Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.15.
   1// SPDX-License-Identifier: GPL-2.0-only
   2/*
   3 * Functions to manage eBPF programs attached to cgroups
   4 *
   5 * Copyright (c) 2016 Daniel Mack
   6 */
   7
   8#include <linux/kernel.h>
   9#include <linux/atomic.h>
  10#include <linux/cgroup.h>
  11#include <linux/filter.h>
  12#include <linux/slab.h>
  13#include <linux/sysctl.h>
  14#include <linux/string.h>
  15#include <linux/bpf.h>
  16#include <linux/bpf-cgroup.h>
  17#include <net/sock.h>
  18#include <net/bpf_sk_storage.h>
  19
  20#include "../cgroup/cgroup-internal.h"
  21
  22DEFINE_STATIC_KEY_FALSE(cgroup_bpf_enabled_key);
  23EXPORT_SYMBOL(cgroup_bpf_enabled_key);
  24
  25void cgroup_bpf_offline(struct cgroup *cgrp)
  26{
  27	cgroup_get(cgrp);
  28	percpu_ref_kill(&cgrp->bpf.refcnt);
  29}
  30
  31/**
  32 * cgroup_bpf_release() - put references of all bpf programs and
  33 *                        release all cgroup bpf data
  34 * @work: work structure embedded into the cgroup to modify
  35 */
  36static void cgroup_bpf_release(struct work_struct *work)
  37{
  38	struct cgroup *cgrp = container_of(work, struct cgroup,
  39					   bpf.release_work);
  40	enum bpf_cgroup_storage_type stype;
  41	struct bpf_prog_array *old_array;
  42	unsigned int type;
  43
  44	mutex_lock(&cgroup_mutex);
  45
  46	for (type = 0; type < ARRAY_SIZE(cgrp->bpf.progs); type++) {
  47		struct list_head *progs = &cgrp->bpf.progs[type];
  48		struct bpf_prog_list *pl, *tmp;
  49
  50		list_for_each_entry_safe(pl, tmp, progs, node) {
  51			list_del(&pl->node);
  52			bpf_prog_put(pl->prog);
  53			for_each_cgroup_storage_type(stype) {
  54				bpf_cgroup_storage_unlink(pl->storage[stype]);
  55				bpf_cgroup_storage_free(pl->storage[stype]);
  56			}
  57			kfree(pl);
  58			static_branch_dec(&cgroup_bpf_enabled_key);
  59		}
  60		old_array = rcu_dereference_protected(
  61				cgrp->bpf.effective[type],
  62				lockdep_is_held(&cgroup_mutex));
  63		bpf_prog_array_free(old_array);
  64	}
  65
  66	mutex_unlock(&cgroup_mutex);
  67
  68	percpu_ref_exit(&cgrp->bpf.refcnt);
  69	cgroup_put(cgrp);
  70}
  71
  72/**
  73 * cgroup_bpf_release_fn() - callback used to schedule releasing
  74 *                           of bpf cgroup data
  75 * @ref: percpu ref counter structure
  76 */
  77static void cgroup_bpf_release_fn(struct percpu_ref *ref)
  78{
  79	struct cgroup *cgrp = container_of(ref, struct cgroup, bpf.refcnt);
  80
  81	INIT_WORK(&cgrp->bpf.release_work, cgroup_bpf_release);
  82	queue_work(system_wq, &cgrp->bpf.release_work);
  83}
  84
  85/* count number of elements in the list.
  86 * it's slow but the list cannot be long
  87 */
  88static u32 prog_list_length(struct list_head *head)
  89{
  90	struct bpf_prog_list *pl;
  91	u32 cnt = 0;
  92
  93	list_for_each_entry(pl, head, node) {
  94		if (!pl->prog)
  95			continue;
  96		cnt++;
  97	}
  98	return cnt;
  99}
 100
 101/* if parent has non-overridable prog attached,
 102 * disallow attaching new programs to the descendent cgroup.
 103 * if parent has overridable or multi-prog, allow attaching
 104 */
 105static bool hierarchy_allows_attach(struct cgroup *cgrp,
 106				    enum bpf_attach_type type,
 107				    u32 new_flags)
 108{
 109	struct cgroup *p;
 110
 111	p = cgroup_parent(cgrp);
 112	if (!p)
 113		return true;
 114	do {
 115		u32 flags = p->bpf.flags[type];
 116		u32 cnt;
 117
 118		if (flags & BPF_F_ALLOW_MULTI)
 119			return true;
 120		cnt = prog_list_length(&p->bpf.progs[type]);
 121		WARN_ON_ONCE(cnt > 1);
 122		if (cnt == 1)
 123			return !!(flags & BPF_F_ALLOW_OVERRIDE);
 124		p = cgroup_parent(p);
 125	} while (p);
 126	return true;
 127}
 128
 129/* compute a chain of effective programs for a given cgroup:
 130 * start from the list of programs in this cgroup and add
 131 * all parent programs.
 132 * Note that parent's F_ALLOW_OVERRIDE-type program is yielding
 133 * to programs in this cgroup
 134 */
 135static int compute_effective_progs(struct cgroup *cgrp,
 136				   enum bpf_attach_type type,
 137				   struct bpf_prog_array **array)
 138{
 139	enum bpf_cgroup_storage_type stype;
 140	struct bpf_prog_array *progs;
 141	struct bpf_prog_list *pl;
 142	struct cgroup *p = cgrp;
 143	int cnt = 0;
 144
 145	/* count number of effective programs by walking parents */
 146	do {
 147		if (cnt == 0 || (p->bpf.flags[type] & BPF_F_ALLOW_MULTI))
 148			cnt += prog_list_length(&p->bpf.progs[type]);
 149		p = cgroup_parent(p);
 150	} while (p);
 151
 152	progs = bpf_prog_array_alloc(cnt, GFP_KERNEL);
 153	if (!progs)
 154		return -ENOMEM;
 155
 156	/* populate the array with effective progs */
 157	cnt = 0;
 158	p = cgrp;
 159	do {
 160		if (cnt > 0 && !(p->bpf.flags[type] & BPF_F_ALLOW_MULTI))
 161			continue;
 162
 163		list_for_each_entry(pl, &p->bpf.progs[type], node) {
 164			if (!pl->prog)
 165				continue;
 166
 167			progs->items[cnt].prog = pl->prog;
 168			for_each_cgroup_storage_type(stype)
 169				progs->items[cnt].cgroup_storage[stype] =
 170					pl->storage[stype];
 171			cnt++;
 172		}
 173	} while ((p = cgroup_parent(p)));
 174
 175	*array = progs;
 176	return 0;
 177}
 178
 179static void activate_effective_progs(struct cgroup *cgrp,
 180				     enum bpf_attach_type type,
 181				     struct bpf_prog_array *old_array)
 182{
 183	rcu_swap_protected(cgrp->bpf.effective[type], old_array,
 184			   lockdep_is_held(&cgroup_mutex));
 185	/* free prog array after grace period, since __cgroup_bpf_run_*()
 186	 * might be still walking the array
 187	 */
 188	bpf_prog_array_free(old_array);
 189}
 190
 191/**
 192 * cgroup_bpf_inherit() - inherit effective programs from parent
 193 * @cgrp: the cgroup to modify
 194 */
 195int cgroup_bpf_inherit(struct cgroup *cgrp)
 196{
 197/* has to use marco instead of const int, since compiler thinks
 198 * that array below is variable length
 199 */
 200#define	NR ARRAY_SIZE(cgrp->bpf.effective)
 201	struct bpf_prog_array *arrays[NR] = {};
 202	int ret, i;
 203
 204	ret = percpu_ref_init(&cgrp->bpf.refcnt, cgroup_bpf_release_fn, 0,
 205			      GFP_KERNEL);
 206	if (ret)
 207		return ret;
 208
 209	for (i = 0; i < NR; i++)
 210		INIT_LIST_HEAD(&cgrp->bpf.progs[i]);
 211
 212	for (i = 0; i < NR; i++)
 213		if (compute_effective_progs(cgrp, i, &arrays[i]))
 214			goto cleanup;
 215
 216	for (i = 0; i < NR; i++)
 217		activate_effective_progs(cgrp, i, arrays[i]);
 218
 219	return 0;
 220cleanup:
 221	for (i = 0; i < NR; i++)
 222		bpf_prog_array_free(arrays[i]);
 223
 224	percpu_ref_exit(&cgrp->bpf.refcnt);
 225
 226	return -ENOMEM;
 227}
 228
 229static int update_effective_progs(struct cgroup *cgrp,
 230				  enum bpf_attach_type type)
 231{
 232	struct cgroup_subsys_state *css;
 233	int err;
 234
 235	/* allocate and recompute effective prog arrays */
 236	css_for_each_descendant_pre(css, &cgrp->self) {
 237		struct cgroup *desc = container_of(css, struct cgroup, self);
 238
 239		if (percpu_ref_is_zero(&desc->bpf.refcnt))
 240			continue;
 241
 242		err = compute_effective_progs(desc, type, &desc->bpf.inactive);
 243		if (err)
 244			goto cleanup;
 245	}
 246
 247	/* all allocations were successful. Activate all prog arrays */
 248	css_for_each_descendant_pre(css, &cgrp->self) {
 249		struct cgroup *desc = container_of(css, struct cgroup, self);
 250
 251		if (percpu_ref_is_zero(&desc->bpf.refcnt)) {
 252			if (unlikely(desc->bpf.inactive)) {
 253				bpf_prog_array_free(desc->bpf.inactive);
 254				desc->bpf.inactive = NULL;
 255			}
 256			continue;
 257		}
 258
 259		activate_effective_progs(desc, type, desc->bpf.inactive);
 260		desc->bpf.inactive = NULL;
 261	}
 262
 263	return 0;
 264
 265cleanup:
 266	/* oom while computing effective. Free all computed effective arrays
 267	 * since they were not activated
 268	 */
 269	css_for_each_descendant_pre(css, &cgrp->self) {
 270		struct cgroup *desc = container_of(css, struct cgroup, self);
 271
 272		bpf_prog_array_free(desc->bpf.inactive);
 273		desc->bpf.inactive = NULL;
 274	}
 275
 276	return err;
 277}
 278
 279#define BPF_CGROUP_MAX_PROGS 64
 280
 281/**
 282 * __cgroup_bpf_attach() - Attach the program to a cgroup, and
 283 *                         propagate the change to descendants
 284 * @cgrp: The cgroup which descendants to traverse
 285 * @prog: A program to attach
 286 * @type: Type of attach operation
 287 * @flags: Option flags
 288 *
 289 * Must be called with cgroup_mutex held.
 290 */
 291int __cgroup_bpf_attach(struct cgroup *cgrp, struct bpf_prog *prog,
 292			enum bpf_attach_type type, u32 flags)
 293{
 294	struct list_head *progs = &cgrp->bpf.progs[type];
 295	struct bpf_prog *old_prog = NULL;
 296	struct bpf_cgroup_storage *storage[MAX_BPF_CGROUP_STORAGE_TYPE],
 297		*old_storage[MAX_BPF_CGROUP_STORAGE_TYPE] = {NULL};
 298	enum bpf_cgroup_storage_type stype;
 299	struct bpf_prog_list *pl;
 300	bool pl_was_allocated;
 301	int err;
 302
 303	if ((flags & BPF_F_ALLOW_OVERRIDE) && (flags & BPF_F_ALLOW_MULTI))
 304		/* invalid combination */
 305		return -EINVAL;
 306
 307	if (!hierarchy_allows_attach(cgrp, type, flags))
 308		return -EPERM;
 309
 310	if (!list_empty(progs) && cgrp->bpf.flags[type] != flags)
 311		/* Disallow attaching non-overridable on top
 312		 * of existing overridable in this cgroup.
 313		 * Disallow attaching multi-prog if overridable or none
 314		 */
 315		return -EPERM;
 316
 317	if (prog_list_length(progs) >= BPF_CGROUP_MAX_PROGS)
 318		return -E2BIG;
 319
 320	for_each_cgroup_storage_type(stype) {
 321		storage[stype] = bpf_cgroup_storage_alloc(prog, stype);
 322		if (IS_ERR(storage[stype])) {
 323			storage[stype] = NULL;
 324			for_each_cgroup_storage_type(stype)
 325				bpf_cgroup_storage_free(storage[stype]);
 326			return -ENOMEM;
 327		}
 328	}
 329
 330	if (flags & BPF_F_ALLOW_MULTI) {
 331		list_for_each_entry(pl, progs, node) {
 332			if (pl->prog == prog) {
 333				/* disallow attaching the same prog twice */
 334				for_each_cgroup_storage_type(stype)
 335					bpf_cgroup_storage_free(storage[stype]);
 336				return -EINVAL;
 337			}
 338		}
 339
 340		pl = kmalloc(sizeof(*pl), GFP_KERNEL);
 341		if (!pl) {
 342			for_each_cgroup_storage_type(stype)
 343				bpf_cgroup_storage_free(storage[stype]);
 344			return -ENOMEM;
 345		}
 346
 347		pl_was_allocated = true;
 348		pl->prog = prog;
 349		for_each_cgroup_storage_type(stype)
 350			pl->storage[stype] = storage[stype];
 351		list_add_tail(&pl->node, progs);
 352	} else {
 353		if (list_empty(progs)) {
 354			pl = kmalloc(sizeof(*pl), GFP_KERNEL);
 355			if (!pl) {
 356				for_each_cgroup_storage_type(stype)
 357					bpf_cgroup_storage_free(storage[stype]);
 358				return -ENOMEM;
 359			}
 360			pl_was_allocated = true;
 361			list_add_tail(&pl->node, progs);
 362		} else {
 363			pl = list_first_entry(progs, typeof(*pl), node);
 364			old_prog = pl->prog;
 365			for_each_cgroup_storage_type(stype) {
 366				old_storage[stype] = pl->storage[stype];
 367				bpf_cgroup_storage_unlink(old_storage[stype]);
 368			}
 369			pl_was_allocated = false;
 370		}
 371		pl->prog = prog;
 372		for_each_cgroup_storage_type(stype)
 373			pl->storage[stype] = storage[stype];
 374	}
 375
 376	cgrp->bpf.flags[type] = flags;
 377
 378	err = update_effective_progs(cgrp, type);
 379	if (err)
 380		goto cleanup;
 381
 382	static_branch_inc(&cgroup_bpf_enabled_key);
 383	for_each_cgroup_storage_type(stype) {
 384		if (!old_storage[stype])
 385			continue;
 386		bpf_cgroup_storage_free(old_storage[stype]);
 387	}
 388	if (old_prog) {
 389		bpf_prog_put(old_prog);
 390		static_branch_dec(&cgroup_bpf_enabled_key);
 391	}
 392	for_each_cgroup_storage_type(stype)
 393		bpf_cgroup_storage_link(storage[stype], cgrp, type);
 394	return 0;
 395
 396cleanup:
 397	/* and cleanup the prog list */
 398	pl->prog = old_prog;
 399	for_each_cgroup_storage_type(stype) {
 400		bpf_cgroup_storage_free(pl->storage[stype]);
 401		pl->storage[stype] = old_storage[stype];
 402		bpf_cgroup_storage_link(old_storage[stype], cgrp, type);
 403	}
 404	if (pl_was_allocated) {
 405		list_del(&pl->node);
 406		kfree(pl);
 407	}
 408	return err;
 409}
 410
 411/**
 412 * __cgroup_bpf_detach() - Detach the program from a cgroup, and
 413 *                         propagate the change to descendants
 414 * @cgrp: The cgroup which descendants to traverse
 415 * @prog: A program to detach or NULL
 416 * @type: Type of detach operation
 417 *
 418 * Must be called with cgroup_mutex held.
 419 */
 420int __cgroup_bpf_detach(struct cgroup *cgrp, struct bpf_prog *prog,
 421			enum bpf_attach_type type)
 422{
 423	struct list_head *progs = &cgrp->bpf.progs[type];
 424	enum bpf_cgroup_storage_type stype;
 425	u32 flags = cgrp->bpf.flags[type];
 426	struct bpf_prog *old_prog = NULL;
 427	struct bpf_prog_list *pl;
 428	int err;
 429
 430	if (flags & BPF_F_ALLOW_MULTI) {
 431		if (!prog)
 432			/* to detach MULTI prog the user has to specify valid FD
 433			 * of the program to be detached
 434			 */
 435			return -EINVAL;
 436	} else {
 437		if (list_empty(progs))
 438			/* report error when trying to detach and nothing is attached */
 439			return -ENOENT;
 440	}
 441
 442	if (flags & BPF_F_ALLOW_MULTI) {
 443		/* find the prog and detach it */
 444		list_for_each_entry(pl, progs, node) {
 445			if (pl->prog != prog)
 446				continue;
 447			old_prog = prog;
 448			/* mark it deleted, so it's ignored while
 449			 * recomputing effective
 450			 */
 451			pl->prog = NULL;
 452			break;
 453		}
 454		if (!old_prog)
 455			return -ENOENT;
 456	} else {
 457		/* to maintain backward compatibility NONE and OVERRIDE cgroups
 458		 * allow detaching with invalid FD (prog==NULL)
 459		 */
 460		pl = list_first_entry(progs, typeof(*pl), node);
 461		old_prog = pl->prog;
 462		pl->prog = NULL;
 463	}
 464
 465	err = update_effective_progs(cgrp, type);
 466	if (err)
 467		goto cleanup;
 468
 469	/* now can actually delete it from this cgroup list */
 470	list_del(&pl->node);
 471	for_each_cgroup_storage_type(stype) {
 472		bpf_cgroup_storage_unlink(pl->storage[stype]);
 473		bpf_cgroup_storage_free(pl->storage[stype]);
 474	}
 475	kfree(pl);
 476	if (list_empty(progs))
 477		/* last program was detached, reset flags to zero */
 478		cgrp->bpf.flags[type] = 0;
 479
 480	bpf_prog_put(old_prog);
 481	static_branch_dec(&cgroup_bpf_enabled_key);
 482	return 0;
 483
 484cleanup:
 485	/* and restore back old_prog */
 486	pl->prog = old_prog;
 487	return err;
 488}
 489
 490/* Must be called with cgroup_mutex held to avoid races. */
 491int __cgroup_bpf_query(struct cgroup *cgrp, const union bpf_attr *attr,
 492		       union bpf_attr __user *uattr)
 493{
 494	__u32 __user *prog_ids = u64_to_user_ptr(attr->query.prog_ids);
 495	enum bpf_attach_type type = attr->query.attach_type;
 496	struct list_head *progs = &cgrp->bpf.progs[type];
 497	u32 flags = cgrp->bpf.flags[type];
 498	struct bpf_prog_array *effective;
 499	int cnt, ret = 0, i;
 500
 501	effective = rcu_dereference_protected(cgrp->bpf.effective[type],
 502					      lockdep_is_held(&cgroup_mutex));
 503
 504	if (attr->query.query_flags & BPF_F_QUERY_EFFECTIVE)
 505		cnt = bpf_prog_array_length(effective);
 506	else
 507		cnt = prog_list_length(progs);
 508
 509	if (copy_to_user(&uattr->query.attach_flags, &flags, sizeof(flags)))
 510		return -EFAULT;
 511	if (copy_to_user(&uattr->query.prog_cnt, &cnt, sizeof(cnt)))
 512		return -EFAULT;
 513	if (attr->query.prog_cnt == 0 || !prog_ids || !cnt)
 514		/* return early if user requested only program count + flags */
 515		return 0;
 516	if (attr->query.prog_cnt < cnt) {
 517		cnt = attr->query.prog_cnt;
 518		ret = -ENOSPC;
 519	}
 520
 521	if (attr->query.query_flags & BPF_F_QUERY_EFFECTIVE) {
 522		return bpf_prog_array_copy_to_user(effective, prog_ids, cnt);
 523	} else {
 524		struct bpf_prog_list *pl;
 525		u32 id;
 526
 527		i = 0;
 528		list_for_each_entry(pl, progs, node) {
 529			id = pl->prog->aux->id;
 530			if (copy_to_user(prog_ids + i, &id, sizeof(id)))
 531				return -EFAULT;
 532			if (++i == cnt)
 533				break;
 534		}
 535	}
 536	return ret;
 537}
 538
 539int cgroup_bpf_prog_attach(const union bpf_attr *attr,
 540			   enum bpf_prog_type ptype, struct bpf_prog *prog)
 541{
 542	struct cgroup *cgrp;
 543	int ret;
 544
 545	cgrp = cgroup_get_from_fd(attr->target_fd);
 546	if (IS_ERR(cgrp))
 547		return PTR_ERR(cgrp);
 548
 549	ret = cgroup_bpf_attach(cgrp, prog, attr->attach_type,
 550				attr->attach_flags);
 551	cgroup_put(cgrp);
 552	return ret;
 553}
 554
 555int cgroup_bpf_prog_detach(const union bpf_attr *attr, enum bpf_prog_type ptype)
 556{
 557	struct bpf_prog *prog;
 558	struct cgroup *cgrp;
 559	int ret;
 560
 561	cgrp = cgroup_get_from_fd(attr->target_fd);
 562	if (IS_ERR(cgrp))
 563		return PTR_ERR(cgrp);
 564
 565	prog = bpf_prog_get_type(attr->attach_bpf_fd, ptype);
 566	if (IS_ERR(prog))
 567		prog = NULL;
 568
 569	ret = cgroup_bpf_detach(cgrp, prog, attr->attach_type, 0);
 570	if (prog)
 571		bpf_prog_put(prog);
 572
 573	cgroup_put(cgrp);
 574	return ret;
 575}
 576
 577int cgroup_bpf_prog_query(const union bpf_attr *attr,
 578			  union bpf_attr __user *uattr)
 579{
 580	struct cgroup *cgrp;
 581	int ret;
 582
 583	cgrp = cgroup_get_from_fd(attr->query.target_fd);
 584	if (IS_ERR(cgrp))
 585		return PTR_ERR(cgrp);
 586
 587	ret = cgroup_bpf_query(cgrp, attr, uattr);
 588
 589	cgroup_put(cgrp);
 590	return ret;
 591}
 592
 593/**
 594 * __cgroup_bpf_run_filter_skb() - Run a program for packet filtering
 595 * @sk: The socket sending or receiving traffic
 596 * @skb: The skb that is being sent or received
 597 * @type: The type of program to be exectuted
 598 *
 599 * If no socket is passed, or the socket is not of type INET or INET6,
 600 * this function does nothing and returns 0.
 601 *
 602 * The program type passed in via @type must be suitable for network
 603 * filtering. No further check is performed to assert that.
 604 *
 605 * For egress packets, this function can return:
 606 *   NET_XMIT_SUCCESS    (0)	- continue with packet output
 607 *   NET_XMIT_DROP       (1)	- drop packet and notify TCP to call cwr
 608 *   NET_XMIT_CN         (2)	- continue with packet output and notify TCP
 609 *				  to call cwr
 610 *   -EPERM			- drop packet
 611 *
 612 * For ingress packets, this function will return -EPERM if any
 613 * attached program was found and if it returned != 1 during execution.
 614 * Otherwise 0 is returned.
 615 */
 616int __cgroup_bpf_run_filter_skb(struct sock *sk,
 617				struct sk_buff *skb,
 618				enum bpf_attach_type type)
 619{
 620	unsigned int offset = skb->data - skb_network_header(skb);
 621	struct sock *save_sk;
 622	void *saved_data_end;
 623	struct cgroup *cgrp;
 624	int ret;
 625
 626	if (!sk || !sk_fullsock(sk))
 627		return 0;
 628
 629	if (sk->sk_family != AF_INET && sk->sk_family != AF_INET6)
 630		return 0;
 631
 632	cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
 633	save_sk = skb->sk;
 634	skb->sk = sk;
 635	__skb_push(skb, offset);
 636
 637	/* compute pointers for the bpf prog */
 638	bpf_compute_and_save_data_end(skb, &saved_data_end);
 639
 640	if (type == BPF_CGROUP_INET_EGRESS) {
 641		ret = BPF_PROG_CGROUP_INET_EGRESS_RUN_ARRAY(
 642			cgrp->bpf.effective[type], skb, __bpf_prog_run_save_cb);
 643	} else {
 644		ret = BPF_PROG_RUN_ARRAY(cgrp->bpf.effective[type], skb,
 645					  __bpf_prog_run_save_cb);
 646		ret = (ret == 1 ? 0 : -EPERM);
 647	}
 648	bpf_restore_data_end(skb, saved_data_end);
 649	__skb_pull(skb, offset);
 650	skb->sk = save_sk;
 651
 652	return ret;
 653}
 654EXPORT_SYMBOL(__cgroup_bpf_run_filter_skb);
 655
 656/**
 657 * __cgroup_bpf_run_filter_sk() - Run a program on a sock
 658 * @sk: sock structure to manipulate
 659 * @type: The type of program to be exectuted
 660 *
 661 * socket is passed is expected to be of type INET or INET6.
 662 *
 663 * The program type passed in via @type must be suitable for sock
 664 * filtering. No further check is performed to assert that.
 665 *
 666 * This function will return %-EPERM if any if an attached program was found
 667 * and if it returned != 1 during execution. In all other cases, 0 is returned.
 668 */
 669int __cgroup_bpf_run_filter_sk(struct sock *sk,
 670			       enum bpf_attach_type type)
 671{
 672	struct cgroup *cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
 673	int ret;
 674
 675	ret = BPF_PROG_RUN_ARRAY(cgrp->bpf.effective[type], sk, BPF_PROG_RUN);
 676	return ret == 1 ? 0 : -EPERM;
 677}
 678EXPORT_SYMBOL(__cgroup_bpf_run_filter_sk);
 679
 680/**
 681 * __cgroup_bpf_run_filter_sock_addr() - Run a program on a sock and
 682 *                                       provided by user sockaddr
 683 * @sk: sock struct that will use sockaddr
 684 * @uaddr: sockaddr struct provided by user
 685 * @type: The type of program to be exectuted
 686 * @t_ctx: Pointer to attach type specific context
 687 *
 688 * socket is expected to be of type INET or INET6.
 689 *
 690 * This function will return %-EPERM if an attached program is found and
 691 * returned value != 1 during execution. In all other cases, 0 is returned.
 692 */
 693int __cgroup_bpf_run_filter_sock_addr(struct sock *sk,
 694				      struct sockaddr *uaddr,
 695				      enum bpf_attach_type type,
 696				      void *t_ctx)
 697{
 698	struct bpf_sock_addr_kern ctx = {
 699		.sk = sk,
 700		.uaddr = uaddr,
 701		.t_ctx = t_ctx,
 702	};
 703	struct sockaddr_storage unspec;
 704	struct cgroup *cgrp;
 705	int ret;
 706
 707	/* Check socket family since not all sockets represent network
 708	 * endpoint (e.g. AF_UNIX).
 709	 */
 710	if (sk->sk_family != AF_INET && sk->sk_family != AF_INET6)
 711		return 0;
 712
 713	if (!ctx.uaddr) {
 714		memset(&unspec, 0, sizeof(unspec));
 715		ctx.uaddr = (struct sockaddr *)&unspec;
 716	}
 717
 718	cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
 719	ret = BPF_PROG_RUN_ARRAY(cgrp->bpf.effective[type], &ctx, BPF_PROG_RUN);
 720
 721	return ret == 1 ? 0 : -EPERM;
 722}
 723EXPORT_SYMBOL(__cgroup_bpf_run_filter_sock_addr);
 724
 725/**
 726 * __cgroup_bpf_run_filter_sock_ops() - Run a program on a sock
 727 * @sk: socket to get cgroup from
 728 * @sock_ops: bpf_sock_ops_kern struct to pass to program. Contains
 729 * sk with connection information (IP addresses, etc.) May not contain
 730 * cgroup info if it is a req sock.
 731 * @type: The type of program to be exectuted
 732 *
 733 * socket passed is expected to be of type INET or INET6.
 734 *
 735 * The program type passed in via @type must be suitable for sock_ops
 736 * filtering. No further check is performed to assert that.
 737 *
 738 * This function will return %-EPERM if any if an attached program was found
 739 * and if it returned != 1 during execution. In all other cases, 0 is returned.
 740 */
 741int __cgroup_bpf_run_filter_sock_ops(struct sock *sk,
 742				     struct bpf_sock_ops_kern *sock_ops,
 743				     enum bpf_attach_type type)
 744{
 745	struct cgroup *cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
 746	int ret;
 747
 748	ret = BPF_PROG_RUN_ARRAY(cgrp->bpf.effective[type], sock_ops,
 749				 BPF_PROG_RUN);
 750	return ret == 1 ? 0 : -EPERM;
 751}
 752EXPORT_SYMBOL(__cgroup_bpf_run_filter_sock_ops);
 753
 754int __cgroup_bpf_check_dev_permission(short dev_type, u32 major, u32 minor,
 755				      short access, enum bpf_attach_type type)
 756{
 757	struct cgroup *cgrp;
 758	struct bpf_cgroup_dev_ctx ctx = {
 759		.access_type = (access << 16) | dev_type,
 760		.major = major,
 761		.minor = minor,
 762	};
 763	int allow = 1;
 764
 765	rcu_read_lock();
 766	cgrp = task_dfl_cgroup(current);
 767	allow = BPF_PROG_RUN_ARRAY(cgrp->bpf.effective[type], &ctx,
 768				   BPF_PROG_RUN);
 769	rcu_read_unlock();
 770
 771	return !allow;
 772}
 773EXPORT_SYMBOL(__cgroup_bpf_check_dev_permission);
 774
 775static const struct bpf_func_proto *
 776cgroup_base_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
 777{
 778	switch (func_id) {
 779	case BPF_FUNC_map_lookup_elem:
 780		return &bpf_map_lookup_elem_proto;
 781	case BPF_FUNC_map_update_elem:
 782		return &bpf_map_update_elem_proto;
 783	case BPF_FUNC_map_delete_elem:
 784		return &bpf_map_delete_elem_proto;
 785	case BPF_FUNC_map_push_elem:
 786		return &bpf_map_push_elem_proto;
 787	case BPF_FUNC_map_pop_elem:
 788		return &bpf_map_pop_elem_proto;
 789	case BPF_FUNC_map_peek_elem:
 790		return &bpf_map_peek_elem_proto;
 791	case BPF_FUNC_get_current_uid_gid:
 792		return &bpf_get_current_uid_gid_proto;
 793	case BPF_FUNC_get_local_storage:
 794		return &bpf_get_local_storage_proto;
 795	case BPF_FUNC_get_current_cgroup_id:
 796		return &bpf_get_current_cgroup_id_proto;
 797	case BPF_FUNC_trace_printk:
 798		if (capable(CAP_SYS_ADMIN))
 799			return bpf_get_trace_printk_proto();
 800		/* fall through */
 801	default:
 802		return NULL;
 803	}
 804}
 805
 806static const struct bpf_func_proto *
 807cgroup_dev_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
 808{
 809	return cgroup_base_func_proto(func_id, prog);
 810}
 811
 812static bool cgroup_dev_is_valid_access(int off, int size,
 813				       enum bpf_access_type type,
 814				       const struct bpf_prog *prog,
 815				       struct bpf_insn_access_aux *info)
 816{
 817	const int size_default = sizeof(__u32);
 818
 819	if (type == BPF_WRITE)
 820		return false;
 821
 822	if (off < 0 || off + size > sizeof(struct bpf_cgroup_dev_ctx))
 823		return false;
 824	/* The verifier guarantees that size > 0. */
 825	if (off % size != 0)
 826		return false;
 827
 828	switch (off) {
 829	case bpf_ctx_range(struct bpf_cgroup_dev_ctx, access_type):
 830		bpf_ctx_record_field_size(info, size_default);
 831		if (!bpf_ctx_narrow_access_ok(off, size, size_default))
 832			return false;
 833		break;
 834	default:
 835		if (size != size_default)
 836			return false;
 837	}
 838
 839	return true;
 840}
 841
 842const struct bpf_prog_ops cg_dev_prog_ops = {
 843};
 844
 845const struct bpf_verifier_ops cg_dev_verifier_ops = {
 846	.get_func_proto		= cgroup_dev_func_proto,
 847	.is_valid_access	= cgroup_dev_is_valid_access,
 848};
 849
 850/**
 851 * __cgroup_bpf_run_filter_sysctl - Run a program on sysctl
 852 *
 853 * @head: sysctl table header
 854 * @table: sysctl table
 855 * @write: sysctl is being read (= 0) or written (= 1)
 856 * @buf: pointer to buffer passed by user space
 857 * @pcount: value-result argument: value is size of buffer pointed to by @buf,
 858 *	result is size of @new_buf if program set new value, initial value
 859 *	otherwise
 860 * @ppos: value-result argument: value is position at which read from or write
 861 *	to sysctl is happening, result is new position if program overrode it,
 862 *	initial value otherwise
 863 * @new_buf: pointer to pointer to new buffer that will be allocated if program
 864 *	overrides new value provided by user space on sysctl write
 865 *	NOTE: it's caller responsibility to free *new_buf if it was set
 866 * @type: type of program to be executed
 867 *
 868 * Program is run when sysctl is being accessed, either read or written, and
 869 * can allow or deny such access.
 870 *
 871 * This function will return %-EPERM if an attached program is found and
 872 * returned value != 1 during execution. In all other cases 0 is returned.
 873 */
 874int __cgroup_bpf_run_filter_sysctl(struct ctl_table_header *head,
 875				   struct ctl_table *table, int write,
 876				   void __user *buf, size_t *pcount,
 877				   loff_t *ppos, void **new_buf,
 878				   enum bpf_attach_type type)
 879{
 880	struct bpf_sysctl_kern ctx = {
 881		.head = head,
 882		.table = table,
 883		.write = write,
 884		.ppos = ppos,
 885		.cur_val = NULL,
 886		.cur_len = PAGE_SIZE,
 887		.new_val = NULL,
 888		.new_len = 0,
 889		.new_updated = 0,
 890	};
 891	struct cgroup *cgrp;
 892	int ret;
 893
 894	ctx.cur_val = kmalloc_track_caller(ctx.cur_len, GFP_KERNEL);
 895	if (ctx.cur_val) {
 896		mm_segment_t old_fs;
 897		loff_t pos = 0;
 898
 899		old_fs = get_fs();
 900		set_fs(KERNEL_DS);
 901		if (table->proc_handler(table, 0, (void __user *)ctx.cur_val,
 902					&ctx.cur_len, &pos)) {
 903			/* Let BPF program decide how to proceed. */
 904			ctx.cur_len = 0;
 905		}
 906		set_fs(old_fs);
 907	} else {
 908		/* Let BPF program decide how to proceed. */
 909		ctx.cur_len = 0;
 910	}
 911
 912	if (write && buf && *pcount) {
 913		/* BPF program should be able to override new value with a
 914		 * buffer bigger than provided by user.
 915		 */
 916		ctx.new_val = kmalloc_track_caller(PAGE_SIZE, GFP_KERNEL);
 917		ctx.new_len = min_t(size_t, PAGE_SIZE, *pcount);
 918		if (!ctx.new_val ||
 919		    copy_from_user(ctx.new_val, buf, ctx.new_len))
 920			/* Let BPF program decide how to proceed. */
 921			ctx.new_len = 0;
 922	}
 923
 924	rcu_read_lock();
 925	cgrp = task_dfl_cgroup(current);
 926	ret = BPF_PROG_RUN_ARRAY(cgrp->bpf.effective[type], &ctx, BPF_PROG_RUN);
 927	rcu_read_unlock();
 928
 929	kfree(ctx.cur_val);
 930
 931	if (ret == 1 && ctx.new_updated) {
 932		*new_buf = ctx.new_val;
 933		*pcount = ctx.new_len;
 934	} else {
 935		kfree(ctx.new_val);
 936	}
 937
 938	return ret == 1 ? 0 : -EPERM;
 939}
 940EXPORT_SYMBOL(__cgroup_bpf_run_filter_sysctl);
 941
 942#ifdef CONFIG_NET
 943static bool __cgroup_bpf_prog_array_is_empty(struct cgroup *cgrp,
 944					     enum bpf_attach_type attach_type)
 945{
 946	struct bpf_prog_array *prog_array;
 947	bool empty;
 948
 949	rcu_read_lock();
 950	prog_array = rcu_dereference(cgrp->bpf.effective[attach_type]);
 951	empty = bpf_prog_array_is_empty(prog_array);
 952	rcu_read_unlock();
 953
 954	return empty;
 955}
 956
 957static int sockopt_alloc_buf(struct bpf_sockopt_kern *ctx, int max_optlen)
 958{
 959	if (unlikely(max_optlen > PAGE_SIZE) || max_optlen < 0)
 960		return -EINVAL;
 961
 962	ctx->optval = kzalloc(max_optlen, GFP_USER);
 963	if (!ctx->optval)
 964		return -ENOMEM;
 965
 966	ctx->optval_end = ctx->optval + max_optlen;
 967
 968	return 0;
 969}
 970
 971static void sockopt_free_buf(struct bpf_sockopt_kern *ctx)
 972{
 973	kfree(ctx->optval);
 974}
 975
 976int __cgroup_bpf_run_filter_setsockopt(struct sock *sk, int *level,
 977				       int *optname, char __user *optval,
 978				       int *optlen, char **kernel_optval)
 979{
 980	struct cgroup *cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
 981	struct bpf_sockopt_kern ctx = {
 982		.sk = sk,
 983		.level = *level,
 984		.optname = *optname,
 985	};
 986	int ret, max_optlen;
 987
 988	/* Opportunistic check to see whether we have any BPF program
 989	 * attached to the hook so we don't waste time allocating
 990	 * memory and locking the socket.
 991	 */
 992	if (!cgroup_bpf_enabled ||
 993	    __cgroup_bpf_prog_array_is_empty(cgrp, BPF_CGROUP_SETSOCKOPT))
 994		return 0;
 995
 996	/* Allocate a bit more than the initial user buffer for
 997	 * BPF program. The canonical use case is overriding
 998	 * TCP_CONGESTION(nv) to TCP_CONGESTION(cubic).
 999	 */
1000	max_optlen = max_t(int, 16, *optlen);
1001
1002	ret = sockopt_alloc_buf(&ctx, max_optlen);
1003	if (ret)
1004		return ret;
1005
1006	ctx.optlen = *optlen;
1007
1008	if (copy_from_user(ctx.optval, optval, *optlen) != 0) {
1009		ret = -EFAULT;
1010		goto out;
1011	}
1012
1013	lock_sock(sk);
1014	ret = BPF_PROG_RUN_ARRAY(cgrp->bpf.effective[BPF_CGROUP_SETSOCKOPT],
1015				 &ctx, BPF_PROG_RUN);
1016	release_sock(sk);
1017
1018	if (!ret) {
1019		ret = -EPERM;
1020		goto out;
1021	}
1022
1023	if (ctx.optlen == -1) {
1024		/* optlen set to -1, bypass kernel */
1025		ret = 1;
1026	} else if (ctx.optlen > max_optlen || ctx.optlen < -1) {
1027		/* optlen is out of bounds */
1028		ret = -EFAULT;
1029	} else {
1030		/* optlen within bounds, run kernel handler */
1031		ret = 0;
1032
1033		/* export any potential modifications */
1034		*level = ctx.level;
1035		*optname = ctx.optname;
1036		*optlen = ctx.optlen;
1037		*kernel_optval = ctx.optval;
1038	}
1039
1040out:
1041	if (ret)
1042		sockopt_free_buf(&ctx);
1043	return ret;
1044}
1045EXPORT_SYMBOL(__cgroup_bpf_run_filter_setsockopt);
1046
1047int __cgroup_bpf_run_filter_getsockopt(struct sock *sk, int level,
1048				       int optname, char __user *optval,
1049				       int __user *optlen, int max_optlen,
1050				       int retval)
1051{
1052	struct cgroup *cgrp = sock_cgroup_ptr(&sk->sk_cgrp_data);
1053	struct bpf_sockopt_kern ctx = {
1054		.sk = sk,
1055		.level = level,
1056		.optname = optname,
1057		.retval = retval,
1058	};
1059	int ret;
1060
1061	/* Opportunistic check to see whether we have any BPF program
1062	 * attached to the hook so we don't waste time allocating
1063	 * memory and locking the socket.
1064	 */
1065	if (!cgroup_bpf_enabled ||
1066	    __cgroup_bpf_prog_array_is_empty(cgrp, BPF_CGROUP_GETSOCKOPT))
1067		return retval;
1068
1069	ret = sockopt_alloc_buf(&ctx, max_optlen);
1070	if (ret)
1071		return ret;
1072
1073	ctx.optlen = max_optlen;
1074
1075	if (!retval) {
1076		/* If kernel getsockopt finished successfully,
1077		 * copy whatever was returned to the user back
1078		 * into our temporary buffer. Set optlen to the
1079		 * one that kernel returned as well to let
1080		 * BPF programs inspect the value.
1081		 */
1082
1083		if (get_user(ctx.optlen, optlen)) {
1084			ret = -EFAULT;
1085			goto out;
1086		}
1087
1088		if (ctx.optlen > max_optlen)
1089			ctx.optlen = max_optlen;
1090
1091		if (copy_from_user(ctx.optval, optval, ctx.optlen) != 0) {
1092			ret = -EFAULT;
1093			goto out;
1094		}
1095	}
1096
1097	lock_sock(sk);
1098	ret = BPF_PROG_RUN_ARRAY(cgrp->bpf.effective[BPF_CGROUP_GETSOCKOPT],
1099				 &ctx, BPF_PROG_RUN);
1100	release_sock(sk);
1101
1102	if (!ret) {
1103		ret = -EPERM;
1104		goto out;
1105	}
1106
1107	if (ctx.optlen > max_optlen) {
1108		ret = -EFAULT;
1109		goto out;
1110	}
1111
1112	/* BPF programs only allowed to set retval to 0, not some
1113	 * arbitrary value.
1114	 */
1115	if (ctx.retval != 0 && ctx.retval != retval) {
1116		ret = -EFAULT;
1117		goto out;
1118	}
1119
1120	if (copy_to_user(optval, ctx.optval, ctx.optlen) ||
1121	    put_user(ctx.optlen, optlen)) {
1122		ret = -EFAULT;
1123		goto out;
1124	}
1125
1126	ret = ctx.retval;
1127
1128out:
1129	sockopt_free_buf(&ctx);
1130	return ret;
1131}
1132EXPORT_SYMBOL(__cgroup_bpf_run_filter_getsockopt);
1133#endif
1134
1135static ssize_t sysctl_cpy_dir(const struct ctl_dir *dir, char **bufp,
1136			      size_t *lenp)
1137{
1138	ssize_t tmp_ret = 0, ret;
1139
1140	if (dir->header.parent) {
1141		tmp_ret = sysctl_cpy_dir(dir->header.parent, bufp, lenp);
1142		if (tmp_ret < 0)
1143			return tmp_ret;
1144	}
1145
1146	ret = strscpy(*bufp, dir->header.ctl_table[0].procname, *lenp);
1147	if (ret < 0)
1148		return ret;
1149	*bufp += ret;
1150	*lenp -= ret;
1151	ret += tmp_ret;
1152
1153	/* Avoid leading slash. */
1154	if (!ret)
1155		return ret;
1156
1157	tmp_ret = strscpy(*bufp, "/", *lenp);
1158	if (tmp_ret < 0)
1159		return tmp_ret;
1160	*bufp += tmp_ret;
1161	*lenp -= tmp_ret;
1162
1163	return ret + tmp_ret;
1164}
1165
1166BPF_CALL_4(bpf_sysctl_get_name, struct bpf_sysctl_kern *, ctx, char *, buf,
1167	   size_t, buf_len, u64, flags)
1168{
1169	ssize_t tmp_ret = 0, ret;
1170
1171	if (!buf)
1172		return -EINVAL;
1173
1174	if (!(flags & BPF_F_SYSCTL_BASE_NAME)) {
1175		if (!ctx->head)
1176			return -EINVAL;
1177		tmp_ret = sysctl_cpy_dir(ctx->head->parent, &buf, &buf_len);
1178		if (tmp_ret < 0)
1179			return tmp_ret;
1180	}
1181
1182	ret = strscpy(buf, ctx->table->procname, buf_len);
1183
1184	return ret < 0 ? ret : tmp_ret + ret;
1185}
1186
1187static const struct bpf_func_proto bpf_sysctl_get_name_proto = {
1188	.func		= bpf_sysctl_get_name,
1189	.gpl_only	= false,
1190	.ret_type	= RET_INTEGER,
1191	.arg1_type	= ARG_PTR_TO_CTX,
1192	.arg2_type	= ARG_PTR_TO_MEM,
1193	.arg3_type	= ARG_CONST_SIZE,
1194	.arg4_type	= ARG_ANYTHING,
1195};
1196
1197static int copy_sysctl_value(char *dst, size_t dst_len, char *src,
1198			     size_t src_len)
1199{
1200	if (!dst)
1201		return -EINVAL;
1202
1203	if (!dst_len)
1204		return -E2BIG;
1205
1206	if (!src || !src_len) {
1207		memset(dst, 0, dst_len);
1208		return -EINVAL;
1209	}
1210
1211	memcpy(dst, src, min(dst_len, src_len));
1212
1213	if (dst_len > src_len) {
1214		memset(dst + src_len, '\0', dst_len - src_len);
1215		return src_len;
1216	}
1217
1218	dst[dst_len - 1] = '\0';
1219
1220	return -E2BIG;
1221}
1222
1223BPF_CALL_3(bpf_sysctl_get_current_value, struct bpf_sysctl_kern *, ctx,
1224	   char *, buf, size_t, buf_len)
1225{
1226	return copy_sysctl_value(buf, buf_len, ctx->cur_val, ctx->cur_len);
1227}
1228
1229static const struct bpf_func_proto bpf_sysctl_get_current_value_proto = {
1230	.func		= bpf_sysctl_get_current_value,
1231	.gpl_only	= false,
1232	.ret_type	= RET_INTEGER,
1233	.arg1_type	= ARG_PTR_TO_CTX,
1234	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
1235	.arg3_type	= ARG_CONST_SIZE,
1236};
1237
1238BPF_CALL_3(bpf_sysctl_get_new_value, struct bpf_sysctl_kern *, ctx, char *, buf,
1239	   size_t, buf_len)
1240{
1241	if (!ctx->write) {
1242		if (buf && buf_len)
1243			memset(buf, '\0', buf_len);
1244		return -EINVAL;
1245	}
1246	return copy_sysctl_value(buf, buf_len, ctx->new_val, ctx->new_len);
1247}
1248
1249static const struct bpf_func_proto bpf_sysctl_get_new_value_proto = {
1250	.func		= bpf_sysctl_get_new_value,
1251	.gpl_only	= false,
1252	.ret_type	= RET_INTEGER,
1253	.arg1_type	= ARG_PTR_TO_CTX,
1254	.arg2_type	= ARG_PTR_TO_UNINIT_MEM,
1255	.arg3_type	= ARG_CONST_SIZE,
1256};
1257
1258BPF_CALL_3(bpf_sysctl_set_new_value, struct bpf_sysctl_kern *, ctx,
1259	   const char *, buf, size_t, buf_len)
1260{
1261	if (!ctx->write || !ctx->new_val || !ctx->new_len || !buf || !buf_len)
1262		return -EINVAL;
1263
1264	if (buf_len > PAGE_SIZE - 1)
1265		return -E2BIG;
1266
1267	memcpy(ctx->new_val, buf, buf_len);
1268	ctx->new_len = buf_len;
1269	ctx->new_updated = 1;
1270
1271	return 0;
1272}
1273
1274static const struct bpf_func_proto bpf_sysctl_set_new_value_proto = {
1275	.func		= bpf_sysctl_set_new_value,
1276	.gpl_only	= false,
1277	.ret_type	= RET_INTEGER,
1278	.arg1_type	= ARG_PTR_TO_CTX,
1279	.arg2_type	= ARG_PTR_TO_MEM,
1280	.arg3_type	= ARG_CONST_SIZE,
1281};
1282
1283static const struct bpf_func_proto *
1284sysctl_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1285{
1286	switch (func_id) {
1287	case BPF_FUNC_strtol:
1288		return &bpf_strtol_proto;
1289	case BPF_FUNC_strtoul:
1290		return &bpf_strtoul_proto;
1291	case BPF_FUNC_sysctl_get_name:
1292		return &bpf_sysctl_get_name_proto;
1293	case BPF_FUNC_sysctl_get_current_value:
1294		return &bpf_sysctl_get_current_value_proto;
1295	case BPF_FUNC_sysctl_get_new_value:
1296		return &bpf_sysctl_get_new_value_proto;
1297	case BPF_FUNC_sysctl_set_new_value:
1298		return &bpf_sysctl_set_new_value_proto;
1299	default:
1300		return cgroup_base_func_proto(func_id, prog);
1301	}
1302}
1303
1304static bool sysctl_is_valid_access(int off, int size, enum bpf_access_type type,
1305				   const struct bpf_prog *prog,
1306				   struct bpf_insn_access_aux *info)
1307{
1308	const int size_default = sizeof(__u32);
1309
1310	if (off < 0 || off + size > sizeof(struct bpf_sysctl) || off % size)
1311		return false;
1312
1313	switch (off) {
1314	case bpf_ctx_range(struct bpf_sysctl, write):
1315		if (type != BPF_READ)
1316			return false;
1317		bpf_ctx_record_field_size(info, size_default);
1318		return bpf_ctx_narrow_access_ok(off, size, size_default);
1319	case bpf_ctx_range(struct bpf_sysctl, file_pos):
1320		if (type == BPF_READ) {
1321			bpf_ctx_record_field_size(info, size_default);
1322			return bpf_ctx_narrow_access_ok(off, size, size_default);
1323		} else {
1324			return size == size_default;
1325		}
1326	default:
1327		return false;
1328	}
1329}
1330
1331static u32 sysctl_convert_ctx_access(enum bpf_access_type type,
1332				     const struct bpf_insn *si,
1333				     struct bpf_insn *insn_buf,
1334				     struct bpf_prog *prog, u32 *target_size)
1335{
1336	struct bpf_insn *insn = insn_buf;
1337	u32 read_size;
1338
1339	switch (si->off) {
1340	case offsetof(struct bpf_sysctl, write):
1341		*insn++ = BPF_LDX_MEM(
1342			BPF_SIZE(si->code), si->dst_reg, si->src_reg,
1343			bpf_target_off(struct bpf_sysctl_kern, write,
1344				       FIELD_SIZEOF(struct bpf_sysctl_kern,
1345						    write),
1346				       target_size));
1347		break;
1348	case offsetof(struct bpf_sysctl, file_pos):
1349		/* ppos is a pointer so it should be accessed via indirect
1350		 * loads and stores. Also for stores additional temporary
1351		 * register is used since neither src_reg nor dst_reg can be
1352		 * overridden.
1353		 */
1354		if (type == BPF_WRITE) {
1355			int treg = BPF_REG_9;
1356
1357			if (si->src_reg == treg || si->dst_reg == treg)
1358				--treg;
1359			if (si->src_reg == treg || si->dst_reg == treg)
1360				--treg;
1361			*insn++ = BPF_STX_MEM(
1362				BPF_DW, si->dst_reg, treg,
1363				offsetof(struct bpf_sysctl_kern, tmp_reg));
1364			*insn++ = BPF_LDX_MEM(
1365				BPF_FIELD_SIZEOF(struct bpf_sysctl_kern, ppos),
1366				treg, si->dst_reg,
1367				offsetof(struct bpf_sysctl_kern, ppos));
1368			*insn++ = BPF_STX_MEM(
1369				BPF_SIZEOF(u32), treg, si->src_reg,
1370				bpf_ctx_narrow_access_offset(
1371					0, sizeof(u32), sizeof(loff_t)));
1372			*insn++ = BPF_LDX_MEM(
1373				BPF_DW, treg, si->dst_reg,
1374				offsetof(struct bpf_sysctl_kern, tmp_reg));
1375		} else {
1376			*insn++ = BPF_LDX_MEM(
1377				BPF_FIELD_SIZEOF(struct bpf_sysctl_kern, ppos),
1378				si->dst_reg, si->src_reg,
1379				offsetof(struct bpf_sysctl_kern, ppos));
1380			read_size = bpf_size_to_bytes(BPF_SIZE(si->code));
1381			*insn++ = BPF_LDX_MEM(
1382				BPF_SIZE(si->code), si->dst_reg, si->dst_reg,
1383				bpf_ctx_narrow_access_offset(
1384					0, read_size, sizeof(loff_t)));
1385		}
1386		*target_size = sizeof(u32);
1387		break;
1388	}
1389
1390	return insn - insn_buf;
1391}
1392
1393const struct bpf_verifier_ops cg_sysctl_verifier_ops = {
1394	.get_func_proto		= sysctl_func_proto,
1395	.is_valid_access	= sysctl_is_valid_access,
1396	.convert_ctx_access	= sysctl_convert_ctx_access,
1397};
1398
1399const struct bpf_prog_ops cg_sysctl_prog_ops = {
1400};
1401
1402static const struct bpf_func_proto *
1403cg_sockopt_func_proto(enum bpf_func_id func_id, const struct bpf_prog *prog)
1404{
1405	switch (func_id) {
1406#ifdef CONFIG_NET
1407	case BPF_FUNC_sk_storage_get:
1408		return &bpf_sk_storage_get_proto;
1409	case BPF_FUNC_sk_storage_delete:
1410		return &bpf_sk_storage_delete_proto;
1411#endif
1412#ifdef CONFIG_INET
1413	case BPF_FUNC_tcp_sock:
1414		return &bpf_tcp_sock_proto;
1415#endif
1416	default:
1417		return cgroup_base_func_proto(func_id, prog);
1418	}
1419}
1420
1421static bool cg_sockopt_is_valid_access(int off, int size,
1422				       enum bpf_access_type type,
1423				       const struct bpf_prog *prog,
1424				       struct bpf_insn_access_aux *info)
1425{
1426	const int size_default = sizeof(__u32);
1427
1428	if (off < 0 || off >= sizeof(struct bpf_sockopt))
1429		return false;
1430
1431	if (off % size != 0)
1432		return false;
1433
1434	if (type == BPF_WRITE) {
1435		switch (off) {
1436		case offsetof(struct bpf_sockopt, retval):
1437			if (size != size_default)
1438				return false;
1439			return prog->expected_attach_type ==
1440				BPF_CGROUP_GETSOCKOPT;
1441		case offsetof(struct bpf_sockopt, optname):
1442			/* fallthrough */
1443		case offsetof(struct bpf_sockopt, level):
1444			if (size != size_default)
1445				return false;
1446			return prog->expected_attach_type ==
1447				BPF_CGROUP_SETSOCKOPT;
1448		case offsetof(struct bpf_sockopt, optlen):
1449			return size == size_default;
1450		default:
1451			return false;
1452		}
1453	}
1454
1455	switch (off) {
1456	case offsetof(struct bpf_sockopt, sk):
1457		if (size != sizeof(__u64))
1458			return false;
1459		info->reg_type = PTR_TO_SOCKET;
1460		break;
1461	case offsetof(struct bpf_sockopt, optval):
1462		if (size != sizeof(__u64))
1463			return false;
1464		info->reg_type = PTR_TO_PACKET;
1465		break;
1466	case offsetof(struct bpf_sockopt, optval_end):
1467		if (size != sizeof(__u64))
1468			return false;
1469		info->reg_type = PTR_TO_PACKET_END;
1470		break;
1471	case offsetof(struct bpf_sockopt, retval):
1472		if (size != size_default)
1473			return false;
1474		return prog->expected_attach_type == BPF_CGROUP_GETSOCKOPT;
1475	default:
1476		if (size != size_default)
1477			return false;
1478		break;
1479	}
1480	return true;
1481}
1482
1483#define CG_SOCKOPT_ACCESS_FIELD(T, F)					\
1484	T(BPF_FIELD_SIZEOF(struct bpf_sockopt_kern, F),			\
1485	  si->dst_reg, si->src_reg,					\
1486	  offsetof(struct bpf_sockopt_kern, F))
1487
1488static u32 cg_sockopt_convert_ctx_access(enum bpf_access_type type,
1489					 const struct bpf_insn *si,
1490					 struct bpf_insn *insn_buf,
1491					 struct bpf_prog *prog,
1492					 u32 *target_size)
1493{
1494	struct bpf_insn *insn = insn_buf;
1495
1496	switch (si->off) {
1497	case offsetof(struct bpf_sockopt, sk):
1498		*insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_LDX_MEM, sk);
1499		break;
1500	case offsetof(struct bpf_sockopt, level):
1501		if (type == BPF_WRITE)
1502			*insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_STX_MEM, level);
1503		else
1504			*insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_LDX_MEM, level);
1505		break;
1506	case offsetof(struct bpf_sockopt, optname):
1507		if (type == BPF_WRITE)
1508			*insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_STX_MEM, optname);
1509		else
1510			*insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_LDX_MEM, optname);
1511		break;
1512	case offsetof(struct bpf_sockopt, optlen):
1513		if (type == BPF_WRITE)
1514			*insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_STX_MEM, optlen);
1515		else
1516			*insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_LDX_MEM, optlen);
1517		break;
1518	case offsetof(struct bpf_sockopt, retval):
1519		if (type == BPF_WRITE)
1520			*insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_STX_MEM, retval);
1521		else
1522			*insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_LDX_MEM, retval);
1523		break;
1524	case offsetof(struct bpf_sockopt, optval):
1525		*insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_LDX_MEM, optval);
1526		break;
1527	case offsetof(struct bpf_sockopt, optval_end):
1528		*insn++ = CG_SOCKOPT_ACCESS_FIELD(BPF_LDX_MEM, optval_end);
1529		break;
1530	}
1531
1532	return insn - insn_buf;
1533}
1534
1535static int cg_sockopt_get_prologue(struct bpf_insn *insn_buf,
1536				   bool direct_write,
1537				   const struct bpf_prog *prog)
1538{
1539	/* Nothing to do for sockopt argument. The data is kzalloc'ated.
1540	 */
1541	return 0;
1542}
1543
1544const struct bpf_verifier_ops cg_sockopt_verifier_ops = {
1545	.get_func_proto		= cg_sockopt_func_proto,
1546	.is_valid_access	= cg_sockopt_is_valid_access,
1547	.convert_ctx_access	= cg_sockopt_convert_ctx_access,
1548	.gen_prologue		= cg_sockopt_get_prologue,
1549};
1550
1551const struct bpf_prog_ops cg_sockopt_prog_ops = {
1552};