Linux Audio

Check our new training course

Embedded Linux training

Mar 31-Apr 8, 2025
Register
Loading...
Note: File does not exist in v3.15.
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Functions to manage eBPF programs attached to cgroups
   4 *
   5 * Copyright (c) 2016 Daniel Mack
   6 */
   7
   8#include <linux/kernel.h>
   9#include <linux/atomic.h>
  10#include <linux/cgroup.h>
  11#include <linux/filter.h>
  12#include <linux/slab.h>
  13#include <linux/sysctl.h>
  14#include <linux/string.h>
  15#include <linux/bpf.h>
  16#include <linux/bpf-cgroup.h>
  17#include <net/sock.h>
  18#include <net/bpf_sk_storage.h>
  19
  20#include "../cgroup/cgroup-internal.h"
  21
  22DEFINE_STATIC_KEY_ARRAY_FALSE(cgroup_bpf_enabled_key, MAX_BPF_ATTACH_TYPE);
  23EXPORT_SYMBOL(cgroup_bpf_enabled_key);
  24
  25void cgroup_bpf_offline(struct cgroup *cgrp)
  26{
  27	cgroup_get(cgrp);
  28	percpu_ref_kill(&cgrp->bpf.refcnt);
  29}
  30
  31static void bpf_cgroup_storages_free(struct bpf_cgroup_storage *storages[])
  32{
  33	enum bpf_cgroup_storage_type stype;
  34
  35	for_each_cgroup_storage_type(stype)
  36		bpf_cgroup_storage_free(storages[stype]);
  37}
  38
  39static int bpf_cgroup_storages_alloc(struct bpf_cgroup_storage *storages[],
  40				     struct bpf_cgroup_storage *new_storages[],
  41				     enum bpf_attach_type type,
  42				     struct bpf_prog *prog,
  43				     struct cgroup *cgrp)
  44{
  45	enum bpf_cgroup_storage_type stype;
  46	struct bpf_cgroup_storage_key key;
  47	struct bpf_map *map;
  48
  49	key.cgroup_inode_id = cgroup_id(cgrp);
  50	key.attach_type = type;
  51
  52	for_each_cgroup_storage_type(stype) {
  53		map = prog->aux->cgroup_storage[stype];
  54		if (!map)
  55			continue;
  56
  57		storages[stype] = cgroup_storage_lookup((void *)map, &key, false);
  58		if (storages[stype])
  59			continue;
  60
  61		storages[stype] = bpf_cgroup_storage_alloc(prog, stype);
  62		if (IS_ERR(storages[stype])) {
  63			bpf_cgroup_storages_free(new_storages);
  64			return -ENOMEM;
  65		}
  66
  67		new_storages[stype] = storages[stype];
  68	}
  69
  70	return 0;
  71}
  72
  73static void bpf_cgroup_storages_assign(struct bpf_cgroup_storage *dst[],
  74				       struct bpf_cgroup_storage *src[])
  75{
  76	enum bpf_cgroup_storage_type stype;
  77
  78	for_each_cgroup_storage_type(stype)
  79		dst[stype] = src[stype];
  80}
  81
  82static void bpf_cgroup_storages_link(struct bpf_cgroup_storage *storages[],
  83				     struct cgroup *cgrp,
  84				     enum bpf_attach_type attach_type)
  85{
  86	enum bpf_cgroup_storage_type stype;
  87
  88	for_each_cgroup_storage_type(stype)
  89		bpf_cgroup_storage_link(storages[stype], cgrp, attach_type);
  90}
  91
  92/* Called when bpf_cgroup_link is auto-detached from dying cgroup.
  93 * It drops cgroup and bpf_prog refcounts, and marks bpf_link as defunct. It
  94 * doesn't free link memory, which will eventually be done by bpf_link's
  95 * release() callback, when its last FD is closed.
  96 */
  97static void bpf_cgroup_link_auto_detach(struct bpf_cgroup_link *link)
  98{
  99	cgroup_put(link->cgroup);
 100	link->cgroup = NULL;
 101}
 102
 103/**
 104 * cgroup_bpf_release() - put references of all bpf programs and
 105 *                        release all cgroup bpf data
 106 * @work: work structure embedded into the cgroup to modify
 107 */
 108static void cgroup_bpf_release(struct work_struct *work)
 109{
 110	struct cgroup *p, *cgrp = container_of(work, struct cgroup,
 111					       bpf.release_work);
 112	struct bpf_prog_array *old_array;
 113	struct list_head *storages = &cgrp->bpf.storages;
 114	struct bpf_cgroup_storage *storage, *stmp;
 115
 116	unsigned int type;
 117
 118	mutex_lock(&cgroup_mutex);
 119
 120	for (type = 0; type < ARRAY_SIZE(cgrp->bpf.progs); type++) {
 121		struct list_head *progs = &cgrp->bpf.progs[type];
 122		struct bpf_prog_list *pl, *pltmp;
 123
 124		list_for_each_entry_safe(pl, pltmp, progs, node) {
 125			list_del(&pl->node);
 126			if (pl->prog)
 127				bpf_prog_put(pl->prog);
 128			if (pl->link)
 129				bpf_cgroup_link_auto_detach(pl->link);
 130			kfree(pl);
 131			static_branch_dec(&cgroup_bpf_enabled_key[type]);
 132		}
 133		old_array = rcu_dereference_protected(
 134				cgrp->bpf.effective[type],
 135				lockdep_is_held(&cgroup_mutex));
 136		bpf_prog_array_free(old_array);
 137	}
 138
 139	list_for_each_entry_safe(storage, stmp, storages, list_cg) {
 140		bpf_cgroup_storage_unlink(storage);
 141		bpf_cgroup_storage_free(storage);
 142	}
 143
 144	mutex_unlock(&cgroup_mutex);
 145
 146	for (p = cgroup_parent(cgrp); p; p = cgroup_parent(p))
 147		cgroup_bpf_put(p);
 148
 149	percpu_ref_exit(&cgrp->bpf.refcnt);
 150	cgroup_put(cgrp);
 151}
 152
 153/**
 154 * cgroup_bpf_release_fn() - callback used to schedule releasing
 155 *                           of bpf cgroup data
 156 * @ref: percpu ref counter structure
 157 */
 158static void cgroup_bpf_release_fn(struct percpu_ref *ref)
 159{
 160	struct cgroup *cgrp = container_of(ref, struct cgroup, bpf.refcnt);
 161
 162	INIT_WORK(&cgrp->bpf.release_work, cgroup_bpf_release);
 163	queue_work(system_wq, &cgrp->bpf.release_work);
 164}
 165
 166/* Get underlying bpf_prog of bpf_prog_list entry, regardless if it's through
 167 * link or direct prog.
 168 */
 169static struct bpf_prog *prog_list_prog(struct bpf_prog_list *pl)
 170{
 171	if (pl->prog)
 172		return pl->prog;
 173	if (pl->link)
 174		return pl->link->link.prog;
 175	return NULL;
 176}
 177
 178/* count number of elements in the list.
 179 * it's slow but the list cannot be long
 180 */
 181static u32 prog_list_length(struct list_head *head)
 182{
 183	struct bpf_prog_list *pl;
 184	u32 cnt = 0;
 185
 186	list_for_each_entry(pl, head, node) {
 187		if (!prog_list_prog(pl))
 188			continue;
 189		cnt++;
 190	}
 191	return cnt;
 192}
 193
 194/* if parent has non-overridable prog attached,
 195 * disallow attaching new programs to the descendent cgroup.
 196 * if parent has overridable or multi-prog, allow attaching
 197 */
 198static bool hierarchy_allows_attach(struct cgroup *cgrp,
 199				    enum bpf_attach_type type)
 200{
 201	struct cgroup *p;
 202
 203	p = cgroup_parent(cgrp);
 204	if (!p)
 205		return true;
 206	do {
 207		u32 flags = p->bpf.flags[type];
 208		u32 cnt;
 209
 210		if (flags & BPF_F_ALLOW_MULTI)
 211			return true;
 212		cnt = prog_list_length(&p->bpf.progs[type]);
 213		WARN_ON_ONCE(cnt > 1);
 214		if (cnt == 1)
 215			return !!(flags & BPF_F_ALLOW_OVERRIDE);
 216		p = cgroup_parent(p);
 217	} while (p);
 218	return true;
 219}
 220
 221/* compute a chain of effective programs for a given cgroup:
 222 * start from the list of programs in this cgroup and add
 223 * all parent programs.
 224 * Note that parent's F_ALLOW_OVERRIDE-type program is yielding
 225 * to programs in this cgroup
 226 */
 227static int compute_effective_progs(struct cgroup *cgrp,
 228				   enum bpf_attach_type type,
 229				   struct bpf_prog_array **array)
 230{
 231	struct bpf_prog_array_item *item;
 232	struct bpf_prog_array *progs;
 233	struct bpf_prog_list *pl;
 234	struct cgroup *p = cgrp;
 235	int cnt = 0;
 236
 237	/* count number of effective programs by walking parents */
 238	do {
 239		if (cnt == 0 || (p->bpf.flags[type] & BPF_F_ALLOW_MULTI))
 240			cnt += prog_list_length(&p->bpf.progs[type]);
 241		p = cgroup_parent(p);
 242	} while (p);
 243
 244	progs = bpf_prog_array_alloc(cnt, GFP_KERNEL);
 245	if (!progs)
 246		return -ENOMEM;
 247
 248	/* populate the array with effective progs */
 249	cnt = 0;
 250	p = cgrp;
 251	do {
 252		if (cnt > 0 && !(p->bpf.flags[type] & BPF_F_ALLOW_MULTI))
 253			continue;
 254
 255		list_for_each_entry(pl, &p->bpf.progs[type], node) {
 256			if (!prog_list_prog(pl))
 257				continue;
 258
 259			item = &progs->items[cnt];
 260			item->prog = prog_list_prog(pl);
 261			bpf_cgroup_storages_assign(item->cgroup_storage,
 262						   pl->storage);
 263			cnt++;
 264		}
 265	} while ((p = cgroup_parent(p)));
 266
 267	*array = progs;
 268	return 0;
 269}
 270
 271static void activate_effective_progs(struct cgroup *cgrp,
 272				     enum bpf_attach_type type,
 273				     struct bpf_prog_array *old_array)
 274{
 275	old_array = rcu_replace_pointer(cgrp->bpf.effective[type], old_array,
 276					lockdep_is_held(&cgroup_mutex));
 277	/* free prog array after grace period, since __cgroup_bpf_run_*()
 278	 * might be still walking the array
 279	 */
 280	bpf_prog_array_free(old_array);
 281}
 282
 283/**
 284 * cgroup_bpf_inherit() - inherit effective programs from parent
 285 * @cgrp: the cgroup to modify
 286 */
 287int cgroup_bpf_inherit(struct cgroup *cgrp)
 288{
 289/* has to use marco instead of const int, since compiler thinks
 290 * that array below is variable length
 291 */
 292#define	NR ARRAY_SIZE(cgrp->bpf.effective)
 293	struct bpf_prog_array *arrays[NR] = {};
 294	struct cgroup *p;
 295	int ret, i;
 296
 297	ret = percpu_ref_init(&cgrp->bpf.refcnt, cgroup_bpf_release_fn, 0,
 298			      GFP_KERNEL);
 299	if (ret)
 300		return ret;
 301
 302	for (p = cgroup_parent(cgrp); p; p = cgroup_parent(p))
 303		cgroup_bpf_get(p);
 304
 305	for (i = 0; i < NR; i++)
 306		INIT_LIST_HEAD(&cgrp->bpf.progs[i]);
 307
 308	INIT_LIST_HEAD(&cgrp->bpf.storages);
 309
 310	for (i = 0; i < NR; i++)
 311		if (compute_effective_progs(cgrp, i, &arrays[i]))
 312			goto cleanup;
 313
 314	for (i = 0; i < NR; i++)
 315		activate_effective_progs(cgrp, i, arrays[i]);
 316
 317	return 0;
 318cleanup:
 319	for (i = 0; i < NR; i++)
 320		bpf_prog_array_free(arrays[i]);
 321
 322	for (p = cgroup_parent(cgrp); p; p = cgroup_parent(p))
 323		cgroup_bpf_put(p);
 324
 325	percpu_ref_exit(&cgrp->bpf.refcnt);
 326
 327	return -ENOMEM;
 328}
 329
 330static int update_effective_progs(struct cgroup *cgrp,
 331				  enum bpf_attach_type type)
 332{
 333	struct cgroup_subsys_state *css;
 334	int err;
 335
 336	/* allocate and recompute effective prog arrays */
 337	css_for_each_descendant_pre(css, &cgrp->self) {
 338		struct cgroup *desc = container_of(css, struct cgroup, self);
 339
 340		if (percpu_ref_is_zero(&desc->bpf.refcnt))
 341			continue;
 342
 343		err = compute_effective_progs(desc, type, &desc->bpf.inactive);
 344		if (err)
 345			goto cleanup;
 346	}
 347
 348	/* all allocations were successful. Activate all prog arrays */
 349	css_for_each_descendant_pre(css, &cgrp->self) {
 350		struct cgroup *desc = container_of(css, struct cgroup, self);
 351
 352		if (percpu_ref_is_zero(&desc->bpf.refcnt)) {
 353			if (unlikely(desc->bpf.inactive)) {
 354				bpf_prog_array_free(desc->bpf.inactive);
 355				desc->bpf.inactive = NULL;
 356			}
 357			continue;
 358		}
 359
 360		activate_effective_progs(desc, type, desc->bpf.inactive);
 361		desc->bpf.inactive = NULL;
 362	}
 363
 364	return 0;
 365
 366cleanup:
 367	/* oom while computing effective. Free all computed effective arrays
 368	 * since they were not activated
 369	 */
 370	css_for_each_descendant_pre(css, &cgrp->self) {
 371		struct cgroup *desc = container_of(css, struct cgroup, self);
 372
 373		bpf_prog_array_free(desc->bpf.inactive);
 374		desc->bpf.inactive = NULL;
 375	}
 376
 377	return err;
 378}
 379
 380#define BPF_CGROUP_MAX_PROGS 64
 381
 382static struct bpf_prog_list *find_attach_entry(struct list_head *progs,
 383					       struct bpf_prog *prog,
 384					       struct bpf_cgroup_link *link,
 385					       struct bpf_prog *replace_prog,
 386					       bool allow_multi)
 387{
 388	struct bpf_prog_list *pl;
 389
 390	/* single-attach case */
 391	if (!allow_multi) {
 392		if (list_empty(progs))
 393			return NULL;
 394		return list_first_entry(progs, typeof(*pl), node);
 395	}
 396
 397	list_for_each_entry(pl, progs, node) {
 398		if (prog && pl->prog == prog && prog != replace_prog)
 399			/* disallow attaching the same prog twice */
 400			return ERR_PTR(-EINVAL);
 401		if (link && pl->link == link)
 402			/* disallow attaching the same link twice */
 403			return ERR_PTR(-EINVAL);
 404	}
 405
 406	/* direct prog multi-attach w/ replacement case */
 407	if (replace_prog) {
 408		list_for_each_entry(pl, progs, node) {
 409			if (pl->prog == replace_prog)
 410				/* a match found */
 411				return pl;
 412		}
 413		/* prog to replace not found for cgroup */
 414		return ERR_PTR(-ENOENT);
 415	}
 416
 417	return NULL;
 418}
 419
 420/**
 421 * __cgroup_bpf_attach() - Attach the program or the link to a cgroup, and
 422 *                         propagate the change to descendants
 423 * @cgrp: The cgroup which descendants to traverse
 424 * @prog: A program to attach
 425 * @link: A link to attach
 426 * @replace_prog: Previously attached program to replace if BPF_F_REPLACE is set
 427 * @type: Type of attach operation
 428 * @flags: Option flags
 429 *
 430 * Exactly one of @prog or @link can be non-null.
 431 * Must be called with cgroup_mutex held.
 432 */
 433int __cgroup_bpf_attach(struct cgroup *cgrp,
 434			struct bpf_prog *prog, struct bpf_prog *replace_prog,
 435			struct bpf_cgroup_link *link,
 436			enum bpf_attach_type type, u32 flags)
 437{
 438	u32 saved_flags = (flags & (BPF_F_ALLOW_OVERRIDE | BPF_F_ALLOW_MULTI));
 439	struct list_head *progs = &cgrp->bpf.progs[type];
 440	struct bpf_prog *old_prog = NULL;
 441	struct bpf_cgroup_storage *storage[MAX_BPF_CGROUP_STORAGE_TYPE] = {};
 442	struct bpf_cgroup_storage *new_storage[MAX_BPF_CGROUP_STORAGE_TYPE] = {};
 443	struct bpf_prog_list *pl;
 444	int err;
 445
 446	if (((flags & BPF_F_ALLOW_OVERRIDE) && (flags & BPF_F_ALLOW_MULTI)) ||
 447	    ((flags & BPF_F_REPLACE) && !(flags & BPF_F_ALLOW_MULTI)))
 448		/* invalid combination */
 449		return -EINVAL;
 450	if (link && (prog || replace_prog))
 451		/* only either link or prog/replace_prog can be specified */
 452		return -EINVAL;
 453	if (!!replace_prog != !!(flags & BPF_F_REPLACE))
 454		/* replace_prog implies BPF_F_REPLACE, and vice versa */
 455		return -EINVAL;
 456
 457	if (!hierarchy_allows_attach(cgrp, type))
 458		return -EPERM;
 459
 460	if (!list_empty(progs) && cgrp->bpf.flags[type] != saved_flags)
 461		/* Disallow attaching non-overridable on top
 462		 * of existing overridable in this cgroup.
 463		 * Disallow attaching multi-prog if overridable or none
 464		 */
 465		return -EPERM;
 466
 467	if (prog_list_length(progs) >= BPF_CGROUP_MAX_PROGS)
 468		return -E2BIG;
 469
 470	pl = find_attach_entry(progs, prog, link, replace_prog,
 471			       flags & BPF_F_ALLOW_MULTI);
 472	if (IS_ERR(pl))
 473		return PTR_ERR(pl);
 474
 475	if (bpf_cgroup_storages_alloc(storage, new_storage, type,
 476				      prog ? : link->link.prog, cgrp))
 477		return -ENOMEM;
 478
 479	if (pl) {
 480		old_prog = pl->prog;
 481	} else {
 482		pl = kmalloc(sizeof(*pl), GFP_KERNEL);
 483		if (!pl) {
 484			bpf_cgroup_storages_free(new_storage);
 485			return -ENOMEM;
 486		}
 487		list_add_tail(&pl->node, progs);
 488	}
 489
 490	pl->prog = prog;
 491	pl->link = link;
 492	bpf_cgroup_storages_assign(pl->storage, storage);
 493	cgrp->bpf.flags[type] = saved_flags;
 494
 495	err = update_effective_progs(cgrp, type);
 496	if (err)
 497		goto cleanup;
 498
 499	if (old_prog)
 500		bpf_prog_put(old_prog);
 501	else
 502		static_branch_inc(&cgroup_bpf_enabled_key[type]);
 503	bpf_cgroup_storages_link(new_storage, cgrp, type);
 504	return 0;
 505
 506cleanup:
 507	if (old_prog) {
 508		pl->prog = old_prog;
 509		pl->link = NULL;
 510	}
 511	bpf_cgroup_storages_free(new_storage);
 512	if (!old_prog) {
 513		list_del(&pl->node);
 514		kfree(pl);
 515	}
 516	return err;
 517}
 518
 519/* Swap updated BPF program for given link in effective program arrays across
 520 * all descendant cgroups. This function is guaranteed to succeed.
 521 */
 522static void replace_effective_prog(struct cgroup *cgrp,
 523				   enum bpf_attach_type type,
 524				   struct bpf_cgroup_link *link)
 525{
 526	struct bpf_prog_array_item *item;
 527	struct cgroup_subsys_state *css;
 528	struct bpf_prog_array *progs;
 529	struct bpf_prog_list *pl;
 530	struct list_head *head;
 531	struct cgroup *cg;
 532	int pos;
 533
 534	css_for_each_descendant_pre(css, &cgrp->self) {
 535		struct cgroup *desc = container_of(css, struct cgroup, self);
 536
 537		if (percpu_ref_is_zero(&desc->bpf.refcnt))
 538			continue;
 539
 540		/* find position of link in effective progs array */
 541		for (pos = 0, cg = desc; cg; cg = cgroup_parent(cg)) {
 542			if (pos && !(cg->bpf.flags[type] & BPF_F_ALLOW_MULTI))
 543				continue;
 544
 545			head = &cg->bpf.progs[type];
 546			list_for_each_entry(pl, head, node) {
 547				if (!prog_list_prog(pl))
 548					continue;
 549				if (pl->link == link)
 550					goto found;
 551				pos++;
 552			}
 553		}
 554found:
 555		BUG_ON(!cg);
 556		progs = rcu_dereference_protected(
 557				desc->bpf.effective[type],
 558				lockdep_is_held(&cgroup_mutex));
 559		item = &progs->items[pos];
 560		WRITE_ONCE(item->prog, link->link.prog);
 561	}
 562}
 563
 564/**
 565 * __cgroup_bpf_replace() - Replace link's program and propagate the change
 566 *                          to descendants
 567 * @cgrp: The cgroup which descendants to traverse
 568 * @link: A link for which to replace BPF program
 569 * @type: Type of attach operation
 570 *
 571 * Must be called with cgroup_mutex held.
 572 */
 573static int __cgroup_bpf_replace(struct cgroup *cgrp,
 574				struct bpf_cgroup_link *link,
 575				struct bpf_prog *new_prog)
 576{
 577	struct list_head *progs = &cgrp->bpf.progs[link->type];
 578	struct bpf_prog *old_prog;
 579	struct bpf_prog_list *pl;
 580	bool found = false;
 581
 582	if (link->link.prog->type != new_prog->type)
 583		return -EINVAL;
 584
 585	list_for_each_entry(pl, progs, node) {
 586		if (pl->link == link) {
 587			found = true;
 588			break;
 589		}
 590	}
 591	if (!found)
 592		return -ENOENT;
 593
 594	old_prog = xchg(&link->link.prog, new_prog);
 595	replace_effective_prog(cgrp, link->type, link);
 596	bpf_prog_put(old_prog);
 597	return 0;
 598}
 599
 600static int cgroup_bpf_replace(struct bpf_link *link, struct bpf_prog *new_prog,
 601			      struct bpf_prog *old_prog)
 602{
 603	struct bpf_cgroup_link *cg_link;
 604	int ret;
 605
 606	cg_link = container_of(link, struct bpf_cgroup_link, link);
 607
 608	mutex_lock(&cgroup_mutex);
 609	/* link might have been auto-released by dying cgroup, so fail */
 610	if (!cg_link->cgroup) {
 611		ret = -ENOLINK;
 612		goto out_unlock;
 613	}
 614	if (old_prog && link->prog != old_prog) {
 615		ret = -EPERM;
 616		goto out_unlock;
 617	}
 618	ret = __cgroup_bpf_replace(cg_link->cgroup, cg_link, new_prog);
 619out_unlock:
 620	mutex_unlock(&cgroup_mutex);
 621	return ret;
 622}
 623
 624static struct bpf_prog_list *find_detach_entry(struct list_head *progs,
 625					       struct bpf_prog *prog,
 626					       struct bpf_cgroup_link *link,
 627					       bool allow_multi)
 628{
 629	struct bpf_prog_list *pl;
 630
 631	if (!allow_multi) {
 632		if (list_empty(progs))
 633			/* report error when trying to detach and nothing is attached */
 634			return ERR_PTR(-ENOENT);
 635
 636		/* to maintain backward compatibility NONE and OVERRIDE cgroups
 637		 * allow detaching with invalid FD (prog==NULL) in legacy mode
 638		 */
 639		return list_first_entry(progs, typeof(*pl), node);
 640	}
 641
 642	if (!prog && !link)
 643		/* to detach MULTI prog the user has to specify valid FD
 644		 * of the program or link to be detached
 645		 */
 646		return ERR_PTR(-EINVAL);
 647
 648	/* find the prog or link and detach it */
 649	list_for_each_entry(pl, progs, node) {
 650		if (pl->prog == prog && pl->link == link)
 651			return pl;
 652	}
 653	return ERR_PTR(-ENOENT);
 654}
 655
 656/**
 657 * __cgroup_bpf_detach() - Detach the program or link from a cgroup, and
 658 *                         propagate the change to descendants
 659 * @cgrp: The cgroup which descendants to traverse
 660 * @prog: A program to detach or NULL
 661 * @prog: A link to detach or NULL
 662 * @type: Type of detach operation
 663 *
 664 * At most one of @prog or @link can be non-NULL.
 665 * Must be called with cgroup_mutex held.
 666 */
 667int __cgroup_bpf_detach(struct cgroup *cgrp, struct bpf_prog *prog,
 668			struct bpf_cgroup_link *link, enum bpf_attach_type type)
 669{
 670	struct list_head *progs = &cgrp->bpf.progs[type];
 671	u32 flags = cgrp->bpf.flags[type];
 672	struct bpf_prog_list *pl;
 673	struct bpf_prog *old_prog;
 674	int err;
 675
 676	if (prog && link)
 677		/* only one of prog or link can be specified */
 678		return -EINVAL;
 679
 680	pl = find_detach_entry(progs, prog, link, flags & BPF_F_ALLOW_MULTI);
 681	if (IS_ERR(pl))
 682		return PTR_ERR(pl);
 683
 684	/* mark it deleted, so it's ignored while recomputing effective */
 685	old_prog = pl->prog;
 686	pl->prog = NULL;
 687	pl->link = NULL;
 688
 689	err = update_effective_progs(cgrp, type);
 690	if (err)
 691		goto cleanup;
 692
 693	/* now can actually delete it from this cgroup list */
 694	list_del(&pl->node);
 695	kfree(pl);
 696	if (list_empty(progs))
 697		/* last program was detached, reset flags to zero */
 698		cgrp->bpf.flags[type] = 0;
 699	if (old_prog)
 700		bpf_prog_put(old_prog);
 701	static_branch_dec(&cgroup_bpf_enabled_key[type]);
 702	return 0;
 703
 704cleanup:
 705	/* restore back prog or link */
 706	pl->prog = old_prog;
 707	pl->link = link;
 708	return err;
 709}
 710
 711/* Must be called with cgroup_mutex held to avoid races. */
 712int __cgroup_bpf_query(struct cgroup *cgrp, const union bpf_attr *attr,
 713		       union bpf_attr __user *uattr)
 714{
 715	__u32 __user *prog_ids = u64_to_user_ptr(attr->query.prog_ids);
 716	enum bpf_attach_type type = attr->query.attach_type;
 717	struct list_head *progs = &cgrp->bpf.progs[type];
 718	u32 flags = cgrp->bpf.flags[type];
 719	struct bpf_prog_array *effective;
 720	struct bpf_prog *prog;
 721	int cnt, ret = 0, i;
 722
 723	effective = rcu_dereference_protected(cgrp->bpf.effective[type],
 724					      lockdep_is_held(&cgroup_mutex));
 725
 726	if (attr->query.query_flags & BPF_F_QUERY_EFFECTIVE)
 727		cnt = bpf_prog_array_length(effective);
 728	else
 729		cnt = prog_list_length(progs);
 730
 731	if (copy_to_user(&uattr->query.attach_flags, &flags, sizeof(flags)))
 732		return -EFAULT;
 733	if (copy_to_user(&uattr->query.prog_cnt, &cnt, sizeof(cnt)))
 734		return -EFAULT;
 735	if (attr->query.prog_cnt == 0 || !prog_ids || !cnt)
 736		/* return early if user requested only program count + flags */
 737		return 0;
 738	if (attr->query.prog_cnt < cnt) {
 739		cnt = attr->query.prog_cnt;
 740		ret = -ENOSPC;
 741	}
 742
 743	if (attr->query.query_flags & BPF_F_QUERY_EFFECTIVE) {
 744		return bpf_prog_array_copy_to_user(effective, prog_ids, cnt);
 745	} else {
 746		struct bpf_prog_list *pl;
 747		u32 id;
 748
 749		i = 0;
 750		list_for_each_entry(pl, progs, node) {
 751			prog = prog_list_prog(pl);
 752			id = prog->aux->id;
 753			if (copy_to_user(prog_ids + i, &id, sizeof(id)))
 754				return -EFAULT;
 755			if (++i == cnt)
 756				break;
 757		}
 758	}
 759	return ret;
 760}
 761
 762int cgroup_bpf_prog_attach(const union bpf_attr *attr,
 763			   enum bpf_prog_type ptype, struct bpf_prog *prog)
 764{
 765	struct bpf_prog *replace_prog = NULL;
 766	struct cgroup *cgrp;
 767	int ret;
 768
 769	cgrp = cgroup_get_from_fd(attr->target_fd);
 770	if (IS_ERR(cgrp))
 771		return PTR_ERR(cgrp);
 772
 773	if ((attr->attach_flags & BPF_F_ALLOW_MULTI) &&
 774	    (attr->attach_flags & BPF_F_REPLACE)) {
 775		replace_prog = bpf_prog_get_type(attr->replace_bpf_fd, ptype);
 776		if (IS_ERR(replace_prog)) {
 777			cgroup_put(cgrp);
 778			return PTR_ERR(replace_prog);
 779		}
 780	}
 781
 782	ret = cgroup_bpf_attach(cgrp, prog, replace_prog, NULL,
 783				attr->attach_type, attr->attach_flags);
 784
 785	if (replace_prog)
 786		bpf_prog_put(replace_prog);
 787	cgroup_put(cgrp);
 788	return ret;
 789}
 790
 791int cgroup_bpf_prog_detach(const union bpf_attr *attr, enum bpf_prog_type ptype)
 792{
 793	struct bpf_prog *prog;
 794	struct cgroup *cgrp;
 795	int ret;
 796
 797	cgrp = cgroup_get_from_fd(attr->target_fd);
 798	if (IS_ERR(cgrp))
 799		return PTR_ERR(cgrp);
 800
 801	prog = bpf_prog_get_type(attr->attach_bpf_fd, ptype);
 802	if (IS_ERR(prog))
 803		prog = NULL;
 804
 805	ret = cgroup_bpf_detach(cgrp, prog, attr->attach_type);
 806	if (prog)
 807		bpf_prog_put(prog);
 808
 809	cgroup_put(cgrp);
 810	return ret;
 811}
 812
 813static void bpf_cgroup_link_release(struct bpf_link *link)
 814{
 815	struct bpf_cgroup_link *cg_link =
 816		container_of(link, struct bpf_cgroup_link, link);
 817	struct cgroup *cg;
 818
 819	/* link might have been auto-detached by dying cgroup already,
 820	 * in that case our work is done here
 821	 */
 822	if (!cg_link->cgroup)
 823		return;
 824
 825	mutex_lock(&cgroup_mutex);
 826
 827	/* re-check cgroup under lock again */
 828	if (!cg_link->cgroup) {
 829		mutex_unlock(&cgroup_mutex);
 830		return;
 831	}
 832
 833	WARN_ON(__cgroup_bpf_detach(cg_link->cgroup, NULL, cg_link,
 834				    cg_link->type));
 835
 836	cg = cg_link->cgroup;
 837	cg_link->cgroup = NULL;
 838
 839	mutex_unlock(&cgroup_mutex);
 840
 841	cgroup_put(cg);
 842}
 843
 844static void bpf_cgroup_link_dealloc(struct bpf_link *link)
 845{
 846	struct bpf_cgroup_link *cg_link =
 847		container_of(link, struct bpf_cgroup_link, link);
 848
 849	kfree(cg_link);
 850}
 851
 852static int bpf_cgroup_link_detach(struct bpf_link *link)
 853{
 854	bpf_cgroup_link_release(link);
 855
 856	return 0;
 857}
 858
 859static void bpf_cgroup_link_show_fdinfo(const struct bpf_link *link,
 860					struct seq_file *seq)
 861{
 862	struct bpf_cgroup_link *cg_link =
 863		container_of(link, struct bpf_cgroup_link, link);
 864	u64 cg_id = 0;
 865
 866	mutex_lock(&cgroup_mutex);
 867	if (cg_link->cgroup)
 868		cg_id = cgroup_id(cg_link->cgroup);
 869	mutex_unlock(&cgroup_mutex);
 870
 871	seq_printf(seq,
 872		   "cgroup_id:\t%llu\n"
 873		   "attach_type:\t%d\n",
 874		   cg_id,
 875		   cg_link->type);
 876}
 877
 878static int bpf_cgroup_link_fill_link_info(const struct bpf_link *link,
 879					  struct bpf_link_info *info)
 880{
 881	struct bpf_cgroup_link *cg_link =
 882		container_of(link, struct bpf_cgroup_link, link);
 883	u64 cg_id = 0;
 884
 885	mutex_lock(&cgroup_mutex);
 886	if (cg_link->cgroup)
 887		cg_id = cgroup_id(cg_link->cgroup);
 888	mutex_unlock(&cgroup_mutex);
 889
 890	info->cgroup.cgroup_id = cg_id;
 891	info->cgroup.attach_type = cg_link->type;
 892	return 0;
 893}
 894
 895static const struct bpf_link_ops bpf_cgroup_link_lops = {
 896	.release = bpf_cgroup_link_release,
 897	.dealloc = bpf_cgroup_link_dealloc,
 898	.detach = bpf_cgroup_link_detach,
 899	.update_prog = cgroup_bpf_replace,
 900	.show_fdinfo = bpf_cgroup_link_show_fdinfo,
 901	.fill_link_info = bpf_cgroup_link_fill_link_info,
 902};
 903
 904int cgroup_bpf_link_attach(const union bpf_attr *attr, struct bpf_prog *prog)
 905{
 906	struct bpf_link_primer link_primer;
 907	struct bpf_cgroup_link *link;
 908	struct cgroup *cgrp;
 909	int err;
 910
 911	if (attr->link_create.flags)
 912		return -EINVAL;
 913
 914	cgrp = cgroup_get_from_fd(attr->link_create.target_fd);
 915	if (IS_ERR(cgrp))
 916		return PTR_ERR(cgrp);
 917
 918	link = kzalloc(sizeof(*link), GFP_USER);
 919	if (!link) {
 920		err = -ENOMEM;
 921		goto out_put_cgroup;
 922	}
 923	bpf_link_init(&link->link, BPF_LINK_TYPE_CGROUP, &bpf_cgroup_link_lops,
 924		      prog);
 925	link->cgroup = cgrp;
 926	link->type = attr->link_create.attach_type;
 927
 928	err  = bpf_link_prime(&link->link, &link_primer);
 929	if (err) {
 930		kfree(link);
 931		goto out_put_cgroup;
 932	}
 933
 934	err = cgroup_bpf_attach(cgrp, NULL, NULL, link, link->type,
 935				BPF_F_ALLOW_MULTI);
 936	if (err) {
 937		bpf_link_cleanup(&link_primer);
 938		goto out_put_cgroup;
 939	}
 940
 941	return bpf_link_settle(&link_primer);
 942
 943out_put_cgroup:
 944	cgroup_put(cgrp);
 945	return err;
 946}
 947
 948int cgroup_bpf_prog_query(const union bpf_attr *attr,
 949			  union bpf_attr __user *uattr)
 950{
 951	struct cgroup *cgrp;
 952	int ret;
 953
 954	cgrp = cgroup_get_from_fd(attr->query.target_fd);
 955	if (IS_ERR(cgrp))
 956		return PTR_ERR(cgrp);
 957
 958	ret = cgroup_bpf_query(cgrp, attr, uattr);
 959
 960	cgroup_put(cgrp);
 961	return ret;
 962}
 963
 964/**
 965 * __cgroup_bpf_run_filter_skb() - Run a program for packet filtering
 966 * @sk: The socket sending or receiving traffic
 967 * @skb: The skb that is being sent or received
 968 * @type: The type of program to be exectuted
 969 *
 970 * If no socket is passed, or the socket is not of type INET or INET6,
 971 * this function does nothing and returns 0.
 972 *
 973 * The program type passed in via @type must be suitable for network
 974 * filtering. No further check is performed to assert that.
 975 *
 976 * For egress packets, this function can return:
 977 *   NET_XMIT_SUCCESS    (0)	- continue with packet output
 978 *   NET_XMIT_DROP       (1)	- drop packet and notify TCP to call cwr
 979 *   NET_XMIT_CN         (2)	- continue with packet output and notify TCP
 980 *				  to call cwr
 981 *   -EPERM			- drop packet
 982 *
 983 * For ingress packets, this function will return -EPERM if any
 984 * attached program was found and if it returned != 1 during execution.
 985 * Otherwise 0 is returned.
 986 */
 987int __cgroup_bpf_run_filter_skb(struct sock *sk,
 988				struct sk_buff *skb,
 989				enum bpf_attach_type type)
 990{
 991	unsigned int offset = skb->data - skb_network_header(skb);
 992	struct sock *save_sk;
 993	void *saved_data_end;
 994	struct cgroup *cgrp;
 995	int ret;
 996
 997	if (!sk || !sk_fullsock(sk))
 998		return 0;
 999
1000	if (sk->sk_family != AF_INET && sk->sk_family != AF_INET6)
1001		return 0;
1002
1003	cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
1004	save_sk = skb->sk;
1005	skb->sk = sk;
1006	__skb_push(skb, offset);
1007
1008	/* compute pointers for the bpf prog */
1009	bpf_compute_and_save_data_end(skb, &saved_data_end);
1010
1011	if (type == BPF_CGROUP_INET_EGRESS) {
1012		ret = BPF_PROG_CGROUP_INET_EGRESS_RUN_ARRAY(
1013			cgrp->bpf.effective[type], skb, __bpf_prog_run_save_cb);
1014	} else {
1015		ret = BPF_PROG_RUN_ARRAY(cgrp->bpf.effective[type], skb,
1016					  __bpf_prog_run_save_cb);
1017		ret = (ret == 1 ? 0 : -EPERM);
1018	}
1019	bpf_restore_data_end(skb, saved_data_end);
1020	__skb_pull(skb, offset);
1021	skb->sk = save_sk;
1022
1023	return ret;
1024}
1025EXPORT_SYMBOL(__cgroup_bpf_run_filter_skb);
1026
1027/**
1028 * __cgroup_bpf_run_filter_sk() - Run a program on a sock
1029 * @sk: sock structure to manipulate
1030 * @type: The type of program to be exectuted
1031 *
1032 * socket is passed is expected to be of type INET or INET6.
1033 *
1034 * The program type passed in via @type must be suitable for sock
1035 * filtering. No further check is performed to assert that.
1036 *
1037 * This function will return %-EPERM if any if an attached program was found
1038 * and if it returned != 1 during execution. In all other cases, 0 is returned.
1039 */
1040int __cgroup_bpf_run_filter_sk(struct sock *sk,
1041			       enum bpf_attach_type type)
1042{
1043	struct cgroup *cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
1044	int ret;
1045
1046	ret = BPF_PROG_RUN_ARRAY(cgrp->bpf.effective[type], sk, BPF_PROG_RUN);
1047	return ret == 1 ? 0 : -EPERM;
1048}
1049EXPORT_SYMBOL(__cgroup_bpf_run_filter_sk);
1050
1051/**
1052 * __cgroup_bpf_run_filter_sock_addr() - Run a program on a sock and
1053 *                                       provided by user sockaddr
1054 * @sk: sock struct that will use sockaddr
1055 * @uaddr: sockaddr struct provided by user
1056 * @type: The type of program to be exectuted
1057 * @t_ctx: Pointer to attach type specific context
1058 * @flags: Pointer to u32 which contains higher bits of BPF program
1059 *         return value (OR'ed together).
1060 *
1061 * socket is expected to be of type INET or INET6.
1062 *
1063 * This function will return %-EPERM if an attached program is found and
1064 * returned value != 1 during execution. In all other cases, 0 is returned.
1065 */
1066int __cgroup_bpf_run_filter_sock_addr(struct sock *sk,
1067				      struct sockaddr *uaddr,
1068				      enum bpf_attach_type type,
1069				      void *t_ctx,
1070				      u32 *flags)
1071{
1072	struct bpf_sock_addr_kern ctx = {
1073		.sk = sk,
1074		.uaddr = uaddr,
1075		.t_ctx = t_ctx,
1076	};
1077	struct sockaddr_storage unspec;
1078	struct cgroup *cgrp;
1079	int ret;
1080
1081	/* Check socket family since not all sockets represent network
1082	 * endpoint (e.g. AF_UNIX).
1083	 */
1084	if (sk->sk_family != AF_INET && sk->sk_family != AF_INET6)
1085		return 0;
1086
1087	if (!ctx.uaddr) {
1088		memset(&unspec, 0, sizeof(unspec));
1089		ctx.uaddr = (struct sockaddr *)&unspec;
1090	}
1091
1092	cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
1093	ret = BPF_PROG_RUN_ARRAY_FLAGS(cgrp->bpf.effective[type], &ctx,
1094				       BPF_PROG_RUN, flags);
1095
1096	return ret == 1 ? 0 : -EPERM;
1097}
1098EXPORT_SYMBOL(__cgroup_bpf_run_filter_sock_addr);
1099
1100/**
1101 * __cgroup_bpf_run_filter_sock_ops() - Run a program on a sock
1102 * @sk: socket to get cgroup from
1103 * @sock_ops: bpf_sock_ops_kern struct to pass to program. Contains
1104 * sk with connection information (IP addresses, etc.) May not contain
1105 * cgroup info if it is a req sock.
1106 * @type: The type of program to be exectuted
1107 *
1108 * socket passed is expected to be of type INET or INET6.
1109 *
1110 * The program type passed in via @type must be suitable for sock_ops
1111 * filtering. No further check is performed to assert that.
1112 *
1113 * This function will return %-EPERM if any if an attached program was found
1114 * and if it returned != 1 during execution. In all other cases, 0 is returned.
1115 */
1116int __cgroup_bpf_run_filter_sock_ops(struct sock *sk,
1117				     struct bpf_sock_ops_kern *sock_ops,
1118				     enum bpf_attach_type type)
1119{
1120	struct cgroup *cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
1121	int ret;
1122
1123	ret = BPF_PROG_RUN_ARRAY(cgrp->bpf.effective[type], sock_ops,
1124				 BPF_PROG_RUN);
1125	return ret == 1 ? 0 : -EPERM;
1126}
1127EXPORT_SYMBOL(__cgroup_bpf_run_filter_sock_ops);
1128
1129int __cgroup_bpf_check_dev_permission(short dev_type, u32 major, u32 minor,
1130				      short access, enum bpf_attach_type type)
1131{
1132	struct cgroup *cgrp;
1133	struct bpf_cgroup_dev_ctx ctx = {
1134		.access_type = (access << 16) | dev_type,
1135		.major = major,
1136		.minor = minor,
1137	};
1138	int allow = 1;
1139
1140	rcu_read_lock();
1141	cgrp = task_dfl_cgroup(current);
1142	allow = BPF_PROG_RUN_ARRAY(cgrp->bpf.effective[type], &ctx,
1143				   BPF_PROG_RUN);
1144	rcu_read_unlock();
1145
1146	return !allow;
1147}
1148
1149static const struct bpf_func_proto *
1150cgroup_base_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1151{
1152	switch (func_id) {
1153	case BPF_FUNC_get_current_uid_gid:
1154		return &bpf_get_current_uid_gid_proto;
1155	case BPF_FUNC_get_local_storage:
1156		return &bpf_get_local_storage_proto;
1157	case BPF_FUNC_get_current_cgroup_id:
1158		return &bpf_get_current_cgroup_id_proto;
1159	case BPF_FUNC_perf_event_output:
1160		return &bpf_event_output_data_proto;
1161	default:
1162		return bpf_base_func_proto(func_id);
1163	}
1164}
1165
1166static const struct bpf_func_proto *
1167cgroup_dev_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1168{
1169	return cgroup_base_func_proto(func_id, prog);
1170}
1171
1172static bool cgroup_dev_is_valid_access(int off, int size,
1173				       enum bpf_access_type type,
1174				       const struct bpf_prog *prog,
1175				       struct bpf_insn_access_aux *info)
1176{
1177	const int size_default = sizeof(__u32);
1178
1179	if (type == BPF_WRITE)
1180		return false;
1181
1182	if (off < 0 || off + size > sizeof(struct bpf_cgroup_dev_ctx))
1183		return false;
1184	/* The verifier guarantees that size > 0. */
1185	if (off % size != 0)
1186		return false;
1187
1188	switch (off) {
1189	case bpf_ctx_range(struct bpf_cgroup_dev_ctx, access_type):
1190		bpf_ctx_record_field_size(info, size_default);
1191		if (!bpf_ctx_narrow_access_ok(off, size, size_default))
1192			return false;
1193		break;
1194	default:
1195		if (size != size_default)
1196			return false;
1197	}
1198
1199	return true;
1200}
1201
1202const struct bpf_prog_ops cg_dev_prog_ops = {
1203};
1204
1205const struct bpf_verifier_ops cg_dev_verifier_ops = {
1206	.get_func_proto		= cgroup_dev_func_proto,
1207	.is_valid_access	= cgroup_dev_is_valid_access,
1208};
1209
1210/**
1211 * __cgroup_bpf_run_filter_sysctl - Run a program on sysctl
1212 *
1213 * @head: sysctl table header
1214 * @table: sysctl table
1215 * @write: sysctl is being read (= 0) or written (= 1)
1216 * @buf: pointer to buffer (in and out)
1217 * @pcount: value-result argument: value is size of buffer pointed to by @buf,
1218 *	result is size of @new_buf if program set new value, initial value
1219 *	otherwise
1220 * @ppos: value-result argument: value is position at which read from or write
1221 *	to sysctl is happening, result is new position if program overrode it,
1222 *	initial value otherwise
1223 * @type: type of program to be executed
1224 *
1225 * Program is run when sysctl is being accessed, either read or written, and
1226 * can allow or deny such access.
1227 *
1228 * This function will return %-EPERM if an attached program is found and
1229 * returned value != 1 during execution. In all other cases 0 is returned.
1230 */
1231int __cgroup_bpf_run_filter_sysctl(struct ctl_table_header *head,
1232				   struct ctl_table *table, int write,
1233				   char **buf, size_t *pcount, loff_t *ppos,
1234				   enum bpf_attach_type type)
1235{
1236	struct bpf_sysctl_kern ctx = {
1237		.head = head,
1238		.table = table,
1239		.write = write,
1240		.ppos = ppos,
1241		.cur_val = NULL,
1242		.cur_len = PAGE_SIZE,
1243		.new_val = NULL,
1244		.new_len = 0,
1245		.new_updated = 0,
1246	};
1247	struct cgroup *cgrp;
1248	loff_t pos = 0;
1249	int ret;
1250
1251	ctx.cur_val = kmalloc_track_caller(ctx.cur_len, GFP_KERNEL);
1252	if (!ctx.cur_val ||
1253	    table->proc_handler(table, 0, ctx.cur_val, &ctx.cur_len, &pos)) {
1254		/* Let BPF program decide how to proceed. */
1255		ctx.cur_len = 0;
1256	}
1257
1258	if (write && *buf && *pcount) {
1259		/* BPF program should be able to override new value with a
1260		 * buffer bigger than provided by user.
1261		 */
1262		ctx.new_val = kmalloc_track_caller(PAGE_SIZE, GFP_KERNEL);
1263		ctx.new_len = min_t(size_t, PAGE_SIZE, *pcount);
1264		if (ctx.new_val) {
1265			memcpy(ctx.new_val, *buf, ctx.new_len);
1266		} else {
1267			/* Let BPF program decide how to proceed. */
1268			ctx.new_len = 0;
1269		}
1270	}
1271
1272	rcu_read_lock();
1273	cgrp = task_dfl_cgroup(current);
1274	ret = BPF_PROG_RUN_ARRAY(cgrp->bpf.effective[type], &ctx, BPF_PROG_RUN);
1275	rcu_read_unlock();
1276
1277	kfree(ctx.cur_val);
1278
1279	if (ret == 1 && ctx.new_updated) {
1280		kfree(*buf);
1281		*buf = ctx.new_val;
1282		*pcount = ctx.new_len;
1283	} else {
1284		kfree(ctx.new_val);
1285	}
1286
1287	return ret == 1 ? 0 : -EPERM;
1288}
1289
1290#ifdef CONFIG_NET
1291static bool __cgroup_bpf_prog_array_is_empty(struct cgroup *cgrp,
1292					     enum bpf_attach_type attach_type)
1293{
1294	struct bpf_prog_array *prog_array;
1295	bool empty;
1296
1297	rcu_read_lock();
1298	prog_array = rcu_dereference(cgrp->bpf.effective[attach_type]);
1299	empty = bpf_prog_array_is_empty(prog_array);
1300	rcu_read_unlock();
1301
1302	return empty;
1303}
1304
1305static int sockopt_alloc_buf(struct bpf_sockopt_kern *ctx, int max_optlen,
1306			     struct bpf_sockopt_buf *buf)
1307{
1308	if (unlikely(max_optlen < 0))
1309		return -EINVAL;
1310
1311	if (unlikely(max_optlen > PAGE_SIZE)) {
1312		/* We don't expose optvals that are greater than PAGE_SIZE
1313		 * to the BPF program.
1314		 */
1315		max_optlen = PAGE_SIZE;
1316	}
1317
1318	if (max_optlen <= sizeof(buf->data)) {
1319		/* When the optval fits into BPF_SOCKOPT_KERN_BUF_SIZE
1320		 * bytes avoid the cost of kzalloc.
1321		 */
1322		ctx->optval = buf->data;
1323		ctx->optval_end = ctx->optval + max_optlen;
1324		return max_optlen;
1325	}
1326
1327	ctx->optval = kzalloc(max_optlen, GFP_USER);
1328	if (!ctx->optval)
1329		return -ENOMEM;
1330
1331	ctx->optval_end = ctx->optval + max_optlen;
1332
1333	return max_optlen;
1334}
1335
1336static void sockopt_free_buf(struct bpf_sockopt_kern *ctx,
1337			     struct bpf_sockopt_buf *buf)
1338{
1339	if (ctx->optval == buf->data)
1340		return;
1341	kfree(ctx->optval);
1342}
1343
1344static bool sockopt_buf_allocated(struct bpf_sockopt_kern *ctx,
1345				  struct bpf_sockopt_buf *buf)
1346{
1347	return ctx->optval != buf->data;
1348}
1349
1350int __cgroup_bpf_run_filter_setsockopt(struct sock *sk, int *level,
1351				       int *optname, char __user *optval,
1352				       int *optlen, char **kernel_optval)
1353{
1354	struct cgroup *cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
1355	struct bpf_sockopt_buf buf = {};
1356	struct bpf_sockopt_kern ctx = {
1357		.sk = sk,
1358		.level = *level,
1359		.optname = *optname,
1360	};
1361	int ret, max_optlen;
1362
1363	/* Opportunistic check to see whether we have any BPF program
1364	 * attached to the hook so we don't waste time allocating
1365	 * memory and locking the socket.
1366	 */
1367	if (__cgroup_bpf_prog_array_is_empty(cgrp, BPF_CGROUP_SETSOCKOPT))
1368		return 0;
1369
1370	/* Allocate a bit more than the initial user buffer for
1371	 * BPF program. The canonical use case is overriding
1372	 * TCP_CONGESTION(nv) to TCP_CONGESTION(cubic).
1373	 */
1374	max_optlen = max_t(int, 16, *optlen);
1375
1376	max_optlen = sockopt_alloc_buf(&ctx, max_optlen, &buf);
1377	if (max_optlen < 0)
1378		return max_optlen;
1379
1380	ctx.optlen = *optlen;
1381
1382	if (copy_from_user(ctx.optval, optval, min(*optlen, max_optlen)) != 0) {
1383		ret = -EFAULT;
1384		goto out;
1385	}
1386
1387	lock_sock(sk);
1388	ret = BPF_PROG_RUN_ARRAY(cgrp->bpf.effective[BPF_CGROUP_SETSOCKOPT],
1389				 &ctx, BPF_PROG_RUN);
1390	release_sock(sk);
1391
1392	if (!ret) {
1393		ret = -EPERM;
1394		goto out;
1395	}
1396
1397	if (ctx.optlen == -1) {
1398		/* optlen set to -1, bypass kernel */
1399		ret = 1;
1400	} else if (ctx.optlen > max_optlen || ctx.optlen < -1) {
1401		/* optlen is out of bounds */
1402		ret = -EFAULT;
1403	} else {
1404		/* optlen within bounds, run kernel handler */
1405		ret = 0;
1406
1407		/* export any potential modifications */
1408		*level = ctx.level;
1409		*optname = ctx.optname;
1410
1411		/* optlen == 0 from BPF indicates that we should
1412		 * use original userspace data.
1413		 */
1414		if (ctx.optlen != 0) {
1415			*optlen = ctx.optlen;
1416			/* We've used bpf_sockopt_kern->buf as an intermediary
1417			 * storage, but the BPF program indicates that we need
1418			 * to pass this data to the kernel setsockopt handler.
1419			 * No way to export on-stack buf, have to allocate a
1420			 * new buffer.
1421			 */
1422			if (!sockopt_buf_allocated(&ctx, &buf)) {
1423				void *p = kmalloc(ctx.optlen, GFP_USER);
1424
1425				if (!p) {
1426					ret = -ENOMEM;
1427					goto out;
1428				}
1429				memcpy(p, ctx.optval, ctx.optlen);
1430				*kernel_optval = p;
1431			} else {
1432				*kernel_optval = ctx.optval;
1433			}
1434			/* export and don't free sockopt buf */
1435			return 0;
1436		}
1437	}
1438
1439out:
1440	sockopt_free_buf(&ctx, &buf);
1441	return ret;
1442}
1443
1444int __cgroup_bpf_run_filter_getsockopt(struct sock *sk, int level,
1445				       int optname, char __user *optval,
1446				       int __user *optlen, int max_optlen,
1447				       int retval)
1448{
1449	struct cgroup *cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
1450	struct bpf_sockopt_buf buf = {};
1451	struct bpf_sockopt_kern ctx = {
1452		.sk = sk,
1453		.level = level,
1454		.optname = optname,
1455		.retval = retval,
1456	};
1457	int ret;
1458
1459	/* Opportunistic check to see whether we have any BPF program
1460	 * attached to the hook so we don't waste time allocating
1461	 * memory and locking the socket.
1462	 */
1463	if (__cgroup_bpf_prog_array_is_empty(cgrp, BPF_CGROUP_GETSOCKOPT))
1464		return retval;
1465
1466	ctx.optlen = max_optlen;
1467
1468	max_optlen = sockopt_alloc_buf(&ctx, max_optlen, &buf);
1469	if (max_optlen < 0)
1470		return max_optlen;
1471
1472	if (!retval) {
1473		/* If kernel getsockopt finished successfully,
1474		 * copy whatever was returned to the user back
1475		 * into our temporary buffer. Set optlen to the
1476		 * one that kernel returned as well to let
1477		 * BPF programs inspect the value.
1478		 */
1479
1480		if (get_user(ctx.optlen, optlen)) {
1481			ret = -EFAULT;
1482			goto out;
1483		}
1484
1485		if (ctx.optlen < 0) {
1486			ret = -EFAULT;
1487			goto out;
1488		}
1489
1490		if (copy_from_user(ctx.optval, optval,
1491				   min(ctx.optlen, max_optlen)) != 0) {
1492			ret = -EFAULT;
1493			goto out;
1494		}
1495	}
1496
1497	lock_sock(sk);
1498	ret = BPF_PROG_RUN_ARRAY(cgrp->bpf.effective[BPF_CGROUP_GETSOCKOPT],
1499				 &ctx, BPF_PROG_RUN);
1500	release_sock(sk);
1501
1502	if (!ret) {
1503		ret = -EPERM;
1504		goto out;
1505	}
1506
1507	if (ctx.optlen > max_optlen || ctx.optlen < 0) {
1508		ret = -EFAULT;
1509		goto out;
1510	}
1511
1512	/* BPF programs only allowed to set retval to 0, not some
1513	 * arbitrary value.
1514	 */
1515	if (ctx.retval != 0 && ctx.retval != retval) {
1516		ret = -EFAULT;
1517		goto out;
1518	}
1519
1520	if (ctx.optlen != 0) {
1521		if (copy_to_user(optval, ctx.optval, ctx.optlen) ||
1522		    put_user(ctx.optlen, optlen)) {
1523			ret = -EFAULT;
1524			goto out;
1525		}
1526	}
1527
1528	ret = ctx.retval;
1529
1530out:
1531	sockopt_free_buf(&ctx, &buf);
1532	return ret;
1533}
1534
1535int __cgroup_bpf_run_filter_getsockopt_kern(struct sock *sk, int level,
1536					    int optname, void *optval,
1537					    int *optlen, int retval)
1538{
1539	struct cgroup *cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
1540	struct bpf_sockopt_kern ctx = {
1541		.sk = sk,
1542		.level = level,
1543		.optname = optname,
1544		.retval = retval,
1545		.optlen = *optlen,
1546		.optval = optval,
1547		.optval_end = optval + *optlen,
1548	};
1549	int ret;
1550
1551	/* Note that __cgroup_bpf_run_filter_getsockopt doesn't copy
1552	 * user data back into BPF buffer when reval != 0. This is
1553	 * done as an optimization to avoid extra copy, assuming
1554	 * kernel won't populate the data in case of an error.
1555	 * Here we always pass the data and memset() should
1556	 * be called if that data shouldn't be "exported".
1557	 */
1558
1559	ret = BPF_PROG_RUN_ARRAY(cgrp->bpf.effective[BPF_CGROUP_GETSOCKOPT],
1560				 &ctx, BPF_PROG_RUN);
1561	if (!ret)
1562		return -EPERM;
1563
1564	if (ctx.optlen > *optlen)
1565		return -EFAULT;
1566
1567	/* BPF programs only allowed to set retval to 0, not some
1568	 * arbitrary value.
1569	 */
1570	if (ctx.retval != 0 && ctx.retval != retval)
1571		return -EFAULT;
1572
1573	/* BPF programs can shrink the buffer, export the modifications.
1574	 */
1575	if (ctx.optlen != 0)
1576		*optlen = ctx.optlen;
1577
1578	return ctx.retval;
1579}
1580#endif
1581
1582static ssize_t sysctl_cpy_dir(const struct ctl_dir *dir, char **bufp,
1583			      size_t *lenp)
1584{
1585	ssize_t tmp_ret = 0, ret;
1586
1587	if (dir->header.parent) {
1588		tmp_ret = sysctl_cpy_dir(dir->header.parent, bufp, lenp);
1589		if (tmp_ret < 0)
1590			return tmp_ret;
1591	}
1592
1593	ret = strscpy(*bufp, dir->header.ctl_table[0].procname, *lenp);
1594	if (ret < 0)
1595		return ret;
1596	*bufp += ret;
1597	*lenp -= ret;
1598	ret += tmp_ret;
1599
1600	/* Avoid leading slash. */
1601	if (!ret)
1602		return ret;
1603
1604	tmp_ret = strscpy(*bufp, "/", *lenp);
1605	if (tmp_ret < 0)
1606		return tmp_ret;
1607	*bufp += tmp_ret;
1608	*lenp -= tmp_ret;
1609
1610	return ret + tmp_ret;
1611}
1612
1613BPF_CALL_4(bpf_sysctl_get_name, struct bpf_sysctl_kern *, ctx, char *, buf,
1614	   size_t, buf_len, u64, flags)
1615{
1616	ssize_t tmp_ret = 0, ret;
1617
1618	if (!buf)
1619		return -EINVAL;
1620
1621	if (!(flags & BPF_F_SYSCTL_BASE_NAME)) {
1622		if (!ctx->head)
1623			return -EINVAL;
1624		tmp_ret = sysctl_cpy_dir(ctx->head->parent, &buf, &buf_len);
1625		if (tmp_ret < 0)
1626			return tmp_ret;
1627	}
1628
1629	ret = strscpy(buf, ctx->table->procname, buf_len);
1630
1631	return ret < 0 ? ret : tmp_ret + ret;
1632}
1633
1634static const struct bpf_func_proto bpf_sysctl_get_name_proto = {
1635	.func		= bpf_sysctl_get_name,
1636	.gpl_only	= false,
1637	.ret_type	= RET_INTEGER,
1638	.arg1_type	= ARG_PTR_TO_CTX,
1639	.arg2_type	= ARG_PTR_TO_MEM,
1640	.arg3_type	= ARG_CONST_SIZE,
1641	.arg4_type	= ARG_ANYTHING,
1642};
1643
1644static int copy_sysctl_value(char *dst, size_t dst_len, char *src,
1645			     size_t src_len)
1646{
1647	if (!dst)
1648		return -EINVAL;
1649
1650	if (!dst_len)
1651		return -E2BIG;
1652
1653	if (!src || !src_len) {
1654		memset(dst, 0, dst_len);
1655		return -EINVAL;
1656	}
1657
1658	memcpy(dst, src, min(dst_len, src_len));
1659
1660	if (dst_len > src_len) {
1661		memset(dst + src_len, '\0', dst_len - src_len);
1662		return src_len;
1663	}
1664
1665	dst[dst_len - 1] = '\0';
1666
1667	return -E2BIG;
1668}
1669
1670BPF_CALL_3(bpf_sysctl_get_current_value, struct bpf_sysctl_kern *, ctx,
1671	   char *, buf, size_t, buf_len)
1672{
1673	return copy_sysctl_value(buf, buf_len, ctx->cur_val, ctx->cur_len);
1674}
1675
1676static const struct bpf_func_proto bpf_sysctl_get_current_value_proto = {
1677	.func		= bpf_sysctl_get_current_value,
1678	.gpl_only	= false,
1679	.ret_type	= RET_INTEGER,
1680	.arg1_type	= ARG_PTR_TO_CTX,
1681	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
1682	.arg3_type	= ARG_CONST_SIZE,
1683};
1684
1685BPF_CALL_3(bpf_sysctl_get_new_value, struct bpf_sysctl_kern *, ctx, char *, buf,
1686	   size_t, buf_len)
1687{
1688	if (!ctx->write) {
1689		if (buf && buf_len)
1690			memset(buf, '\0', buf_len);
1691		return -EINVAL;
1692	}
1693	return copy_sysctl_value(buf, buf_len, ctx->new_val, ctx->new_len);
1694}
1695
1696static const struct bpf_func_proto bpf_sysctl_get_new_value_proto = {
1697	.func		= bpf_sysctl_get_new_value,
1698	.gpl_only	= false,
1699	.ret_type	= RET_INTEGER,
1700	.arg1_type	= ARG_PTR_TO_CTX,
1701	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
1702	.arg3_type	= ARG_CONST_SIZE,
1703};
1704
1705BPF_CALL_3(bpf_sysctl_set_new_value, struct bpf_sysctl_kern *, ctx,
1706	   const char *, buf, size_t, buf_len)
1707{
1708	if (!ctx->write || !ctx->new_val || !ctx->new_len || !buf || !buf_len)
1709		return -EINVAL;
1710
1711	if (buf_len > PAGE_SIZE - 1)
1712		return -E2BIG;
1713
1714	memcpy(ctx->new_val, buf, buf_len);
1715	ctx->new_len = buf_len;
1716	ctx->new_updated = 1;
1717
1718	return 0;
1719}
1720
1721static const struct bpf_func_proto bpf_sysctl_set_new_value_proto = {
1722	.func		= bpf_sysctl_set_new_value,
1723	.gpl_only	= false,
1724	.ret_type	= RET_INTEGER,
1725	.arg1_type	= ARG_PTR_TO_CTX,
1726	.arg2_type	= ARG_PTR_TO_MEM,
1727	.arg3_type	= ARG_CONST_SIZE,
1728};
1729
1730static const struct bpf_func_proto *
1731sysctl_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1732{
1733	switch (func_id) {
1734	case BPF_FUNC_strtol:
1735		return &bpf_strtol_proto;
1736	case BPF_FUNC_strtoul:
1737		return &bpf_strtoul_proto;
1738	case BPF_FUNC_sysctl_get_name:
1739		return &bpf_sysctl_get_name_proto;
1740	case BPF_FUNC_sysctl_get_current_value:
1741		return &bpf_sysctl_get_current_value_proto;
1742	case BPF_FUNC_sysctl_get_new_value:
1743		return &bpf_sysctl_get_new_value_proto;
1744	case BPF_FUNC_sysctl_set_new_value:
1745		return &bpf_sysctl_set_new_value_proto;
1746	default:
1747		return cgroup_base_func_proto(func_id, prog);
1748	}
1749}
1750
1751static bool sysctl_is_valid_access(int off, int size, enum bpf_access_type type,
1752				   const struct bpf_prog *prog,
1753				   struct bpf_insn_access_aux *info)
1754{
1755	const int size_default = sizeof(__u32);
1756
1757	if (off < 0 || off + size > sizeof(struct bpf_sysctl) || off % size)
1758		return false;
1759
1760	switch (off) {
1761	case bpf_ctx_range(struct bpf_sysctl, write):
1762		if (type != BPF_READ)
1763			return false;
1764		bpf_ctx_record_field_size(info, size_default);
1765		return bpf_ctx_narrow_access_ok(off, size, size_default);
1766	case bpf_ctx_range(struct bpf_sysctl, file_pos):
1767		if (type == BPF_READ) {
1768			bpf_ctx_record_field_size(info, size_default);
1769			return bpf_ctx_narrow_access_ok(off, size, size_default);
1770		} else {
1771			return size == size_default;
1772		}
1773	default:
1774		return false;
1775	}
1776}
1777
1778static u32 sysctl_convert_ctx_access(enum bpf_access_type type,
1779				     const struct bpf_insn *si,
1780				     struct bpf_insn *insn_buf,
1781				     struct bpf_prog *prog, u32 *target_size)
1782{
1783	struct bpf_insn *insn = insn_buf;
1784	u32 read_size;
1785
1786	switch (si->off) {
1787	case offsetof(struct bpf_sysctl, write):
1788		*insn++ = BPF_LDX_MEM(
1789			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
1790			bpf_target_off(struct bpf_sysctl_kern, write,
1791				       sizeof_field(struct bpf_sysctl_kern,
1792						    write),
1793				       target_size));
1794		break;
1795	case offsetof(struct bpf_sysctl, file_pos):
1796		/* ppos is a pointer so it should be accessed via indirect
1797		 * loads and stores. Also for stores additional temporary
1798		 * register is used since neither src_reg nor dst_reg can be
1799		 * overridden.
1800		 */
1801		if (type == BPF_WRITE) {
1802			int treg = BPF_REG_9;
1803
1804			if (si->src_reg == treg || si->dst_reg == treg)
1805				--treg;
1806			if (si->src_reg == treg || si->dst_reg == treg)
1807				--treg;
1808			*insn++ = BPF_STX_MEM(
1809				BPF_DW, si->dst_reg, treg,
1810				offsetof(struct bpf_sysctl_kern, tmp_reg));
1811			*insn++ = BPF_LDX_MEM(
1812				BPF_FIELD_SIZEOF(struct bpf_sysctl_kern, ppos),
1813				treg, si->dst_reg,
1814				offsetof(struct bpf_sysctl_kern, ppos));
1815			*insn++ = BPF_STX_MEM(
1816				BPF_SIZEOF(u32), treg, si->src_reg,
1817				bpf_ctx_narrow_access_offset(
1818					0, sizeof(u32), sizeof(loff_t)));
1819			*insn++ = BPF_LDX_MEM(
1820				BPF_DW, treg, si->dst_reg,
1821				offsetof(struct bpf_sysctl_kern, tmp_reg));
1822		} else {
1823			*insn++ = BPF_LDX_MEM(
1824				BPF_FIELD_SIZEOF(struct bpf_sysctl_kern, ppos),
1825				si->dst_reg, si->src_reg,
1826				offsetof(struct bpf_sysctl_kern, ppos));
1827			read_size = bpf_size_to_bytes(BPF_SIZE(si->code));
1828			*insn++ = BPF_LDX_MEM(
1829				BPF_SIZE(si->code), si->dst_reg, si->dst_reg,
1830				bpf_ctx_narrow_access_offset(
1831					0, read_size, sizeof(loff_t)));
1832		}
1833		*target_size = sizeof(u32);
1834		break;
1835	}
1836
1837	return insn - insn_buf;
1838}
1839
1840const struct bpf_verifier_ops cg_sysctl_verifier_ops = {
1841	.get_func_proto		= sysctl_func_proto,
1842	.is_valid_access	= sysctl_is_valid_access,
1843	.convert_ctx_access	= sysctl_convert_ctx_access,
1844};
1845
1846const struct bpf_prog_ops cg_sysctl_prog_ops = {
1847};
1848
1849static const struct bpf_func_proto *
1850cg_sockopt_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1851{
1852	switch (func_id) {
1853#ifdef CONFIG_NET
1854	case BPF_FUNC_sk_storage_get:
1855		return &bpf_sk_storage_get_proto;
1856	case BPF_FUNC_sk_storage_delete:
1857		return &bpf_sk_storage_delete_proto;
1858#endif
1859#ifdef CONFIG_INET
1860	case BPF_FUNC_tcp_sock:
1861		return &bpf_tcp_sock_proto;
1862#endif
1863	default:
1864		return cgroup_base_func_proto(func_id, prog);
1865	}
1866}
1867
1868static bool cg_sockopt_is_valid_access(int off, int size,
1869				       enum bpf_access_type type,
1870				       const struct bpf_prog *prog,
1871				       struct bpf_insn_access_aux *info)
1872{
1873	const int size_default = sizeof(__u32);
1874
1875	if (off < 0 || off >= sizeof(struct bpf_sockopt))
1876		return false;
1877
1878	if (off % size != 0)
1879		return false;
1880
1881	if (type == BPF_WRITE) {
1882		switch (off) {
1883		case offsetof(struct bpf_sockopt, retval):
1884			if (size != size_default)
1885				return false;
1886			return prog->expected_attach_type ==
1887				BPF_CGROUP_GETSOCKOPT;
1888		case offsetof(struct bpf_sockopt, optname):
1889			fallthrough;
1890		case offsetof(struct bpf_sockopt, level):
1891			if (size != size_default)
1892				return false;
1893			return prog->expected_attach_type ==
1894				BPF_CGROUP_SETSOCKOPT;
1895		case offsetof(struct bpf_sockopt, optlen):
1896			return size == size_default;
1897		default:
1898			return false;
1899		}
1900	}
1901
1902	switch (off) {
1903	case offsetof(struct bpf_sockopt, sk):
1904		if (size != sizeof(__u64))
1905			return false;
1906		info->reg_type = PTR_TO_SOCKET;
1907		break;
1908	case offsetof(struct bpf_sockopt, optval):
1909		if (size != sizeof(__u64))
1910			return false;
1911		info->reg_type = PTR_TO_PACKET;
1912		break;
1913	case offsetof(struct bpf_sockopt, optval_end):
1914		if (size != sizeof(__u64))
1915			return false;
1916		info->reg_type = PTR_TO_PACKET_END;
1917		break;
1918	case offsetof(struct bpf_sockopt, retval):
1919		if (size != size_default)
1920			return false;
1921		return prog->expected_attach_type == BPF_CGROUP_GETSOCKOPT;
1922	default:
1923		if (size != size_default)
1924			return false;
1925		break;
1926	}
1927	return true;
1928}
1929
1930#define CG_SOCKOPT_ACCESS_FIELD(T, F)					\
1931	T(BPF_FIELD_SIZEOF(struct bpf_sockopt_kern, F),			\
1932	  si->dst_reg, si->src_reg,					\
1933	  offsetof(struct bpf_sockopt_kern, F))
1934
1935static u32 cg_sockopt_convert_ctx_access(enum bpf_access_type type,
1936					 const struct bpf_insn *si,
1937					 struct bpf_insn *insn_buf,
1938					 struct bpf_prog *prog,
1939					 u32 *target_size)
1940{
1941	struct bpf_insn *insn = insn_buf;
1942
1943	switch (si->off) {
1944	case offsetof(struct bpf_sockopt, sk):
1945		*insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_LDX_MEM, sk);
1946		break;
1947	case offsetof(struct bpf_sockopt, level):
1948		if (type == BPF_WRITE)
1949			*insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_STX_MEM, level);
1950		else
1951			*insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_LDX_MEM, level);
1952		break;
1953	case offsetof(struct bpf_sockopt, optname):
1954		if (type == BPF_WRITE)
1955			*insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_STX_MEM, optname);
1956		else
1957			*insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_LDX_MEM, optname);
1958		break;
1959	case offsetof(struct bpf_sockopt, optlen):
1960		if (type == BPF_WRITE)
1961			*insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_STX_MEM, optlen);
1962		else
1963			*insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_LDX_MEM, optlen);
1964		break;
1965	case offsetof(struct bpf_sockopt, retval):
1966		if (type == BPF_WRITE)
1967			*insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_STX_MEM, retval);
1968		else
1969			*insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_LDX_MEM, retval);
1970		break;
1971	case offsetof(struct bpf_sockopt, optval):
1972		*insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_LDX_MEM, optval);
1973		break;
1974	case offsetof(struct bpf_sockopt, optval_end):
1975		*insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_LDX_MEM, optval_end);
1976		break;
1977	}
1978
1979	return insn - insn_buf;
1980}
1981
1982static int cg_sockopt_get_prologue(struct bpf_insn *insn_buf,
1983				   bool direct_write,
1984				   const struct bpf_prog *prog)
1985{
1986	/* Nothing to do for sockopt argument. The data is kzalloc'ated.
1987	 */
1988	return 0;
1989}
1990
1991const struct bpf_verifier_ops cg_sockopt_verifier_ops = {
1992	.get_func_proto		= cg_sockopt_func_proto,
1993	.is_valid_access	= cg_sockopt_is_valid_access,
1994	.convert_ctx_access	= cg_sockopt_convert_ctx_access,
1995	.gen_prologue		= cg_sockopt_get_prologue,
1996};
1997
1998const struct bpf_prog_ops cg_sockopt_prog_ops = {
1999};