Linux Audio

Check our new training course

Yocto / OpenEmbedded training

Mar 24-27, 2025, special US time zones
Register
Loading...
v3.15
 
   1/*
   2 * Security plug functions
   3 *
   4 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
   5 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
   6 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
   7 *
   8 *	This program is free software; you can redistribute it and/or modify
   9 *	it under the terms of the GNU General Public License as published by
  10 *	the Free Software Foundation; either version 2 of the License, or
  11 *	(at your option) any later version.
  12 */
  13
 
 
 
  14#include <linux/capability.h>
  15#include <linux/dcache.h>
  16#include <linux/module.h>
  17#include <linux/init.h>
  18#include <linux/kernel.h>
  19#include <linux/security.h>
 
  20#include <linux/integrity.h>
  21#include <linux/ima.h>
  22#include <linux/evm.h>
  23#include <linux/fsnotify.h>
  24#include <linux/mman.h>
  25#include <linux/mount.h>
  26#include <linux/personality.h>
  27#include <linux/backing-dev.h>
 
 
  28#include <net/flow.h>
  29
  30#define MAX_LSM_EVM_XATTR	2
  31
  32/* Boot-time LSM user choice */
  33static __initdata char chosen_lsm[SECURITY_NAME_MAX + 1] =
  34	CONFIG_DEFAULT_SECURITY;
  35
  36static struct security_operations *security_ops;
  37static struct security_operations default_security_ops = {
  38	.name	= "default",
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  39};
  40
  41static inline int __init verify(struct security_operations *ops)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  42{
  43	/* verify the security_operations structure exists */
  44	if (!ops)
  45		return -EINVAL;
  46	security_fixup_ops(ops);
  47	return 0;
  48}
  49
  50static void __init do_security_initcalls(void)
 
 
 
  51{
  52	initcall_t *call;
  53	call = __security_initcall_start;
  54	while (call < __security_initcall_end) {
  55		(*call) ();
  56		call++;
 
 
 
 
 
 
 
 
 
 
 
 
  57	}
  58}
  59
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  60/**
  61 * security_init - initializes the security framework
  62 *
  63 * This should be called early in the kernel initialization sequence.
  64 */
  65int __init security_init(void)
  66{
  67	printk(KERN_INFO "Security Framework initialized\n");
 
 
  68
  69	security_fixup_ops(&default_security_ops);
  70	security_ops = &default_security_ops;
  71	do_security_initcalls();
 
 
 
 
 
 
 
 
  72
  73	return 0;
  74}
  75
  76void reset_security_ops(void)
 
  77{
  78	security_ops = &default_security_ops;
 
  79}
 
  80
  81/* Save user chosen LSM */
  82static int __init choose_lsm(char *str)
  83{
  84	strncpy(chosen_lsm, str, SECURITY_NAME_MAX);
  85	return 1;
  86}
  87__setup("security=", choose_lsm);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  88
  89/**
  90 * security_module_enable - Load given security module on boot ?
  91 * @ops: a pointer to the struct security_operations that is to be checked.
 
  92 *
  93 * Each LSM must pass this method before registering its own operations
  94 * to avoid security registration races. This method may also be used
  95 * to check if your LSM is currently loaded during kernel initialization.
  96 *
  97 * Return true if:
  98 *	-The passed LSM is the one chosen by user at boot time,
  99 *	-or the passed LSM is configured as the default and the user did not
 100 *	 choose an alternate LSM at boot time.
 101 * Otherwise, return false.
 102 */
 103int __init security_module_enable(struct security_operations *ops)
 104{
 105	return !strcmp(ops->name, chosen_lsm);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 106}
 107
 108/**
 109 * register_security - registers a security framework with the kernel
 110 * @ops: a pointer to the struct security_options that is to be registered
 111 *
 112 * This function allows a security module to register itself with the
 113 * kernel security subsystem.  Some rudimentary checking is done on the @ops
 114 * value passed to this function. You'll need to check first if your LSM
 115 * is allowed to register its @ops by calling security_module_enable(@ops).
 116 *
 117 * If there is already a security module registered with the kernel,
 118 * an error will be returned.  Otherwise %0 is returned on success.
 119 */
 120int __init register_security(struct security_operations *ops)
 121{
 122	if (verify(ops)) {
 123		printk(KERN_DEBUG "%s could not verify "
 124		       "security_operations structure.\n", __func__);
 125		return -EINVAL;
 126	}
 127
 128	if (security_ops != &default_security_ops)
 129		return -EAGAIN;
 
 
 
 130
 131	security_ops = ops;
 
 
 
 
 
 
 
 
 
 
 
 
 
 132
 
 
 
 133	return 0;
 134}
 135
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 136/* Security operations */
 137
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 138int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
 139{
 140#ifdef CONFIG_SECURITY_YAMA_STACKED
 141	int rc;
 142	rc = yama_ptrace_access_check(child, mode);
 143	if (rc)
 144		return rc;
 145#endif
 146	return security_ops->ptrace_access_check(child, mode);
 147}
 148
 149int security_ptrace_traceme(struct task_struct *parent)
 150{
 151#ifdef CONFIG_SECURITY_YAMA_STACKED
 152	int rc;
 153	rc = yama_ptrace_traceme(parent);
 154	if (rc)
 155		return rc;
 156#endif
 157	return security_ops->ptrace_traceme(parent);
 158}
 159
 160int security_capget(struct task_struct *target,
 161		     kernel_cap_t *effective,
 162		     kernel_cap_t *inheritable,
 163		     kernel_cap_t *permitted)
 164{
 165	return security_ops->capget(target, effective, inheritable, permitted);
 
 166}
 167
 168int security_capset(struct cred *new, const struct cred *old,
 169		    const kernel_cap_t *effective,
 170		    const kernel_cap_t *inheritable,
 171		    const kernel_cap_t *permitted)
 172{
 173	return security_ops->capset(new, old,
 174				    effective, inheritable, permitted);
 175}
 176
 177int security_capable(const struct cred *cred, struct user_namespace *ns,
 178		     int cap)
 179{
 180	return security_ops->capable(cred, ns, cap, SECURITY_CAP_AUDIT);
 181}
 182
 183int security_capable_noaudit(const struct cred *cred, struct user_namespace *ns,
 184			     int cap)
 
 
 185{
 186	return security_ops->capable(cred, ns, cap, SECURITY_CAP_NOAUDIT);
 187}
 188
 189int security_quotactl(int cmds, int type, int id, struct super_block *sb)
 190{
 191	return security_ops->quotactl(cmds, type, id, sb);
 192}
 193
 194int security_quota_on(struct dentry *dentry)
 195{
 196	return security_ops->quota_on(dentry);
 197}
 198
 199int security_syslog(int type)
 200{
 201	return security_ops->syslog(type);
 202}
 203
 204int security_settime(const struct timespec *ts, const struct timezone *tz)
 205{
 206	return security_ops->settime(ts, tz);
 207}
 208
 209int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
 210{
 211	return security_ops->vm_enough_memory(mm, pages);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 212}
 213
 214int security_bprm_set_creds(struct linux_binprm *bprm)
 215{
 216	return security_ops->bprm_set_creds(bprm);
 217}
 218
 219int security_bprm_check(struct linux_binprm *bprm)
 220{
 221	int ret;
 222
 223	ret = security_ops->bprm_check_security(bprm);
 224	if (ret)
 225		return ret;
 226	return ima_bprm_check(bprm);
 227}
 228
 229void security_bprm_committing_creds(struct linux_binprm *bprm)
 230{
 231	security_ops->bprm_committing_creds(bprm);
 232}
 233
 234void security_bprm_committed_creds(struct linux_binprm *bprm)
 235{
 236	security_ops->bprm_committed_creds(bprm);
 
 
 
 
 
 237}
 238
 239int security_bprm_secureexec(struct linux_binprm *bprm)
 240{
 241	return security_ops->bprm_secureexec(bprm);
 242}
 243
 244int security_sb_alloc(struct super_block *sb)
 245{
 246	return security_ops->sb_alloc_security(sb);
 
 
 
 
 
 
 
 
 
 
 
 
 247}
 248
 249void security_sb_free(struct super_block *sb)
 250{
 251	security_ops->sb_free_security(sb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 252}
 
 253
 254int security_sb_copy_data(char *orig, char *copy)
 
 255{
 256	return security_ops->sb_copy_data(orig, copy);
 257}
 258EXPORT_SYMBOL(security_sb_copy_data);
 259
 260int security_sb_remount(struct super_block *sb, void *data)
 
 261{
 262	return security_ops->sb_remount(sb, data);
 263}
 
 264
 265int security_sb_kern_mount(struct super_block *sb, int flags, void *data)
 266{
 267	return security_ops->sb_kern_mount(sb, flags, data);
 268}
 269
 270int security_sb_show_options(struct seq_file *m, struct super_block *sb)
 271{
 272	return security_ops->sb_show_options(m, sb);
 273}
 274
 275int security_sb_statfs(struct dentry *dentry)
 276{
 277	return security_ops->sb_statfs(dentry);
 278}
 279
 280int security_sb_mount(const char *dev_name, struct path *path,
 281                       const char *type, unsigned long flags, void *data)
 282{
 283	return security_ops->sb_mount(dev_name, path, type, flags, data);
 284}
 285
 286int security_sb_umount(struct vfsmount *mnt, int flags)
 287{
 288	return security_ops->sb_umount(mnt, flags);
 289}
 290
 291int security_sb_pivotroot(struct path *old_path, struct path *new_path)
 292{
 293	return security_ops->sb_pivotroot(old_path, new_path);
 294}
 295
 296int security_sb_set_mnt_opts(struct super_block *sb,
 297				struct security_mnt_opts *opts,
 298				unsigned long kern_flags,
 299				unsigned long *set_kern_flags)
 300{
 301	return security_ops->sb_set_mnt_opts(sb, opts, kern_flags,
 302						set_kern_flags);
 
 303}
 304EXPORT_SYMBOL(security_sb_set_mnt_opts);
 305
 306int security_sb_clone_mnt_opts(const struct super_block *oldsb,
 307				struct super_block *newsb)
 
 
 308{
 309	return security_ops->sb_clone_mnt_opts(oldsb, newsb);
 
 310}
 311EXPORT_SYMBOL(security_sb_clone_mnt_opts);
 312
 313int security_sb_parse_opts_str(char *options, struct security_mnt_opts *opts)
 
 
 
 
 
 
 
 
 314{
 315	return security_ops->sb_parse_opts_str(options, opts);
 
 
 
 
 
 
 316}
 317EXPORT_SYMBOL(security_sb_parse_opts_str);
 318
 319int security_inode_alloc(struct inode *inode)
 320{
 321	inode->i_security = NULL;
 322	return security_ops->inode_alloc_security(inode);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 323}
 324
 325void security_inode_free(struct inode *inode)
 326{
 327	integrity_inode_free(inode);
 328	security_ops->inode_free_security(inode);
 
 
 
 
 
 
 
 
 
 
 
 
 329}
 330
 331int security_dentry_init_security(struct dentry *dentry, int mode,
 332					struct qstr *name, void **ctx,
 333					u32 *ctxlen)
 334{
 335	return security_ops->dentry_init_security(dentry, mode, name,
 336							ctx, ctxlen);
 337}
 338EXPORT_SYMBOL(security_dentry_init_security);
 339
 
 
 
 
 
 
 
 
 
 340int security_inode_init_security(struct inode *inode, struct inode *dir,
 341				 const struct qstr *qstr,
 342				 const initxattrs initxattrs, void *fs_data)
 343{
 344	struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1];
 345	struct xattr *lsm_xattr, *evm_xattr, *xattr;
 346	int ret;
 347
 348	if (unlikely(IS_PRIVATE(inode)))
 349		return 0;
 350
 351	if (!initxattrs)
 352		return security_ops->inode_init_security(inode, dir, qstr,
 353							 NULL, NULL, NULL);
 354	memset(new_xattrs, 0, sizeof(new_xattrs));
 355	lsm_xattr = new_xattrs;
 356	ret = security_ops->inode_init_security(inode, dir, qstr,
 357						&lsm_xattr->name,
 358						&lsm_xattr->value,
 359						&lsm_xattr->value_len);
 360	if (ret)
 361		goto out;
 362
 363	evm_xattr = lsm_xattr + 1;
 364	ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr);
 365	if (ret)
 366		goto out;
 367	ret = initxattrs(inode, new_xattrs, fs_data);
 368out:
 369	for (xattr = new_xattrs; xattr->value != NULL; xattr++)
 370		kfree(xattr->value);
 371	return (ret == -EOPNOTSUPP) ? 0 : ret;
 372}
 373EXPORT_SYMBOL(security_inode_init_security);
 374
 
 
 
 
 
 
 
 
 375int security_old_inode_init_security(struct inode *inode, struct inode *dir,
 376				     const struct qstr *qstr, const char **name,
 377				     void **value, size_t *len)
 378{
 379	if (unlikely(IS_PRIVATE(inode)))
 380		return -EOPNOTSUPP;
 381	return security_ops->inode_init_security(inode, dir, qstr, name, value,
 382						 len);
 383}
 384EXPORT_SYMBOL(security_old_inode_init_security);
 385
 386#ifdef CONFIG_SECURITY_PATH
 387int security_path_mknod(struct path *dir, struct dentry *dentry, umode_t mode,
 388			unsigned int dev)
 389{
 390	if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
 391		return 0;
 392	return security_ops->path_mknod(dir, dentry, mode, dev);
 393}
 394EXPORT_SYMBOL(security_path_mknod);
 395
 396int security_path_mkdir(struct path *dir, struct dentry *dentry, umode_t mode)
 397{
 398	if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
 399		return 0;
 400	return security_ops->path_mkdir(dir, dentry, mode);
 401}
 402EXPORT_SYMBOL(security_path_mkdir);
 403
 404int security_path_rmdir(struct path *dir, struct dentry *dentry)
 405{
 406	if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
 407		return 0;
 408	return security_ops->path_rmdir(dir, dentry);
 409}
 410
 411int security_path_unlink(struct path *dir, struct dentry *dentry)
 412{
 413	if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
 414		return 0;
 415	return security_ops->path_unlink(dir, dentry);
 416}
 417EXPORT_SYMBOL(security_path_unlink);
 418
 419int security_path_symlink(struct path *dir, struct dentry *dentry,
 420			  const char *old_name)
 421{
 422	if (unlikely(IS_PRIVATE(dir->dentry->d_inode)))
 423		return 0;
 424	return security_ops->path_symlink(dir, dentry, old_name);
 425}
 426
 427int security_path_link(struct dentry *old_dentry, struct path *new_dir,
 428		       struct dentry *new_dentry)
 429{
 430	if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
 431		return 0;
 432	return security_ops->path_link(old_dentry, new_dir, new_dentry);
 433}
 434
 435int security_path_rename(struct path *old_dir, struct dentry *old_dentry,
 436			 struct path *new_dir, struct dentry *new_dentry,
 437			 unsigned int flags)
 438{
 439	if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
 440		     (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
 441		return 0;
 442
 443	if (flags & RENAME_EXCHANGE) {
 444		int err = security_ops->path_rename(new_dir, new_dentry,
 445						    old_dir, old_dentry);
 446		if (err)
 447			return err;
 448	}
 449
 450	return security_ops->path_rename(old_dir, old_dentry, new_dir,
 451					 new_dentry);
 452}
 453EXPORT_SYMBOL(security_path_rename);
 454
 455int security_path_truncate(struct path *path)
 456{
 457	if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
 458		return 0;
 459	return security_ops->path_truncate(path);
 460}
 461
 462int security_path_chmod(struct path *path, umode_t mode)
 463{
 464	if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
 465		return 0;
 466	return security_ops->path_chmod(path, mode);
 467}
 468
 469int security_path_chown(struct path *path, kuid_t uid, kgid_t gid)
 470{
 471	if (unlikely(IS_PRIVATE(path->dentry->d_inode)))
 472		return 0;
 473	return security_ops->path_chown(path, uid, gid);
 474}
 475
 476int security_path_chroot(struct path *path)
 477{
 478	return security_ops->path_chroot(path);
 479}
 480#endif
 481
 482int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
 483{
 484	if (unlikely(IS_PRIVATE(dir)))
 485		return 0;
 486	return security_ops->inode_create(dir, dentry, mode);
 487}
 488EXPORT_SYMBOL_GPL(security_inode_create);
 489
 490int security_inode_link(struct dentry *old_dentry, struct inode *dir,
 491			 struct dentry *new_dentry)
 492{
 493	if (unlikely(IS_PRIVATE(old_dentry->d_inode)))
 494		return 0;
 495	return security_ops->inode_link(old_dentry, dir, new_dentry);
 496}
 497
 498int security_inode_unlink(struct inode *dir, struct dentry *dentry)
 499{
 500	if (unlikely(IS_PRIVATE(dentry->d_inode)))
 501		return 0;
 502	return security_ops->inode_unlink(dir, dentry);
 503}
 504
 505int security_inode_symlink(struct inode *dir, struct dentry *dentry,
 506			    const char *old_name)
 507{
 508	if (unlikely(IS_PRIVATE(dir)))
 509		return 0;
 510	return security_ops->inode_symlink(dir, dentry, old_name);
 511}
 512
 513int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
 514{
 515	if (unlikely(IS_PRIVATE(dir)))
 516		return 0;
 517	return security_ops->inode_mkdir(dir, dentry, mode);
 518}
 519EXPORT_SYMBOL_GPL(security_inode_mkdir);
 520
 521int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
 522{
 523	if (unlikely(IS_PRIVATE(dentry->d_inode)))
 524		return 0;
 525	return security_ops->inode_rmdir(dir, dentry);
 526}
 527
 528int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
 529{
 530	if (unlikely(IS_PRIVATE(dir)))
 531		return 0;
 532	return security_ops->inode_mknod(dir, dentry, mode, dev);
 533}
 534
 535int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
 536			   struct inode *new_dir, struct dentry *new_dentry,
 537			   unsigned int flags)
 538{
 539        if (unlikely(IS_PRIVATE(old_dentry->d_inode) ||
 540            (new_dentry->d_inode && IS_PRIVATE(new_dentry->d_inode))))
 541		return 0;
 542
 543	if (flags & RENAME_EXCHANGE) {
 544		int err = security_ops->inode_rename(new_dir, new_dentry,
 545						     old_dir, old_dentry);
 546		if (err)
 547			return err;
 548	}
 549
 550	return security_ops->inode_rename(old_dir, old_dentry,
 551					   new_dir, new_dentry);
 552}
 553
 554int security_inode_readlink(struct dentry *dentry)
 555{
 556	if (unlikely(IS_PRIVATE(dentry->d_inode)))
 557		return 0;
 558	return security_ops->inode_readlink(dentry);
 559}
 560
 561int security_inode_follow_link(struct dentry *dentry, struct nameidata *nd)
 
 562{
 563	if (unlikely(IS_PRIVATE(dentry->d_inode)))
 564		return 0;
 565	return security_ops->inode_follow_link(dentry, nd);
 566}
 567
 568int security_inode_permission(struct inode *inode, int mask)
 569{
 570	if (unlikely(IS_PRIVATE(inode)))
 571		return 0;
 572	return security_ops->inode_permission(inode, mask);
 573}
 574
 575int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
 576{
 577	int ret;
 578
 579	if (unlikely(IS_PRIVATE(dentry->d_inode)))
 580		return 0;
 581	ret = security_ops->inode_setattr(dentry, attr);
 582	if (ret)
 583		return ret;
 584	return evm_inode_setattr(dentry, attr);
 585}
 586EXPORT_SYMBOL_GPL(security_inode_setattr);
 587
 588int security_inode_getattr(struct vfsmount *mnt, struct dentry *dentry)
 589{
 590	if (unlikely(IS_PRIVATE(dentry->d_inode)))
 591		return 0;
 592	return security_ops->inode_getattr(mnt, dentry);
 593}
 594
 595int security_inode_setxattr(struct dentry *dentry, const char *name,
 
 596			    const void *value, size_t size, int flags)
 597{
 598	int ret;
 599
 600	if (unlikely(IS_PRIVATE(dentry->d_inode)))
 601		return 0;
 602	ret = security_ops->inode_setxattr(dentry, name, value, size, flags);
 
 
 
 
 
 
 
 
 603	if (ret)
 604		return ret;
 605	ret = ima_inode_setxattr(dentry, name, value, size);
 606	if (ret)
 607		return ret;
 608	return evm_inode_setxattr(dentry, name, value, size);
 609}
 610
 611void security_inode_post_setxattr(struct dentry *dentry, const char *name,
 612				  const void *value, size_t size, int flags)
 613{
 614	if (unlikely(IS_PRIVATE(dentry->d_inode)))
 615		return;
 616	security_ops->inode_post_setxattr(dentry, name, value, size, flags);
 617	evm_inode_post_setxattr(dentry, name, value, size);
 618}
 619
 620int security_inode_getxattr(struct dentry *dentry, const char *name)
 621{
 622	if (unlikely(IS_PRIVATE(dentry->d_inode)))
 623		return 0;
 624	return security_ops->inode_getxattr(dentry, name);
 625}
 626
 627int security_inode_listxattr(struct dentry *dentry)
 628{
 629	if (unlikely(IS_PRIVATE(dentry->d_inode)))
 630		return 0;
 631	return security_ops->inode_listxattr(dentry);
 632}
 633
 634int security_inode_removexattr(struct dentry *dentry, const char *name)
 
 635{
 636	int ret;
 637
 638	if (unlikely(IS_PRIVATE(dentry->d_inode)))
 639		return 0;
 640	ret = security_ops->inode_removexattr(dentry, name);
 
 
 
 
 
 
 641	if (ret)
 642		return ret;
 643	ret = ima_inode_removexattr(dentry, name);
 644	if (ret)
 645		return ret;
 646	return evm_inode_removexattr(dentry, name);
 647}
 648
 649int security_inode_need_killpriv(struct dentry *dentry)
 650{
 651	return security_ops->inode_need_killpriv(dentry);
 652}
 653
 654int security_inode_killpriv(struct dentry *dentry)
 
 655{
 656	return security_ops->inode_killpriv(dentry);
 657}
 658
 659int security_inode_getsecurity(const struct inode *inode, const char *name, void **buffer, bool alloc)
 
 
 660{
 
 
 
 661	if (unlikely(IS_PRIVATE(inode)))
 662		return -EOPNOTSUPP;
 663	return security_ops->inode_getsecurity(inode, name, buffer, alloc);
 
 
 
 
 
 
 
 
 664}
 665
 666int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
 667{
 
 
 
 668	if (unlikely(IS_PRIVATE(inode)))
 669		return -EOPNOTSUPP;
 670	return security_ops->inode_setsecurity(inode, name, value, size, flags);
 
 
 
 
 
 
 
 
 
 671}
 672
 673int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
 674{
 675	if (unlikely(IS_PRIVATE(inode)))
 676		return 0;
 677	return security_ops->inode_listsecurity(inode, buffer, buffer_size);
 678}
 679EXPORT_SYMBOL(security_inode_listsecurity);
 680
 681void security_inode_getsecid(const struct inode *inode, u32 *secid)
 682{
 683	security_ops->inode_getsecid(inode, secid);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 684}
 685
 686int security_file_permission(struct file *file, int mask)
 687{
 688	int ret;
 689
 690	ret = security_ops->file_permission(file, mask);
 691	if (ret)
 692		return ret;
 693
 694	return fsnotify_perm(file, mask);
 695}
 696
 697int security_file_alloc(struct file *file)
 698{
 699	return security_ops->file_alloc_security(file);
 
 
 
 
 
 
 
 700}
 701
 702void security_file_free(struct file *file)
 703{
 704	security_ops->file_free_security(file);
 
 
 
 
 
 
 
 
 705}
 706
 707int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
 708{
 709	return security_ops->file_ioctl(file, cmd, arg);
 710}
 
 711
 712static inline unsigned long mmap_prot(struct file *file, unsigned long prot)
 713{
 714	/*
 715	 * Does we have PROT_READ and does the application expect
 716	 * it to imply PROT_EXEC?  If not, nothing to talk about...
 717	 */
 718	if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ)
 719		return prot;
 720	if (!(current->personality & READ_IMPLIES_EXEC))
 721		return prot;
 722	/*
 723	 * if that's an anonymous mapping, let it.
 724	 */
 725	if (!file)
 726		return prot | PROT_EXEC;
 727	/*
 728	 * ditto if it's not on noexec mount, except that on !MMU we need
 729	 * BDI_CAP_EXEC_MMAP (== VM_MAYEXEC) in this case
 730	 */
 731	if (!(file->f_path.mnt->mnt_flags & MNT_NOEXEC)) {
 732#ifndef CONFIG_MMU
 733		unsigned long caps = 0;
 734		struct address_space *mapping = file->f_mapping;
 735		if (mapping && mapping->backing_dev_info)
 736			caps = mapping->backing_dev_info->capabilities;
 737		if (!(caps & BDI_CAP_EXEC_MAP))
 738			return prot;
 739#endif
 740		return prot | PROT_EXEC;
 741	}
 742	/* anything on noexec mount won't get PROT_EXEC */
 743	return prot;
 744}
 745
 746int security_mmap_file(struct file *file, unsigned long prot,
 747			unsigned long flags)
 748{
 749	int ret;
 750	ret = security_ops->mmap_file(file, prot,
 751					mmap_prot(file, prot), flags);
 752	if (ret)
 753		return ret;
 754	return ima_file_mmap(file, prot);
 755}
 756
 757int security_mmap_addr(unsigned long addr)
 758{
 759	return security_ops->mmap_addr(addr);
 760}
 761
 762int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
 763			    unsigned long prot)
 764{
 765	return security_ops->file_mprotect(vma, reqprot, prot);
 
 
 
 
 
 766}
 767
 768int security_file_lock(struct file *file, unsigned int cmd)
 769{
 770	return security_ops->file_lock(file, cmd);
 771}
 772
 773int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
 774{
 775	return security_ops->file_fcntl(file, cmd, arg);
 776}
 777
 778int security_file_set_fowner(struct file *file)
 779{
 780	return security_ops->file_set_fowner(file);
 781}
 782
 783int security_file_send_sigiotask(struct task_struct *tsk,
 784				  struct fown_struct *fown, int sig)
 785{
 786	return security_ops->file_send_sigiotask(tsk, fown, sig);
 787}
 788
 789int security_file_receive(struct file *file)
 790{
 791	return security_ops->file_receive(file);
 792}
 793
 794int security_file_open(struct file *file, const struct cred *cred)
 795{
 796	int ret;
 797
 798	ret = security_ops->file_open(file, cred);
 799	if (ret)
 800		return ret;
 801
 802	return fsnotify_perm(file, MAY_OPEN);
 803}
 804
 805int security_task_create(unsigned long clone_flags)
 806{
 807	return security_ops->task_create(clone_flags);
 
 
 
 
 
 
 
 808}
 809
 810void security_task_free(struct task_struct *task)
 811{
 812#ifdef CONFIG_SECURITY_YAMA_STACKED
 813	yama_task_free(task);
 814#endif
 815	security_ops->task_free(task);
 816}
 817
 818int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
 819{
 820	return security_ops->cred_alloc_blank(cred, gfp);
 
 
 
 
 
 
 
 
 821}
 822
 823void security_cred_free(struct cred *cred)
 824{
 825	security_ops->cred_free(cred);
 
 
 
 
 
 
 
 
 
 
 826}
 827
 828int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
 829{
 830	return security_ops->cred_prepare(new, old, gfp);
 
 
 
 
 
 
 
 
 831}
 832
 833void security_transfer_creds(struct cred *new, const struct cred *old)
 834{
 835	security_ops->cred_transfer(new, old);
 836}
 837
 
 
 
 
 
 
 
 838int security_kernel_act_as(struct cred *new, u32 secid)
 839{
 840	return security_ops->kernel_act_as(new, secid);
 841}
 842
 843int security_kernel_create_files_as(struct cred *new, struct inode *inode)
 844{
 845	return security_ops->kernel_create_files_as(new, inode);
 846}
 847
 848int security_kernel_module_request(char *kmod_name)
 849{
 850	return security_ops->kernel_module_request(kmod_name);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 851}
 
 852
 853int security_kernel_module_from_file(struct file *file)
 854{
 855	int ret;
 856
 857	ret = security_ops->kernel_module_from_file(file);
 858	if (ret)
 859		return ret;
 860	return ima_module_check(file);
 861}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 862
 863int security_task_fix_setuid(struct cred *new, const struct cred *old,
 864			     int flags)
 865{
 866	return security_ops->task_fix_setuid(new, old, flags);
 
 
 
 
 
 
 867}
 868
 869int security_task_setpgid(struct task_struct *p, pid_t pgid)
 870{
 871	return security_ops->task_setpgid(p, pgid);
 872}
 873
 874int security_task_getpgid(struct task_struct *p)
 875{
 876	return security_ops->task_getpgid(p);
 877}
 878
 879int security_task_getsid(struct task_struct *p)
 880{
 881	return security_ops->task_getsid(p);
 
 
 
 
 
 
 882}
 
 883
 884void security_task_getsecid(struct task_struct *p, u32 *secid)
 885{
 886	security_ops->task_getsecid(p, secid);
 
 887}
 888EXPORT_SYMBOL(security_task_getsecid);
 889
 890int security_task_setnice(struct task_struct *p, int nice)
 891{
 892	return security_ops->task_setnice(p, nice);
 893}
 894
 895int security_task_setioprio(struct task_struct *p, int ioprio)
 896{
 897	return security_ops->task_setioprio(p, ioprio);
 898}
 899
 900int security_task_getioprio(struct task_struct *p)
 901{
 902	return security_ops->task_getioprio(p);
 
 
 
 
 
 
 903}
 904
 905int security_task_setrlimit(struct task_struct *p, unsigned int resource,
 906		struct rlimit *new_rlim)
 907{
 908	return security_ops->task_setrlimit(p, resource, new_rlim);
 909}
 910
 911int security_task_setscheduler(struct task_struct *p)
 912{
 913	return security_ops->task_setscheduler(p);
 914}
 915
 916int security_task_getscheduler(struct task_struct *p)
 917{
 918	return security_ops->task_getscheduler(p);
 919}
 920
 921int security_task_movememory(struct task_struct *p)
 922{
 923	return security_ops->task_movememory(p);
 924}
 925
 926int security_task_kill(struct task_struct *p, struct siginfo *info,
 927			int sig, u32 secid)
 928{
 929	return security_ops->task_kill(p, info, sig, secid);
 930}
 931
 932int security_task_wait(struct task_struct *p)
 933{
 934	return security_ops->task_wait(p);
 935}
 936
 937int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
 938			 unsigned long arg4, unsigned long arg5)
 939{
 940#ifdef CONFIG_SECURITY_YAMA_STACKED
 941	int rc;
 942	rc = yama_task_prctl(option, arg2, arg3, arg4, arg5);
 943	if (rc != -ENOSYS)
 944		return rc;
 945#endif
 946	return security_ops->task_prctl(option, arg2, arg3, arg4, arg5);
 
 
 
 
 
 
 947}
 948
 949void security_task_to_inode(struct task_struct *p, struct inode *inode)
 950{
 951	security_ops->task_to_inode(p, inode);
 952}
 953
 954int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
 955{
 956	return security_ops->ipc_permission(ipcp, flag);
 957}
 958
 959void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
 960{
 961	security_ops->ipc_getsecid(ipcp, secid);
 
 962}
 963
 964int security_msg_msg_alloc(struct msg_msg *msg)
 965{
 966	return security_ops->msg_msg_alloc_security(msg);
 
 
 
 
 
 
 
 967}
 968
 969void security_msg_msg_free(struct msg_msg *msg)
 970{
 971	security_ops->msg_msg_free_security(msg);
 
 
 972}
 973
 974int security_msg_queue_alloc(struct msg_queue *msq)
 975{
 976	return security_ops->msg_queue_alloc_security(msq);
 
 
 
 
 
 
 
 977}
 978
 979void security_msg_queue_free(struct msg_queue *msq)
 980{
 981	security_ops->msg_queue_free_security(msq);
 
 
 982}
 983
 984int security_msg_queue_associate(struct msg_queue *msq, int msqflg)
 985{
 986	return security_ops->msg_queue_associate(msq, msqflg);
 987}
 988
 989int security_msg_queue_msgctl(struct msg_queue *msq, int cmd)
 990{
 991	return security_ops->msg_queue_msgctl(msq, cmd);
 992}
 993
 994int security_msg_queue_msgsnd(struct msg_queue *msq,
 995			       struct msg_msg *msg, int msqflg)
 996{
 997	return security_ops->msg_queue_msgsnd(msq, msg, msqflg);
 998}
 999
1000int security_msg_queue_msgrcv(struct msg_queue *msq, struct msg_msg *msg,
1001			       struct task_struct *target, long type, int mode)
1002{
1003	return security_ops->msg_queue_msgrcv(msq, msg, target, type, mode);
1004}
1005
1006int security_shm_alloc(struct shmid_kernel *shp)
1007{
1008	return security_ops->shm_alloc_security(shp);
 
 
 
 
 
 
 
1009}
1010
1011void security_shm_free(struct shmid_kernel *shp)
1012{
1013	security_ops->shm_free_security(shp);
 
 
1014}
1015
1016int security_shm_associate(struct shmid_kernel *shp, int shmflg)
1017{
1018	return security_ops->shm_associate(shp, shmflg);
1019}
1020
1021int security_shm_shmctl(struct shmid_kernel *shp, int cmd)
1022{
1023	return security_ops->shm_shmctl(shp, cmd);
1024}
1025
1026int security_shm_shmat(struct shmid_kernel *shp, char __user *shmaddr, int shmflg)
1027{
1028	return security_ops->shm_shmat(shp, shmaddr, shmflg);
1029}
1030
1031int security_sem_alloc(struct sem_array *sma)
1032{
1033	return security_ops->sem_alloc_security(sma);
 
 
 
 
 
 
 
1034}
1035
1036void security_sem_free(struct sem_array *sma)
1037{
1038	security_ops->sem_free_security(sma);
 
 
1039}
1040
1041int security_sem_associate(struct sem_array *sma, int semflg)
1042{
1043	return security_ops->sem_associate(sma, semflg);
1044}
1045
1046int security_sem_semctl(struct sem_array *sma, int cmd)
1047{
1048	return security_ops->sem_semctl(sma, cmd);
1049}
1050
1051int security_sem_semop(struct sem_array *sma, struct sembuf *sops,
1052			unsigned nsops, int alter)
1053{
1054	return security_ops->sem_semop(sma, sops, nsops, alter);
1055}
1056
1057void security_d_instantiate(struct dentry *dentry, struct inode *inode)
1058{
1059	if (unlikely(inode && IS_PRIVATE(inode)))
1060		return;
1061	security_ops->d_instantiate(dentry, inode);
1062}
1063EXPORT_SYMBOL(security_d_instantiate);
1064
1065int security_getprocattr(struct task_struct *p, char *name, char **value)
 
1066{
1067	return security_ops->getprocattr(p, name, value);
 
 
 
 
 
 
 
1068}
1069
1070int security_setprocattr(struct task_struct *p, char *name, void *value, size_t size)
 
1071{
1072	return security_ops->setprocattr(p, name, value, size);
 
 
 
 
 
 
 
1073}
1074
1075int security_netlink_send(struct sock *sk, struct sk_buff *skb)
1076{
1077	return security_ops->netlink_send(sk, skb);
1078}
1079
1080int security_ismaclabel(const char *name)
1081{
1082	return security_ops->ismaclabel(name);
1083}
1084EXPORT_SYMBOL(security_ismaclabel);
1085
1086int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
1087{
1088	return security_ops->secid_to_secctx(secid, secdata, seclen);
 
 
 
 
 
 
 
 
 
 
 
 
 
1089}
1090EXPORT_SYMBOL(security_secid_to_secctx);
1091
1092int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
1093{
1094	return security_ops->secctx_to_secid(secdata, seclen, secid);
 
1095}
1096EXPORT_SYMBOL(security_secctx_to_secid);
1097
1098void security_release_secctx(char *secdata, u32 seclen)
1099{
1100	security_ops->release_secctx(secdata, seclen);
1101}
1102EXPORT_SYMBOL(security_release_secctx);
1103
 
 
 
 
 
 
1104int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
1105{
1106	return security_ops->inode_notifysecctx(inode, ctx, ctxlen);
1107}
1108EXPORT_SYMBOL(security_inode_notifysecctx);
1109
1110int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
1111{
1112	return security_ops->inode_setsecctx(dentry, ctx, ctxlen);
1113}
1114EXPORT_SYMBOL(security_inode_setsecctx);
1115
1116int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
1117{
1118	return security_ops->inode_getsecctx(inode, ctx, ctxlen);
1119}
1120EXPORT_SYMBOL(security_inode_getsecctx);
1121
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1122#ifdef CONFIG_SECURITY_NETWORK
1123
1124int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
1125{
1126	return security_ops->unix_stream_connect(sock, other, newsk);
1127}
1128EXPORT_SYMBOL(security_unix_stream_connect);
1129
1130int security_unix_may_send(struct socket *sock,  struct socket *other)
1131{
1132	return security_ops->unix_may_send(sock, other);
1133}
1134EXPORT_SYMBOL(security_unix_may_send);
1135
1136int security_socket_create(int family, int type, int protocol, int kern)
1137{
1138	return security_ops->socket_create(family, type, protocol, kern);
1139}
1140
1141int security_socket_post_create(struct socket *sock, int family,
1142				int type, int protocol, int kern)
1143{
1144	return security_ops->socket_post_create(sock, family, type,
1145						protocol, kern);
1146}
1147
 
 
 
 
 
 
1148int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
1149{
1150	return security_ops->socket_bind(sock, address, addrlen);
1151}
1152
1153int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
1154{
1155	return security_ops->socket_connect(sock, address, addrlen);
1156}
1157
1158int security_socket_listen(struct socket *sock, int backlog)
1159{
1160	return security_ops->socket_listen(sock, backlog);
1161}
1162
1163int security_socket_accept(struct socket *sock, struct socket *newsock)
1164{
1165	return security_ops->socket_accept(sock, newsock);
1166}
1167
1168int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
1169{
1170	return security_ops->socket_sendmsg(sock, msg, size);
1171}
1172
1173int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
1174			    int size, int flags)
1175{
1176	return security_ops->socket_recvmsg(sock, msg, size, flags);
1177}
1178
1179int security_socket_getsockname(struct socket *sock)
1180{
1181	return security_ops->socket_getsockname(sock);
1182}
1183
1184int security_socket_getpeername(struct socket *sock)
1185{
1186	return security_ops->socket_getpeername(sock);
1187}
1188
1189int security_socket_getsockopt(struct socket *sock, int level, int optname)
1190{
1191	return security_ops->socket_getsockopt(sock, level, optname);
1192}
1193
1194int security_socket_setsockopt(struct socket *sock, int level, int optname)
1195{
1196	return security_ops->socket_setsockopt(sock, level, optname);
1197}
1198
1199int security_socket_shutdown(struct socket *sock, int how)
1200{
1201	return security_ops->socket_shutdown(sock, how);
1202}
1203
1204int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
1205{
1206	return security_ops->socket_sock_rcv_skb(sk, skb);
1207}
1208EXPORT_SYMBOL(security_sock_rcv_skb);
1209
1210int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
1211				      int __user *optlen, unsigned len)
1212{
1213	return security_ops->socket_getpeersec_stream(sock, optval, optlen, len);
 
1214}
1215
1216int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
1217{
1218	return security_ops->socket_getpeersec_dgram(sock, skb, secid);
 
1219}
1220EXPORT_SYMBOL(security_socket_getpeersec_dgram);
1221
1222int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
1223{
1224	return security_ops->sk_alloc_security(sk, family, priority);
1225}
1226
1227void security_sk_free(struct sock *sk)
1228{
1229	security_ops->sk_free_security(sk);
1230}
1231
1232void security_sk_clone(const struct sock *sk, struct sock *newsk)
1233{
1234	security_ops->sk_clone_security(sk, newsk);
1235}
1236EXPORT_SYMBOL(security_sk_clone);
1237
1238void security_sk_classify_flow(struct sock *sk, struct flowi *fl)
1239{
1240	security_ops->sk_getsecid(sk, &fl->flowi_secid);
1241}
1242EXPORT_SYMBOL(security_sk_classify_flow);
1243
1244void security_req_classify_flow(const struct request_sock *req, struct flowi *fl)
 
1245{
1246	security_ops->req_classify_flow(req, fl);
1247}
1248EXPORT_SYMBOL(security_req_classify_flow);
1249
1250void security_sock_graft(struct sock *sk, struct socket *parent)
1251{
1252	security_ops->sock_graft(sk, parent);
1253}
1254EXPORT_SYMBOL(security_sock_graft);
1255
1256int security_inet_conn_request(struct sock *sk,
1257			struct sk_buff *skb, struct request_sock *req)
1258{
1259	return security_ops->inet_conn_request(sk, skb, req);
1260}
1261EXPORT_SYMBOL(security_inet_conn_request);
1262
1263void security_inet_csk_clone(struct sock *newsk,
1264			const struct request_sock *req)
1265{
1266	security_ops->inet_csk_clone(newsk, req);
1267}
1268
1269void security_inet_conn_established(struct sock *sk,
1270			struct sk_buff *skb)
1271{
1272	security_ops->inet_conn_established(sk, skb);
1273}
 
1274
1275int security_secmark_relabel_packet(u32 secid)
1276{
1277	return security_ops->secmark_relabel_packet(secid);
1278}
1279EXPORT_SYMBOL(security_secmark_relabel_packet);
1280
1281void security_secmark_refcount_inc(void)
1282{
1283	security_ops->secmark_refcount_inc();
1284}
1285EXPORT_SYMBOL(security_secmark_refcount_inc);
1286
1287void security_secmark_refcount_dec(void)
1288{
1289	security_ops->secmark_refcount_dec();
1290}
1291EXPORT_SYMBOL(security_secmark_refcount_dec);
1292
1293int security_tun_dev_alloc_security(void **security)
1294{
1295	return security_ops->tun_dev_alloc_security(security);
1296}
1297EXPORT_SYMBOL(security_tun_dev_alloc_security);
1298
1299void security_tun_dev_free_security(void *security)
1300{
1301	security_ops->tun_dev_free_security(security);
1302}
1303EXPORT_SYMBOL(security_tun_dev_free_security);
1304
1305int security_tun_dev_create(void)
1306{
1307	return security_ops->tun_dev_create();
1308}
1309EXPORT_SYMBOL(security_tun_dev_create);
1310
1311int security_tun_dev_attach_queue(void *security)
1312{
1313	return security_ops->tun_dev_attach_queue(security);
1314}
1315EXPORT_SYMBOL(security_tun_dev_attach_queue);
1316
1317int security_tun_dev_attach(struct sock *sk, void *security)
1318{
1319	return security_ops->tun_dev_attach(sk, security);
1320}
1321EXPORT_SYMBOL(security_tun_dev_attach);
1322
1323int security_tun_dev_open(void *security)
1324{
1325	return security_ops->tun_dev_open(security);
1326}
1327EXPORT_SYMBOL(security_tun_dev_open);
1328
1329void security_skb_owned_by(struct sk_buff *skb, struct sock *sk)
 
 
 
 
 
 
 
1330{
1331	security_ops->skb_owned_by(skb, sk);
 
1332}
 
 
 
 
 
 
 
 
1333
1334#endif	/* CONFIG_SECURITY_NETWORK */
1335
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1336#ifdef CONFIG_SECURITY_NETWORK_XFRM
1337
1338int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp,
1339			       struct xfrm_user_sec_ctx *sec_ctx,
1340			       gfp_t gfp)
1341{
1342	return security_ops->xfrm_policy_alloc_security(ctxp, sec_ctx, gfp);
1343}
1344EXPORT_SYMBOL(security_xfrm_policy_alloc);
1345
1346int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
1347			      struct xfrm_sec_ctx **new_ctxp)
1348{
1349	return security_ops->xfrm_policy_clone_security(old_ctx, new_ctxp);
1350}
1351
1352void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
1353{
1354	security_ops->xfrm_policy_free_security(ctx);
1355}
1356EXPORT_SYMBOL(security_xfrm_policy_free);
1357
1358int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
1359{
1360	return security_ops->xfrm_policy_delete_security(ctx);
1361}
1362
1363int security_xfrm_state_alloc(struct xfrm_state *x,
1364			      struct xfrm_user_sec_ctx *sec_ctx)
1365{
1366	return security_ops->xfrm_state_alloc(x, sec_ctx);
1367}
1368EXPORT_SYMBOL(security_xfrm_state_alloc);
1369
1370int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
1371				      struct xfrm_sec_ctx *polsec, u32 secid)
1372{
1373	return security_ops->xfrm_state_alloc_acquire(x, polsec, secid);
1374}
1375
1376int security_xfrm_state_delete(struct xfrm_state *x)
1377{
1378	return security_ops->xfrm_state_delete_security(x);
1379}
1380EXPORT_SYMBOL(security_xfrm_state_delete);
1381
1382void security_xfrm_state_free(struct xfrm_state *x)
1383{
1384	security_ops->xfrm_state_free_security(x);
1385}
1386
1387int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid, u8 dir)
1388{
1389	return security_ops->xfrm_policy_lookup(ctx, fl_secid, dir);
1390}
1391
1392int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
1393				       struct xfrm_policy *xp,
1394				       const struct flowi *fl)
1395{
1396	return security_ops->xfrm_state_pol_flow_match(x, xp, fl);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1397}
1398
1399int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
1400{
1401	return security_ops->xfrm_decode_session(skb, secid, 1);
1402}
1403
1404void security_skb_classify_flow(struct sk_buff *skb, struct flowi *fl)
1405{
1406	int rc = security_ops->xfrm_decode_session(skb, &fl->flowi_secid, 0);
 
1407
1408	BUG_ON(rc);
1409}
1410EXPORT_SYMBOL(security_skb_classify_flow);
1411
1412#endif	/* CONFIG_SECURITY_NETWORK_XFRM */
1413
1414#ifdef CONFIG_KEYS
1415
1416int security_key_alloc(struct key *key, const struct cred *cred,
1417		       unsigned long flags)
1418{
1419	return security_ops->key_alloc(key, cred, flags);
1420}
1421
1422void security_key_free(struct key *key)
1423{
1424	security_ops->key_free(key);
1425}
1426
1427int security_key_permission(key_ref_t key_ref,
1428			    const struct cred *cred, key_perm_t perm)
1429{
1430	return security_ops->key_permission(key_ref, cred, perm);
1431}
1432
1433int security_key_getsecurity(struct key *key, char **_buffer)
1434{
1435	return security_ops->key_getsecurity(key, _buffer);
 
1436}
1437
1438#endif	/* CONFIG_KEYS */
1439
1440#ifdef CONFIG_AUDIT
1441
1442int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
1443{
1444	return security_ops->audit_rule_init(field, op, rulestr, lsmrule);
1445}
1446
1447int security_audit_rule_known(struct audit_krule *krule)
1448{
1449	return security_ops->audit_rule_known(krule);
1450}
1451
1452void security_audit_rule_free(void *lsmrule)
1453{
1454	security_ops->audit_rule_free(lsmrule);
1455}
1456
1457int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule,
1458			      struct audit_context *actx)
1459{
1460	return security_ops->audit_rule_match(secid, field, op, lsmrule, actx);
1461}
1462
1463#endif /* CONFIG_AUDIT */
v5.14.15
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Security plug functions
   4 *
   5 * Copyright (C) 2001 WireX Communications, Inc <chris@wirex.com>
   6 * Copyright (C) 2001-2002 Greg Kroah-Hartman <greg@kroah.com>
   7 * Copyright (C) 2001 Networks Associates Technology, Inc <ssmalley@nai.com>
   8 * Copyright (C) 2016 Mellanox Technologies
 
 
 
 
   9 */
  10
  11#define pr_fmt(fmt) "LSM: " fmt
  12
  13#include <linux/bpf.h>
  14#include <linux/capability.h>
  15#include <linux/dcache.h>
  16#include <linux/export.h>
  17#include <linux/init.h>
  18#include <linux/kernel.h>
  19#include <linux/kernel_read_file.h>
  20#include <linux/lsm_hooks.h>
  21#include <linux/integrity.h>
  22#include <linux/ima.h>
  23#include <linux/evm.h>
  24#include <linux/fsnotify.h>
  25#include <linux/mman.h>
  26#include <linux/mount.h>
  27#include <linux/personality.h>
  28#include <linux/backing-dev.h>
  29#include <linux/string.h>
  30#include <linux/msg.h>
  31#include <net/flow.h>
  32
  33#define MAX_LSM_EVM_XATTR	2
  34
  35/* How many LSMs were built into the kernel? */
  36#define LSM_COUNT (__end_lsm_info - __start_lsm_info)
 
  37
  38/*
  39 * These are descriptions of the reasons that can be passed to the
  40 * security_locked_down() LSM hook. Placing this array here allows
  41 * all security modules to use the same descriptions for auditing
  42 * purposes.
  43 */
  44const char *const lockdown_reasons[LOCKDOWN_CONFIDENTIALITY_MAX+1] = {
  45	[LOCKDOWN_NONE] = "none",
  46	[LOCKDOWN_MODULE_SIGNATURE] = "unsigned module loading",
  47	[LOCKDOWN_DEV_MEM] = "/dev/mem,kmem,port",
  48	[LOCKDOWN_EFI_TEST] = "/dev/efi_test access",
  49	[LOCKDOWN_KEXEC] = "kexec of unsigned images",
  50	[LOCKDOWN_HIBERNATION] = "hibernation",
  51	[LOCKDOWN_PCI_ACCESS] = "direct PCI access",
  52	[LOCKDOWN_IOPORT] = "raw io port access",
  53	[LOCKDOWN_MSR] = "raw MSR access",
  54	[LOCKDOWN_ACPI_TABLES] = "modifying ACPI tables",
  55	[LOCKDOWN_PCMCIA_CIS] = "direct PCMCIA CIS storage",
  56	[LOCKDOWN_TIOCSSERIAL] = "reconfiguration of serial port IO",
  57	[LOCKDOWN_MODULE_PARAMETERS] = "unsafe module parameters",
  58	[LOCKDOWN_MMIOTRACE] = "unsafe mmio",
  59	[LOCKDOWN_DEBUGFS] = "debugfs access",
  60	[LOCKDOWN_XMON_WR] = "xmon write access",
  61	[LOCKDOWN_BPF_WRITE_USER] = "use of bpf to write user RAM",
  62	[LOCKDOWN_INTEGRITY_MAX] = "integrity",
  63	[LOCKDOWN_KCORE] = "/proc/kcore access",
  64	[LOCKDOWN_KPROBES] = "use of kprobes",
  65	[LOCKDOWN_BPF_READ_KERNEL] = "use of bpf to read kernel RAM",
  66	[LOCKDOWN_PERF] = "unsafe use of perf",
  67	[LOCKDOWN_TRACEFS] = "use of tracefs",
  68	[LOCKDOWN_XMON_RW] = "xmon read and write access",
  69	[LOCKDOWN_XFRM_SECRET] = "xfrm SA secret",
  70	[LOCKDOWN_CONFIDENTIALITY_MAX] = "confidentiality",
  71};
  72
  73struct security_hook_heads security_hook_heads __lsm_ro_after_init;
  74static BLOCKING_NOTIFIER_HEAD(blocking_lsm_notifier_chain);
  75
  76static struct kmem_cache *lsm_file_cache;
  77static struct kmem_cache *lsm_inode_cache;
  78
  79char *lsm_names;
  80static struct lsm_blob_sizes blob_sizes __lsm_ro_after_init;
  81
  82/* Boot-time LSM user choice */
  83static __initdata const char *chosen_lsm_order;
  84static __initdata const char *chosen_major_lsm;
  85
  86static __initconst const char * const builtin_lsm_order = CONFIG_LSM;
  87
  88/* Ordered list of LSMs to initialize. */
  89static __initdata struct lsm_info **ordered_lsms;
  90static __initdata struct lsm_info *exclusive;
  91
  92static __initdata bool debug;
  93#define init_debug(...)						\
  94	do {							\
  95		if (debug)					\
  96			pr_info(__VA_ARGS__);			\
  97	} while (0)
  98
  99static bool __init is_enabled(struct lsm_info *lsm)
 100{
 101	if (!lsm->enabled)
 102		return false;
 103
 104	return *lsm->enabled;
 
 105}
 106
 107/* Mark an LSM's enabled flag. */
 108static int lsm_enabled_true __initdata = 1;
 109static int lsm_enabled_false __initdata = 0;
 110static void __init set_enabled(struct lsm_info *lsm, bool enabled)
 111{
 112	/*
 113	 * When an LSM hasn't configured an enable variable, we can use
 114	 * a hard-coded location for storing the default enabled state.
 115	 */
 116	if (!lsm->enabled) {
 117		if (enabled)
 118			lsm->enabled = &lsm_enabled_true;
 119		else
 120			lsm->enabled = &lsm_enabled_false;
 121	} else if (lsm->enabled == &lsm_enabled_true) {
 122		if (!enabled)
 123			lsm->enabled = &lsm_enabled_false;
 124	} else if (lsm->enabled == &lsm_enabled_false) {
 125		if (enabled)
 126			lsm->enabled = &lsm_enabled_true;
 127	} else {
 128		*lsm->enabled = enabled;
 129	}
 130}
 131
 132/* Is an LSM already listed in the ordered LSMs list? */
 133static bool __init exists_ordered_lsm(struct lsm_info *lsm)
 134{
 135	struct lsm_info **check;
 136
 137	for (check = ordered_lsms; *check; check++)
 138		if (*check == lsm)
 139			return true;
 140
 141	return false;
 142}
 143
 144/* Append an LSM to the list of ordered LSMs to initialize. */
 145static int last_lsm __initdata;
 146static void __init append_ordered_lsm(struct lsm_info *lsm, const char *from)
 147{
 148	/* Ignore duplicate selections. */
 149	if (exists_ordered_lsm(lsm))
 150		return;
 151
 152	if (WARN(last_lsm == LSM_COUNT, "%s: out of LSM slots!?\n", from))
 153		return;
 154
 155	/* Enable this LSM, if it is not already set. */
 156	if (!lsm->enabled)
 157		lsm->enabled = &lsm_enabled_true;
 158	ordered_lsms[last_lsm++] = lsm;
 159
 160	init_debug("%s ordering: %s (%sabled)\n", from, lsm->name,
 161		   is_enabled(lsm) ? "en" : "dis");
 162}
 163
 164/* Is an LSM allowed to be initialized? */
 165static bool __init lsm_allowed(struct lsm_info *lsm)
 166{
 167	/* Skip if the LSM is disabled. */
 168	if (!is_enabled(lsm))
 169		return false;
 170
 171	/* Not allowed if another exclusive LSM already initialized. */
 172	if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && exclusive) {
 173		init_debug("exclusive disabled: %s\n", lsm->name);
 174		return false;
 175	}
 176
 177	return true;
 178}
 179
 180static void __init lsm_set_blob_size(int *need, int *lbs)
 181{
 182	int offset;
 183
 184	if (*need > 0) {
 185		offset = *lbs;
 186		*lbs += *need;
 187		*need = offset;
 188	}
 189}
 190
 191static void __init lsm_set_blob_sizes(struct lsm_blob_sizes *needed)
 192{
 193	if (!needed)
 194		return;
 195
 196	lsm_set_blob_size(&needed->lbs_cred, &blob_sizes.lbs_cred);
 197	lsm_set_blob_size(&needed->lbs_file, &blob_sizes.lbs_file);
 198	/*
 199	 * The inode blob gets an rcu_head in addition to
 200	 * what the modules might need.
 201	 */
 202	if (needed->lbs_inode && blob_sizes.lbs_inode == 0)
 203		blob_sizes.lbs_inode = sizeof(struct rcu_head);
 204	lsm_set_blob_size(&needed->lbs_inode, &blob_sizes.lbs_inode);
 205	lsm_set_blob_size(&needed->lbs_ipc, &blob_sizes.lbs_ipc);
 206	lsm_set_blob_size(&needed->lbs_msg_msg, &blob_sizes.lbs_msg_msg);
 207	lsm_set_blob_size(&needed->lbs_superblock, &blob_sizes.lbs_superblock);
 208	lsm_set_blob_size(&needed->lbs_task, &blob_sizes.lbs_task);
 209}
 210
 211/* Prepare LSM for initialization. */
 212static void __init prepare_lsm(struct lsm_info *lsm)
 213{
 214	int enabled = lsm_allowed(lsm);
 215
 216	/* Record enablement (to handle any following exclusive LSMs). */
 217	set_enabled(lsm, enabled);
 218
 219	/* If enabled, do pre-initialization work. */
 220	if (enabled) {
 221		if ((lsm->flags & LSM_FLAG_EXCLUSIVE) && !exclusive) {
 222			exclusive = lsm;
 223			init_debug("exclusive chosen: %s\n", lsm->name);
 224		}
 225
 226		lsm_set_blob_sizes(lsm->blobs);
 227	}
 228}
 229
 230/* Initialize a given LSM, if it is enabled. */
 231static void __init initialize_lsm(struct lsm_info *lsm)
 232{
 233	if (is_enabled(lsm)) {
 234		int ret;
 235
 236		init_debug("initializing %s\n", lsm->name);
 237		ret = lsm->init();
 238		WARN(ret, "%s failed to initialize: %d\n", lsm->name, ret);
 239	}
 240}
 241
 242/* Populate ordered LSMs list from comma-separated LSM name list. */
 243static void __init ordered_lsm_parse(const char *order, const char *origin)
 244{
 245	struct lsm_info *lsm;
 246	char *sep, *name, *next;
 247
 248	/* LSM_ORDER_FIRST is always first. */
 249	for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
 250		if (lsm->order == LSM_ORDER_FIRST)
 251			append_ordered_lsm(lsm, "first");
 252	}
 253
 254	/* Process "security=", if given. */
 255	if (chosen_major_lsm) {
 256		struct lsm_info *major;
 257
 258		/*
 259		 * To match the original "security=" behavior, this
 260		 * explicitly does NOT fallback to another Legacy Major
 261		 * if the selected one was separately disabled: disable
 262		 * all non-matching Legacy Major LSMs.
 263		 */
 264		for (major = __start_lsm_info; major < __end_lsm_info;
 265		     major++) {
 266			if ((major->flags & LSM_FLAG_LEGACY_MAJOR) &&
 267			    strcmp(major->name, chosen_major_lsm) != 0) {
 268				set_enabled(major, false);
 269				init_debug("security=%s disabled: %s\n",
 270					   chosen_major_lsm, major->name);
 271			}
 272		}
 273	}
 274
 275	sep = kstrdup(order, GFP_KERNEL);
 276	next = sep;
 277	/* Walk the list, looking for matching LSMs. */
 278	while ((name = strsep(&next, ",")) != NULL) {
 279		bool found = false;
 280
 281		for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
 282			if (lsm->order == LSM_ORDER_MUTABLE &&
 283			    strcmp(lsm->name, name) == 0) {
 284				append_ordered_lsm(lsm, origin);
 285				found = true;
 286			}
 287		}
 288
 289		if (!found)
 290			init_debug("%s ignored: %s\n", origin, name);
 291	}
 292
 293	/* Process "security=", if given. */
 294	if (chosen_major_lsm) {
 295		for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
 296			if (exists_ordered_lsm(lsm))
 297				continue;
 298			if (strcmp(lsm->name, chosen_major_lsm) == 0)
 299				append_ordered_lsm(lsm, "security=");
 300		}
 301	}
 302
 303	/* Disable all LSMs not in the ordered list. */
 304	for (lsm = __start_lsm_info; lsm < __end_lsm_info; lsm++) {
 305		if (exists_ordered_lsm(lsm))
 306			continue;
 307		set_enabled(lsm, false);
 308		init_debug("%s disabled: %s\n", origin, lsm->name);
 309	}
 310
 311	kfree(sep);
 312}
 313
 314static void __init lsm_early_cred(struct cred *cred);
 315static void __init lsm_early_task(struct task_struct *task);
 316
 317static int lsm_append(const char *new, char **result);
 318
 319static void __init ordered_lsm_init(void)
 320{
 321	struct lsm_info **lsm;
 322
 323	ordered_lsms = kcalloc(LSM_COUNT + 1, sizeof(*ordered_lsms),
 324				GFP_KERNEL);
 325
 326	if (chosen_lsm_order) {
 327		if (chosen_major_lsm) {
 328			pr_info("security= is ignored because it is superseded by lsm=\n");
 329			chosen_major_lsm = NULL;
 330		}
 331		ordered_lsm_parse(chosen_lsm_order, "cmdline");
 332	} else
 333		ordered_lsm_parse(builtin_lsm_order, "builtin");
 334
 335	for (lsm = ordered_lsms; *lsm; lsm++)
 336		prepare_lsm(*lsm);
 337
 338	init_debug("cred blob size       = %d\n", blob_sizes.lbs_cred);
 339	init_debug("file blob size       = %d\n", blob_sizes.lbs_file);
 340	init_debug("inode blob size      = %d\n", blob_sizes.lbs_inode);
 341	init_debug("ipc blob size        = %d\n", blob_sizes.lbs_ipc);
 342	init_debug("msg_msg blob size    = %d\n", blob_sizes.lbs_msg_msg);
 343	init_debug("superblock blob size = %d\n", blob_sizes.lbs_superblock);
 344	init_debug("task blob size       = %d\n", blob_sizes.lbs_task);
 345
 346	/*
 347	 * Create any kmem_caches needed for blobs
 348	 */
 349	if (blob_sizes.lbs_file)
 350		lsm_file_cache = kmem_cache_create("lsm_file_cache",
 351						   blob_sizes.lbs_file, 0,
 352						   SLAB_PANIC, NULL);
 353	if (blob_sizes.lbs_inode)
 354		lsm_inode_cache = kmem_cache_create("lsm_inode_cache",
 355						    blob_sizes.lbs_inode, 0,
 356						    SLAB_PANIC, NULL);
 357
 358	lsm_early_cred((struct cred *) current->cred);
 359	lsm_early_task(current);
 360	for (lsm = ordered_lsms; *lsm; lsm++)
 361		initialize_lsm(*lsm);
 362
 363	kfree(ordered_lsms);
 364}
 365
 366int __init early_security_init(void)
 367{
 368	int i;
 369	struct hlist_head *list = (struct hlist_head *) &security_hook_heads;
 370	struct lsm_info *lsm;
 371
 372	for (i = 0; i < sizeof(security_hook_heads) / sizeof(struct hlist_head);
 373	     i++)
 374		INIT_HLIST_HEAD(&list[i]);
 375
 376	for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
 377		if (!lsm->enabled)
 378			lsm->enabled = &lsm_enabled_true;
 379		prepare_lsm(lsm);
 380		initialize_lsm(lsm);
 381	}
 382
 383	return 0;
 384}
 385
 386/**
 387 * security_init - initializes the security framework
 388 *
 389 * This should be called early in the kernel initialization sequence.
 390 */
 391int __init security_init(void)
 392{
 393	struct lsm_info *lsm;
 394
 395	pr_info("Security Framework initializing\n");
 396
 397	/*
 398	 * Append the names of the early LSM modules now that kmalloc() is
 399	 * available
 400	 */
 401	for (lsm = __start_early_lsm_info; lsm < __end_early_lsm_info; lsm++) {
 402		if (lsm->enabled)
 403			lsm_append(lsm->name, &lsm_names);
 404	}
 405
 406	/* Load LSMs in specified order. */
 407	ordered_lsm_init();
 408
 409	return 0;
 410}
 411
 412/* Save user chosen LSM */
 413static int __init choose_major_lsm(char *str)
 414{
 415	chosen_major_lsm = str;
 416	return 1;
 417}
 418__setup("security=", choose_major_lsm);
 419
 420/* Explicitly choose LSM initialization order. */
 421static int __init choose_lsm_order(char *str)
 422{
 423	chosen_lsm_order = str;
 424	return 1;
 425}
 426__setup("lsm=", choose_lsm_order);
 427
 428/* Enable LSM order debugging. */
 429static int __init enable_debug(char *str)
 430{
 431	debug = true;
 432	return 1;
 433}
 434__setup("lsm.debug", enable_debug);
 435
 436static bool match_last_lsm(const char *list, const char *lsm)
 437{
 438	const char *last;
 439
 440	if (WARN_ON(!list || !lsm))
 441		return false;
 442	last = strrchr(list, ',');
 443	if (last)
 444		/* Pass the comma, strcmp() will check for '\0' */
 445		last++;
 446	else
 447		last = list;
 448	return !strcmp(last, lsm);
 449}
 450
 451static int lsm_append(const char *new, char **result)
 452{
 453	char *cp;
 454
 455	if (*result == NULL) {
 456		*result = kstrdup(new, GFP_KERNEL);
 457		if (*result == NULL)
 458			return -ENOMEM;
 459	} else {
 460		/* Check if it is the last registered name */
 461		if (match_last_lsm(*result, new))
 462			return 0;
 463		cp = kasprintf(GFP_KERNEL, "%s,%s", *result, new);
 464		if (cp == NULL)
 465			return -ENOMEM;
 466		kfree(*result);
 467		*result = cp;
 468	}
 469	return 0;
 470}
 471
 472/**
 473 * security_add_hooks - Add a modules hooks to the hook lists.
 474 * @hooks: the hooks to add
 475 * @count: the number of hooks to add
 476 * @lsm: the name of the security module
 477 *
 478 * Each LSM has to register its hooks with the infrastructure.
 479 */
 480void __init security_add_hooks(struct security_hook_list *hooks, int count,
 481				char *lsm)
 482{
 483	int i;
 484
 485	for (i = 0; i < count; i++) {
 486		hooks[i].lsm = lsm;
 487		hlist_add_tail_rcu(&hooks[i].list, hooks[i].head);
 488	}
 489
 490	/*
 491	 * Don't try to append during early_security_init(), we'll come back
 492	 * and fix this up afterwards.
 493	 */
 494	if (slab_is_available()) {
 495		if (lsm_append(lsm, &lsm_names) < 0)
 496			panic("%s - Cannot get early memory.\n", __func__);
 497	}
 498}
 499
 500int call_blocking_lsm_notifier(enum lsm_event event, void *data)
 501{
 502	return blocking_notifier_call_chain(&blocking_lsm_notifier_chain,
 503					    event, data);
 504}
 505EXPORT_SYMBOL(call_blocking_lsm_notifier);
 506
 507int register_blocking_lsm_notifier(struct notifier_block *nb)
 508{
 509	return blocking_notifier_chain_register(&blocking_lsm_notifier_chain,
 510						nb);
 511}
 512EXPORT_SYMBOL(register_blocking_lsm_notifier);
 513
 514int unregister_blocking_lsm_notifier(struct notifier_block *nb)
 515{
 516	return blocking_notifier_chain_unregister(&blocking_lsm_notifier_chain,
 517						  nb);
 518}
 519EXPORT_SYMBOL(unregister_blocking_lsm_notifier);
 520
 521/**
 522 * lsm_cred_alloc - allocate a composite cred blob
 523 * @cred: the cred that needs a blob
 524 * @gfp: allocation type
 525 *
 526 * Allocate the cred blob for all the modules
 527 *
 528 * Returns 0, or -ENOMEM if memory can't be allocated.
 
 
 
 
 
 
 529 */
 530static int lsm_cred_alloc(struct cred *cred, gfp_t gfp)
 531{
 532	if (blob_sizes.lbs_cred == 0) {
 533		cred->security = NULL;
 534		return 0;
 535	}
 536
 537	cred->security = kzalloc(blob_sizes.lbs_cred, gfp);
 538	if (cred->security == NULL)
 539		return -ENOMEM;
 540	return 0;
 541}
 542
 543/**
 544 * lsm_early_cred - during initialization allocate a composite cred blob
 545 * @cred: the cred that needs a blob
 546 *
 547 * Allocate the cred blob for all the modules
 548 */
 549static void __init lsm_early_cred(struct cred *cred)
 550{
 551	int rc = lsm_cred_alloc(cred, GFP_KERNEL);
 552
 553	if (rc)
 554		panic("%s: Early cred alloc failed.\n", __func__);
 555}
 556
 557/**
 558 * lsm_file_alloc - allocate a composite file blob
 559 * @file: the file that needs a blob
 560 *
 561 * Allocate the file blob for all the modules
 
 
 
 562 *
 563 * Returns 0, or -ENOMEM if memory can't be allocated.
 
 564 */
 565static int lsm_file_alloc(struct file *file)
 566{
 567	if (!lsm_file_cache) {
 568		file->f_security = NULL;
 569		return 0;
 
 570	}
 571
 572	file->f_security = kmem_cache_zalloc(lsm_file_cache, GFP_KERNEL);
 573	if (file->f_security == NULL)
 574		return -ENOMEM;
 575	return 0;
 576}
 577
 578/**
 579 * lsm_inode_alloc - allocate a composite inode blob
 580 * @inode: the inode that needs a blob
 581 *
 582 * Allocate the inode blob for all the modules
 583 *
 584 * Returns 0, or -ENOMEM if memory can't be allocated.
 585 */
 586int lsm_inode_alloc(struct inode *inode)
 587{
 588	if (!lsm_inode_cache) {
 589		inode->i_security = NULL;
 590		return 0;
 591	}
 592
 593	inode->i_security = kmem_cache_zalloc(lsm_inode_cache, GFP_NOFS);
 594	if (inode->i_security == NULL)
 595		return -ENOMEM;
 596	return 0;
 597}
 598
 599/**
 600 * lsm_task_alloc - allocate a composite task blob
 601 * @task: the task that needs a blob
 602 *
 603 * Allocate the task blob for all the modules
 604 *
 605 * Returns 0, or -ENOMEM if memory can't be allocated.
 606 */
 607static int lsm_task_alloc(struct task_struct *task)
 608{
 609	if (blob_sizes.lbs_task == 0) {
 610		task->security = NULL;
 611		return 0;
 612	}
 613
 614	task->security = kzalloc(blob_sizes.lbs_task, GFP_KERNEL);
 615	if (task->security == NULL)
 616		return -ENOMEM;
 617	return 0;
 618}
 619
 620/**
 621 * lsm_ipc_alloc - allocate a composite ipc blob
 622 * @kip: the ipc that needs a blob
 623 *
 624 * Allocate the ipc blob for all the modules
 625 *
 626 * Returns 0, or -ENOMEM if memory can't be allocated.
 627 */
 628static int lsm_ipc_alloc(struct kern_ipc_perm *kip)
 629{
 630	if (blob_sizes.lbs_ipc == 0) {
 631		kip->security = NULL;
 632		return 0;
 633	}
 634
 635	kip->security = kzalloc(blob_sizes.lbs_ipc, GFP_KERNEL);
 636	if (kip->security == NULL)
 637		return -ENOMEM;
 638	return 0;
 639}
 640
 641/**
 642 * lsm_msg_msg_alloc - allocate a composite msg_msg blob
 643 * @mp: the msg_msg that needs a blob
 644 *
 645 * Allocate the ipc blob for all the modules
 646 *
 647 * Returns 0, or -ENOMEM if memory can't be allocated.
 648 */
 649static int lsm_msg_msg_alloc(struct msg_msg *mp)
 650{
 651	if (blob_sizes.lbs_msg_msg == 0) {
 652		mp->security = NULL;
 653		return 0;
 654	}
 655
 656	mp->security = kzalloc(blob_sizes.lbs_msg_msg, GFP_KERNEL);
 657	if (mp->security == NULL)
 658		return -ENOMEM;
 659	return 0;
 660}
 661
 662/**
 663 * lsm_early_task - during initialization allocate a composite task blob
 664 * @task: the task that needs a blob
 665 *
 666 * Allocate the task blob for all the modules
 667 */
 668static void __init lsm_early_task(struct task_struct *task)
 669{
 670	int rc = lsm_task_alloc(task);
 671
 672	if (rc)
 673		panic("%s: Early task alloc failed.\n", __func__);
 674}
 675
 676/**
 677 * lsm_superblock_alloc - allocate a composite superblock blob
 678 * @sb: the superblock that needs a blob
 679 *
 680 * Allocate the superblock blob for all the modules
 681 *
 682 * Returns 0, or -ENOMEM if memory can't be allocated.
 683 */
 684static int lsm_superblock_alloc(struct super_block *sb)
 685{
 686	if (blob_sizes.lbs_superblock == 0) {
 687		sb->s_security = NULL;
 688		return 0;
 689	}
 690
 691	sb->s_security = kzalloc(blob_sizes.lbs_superblock, GFP_KERNEL);
 692	if (sb->s_security == NULL)
 693		return -ENOMEM;
 694	return 0;
 695}
 696
 697/*
 698 * The default value of the LSM hook is defined in linux/lsm_hook_defs.h and
 699 * can be accessed with:
 700 *
 701 *	LSM_RET_DEFAULT(<hook_name>)
 702 *
 703 * The macros below define static constants for the default value of each
 704 * LSM hook.
 705 */
 706#define LSM_RET_DEFAULT(NAME) (NAME##_default)
 707#define DECLARE_LSM_RET_DEFAULT_void(DEFAULT, NAME)
 708#define DECLARE_LSM_RET_DEFAULT_int(DEFAULT, NAME) \
 709	static const int LSM_RET_DEFAULT(NAME) = (DEFAULT);
 710#define LSM_HOOK(RET, DEFAULT, NAME, ...) \
 711	DECLARE_LSM_RET_DEFAULT_##RET(DEFAULT, NAME)
 712
 713#include <linux/lsm_hook_defs.h>
 714#undef LSM_HOOK
 715
 716/*
 717 * Hook list operation macros.
 718 *
 719 * call_void_hook:
 720 *	This is a hook that does not return a value.
 721 *
 722 * call_int_hook:
 723 *	This is a hook that returns a value.
 724 */
 725
 726#define call_void_hook(FUNC, ...)				\
 727	do {							\
 728		struct security_hook_list *P;			\
 729								\
 730		hlist_for_each_entry(P, &security_hook_heads.FUNC, list) \
 731			P->hook.FUNC(__VA_ARGS__);		\
 732	} while (0)
 733
 734#define call_int_hook(FUNC, IRC, ...) ({			\
 735	int RC = IRC;						\
 736	do {							\
 737		struct security_hook_list *P;			\
 738								\
 739		hlist_for_each_entry(P, &security_hook_heads.FUNC, list) { \
 740			RC = P->hook.FUNC(__VA_ARGS__);		\
 741			if (RC != 0)				\
 742				break;				\
 743		}						\
 744	} while (0);						\
 745	RC;							\
 746})
 747
 748/* Security operations */
 749
 750int security_binder_set_context_mgr(struct task_struct *mgr)
 751{
 752	return call_int_hook(binder_set_context_mgr, 0, mgr);
 753}
 754
 755int security_binder_transaction(struct task_struct *from,
 756				struct task_struct *to)
 757{
 758	return call_int_hook(binder_transaction, 0, from, to);
 759}
 760
 761int security_binder_transfer_binder(struct task_struct *from,
 762				    struct task_struct *to)
 763{
 764	return call_int_hook(binder_transfer_binder, 0, from, to);
 765}
 766
 767int security_binder_transfer_file(struct task_struct *from,
 768				  struct task_struct *to, struct file *file)
 769{
 770	return call_int_hook(binder_transfer_file, 0, from, to, file);
 771}
 772
 773int security_ptrace_access_check(struct task_struct *child, unsigned int mode)
 774{
 775	return call_int_hook(ptrace_access_check, 0, child, mode);
 
 
 
 
 
 
 776}
 777
 778int security_ptrace_traceme(struct task_struct *parent)
 779{
 780	return call_int_hook(ptrace_traceme, 0, parent);
 
 
 
 
 
 
 781}
 782
 783int security_capget(struct task_struct *target,
 784		     kernel_cap_t *effective,
 785		     kernel_cap_t *inheritable,
 786		     kernel_cap_t *permitted)
 787{
 788	return call_int_hook(capget, 0, target,
 789				effective, inheritable, permitted);
 790}
 791
 792int security_capset(struct cred *new, const struct cred *old,
 793		    const kernel_cap_t *effective,
 794		    const kernel_cap_t *inheritable,
 795		    const kernel_cap_t *permitted)
 796{
 797	return call_int_hook(capset, 0, new, old,
 798				effective, inheritable, permitted);
 
 
 
 
 
 
 799}
 800
 801int security_capable(const struct cred *cred,
 802		     struct user_namespace *ns,
 803		     int cap,
 804		     unsigned int opts)
 805{
 806	return call_int_hook(capable, 0, cred, ns, cap, opts);
 807}
 808
 809int security_quotactl(int cmds, int type, int id, struct super_block *sb)
 810{
 811	return call_int_hook(quotactl, 0, cmds, type, id, sb);
 812}
 813
 814int security_quota_on(struct dentry *dentry)
 815{
 816	return call_int_hook(quota_on, 0, dentry);
 817}
 818
 819int security_syslog(int type)
 820{
 821	return call_int_hook(syslog, 0, type);
 822}
 823
 824int security_settime64(const struct timespec64 *ts, const struct timezone *tz)
 825{
 826	return call_int_hook(settime, 0, ts, tz);
 827}
 828
 829int security_vm_enough_memory_mm(struct mm_struct *mm, long pages)
 830{
 831	struct security_hook_list *hp;
 832	int cap_sys_admin = 1;
 833	int rc;
 834
 835	/*
 836	 * The module will respond with a positive value if
 837	 * it thinks the __vm_enough_memory() call should be
 838	 * made with the cap_sys_admin set. If all of the modules
 839	 * agree that it should be set it will. If any module
 840	 * thinks it should not be set it won't.
 841	 */
 842	hlist_for_each_entry(hp, &security_hook_heads.vm_enough_memory, list) {
 843		rc = hp->hook.vm_enough_memory(mm, pages);
 844		if (rc <= 0) {
 845			cap_sys_admin = 0;
 846			break;
 847		}
 848	}
 849	return __vm_enough_memory(mm, pages, cap_sys_admin);
 850}
 851
 852int security_bprm_creds_for_exec(struct linux_binprm *bprm)
 853{
 854	return call_int_hook(bprm_creds_for_exec, 0, bprm);
 855}
 856
 857int security_bprm_creds_from_file(struct linux_binprm *bprm, struct file *file)
 858{
 859	return call_int_hook(bprm_creds_from_file, 0, bprm, file);
 860}
 861
 862int security_bprm_check(struct linux_binprm *bprm)
 863{
 864	int ret;
 865
 866	ret = call_int_hook(bprm_check_security, 0, bprm);
 867	if (ret)
 868		return ret;
 869	return ima_bprm_check(bprm);
 870}
 871
 872void security_bprm_committing_creds(struct linux_binprm *bprm)
 873{
 874	call_void_hook(bprm_committing_creds, bprm);
 875}
 876
 877void security_bprm_committed_creds(struct linux_binprm *bprm)
 878{
 879	call_void_hook(bprm_committed_creds, bprm);
 880}
 881
 882int security_fs_context_dup(struct fs_context *fc, struct fs_context *src_fc)
 883{
 884	return call_int_hook(fs_context_dup, 0, fc, src_fc);
 885}
 886
 887int security_fs_context_parse_param(struct fs_context *fc, struct fs_parameter *param)
 888{
 889	return call_int_hook(fs_context_parse_param, -ENOPARAM, fc, param);
 890}
 891
 892int security_sb_alloc(struct super_block *sb)
 893{
 894	int rc = lsm_superblock_alloc(sb);
 895
 896	if (unlikely(rc))
 897		return rc;
 898	rc = call_int_hook(sb_alloc_security, 0, sb);
 899	if (unlikely(rc))
 900		security_sb_free(sb);
 901	return rc;
 902}
 903
 904void security_sb_delete(struct super_block *sb)
 905{
 906	call_void_hook(sb_delete, sb);
 907}
 908
 909void security_sb_free(struct super_block *sb)
 910{
 911	call_void_hook(sb_free_security, sb);
 912	kfree(sb->s_security);
 913	sb->s_security = NULL;
 914}
 915
 916void security_free_mnt_opts(void **mnt_opts)
 917{
 918	if (!*mnt_opts)
 919		return;
 920	call_void_hook(sb_free_mnt_opts, *mnt_opts);
 921	*mnt_opts = NULL;
 922}
 923EXPORT_SYMBOL(security_free_mnt_opts);
 924
 925int security_sb_eat_lsm_opts(char *options, void **mnt_opts)
 926{
 927	return call_int_hook(sb_eat_lsm_opts, 0, options, mnt_opts);
 928}
 929EXPORT_SYMBOL(security_sb_eat_lsm_opts);
 930
 931int security_sb_mnt_opts_compat(struct super_block *sb,
 932				void *mnt_opts)
 933{
 934	return call_int_hook(sb_mnt_opts_compat, 0, sb, mnt_opts);
 935}
 936EXPORT_SYMBOL(security_sb_mnt_opts_compat);
 937
 938int security_sb_remount(struct super_block *sb,
 939			void *mnt_opts)
 940{
 941	return call_int_hook(sb_remount, 0, sb, mnt_opts);
 942}
 943EXPORT_SYMBOL(security_sb_remount);
 944
 945int security_sb_kern_mount(struct super_block *sb)
 946{
 947	return call_int_hook(sb_kern_mount, 0, sb);
 948}
 949
 950int security_sb_show_options(struct seq_file *m, struct super_block *sb)
 951{
 952	return call_int_hook(sb_show_options, 0, m, sb);
 953}
 954
 955int security_sb_statfs(struct dentry *dentry)
 956{
 957	return call_int_hook(sb_statfs, 0, dentry);
 958}
 959
 960int security_sb_mount(const char *dev_name, const struct path *path,
 961                       const char *type, unsigned long flags, void *data)
 962{
 963	return call_int_hook(sb_mount, 0, dev_name, path, type, flags, data);
 964}
 965
 966int security_sb_umount(struct vfsmount *mnt, int flags)
 967{
 968	return call_int_hook(sb_umount, 0, mnt, flags);
 969}
 970
 971int security_sb_pivotroot(const struct path *old_path, const struct path *new_path)
 972{
 973	return call_int_hook(sb_pivotroot, 0, old_path, new_path);
 974}
 975
 976int security_sb_set_mnt_opts(struct super_block *sb,
 977				void *mnt_opts,
 978				unsigned long kern_flags,
 979				unsigned long *set_kern_flags)
 980{
 981	return call_int_hook(sb_set_mnt_opts,
 982				mnt_opts ? -EOPNOTSUPP : 0, sb,
 983				mnt_opts, kern_flags, set_kern_flags);
 984}
 985EXPORT_SYMBOL(security_sb_set_mnt_opts);
 986
 987int security_sb_clone_mnt_opts(const struct super_block *oldsb,
 988				struct super_block *newsb,
 989				unsigned long kern_flags,
 990				unsigned long *set_kern_flags)
 991{
 992	return call_int_hook(sb_clone_mnt_opts, 0, oldsb, newsb,
 993				kern_flags, set_kern_flags);
 994}
 995EXPORT_SYMBOL(security_sb_clone_mnt_opts);
 996
 997int security_add_mnt_opt(const char *option, const char *val, int len,
 998			 void **mnt_opts)
 999{
1000	return call_int_hook(sb_add_mnt_opt, -EINVAL,
1001					option, val, len, mnt_opts);
1002}
1003EXPORT_SYMBOL(security_add_mnt_opt);
1004
1005int security_move_mount(const struct path *from_path, const struct path *to_path)
1006{
1007	return call_int_hook(move_mount, 0, from_path, to_path);
1008}
1009
1010int security_path_notify(const struct path *path, u64 mask,
1011				unsigned int obj_type)
1012{
1013	return call_int_hook(path_notify, 0, path, mask, obj_type);
1014}
 
1015
1016int security_inode_alloc(struct inode *inode)
1017{
1018	int rc = lsm_inode_alloc(inode);
1019
1020	if (unlikely(rc))
1021		return rc;
1022	rc = call_int_hook(inode_alloc_security, 0, inode);
1023	if (unlikely(rc))
1024		security_inode_free(inode);
1025	return rc;
1026}
1027
1028static void inode_free_by_rcu(struct rcu_head *head)
1029{
1030	/*
1031	 * The rcu head is at the start of the inode blob
1032	 */
1033	kmem_cache_free(lsm_inode_cache, head);
1034}
1035
1036void security_inode_free(struct inode *inode)
1037{
1038	integrity_inode_free(inode);
1039	call_void_hook(inode_free_security, inode);
1040	/*
1041	 * The inode may still be referenced in a path walk and
1042	 * a call to security_inode_permission() can be made
1043	 * after inode_free_security() is called. Ideally, the VFS
1044	 * wouldn't do this, but fixing that is a much harder
1045	 * job. For now, simply free the i_security via RCU, and
1046	 * leave the current inode->i_security pointer intact.
1047	 * The inode will be freed after the RCU grace period too.
1048	 */
1049	if (inode->i_security)
1050		call_rcu((struct rcu_head *)inode->i_security,
1051				inode_free_by_rcu);
1052}
1053
1054int security_dentry_init_security(struct dentry *dentry, int mode,
1055					const struct qstr *name, void **ctx,
1056					u32 *ctxlen)
1057{
1058	return call_int_hook(dentry_init_security, -EOPNOTSUPP, dentry, mode,
1059				name, ctx, ctxlen);
1060}
1061EXPORT_SYMBOL(security_dentry_init_security);
1062
1063int security_dentry_create_files_as(struct dentry *dentry, int mode,
1064				    struct qstr *name,
1065				    const struct cred *old, struct cred *new)
1066{
1067	return call_int_hook(dentry_create_files_as, 0, dentry, mode,
1068				name, old, new);
1069}
1070EXPORT_SYMBOL(security_dentry_create_files_as);
1071
1072int security_inode_init_security(struct inode *inode, struct inode *dir,
1073				 const struct qstr *qstr,
1074				 const initxattrs initxattrs, void *fs_data)
1075{
1076	struct xattr new_xattrs[MAX_LSM_EVM_XATTR + 1];
1077	struct xattr *lsm_xattr, *evm_xattr, *xattr;
1078	int ret;
1079
1080	if (unlikely(IS_PRIVATE(inode)))
1081		return 0;
1082
1083	if (!initxattrs)
1084		return call_int_hook(inode_init_security, -EOPNOTSUPP, inode,
1085				     dir, qstr, NULL, NULL, NULL);
1086	memset(new_xattrs, 0, sizeof(new_xattrs));
1087	lsm_xattr = new_xattrs;
1088	ret = call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir, qstr,
1089						&lsm_xattr->name,
1090						&lsm_xattr->value,
1091						&lsm_xattr->value_len);
1092	if (ret)
1093		goto out;
1094
1095	evm_xattr = lsm_xattr + 1;
1096	ret = evm_inode_init_security(inode, lsm_xattr, evm_xattr);
1097	if (ret)
1098		goto out;
1099	ret = initxattrs(inode, new_xattrs, fs_data);
1100out:
1101	for (xattr = new_xattrs; xattr->value != NULL; xattr++)
1102		kfree(xattr->value);
1103	return (ret == -EOPNOTSUPP) ? 0 : ret;
1104}
1105EXPORT_SYMBOL(security_inode_init_security);
1106
1107int security_inode_init_security_anon(struct inode *inode,
1108				      const struct qstr *name,
1109				      const struct inode *context_inode)
1110{
1111	return call_int_hook(inode_init_security_anon, 0, inode, name,
1112			     context_inode);
1113}
1114
1115int security_old_inode_init_security(struct inode *inode, struct inode *dir,
1116				     const struct qstr *qstr, const char **name,
1117				     void **value, size_t *len)
1118{
1119	if (unlikely(IS_PRIVATE(inode)))
1120		return -EOPNOTSUPP;
1121	return call_int_hook(inode_init_security, -EOPNOTSUPP, inode, dir,
1122			     qstr, name, value, len);
1123}
1124EXPORT_SYMBOL(security_old_inode_init_security);
1125
1126#ifdef CONFIG_SECURITY_PATH
1127int security_path_mknod(const struct path *dir, struct dentry *dentry, umode_t mode,
1128			unsigned int dev)
1129{
1130	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1131		return 0;
1132	return call_int_hook(path_mknod, 0, dir, dentry, mode, dev);
1133}
1134EXPORT_SYMBOL(security_path_mknod);
1135
1136int security_path_mkdir(const struct path *dir, struct dentry *dentry, umode_t mode)
1137{
1138	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1139		return 0;
1140	return call_int_hook(path_mkdir, 0, dir, dentry, mode);
1141}
1142EXPORT_SYMBOL(security_path_mkdir);
1143
1144int security_path_rmdir(const struct path *dir, struct dentry *dentry)
1145{
1146	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1147		return 0;
1148	return call_int_hook(path_rmdir, 0, dir, dentry);
1149}
1150
1151int security_path_unlink(const struct path *dir, struct dentry *dentry)
1152{
1153	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1154		return 0;
1155	return call_int_hook(path_unlink, 0, dir, dentry);
1156}
1157EXPORT_SYMBOL(security_path_unlink);
1158
1159int security_path_symlink(const struct path *dir, struct dentry *dentry,
1160			  const char *old_name)
1161{
1162	if (unlikely(IS_PRIVATE(d_backing_inode(dir->dentry))))
1163		return 0;
1164	return call_int_hook(path_symlink, 0, dir, dentry, old_name);
1165}
1166
1167int security_path_link(struct dentry *old_dentry, const struct path *new_dir,
1168		       struct dentry *new_dentry)
1169{
1170	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
1171		return 0;
1172	return call_int_hook(path_link, 0, old_dentry, new_dir, new_dentry);
1173}
1174
1175int security_path_rename(const struct path *old_dir, struct dentry *old_dentry,
1176			 const struct path *new_dir, struct dentry *new_dentry,
1177			 unsigned int flags)
1178{
1179	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
1180		     (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
1181		return 0;
1182
1183	if (flags & RENAME_EXCHANGE) {
1184		int err = call_int_hook(path_rename, 0, new_dir, new_dentry,
1185					old_dir, old_dentry);
1186		if (err)
1187			return err;
1188	}
1189
1190	return call_int_hook(path_rename, 0, old_dir, old_dentry, new_dir,
1191				new_dentry);
1192}
1193EXPORT_SYMBOL(security_path_rename);
1194
1195int security_path_truncate(const struct path *path)
1196{
1197	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1198		return 0;
1199	return call_int_hook(path_truncate, 0, path);
1200}
1201
1202int security_path_chmod(const struct path *path, umode_t mode)
1203{
1204	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1205		return 0;
1206	return call_int_hook(path_chmod, 0, path, mode);
1207}
1208
1209int security_path_chown(const struct path *path, kuid_t uid, kgid_t gid)
1210{
1211	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1212		return 0;
1213	return call_int_hook(path_chown, 0, path, uid, gid);
1214}
1215
1216int security_path_chroot(const struct path *path)
1217{
1218	return call_int_hook(path_chroot, 0, path);
1219}
1220#endif
1221
1222int security_inode_create(struct inode *dir, struct dentry *dentry, umode_t mode)
1223{
1224	if (unlikely(IS_PRIVATE(dir)))
1225		return 0;
1226	return call_int_hook(inode_create, 0, dir, dentry, mode);
1227}
1228EXPORT_SYMBOL_GPL(security_inode_create);
1229
1230int security_inode_link(struct dentry *old_dentry, struct inode *dir,
1231			 struct dentry *new_dentry)
1232{
1233	if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry))))
1234		return 0;
1235	return call_int_hook(inode_link, 0, old_dentry, dir, new_dentry);
1236}
1237
1238int security_inode_unlink(struct inode *dir, struct dentry *dentry)
1239{
1240	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1241		return 0;
1242	return call_int_hook(inode_unlink, 0, dir, dentry);
1243}
1244
1245int security_inode_symlink(struct inode *dir, struct dentry *dentry,
1246			    const char *old_name)
1247{
1248	if (unlikely(IS_PRIVATE(dir)))
1249		return 0;
1250	return call_int_hook(inode_symlink, 0, dir, dentry, old_name);
1251}
1252
1253int security_inode_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1254{
1255	if (unlikely(IS_PRIVATE(dir)))
1256		return 0;
1257	return call_int_hook(inode_mkdir, 0, dir, dentry, mode);
1258}
1259EXPORT_SYMBOL_GPL(security_inode_mkdir);
1260
1261int security_inode_rmdir(struct inode *dir, struct dentry *dentry)
1262{
1263	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1264		return 0;
1265	return call_int_hook(inode_rmdir, 0, dir, dentry);
1266}
1267
1268int security_inode_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t dev)
1269{
1270	if (unlikely(IS_PRIVATE(dir)))
1271		return 0;
1272	return call_int_hook(inode_mknod, 0, dir, dentry, mode, dev);
1273}
1274
1275int security_inode_rename(struct inode *old_dir, struct dentry *old_dentry,
1276			   struct inode *new_dir, struct dentry *new_dentry,
1277			   unsigned int flags)
1278{
1279        if (unlikely(IS_PRIVATE(d_backing_inode(old_dentry)) ||
1280            (d_is_positive(new_dentry) && IS_PRIVATE(d_backing_inode(new_dentry)))))
1281		return 0;
1282
1283	if (flags & RENAME_EXCHANGE) {
1284		int err = call_int_hook(inode_rename, 0, new_dir, new_dentry,
1285						     old_dir, old_dentry);
1286		if (err)
1287			return err;
1288	}
1289
1290	return call_int_hook(inode_rename, 0, old_dir, old_dentry,
1291					   new_dir, new_dentry);
1292}
1293
1294int security_inode_readlink(struct dentry *dentry)
1295{
1296	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1297		return 0;
1298	return call_int_hook(inode_readlink, 0, dentry);
1299}
1300
1301int security_inode_follow_link(struct dentry *dentry, struct inode *inode,
1302			       bool rcu)
1303{
1304	if (unlikely(IS_PRIVATE(inode)))
1305		return 0;
1306	return call_int_hook(inode_follow_link, 0, dentry, inode, rcu);
1307}
1308
1309int security_inode_permission(struct inode *inode, int mask)
1310{
1311	if (unlikely(IS_PRIVATE(inode)))
1312		return 0;
1313	return call_int_hook(inode_permission, 0, inode, mask);
1314}
1315
1316int security_inode_setattr(struct dentry *dentry, struct iattr *attr)
1317{
1318	int ret;
1319
1320	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1321		return 0;
1322	ret = call_int_hook(inode_setattr, 0, dentry, attr);
1323	if (ret)
1324		return ret;
1325	return evm_inode_setattr(dentry, attr);
1326}
1327EXPORT_SYMBOL_GPL(security_inode_setattr);
1328
1329int security_inode_getattr(const struct path *path)
1330{
1331	if (unlikely(IS_PRIVATE(d_backing_inode(path->dentry))))
1332		return 0;
1333	return call_int_hook(inode_getattr, 0, path);
1334}
1335
1336int security_inode_setxattr(struct user_namespace *mnt_userns,
1337			    struct dentry *dentry, const char *name,
1338			    const void *value, size_t size, int flags)
1339{
1340	int ret;
1341
1342	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1343		return 0;
1344	/*
1345	 * SELinux and Smack integrate the cap call,
1346	 * so assume that all LSMs supplying this call do so.
1347	 */
1348	ret = call_int_hook(inode_setxattr, 1, mnt_userns, dentry, name, value,
1349			    size, flags);
1350
1351	if (ret == 1)
1352		ret = cap_inode_setxattr(dentry, name, value, size, flags);
1353	if (ret)
1354		return ret;
1355	ret = ima_inode_setxattr(dentry, name, value, size);
1356	if (ret)
1357		return ret;
1358	return evm_inode_setxattr(mnt_userns, dentry, name, value, size);
1359}
1360
1361void security_inode_post_setxattr(struct dentry *dentry, const char *name,
1362				  const void *value, size_t size, int flags)
1363{
1364	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1365		return;
1366	call_void_hook(inode_post_setxattr, dentry, name, value, size, flags);
1367	evm_inode_post_setxattr(dentry, name, value, size);
1368}
1369
1370int security_inode_getxattr(struct dentry *dentry, const char *name)
1371{
1372	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1373		return 0;
1374	return call_int_hook(inode_getxattr, 0, dentry, name);
1375}
1376
1377int security_inode_listxattr(struct dentry *dentry)
1378{
1379	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1380		return 0;
1381	return call_int_hook(inode_listxattr, 0, dentry);
1382}
1383
1384int security_inode_removexattr(struct user_namespace *mnt_userns,
1385			       struct dentry *dentry, const char *name)
1386{
1387	int ret;
1388
1389	if (unlikely(IS_PRIVATE(d_backing_inode(dentry))))
1390		return 0;
1391	/*
1392	 * SELinux and Smack integrate the cap call,
1393	 * so assume that all LSMs supplying this call do so.
1394	 */
1395	ret = call_int_hook(inode_removexattr, 1, mnt_userns, dentry, name);
1396	if (ret == 1)
1397		ret = cap_inode_removexattr(mnt_userns, dentry, name);
1398	if (ret)
1399		return ret;
1400	ret = ima_inode_removexattr(dentry, name);
1401	if (ret)
1402		return ret;
1403	return evm_inode_removexattr(mnt_userns, dentry, name);
1404}
1405
1406int security_inode_need_killpriv(struct dentry *dentry)
1407{
1408	return call_int_hook(inode_need_killpriv, 0, dentry);
1409}
1410
1411int security_inode_killpriv(struct user_namespace *mnt_userns,
1412			    struct dentry *dentry)
1413{
1414	return call_int_hook(inode_killpriv, 0, mnt_userns, dentry);
1415}
1416
1417int security_inode_getsecurity(struct user_namespace *mnt_userns,
1418			       struct inode *inode, const char *name,
1419			       void **buffer, bool alloc)
1420{
1421	struct security_hook_list *hp;
1422	int rc;
1423
1424	if (unlikely(IS_PRIVATE(inode)))
1425		return LSM_RET_DEFAULT(inode_getsecurity);
1426	/*
1427	 * Only one module will provide an attribute with a given name.
1428	 */
1429	hlist_for_each_entry(hp, &security_hook_heads.inode_getsecurity, list) {
1430		rc = hp->hook.inode_getsecurity(mnt_userns, inode, name, buffer, alloc);
1431		if (rc != LSM_RET_DEFAULT(inode_getsecurity))
1432			return rc;
1433	}
1434	return LSM_RET_DEFAULT(inode_getsecurity);
1435}
1436
1437int security_inode_setsecurity(struct inode *inode, const char *name, const void *value, size_t size, int flags)
1438{
1439	struct security_hook_list *hp;
1440	int rc;
1441
1442	if (unlikely(IS_PRIVATE(inode)))
1443		return LSM_RET_DEFAULT(inode_setsecurity);
1444	/*
1445	 * Only one module will provide an attribute with a given name.
1446	 */
1447	hlist_for_each_entry(hp, &security_hook_heads.inode_setsecurity, list) {
1448		rc = hp->hook.inode_setsecurity(inode, name, value, size,
1449								flags);
1450		if (rc != LSM_RET_DEFAULT(inode_setsecurity))
1451			return rc;
1452	}
1453	return LSM_RET_DEFAULT(inode_setsecurity);
1454}
1455
1456int security_inode_listsecurity(struct inode *inode, char *buffer, size_t buffer_size)
1457{
1458	if (unlikely(IS_PRIVATE(inode)))
1459		return 0;
1460	return call_int_hook(inode_listsecurity, 0, inode, buffer, buffer_size);
1461}
1462EXPORT_SYMBOL(security_inode_listsecurity);
1463
1464void security_inode_getsecid(struct inode *inode, u32 *secid)
1465{
1466	call_void_hook(inode_getsecid, inode, secid);
1467}
1468
1469int security_inode_copy_up(struct dentry *src, struct cred **new)
1470{
1471	return call_int_hook(inode_copy_up, 0, src, new);
1472}
1473EXPORT_SYMBOL(security_inode_copy_up);
1474
1475int security_inode_copy_up_xattr(const char *name)
1476{
1477	struct security_hook_list *hp;
1478	int rc;
1479
1480	/*
1481	 * The implementation can return 0 (accept the xattr), 1 (discard the
1482	 * xattr), -EOPNOTSUPP if it does not know anything about the xattr or
1483	 * any other error code incase of an error.
1484	 */
1485	hlist_for_each_entry(hp,
1486		&security_hook_heads.inode_copy_up_xattr, list) {
1487		rc = hp->hook.inode_copy_up_xattr(name);
1488		if (rc != LSM_RET_DEFAULT(inode_copy_up_xattr))
1489			return rc;
1490	}
1491
1492	return LSM_RET_DEFAULT(inode_copy_up_xattr);
1493}
1494EXPORT_SYMBOL(security_inode_copy_up_xattr);
1495
1496int security_kernfs_init_security(struct kernfs_node *kn_dir,
1497				  struct kernfs_node *kn)
1498{
1499	return call_int_hook(kernfs_init_security, 0, kn_dir, kn);
1500}
1501
1502int security_file_permission(struct file *file, int mask)
1503{
1504	int ret;
1505
1506	ret = call_int_hook(file_permission, 0, file, mask);
1507	if (ret)
1508		return ret;
1509
1510	return fsnotify_perm(file, mask);
1511}
1512
1513int security_file_alloc(struct file *file)
1514{
1515	int rc = lsm_file_alloc(file);
1516
1517	if (rc)
1518		return rc;
1519	rc = call_int_hook(file_alloc_security, 0, file);
1520	if (unlikely(rc))
1521		security_file_free(file);
1522	return rc;
1523}
1524
1525void security_file_free(struct file *file)
1526{
1527	void *blob;
1528
1529	call_void_hook(file_free_security, file);
1530
1531	blob = file->f_security;
1532	if (blob) {
1533		file->f_security = NULL;
1534		kmem_cache_free(lsm_file_cache, blob);
1535	}
1536}
1537
1538int security_file_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
1539{
1540	return call_int_hook(file_ioctl, 0, file, cmd, arg);
1541}
1542EXPORT_SYMBOL_GPL(security_file_ioctl);
1543
1544static inline unsigned long mmap_prot(struct file *file, unsigned long prot)
1545{
1546	/*
1547	 * Does we have PROT_READ and does the application expect
1548	 * it to imply PROT_EXEC?  If not, nothing to talk about...
1549	 */
1550	if ((prot & (PROT_READ | PROT_EXEC)) != PROT_READ)
1551		return prot;
1552	if (!(current->personality & READ_IMPLIES_EXEC))
1553		return prot;
1554	/*
1555	 * if that's an anonymous mapping, let it.
1556	 */
1557	if (!file)
1558		return prot | PROT_EXEC;
1559	/*
1560	 * ditto if it's not on noexec mount, except that on !MMU we need
1561	 * NOMMU_MAP_EXEC (== VM_MAYEXEC) in this case
1562	 */
1563	if (!path_noexec(&file->f_path)) {
1564#ifndef CONFIG_MMU
1565		if (file->f_op->mmap_capabilities) {
1566			unsigned caps = file->f_op->mmap_capabilities(file);
1567			if (!(caps & NOMMU_MAP_EXEC))
1568				return prot;
1569		}
 
1570#endif
1571		return prot | PROT_EXEC;
1572	}
1573	/* anything on noexec mount won't get PROT_EXEC */
1574	return prot;
1575}
1576
1577int security_mmap_file(struct file *file, unsigned long prot,
1578			unsigned long flags)
1579{
1580	int ret;
1581	ret = call_int_hook(mmap_file, 0, file, prot,
1582					mmap_prot(file, prot), flags);
1583	if (ret)
1584		return ret;
1585	return ima_file_mmap(file, prot);
1586}
1587
1588int security_mmap_addr(unsigned long addr)
1589{
1590	return call_int_hook(mmap_addr, 0, addr);
1591}
1592
1593int security_file_mprotect(struct vm_area_struct *vma, unsigned long reqprot,
1594			    unsigned long prot)
1595{
1596	int ret;
1597
1598	ret = call_int_hook(file_mprotect, 0, vma, reqprot, prot);
1599	if (ret)
1600		return ret;
1601	return ima_file_mprotect(vma, prot);
1602}
1603
1604int security_file_lock(struct file *file, unsigned int cmd)
1605{
1606	return call_int_hook(file_lock, 0, file, cmd);
1607}
1608
1609int security_file_fcntl(struct file *file, unsigned int cmd, unsigned long arg)
1610{
1611	return call_int_hook(file_fcntl, 0, file, cmd, arg);
1612}
1613
1614void security_file_set_fowner(struct file *file)
1615{
1616	call_void_hook(file_set_fowner, file);
1617}
1618
1619int security_file_send_sigiotask(struct task_struct *tsk,
1620				  struct fown_struct *fown, int sig)
1621{
1622	return call_int_hook(file_send_sigiotask, 0, tsk, fown, sig);
1623}
1624
1625int security_file_receive(struct file *file)
1626{
1627	return call_int_hook(file_receive, 0, file);
1628}
1629
1630int security_file_open(struct file *file)
1631{
1632	int ret;
1633
1634	ret = call_int_hook(file_open, 0, file);
1635	if (ret)
1636		return ret;
1637
1638	return fsnotify_perm(file, MAY_OPEN);
1639}
1640
1641int security_task_alloc(struct task_struct *task, unsigned long clone_flags)
1642{
1643	int rc = lsm_task_alloc(task);
1644
1645	if (rc)
1646		return rc;
1647	rc = call_int_hook(task_alloc, 0, task, clone_flags);
1648	if (unlikely(rc))
1649		security_task_free(task);
1650	return rc;
1651}
1652
1653void security_task_free(struct task_struct *task)
1654{
1655	call_void_hook(task_free, task);
1656
1657	kfree(task->security);
1658	task->security = NULL;
1659}
1660
1661int security_cred_alloc_blank(struct cred *cred, gfp_t gfp)
1662{
1663	int rc = lsm_cred_alloc(cred, gfp);
1664
1665	if (rc)
1666		return rc;
1667
1668	rc = call_int_hook(cred_alloc_blank, 0, cred, gfp);
1669	if (unlikely(rc))
1670		security_cred_free(cred);
1671	return rc;
1672}
1673
1674void security_cred_free(struct cred *cred)
1675{
1676	/*
1677	 * There is a failure case in prepare_creds() that
1678	 * may result in a call here with ->security being NULL.
1679	 */
1680	if (unlikely(cred->security == NULL))
1681		return;
1682
1683	call_void_hook(cred_free, cred);
1684
1685	kfree(cred->security);
1686	cred->security = NULL;
1687}
1688
1689int security_prepare_creds(struct cred *new, const struct cred *old, gfp_t gfp)
1690{
1691	int rc = lsm_cred_alloc(new, gfp);
1692
1693	if (rc)
1694		return rc;
1695
1696	rc = call_int_hook(cred_prepare, 0, new, old, gfp);
1697	if (unlikely(rc))
1698		security_cred_free(new);
1699	return rc;
1700}
1701
1702void security_transfer_creds(struct cred *new, const struct cred *old)
1703{
1704	call_void_hook(cred_transfer, new, old);
1705}
1706
1707void security_cred_getsecid(const struct cred *c, u32 *secid)
1708{
1709	*secid = 0;
1710	call_void_hook(cred_getsecid, c, secid);
1711}
1712EXPORT_SYMBOL(security_cred_getsecid);
1713
1714int security_kernel_act_as(struct cred *new, u32 secid)
1715{
1716	return call_int_hook(kernel_act_as, 0, new, secid);
1717}
1718
1719int security_kernel_create_files_as(struct cred *new, struct inode *inode)
1720{
1721	return call_int_hook(kernel_create_files_as, 0, new, inode);
1722}
1723
1724int security_kernel_module_request(char *kmod_name)
1725{
1726	int ret;
1727
1728	ret = call_int_hook(kernel_module_request, 0, kmod_name);
1729	if (ret)
1730		return ret;
1731	return integrity_kernel_module_request(kmod_name);
1732}
1733
1734int security_kernel_read_file(struct file *file, enum kernel_read_file_id id,
1735			      bool contents)
1736{
1737	int ret;
1738
1739	ret = call_int_hook(kernel_read_file, 0, file, id, contents);
1740	if (ret)
1741		return ret;
1742	return ima_read_file(file, id, contents);
1743}
1744EXPORT_SYMBOL_GPL(security_kernel_read_file);
1745
1746int security_kernel_post_read_file(struct file *file, char *buf, loff_t size,
1747				   enum kernel_read_file_id id)
1748{
1749	int ret;
1750
1751	ret = call_int_hook(kernel_post_read_file, 0, file, buf, size, id);
1752	if (ret)
1753		return ret;
1754	return ima_post_read_file(file, buf, size, id);
1755}
1756EXPORT_SYMBOL_GPL(security_kernel_post_read_file);
1757
1758int security_kernel_load_data(enum kernel_load_data_id id, bool contents)
1759{
1760	int ret;
1761
1762	ret = call_int_hook(kernel_load_data, 0, id, contents);
1763	if (ret)
1764		return ret;
1765	return ima_load_data(id, contents);
1766}
1767EXPORT_SYMBOL_GPL(security_kernel_load_data);
1768
1769int security_kernel_post_load_data(char *buf, loff_t size,
1770				   enum kernel_load_data_id id,
1771				   char *description)
1772{
1773	int ret;
1774
1775	ret = call_int_hook(kernel_post_load_data, 0, buf, size, id,
1776			    description);
1777	if (ret)
1778		return ret;
1779	return ima_post_load_data(buf, size, id, description);
1780}
1781EXPORT_SYMBOL_GPL(security_kernel_post_load_data);
1782
1783int security_task_fix_setuid(struct cred *new, const struct cred *old,
1784			     int flags)
1785{
1786	return call_int_hook(task_fix_setuid, 0, new, old, flags);
1787}
1788
1789int security_task_fix_setgid(struct cred *new, const struct cred *old,
1790				 int flags)
1791{
1792	return call_int_hook(task_fix_setgid, 0, new, old, flags);
1793}
1794
1795int security_task_setpgid(struct task_struct *p, pid_t pgid)
1796{
1797	return call_int_hook(task_setpgid, 0, p, pgid);
1798}
1799
1800int security_task_getpgid(struct task_struct *p)
1801{
1802	return call_int_hook(task_getpgid, 0, p);
1803}
1804
1805int security_task_getsid(struct task_struct *p)
1806{
1807	return call_int_hook(task_getsid, 0, p);
1808}
1809
1810void security_task_getsecid_subj(struct task_struct *p, u32 *secid)
1811{
1812	*secid = 0;
1813	call_void_hook(task_getsecid_subj, p, secid);
1814}
1815EXPORT_SYMBOL(security_task_getsecid_subj);
1816
1817void security_task_getsecid_obj(struct task_struct *p, u32 *secid)
1818{
1819	*secid = 0;
1820	call_void_hook(task_getsecid_obj, p, secid);
1821}
1822EXPORT_SYMBOL(security_task_getsecid_obj);
1823
1824int security_task_setnice(struct task_struct *p, int nice)
1825{
1826	return call_int_hook(task_setnice, 0, p, nice);
1827}
1828
1829int security_task_setioprio(struct task_struct *p, int ioprio)
1830{
1831	return call_int_hook(task_setioprio, 0, p, ioprio);
1832}
1833
1834int security_task_getioprio(struct task_struct *p)
1835{
1836	return call_int_hook(task_getioprio, 0, p);
1837}
1838
1839int security_task_prlimit(const struct cred *cred, const struct cred *tcred,
1840			  unsigned int flags)
1841{
1842	return call_int_hook(task_prlimit, 0, cred, tcred, flags);
1843}
1844
1845int security_task_setrlimit(struct task_struct *p, unsigned int resource,
1846		struct rlimit *new_rlim)
1847{
1848	return call_int_hook(task_setrlimit, 0, p, resource, new_rlim);
1849}
1850
1851int security_task_setscheduler(struct task_struct *p)
1852{
1853	return call_int_hook(task_setscheduler, 0, p);
1854}
1855
1856int security_task_getscheduler(struct task_struct *p)
1857{
1858	return call_int_hook(task_getscheduler, 0, p);
1859}
1860
1861int security_task_movememory(struct task_struct *p)
1862{
1863	return call_int_hook(task_movememory, 0, p);
1864}
1865
1866int security_task_kill(struct task_struct *p, struct kernel_siginfo *info,
1867			int sig, const struct cred *cred)
1868{
1869	return call_int_hook(task_kill, 0, p, info, sig, cred);
 
 
 
 
 
1870}
1871
1872int security_task_prctl(int option, unsigned long arg2, unsigned long arg3,
1873			 unsigned long arg4, unsigned long arg5)
1874{
1875	int thisrc;
1876	int rc = LSM_RET_DEFAULT(task_prctl);
1877	struct security_hook_list *hp;
1878
1879	hlist_for_each_entry(hp, &security_hook_heads.task_prctl, list) {
1880		thisrc = hp->hook.task_prctl(option, arg2, arg3, arg4, arg5);
1881		if (thisrc != LSM_RET_DEFAULT(task_prctl)) {
1882			rc = thisrc;
1883			if (thisrc != 0)
1884				break;
1885		}
1886	}
1887	return rc;
1888}
1889
1890void security_task_to_inode(struct task_struct *p, struct inode *inode)
1891{
1892	call_void_hook(task_to_inode, p, inode);
1893}
1894
1895int security_ipc_permission(struct kern_ipc_perm *ipcp, short flag)
1896{
1897	return call_int_hook(ipc_permission, 0, ipcp, flag);
1898}
1899
1900void security_ipc_getsecid(struct kern_ipc_perm *ipcp, u32 *secid)
1901{
1902	*secid = 0;
1903	call_void_hook(ipc_getsecid, ipcp, secid);
1904}
1905
1906int security_msg_msg_alloc(struct msg_msg *msg)
1907{
1908	int rc = lsm_msg_msg_alloc(msg);
1909
1910	if (unlikely(rc))
1911		return rc;
1912	rc = call_int_hook(msg_msg_alloc_security, 0, msg);
1913	if (unlikely(rc))
1914		security_msg_msg_free(msg);
1915	return rc;
1916}
1917
1918void security_msg_msg_free(struct msg_msg *msg)
1919{
1920	call_void_hook(msg_msg_free_security, msg);
1921	kfree(msg->security);
1922	msg->security = NULL;
1923}
1924
1925int security_msg_queue_alloc(struct kern_ipc_perm *msq)
1926{
1927	int rc = lsm_ipc_alloc(msq);
1928
1929	if (unlikely(rc))
1930		return rc;
1931	rc = call_int_hook(msg_queue_alloc_security, 0, msq);
1932	if (unlikely(rc))
1933		security_msg_queue_free(msq);
1934	return rc;
1935}
1936
1937void security_msg_queue_free(struct kern_ipc_perm *msq)
1938{
1939	call_void_hook(msg_queue_free_security, msq);
1940	kfree(msq->security);
1941	msq->security = NULL;
1942}
1943
1944int security_msg_queue_associate(struct kern_ipc_perm *msq, int msqflg)
1945{
1946	return call_int_hook(msg_queue_associate, 0, msq, msqflg);
1947}
1948
1949int security_msg_queue_msgctl(struct kern_ipc_perm *msq, int cmd)
1950{
1951	return call_int_hook(msg_queue_msgctl, 0, msq, cmd);
1952}
1953
1954int security_msg_queue_msgsnd(struct kern_ipc_perm *msq,
1955			       struct msg_msg *msg, int msqflg)
1956{
1957	return call_int_hook(msg_queue_msgsnd, 0, msq, msg, msqflg);
1958}
1959
1960int security_msg_queue_msgrcv(struct kern_ipc_perm *msq, struct msg_msg *msg,
1961			       struct task_struct *target, long type, int mode)
1962{
1963	return call_int_hook(msg_queue_msgrcv, 0, msq, msg, target, type, mode);
1964}
1965
1966int security_shm_alloc(struct kern_ipc_perm *shp)
1967{
1968	int rc = lsm_ipc_alloc(shp);
1969
1970	if (unlikely(rc))
1971		return rc;
1972	rc = call_int_hook(shm_alloc_security, 0, shp);
1973	if (unlikely(rc))
1974		security_shm_free(shp);
1975	return rc;
1976}
1977
1978void security_shm_free(struct kern_ipc_perm *shp)
1979{
1980	call_void_hook(shm_free_security, shp);
1981	kfree(shp->security);
1982	shp->security = NULL;
1983}
1984
1985int security_shm_associate(struct kern_ipc_perm *shp, int shmflg)
1986{
1987	return call_int_hook(shm_associate, 0, shp, shmflg);
1988}
1989
1990int security_shm_shmctl(struct kern_ipc_perm *shp, int cmd)
1991{
1992	return call_int_hook(shm_shmctl, 0, shp, cmd);
1993}
1994
1995int security_shm_shmat(struct kern_ipc_perm *shp, char __user *shmaddr, int shmflg)
1996{
1997	return call_int_hook(shm_shmat, 0, shp, shmaddr, shmflg);
1998}
1999
2000int security_sem_alloc(struct kern_ipc_perm *sma)
2001{
2002	int rc = lsm_ipc_alloc(sma);
2003
2004	if (unlikely(rc))
2005		return rc;
2006	rc = call_int_hook(sem_alloc_security, 0, sma);
2007	if (unlikely(rc))
2008		security_sem_free(sma);
2009	return rc;
2010}
2011
2012void security_sem_free(struct kern_ipc_perm *sma)
2013{
2014	call_void_hook(sem_free_security, sma);
2015	kfree(sma->security);
2016	sma->security = NULL;
2017}
2018
2019int security_sem_associate(struct kern_ipc_perm *sma, int semflg)
2020{
2021	return call_int_hook(sem_associate, 0, sma, semflg);
2022}
2023
2024int security_sem_semctl(struct kern_ipc_perm *sma, int cmd)
2025{
2026	return call_int_hook(sem_semctl, 0, sma, cmd);
2027}
2028
2029int security_sem_semop(struct kern_ipc_perm *sma, struct sembuf *sops,
2030			unsigned nsops, int alter)
2031{
2032	return call_int_hook(sem_semop, 0, sma, sops, nsops, alter);
2033}
2034
2035void security_d_instantiate(struct dentry *dentry, struct inode *inode)
2036{
2037	if (unlikely(inode && IS_PRIVATE(inode)))
2038		return;
2039	call_void_hook(d_instantiate, dentry, inode);
2040}
2041EXPORT_SYMBOL(security_d_instantiate);
2042
2043int security_getprocattr(struct task_struct *p, const char *lsm, char *name,
2044				char **value)
2045{
2046	struct security_hook_list *hp;
2047
2048	hlist_for_each_entry(hp, &security_hook_heads.getprocattr, list) {
2049		if (lsm != NULL && strcmp(lsm, hp->lsm))
2050			continue;
2051		return hp->hook.getprocattr(p, name, value);
2052	}
2053	return LSM_RET_DEFAULT(getprocattr);
2054}
2055
2056int security_setprocattr(const char *lsm, const char *name, void *value,
2057			 size_t size)
2058{
2059	struct security_hook_list *hp;
2060
2061	hlist_for_each_entry(hp, &security_hook_heads.setprocattr, list) {
2062		if (lsm != NULL && strcmp(lsm, hp->lsm))
2063			continue;
2064		return hp->hook.setprocattr(name, value, size);
2065	}
2066	return LSM_RET_DEFAULT(setprocattr);
2067}
2068
2069int security_netlink_send(struct sock *sk, struct sk_buff *skb)
2070{
2071	return call_int_hook(netlink_send, 0, sk, skb);
2072}
2073
2074int security_ismaclabel(const char *name)
2075{
2076	return call_int_hook(ismaclabel, 0, name);
2077}
2078EXPORT_SYMBOL(security_ismaclabel);
2079
2080int security_secid_to_secctx(u32 secid, char **secdata, u32 *seclen)
2081{
2082	struct security_hook_list *hp;
2083	int rc;
2084
2085	/*
2086	 * Currently, only one LSM can implement secid_to_secctx (i.e this
2087	 * LSM hook is not "stackable").
2088	 */
2089	hlist_for_each_entry(hp, &security_hook_heads.secid_to_secctx, list) {
2090		rc = hp->hook.secid_to_secctx(secid, secdata, seclen);
2091		if (rc != LSM_RET_DEFAULT(secid_to_secctx))
2092			return rc;
2093	}
2094
2095	return LSM_RET_DEFAULT(secid_to_secctx);
2096}
2097EXPORT_SYMBOL(security_secid_to_secctx);
2098
2099int security_secctx_to_secid(const char *secdata, u32 seclen, u32 *secid)
2100{
2101	*secid = 0;
2102	return call_int_hook(secctx_to_secid, 0, secdata, seclen, secid);
2103}
2104EXPORT_SYMBOL(security_secctx_to_secid);
2105
2106void security_release_secctx(char *secdata, u32 seclen)
2107{
2108	call_void_hook(release_secctx, secdata, seclen);
2109}
2110EXPORT_SYMBOL(security_release_secctx);
2111
2112void security_inode_invalidate_secctx(struct inode *inode)
2113{
2114	call_void_hook(inode_invalidate_secctx, inode);
2115}
2116EXPORT_SYMBOL(security_inode_invalidate_secctx);
2117
2118int security_inode_notifysecctx(struct inode *inode, void *ctx, u32 ctxlen)
2119{
2120	return call_int_hook(inode_notifysecctx, 0, inode, ctx, ctxlen);
2121}
2122EXPORT_SYMBOL(security_inode_notifysecctx);
2123
2124int security_inode_setsecctx(struct dentry *dentry, void *ctx, u32 ctxlen)
2125{
2126	return call_int_hook(inode_setsecctx, 0, dentry, ctx, ctxlen);
2127}
2128EXPORT_SYMBOL(security_inode_setsecctx);
2129
2130int security_inode_getsecctx(struct inode *inode, void **ctx, u32 *ctxlen)
2131{
2132	return call_int_hook(inode_getsecctx, -EOPNOTSUPP, inode, ctx, ctxlen);
2133}
2134EXPORT_SYMBOL(security_inode_getsecctx);
2135
2136#ifdef CONFIG_WATCH_QUEUE
2137int security_post_notification(const struct cred *w_cred,
2138			       const struct cred *cred,
2139			       struct watch_notification *n)
2140{
2141	return call_int_hook(post_notification, 0, w_cred, cred, n);
2142}
2143#endif /* CONFIG_WATCH_QUEUE */
2144
2145#ifdef CONFIG_KEY_NOTIFICATIONS
2146int security_watch_key(struct key *key)
2147{
2148	return call_int_hook(watch_key, 0, key);
2149}
2150#endif
2151
2152#ifdef CONFIG_SECURITY_NETWORK
2153
2154int security_unix_stream_connect(struct sock *sock, struct sock *other, struct sock *newsk)
2155{
2156	return call_int_hook(unix_stream_connect, 0, sock, other, newsk);
2157}
2158EXPORT_SYMBOL(security_unix_stream_connect);
2159
2160int security_unix_may_send(struct socket *sock,  struct socket *other)
2161{
2162	return call_int_hook(unix_may_send, 0, sock, other);
2163}
2164EXPORT_SYMBOL(security_unix_may_send);
2165
2166int security_socket_create(int family, int type, int protocol, int kern)
2167{
2168	return call_int_hook(socket_create, 0, family, type, protocol, kern);
2169}
2170
2171int security_socket_post_create(struct socket *sock, int family,
2172				int type, int protocol, int kern)
2173{
2174	return call_int_hook(socket_post_create, 0, sock, family, type,
2175						protocol, kern);
2176}
2177
2178int security_socket_socketpair(struct socket *socka, struct socket *sockb)
2179{
2180	return call_int_hook(socket_socketpair, 0, socka, sockb);
2181}
2182EXPORT_SYMBOL(security_socket_socketpair);
2183
2184int security_socket_bind(struct socket *sock, struct sockaddr *address, int addrlen)
2185{
2186	return call_int_hook(socket_bind, 0, sock, address, addrlen);
2187}
2188
2189int security_socket_connect(struct socket *sock, struct sockaddr *address, int addrlen)
2190{
2191	return call_int_hook(socket_connect, 0, sock, address, addrlen);
2192}
2193
2194int security_socket_listen(struct socket *sock, int backlog)
2195{
2196	return call_int_hook(socket_listen, 0, sock, backlog);
2197}
2198
2199int security_socket_accept(struct socket *sock, struct socket *newsock)
2200{
2201	return call_int_hook(socket_accept, 0, sock, newsock);
2202}
2203
2204int security_socket_sendmsg(struct socket *sock, struct msghdr *msg, int size)
2205{
2206	return call_int_hook(socket_sendmsg, 0, sock, msg, size);
2207}
2208
2209int security_socket_recvmsg(struct socket *sock, struct msghdr *msg,
2210			    int size, int flags)
2211{
2212	return call_int_hook(socket_recvmsg, 0, sock, msg, size, flags);
2213}
2214
2215int security_socket_getsockname(struct socket *sock)
2216{
2217	return call_int_hook(socket_getsockname, 0, sock);
2218}
2219
2220int security_socket_getpeername(struct socket *sock)
2221{
2222	return call_int_hook(socket_getpeername, 0, sock);
2223}
2224
2225int security_socket_getsockopt(struct socket *sock, int level, int optname)
2226{
2227	return call_int_hook(socket_getsockopt, 0, sock, level, optname);
2228}
2229
2230int security_socket_setsockopt(struct socket *sock, int level, int optname)
2231{
2232	return call_int_hook(socket_setsockopt, 0, sock, level, optname);
2233}
2234
2235int security_socket_shutdown(struct socket *sock, int how)
2236{
2237	return call_int_hook(socket_shutdown, 0, sock, how);
2238}
2239
2240int security_sock_rcv_skb(struct sock *sk, struct sk_buff *skb)
2241{
2242	return call_int_hook(socket_sock_rcv_skb, 0, sk, skb);
2243}
2244EXPORT_SYMBOL(security_sock_rcv_skb);
2245
2246int security_socket_getpeersec_stream(struct socket *sock, char __user *optval,
2247				      int __user *optlen, unsigned len)
2248{
2249	return call_int_hook(socket_getpeersec_stream, -ENOPROTOOPT, sock,
2250				optval, optlen, len);
2251}
2252
2253int security_socket_getpeersec_dgram(struct socket *sock, struct sk_buff *skb, u32 *secid)
2254{
2255	return call_int_hook(socket_getpeersec_dgram, -ENOPROTOOPT, sock,
2256			     skb, secid);
2257}
2258EXPORT_SYMBOL(security_socket_getpeersec_dgram);
2259
2260int security_sk_alloc(struct sock *sk, int family, gfp_t priority)
2261{
2262	return call_int_hook(sk_alloc_security, 0, sk, family, priority);
2263}
2264
2265void security_sk_free(struct sock *sk)
2266{
2267	call_void_hook(sk_free_security, sk);
2268}
2269
2270void security_sk_clone(const struct sock *sk, struct sock *newsk)
2271{
2272	call_void_hook(sk_clone_security, sk, newsk);
2273}
2274EXPORT_SYMBOL(security_sk_clone);
2275
2276void security_sk_classify_flow(struct sock *sk, struct flowi_common *flic)
2277{
2278	call_void_hook(sk_getsecid, sk, &flic->flowic_secid);
2279}
2280EXPORT_SYMBOL(security_sk_classify_flow);
2281
2282void security_req_classify_flow(const struct request_sock *req,
2283				struct flowi_common *flic)
2284{
2285	call_void_hook(req_classify_flow, req, flic);
2286}
2287EXPORT_SYMBOL(security_req_classify_flow);
2288
2289void security_sock_graft(struct sock *sk, struct socket *parent)
2290{
2291	call_void_hook(sock_graft, sk, parent);
2292}
2293EXPORT_SYMBOL(security_sock_graft);
2294
2295int security_inet_conn_request(const struct sock *sk,
2296			struct sk_buff *skb, struct request_sock *req)
2297{
2298	return call_int_hook(inet_conn_request, 0, sk, skb, req);
2299}
2300EXPORT_SYMBOL(security_inet_conn_request);
2301
2302void security_inet_csk_clone(struct sock *newsk,
2303			const struct request_sock *req)
2304{
2305	call_void_hook(inet_csk_clone, newsk, req);
2306}
2307
2308void security_inet_conn_established(struct sock *sk,
2309			struct sk_buff *skb)
2310{
2311	call_void_hook(inet_conn_established, sk, skb);
2312}
2313EXPORT_SYMBOL(security_inet_conn_established);
2314
2315int security_secmark_relabel_packet(u32 secid)
2316{
2317	return call_int_hook(secmark_relabel_packet, 0, secid);
2318}
2319EXPORT_SYMBOL(security_secmark_relabel_packet);
2320
2321void security_secmark_refcount_inc(void)
2322{
2323	call_void_hook(secmark_refcount_inc);
2324}
2325EXPORT_SYMBOL(security_secmark_refcount_inc);
2326
2327void security_secmark_refcount_dec(void)
2328{
2329	call_void_hook(secmark_refcount_dec);
2330}
2331EXPORT_SYMBOL(security_secmark_refcount_dec);
2332
2333int security_tun_dev_alloc_security(void **security)
2334{
2335	return call_int_hook(tun_dev_alloc_security, 0, security);
2336}
2337EXPORT_SYMBOL(security_tun_dev_alloc_security);
2338
2339void security_tun_dev_free_security(void *security)
2340{
2341	call_void_hook(tun_dev_free_security, security);
2342}
2343EXPORT_SYMBOL(security_tun_dev_free_security);
2344
2345int security_tun_dev_create(void)
2346{
2347	return call_int_hook(tun_dev_create, 0);
2348}
2349EXPORT_SYMBOL(security_tun_dev_create);
2350
2351int security_tun_dev_attach_queue(void *security)
2352{
2353	return call_int_hook(tun_dev_attach_queue, 0, security);
2354}
2355EXPORT_SYMBOL(security_tun_dev_attach_queue);
2356
2357int security_tun_dev_attach(struct sock *sk, void *security)
2358{
2359	return call_int_hook(tun_dev_attach, 0, sk, security);
2360}
2361EXPORT_SYMBOL(security_tun_dev_attach);
2362
2363int security_tun_dev_open(void *security)
2364{
2365	return call_int_hook(tun_dev_open, 0, security);
2366}
2367EXPORT_SYMBOL(security_tun_dev_open);
2368
2369int security_sctp_assoc_request(struct sctp_endpoint *ep, struct sk_buff *skb)
2370{
2371	return call_int_hook(sctp_assoc_request, 0, ep, skb);
2372}
2373EXPORT_SYMBOL(security_sctp_assoc_request);
2374
2375int security_sctp_bind_connect(struct sock *sk, int optname,
2376			       struct sockaddr *address, int addrlen)
2377{
2378	return call_int_hook(sctp_bind_connect, 0, sk, optname,
2379			     address, addrlen);
2380}
2381EXPORT_SYMBOL(security_sctp_bind_connect);
2382
2383void security_sctp_sk_clone(struct sctp_endpoint *ep, struct sock *sk,
2384			    struct sock *newsk)
2385{
2386	call_void_hook(sctp_sk_clone, ep, sk, newsk);
2387}
2388EXPORT_SYMBOL(security_sctp_sk_clone);
2389
2390#endif	/* CONFIG_SECURITY_NETWORK */
2391
2392#ifdef CONFIG_SECURITY_INFINIBAND
2393
2394int security_ib_pkey_access(void *sec, u64 subnet_prefix, u16 pkey)
2395{
2396	return call_int_hook(ib_pkey_access, 0, sec, subnet_prefix, pkey);
2397}
2398EXPORT_SYMBOL(security_ib_pkey_access);
2399
2400int security_ib_endport_manage_subnet(void *sec, const char *dev_name, u8 port_num)
2401{
2402	return call_int_hook(ib_endport_manage_subnet, 0, sec, dev_name, port_num);
2403}
2404EXPORT_SYMBOL(security_ib_endport_manage_subnet);
2405
2406int security_ib_alloc_security(void **sec)
2407{
2408	return call_int_hook(ib_alloc_security, 0, sec);
2409}
2410EXPORT_SYMBOL(security_ib_alloc_security);
2411
2412void security_ib_free_security(void *sec)
2413{
2414	call_void_hook(ib_free_security, sec);
2415}
2416EXPORT_SYMBOL(security_ib_free_security);
2417#endif	/* CONFIG_SECURITY_INFINIBAND */
2418
2419#ifdef CONFIG_SECURITY_NETWORK_XFRM
2420
2421int security_xfrm_policy_alloc(struct xfrm_sec_ctx **ctxp,
2422			       struct xfrm_user_sec_ctx *sec_ctx,
2423			       gfp_t gfp)
2424{
2425	return call_int_hook(xfrm_policy_alloc_security, 0, ctxp, sec_ctx, gfp);
2426}
2427EXPORT_SYMBOL(security_xfrm_policy_alloc);
2428
2429int security_xfrm_policy_clone(struct xfrm_sec_ctx *old_ctx,
2430			      struct xfrm_sec_ctx **new_ctxp)
2431{
2432	return call_int_hook(xfrm_policy_clone_security, 0, old_ctx, new_ctxp);
2433}
2434
2435void security_xfrm_policy_free(struct xfrm_sec_ctx *ctx)
2436{
2437	call_void_hook(xfrm_policy_free_security, ctx);
2438}
2439EXPORT_SYMBOL(security_xfrm_policy_free);
2440
2441int security_xfrm_policy_delete(struct xfrm_sec_ctx *ctx)
2442{
2443	return call_int_hook(xfrm_policy_delete_security, 0, ctx);
2444}
2445
2446int security_xfrm_state_alloc(struct xfrm_state *x,
2447			      struct xfrm_user_sec_ctx *sec_ctx)
2448{
2449	return call_int_hook(xfrm_state_alloc, 0, x, sec_ctx);
2450}
2451EXPORT_SYMBOL(security_xfrm_state_alloc);
2452
2453int security_xfrm_state_alloc_acquire(struct xfrm_state *x,
2454				      struct xfrm_sec_ctx *polsec, u32 secid)
2455{
2456	return call_int_hook(xfrm_state_alloc_acquire, 0, x, polsec, secid);
2457}
2458
2459int security_xfrm_state_delete(struct xfrm_state *x)
2460{
2461	return call_int_hook(xfrm_state_delete_security, 0, x);
2462}
2463EXPORT_SYMBOL(security_xfrm_state_delete);
2464
2465void security_xfrm_state_free(struct xfrm_state *x)
2466{
2467	call_void_hook(xfrm_state_free_security, x);
2468}
2469
2470int security_xfrm_policy_lookup(struct xfrm_sec_ctx *ctx, u32 fl_secid)
2471{
2472	return call_int_hook(xfrm_policy_lookup, 0, ctx, fl_secid);
2473}
2474
2475int security_xfrm_state_pol_flow_match(struct xfrm_state *x,
2476				       struct xfrm_policy *xp,
2477				       const struct flowi_common *flic)
2478{
2479	struct security_hook_list *hp;
2480	int rc = LSM_RET_DEFAULT(xfrm_state_pol_flow_match);
2481
2482	/*
2483	 * Since this function is expected to return 0 or 1, the judgment
2484	 * becomes difficult if multiple LSMs supply this call. Fortunately,
2485	 * we can use the first LSM's judgment because currently only SELinux
2486	 * supplies this call.
2487	 *
2488	 * For speed optimization, we explicitly break the loop rather than
2489	 * using the macro
2490	 */
2491	hlist_for_each_entry(hp, &security_hook_heads.xfrm_state_pol_flow_match,
2492				list) {
2493		rc = hp->hook.xfrm_state_pol_flow_match(x, xp, flic);
2494		break;
2495	}
2496	return rc;
2497}
2498
2499int security_xfrm_decode_session(struct sk_buff *skb, u32 *secid)
2500{
2501	return call_int_hook(xfrm_decode_session, 0, skb, secid, 1);
2502}
2503
2504void security_skb_classify_flow(struct sk_buff *skb, struct flowi_common *flic)
2505{
2506	int rc = call_int_hook(xfrm_decode_session, 0, skb, &flic->flowic_secid,
2507				0);
2508
2509	BUG_ON(rc);
2510}
2511EXPORT_SYMBOL(security_skb_classify_flow);
2512
2513#endif	/* CONFIG_SECURITY_NETWORK_XFRM */
2514
2515#ifdef CONFIG_KEYS
2516
2517int security_key_alloc(struct key *key, const struct cred *cred,
2518		       unsigned long flags)
2519{
2520	return call_int_hook(key_alloc, 0, key, cred, flags);
2521}
2522
2523void security_key_free(struct key *key)
2524{
2525	call_void_hook(key_free, key);
2526}
2527
2528int security_key_permission(key_ref_t key_ref, const struct cred *cred,
2529			    enum key_need_perm need_perm)
2530{
2531	return call_int_hook(key_permission, 0, key_ref, cred, need_perm);
2532}
2533
2534int security_key_getsecurity(struct key *key, char **_buffer)
2535{
2536	*_buffer = NULL;
2537	return call_int_hook(key_getsecurity, 0, key, _buffer);
2538}
2539
2540#endif	/* CONFIG_KEYS */
2541
2542#ifdef CONFIG_AUDIT
2543
2544int security_audit_rule_init(u32 field, u32 op, char *rulestr, void **lsmrule)
2545{
2546	return call_int_hook(audit_rule_init, 0, field, op, rulestr, lsmrule);
2547}
2548
2549int security_audit_rule_known(struct audit_krule *krule)
2550{
2551	return call_int_hook(audit_rule_known, 0, krule);
2552}
2553
2554void security_audit_rule_free(void *lsmrule)
2555{
2556	call_void_hook(audit_rule_free, lsmrule);
2557}
2558
2559int security_audit_rule_match(u32 secid, u32 field, u32 op, void *lsmrule)
 
2560{
2561	return call_int_hook(audit_rule_match, 0, secid, field, op, lsmrule);
2562}
 
2563#endif /* CONFIG_AUDIT */
2564
2565#ifdef CONFIG_BPF_SYSCALL
2566int security_bpf(int cmd, union bpf_attr *attr, unsigned int size)
2567{
2568	return call_int_hook(bpf, 0, cmd, attr, size);
2569}
2570int security_bpf_map(struct bpf_map *map, fmode_t fmode)
2571{
2572	return call_int_hook(bpf_map, 0, map, fmode);
2573}
2574int security_bpf_prog(struct bpf_prog *prog)
2575{
2576	return call_int_hook(bpf_prog, 0, prog);
2577}
2578int security_bpf_map_alloc(struct bpf_map *map)
2579{
2580	return call_int_hook(bpf_map_alloc_security, 0, map);
2581}
2582int security_bpf_prog_alloc(struct bpf_prog_aux *aux)
2583{
2584	return call_int_hook(bpf_prog_alloc_security, 0, aux);
2585}
2586void security_bpf_map_free(struct bpf_map *map)
2587{
2588	call_void_hook(bpf_map_free_security, map);
2589}
2590void security_bpf_prog_free(struct bpf_prog_aux *aux)
2591{
2592	call_void_hook(bpf_prog_free_security, aux);
2593}
2594#endif /* CONFIG_BPF_SYSCALL */
2595
2596int security_locked_down(enum lockdown_reason what)
2597{
2598	return call_int_hook(locked_down, 0, what);
2599}
2600EXPORT_SYMBOL(security_locked_down);
2601
2602#ifdef CONFIG_PERF_EVENTS
2603int security_perf_event_open(struct perf_event_attr *attr, int type)
2604{
2605	return call_int_hook(perf_event_open, 0, attr, type);
2606}
2607
2608int security_perf_event_alloc(struct perf_event *event)
2609{
2610	return call_int_hook(perf_event_alloc, 0, event);
2611}
2612
2613void security_perf_event_free(struct perf_event *event)
2614{
2615	call_void_hook(perf_event_free, event);
2616}
2617
2618int security_perf_event_read(struct perf_event *event)
2619{
2620	return call_int_hook(perf_event_read, 0, event);
2621}
2622
2623int security_perf_event_write(struct perf_event *event)
2624{
2625	return call_int_hook(perf_event_write, 0, event);
2626}
2627#endif /* CONFIG_PERF_EVENTS */