Loading...
Note: File does not exist in v3.15.
1/*
2 * Implement CPU time clocks for the POSIX clock interface.
3 */
4
5#include <linux/sched.h>
6#include <linux/posix-timers.h>
7#include <linux/errno.h>
8#include <linux/math64.h>
9#include <linux/uaccess.h>
10#include <linux/kernel_stat.h>
11#include <trace/events/timer.h>
12#include <linux/tick.h>
13#include <linux/workqueue.h>
14
15/*
16 * Called after updating RLIMIT_CPU to run cpu timer and update
17 * tsk->signal->cputime_expires expiration cache if necessary. Needs
18 * siglock protection since other code may update expiration cache as
19 * well.
20 */
21void update_rlimit_cpu(struct task_struct *task, unsigned long rlim_new)
22{
23 cputime_t cputime = secs_to_cputime(rlim_new);
24
25 spin_lock_irq(&task->sighand->siglock);
26 set_process_cpu_timer(task, CPUCLOCK_PROF, &cputime, NULL);
27 spin_unlock_irq(&task->sighand->siglock);
28}
29
30static int check_clock(const clockid_t which_clock)
31{
32 int error = 0;
33 struct task_struct *p;
34 const pid_t pid = CPUCLOCK_PID(which_clock);
35
36 if (CPUCLOCK_WHICH(which_clock) >= CPUCLOCK_MAX)
37 return -EINVAL;
38
39 if (pid == 0)
40 return 0;
41
42 rcu_read_lock();
43 p = find_task_by_vpid(pid);
44 if (!p || !(CPUCLOCK_PERTHREAD(which_clock) ?
45 same_thread_group(p, current) : has_group_leader_pid(p))) {
46 error = -EINVAL;
47 }
48 rcu_read_unlock();
49
50 return error;
51}
52
53static inline unsigned long long
54timespec_to_sample(const clockid_t which_clock, const struct timespec *tp)
55{
56 unsigned long long ret;
57
58 ret = 0; /* high half always zero when .cpu used */
59 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
60 ret = (unsigned long long)tp->tv_sec * NSEC_PER_SEC + tp->tv_nsec;
61 } else {
62 ret = cputime_to_expires(timespec_to_cputime(tp));
63 }
64 return ret;
65}
66
67static void sample_to_timespec(const clockid_t which_clock,
68 unsigned long long expires,
69 struct timespec *tp)
70{
71 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED)
72 *tp = ns_to_timespec(expires);
73 else
74 cputime_to_timespec((__force cputime_t)expires, tp);
75}
76
77/*
78 * Update expiry time from increment, and increase overrun count,
79 * given the current clock sample.
80 */
81static void bump_cpu_timer(struct k_itimer *timer,
82 unsigned long long now)
83{
84 int i;
85 unsigned long long delta, incr;
86
87 if (timer->it.cpu.incr == 0)
88 return;
89
90 if (now < timer->it.cpu.expires)
91 return;
92
93 incr = timer->it.cpu.incr;
94 delta = now + incr - timer->it.cpu.expires;
95
96 /* Don't use (incr*2 < delta), incr*2 might overflow. */
97 for (i = 0; incr < delta - incr; i++)
98 incr = incr << 1;
99
100 for (; i >= 0; incr >>= 1, i--) {
101 if (delta < incr)
102 continue;
103
104 timer->it.cpu.expires += incr;
105 timer->it_overrun += 1 << i;
106 delta -= incr;
107 }
108}
109
110/**
111 * task_cputime_zero - Check a task_cputime struct for all zero fields.
112 *
113 * @cputime: The struct to compare.
114 *
115 * Checks @cputime to see if all fields are zero. Returns true if all fields
116 * are zero, false if any field is nonzero.
117 */
118static inline int task_cputime_zero(const struct task_cputime *cputime)
119{
120 if (!cputime->utime && !cputime->stime && !cputime->sum_exec_runtime)
121 return 1;
122 return 0;
123}
124
125static inline unsigned long long prof_ticks(struct task_struct *p)
126{
127 cputime_t utime, stime;
128
129 task_cputime(p, &utime, &stime);
130
131 return cputime_to_expires(utime + stime);
132}
133static inline unsigned long long virt_ticks(struct task_struct *p)
134{
135 cputime_t utime, stime;
136
137 task_cputime(p, &utime, &stime);
138
139 return cputime_to_expires(utime);
140}
141
142static int
143posix_cpu_clock_getres(const clockid_t which_clock, struct timespec *tp)
144{
145 int error = check_clock(which_clock);
146 if (!error) {
147 tp->tv_sec = 0;
148 tp->tv_nsec = ((NSEC_PER_SEC + HZ - 1) / HZ);
149 if (CPUCLOCK_WHICH(which_clock) == CPUCLOCK_SCHED) {
150 /*
151 * If sched_clock is using a cycle counter, we
152 * don't have any idea of its true resolution
153 * exported, but it is much more than 1s/HZ.
154 */
155 tp->tv_nsec = 1;
156 }
157 }
158 return error;
159}
160
161static int
162posix_cpu_clock_set(const clockid_t which_clock, const struct timespec *tp)
163{
164 /*
165 * You can never reset a CPU clock, but we check for other errors
166 * in the call before failing with EPERM.
167 */
168 int error = check_clock(which_clock);
169 if (error == 0) {
170 error = -EPERM;
171 }
172 return error;
173}
174
175
176/*
177 * Sample a per-thread clock for the given task.
178 */
179static int cpu_clock_sample(const clockid_t which_clock, struct task_struct *p,
180 unsigned long long *sample)
181{
182 switch (CPUCLOCK_WHICH(which_clock)) {
183 default:
184 return -EINVAL;
185 case CPUCLOCK_PROF:
186 *sample = prof_ticks(p);
187 break;
188 case CPUCLOCK_VIRT:
189 *sample = virt_ticks(p);
190 break;
191 case CPUCLOCK_SCHED:
192 *sample = task_sched_runtime(p);
193 break;
194 }
195 return 0;
196}
197
198/*
199 * Set cputime to sum_cputime if sum_cputime > cputime. Use cmpxchg
200 * to avoid race conditions with concurrent updates to cputime.
201 */
202static inline void __update_gt_cputime(atomic64_t *cputime, u64 sum_cputime)
203{
204 u64 curr_cputime;
205retry:
206 curr_cputime = atomic64_read(cputime);
207 if (sum_cputime > curr_cputime) {
208 if (atomic64_cmpxchg(cputime, curr_cputime, sum_cputime) != curr_cputime)
209 goto retry;
210 }
211}
212
213static void update_gt_cputime(struct task_cputime_atomic *cputime_atomic, struct task_cputime *sum)
214{
215 __update_gt_cputime(&cputime_atomic->utime, sum->utime);
216 __update_gt_cputime(&cputime_atomic->stime, sum->stime);
217 __update_gt_cputime(&cputime_atomic->sum_exec_runtime, sum->sum_exec_runtime);
218}
219
220/* Sample task_cputime_atomic values in "atomic_timers", store results in "times". */
221static inline void sample_cputime_atomic(struct task_cputime *times,
222 struct task_cputime_atomic *atomic_times)
223{
224 times->utime = atomic64_read(&atomic_times->utime);
225 times->stime = atomic64_read(&atomic_times->stime);
226 times->sum_exec_runtime = atomic64_read(&atomic_times->sum_exec_runtime);
227}
228
229void thread_group_cputimer(struct task_struct *tsk, struct task_cputime *times)
230{
231 struct thread_group_cputimer *cputimer = &tsk->signal->cputimer;
232 struct task_cputime sum;
233
234 /* Check if cputimer isn't running. This is accessed without locking. */
235 if (!READ_ONCE(cputimer->running)) {
236 /*
237 * The POSIX timer interface allows for absolute time expiry
238 * values through the TIMER_ABSTIME flag, therefore we have
239 * to synchronize the timer to the clock every time we start it.
240 */
241 thread_group_cputime(tsk, &sum);
242 update_gt_cputime(&cputimer->cputime_atomic, &sum);
243
244 /*
245 * We're setting cputimer->running without a lock. Ensure
246 * this only gets written to in one operation. We set
247 * running after update_gt_cputime() as a small optimization,
248 * but barriers are not required because update_gt_cputime()
249 * can handle concurrent updates.
250 */
251 WRITE_ONCE(cputimer->running, true);
252 }
253 sample_cputime_atomic(times, &cputimer->cputime_atomic);
254}
255
256/*
257 * Sample a process (thread group) clock for the given group_leader task.
258 * Must be called with task sighand lock held for safe while_each_thread()
259 * traversal.
260 */
261static int cpu_clock_sample_group(const clockid_t which_clock,
262 struct task_struct *p,
263 unsigned long long *sample)
264{
265 struct task_cputime cputime;
266
267 switch (CPUCLOCK_WHICH(which_clock)) {
268 default:
269 return -EINVAL;
270 case CPUCLOCK_PROF:
271 thread_group_cputime(p, &cputime);
272 *sample = cputime_to_expires(cputime.utime + cputime.stime);
273 break;
274 case CPUCLOCK_VIRT:
275 thread_group_cputime(p, &cputime);
276 *sample = cputime_to_expires(cputime.utime);
277 break;
278 case CPUCLOCK_SCHED:
279 thread_group_cputime(p, &cputime);
280 *sample = cputime.sum_exec_runtime;
281 break;
282 }
283 return 0;
284}
285
286static int posix_cpu_clock_get_task(struct task_struct *tsk,
287 const clockid_t which_clock,
288 struct timespec *tp)
289{
290 int err = -EINVAL;
291 unsigned long long rtn;
292
293 if (CPUCLOCK_PERTHREAD(which_clock)) {
294 if (same_thread_group(tsk, current))
295 err = cpu_clock_sample(which_clock, tsk, &rtn);
296 } else {
297 if (tsk == current || thread_group_leader(tsk))
298 err = cpu_clock_sample_group(which_clock, tsk, &rtn);
299 }
300
301 if (!err)
302 sample_to_timespec(which_clock, rtn, tp);
303
304 return err;
305}
306
307
308static int posix_cpu_clock_get(const clockid_t which_clock, struct timespec *tp)
309{
310 const pid_t pid = CPUCLOCK_PID(which_clock);
311 int err = -EINVAL;
312
313 if (pid == 0) {
314 /*
315 * Special case constant value for our own clocks.
316 * We don't have to do any lookup to find ourselves.
317 */
318 err = posix_cpu_clock_get_task(current, which_clock, tp);
319 } else {
320 /*
321 * Find the given PID, and validate that the caller
322 * should be able to see it.
323 */
324 struct task_struct *p;
325 rcu_read_lock();
326 p = find_task_by_vpid(pid);
327 if (p)
328 err = posix_cpu_clock_get_task(p, which_clock, tp);
329 rcu_read_unlock();
330 }
331
332 return err;
333}
334
335/*
336 * Validate the clockid_t for a new CPU-clock timer, and initialize the timer.
337 * This is called from sys_timer_create() and do_cpu_nanosleep() with the
338 * new timer already all-zeros initialized.
339 */
340static int posix_cpu_timer_create(struct k_itimer *new_timer)
341{
342 int ret = 0;
343 const pid_t pid = CPUCLOCK_PID(new_timer->it_clock);
344 struct task_struct *p;
345
346 if (CPUCLOCK_WHICH(new_timer->it_clock) >= CPUCLOCK_MAX)
347 return -EINVAL;
348
349 INIT_LIST_HEAD(&new_timer->it.cpu.entry);
350
351 rcu_read_lock();
352 if (CPUCLOCK_PERTHREAD(new_timer->it_clock)) {
353 if (pid == 0) {
354 p = current;
355 } else {
356 p = find_task_by_vpid(pid);
357 if (p && !same_thread_group(p, current))
358 p = NULL;
359 }
360 } else {
361 if (pid == 0) {
362 p = current->group_leader;
363 } else {
364 p = find_task_by_vpid(pid);
365 if (p && !has_group_leader_pid(p))
366 p = NULL;
367 }
368 }
369 new_timer->it.cpu.task = p;
370 if (p) {
371 get_task_struct(p);
372 } else {
373 ret = -EINVAL;
374 }
375 rcu_read_unlock();
376
377 return ret;
378}
379
380/*
381 * Clean up a CPU-clock timer that is about to be destroyed.
382 * This is called from timer deletion with the timer already locked.
383 * If we return TIMER_RETRY, it's necessary to release the timer's lock
384 * and try again. (This happens when the timer is in the middle of firing.)
385 */
386static int posix_cpu_timer_del(struct k_itimer *timer)
387{
388 int ret = 0;
389 unsigned long flags;
390 struct sighand_struct *sighand;
391 struct task_struct *p = timer->it.cpu.task;
392
393 WARN_ON_ONCE(p == NULL);
394
395 /*
396 * Protect against sighand release/switch in exit/exec and process/
397 * thread timer list entry concurrent read/writes.
398 */
399 sighand = lock_task_sighand(p, &flags);
400 if (unlikely(sighand == NULL)) {
401 /*
402 * We raced with the reaping of the task.
403 * The deletion should have cleared us off the list.
404 */
405 WARN_ON_ONCE(!list_empty(&timer->it.cpu.entry));
406 } else {
407 if (timer->it.cpu.firing)
408 ret = TIMER_RETRY;
409 else
410 list_del(&timer->it.cpu.entry);
411
412 unlock_task_sighand(p, &flags);
413 }
414
415 if (!ret)
416 put_task_struct(p);
417
418 return ret;
419}
420
421static void cleanup_timers_list(struct list_head *head)
422{
423 struct cpu_timer_list *timer, *next;
424
425 list_for_each_entry_safe(timer, next, head, entry)
426 list_del_init(&timer->entry);
427}
428
429/*
430 * Clean out CPU timers still ticking when a thread exited. The task
431 * pointer is cleared, and the expiry time is replaced with the residual
432 * time for later timer_gettime calls to return.
433 * This must be called with the siglock held.
434 */
435static void cleanup_timers(struct list_head *head)
436{
437 cleanup_timers_list(head);
438 cleanup_timers_list(++head);
439 cleanup_timers_list(++head);
440}
441
442/*
443 * These are both called with the siglock held, when the current thread
444 * is being reaped. When the final (leader) thread in the group is reaped,
445 * posix_cpu_timers_exit_group will be called after posix_cpu_timers_exit.
446 */
447void posix_cpu_timers_exit(struct task_struct *tsk)
448{
449 cleanup_timers(tsk->cpu_timers);
450}
451void posix_cpu_timers_exit_group(struct task_struct *tsk)
452{
453 cleanup_timers(tsk->signal->cpu_timers);
454}
455
456static inline int expires_gt(cputime_t expires, cputime_t new_exp)
457{
458 return expires == 0 || expires > new_exp;
459}
460
461/*
462 * Insert the timer on the appropriate list before any timers that
463 * expire later. This must be called with the sighand lock held.
464 */
465static void arm_timer(struct k_itimer *timer)
466{
467 struct task_struct *p = timer->it.cpu.task;
468 struct list_head *head, *listpos;
469 struct task_cputime *cputime_expires;
470 struct cpu_timer_list *const nt = &timer->it.cpu;
471 struct cpu_timer_list *next;
472
473 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
474 head = p->cpu_timers;
475 cputime_expires = &p->cputime_expires;
476 } else {
477 head = p->signal->cpu_timers;
478 cputime_expires = &p->signal->cputime_expires;
479 }
480 head += CPUCLOCK_WHICH(timer->it_clock);
481
482 listpos = head;
483 list_for_each_entry(next, head, entry) {
484 if (nt->expires < next->expires)
485 break;
486 listpos = &next->entry;
487 }
488 list_add(&nt->entry, listpos);
489
490 if (listpos == head) {
491 unsigned long long exp = nt->expires;
492
493 /*
494 * We are the new earliest-expiring POSIX 1.b timer, hence
495 * need to update expiration cache. Take into account that
496 * for process timers we share expiration cache with itimers
497 * and RLIMIT_CPU and for thread timers with RLIMIT_RTTIME.
498 */
499
500 switch (CPUCLOCK_WHICH(timer->it_clock)) {
501 case CPUCLOCK_PROF:
502 if (expires_gt(cputime_expires->prof_exp, expires_to_cputime(exp)))
503 cputime_expires->prof_exp = expires_to_cputime(exp);
504 break;
505 case CPUCLOCK_VIRT:
506 if (expires_gt(cputime_expires->virt_exp, expires_to_cputime(exp)))
507 cputime_expires->virt_exp = expires_to_cputime(exp);
508 break;
509 case CPUCLOCK_SCHED:
510 if (cputime_expires->sched_exp == 0 ||
511 cputime_expires->sched_exp > exp)
512 cputime_expires->sched_exp = exp;
513 break;
514 }
515 if (CPUCLOCK_PERTHREAD(timer->it_clock))
516 tick_dep_set_task(p, TICK_DEP_BIT_POSIX_TIMER);
517 else
518 tick_dep_set_signal(p->signal, TICK_DEP_BIT_POSIX_TIMER);
519 }
520}
521
522/*
523 * The timer is locked, fire it and arrange for its reload.
524 */
525static void cpu_timer_fire(struct k_itimer *timer)
526{
527 if ((timer->it_sigev_notify & ~SIGEV_THREAD_ID) == SIGEV_NONE) {
528 /*
529 * User don't want any signal.
530 */
531 timer->it.cpu.expires = 0;
532 } else if (unlikely(timer->sigq == NULL)) {
533 /*
534 * This a special case for clock_nanosleep,
535 * not a normal timer from sys_timer_create.
536 */
537 wake_up_process(timer->it_process);
538 timer->it.cpu.expires = 0;
539 } else if (timer->it.cpu.incr == 0) {
540 /*
541 * One-shot timer. Clear it as soon as it's fired.
542 */
543 posix_timer_event(timer, 0);
544 timer->it.cpu.expires = 0;
545 } else if (posix_timer_event(timer, ++timer->it_requeue_pending)) {
546 /*
547 * The signal did not get queued because the signal
548 * was ignored, so we won't get any callback to
549 * reload the timer. But we need to keep it
550 * ticking in case the signal is deliverable next time.
551 */
552 posix_cpu_timer_schedule(timer);
553 }
554}
555
556/*
557 * Sample a process (thread group) timer for the given group_leader task.
558 * Must be called with task sighand lock held for safe while_each_thread()
559 * traversal.
560 */
561static int cpu_timer_sample_group(const clockid_t which_clock,
562 struct task_struct *p,
563 unsigned long long *sample)
564{
565 struct task_cputime cputime;
566
567 thread_group_cputimer(p, &cputime);
568 switch (CPUCLOCK_WHICH(which_clock)) {
569 default:
570 return -EINVAL;
571 case CPUCLOCK_PROF:
572 *sample = cputime_to_expires(cputime.utime + cputime.stime);
573 break;
574 case CPUCLOCK_VIRT:
575 *sample = cputime_to_expires(cputime.utime);
576 break;
577 case CPUCLOCK_SCHED:
578 *sample = cputime.sum_exec_runtime;
579 break;
580 }
581 return 0;
582}
583
584/*
585 * Guts of sys_timer_settime for CPU timers.
586 * This is called with the timer locked and interrupts disabled.
587 * If we return TIMER_RETRY, it's necessary to release the timer's lock
588 * and try again. (This happens when the timer is in the middle of firing.)
589 */
590static int posix_cpu_timer_set(struct k_itimer *timer, int timer_flags,
591 struct itimerspec *new, struct itimerspec *old)
592{
593 unsigned long flags;
594 struct sighand_struct *sighand;
595 struct task_struct *p = timer->it.cpu.task;
596 unsigned long long old_expires, new_expires, old_incr, val;
597 int ret;
598
599 WARN_ON_ONCE(p == NULL);
600
601 new_expires = timespec_to_sample(timer->it_clock, &new->it_value);
602
603 /*
604 * Protect against sighand release/switch in exit/exec and p->cpu_timers
605 * and p->signal->cpu_timers read/write in arm_timer()
606 */
607 sighand = lock_task_sighand(p, &flags);
608 /*
609 * If p has just been reaped, we can no
610 * longer get any information about it at all.
611 */
612 if (unlikely(sighand == NULL)) {
613 return -ESRCH;
614 }
615
616 /*
617 * Disarm any old timer after extracting its expiry time.
618 */
619 WARN_ON_ONCE(!irqs_disabled());
620
621 ret = 0;
622 old_incr = timer->it.cpu.incr;
623 old_expires = timer->it.cpu.expires;
624 if (unlikely(timer->it.cpu.firing)) {
625 timer->it.cpu.firing = -1;
626 ret = TIMER_RETRY;
627 } else
628 list_del_init(&timer->it.cpu.entry);
629
630 /*
631 * We need to sample the current value to convert the new
632 * value from to relative and absolute, and to convert the
633 * old value from absolute to relative. To set a process
634 * timer, we need a sample to balance the thread expiry
635 * times (in arm_timer). With an absolute time, we must
636 * check if it's already passed. In short, we need a sample.
637 */
638 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
639 cpu_clock_sample(timer->it_clock, p, &val);
640 } else {
641 cpu_timer_sample_group(timer->it_clock, p, &val);
642 }
643
644 if (old) {
645 if (old_expires == 0) {
646 old->it_value.tv_sec = 0;
647 old->it_value.tv_nsec = 0;
648 } else {
649 /*
650 * Update the timer in case it has
651 * overrun already. If it has,
652 * we'll report it as having overrun
653 * and with the next reloaded timer
654 * already ticking, though we are
655 * swallowing that pending
656 * notification here to install the
657 * new setting.
658 */
659 bump_cpu_timer(timer, val);
660 if (val < timer->it.cpu.expires) {
661 old_expires = timer->it.cpu.expires - val;
662 sample_to_timespec(timer->it_clock,
663 old_expires,
664 &old->it_value);
665 } else {
666 old->it_value.tv_nsec = 1;
667 old->it_value.tv_sec = 0;
668 }
669 }
670 }
671
672 if (unlikely(ret)) {
673 /*
674 * We are colliding with the timer actually firing.
675 * Punt after filling in the timer's old value, and
676 * disable this firing since we are already reporting
677 * it as an overrun (thanks to bump_cpu_timer above).
678 */
679 unlock_task_sighand(p, &flags);
680 goto out;
681 }
682
683 if (new_expires != 0 && !(timer_flags & TIMER_ABSTIME)) {
684 new_expires += val;
685 }
686
687 /*
688 * Install the new expiry time (or zero).
689 * For a timer with no notification action, we don't actually
690 * arm the timer (we'll just fake it for timer_gettime).
691 */
692 timer->it.cpu.expires = new_expires;
693 if (new_expires != 0 && val < new_expires) {
694 arm_timer(timer);
695 }
696
697 unlock_task_sighand(p, &flags);
698 /*
699 * Install the new reload setting, and
700 * set up the signal and overrun bookkeeping.
701 */
702 timer->it.cpu.incr = timespec_to_sample(timer->it_clock,
703 &new->it_interval);
704
705 /*
706 * This acts as a modification timestamp for the timer,
707 * so any automatic reload attempt will punt on seeing
708 * that we have reset the timer manually.
709 */
710 timer->it_requeue_pending = (timer->it_requeue_pending + 2) &
711 ~REQUEUE_PENDING;
712 timer->it_overrun_last = 0;
713 timer->it_overrun = -1;
714
715 if (new_expires != 0 && !(val < new_expires)) {
716 /*
717 * The designated time already passed, so we notify
718 * immediately, even if the thread never runs to
719 * accumulate more time on this clock.
720 */
721 cpu_timer_fire(timer);
722 }
723
724 ret = 0;
725 out:
726 if (old) {
727 sample_to_timespec(timer->it_clock,
728 old_incr, &old->it_interval);
729 }
730
731 return ret;
732}
733
734static void posix_cpu_timer_get(struct k_itimer *timer, struct itimerspec *itp)
735{
736 unsigned long long now;
737 struct task_struct *p = timer->it.cpu.task;
738
739 WARN_ON_ONCE(p == NULL);
740
741 /*
742 * Easy part: convert the reload time.
743 */
744 sample_to_timespec(timer->it_clock,
745 timer->it.cpu.incr, &itp->it_interval);
746
747 if (timer->it.cpu.expires == 0) { /* Timer not armed at all. */
748 itp->it_value.tv_sec = itp->it_value.tv_nsec = 0;
749 return;
750 }
751
752 /*
753 * Sample the clock to take the difference with the expiry time.
754 */
755 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
756 cpu_clock_sample(timer->it_clock, p, &now);
757 } else {
758 struct sighand_struct *sighand;
759 unsigned long flags;
760
761 /*
762 * Protect against sighand release/switch in exit/exec and
763 * also make timer sampling safe if it ends up calling
764 * thread_group_cputime().
765 */
766 sighand = lock_task_sighand(p, &flags);
767 if (unlikely(sighand == NULL)) {
768 /*
769 * The process has been reaped.
770 * We can't even collect a sample any more.
771 * Call the timer disarmed, nothing else to do.
772 */
773 timer->it.cpu.expires = 0;
774 sample_to_timespec(timer->it_clock, timer->it.cpu.expires,
775 &itp->it_value);
776 return;
777 } else {
778 cpu_timer_sample_group(timer->it_clock, p, &now);
779 unlock_task_sighand(p, &flags);
780 }
781 }
782
783 if (now < timer->it.cpu.expires) {
784 sample_to_timespec(timer->it_clock,
785 timer->it.cpu.expires - now,
786 &itp->it_value);
787 } else {
788 /*
789 * The timer should have expired already, but the firing
790 * hasn't taken place yet. Say it's just about to expire.
791 */
792 itp->it_value.tv_nsec = 1;
793 itp->it_value.tv_sec = 0;
794 }
795}
796
797static unsigned long long
798check_timers_list(struct list_head *timers,
799 struct list_head *firing,
800 unsigned long long curr)
801{
802 int maxfire = 20;
803
804 while (!list_empty(timers)) {
805 struct cpu_timer_list *t;
806
807 t = list_first_entry(timers, struct cpu_timer_list, entry);
808
809 if (!--maxfire || curr < t->expires)
810 return t->expires;
811
812 t->firing = 1;
813 list_move_tail(&t->entry, firing);
814 }
815
816 return 0;
817}
818
819/*
820 * Check for any per-thread CPU timers that have fired and move them off
821 * the tsk->cpu_timers[N] list onto the firing list. Here we update the
822 * tsk->it_*_expires values to reflect the remaining thread CPU timers.
823 */
824static void check_thread_timers(struct task_struct *tsk,
825 struct list_head *firing)
826{
827 struct list_head *timers = tsk->cpu_timers;
828 struct signal_struct *const sig = tsk->signal;
829 struct task_cputime *tsk_expires = &tsk->cputime_expires;
830 unsigned long long expires;
831 unsigned long soft;
832
833 /*
834 * If cputime_expires is zero, then there are no active
835 * per thread CPU timers.
836 */
837 if (task_cputime_zero(&tsk->cputime_expires))
838 return;
839
840 expires = check_timers_list(timers, firing, prof_ticks(tsk));
841 tsk_expires->prof_exp = expires_to_cputime(expires);
842
843 expires = check_timers_list(++timers, firing, virt_ticks(tsk));
844 tsk_expires->virt_exp = expires_to_cputime(expires);
845
846 tsk_expires->sched_exp = check_timers_list(++timers, firing,
847 tsk->se.sum_exec_runtime);
848
849 /*
850 * Check for the special case thread timers.
851 */
852 soft = READ_ONCE(sig->rlim[RLIMIT_RTTIME].rlim_cur);
853 if (soft != RLIM_INFINITY) {
854 unsigned long hard =
855 READ_ONCE(sig->rlim[RLIMIT_RTTIME].rlim_max);
856
857 if (hard != RLIM_INFINITY &&
858 tsk->rt.timeout > DIV_ROUND_UP(hard, USEC_PER_SEC/HZ)) {
859 /*
860 * At the hard limit, we just die.
861 * No need to calculate anything else now.
862 */
863 __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
864 return;
865 }
866 if (tsk->rt.timeout > DIV_ROUND_UP(soft, USEC_PER_SEC/HZ)) {
867 /*
868 * At the soft limit, send a SIGXCPU every second.
869 */
870 if (soft < hard) {
871 soft += USEC_PER_SEC;
872 sig->rlim[RLIMIT_RTTIME].rlim_cur = soft;
873 }
874 printk(KERN_INFO
875 "RT Watchdog Timeout: %s[%d]\n",
876 tsk->comm, task_pid_nr(tsk));
877 __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
878 }
879 }
880 if (task_cputime_zero(tsk_expires))
881 tick_dep_clear_task(tsk, TICK_DEP_BIT_POSIX_TIMER);
882}
883
884static inline void stop_process_timers(struct signal_struct *sig)
885{
886 struct thread_group_cputimer *cputimer = &sig->cputimer;
887
888 /* Turn off cputimer->running. This is done without locking. */
889 WRITE_ONCE(cputimer->running, false);
890 tick_dep_clear_signal(sig, TICK_DEP_BIT_POSIX_TIMER);
891}
892
893static u32 onecputick;
894
895static void check_cpu_itimer(struct task_struct *tsk, struct cpu_itimer *it,
896 unsigned long long *expires,
897 unsigned long long cur_time, int signo)
898{
899 if (!it->expires)
900 return;
901
902 if (cur_time >= it->expires) {
903 if (it->incr) {
904 it->expires += it->incr;
905 it->error += it->incr_error;
906 if (it->error >= onecputick) {
907 it->expires -= cputime_one_jiffy;
908 it->error -= onecputick;
909 }
910 } else {
911 it->expires = 0;
912 }
913
914 trace_itimer_expire(signo == SIGPROF ?
915 ITIMER_PROF : ITIMER_VIRTUAL,
916 tsk->signal->leader_pid, cur_time);
917 __group_send_sig_info(signo, SEND_SIG_PRIV, tsk);
918 }
919
920 if (it->expires && (!*expires || it->expires < *expires)) {
921 *expires = it->expires;
922 }
923}
924
925/*
926 * Check for any per-thread CPU timers that have fired and move them
927 * off the tsk->*_timers list onto the firing list. Per-thread timers
928 * have already been taken off.
929 */
930static void check_process_timers(struct task_struct *tsk,
931 struct list_head *firing)
932{
933 struct signal_struct *const sig = tsk->signal;
934 unsigned long long utime, ptime, virt_expires, prof_expires;
935 unsigned long long sum_sched_runtime, sched_expires;
936 struct list_head *timers = sig->cpu_timers;
937 struct task_cputime cputime;
938 unsigned long soft;
939
940 /*
941 * If cputimer is not running, then there are no active
942 * process wide timers (POSIX 1.b, itimers, RLIMIT_CPU).
943 */
944 if (!READ_ONCE(tsk->signal->cputimer.running))
945 return;
946
947 /*
948 * Signify that a thread is checking for process timers.
949 * Write access to this field is protected by the sighand lock.
950 */
951 sig->cputimer.checking_timer = true;
952
953 /*
954 * Collect the current process totals.
955 */
956 thread_group_cputimer(tsk, &cputime);
957 utime = cputime_to_expires(cputime.utime);
958 ptime = utime + cputime_to_expires(cputime.stime);
959 sum_sched_runtime = cputime.sum_exec_runtime;
960
961 prof_expires = check_timers_list(timers, firing, ptime);
962 virt_expires = check_timers_list(++timers, firing, utime);
963 sched_expires = check_timers_list(++timers, firing, sum_sched_runtime);
964
965 /*
966 * Check for the special case process timers.
967 */
968 check_cpu_itimer(tsk, &sig->it[CPUCLOCK_PROF], &prof_expires, ptime,
969 SIGPROF);
970 check_cpu_itimer(tsk, &sig->it[CPUCLOCK_VIRT], &virt_expires, utime,
971 SIGVTALRM);
972 soft = READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_cur);
973 if (soft != RLIM_INFINITY) {
974 unsigned long psecs = cputime_to_secs(ptime);
975 unsigned long hard =
976 READ_ONCE(sig->rlim[RLIMIT_CPU].rlim_max);
977 cputime_t x;
978 if (psecs >= hard) {
979 /*
980 * At the hard limit, we just die.
981 * No need to calculate anything else now.
982 */
983 __group_send_sig_info(SIGKILL, SEND_SIG_PRIV, tsk);
984 return;
985 }
986 if (psecs >= soft) {
987 /*
988 * At the soft limit, send a SIGXCPU every second.
989 */
990 __group_send_sig_info(SIGXCPU, SEND_SIG_PRIV, tsk);
991 if (soft < hard) {
992 soft++;
993 sig->rlim[RLIMIT_CPU].rlim_cur = soft;
994 }
995 }
996 x = secs_to_cputime(soft);
997 if (!prof_expires || x < prof_expires) {
998 prof_expires = x;
999 }
1000 }
1001
1002 sig->cputime_expires.prof_exp = expires_to_cputime(prof_expires);
1003 sig->cputime_expires.virt_exp = expires_to_cputime(virt_expires);
1004 sig->cputime_expires.sched_exp = sched_expires;
1005 if (task_cputime_zero(&sig->cputime_expires))
1006 stop_process_timers(sig);
1007
1008 sig->cputimer.checking_timer = false;
1009}
1010
1011/*
1012 * This is called from the signal code (via do_schedule_next_timer)
1013 * when the last timer signal was delivered and we have to reload the timer.
1014 */
1015void posix_cpu_timer_schedule(struct k_itimer *timer)
1016{
1017 struct sighand_struct *sighand;
1018 unsigned long flags;
1019 struct task_struct *p = timer->it.cpu.task;
1020 unsigned long long now;
1021
1022 WARN_ON_ONCE(p == NULL);
1023
1024 /*
1025 * Fetch the current sample and update the timer's expiry time.
1026 */
1027 if (CPUCLOCK_PERTHREAD(timer->it_clock)) {
1028 cpu_clock_sample(timer->it_clock, p, &now);
1029 bump_cpu_timer(timer, now);
1030 if (unlikely(p->exit_state))
1031 goto out;
1032
1033 /* Protect timer list r/w in arm_timer() */
1034 sighand = lock_task_sighand(p, &flags);
1035 if (!sighand)
1036 goto out;
1037 } else {
1038 /*
1039 * Protect arm_timer() and timer sampling in case of call to
1040 * thread_group_cputime().
1041 */
1042 sighand = lock_task_sighand(p, &flags);
1043 if (unlikely(sighand == NULL)) {
1044 /*
1045 * The process has been reaped.
1046 * We can't even collect a sample any more.
1047 */
1048 timer->it.cpu.expires = 0;
1049 goto out;
1050 } else if (unlikely(p->exit_state) && thread_group_empty(p)) {
1051 unlock_task_sighand(p, &flags);
1052 /* Optimizations: if the process is dying, no need to rearm */
1053 goto out;
1054 }
1055 cpu_timer_sample_group(timer->it_clock, p, &now);
1056 bump_cpu_timer(timer, now);
1057 /* Leave the sighand locked for the call below. */
1058 }
1059
1060 /*
1061 * Now re-arm for the new expiry time.
1062 */
1063 WARN_ON_ONCE(!irqs_disabled());
1064 arm_timer(timer);
1065 unlock_task_sighand(p, &flags);
1066
1067out:
1068 timer->it_overrun_last = timer->it_overrun;
1069 timer->it_overrun = -1;
1070 ++timer->it_requeue_pending;
1071}
1072
1073/**
1074 * task_cputime_expired - Compare two task_cputime entities.
1075 *
1076 * @sample: The task_cputime structure to be checked for expiration.
1077 * @expires: Expiration times, against which @sample will be checked.
1078 *
1079 * Checks @sample against @expires to see if any field of @sample has expired.
1080 * Returns true if any field of the former is greater than the corresponding
1081 * field of the latter if the latter field is set. Otherwise returns false.
1082 */
1083static inline int task_cputime_expired(const struct task_cputime *sample,
1084 const struct task_cputime *expires)
1085{
1086 if (expires->utime && sample->utime >= expires->utime)
1087 return 1;
1088 if (expires->stime && sample->utime + sample->stime >= expires->stime)
1089 return 1;
1090 if (expires->sum_exec_runtime != 0 &&
1091 sample->sum_exec_runtime >= expires->sum_exec_runtime)
1092 return 1;
1093 return 0;
1094}
1095
1096/**
1097 * fastpath_timer_check - POSIX CPU timers fast path.
1098 *
1099 * @tsk: The task (thread) being checked.
1100 *
1101 * Check the task and thread group timers. If both are zero (there are no
1102 * timers set) return false. Otherwise snapshot the task and thread group
1103 * timers and compare them with the corresponding expiration times. Return
1104 * true if a timer has expired, else return false.
1105 */
1106static inline int fastpath_timer_check(struct task_struct *tsk)
1107{
1108 struct signal_struct *sig;
1109
1110 if (!task_cputime_zero(&tsk->cputime_expires)) {
1111 struct task_cputime task_sample;
1112
1113 task_cputime(tsk, &task_sample.utime, &task_sample.stime);
1114 task_sample.sum_exec_runtime = tsk->se.sum_exec_runtime;
1115 if (task_cputime_expired(&task_sample, &tsk->cputime_expires))
1116 return 1;
1117 }
1118
1119 sig = tsk->signal;
1120 /*
1121 * Check if thread group timers expired when the cputimer is
1122 * running and no other thread in the group is already checking
1123 * for thread group cputimers. These fields are read without the
1124 * sighand lock. However, this is fine because this is meant to
1125 * be a fastpath heuristic to determine whether we should try to
1126 * acquire the sighand lock to check/handle timers.
1127 *
1128 * In the worst case scenario, if 'running' or 'checking_timer' gets
1129 * set but the current thread doesn't see the change yet, we'll wait
1130 * until the next thread in the group gets a scheduler interrupt to
1131 * handle the timer. This isn't an issue in practice because these
1132 * types of delays with signals actually getting sent are expected.
1133 */
1134 if (READ_ONCE(sig->cputimer.running) &&
1135 !READ_ONCE(sig->cputimer.checking_timer)) {
1136 struct task_cputime group_sample;
1137
1138 sample_cputime_atomic(&group_sample, &sig->cputimer.cputime_atomic);
1139
1140 if (task_cputime_expired(&group_sample, &sig->cputime_expires))
1141 return 1;
1142 }
1143
1144 return 0;
1145}
1146
1147/*
1148 * This is called from the timer interrupt handler. The irq handler has
1149 * already updated our counts. We need to check if any timers fire now.
1150 * Interrupts are disabled.
1151 */
1152void run_posix_cpu_timers(struct task_struct *tsk)
1153{
1154 LIST_HEAD(firing);
1155 struct k_itimer *timer, *next;
1156 unsigned long flags;
1157
1158 WARN_ON_ONCE(!irqs_disabled());
1159
1160 /*
1161 * The fast path checks that there are no expired thread or thread
1162 * group timers. If that's so, just return.
1163 */
1164 if (!fastpath_timer_check(tsk))
1165 return;
1166
1167 if (!lock_task_sighand(tsk, &flags))
1168 return;
1169 /*
1170 * Here we take off tsk->signal->cpu_timers[N] and
1171 * tsk->cpu_timers[N] all the timers that are firing, and
1172 * put them on the firing list.
1173 */
1174 check_thread_timers(tsk, &firing);
1175
1176 check_process_timers(tsk, &firing);
1177
1178 /*
1179 * We must release these locks before taking any timer's lock.
1180 * There is a potential race with timer deletion here, as the
1181 * siglock now protects our private firing list. We have set
1182 * the firing flag in each timer, so that a deletion attempt
1183 * that gets the timer lock before we do will give it up and
1184 * spin until we've taken care of that timer below.
1185 */
1186 unlock_task_sighand(tsk, &flags);
1187
1188 /*
1189 * Now that all the timers on our list have the firing flag,
1190 * no one will touch their list entries but us. We'll take
1191 * each timer's lock before clearing its firing flag, so no
1192 * timer call will interfere.
1193 */
1194 list_for_each_entry_safe(timer, next, &firing, it.cpu.entry) {
1195 int cpu_firing;
1196
1197 spin_lock(&timer->it_lock);
1198 list_del_init(&timer->it.cpu.entry);
1199 cpu_firing = timer->it.cpu.firing;
1200 timer->it.cpu.firing = 0;
1201 /*
1202 * The firing flag is -1 if we collided with a reset
1203 * of the timer, which already reported this
1204 * almost-firing as an overrun. So don't generate an event.
1205 */
1206 if (likely(cpu_firing >= 0))
1207 cpu_timer_fire(timer);
1208 spin_unlock(&timer->it_lock);
1209 }
1210}
1211
1212/*
1213 * Set one of the process-wide special case CPU timers or RLIMIT_CPU.
1214 * The tsk->sighand->siglock must be held by the caller.
1215 */
1216void set_process_cpu_timer(struct task_struct *tsk, unsigned int clock_idx,
1217 cputime_t *newval, cputime_t *oldval)
1218{
1219 unsigned long long now;
1220
1221 WARN_ON_ONCE(clock_idx == CPUCLOCK_SCHED);
1222 cpu_timer_sample_group(clock_idx, tsk, &now);
1223
1224 if (oldval) {
1225 /*
1226 * We are setting itimer. The *oldval is absolute and we update
1227 * it to be relative, *newval argument is relative and we update
1228 * it to be absolute.
1229 */
1230 if (*oldval) {
1231 if (*oldval <= now) {
1232 /* Just about to fire. */
1233 *oldval = cputime_one_jiffy;
1234 } else {
1235 *oldval -= now;
1236 }
1237 }
1238
1239 if (!*newval)
1240 return;
1241 *newval += now;
1242 }
1243
1244 /*
1245 * Update expiration cache if we are the earliest timer, or eventually
1246 * RLIMIT_CPU limit is earlier than prof_exp cpu timer expire.
1247 */
1248 switch (clock_idx) {
1249 case CPUCLOCK_PROF:
1250 if (expires_gt(tsk->signal->cputime_expires.prof_exp, *newval))
1251 tsk->signal->cputime_expires.prof_exp = *newval;
1252 break;
1253 case CPUCLOCK_VIRT:
1254 if (expires_gt(tsk->signal->cputime_expires.virt_exp, *newval))
1255 tsk->signal->cputime_expires.virt_exp = *newval;
1256 break;
1257 }
1258
1259 tick_dep_set_signal(tsk->signal, TICK_DEP_BIT_POSIX_TIMER);
1260}
1261
1262static int do_cpu_nanosleep(const clockid_t which_clock, int flags,
1263 struct timespec *rqtp, struct itimerspec *it)
1264{
1265 struct k_itimer timer;
1266 int error;
1267
1268 /*
1269 * Set up a temporary timer and then wait for it to go off.
1270 */
1271 memset(&timer, 0, sizeof timer);
1272 spin_lock_init(&timer.it_lock);
1273 timer.it_clock = which_clock;
1274 timer.it_overrun = -1;
1275 error = posix_cpu_timer_create(&timer);
1276 timer.it_process = current;
1277 if (!error) {
1278 static struct itimerspec zero_it;
1279
1280 memset(it, 0, sizeof *it);
1281 it->it_value = *rqtp;
1282
1283 spin_lock_irq(&timer.it_lock);
1284 error = posix_cpu_timer_set(&timer, flags, it, NULL);
1285 if (error) {
1286 spin_unlock_irq(&timer.it_lock);
1287 return error;
1288 }
1289
1290 while (!signal_pending(current)) {
1291 if (timer.it.cpu.expires == 0) {
1292 /*
1293 * Our timer fired and was reset, below
1294 * deletion can not fail.
1295 */
1296 posix_cpu_timer_del(&timer);
1297 spin_unlock_irq(&timer.it_lock);
1298 return 0;
1299 }
1300
1301 /*
1302 * Block until cpu_timer_fire (or a signal) wakes us.
1303 */
1304 __set_current_state(TASK_INTERRUPTIBLE);
1305 spin_unlock_irq(&timer.it_lock);
1306 schedule();
1307 spin_lock_irq(&timer.it_lock);
1308 }
1309
1310 /*
1311 * We were interrupted by a signal.
1312 */
1313 sample_to_timespec(which_clock, timer.it.cpu.expires, rqtp);
1314 error = posix_cpu_timer_set(&timer, 0, &zero_it, it);
1315 if (!error) {
1316 /*
1317 * Timer is now unarmed, deletion can not fail.
1318 */
1319 posix_cpu_timer_del(&timer);
1320 }
1321 spin_unlock_irq(&timer.it_lock);
1322
1323 while (error == TIMER_RETRY) {
1324 /*
1325 * We need to handle case when timer was or is in the
1326 * middle of firing. In other cases we already freed
1327 * resources.
1328 */
1329 spin_lock_irq(&timer.it_lock);
1330 error = posix_cpu_timer_del(&timer);
1331 spin_unlock_irq(&timer.it_lock);
1332 }
1333
1334 if ((it->it_value.tv_sec | it->it_value.tv_nsec) == 0) {
1335 /*
1336 * It actually did fire already.
1337 */
1338 return 0;
1339 }
1340
1341 error = -ERESTART_RESTARTBLOCK;
1342 }
1343
1344 return error;
1345}
1346
1347static long posix_cpu_nsleep_restart(struct restart_block *restart_block);
1348
1349static int posix_cpu_nsleep(const clockid_t which_clock, int flags,
1350 struct timespec *rqtp, struct timespec __user *rmtp)
1351{
1352 struct restart_block *restart_block = ¤t->restart_block;
1353 struct itimerspec it;
1354 int error;
1355
1356 /*
1357 * Diagnose required errors first.
1358 */
1359 if (CPUCLOCK_PERTHREAD(which_clock) &&
1360 (CPUCLOCK_PID(which_clock) == 0 ||
1361 CPUCLOCK_PID(which_clock) == current->pid))
1362 return -EINVAL;
1363
1364 error = do_cpu_nanosleep(which_clock, flags, rqtp, &it);
1365
1366 if (error == -ERESTART_RESTARTBLOCK) {
1367
1368 if (flags & TIMER_ABSTIME)
1369 return -ERESTARTNOHAND;
1370 /*
1371 * Report back to the user the time still remaining.
1372 */
1373 if (rmtp && copy_to_user(rmtp, &it.it_value, sizeof *rmtp))
1374 return -EFAULT;
1375
1376 restart_block->fn = posix_cpu_nsleep_restart;
1377 restart_block->nanosleep.clockid = which_clock;
1378 restart_block->nanosleep.rmtp = rmtp;
1379 restart_block->nanosleep.expires = timespec_to_ns(rqtp);
1380 }
1381 return error;
1382}
1383
1384static long posix_cpu_nsleep_restart(struct restart_block *restart_block)
1385{
1386 clockid_t which_clock = restart_block->nanosleep.clockid;
1387 struct timespec t;
1388 struct itimerspec it;
1389 int error;
1390
1391 t = ns_to_timespec(restart_block->nanosleep.expires);
1392
1393 error = do_cpu_nanosleep(which_clock, TIMER_ABSTIME, &t, &it);
1394
1395 if (error == -ERESTART_RESTARTBLOCK) {
1396 struct timespec __user *rmtp = restart_block->nanosleep.rmtp;
1397 /*
1398 * Report back to the user the time still remaining.
1399 */
1400 if (rmtp && copy_to_user(rmtp, &it.it_value, sizeof *rmtp))
1401 return -EFAULT;
1402
1403 restart_block->nanosleep.expires = timespec_to_ns(&t);
1404 }
1405 return error;
1406
1407}
1408
1409#define PROCESS_CLOCK MAKE_PROCESS_CPUCLOCK(0, CPUCLOCK_SCHED)
1410#define THREAD_CLOCK MAKE_THREAD_CPUCLOCK(0, CPUCLOCK_SCHED)
1411
1412static int process_cpu_clock_getres(const clockid_t which_clock,
1413 struct timespec *tp)
1414{
1415 return posix_cpu_clock_getres(PROCESS_CLOCK, tp);
1416}
1417static int process_cpu_clock_get(const clockid_t which_clock,
1418 struct timespec *tp)
1419{
1420 return posix_cpu_clock_get(PROCESS_CLOCK, tp);
1421}
1422static int process_cpu_timer_create(struct k_itimer *timer)
1423{
1424 timer->it_clock = PROCESS_CLOCK;
1425 return posix_cpu_timer_create(timer);
1426}
1427static int process_cpu_nsleep(const clockid_t which_clock, int flags,
1428 struct timespec *rqtp,
1429 struct timespec __user *rmtp)
1430{
1431 return posix_cpu_nsleep(PROCESS_CLOCK, flags, rqtp, rmtp);
1432}
1433static long process_cpu_nsleep_restart(struct restart_block *restart_block)
1434{
1435 return -EINVAL;
1436}
1437static int thread_cpu_clock_getres(const clockid_t which_clock,
1438 struct timespec *tp)
1439{
1440 return posix_cpu_clock_getres(THREAD_CLOCK, tp);
1441}
1442static int thread_cpu_clock_get(const clockid_t which_clock,
1443 struct timespec *tp)
1444{
1445 return posix_cpu_clock_get(THREAD_CLOCK, tp);
1446}
1447static int thread_cpu_timer_create(struct k_itimer *timer)
1448{
1449 timer->it_clock = THREAD_CLOCK;
1450 return posix_cpu_timer_create(timer);
1451}
1452
1453struct k_clock clock_posix_cpu = {
1454 .clock_getres = posix_cpu_clock_getres,
1455 .clock_set = posix_cpu_clock_set,
1456 .clock_get = posix_cpu_clock_get,
1457 .timer_create = posix_cpu_timer_create,
1458 .nsleep = posix_cpu_nsleep,
1459 .nsleep_restart = posix_cpu_nsleep_restart,
1460 .timer_set = posix_cpu_timer_set,
1461 .timer_del = posix_cpu_timer_del,
1462 .timer_get = posix_cpu_timer_get,
1463};
1464
1465static __init int init_posix_cpu_timers(void)
1466{
1467 struct k_clock process = {
1468 .clock_getres = process_cpu_clock_getres,
1469 .clock_get = process_cpu_clock_get,
1470 .timer_create = process_cpu_timer_create,
1471 .nsleep = process_cpu_nsleep,
1472 .nsleep_restart = process_cpu_nsleep_restart,
1473 };
1474 struct k_clock thread = {
1475 .clock_getres = thread_cpu_clock_getres,
1476 .clock_get = thread_cpu_clock_get,
1477 .timer_create = thread_cpu_timer_create,
1478 };
1479 struct timespec ts;
1480
1481 posix_timers_register_clock(CLOCK_PROCESS_CPUTIME_ID, &process);
1482 posix_timers_register_clock(CLOCK_THREAD_CPUTIME_ID, &thread);
1483
1484 cputime_to_timespec(cputime_one_jiffy, &ts);
1485 onecputick = ts.tv_nsec;
1486 WARN_ON(ts.tv_sec != 0);
1487
1488 return 0;
1489}
1490__initcall(init_posix_cpu_timers);