
4110			continue;
4111		new_id = cand_id;
4112		break;
4113	}
4114
4115	d->map[type_id] = new_id;
4116	if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
4117		return -ENOMEM;
4118
4119	return 0;
4120}
4121
4122static int btf_dedup_struct_types(struct btf_dedup *d)
4123{
4124	int i, err;
4125
4126	for (i = 0; i < d->btf->nr_types; i++) {
4127		err = btf_dedup_struct_type(d, d->btf->start_id + i);
4128		if (err)
4129			return err;
4130	}
4131	return 0;
4132}
4133
4134/*
4135 * Deduplicate reference type.
4136 *
4137 * Once all primitive and struct/union types got deduplicated, we can easily
4138 * deduplicate all other (reference) BTF types. This is done in two steps:
4139 *
4140 * 1. Resolve all referenced type IDs into their canonical type IDs. This
4141 * resolution can be done either immediately for primitive or struct/union types
4142 * (because they were deduped in previous two phases) or recursively for
4143 * reference types. Recursion will always terminate at either primitive or
4144 * struct/union type, at which point we can "unwind" chain of reference types
4145 * one by one. There is no danger of encountering cycles because in C type
4146 * system the only way to form type cycle is through struct/union, so any chain
4147 * of reference types, even those taking part in a type cycle, will inevitably
4148 * reach struct/union at some point.
4149 *
4150 * 2. Once all referenced type IDs are resolved into canonical ones, BTF type
4151 * becomes "stable", in the sense that no further deduplication will cause
4152 * any changes to it. With that, it's now possible to calculate type's signature
4153 * hash (this time taking into account referenced type IDs) and loop over all
4154 * potential canonical representatives. If no match was found, current type
4155 * will become canonical representative of itself and will be added into
4156 * btf_dedup->dedup_table as another possible canonical representative.
4157 */
4158static int btf_dedup_ref_type(struct btf_dedup *d, __u32 type_id)
4159{
4160	struct hashmap_entry *hash_entry;
4161	__u32 new_id = type_id, cand_id;
4162	struct btf_type *t, *cand;
4163	/* if we don't find equivalent type, then we are representative type */
4164	int ref_type_id;
4165	long h;
4166
4167	if (d->map[type_id] == BTF_IN_PROGRESS_ID)
4168		return -ELOOP;
4169	if (d->map[type_id] <= BTF_MAX_NR_TYPES)
4170		return resolve_type_id(d, type_id);
4171
4172	t = btf_type_by_id(d->btf, type_id);
4173	d->map[type_id] = BTF_IN_PROGRESS_ID;
4174
4175	switch (btf_kind(t)) {
4176	case BTF_KIND_CONST:
4177	case BTF_KIND_VOLATILE:
4178	case BTF_KIND_RESTRICT:
4179	case BTF_KIND_PTR:
4180	case BTF_KIND_TYPEDEF:
4181	case BTF_KIND_FUNC:
4182		ref_type_id = btf_dedup_ref_type(d, t->type);
4183		if (ref_type_id < 0)
4184			return ref_type_id;
4185		t->type = ref_type_id;
4186
4187		h = btf_hash_common(t);
4188		for_each_dedup_cand(d, hash_entry, h) {
4189			cand_id = (__u32)(long)hash_entry->value;
4190			cand = btf_type_by_id(d->btf, cand_id);
4191			if (btf_equal_common(t, cand)) {
4192				new_id = cand_id;
4193				break;
4194			}
4195		}
4196		break;
4197
4198	case BTF_KIND_ARRAY: {
4199		struct btf_array *info = btf_array(t);
4200
4201		ref_type_id = btf_dedup_ref_type(d, info->type);
4202		if (ref_type_id < 0)
4203			return ref_type_id;
4204		info->type = ref_type_id;
4205
4206		ref_type_id = btf_dedup_ref_type(d, info->index_type);
4207		if (ref_type_id < 0)
4208			return ref_type_id;
4209		info->index_type = ref_type_id;
4210
4211		h = btf_hash_array(t);
4212		for_each_dedup_cand(d, hash_entry, h) {
4213			cand_id = (__u32)(long)hash_entry->value;
4214			cand = btf_type_by_id(d->btf, cand_id);
4215			if (btf_equal_array(t, cand)) {
4216				new_id = cand_id;
4217				break;
4218			}
4219		}
4220		break;
4221	}
4222
4223	case BTF_KIND_FUNC_PROTO: {
4224		struct btf_param *param;
4225		__u16 vlen;
4226		int i;
4227
4228		ref_type_id = btf_dedup_ref_type(d, t->type);
4229		if (ref_type_id < 0)
4230			return ref_type_id;
4231		t->type = ref_type_id;
4232
4233		vlen = btf_vlen(t);
4234		param = btf_params(t);
4235		for (i = 0; i < vlen; i++) {
4236			ref_type_id = btf_dedup_ref_type(d, param->type);
4237			if (ref_type_id < 0)
4238				return ref_type_id;
4239			param->type = ref_type_id;
4240			param++;
4241		}
4242
4243		h = btf_hash_fnproto(t);
4244		for_each_dedup_cand(d, hash_entry, h) {
4245			cand_id = (__u32)(long)hash_entry->value;
4246			cand = btf_type_by_id(d->btf, cand_id);
4247			if (btf_equal_fnproto(t, cand)) {
4248				new_id = cand_id;
4249				break;
4250			}
4251		}
4252		break;
4253	}
4254
4255	default:
4256		return -EINVAL;
4257	}
4258
4259	d->map[type_id] = new_id;
4260	if (type_id == new_id && btf_dedup_table_add(d, h, type_id))
4261		return -ENOMEM;
4262
4263	return new_id;
4264}
4265
4266static int btf_dedup_ref_types(struct btf_dedup *d)
4267{
4268	int i, err;
4269
4270	for (i = 0; i < d->btf->nr_types; i++) {
4271		err = btf_dedup_ref_type(d, d->btf->start_id + i);
4272		if (err < 0)
4273			return err;
4274	}
4275	/* we won't need d->dedup_table anymore */
4276	hashmap__free(d->dedup_table);
4277	d->dedup_table = NULL;
4278	return 0;
4279}
4280
4281/*
4282 * Compact types.
4283 *
4284 * After we established for each type its corresponding canonical representative
4285 * type, we now can eliminate types that are not canonical and leave only
4286 * canonical ones layed out sequentially in memory by copying them over
4287 * duplicates. During compaction btf_dedup->hypot_map array is reused to store
4288 * a map from original type ID to a new compacted type ID, which will be used
4289 * during next phase to "fix up" type IDs, referenced from struct/union and
4290 * reference types.
4291 */
4292static int btf_dedup_compact_types(struct btf_dedup *d)
4293{
4294	__u32 *new_offs;
4295	__u32 next_type_id = d->btf->start_id;
4296	const struct btf_type *t;
4297	void *p;
4298	int i, id, len;
4299
4300	/* we are going to reuse hypot_map to store compaction remapping */
4301	d->hypot_map[0] = 0;
4302	/* base BTF types are not renumbered */
4303	for (id = 1; id < d->btf->start_id; id++)
4304		d->hypot_map[id] = id;
4305	for (i = 0, id = d->btf->start_id; i < d->btf->nr_types; i++, id++)
4306		d->hypot_map[id] = BTF_UNPROCESSED_ID;
4307
4308	p = d->btf->types_data;
4309
4310	for (i = 0, id = d->btf->start_id; i < d->btf->nr_types; i++, id++) {
4311		if (d->map[id] != id)
4312			continue;
4313
4314		t = btf__type_by_id(d->btf, id);
4315		len = btf_type_size(t);
4316		if (len < 0)
4317			return len;
4318
4319		memmove(p, t, len);
4320		d->hypot_map[id] = next_type_id;
4321		d->btf->type_offs[next_type_id - d->btf->start_id] = p - d->btf->types_data;
4322		p += len;
4323		next_type_id++;
4324	}
4325
4326	/* shrink struct btf's internal types index and update btf_header */
4327	d->btf->nr_types = next_type_id - d->btf->start_id;
4328	d->btf->type_offs_cap = d->btf->nr_types;
4329	d->btf->hdr->type_len = p - d->btf->types_data;
4330	new_offs = libbpf_reallocarray(d->btf->type_offs, d->btf->type_offs_cap,
4331				       sizeof(*new_offs));
4332	if (d->btf->type_offs_cap && !new_offs)
4333		return -ENOMEM;
4334	d->btf->type_offs = new_offs;
4335	d->btf->hdr->str_off = d->btf->hdr->type_len;
4336	d->btf->raw_size = d->btf->hdr->hdr_len + d->btf->hdr->type_len + d->btf->hdr->str_len;
4337	return 0;
4338}
4339
4340/*
4341 * Figure out final (deduplicated and compacted) type ID for provided original
4342 * `type_id` by first resolving it into corresponding canonical type ID and
4343 * then mapping it to a deduplicated type ID, stored in btf_dedup->hypot_map,
4344 * which is populated during compaction phase.
4345 */
4346static int btf_dedup_remap_type_id(__u32 *type_id, void *ctx)
4347{
4348	struct btf_dedup *d = ctx;
4349	__u32 resolved_type_id, new_type_id;
4350
4351	resolved_type_id = resolve_type_id(d, *type_id);
4352	new_type_id = d->hypot_map[resolved_type_id];
4353	if (new_type_id > BTF_MAX_NR_TYPES)
4354		return -EINVAL;
4355
4356	*type_id = new_type_id;
4357	return 0;
4358}
4359
4360/*
4361 * Remap referenced type IDs into deduped type IDs.
4362 *
4363 * After BTF types are deduplicated and compacted, their final type IDs may
4364 * differ from original ones. The map from original to a corresponding
4365 * deduped type ID is stored in btf_dedup->hypot_map and is populated during
4366 * compaction phase. During remapping phase we are rewriting all type IDs
4367 * referenced from any BTF type (e.g., struct fields, func proto args, etc) to
4368 * their final deduped type IDs.
4369 */
4370static int btf_dedup_remap_types(struct btf_dedup *d)
4371{
4372	int i, r;
4373
4374	for (i = 0; i < d->btf->nr_types; i++) {
4375		struct btf_type *t = btf_type_by_id(d->btf, d->btf->start_id + i);
4376
4377		r = btf_type_visit_type_ids(t, btf_dedup_remap_type_id, d);
4378		if (r)
4379			return r;
4380	}
4381
4382	if (!d->btf_ext)
4383		return 0;
4384
4385	r = btf_ext_visit_type_ids(d->btf_ext, btf_dedup_remap_type_id, d);
4386	if (r)
4387		return r;
4388
4389	return 0;
4390}
4391
4392/*
4393 * Probe few well-known locations for vmlinux kernel image and try to load BTF
4394 * data out of it to use for target BTF.
4395 */
4396struct btf *libbpf_find_kernel_btf(void)
4397{
4398	struct {
4399		const char *path_fmt;
4400		bool raw_btf;
4401	} locations[] = {
4402		/* try canonical vmlinux BTF through sysfs first */
4403		{ "/sys/kernel/btf/vmlinux", true /* raw BTF */ },
4404		/* fall back to trying to find vmlinux ELF on disk otherwise */
4405		{ "/boot/vmlinux-%1$s" },
4406		{ "/lib/modules/%1$s/vmlinux-%1$s" },
4407		{ "/lib/modules/%1$s/build/vmlinux" },
4408		{ "/usr/lib/modules/%1$s/kernel/vmlinux" },
4409		{ "/usr/lib/debug/boot/vmlinux-%1$s" },
4410		{ "/usr/lib/debug/boot/vmlinux-%1$s.debug" },
4411		{ "/usr/lib/debug/lib/modules/%1$s/vmlinux" },
4412	};
4413	char path[PATH_MAX + 1];
4414	struct utsname buf;
4415	struct btf *btf;
4416	int i, err;
4417
4418	uname(&buf);
4419
4420	for (i = 0; i < ARRAY_SIZE(locations); i++) {
4421		snprintf(path, PATH_MAX, locations[i].path_fmt, buf.release);
4422
4423		if (access(path, R_OK))
4424			continue;
4425
4426		if (locations[i].raw_btf)
4427			btf = btf__parse_raw(path);
4428		else
4429			btf = btf__parse_elf(path, NULL);
4430		err = libbpf_get_error(btf);
4431		pr_debug("loading kernel BTF '%s': %d\n", path, err);
4432		if (err)
4433			continue;
4434
4435		return btf;
4436	}
4437
4438	pr_warn("failed to find valid kernel BTF\n");
4439	return libbpf_err_ptr(-ESRCH);
4440}
4441
4442int btf_type_visit_type_ids(struct btf_type *t, type_id_visit_fn visit, void *ctx)
4443{
4444	int i, n, err;
4445
4446	switch (btf_kind(t)) {
4447	case BTF_KIND_INT:
4448	case BTF_KIND_FLOAT:
4449	case BTF_KIND_ENUM:
4450		return 0;
4451
4452	case BTF_KIND_FWD:
4453	case BTF_KIND_CONST:
4454	case BTF_KIND_VOLATILE:
4455	case BTF_KIND_RESTRICT:
4456	case BTF_KIND_PTR:
4457	case BTF_KIND_TYPEDEF:
4458	case BTF_KIND_FUNC:
4459	case BTF_KIND_VAR:
4460		return visit(&t->type, ctx);
4461
4462	case BTF_KIND_ARRAY: {
4463		struct btf_array *a = btf_array(t);
4464
4465		err = visit(&a->type, ctx);
4466		err = err ?: visit(&a->index_type, ctx);
4467		return err;
4468	}
4469
4470	case BTF_KIND_STRUCT:
4471	case BTF_KIND_UNION: {
4472		struct btf_member *m = btf_members(t);
4473
4474		for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
4475			err = visit(&m->type, ctx);
4476			if (err)
4477				return err;
4478		}
4479		return 0;
4480	}
4481
4482	case BTF_KIND_FUNC_PROTO: {
4483		struct btf_param *m = btf_params(t);
4484
4485		err = visit(&t->type, ctx);
4486		if (err)
4487			return err;
4488		for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
4489			err = visit(&m->type, ctx);
4490			if (err)
4491				return err;
4492		}
4493		return 0;
4494	}
4495
4496	case BTF_KIND_DATASEC: {
4497		struct btf_var_secinfo *m = btf_var_secinfos(t);
4498
4499		for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
4500			err = visit(&m->type, ctx);
4501			if (err)
4502				return err;
4503		}
4504		return 0;
4505	}
4506
4507	default:
4508		return -EINVAL;
4509	}
4510}
4511
4512int btf_type_visit_str_offs(struct btf_type *t, str_off_visit_fn visit, void *ctx)
4513{
4514	int i, n, err;
4515
4516	err = visit(&t->name_off, ctx);
4517	if (err)
4518		return err;
4519
4520	switch (btf_kind(t)) {
4521	case BTF_KIND_STRUCT:
4522	case BTF_KIND_UNION: {
4523		struct btf_member *m = btf_members(t);
4524
4525		for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
4526			err = visit(&m->name_off, ctx);
4527			if (err)
4528				return err;
4529		}
4530		break;
4531	}
4532	case BTF_KIND_ENUM: {
4533		struct btf_enum *m = btf_enum(t);
4534
4535		for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
4536			err = visit(&m->name_off, ctx);
4537			if (err)
4538				return err;
4539		}
4540		break;
4541	}
4542	case BTF_KIND_FUNC_PROTO: {
4543		struct btf_param *m = btf_params(t);
4544
4545		for (i = 0, n = btf_vlen(t); i < n; i++, m++) {
4546			err = visit(&m->name_off, ctx);
4547			if (err)
4548				return err;
4549		}
4550		break;
4551	}
4552	default:
4553		break;
4554	}
4555
4556	return 0;
4557}
4558
4559int btf_ext_visit_type_ids(struct btf_ext *btf_ext, type_id_visit_fn visit, void *ctx)
4560{
4561	const struct btf_ext_info *seg;
4562	struct btf_ext_info_sec *sec;
4563	int i, err;
4564
4565	seg = &btf_ext->func_info;
4566	for_each_btf_ext_sec(seg, sec) {
4567		struct bpf_func_info_min *rec;
4568
4569		for_each_btf_ext_rec(seg, sec, i, rec) {
4570			err = visit(&rec->type_id, ctx);
4571			if (err < 0)
4572				return err;
4573		}
4574	}
4575
4576	seg = &btf_ext->core_relo_info;
4577	for_each_btf_ext_sec(seg, sec) {
4578		struct bpf_core_relo *rec;
4579
4580		for_each_btf_ext_rec(seg, sec, i, rec) {
4581			err = visit(&rec->type_id, ctx);
4582			if (err < 0)
4583				return err;
4584		}
4585	}
4586
4587	return 0;
4588}
4589
4590int btf_ext_visit_str_offs(struct btf_ext *btf_ext, str_off_visit_fn visit, void *ctx)
4591{
4592	const struct btf_ext_info *seg;
4593	struct btf_ext_info_sec *sec;
4594	int i, err;
4595
4596	seg = &btf_ext->func_info;
4597	for_each_btf_ext_sec(seg, sec) {
4598		err = visit(&sec->sec_name_off, ctx);
4599		if (err)
4600			return err;
4601	}
4602
4603	seg = &btf_ext->line_info;
4604	for_each_btf_ext_sec(seg, sec) {
4605		struct bpf_line_info_min *rec;
4606
4607		err = visit(&sec->sec_name_off, ctx);
4608		if (err)
4609			return err;
4610
4611		for_each_btf_ext_rec(seg, sec, i, rec) {
4612			err = visit(&rec->file_name_off, ctx);
4613			if (err)
4614				return err;
4615			err = visit(&rec->line_off, ctx);
4616			if (err)
4617				return err;
4618		}
4619	}
4620
4621	seg = &btf_ext->core_relo_info;
4622	for_each_btf_ext_sec(seg, sec) {
4623		struct bpf_core_relo *rec;
4624
4625		err = visit(&sec->sec_name_off, ctx);
4626		if (err)
4627			return err;
4628
4629		for_each_btf_ext_rec(seg, sec, i, rec) {
4630			err = visit(&rec->access_str_off, ctx);
4631			if (err)
4632				return err;
4633		}
4634	}
4635
4636	return 0;
4637}