Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.15.
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * Implement CPU time clocks for the POSIX clock interface.
   4 */
   5
   6#include <linux/sched/signal.h>
   7#include <linux/sched/cputime.h>
   8#include <linux/posix-timers.h>
   9#include <linux/errno.h>
  10#include <linux/math64.h>
  11#include <linux/uaccess.h>
  12#include <linux/kernel_stat.h>
  13#include <trace/events/timer.h>
  14#include <linux/tick.h>
  15#include <linux/workqueue.h>
  16#include <linux/compat.h>
  17#include <linux/sched/deadline.h>
  18
  19#include "posix-timers.h"
  20
  21static void posix_cpu_timer_rearm(struct k_itimer *timer);
  22
  23void posix_cputimers_group_init(struct posix_cputimers *pct, u64 cpu_limit)
  24{
  25	posix_cputimers_init(pct);
  26	if (cpu_limit != RLIM_INFINITY) {
  27		pct->bases[CPUCLOCK_PROF].nextevt = cpu_limit * NSEC_PER_SEC;
  28		pct->timers_active = true;
  29	}
  30}
  31
  32/*
  33 * Called after updating RLIMIT_CPU to run cpu timer and update
  34 * tsk->signal->posix_cputimers.bases[clock].nextevt expiration cache if
  35 * necessary. Needs siglock protection since other code may update the
  36 * expiration cache as well.
  37 */
  38void update_rlimit_cpu(struct task_struct *task, unsigned long rlim_new)
  39{
  40	u64 nsecs = rlim_new * NSEC_PER_SEC;
  41
  42	spin_lock_irq(&task->sighand->siglock);
  43	set_process_cpu_timer(task, CPUCLOCK_PROF, &nsecs, NULL);
  44	spin_unlock_irq(&task->sighand->siglock);
  45}
  46
  47/*
  48 * Functions for validating access to tasks.
  49 */
  50static struct pid *pid_for_clock(const clockid_t clock, bool gettime)
  51{
  52	const bool thread = !!CPUCLOCK_PERTHREAD(clock);
  53	const pid_t upid = CPUCLOCK_PID(clock);
  54	struct pid *pid;
  55
  56	if (CPUCLOCK_WHICH(clock) >= CPUCLOCK_MAX)
  57		return NULL;
  58
  59	/*
  60	 * If the encoded PID is 0, then the timer is targeted at current
  61	 * or the process to which current belongs.
  62	 */
  63	if (upid == 0)
  64		return thread ? task_pid(current) : task_tgid(current);
  65
  66	pid = find_vpid(upid);
  67	if (!pid)
  68		return NULL;
  69
  70	if (thread) {
  71		struct task_struct *tsk = pid_task(pid, PIDTYPE_PID);
  72		return (tsk && same_thread_group(tsk, current)) ? pid : NULL;
  73	}
  74
  75	/*
  76	 * For clock_gettime(PROCESS) allow finding the process by
  77	 * with the pid of the current task.  The code needs the tgid
  78	 * of the process so that pid_task(pid, PIDTYPE_TGID) can be
  79	 * used to find the process.
  80	 */
  81	if (gettime && (pid == task_pid(current)))
  82		return task_tgid(current);
  83
  84	/*
  85	 * For processes require that pid identifies a process.
  86	 */
  87	return pid_has_task(pid, PIDTYPE_TGID) ? pid : NULL;
  88}
  89
  90static inline int validate_clock_permissions(const clockid_t clock)
  91{
  92	int ret;
  93
  94	rcu_read_lock();
  95	ret = pid_for_clock(clock, false) ? 0 : -EINVAL;
  96	rcu_read_unlock();
  97
  98	return ret;
  99}
 100
 101static inline enum pid_type clock_pid_type(const clockid_t clock)
 102{
 103	return CPUCLOCK_PERTHREAD(clock) ? PIDTYPE_PID : PIDTYPE_TGID;
 104}
 105
 106static inline struct task_struct *cpu_timer_task_rcu(struct k_itimer *timer)
 107{
 108	return pid_task(timer->it.cpu.pid, clock_pid_type(timer->it_clock));
 109}
 110
 111/*
 112 * Update expiry time from increment, and increase overrun count,
 113 * given the current clock sample.
 114 */
 115static u64 bump_cpu_timer(struct k_itimer *timer, u64 now)
 116{
 117	u64 delta, incr, expires = timer->it.cpu.node.expires;
 118	int i;
 119
 120	if (!timer->it_interval)
 121		return expires;
 122
 123	if (now < expires)
 124		return expires;
 125
 126	incr = timer->it_interval;
 127	delta = now + incr - expires;
 128
 129	/* Don't use (incr*2 < delta), incr*2 might overflow. */
 130	for (i = 0; incr < delta - incr; i++)
 131		incr = incr << 1;
 132
 133	for (; i >= 0; incr >>= 1, i--) {
 134		if (delta < incr)
 135			continue;
 136
 137		timer->it.cpu.node.expires += incr;
 138		timer->it_overrun += 1LL << i;
 139		delta -= incr;
 140	}
 141	return timer->it.cpu.node.expires;
 142}
 143
 144/* Check whether all cache entries contain U64_MAX, i.e. eternal expiry time */
 145static inline bool expiry_cache_is_inactive(const struct posix_cputimers *pct)
 146{
 147	return !(~pct->bases[CPUCLOCK_PROF].nextevt |
 148		 ~pct->bases[CPUCLOCK_VIRT].nextevt |
 149		 ~pct->bases[CPUCLOCK_SCHED].nextevt);
 150}
 151
 152static int
 153posix_cpu_clock_getres(const clockid_t which_clock, struct timespec64 *tp)
 154{
 155	int error = validate_clock_permissions(which_clock);
 156
 157	if (!error) {
 158		tp->tv_sec = 0;
 159		tp->tv_nsec = ((NSEC_PER_SEC + HZ - 1) / HZ);
 160		if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
 161			/*
 162			 * If sched_clock is using a cycle counter, we
 163			 * don't have any idea of its true resolution
 164			 * exported, but it is much more than 1s/HZ.
 165			 */
 166			tp->tv_nsec = 1;
 167		}
 168	}
 169	return error;
 170}
 171
 172static int
 173posix_cpu_clock_set(const clockid_t clock, const struct timespec64 *tp)
 174{
 175	int error = validate_clock_permissions(clock);
 176
 177	/*
 178	 * You can never reset a CPU clock, but we check for other errors
 179	 * in the call before failing with EPERM.
 180	 */
 181	return error ? : -EPERM;
 182}
 183
 184/*
 185 * Sample a per-thread clock for the given task. clkid is validated.
 186 */
 187static u64 cpu_clock_sample(const clockid_t clkid, struct task_struct *p)
 188{
 189	u64 utime, stime;
 190
 191	if (clkid == CPUCLOCK_SCHED)
 192		return task_sched_runtime(p);
 193
 194	task_cputime(p, &utime, &stime);
 195
 196	switch (clkid) {
 197	case CPUCLOCK_PROF:
 198		return utime + stime;
 199	case CPUCLOCK_VIRT:
 200		return utime;
 201	default:
 202		WARN_ON_ONCE(1);
 203	}
 204	return 0;
 205}
 206
 207static inline void store_samples(u64 *samples, u64 stime, u64 utime, u64 rtime)
 208{
 209	samples[CPUCLOCK_PROF] = stime + utime;
 210	samples[CPUCLOCK_VIRT] = utime;
 211	samples[CPUCLOCK_SCHED] = rtime;
 212}
 213
 214static void task_sample_cputime(struct task_struct *p, u64 *samples)
 215{
 216	u64 stime, utime;
 217
 218	task_cputime(p, &utime, &stime);
 219	store_samples(samples, stime, utime, p->se.sum_exec_runtime);
 220}
 221
 222static void proc_sample_cputime_atomic(struct task_cputime_atomic *at,
 223				       u64 *samples)
 224{
 225	u64 stime, utime, rtime;
 226
 227	utime = atomic64_read(&at->utime);
 228	stime = atomic64_read(&at->stime);
 229	rtime = atomic64_read(&at->sum_exec_runtime);
 230	store_samples(samples, stime, utime, rtime);
 231}
 232
 233/*
 234 * Set cputime to sum_cputime if sum_cputime > cputime. Use cmpxchg
 235 * to avoid race conditions with concurrent updates to cputime.
 236 */
 237static inline void __update_gt_cputime(atomic64_t *cputime, u64 sum_cputime)
 238{
 239	u64 curr_cputime;
 240retry:
 241	curr_cputime = atomic64_read(cputime);
 242	if (sum_cputime > curr_cputime) {
 243		if (atomic64_cmpxchg(cputime, curr_cputime, sum_cputime) != curr_cputime)
 244			goto retry;
 245	}
 246}
 247
 248static void update_gt_cputime(struct task_cputime_atomic *cputime_atomic,
 249			      struct task_cputime *sum)
 250{
 251	__update_gt_cputime(&cputime_atomic->utime, sum->utime);
 252	__update_gt_cputime(&cputime_atomic->stime, sum->stime);
 253	__update_gt_cputime(&cputime_atomic->sum_exec_runtime, sum->sum_exec_runtime);
 254}
 255
 256/**
 257 * thread_group_sample_cputime - Sample cputime for a given task
 258 * @tsk:	Task for which cputime needs to be started
 259 * @samples:	Storage for time samples
 260 *
 261 * Called from sys_getitimer() to calculate the expiry time of an active
 262 * timer. That means group cputime accounting is already active. Called
 263 * with task sighand lock held.
 264 *
 265 * Updates @times with an uptodate sample of the thread group cputimes.
 266 */
 267void thread_group_sample_cputime(struct task_struct *tsk, u64 *samples)
 268{
 269	struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
 270	struct posix_cputimers *pct = &tsk->signal->posix_cputimers;
 271
 272	WARN_ON_ONCE(!pct->timers_active);
 273
 274	proc_sample_cputime_atomic(&cputimer->cputime_atomic, samples);
 275}
 276
 277/**
 278 * thread_group_start_cputime - Start cputime and return a sample
 279 * @tsk:	Task for which cputime needs to be started
 280 * @samples:	Storage for time samples
 281 *
 282 * The thread group cputime accounting is avoided when there are no posix
 283 * CPU timers armed. Before starting a timer it's required to check whether
 284 * the time accounting is active. If not, a full update of the atomic
 285 * accounting store needs to be done and the accounting enabled.
 286 *
 287 * Updates @times with an uptodate sample of the thread group cputimes.
 288 */
 289static void thread_group_start_cputime(struct task_struct *tsk, u64 *samples)
 290{
 291	struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
 292	struct posix_cputimers *pct = &tsk->signal->posix_cputimers;
 293
 294	/* Check if cputimer isn't running. This is accessed without locking. */
 295	if (!READ_ONCE(pct->timers_active)) {
 296		struct task_cputime sum;
 297
 298		/*
 299		 * The POSIX timer interface allows for absolute time expiry
 300		 * values through the TIMER_ABSTIME flag, therefore we have
 301		 * to synchronize the timer to the clock every time we start it.
 302		 */
 303		thread_group_cputime(tsk, &sum);
 304		update_gt_cputime(&cputimer->cputime_atomic, &sum);
 305
 306		/*
 307		 * We're setting timers_active without a lock. Ensure this
 308		 * only gets written to in one operation. We set it after
 309		 * update_gt_cputime() as a small optimization, but
 310		 * barriers are not required because update_gt_cputime()
 311		 * can handle concurrent updates.
 312		 */
 313		WRITE_ONCE(pct->timers_active, true);
 314	}
 315	proc_sample_cputime_atomic(&cputimer->cputime_atomic, samples);
 316}
 317
 318static void __thread_group_cputime(struct task_struct *tsk, u64 *samples)
 319{
 320	struct task_cputime ct;
 321
 322	thread_group_cputime(tsk, &ct);
 323	store_samples(samples, ct.stime, ct.utime, ct.sum_exec_runtime);
 324}
 325
 326/*
 327 * Sample a process (thread group) clock for the given task clkid. If the
 328 * group's cputime accounting is already enabled, read the atomic
 329 * store. Otherwise a full update is required.  clkid is already validated.
 330 */
 331static u64 cpu_clock_sample_group(const clockid_t clkid, struct task_struct *p,
 332				  bool start)
 333{
 334	struct thread_group_cputimer *cputimer = &p->signal->cputimer;
 335	struct posix_cputimers *pct = &p->signal->posix_cputimers;
 336	u64 samples[CPUCLOCK_MAX];
 337
 338	if (!READ_ONCE(pct->timers_active)) {
 339		if (start)
 340			thread_group_start_cputime(p, samples);
 341		else
 342			__thread_group_cputime(p, samples);
 343	} else {
 344		proc_sample_cputime_atomic(&cputimer->cputime_atomic, samples);
 345	}
 346
 347	return samples[clkid];
 348}
 349
 350static int posix_cpu_clock_get(const clockid_t clock, struct timespec64 *tp)
 351{
 352	const clockid_t clkid = CPUCLOCK_WHICH(clock);
 353	struct task_struct *tsk;
 354	u64 t;
 355
 356	rcu_read_lock();
 357	tsk = pid_task(pid_for_clock(clock, true), clock_pid_type(clock));
 358	if (!tsk) {
 359		rcu_read_unlock();
 360		return -EINVAL;
 361	}
 362
 363	if (CPUCLOCK_PERTHREAD(clock))
 364		t = cpu_clock_sample(clkid, tsk);
 365	else
 366		t = cpu_clock_sample_group(clkid, tsk, false);
 367	rcu_read_unlock();
 368
 369	*tp = ns_to_timespec64(t);
 370	return 0;
 371}
 372
 373/*
 374 * Validate the clockid_t for a new CPU-clock timer, and initialize the timer.
 375 * This is called from sys_timer_create() and do_cpu_nanosleep() with the
 376 * new timer already all-zeros initialized.
 377 */
 378static int posix_cpu_timer_create(struct k_itimer *new_timer)
 379{
 380	static struct lock_class_key posix_cpu_timers_key;
 381	struct pid *pid;
 382
 383	rcu_read_lock();
 384	pid = pid_for_clock(new_timer->it_clock, false);
 385	if (!pid) {
 386		rcu_read_unlock();
 387		return -EINVAL;
 388	}
 389
 390	/*
 391	 * If posix timer expiry is handled in task work context then
 392	 * timer::it_lock can be taken without disabling interrupts as all
 393	 * other locking happens in task context. This requires a separate
 394	 * lock class key otherwise regular posix timer expiry would record
 395	 * the lock class being taken in interrupt context and generate a
 396	 * false positive warning.
 397	 */
 398	if (IS_ENABLED(CONFIG_POSIX_CPU_TIMERS_TASK_WORK))
 399		lockdep_set_class(&new_timer->it_lock, &posix_cpu_timers_key);
 400
 401	new_timer->kclock = &clock_posix_cpu;
 402	timerqueue_init(&new_timer->it.cpu.node);
 403	new_timer->it.cpu.pid = get_pid(pid);
 404	rcu_read_unlock();
 405	return 0;
 406}
 407
 408/*
 409 * Clean up a CPU-clock timer that is about to be destroyed.
 410 * This is called from timer deletion with the timer already locked.
 411 * If we return TIMER_RETRY, it's necessary to release the timer's lock
 412 * and try again.  (This happens when the timer is in the middle of firing.)
 413 */
 414static int posix_cpu_timer_del(struct k_itimer *timer)
 415{
 416	struct cpu_timer *ctmr = &timer->it.cpu;
 417	struct sighand_struct *sighand;
 418	struct task_struct *p;
 419	unsigned long flags;
 420	int ret = 0;
 421
 422	rcu_read_lock();
 423	p = cpu_timer_task_rcu(timer);
 424	if (!p)
 425		goto out;
 426
 427	/*
 428	 * Protect against sighand release/switch in exit/exec and process/
 429	 * thread timer list entry concurrent read/writes.
 430	 */
 431	sighand = lock_task_sighand(p, &flags);
 432	if (unlikely(sighand == NULL)) {
 433		/*
 434		 * This raced with the reaping of the task. The exit cleanup
 435		 * should have removed this timer from the timer queue.
 436		 */
 437		WARN_ON_ONCE(ctmr->head || timerqueue_node_queued(&ctmr->node));
 438	} else {
 439		if (timer->it.cpu.firing)
 440			ret = TIMER_RETRY;
 441		else
 442			cpu_timer_dequeue(ctmr);
 443
 444		unlock_task_sighand(p, &flags);
 445	}
 446
 447out:
 448	rcu_read_unlock();
 449	if (!ret)
 450		put_pid(ctmr->pid);
 451
 452	return ret;
 453}
 454
 455static void cleanup_timerqueue(struct timerqueue_head *head)
 456{
 457	struct timerqueue_node *node;
 458	struct cpu_timer *ctmr;
 459
 460	while ((node = timerqueue_getnext(head))) {
 461		timerqueue_del(head, node);
 462		ctmr = container_of(node, struct cpu_timer, node);
 463		ctmr->head = NULL;
 464	}
 465}
 466
 467/*
 468 * Clean out CPU timers which are still armed when a thread exits. The
 469 * timers are only removed from the list. No other updates are done. The
 470 * corresponding posix timers are still accessible, but cannot be rearmed.
 471 *
 472 * This must be called with the siglock held.
 473 */
 474static void cleanup_timers(struct posix_cputimers *pct)
 475{
 476	cleanup_timerqueue(&pct->bases[CPUCLOCK_PROF].tqhead);
 477	cleanup_timerqueue(&pct->bases[CPUCLOCK_VIRT].tqhead);
 478	cleanup_timerqueue(&pct->bases[CPUCLOCK_SCHED].tqhead);
 479}
 480
 481/*
 482 * These are both called with the siglock held, when the current thread
 483 * is being reaped.  When the final (leader) thread in the group is reaped,
 484 * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit.
 485 */
 486void posix_cpu_timers_exit(struct task_struct *tsk)
 487{
 488	cleanup_timers(&tsk->posix_cputimers);
 489}
 490void posix_cpu_timers_exit_group(struct task_struct *tsk)
 491{
 492	cleanup_timers(&tsk->signal->posix_cputimers);
 493}
 494
 495/*
 496 * Insert the timer on the appropriate list before any timers that
 497 * expire later.  This must be called with the sighand lock held.
 498 */
 499static void arm_timer(struct k_itimer *timer, struct task_struct *p)
 500{
 501	int clkidx = CPUCLOCK_WHICH(timer->it_clock);
 502	struct cpu_timer *ctmr = &timer->it.cpu;
 503	u64 newexp = cpu_timer_getexpires(ctmr);
 504	struct posix_cputimer_base *base;
 505
 506	if (CPUCLOCK_PERTHREAD(timer->it_clock))
 507		base = p->posix_cputimers.bases + clkidx;
 508	else
 509		base = p->signal->posix_cputimers.bases + clkidx;
 510
 511	if (!cpu_timer_enqueue(&base->tqhead, ctmr))
 512		return;
 513
 514	/*
 515	 * We are the new earliest-expiring POSIX 1.b timer, hence
 516	 * need to update expiration cache. Take into account that
 517	 * for process timers we share expiration cache with itimers
 518	 * and RLIMIT_CPU and for thread timers with RLIMIT_RTTIME.
 519	 */
 520	if (newexp < base->nextevt)
 521		base->nextevt = newexp;
 522
 523	if (CPUCLOCK_PERTHREAD(timer->it_clock))
 524		tick_dep_set_task(p, TICK_DEP_BIT_POSIX_TIMER);
 525	else
 526		tick_dep_set_signal(p, TICK_DEP_BIT_POSIX_TIMER);
 527}
 528
 529/*
 530 * The timer is locked, fire it and arrange for its reload.
 531 */
 532static void cpu_timer_fire(struct k_itimer *timer)
 533{
 534	struct cpu_timer *ctmr = &timer->it.cpu;
 535
 536	if ((timer->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) {
 537		/*
 538		 * User don't want any signal.
 539		 */
 540		cpu_timer_setexpires(ctmr, 0);
 541	} else if (unlikely(timer->sigq == NULL)) {
 542		/*
 543		 * This a special case for clock_nanosleep,
 544		 * not a normal timer from sys_timer_create.
 545		 */
 546		wake_up_process(timer->it_process);
 547		cpu_timer_setexpires(ctmr, 0);
 548	} else if (!timer->it_interval) {
 549		/*
 550		 * One-shot timer.  Clear it as soon as it's fired.
 551		 */
 552		posix_timer_event(timer, 0);
 553		cpu_timer_setexpires(ctmr, 0);
 554	} else if (posix_timer_event(timer, ++timer->it_requeue_pending)) {
 555		/*
 556		 * The signal did not get queued because the signal
 557		 * was ignored, so we won't get any callback to
 558		 * reload the timer.  But we need to keep it
 559		 * ticking in case the signal is deliverable next time.
 560		 */
 561		posix_cpu_timer_rearm(timer);
 562		++timer->it_requeue_pending;
 563	}
 564}
 565
 566/*
 567 * Guts of sys_timer_settime for CPU timers.
 568 * This is called with the timer locked and interrupts disabled.
 569 * If we return TIMER_RETRY, it's necessary to release the timer's lock
 570 * and try again.  (This happens when the timer is in the middle of firing.)
 571 */
 572static int posix_cpu_timer_set(struct k_itimer *timer, int timer_flags,
 573			       struct itimerspec64 *new, struct itimerspec64 *old)
 574{
 575	clockid_t clkid = CPUCLOCK_WHICH(timer->it_clock);
 576	u64 old_expires, new_expires, old_incr, val;
 577	struct cpu_timer *ctmr = &timer->it.cpu;
 578	struct sighand_struct *sighand;
 579	struct task_struct *p;
 580	unsigned long flags;
 581	int ret = 0;
 582
 583	rcu_read_lock();
 584	p = cpu_timer_task_rcu(timer);
 585	if (!p) {
 586		/*
 587		 * If p has just been reaped, we can no
 588		 * longer get any information about it at all.
 589		 */
 590		rcu_read_unlock();
 591		return -ESRCH;
 592	}
 593
 594	/*
 595	 * Use the to_ktime conversion because that clamps the maximum
 596	 * value to KTIME_MAX and avoid multiplication overflows.
 597	 */
 598	new_expires = ktime_to_ns(timespec64_to_ktime(new->it_value));
 599
 600	/*
 601	 * Protect against sighand release/switch in exit/exec and p->cpu_timers
 602	 * and p->signal->cpu_timers read/write in arm_timer()
 603	 */
 604	sighand = lock_task_sighand(p, &flags);
 605	/*
 606	 * If p has just been reaped, we can no
 607	 * longer get any information about it at all.
 608	 */
 609	if (unlikely(sighand == NULL)) {
 610		rcu_read_unlock();
 611		return -ESRCH;
 612	}
 613
 614	/*
 615	 * Disarm any old timer after extracting its expiry time.
 616	 */
 617	old_incr = timer->it_interval;
 618	old_expires = cpu_timer_getexpires(ctmr);
 619
 620	if (unlikely(timer->it.cpu.firing)) {
 621		timer->it.cpu.firing = -1;
 622		ret = TIMER_RETRY;
 623	} else {
 624		cpu_timer_dequeue(ctmr);
 625	}
 626
 627	/*
 628	 * We need to sample the current value to convert the new
 629	 * value from to relative and absolute, and to convert the
 630	 * old value from absolute to relative.  To set a process
 631	 * timer, we need a sample to balance the thread expiry
 632	 * times (in arm_timer).  With an absolute time, we must
 633	 * check if it's already passed.  In short, we need a sample.
 634	 */
 635	if (CPUCLOCK_PERTHREAD(timer->it_clock))
 636		val = cpu_clock_sample(clkid, p);
 637	else
 638		val = cpu_clock_sample_group(clkid, p, true);
 639
 640	if (old) {
 641		if (old_expires == 0) {
 642			old->it_value.tv_sec = 0;
 643			old->it_value.tv_nsec = 0;
 644		} else {
 645			/*
 646			 * Update the timer in case it has overrun already.
 647			 * If it has, we'll report it as having overrun and
 648			 * with the next reloaded timer already ticking,
 649			 * though we are swallowing that pending
 650			 * notification here to install the new setting.
 651			 */
 652			u64 exp = bump_cpu_timer(timer, val);
 653
 654			if (val < exp) {
 655				old_expires = exp - val;
 656				old->it_value = ns_to_timespec64(old_expires);
 657			} else {
 658				old->it_value.tv_nsec = 1;
 659				old->it_value.tv_sec = 0;
 660			}
 661		}
 662	}
 663
 664	if (unlikely(ret)) {
 665		/*
 666		 * We are colliding with the timer actually firing.
 667		 * Punt after filling in the timer's old value, and
 668		 * disable this firing since we are already reporting
 669		 * it as an overrun (thanks to bump_cpu_timer above).
 670		 */
 671		unlock_task_sighand(p, &flags);
 672		goto out;
 673	}
 674
 675	if (new_expires != 0 && !(timer_flags & TIMER_ABSTIME)) {
 676		new_expires += val;
 677	}
 678
 679	/*
 680	 * Install the new expiry time (or zero).
 681	 * For a timer with no notification action, we don't actually
 682	 * arm the timer (we'll just fake it for timer_gettime).
 683	 */
 684	cpu_timer_setexpires(ctmr, new_expires);
 685	if (new_expires != 0 && val < new_expires) {
 686		arm_timer(timer, p);
 687	}
 688
 689	unlock_task_sighand(p, &flags);
 690	/*
 691	 * Install the new reload setting, and
 692	 * set up the signal and overrun bookkeeping.
 693	 */
 694	timer->it_interval = timespec64_to_ktime(new->it_interval);
 695
 696	/*
 697	 * This acts as a modification timestamp for the timer,
 698	 * so any automatic reload attempt will punt on seeing
 699	 * that we have reset the timer manually.
 700	 */
 701	timer->it_requeue_pending = (timer->it_requeue_pending + 2) &
 702		~REQUEUE_PENDING;
 703	timer->it_overrun_last = 0;
 704	timer->it_overrun = -1;
 705
 706	if (new_expires != 0 && !(val < new_expires)) {
 707		/*
 708		 * The designated time already passed, so we notify
 709		 * immediately, even if the thread never runs to
 710		 * accumulate more time on this clock.
 711		 */
 712		cpu_timer_fire(timer);
 713	}
 714
 715	ret = 0;
 716 out:
 717	rcu_read_unlock();
 718	if (old)
 719		old->it_interval = ns_to_timespec64(old_incr);
 720
 721	return ret;
 722}
 723
 724static void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec64 *itp)
 725{
 726	clockid_t clkid = CPUCLOCK_WHICH(timer->it_clock);
 727	struct cpu_timer *ctmr = &timer->it.cpu;
 728	u64 now, expires = cpu_timer_getexpires(ctmr);
 729	struct task_struct *p;
 730
 731	rcu_read_lock();
 732	p = cpu_timer_task_rcu(timer);
 733	if (!p)
 734		goto out;
 735
 736	/*
 737	 * Easy part: convert the reload time.
 738	 */
 739	itp->it_interval = ktime_to_timespec64(timer->it_interval);
 740
 741	if (!expires)
 742		goto out;
 743
 744	/*
 745	 * Sample the clock to take the difference with the expiry time.
 746	 */
 747	if (CPUCLOCK_PERTHREAD(timer->it_clock))
 748		now = cpu_clock_sample(clkid, p);
 749	else
 750		now = cpu_clock_sample_group(clkid, p, false);
 751
 752	if (now < expires) {
 753		itp->it_value = ns_to_timespec64(expires - now);
 754	} else {
 755		/*
 756		 * The timer should have expired already, but the firing
 757		 * hasn't taken place yet.  Say it's just about to expire.
 758		 */
 759		itp->it_value.tv_nsec = 1;
 760		itp->it_value.tv_sec = 0;
 761	}
 762out:
 763	rcu_read_unlock();
 764}
 765
 766#define MAX_COLLECTED	20
 767
 768static u64 collect_timerqueue(struct timerqueue_head *head,
 769			      struct list_head *firing, u64 now)
 770{
 771	struct timerqueue_node *next;
 772	int i = 0;
 773
 774	while ((next = timerqueue_getnext(head))) {
 775		struct cpu_timer *ctmr;
 776		u64 expires;
 777
 778		ctmr = container_of(next, struct cpu_timer, node);
 779		expires = cpu_timer_getexpires(ctmr);
 780		/* Limit the number of timers to expire at once */
 781		if (++i == MAX_COLLECTED || now < expires)
 782			return expires;
 783
 784		ctmr->firing = 1;
 785		cpu_timer_dequeue(ctmr);
 786		list_add_tail(&ctmr->elist, firing);
 787	}
 788
 789	return U64_MAX;
 790}
 791
 792static void collect_posix_cputimers(struct posix_cputimers *pct, u64 *samples,
 793				    struct list_head *firing)
 794{
 795	struct posix_cputimer_base *base = pct->bases;
 796	int i;
 797
 798	for (i = 0; i < CPUCLOCK_MAX; i++, base++) {
 799		base->nextevt = collect_timerqueue(&base->tqhead, firing,
 800						    samples[i]);
 801	}
 802}
 803
 804static inline void check_dl_overrun(struct task_struct *tsk)
 805{
 806	if (tsk->dl.dl_overrun) {
 807		tsk->dl.dl_overrun = 0;
 808		__group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
 809	}
 810}
 811
 812static bool check_rlimit(u64 time, u64 limit, int signo, bool rt, bool hard)
 813{
 814	if (time < limit)
 815		return false;
 816
 817	if (print_fatal_signals) {
 818		pr_info("%s Watchdog Timeout (%s): %s[%d]\n",
 819			rt ? "RT" : "CPU", hard ? "hard" : "soft",
 820			current->comm, task_pid_nr(current));
 821	}
 822	__group_send_sig_info(signo, SEND_SIG_PRIV, current);
 823	return true;
 824}
 825
 826/*
 827 * Check for any per-thread CPU timers that have fired and move them off
 828 * the tsk->cpu_timers[N] list onto the firing list.  Here we update the
 829 * tsk->it_*_expires values to reflect the remaining thread CPU timers.
 830 */
 831static void check_thread_timers(struct task_struct *tsk,
 832				struct list_head *firing)
 833{
 834	struct posix_cputimers *pct = &tsk->posix_cputimers;
 835	u64 samples[CPUCLOCK_MAX];
 836	unsigned long soft;
 837
 838	if (dl_task(tsk))
 839		check_dl_overrun(tsk);
 840
 841	if (expiry_cache_is_inactive(pct))
 842		return;
 843
 844	task_sample_cputime(tsk, samples);
 845	collect_posix_cputimers(pct, samples, firing);
 846
 847	/*
 848	 * Check for the special case thread timers.
 849	 */
 850	soft = task_rlimit(tsk, RLIMIT_RTTIME);
 851	if (soft != RLIM_INFINITY) {
 852		/* Task RT timeout is accounted in jiffies. RTTIME is usec */
 853		unsigned long rttime = tsk->rt.timeout * (USEC_PER_SEC / HZ);
 854		unsigned long hard = task_rlimit_max(tsk, RLIMIT_RTTIME);
 855
 856		/* At the hard limit, send SIGKILL. No further action. */
 857		if (hard != RLIM_INFINITY &&
 858		    check_rlimit(rttime, hard, SIGKILL, true, true))
 859			return;
 860
 861		/* At the soft limit, send a SIGXCPU every second */
 862		if (check_rlimit(rttime, soft, SIGXCPU, true, false)) {
 863			soft += USEC_PER_SEC;
 864			tsk->signal->rlim[RLIMIT_RTTIME].rlim_cur = soft;
 865		}
 866	}
 867
 868	if (expiry_cache_is_inactive(pct))
 869		tick_dep_clear_task(tsk, TICK_DEP_BIT_POSIX_TIMER);
 870}
 871
 872static inline void stop_process_timers(struct signal_struct *sig)
 873{
 874	struct posix_cputimers *pct = &sig->posix_cputimers;
 875
 876	/* Turn off the active flag. This is done without locking. */
 877	WRITE_ONCE(pct->timers_active, false);
 878	tick_dep_clear_signal(sig, TICK_DEP_BIT_POSIX_TIMER);
 879}
 880
 881static void check_cpu_itimer(struct task_struct *tsk, struct cpu_itimer *it,
 882			     u64 *expires, u64 cur_time, int signo)
 883{
 884	if (!it->expires)
 885		return;
 886
 887	if (cur_time >= it->expires) {
 888		if (it->incr)
 889			it->expires += it->incr;
 890		else
 891			it->expires = 0;
 892
 893		trace_itimer_expire(signo == SIGPROF ?
 894				    ITIMER_PROF : ITIMER_VIRTUAL,
 895				    task_tgid(tsk), cur_time);
 896		__group_send_sig_info(signo, SEND_SIG_PRIV, tsk);
 897	}
 898
 899	if (it->expires && it->expires < *expires)
 900		*expires = it->expires;
 901}
 902
 903/*
 904 * Check for any per-thread CPU timers that have fired and move them
 905 * off the tsk->*_timers list onto the firing list.  Per-thread timers
 906 * have already been taken off.
 907 */
 908static void check_process_timers(struct task_struct *tsk,
 909				 struct list_head *firing)
 910{
 911	struct signal_struct *const sig = tsk->signal;
 912	struct posix_cputimers *pct = &sig->posix_cputimers;
 913	u64 samples[CPUCLOCK_MAX];
 914	unsigned long soft;
 915
 916	/*
 917	 * If there are no active process wide timers (POSIX 1.b, itimers,
 918	 * RLIMIT_CPU) nothing to check. Also skip the process wide timer
 919	 * processing when there is already another task handling them.
 920	 */
 921	if (!READ_ONCE(pct->timers_active) || pct->expiry_active)
 922		return;
 923
 924	/*
 925	 * Signify that a thread is checking for process timers.
 926	 * Write access to this field is protected by the sighand lock.
 927	 */
 928	pct->expiry_active = true;
 929
 930	/*
 931	 * Collect the current process totals. Group accounting is active
 932	 * so the sample can be taken directly.
 933	 */
 934	proc_sample_cputime_atomic(&sig->cputimer.cputime_atomic, samples);
 935	collect_posix_cputimers(pct, samples, firing);
 936
 937	/*
 938	 * Check for the special case process timers.
 939	 */
 940	check_cpu_itimer(tsk, &sig->it[CPUCLOCK_PROF],
 941			 &pct->bases[CPUCLOCK_PROF].nextevt,
 942			 samples[CPUCLOCK_PROF], SIGPROF);
 943	check_cpu_itimer(tsk, &sig->it[CPUCLOCK_VIRT],
 944			 &pct->bases[CPUCLOCK_VIRT].nextevt,
 945			 samples[CPUCLOCK_VIRT], SIGVTALRM);
 946
 947	soft = task_rlimit(tsk, RLIMIT_CPU);
 948	if (soft != RLIM_INFINITY) {
 949		/* RLIMIT_CPU is in seconds. Samples are nanoseconds */
 950		unsigned long hard = task_rlimit_max(tsk, RLIMIT_CPU);
 951		u64 ptime = samples[CPUCLOCK_PROF];
 952		u64 softns = (u64)soft * NSEC_PER_SEC;
 953		u64 hardns = (u64)hard * NSEC_PER_SEC;
 954
 955		/* At the hard limit, send SIGKILL. No further action. */
 956		if (hard != RLIM_INFINITY &&
 957		    check_rlimit(ptime, hardns, SIGKILL, false, true))
 958			return;
 959
 960		/* At the soft limit, send a SIGXCPU every second */
 961		if (check_rlimit(ptime, softns, SIGXCPU, false, false)) {
 962			sig->rlim[RLIMIT_CPU].rlim_cur = soft + 1;
 963			softns += NSEC_PER_SEC;
 964		}
 965
 966		/* Update the expiry cache */
 967		if (softns < pct->bases[CPUCLOCK_PROF].nextevt)
 968			pct->bases[CPUCLOCK_PROF].nextevt = softns;
 969	}
 970
 971	if (expiry_cache_is_inactive(pct))
 972		stop_process_timers(sig);
 973
 974	pct->expiry_active = false;
 975}
 976
 977/*
 978 * This is called from the signal code (via posixtimer_rearm)
 979 * when the last timer signal was delivered and we have to reload the timer.
 980 */
 981static void posix_cpu_timer_rearm(struct k_itimer *timer)
 982{
 983	clockid_t clkid = CPUCLOCK_WHICH(timer->it_clock);
 984	struct task_struct *p;
 985	struct sighand_struct *sighand;
 986	unsigned long flags;
 987	u64 now;
 988
 989	rcu_read_lock();
 990	p = cpu_timer_task_rcu(timer);
 991	if (!p)
 992		goto out;
 993
 994	/* Protect timer list r/w in arm_timer() */
 995	sighand = lock_task_sighand(p, &flags);
 996	if (unlikely(sighand == NULL))
 997		goto out;
 998
 999	/*
1000	 * Fetch the current sample and update the timer's expiry time.
1001	 */
1002	if (CPUCLOCK_PERTHREAD(timer->it_clock))
1003		now = cpu_clock_sample(clkid, p);
1004	else
1005		now = cpu_clock_sample_group(clkid, p, true);
1006
1007	bump_cpu_timer(timer, now);
1008
1009	/*
1010	 * Now re-arm for the new expiry time.
1011	 */
1012	arm_timer(timer, p);
1013	unlock_task_sighand(p, &flags);
1014out:
1015	rcu_read_unlock();
1016}
1017
1018/**
1019 * task_cputimers_expired - Check whether posix CPU timers are expired
1020 *
1021 * @samples:	Array of current samples for the CPUCLOCK clocks
1022 * @pct:	Pointer to a posix_cputimers container
1023 *
1024 * Returns true if any member of @samples is greater than the corresponding
1025 * member of @pct->bases[CLK].nextevt. False otherwise
1026 */
1027static inline bool
1028task_cputimers_expired(const u64 *samples, struct posix_cputimers *pct)
1029{
1030	int i;
1031
1032	for (i = 0; i < CPUCLOCK_MAX; i++) {
1033		if (samples[i] >= pct->bases[i].nextevt)
1034			return true;
1035	}
1036	return false;
1037}
1038
1039/**
1040 * fastpath_timer_check - POSIX CPU timers fast path.
1041 *
1042 * @tsk:	The task (thread) being checked.
1043 *
1044 * Check the task and thread group timers.  If both are zero (there are no
1045 * timers set) return false.  Otherwise snapshot the task and thread group
1046 * timers and compare them with the corresponding expiration times.  Return
1047 * true if a timer has expired, else return false.
1048 */
1049static inline bool fastpath_timer_check(struct task_struct *tsk)
1050{
1051	struct posix_cputimers *pct = &tsk->posix_cputimers;
1052	struct signal_struct *sig;
1053
1054	if (!expiry_cache_is_inactive(pct)) {
1055		u64 samples[CPUCLOCK_MAX];
1056
1057		task_sample_cputime(tsk, samples);
1058		if (task_cputimers_expired(samples, pct))
1059			return true;
1060	}
1061
1062	sig = tsk->signal;
1063	pct = &sig->posix_cputimers;
1064	/*
1065	 * Check if thread group timers expired when timers are active and
1066	 * no other thread in the group is already handling expiry for
1067	 * thread group cputimers. These fields are read without the
1068	 * sighand lock. However, this is fine because this is meant to be
1069	 * a fastpath heuristic to determine whether we should try to
1070	 * acquire the sighand lock to handle timer expiry.
1071	 *
1072	 * In the worst case scenario, if concurrently timers_active is set
1073	 * or expiry_active is cleared, but the current thread doesn't see
1074	 * the change yet, the timer checks are delayed until the next
1075	 * thread in the group gets a scheduler interrupt to handle the
1076	 * timer. This isn't an issue in practice because these types of
1077	 * delays with signals actually getting sent are expected.
1078	 */
1079	if (READ_ONCE(pct->timers_active) && !READ_ONCE(pct->expiry_active)) {
1080		u64 samples[CPUCLOCK_MAX];
1081
1082		proc_sample_cputime_atomic(&sig->cputimer.cputime_atomic,
1083					   samples);
1084
1085		if (task_cputimers_expired(samples, pct))
1086			return true;
1087	}
1088
1089	if (dl_task(tsk) && tsk->dl.dl_overrun)
1090		return true;
1091
1092	return false;
1093}
1094
1095static void handle_posix_cpu_timers(struct task_struct *tsk);
1096
1097#ifdef CONFIG_POSIX_CPU_TIMERS_TASK_WORK
1098static void posix_cpu_timers_work(struct callback_head *work)
1099{
1100	handle_posix_cpu_timers(current);
1101}
1102
1103/*
1104 * Initialize posix CPU timers task work in init task. Out of line to
1105 * keep the callback static and to avoid header recursion hell.
1106 */
1107void __init posix_cputimers_init_work(void)
1108{
1109	init_task_work(&current->posix_cputimers_work.work,
1110		       posix_cpu_timers_work);
1111}
1112
1113/*
1114 * Note: All operations on tsk->posix_cputimer_work.scheduled happen either
1115 * in hard interrupt context or in task context with interrupts
1116 * disabled. Aside of that the writer/reader interaction is always in the
1117 * context of the current task, which means they are strict per CPU.
1118 */
1119static inline bool posix_cpu_timers_work_scheduled(struct task_struct *tsk)
1120{
1121	return tsk->posix_cputimers_work.scheduled;
1122}
1123
1124static inline void __run_posix_cpu_timers(struct task_struct *tsk)
1125{
1126	if (WARN_ON_ONCE(tsk->posix_cputimers_work.scheduled))
1127		return;
1128
1129	/* Schedule task work to actually expire the timers */
1130	tsk->posix_cputimers_work.scheduled = true;
1131	task_work_add(tsk, &tsk->posix_cputimers_work.work, TWA_RESUME);
1132}
1133
1134static inline bool posix_cpu_timers_enable_work(struct task_struct *tsk,
1135						unsigned long start)
1136{
1137	bool ret = true;
1138
1139	/*
1140	 * On !RT kernels interrupts are disabled while collecting expired
1141	 * timers, so no tick can happen and the fast path check can be
1142	 * reenabled without further checks.
1143	 */
1144	if (!IS_ENABLED(CONFIG_PREEMPT_RT)) {
1145		tsk->posix_cputimers_work.scheduled = false;
1146		return true;
1147	}
1148
1149	/*
1150	 * On RT enabled kernels ticks can happen while the expired timers
1151	 * are collected under sighand lock. But any tick which observes
1152	 * the CPUTIMERS_WORK_SCHEDULED bit set, does not run the fastpath
1153	 * checks. So reenabling the tick work has do be done carefully:
1154	 *
1155	 * Disable interrupts and run the fast path check if jiffies have
1156	 * advanced since the collecting of expired timers started. If
1157	 * jiffies have not advanced or the fast path check did not find
1158	 * newly expired timers, reenable the fast path check in the timer
1159	 * interrupt. If there are newly expired timers, return false and
1160	 * let the collection loop repeat.
1161	 */
1162	local_irq_disable();
1163	if (start != jiffies && fastpath_timer_check(tsk))
1164		ret = false;
1165	else
1166		tsk->posix_cputimers_work.scheduled = false;
1167	local_irq_enable();
1168
1169	return ret;
1170}
1171#else /* CONFIG_POSIX_CPU_TIMERS_TASK_WORK */
1172static inline void __run_posix_cpu_timers(struct task_struct *tsk)
1173{
1174	lockdep_posixtimer_enter();
1175	handle_posix_cpu_timers(tsk);
1176	lockdep_posixtimer_exit();
1177}
1178
1179static inline bool posix_cpu_timers_work_scheduled(struct task_struct *tsk)
1180{
1181	return false;
1182}
1183
1184static inline bool posix_cpu_timers_enable_work(struct task_struct *tsk,
1185						unsigned long start)
1186{
1187	return true;
1188}
1189#endif /* CONFIG_POSIX_CPU_TIMERS_TASK_WORK */
1190
1191static void handle_posix_cpu_timers(struct task_struct *tsk)
1192{
1193	struct k_itimer *timer, *next;
1194	unsigned long flags, start;
1195	LIST_HEAD(firing);
1196
1197	if (!lock_task_sighand(tsk, &flags))
1198		return;
1199
1200	do {
1201		/*
1202		 * On RT locking sighand lock does not disable interrupts,
1203		 * so this needs to be careful vs. ticks. Store the current
1204		 * jiffies value.
1205		 */
1206		start = READ_ONCE(jiffies);
1207		barrier();
1208
1209		/*
1210		 * Here we take off tsk->signal->cpu_timers[N] and
1211		 * tsk->cpu_timers[N] all the timers that are firing, and
1212		 * put them on the firing list.
1213		 */
1214		check_thread_timers(tsk, &firing);
1215
1216		check_process_timers(tsk, &firing);
1217
1218		/*
1219		 * The above timer checks have updated the expiry cache and
1220		 * because nothing can have queued or modified timers after
1221		 * sighand lock was taken above it is guaranteed to be
1222		 * consistent. So the next timer interrupt fastpath check
1223		 * will find valid data.
1224		 *
1225		 * If timer expiry runs in the timer interrupt context then
1226		 * the loop is not relevant as timers will be directly
1227		 * expired in interrupt context. The stub function below
1228		 * returns always true which allows the compiler to
1229		 * optimize the loop out.
1230		 *
1231		 * If timer expiry is deferred to task work context then
1232		 * the following rules apply:
1233		 *
1234		 * - On !RT kernels no tick can have happened on this CPU
1235		 *   after sighand lock was acquired because interrupts are
1236		 *   disabled. So reenabling task work before dropping
1237		 *   sighand lock and reenabling interrupts is race free.
1238		 *
1239		 * - On RT kernels ticks might have happened but the tick
1240		 *   work ignored posix CPU timer handling because the
1241		 *   CPUTIMERS_WORK_SCHEDULED bit is set. Reenabling work
1242		 *   must be done very carefully including a check whether
1243		 *   ticks have happened since the start of the timer
1244		 *   expiry checks. posix_cpu_timers_enable_work() takes
1245		 *   care of that and eventually lets the expiry checks
1246		 *   run again.
1247		 */
1248	} while (!posix_cpu_timers_enable_work(tsk, start));
1249
1250	/*
1251	 * We must release sighand lock before taking any timer's lock.
1252	 * There is a potential race with timer deletion here, as the
1253	 * siglock now protects our private firing list.  We have set
1254	 * the firing flag in each timer, so that a deletion attempt
1255	 * that gets the timer lock before we do will give it up and
1256	 * spin until we've taken care of that timer below.
1257	 */
1258	unlock_task_sighand(tsk, &flags);
1259
1260	/*
1261	 * Now that all the timers on our list have the firing flag,
1262	 * no one will touch their list entries but us.  We'll take
1263	 * each timer's lock before clearing its firing flag, so no
1264	 * timer call will interfere.
1265	 */
1266	list_for_each_entry_safe(timer, next, &firing, it.cpu.elist) {
1267		int cpu_firing;
1268
1269		/*
1270		 * spin_lock() is sufficient here even independent of the
1271		 * expiry context. If expiry happens in hard interrupt
1272		 * context it's obvious. For task work context it's safe
1273		 * because all other operations on timer::it_lock happen in
1274		 * task context (syscall or exit).
1275		 */
1276		spin_lock(&timer->it_lock);
1277		list_del_init(&timer->it.cpu.elist);
1278		cpu_firing = timer->it.cpu.firing;
1279		timer->it.cpu.firing = 0;
1280		/*
1281		 * The firing flag is -1 if we collided with a reset
1282		 * of the timer, which already reported this
1283		 * almost-firing as an overrun.  So don't generate an event.
1284		 */
1285		if (likely(cpu_firing >= 0))
1286			cpu_timer_fire(timer);
1287		spin_unlock(&timer->it_lock);
1288	}
1289}
1290
1291/*
1292 * This is called from the timer interrupt handler.  The irq handler has
1293 * already updated our counts.  We need to check if any timers fire now.
1294 * Interrupts are disabled.
1295 */
1296void run_posix_cpu_timers(void)
1297{
1298	struct task_struct *tsk = current;
1299
1300	lockdep_assert_irqs_disabled();
1301
1302	/*
1303	 * If the actual expiry is deferred to task work context and the
1304	 * work is already scheduled there is no point to do anything here.
1305	 */
1306	if (posix_cpu_timers_work_scheduled(tsk))
1307		return;
1308
1309	/*
1310	 * The fast path checks that there are no expired thread or thread
1311	 * group timers.  If that's so, just return.
1312	 */
1313	if (!fastpath_timer_check(tsk))
1314		return;
1315
1316	__run_posix_cpu_timers(tsk);
1317}
1318
1319/*
1320 * Set one of the process-wide special case CPU timers or RLIMIT_CPU.
1321 * The tsk->sighand->siglock must be held by the caller.
1322 */
1323void set_process_cpu_timer(struct task_struct *tsk, unsigned int clkid,
1324			   u64 *newval, u64 *oldval)
1325{
1326	u64 now, *nextevt;
1327
1328	if (WARN_ON_ONCE(clkid >= CPUCLOCK_SCHED))
1329		return;
1330
1331	nextevt = &tsk->signal->posix_cputimers.bases[clkid].nextevt;
1332	now = cpu_clock_sample_group(clkid, tsk, true);
1333
1334	if (oldval) {
1335		/*
1336		 * We are setting itimer. The *oldval is absolute and we update
1337		 * it to be relative, *newval argument is relative and we update
1338		 * it to be absolute.
1339		 */
1340		if (*oldval) {
1341			if (*oldval <= now) {
1342				/* Just about to fire. */
1343				*oldval = TICK_NSEC;
1344			} else {
1345				*oldval -= now;
1346			}
1347		}
1348
1349		if (!*newval)
1350			return;
1351		*newval += now;
1352	}
1353
1354	/*
1355	 * Update expiration cache if this is the earliest timer. CPUCLOCK_PROF
1356	 * expiry cache is also used by RLIMIT_CPU!.
1357	 */
1358	if (*newval < *nextevt)
1359		*nextevt = *newval;
1360
1361	tick_dep_set_signal(tsk, TICK_DEP_BIT_POSIX_TIMER);
1362}
1363
1364static int do_cpu_nanosleep(const clockid_t which_clock, int flags,
1365			    const struct timespec64 *rqtp)
1366{
1367	struct itimerspec64 it;
1368	struct k_itimer timer;
1369	u64 expires;
1370	int error;
1371
1372	/*
1373	 * Set up a temporary timer and then wait for it to go off.
1374	 */
1375	memset(&timer, 0, sizeof timer);
1376	spin_lock_init(&timer.it_lock);
1377	timer.it_clock = which_clock;
1378	timer.it_overrun = -1;
1379	error = posix_cpu_timer_create(&timer);
1380	timer.it_process = current;
1381
1382	if (!error) {
1383		static struct itimerspec64 zero_it;
1384		struct restart_block *restart;
1385
1386		memset(&it, 0, sizeof(it));
1387		it.it_value = *rqtp;
1388
1389		spin_lock_irq(&timer.it_lock);
1390		error = posix_cpu_timer_set(&timer, flags, &it, NULL);
1391		if (error) {
1392			spin_unlock_irq(&timer.it_lock);
1393			return error;
1394		}
1395
1396		while (!signal_pending(current)) {
1397			if (!cpu_timer_getexpires(&timer.it.cpu)) {
1398				/*
1399				 * Our timer fired and was reset, below
1400				 * deletion can not fail.
1401				 */
1402				posix_cpu_timer_del(&timer);
1403				spin_unlock_irq(&timer.it_lock);
1404				return 0;
1405			}
1406
1407			/*
1408			 * Block until cpu_timer_fire (or a signal) wakes us.
1409			 */
1410			__set_current_state(TASK_INTERRUPTIBLE);
1411			spin_unlock_irq(&timer.it_lock);
1412			schedule();
1413			spin_lock_irq(&timer.it_lock);
1414		}
1415
1416		/*
1417		 * We were interrupted by a signal.
1418		 */
1419		expires = cpu_timer_getexpires(&timer.it.cpu);
1420		error = posix_cpu_timer_set(&timer, 0, &zero_it, &it);
1421		if (!error) {
1422			/*
1423			 * Timer is now unarmed, deletion can not fail.
1424			 */
1425			posix_cpu_timer_del(&timer);
1426		}
1427		spin_unlock_irq(&timer.it_lock);
1428
1429		while (error == TIMER_RETRY) {
1430			/*
1431			 * We need to handle case when timer was or is in the
1432			 * middle of firing. In other cases we already freed
1433			 * resources.
1434			 */
1435			spin_lock_irq(&timer.it_lock);
1436			error = posix_cpu_timer_del(&timer);
1437			spin_unlock_irq(&timer.it_lock);
1438		}
1439
1440		if ((it.it_value.tv_sec | it.it_value.tv_nsec) == 0) {
1441			/*
1442			 * It actually did fire already.
1443			 */
1444			return 0;
1445		}
1446
1447		error = -ERESTART_RESTARTBLOCK;
1448		/*
1449		 * Report back to the user the time still remaining.
1450		 */
1451		restart = &current->restart_block;
1452		restart->nanosleep.expires = expires;
1453		if (restart->nanosleep.type != TT_NONE)
1454			error = nanosleep_copyout(restart, &it.it_value);
1455	}
1456
1457	return error;
1458}
1459
1460static long posix_cpu_nsleep_restart(struct restart_block *restart_block);
1461
1462static int posix_cpu_nsleep(const clockid_t which_clock, int flags,
1463			    const struct timespec64 *rqtp)
1464{
1465	struct restart_block *restart_block = &current->restart_block;
1466	int error;
1467
1468	/*
1469	 * Diagnose required errors first.
1470	 */
1471	if (CPUCLOCK_PERTHREAD(which_clock) &&
1472	    (CPUCLOCK_PID(which_clock) == 0 ||
1473	     CPUCLOCK_PID(which_clock) == task_pid_vnr(current)))
1474		return -EINVAL;
1475
1476	error = do_cpu_nanosleep(which_clock, flags, rqtp);
1477
1478	if (error == -ERESTART_RESTARTBLOCK) {
1479
1480		if (flags & TIMER_ABSTIME)
1481			return -ERESTARTNOHAND;
1482
1483		restart_block->nanosleep.clockid = which_clock;
1484		set_restart_fn(restart_block, posix_cpu_nsleep_restart);
1485	}
1486	return error;
1487}
1488
1489static long posix_cpu_nsleep_restart(struct restart_block *restart_block)
1490{
1491	clockid_t which_clock = restart_block->nanosleep.clockid;
1492	struct timespec64 t;
1493
1494	t = ns_to_timespec64(restart_block->nanosleep.expires);
1495
1496	return do_cpu_nanosleep(which_clock, TIMER_ABSTIME, &t);
1497}
1498
1499#define PROCESS_CLOCK	make_process_cpuclock(0, CPUCLOCK_SCHED)
1500#define THREAD_CLOCK	make_thread_cpuclock(0, CPUCLOCK_SCHED)
1501
1502static int process_cpu_clock_getres(const clockid_t which_clock,
1503				    struct timespec64 *tp)
1504{
1505	return posix_cpu_clock_getres(PROCESS_CLOCK, tp);
1506}
1507static int process_cpu_clock_get(const clockid_t which_clock,
1508				 struct timespec64 *tp)
1509{
1510	return posix_cpu_clock_get(PROCESS_CLOCK, tp);
1511}
1512static int process_cpu_timer_create(struct k_itimer *timer)
1513{
1514	timer->it_clock = PROCESS_CLOCK;
1515	return posix_cpu_timer_create(timer);
1516}
1517static int process_cpu_nsleep(const clockid_t which_clock, int flags,
1518			      const struct timespec64 *rqtp)
1519{
1520	return posix_cpu_nsleep(PROCESS_CLOCK, flags, rqtp);
1521}
1522static int thread_cpu_clock_getres(const clockid_t which_clock,
1523				   struct timespec64 *tp)
1524{
1525	return posix_cpu_clock_getres(THREAD_CLOCK, tp);
1526}
1527static int thread_cpu_clock_get(const clockid_t which_clock,
1528				struct timespec64 *tp)
1529{
1530	return posix_cpu_clock_get(THREAD_CLOCK, tp);
1531}
1532static int thread_cpu_timer_create(struct k_itimer *timer)
1533{
1534	timer->it_clock = THREAD_CLOCK;
1535	return posix_cpu_timer_create(timer);
1536}
1537
1538const struct k_clock clock_posix_cpu = {
1539	.clock_getres		= posix_cpu_clock_getres,
1540	.clock_set		= posix_cpu_clock_set,
1541	.clock_get_timespec	= posix_cpu_clock_get,
1542	.timer_create		= posix_cpu_timer_create,
1543	.nsleep			= posix_cpu_nsleep,
1544	.timer_set		= posix_cpu_timer_set,
1545	.timer_del		= posix_cpu_timer_del,
1546	.timer_get		= posix_cpu_timer_get,
1547	.timer_rearm		= posix_cpu_timer_rearm,
1548};
1549
1550const struct k_clock clock_process = {
1551	.clock_getres		= process_cpu_clock_getres,
1552	.clock_get_timespec	= process_cpu_clock_get,
1553	.timer_create		= process_cpu_timer_create,
1554	.nsleep			= process_cpu_nsleep,
1555};
1556
1557const struct k_clock clock_thread = {
1558	.clock_getres		= thread_cpu_clock_getres,
1559	.clock_get_timespec	= thread_cpu_clock_get,
1560	.timer_create		= thread_cpu_timer_create,
1561};