Linux Audio

Check our new training course

Loading...
Note: File does not exist in v5.14.15.
   1/*
   2 * Front panel driver for Linux
   3 * Copyright (C) 2000-2008, Willy Tarreau <w@1wt.eu>
   4 *
   5 * This program is free software; you can redistribute it and/or
   6 * modify it under the terms of the GNU General Public License
   7 * as published by the Free Software Foundation; either version
   8 * 2 of the License, or (at your option) any later version.
   9 *
  10 * This code drives an LCD module (/dev/lcd), and a keypad (/dev/keypad)
  11 * connected to a parallel printer port.
  12 *
  13 * The LCD module may either be an HD44780-like 8-bit parallel LCD, or a 1-bit
  14 * serial module compatible with Samsung's KS0074. The pins may be connected in
  15 * any combination, everything is programmable.
  16 *
  17 * The keypad consists in a matrix of push buttons connecting input pins to
  18 * data output pins or to the ground. The combinations have to be hard-coded
  19 * in the driver, though several profiles exist and adding new ones is easy.
  20 *
  21 * Several profiles are provided for commonly found LCD+keypad modules on the
  22 * market, such as those found in Nexcom's appliances.
  23 *
  24 * FIXME:
  25 *      - the initialization/deinitialization process is very dirty and should
  26 *        be rewritten. It may even be buggy.
  27 *
  28 * TODO:
  29 *	- document 24 keys keyboard (3 rows of 8 cols, 32 diodes + 2 inputs)
  30 *      - make the LCD a part of a virtual screen of Vx*Vy
  31 *	- make the inputs list smp-safe
  32 *      - change the keyboard to a double mapping : signals -> key_id -> values
  33 *        so that applications can change values without knowing signals
  34 *
  35 */
  36
  37#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
  38
  39#include <linux/module.h>
  40
  41#include <linux/types.h>
  42#include <linux/errno.h>
  43#include <linux/signal.h>
  44#include <linux/sched.h>
  45#include <linux/spinlock.h>
  46#include <linux/interrupt.h>
  47#include <linux/miscdevice.h>
  48#include <linux/slab.h>
  49#include <linux/ioport.h>
  50#include <linux/fcntl.h>
  51#include <linux/init.h>
  52#include <linux/delay.h>
  53#include <linux/kernel.h>
  54#include <linux/ctype.h>
  55#include <linux/parport.h>
  56#include <linux/list.h>
  57#include <linux/notifier.h>
  58#include <linux/reboot.h>
  59#include <generated/utsrelease.h>
  60
  61#include <linux/io.h>
  62#include <linux/uaccess.h>
  63
  64#define LCD_MINOR		156
  65#define KEYPAD_MINOR		185
  66
  67#define PANEL_VERSION		"0.9.5"
  68
  69#define LCD_MAXBYTES		256	/* max burst write */
  70
  71#define KEYPAD_BUFFER		64
  72
  73/* poll the keyboard this every second */
  74#define INPUT_POLL_TIME		(HZ/50)
  75/* a key starts to repeat after this times INPUT_POLL_TIME */
  76#define KEYPAD_REP_START	(10)
  77/* a key repeats this times INPUT_POLL_TIME */
  78#define KEYPAD_REP_DELAY	(2)
  79
  80/* keep the light on this times INPUT_POLL_TIME for each flash */
  81#define FLASH_LIGHT_TEMPO	(200)
  82
  83/* converts an r_str() input to an active high, bits string : 000BAOSE */
  84#define PNL_PINPUT(a)		((((unsigned char)(a)) ^ 0x7F) >> 3)
  85
  86#define PNL_PBUSY		0x80	/* inverted input, active low */
  87#define PNL_PACK		0x40	/* direct input, active low */
  88#define PNL_POUTPA		0x20	/* direct input, active high */
  89#define PNL_PSELECD		0x10	/* direct input, active high */
  90#define PNL_PERRORP		0x08	/* direct input, active low */
  91
  92#define PNL_PBIDIR		0x20	/* bi-directional ports */
  93/* high to read data in or-ed with data out */
  94#define PNL_PINTEN		0x10
  95#define PNL_PSELECP		0x08	/* inverted output, active low */
  96#define PNL_PINITP		0x04	/* direct output, active low */
  97#define PNL_PAUTOLF		0x02	/* inverted output, active low */
  98#define PNL_PSTROBE		0x01	/* inverted output */
  99
 100#define PNL_PD0			0x01
 101#define PNL_PD1			0x02
 102#define PNL_PD2			0x04
 103#define PNL_PD3			0x08
 104#define PNL_PD4			0x10
 105#define PNL_PD5			0x20
 106#define PNL_PD6			0x40
 107#define PNL_PD7			0x80
 108
 109#define PIN_NONE		0
 110#define PIN_STROBE		1
 111#define PIN_D0			2
 112#define PIN_D1			3
 113#define PIN_D2			4
 114#define PIN_D3			5
 115#define PIN_D4			6
 116#define PIN_D5			7
 117#define PIN_D6			8
 118#define PIN_D7			9
 119#define PIN_AUTOLF		14
 120#define PIN_INITP		16
 121#define PIN_SELECP		17
 122#define PIN_NOT_SET		127
 123
 124#define LCD_FLAG_S		0x0001
 125#define LCD_FLAG_ID		0x0002
 126#define LCD_FLAG_B		0x0004	/* blink on */
 127#define LCD_FLAG_C		0x0008	/* cursor on */
 128#define LCD_FLAG_D		0x0010	/* display on */
 129#define LCD_FLAG_F		0x0020	/* large font mode */
 130#define LCD_FLAG_N		0x0040	/* 2-rows mode */
 131#define LCD_FLAG_L		0x0080	/* backlight enabled */
 132
 133#define LCD_ESCAPE_LEN		24	/* max chars for LCD escape command */
 134#define LCD_ESCAPE_CHAR	27	/* use char 27 for escape command */
 135
 136/* macros to simplify use of the parallel port */
 137#define r_ctr(x)        (parport_read_control((x)->port))
 138#define r_dtr(x)        (parport_read_data((x)->port))
 139#define r_str(x)        (parport_read_status((x)->port))
 140#define w_ctr(x, y)     (parport_write_control((x)->port, (y)))
 141#define w_dtr(x, y)     (parport_write_data((x)->port, (y)))
 142
 143/* this defines which bits are to be used and which ones to be ignored */
 144/* logical or of the output bits involved in the scan matrix */
 145static __u8 scan_mask_o;
 146/* logical or of the input bits involved in the scan matrix */
 147static __u8 scan_mask_i;
 148
 149typedef __u64 pmask_t;
 150
 151enum input_type {
 152	INPUT_TYPE_STD,
 153	INPUT_TYPE_KBD,
 154};
 155
 156enum input_state {
 157	INPUT_ST_LOW,
 158	INPUT_ST_RISING,
 159	INPUT_ST_HIGH,
 160	INPUT_ST_FALLING,
 161};
 162
 163struct logical_input {
 164	struct list_head list;
 165	pmask_t mask;
 166	pmask_t value;
 167	enum input_type type;
 168	enum input_state state;
 169	__u8 rise_time, fall_time;
 170	__u8 rise_timer, fall_timer, high_timer;
 171
 172	union {
 173		struct {	/* valid when type == INPUT_TYPE_STD */
 174			void (*press_fct)(int);
 175			void (*release_fct)(int);
 176			int press_data;
 177			int release_data;
 178		} std;
 179		struct {	/* valid when type == INPUT_TYPE_KBD */
 180			/* strings can be non null-terminated */
 181			char press_str[sizeof(void *) + sizeof(int)];
 182			char repeat_str[sizeof(void *) + sizeof(int)];
 183			char release_str[sizeof(void *) + sizeof(int)];
 184		} kbd;
 185	} u;
 186};
 187
 188static LIST_HEAD(logical_inputs);	/* list of all defined logical inputs */
 189
 190/* physical contacts history
 191 * Physical contacts are a 45 bits string of 9 groups of 5 bits each.
 192 * The 8 lower groups correspond to output bits 0 to 7, and the 9th group
 193 * corresponds to the ground.
 194 * Within each group, bits are stored in the same order as read on the port :
 195 * BAPSE (busy=4, ack=3, paper empty=2, select=1, error=0).
 196 * So, each __u64 (or pmask_t) is represented like this :
 197 * 0000000000000000000BAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSE
 198 * <-----unused------><gnd><d07><d06><d05><d04><d03><d02><d01><d00>
 199 */
 200
 201/* what has just been read from the I/O ports */
 202static pmask_t phys_read;
 203/* previous phys_read */
 204static pmask_t phys_read_prev;
 205/* stabilized phys_read (phys_read|phys_read_prev) */
 206static pmask_t phys_curr;
 207/* previous phys_curr */
 208static pmask_t phys_prev;
 209/* 0 means that at least one logical signal needs be computed */
 210static char inputs_stable;
 211
 212/* these variables are specific to the keypad */
 213static char keypad_buffer[KEYPAD_BUFFER];
 214static int keypad_buflen;
 215static int keypad_start;
 216static char keypressed;
 217static wait_queue_head_t keypad_read_wait;
 218
 219/* lcd-specific variables */
 220
 221/* contains the LCD config state */
 222static unsigned long int lcd_flags;
 223/* contains the LCD X offset */
 224static unsigned long int lcd_addr_x;
 225/* contains the LCD Y offset */
 226static unsigned long int lcd_addr_y;
 227/* current escape sequence, 0 terminated */
 228static char lcd_escape[LCD_ESCAPE_LEN + 1];
 229/* not in escape state. >=0 = escape cmd len */
 230static int lcd_escape_len = -1;
 231
 232/*
 233 * Bit masks to convert LCD signals to parallel port outputs.
 234 * _d_ are values for data port, _c_ are for control port.
 235 * [0] = signal OFF, [1] = signal ON, [2] = mask
 236 */
 237#define BIT_CLR		0
 238#define BIT_SET		1
 239#define BIT_MSK		2
 240#define BIT_STATES	3
 241/*
 242 * one entry for each bit on the LCD
 243 */
 244#define LCD_BIT_E	0
 245#define LCD_BIT_RS	1
 246#define LCD_BIT_RW	2
 247#define LCD_BIT_BL	3
 248#define LCD_BIT_CL	4
 249#define LCD_BIT_DA	5
 250#define LCD_BITS	6
 251
 252/*
 253 * each bit can be either connected to a DATA or CTRL port
 254 */
 255#define LCD_PORT_C	0
 256#define LCD_PORT_D	1
 257#define LCD_PORTS	2
 258
 259static unsigned char lcd_bits[LCD_PORTS][LCD_BITS][BIT_STATES];
 260
 261/*
 262 * LCD protocols
 263 */
 264#define LCD_PROTO_PARALLEL      0
 265#define LCD_PROTO_SERIAL        1
 266#define LCD_PROTO_TI_DA8XX_LCD	2
 267
 268/*
 269 * LCD character sets
 270 */
 271#define LCD_CHARSET_NORMAL      0
 272#define LCD_CHARSET_KS0074      1
 273
 274/*
 275 * LCD types
 276 */
 277#define LCD_TYPE_NONE		0
 278#define LCD_TYPE_OLD		1
 279#define LCD_TYPE_KS0074		2
 280#define LCD_TYPE_HANTRONIX	3
 281#define LCD_TYPE_NEXCOM		4
 282#define LCD_TYPE_CUSTOM		5
 283
 284/*
 285 * keypad types
 286 */
 287#define KEYPAD_TYPE_NONE	0
 288#define KEYPAD_TYPE_OLD		1
 289#define KEYPAD_TYPE_NEW		2
 290#define KEYPAD_TYPE_NEXCOM	3
 291
 292/*
 293 * panel profiles
 294 */
 295#define PANEL_PROFILE_CUSTOM	0
 296#define PANEL_PROFILE_OLD	1
 297#define PANEL_PROFILE_NEW	2
 298#define PANEL_PROFILE_HANTRONIX	3
 299#define PANEL_PROFILE_NEXCOM	4
 300#define PANEL_PROFILE_LARGE	5
 301
 302/*
 303 * Construct custom config from the kernel's configuration
 304 */
 305#define DEFAULT_PROFILE         PANEL_PROFILE_LARGE
 306#define DEFAULT_PARPORT         0
 307#define DEFAULT_LCD             LCD_TYPE_OLD
 308#define DEFAULT_KEYPAD          KEYPAD_TYPE_OLD
 309#define DEFAULT_LCD_WIDTH       40
 310#define DEFAULT_LCD_BWIDTH      40
 311#define DEFAULT_LCD_HWIDTH      64
 312#define DEFAULT_LCD_HEIGHT      2
 313#define DEFAULT_LCD_PROTO       LCD_PROTO_PARALLEL
 314
 315#define DEFAULT_LCD_PIN_E       PIN_AUTOLF
 316#define DEFAULT_LCD_PIN_RS      PIN_SELECP
 317#define DEFAULT_LCD_PIN_RW      PIN_INITP
 318#define DEFAULT_LCD_PIN_SCL     PIN_STROBE
 319#define DEFAULT_LCD_PIN_SDA     PIN_D0
 320#define DEFAULT_LCD_PIN_BL      PIN_NOT_SET
 321#define DEFAULT_LCD_CHARSET     LCD_CHARSET_NORMAL
 322
 323#ifdef CONFIG_PANEL_PROFILE
 324#undef DEFAULT_PROFILE
 325#define DEFAULT_PROFILE CONFIG_PANEL_PROFILE
 326#endif
 327
 328#ifdef CONFIG_PANEL_PARPORT
 329#undef DEFAULT_PARPORT
 330#define DEFAULT_PARPORT CONFIG_PANEL_PARPORT
 331#endif
 332
 333#if DEFAULT_PROFILE == 0	/* custom */
 334#ifdef CONFIG_PANEL_KEYPAD
 335#undef DEFAULT_KEYPAD
 336#define DEFAULT_KEYPAD CONFIG_PANEL_KEYPAD
 337#endif
 338
 339#ifdef CONFIG_PANEL_LCD
 340#undef DEFAULT_LCD
 341#define DEFAULT_LCD CONFIG_PANEL_LCD
 342#endif
 343
 344#ifdef CONFIG_PANEL_LCD_WIDTH
 345#undef DEFAULT_LCD_WIDTH
 346#define DEFAULT_LCD_WIDTH CONFIG_PANEL_LCD_WIDTH
 347#endif
 348
 349#ifdef CONFIG_PANEL_LCD_BWIDTH
 350#undef DEFAULT_LCD_BWIDTH
 351#define DEFAULT_LCD_BWIDTH CONFIG_PANEL_LCD_BWIDTH
 352#endif
 353
 354#ifdef CONFIG_PANEL_LCD_HWIDTH
 355#undef DEFAULT_LCD_HWIDTH
 356#define DEFAULT_LCD_HWIDTH CONFIG_PANEL_LCD_HWIDTH
 357#endif
 358
 359#ifdef CONFIG_PANEL_LCD_HEIGHT
 360#undef DEFAULT_LCD_HEIGHT
 361#define DEFAULT_LCD_HEIGHT CONFIG_PANEL_LCD_HEIGHT
 362#endif
 363
 364#ifdef CONFIG_PANEL_LCD_PROTO
 365#undef DEFAULT_LCD_PROTO
 366#define DEFAULT_LCD_PROTO CONFIG_PANEL_LCD_PROTO
 367#endif
 368
 369#ifdef CONFIG_PANEL_LCD_PIN_E
 370#undef DEFAULT_LCD_PIN_E
 371#define DEFAULT_LCD_PIN_E CONFIG_PANEL_LCD_PIN_E
 372#endif
 373
 374#ifdef CONFIG_PANEL_LCD_PIN_RS
 375#undef DEFAULT_LCD_PIN_RS
 376#define DEFAULT_LCD_PIN_RS CONFIG_PANEL_LCD_PIN_RS
 377#endif
 378
 379#ifdef CONFIG_PANEL_LCD_PIN_RW
 380#undef DEFAULT_LCD_PIN_RW
 381#define DEFAULT_LCD_PIN_RW CONFIG_PANEL_LCD_PIN_RW
 382#endif
 383
 384#ifdef CONFIG_PANEL_LCD_PIN_SCL
 385#undef DEFAULT_LCD_PIN_SCL
 386#define DEFAULT_LCD_PIN_SCL CONFIG_PANEL_LCD_PIN_SCL
 387#endif
 388
 389#ifdef CONFIG_PANEL_LCD_PIN_SDA
 390#undef DEFAULT_LCD_PIN_SDA
 391#define DEFAULT_LCD_PIN_SDA CONFIG_PANEL_LCD_PIN_SDA
 392#endif
 393
 394#ifdef CONFIG_PANEL_LCD_PIN_BL
 395#undef DEFAULT_LCD_PIN_BL
 396#define DEFAULT_LCD_PIN_BL CONFIG_PANEL_LCD_PIN_BL
 397#endif
 398
 399#ifdef CONFIG_PANEL_LCD_CHARSET
 400#undef DEFAULT_LCD_CHARSET
 401#define DEFAULT_LCD_CHARSET CONFIG_PANEL_LCD_CHARSET
 402#endif
 403
 404#endif /* DEFAULT_PROFILE == 0 */
 405
 406/* global variables */
 407static int keypad_open_cnt;	/* #times opened */
 408static int lcd_open_cnt;	/* #times opened */
 409static struct pardevice *pprt;
 410
 411static int lcd_initialized;
 412static int keypad_initialized;
 413
 414static int light_tempo;
 415
 416static char lcd_must_clear;
 417static char lcd_left_shift;
 418static char init_in_progress;
 419
 420static void (*lcd_write_cmd)(int);
 421static void (*lcd_write_data)(int);
 422static void (*lcd_clear_fast)(void);
 423
 424static DEFINE_SPINLOCK(pprt_lock);
 425static struct timer_list scan_timer;
 426
 427MODULE_DESCRIPTION("Generic parallel port LCD/Keypad driver");
 428
 429static int parport = -1;
 430module_param(parport, int, 0000);
 431MODULE_PARM_DESC(parport, "Parallel port index (0=lpt1, 1=lpt2, ...)");
 432
 433static int lcd_height = -1;
 434module_param(lcd_height, int, 0000);
 435MODULE_PARM_DESC(lcd_height, "Number of lines on the LCD");
 436
 437static int lcd_width = -1;
 438module_param(lcd_width, int, 0000);
 439MODULE_PARM_DESC(lcd_width, "Number of columns on the LCD");
 440
 441static int lcd_bwidth = -1;	/* internal buffer width (usually 40) */
 442module_param(lcd_bwidth, int, 0000);
 443MODULE_PARM_DESC(lcd_bwidth, "Internal LCD line width (40)");
 444
 445static int lcd_hwidth = -1;	/* hardware buffer width (usually 64) */
 446module_param(lcd_hwidth, int, 0000);
 447MODULE_PARM_DESC(lcd_hwidth, "LCD line hardware address (64)");
 448
 449static int lcd_enabled = -1;
 450module_param(lcd_enabled, int, 0000);
 451MODULE_PARM_DESC(lcd_enabled, "Deprecated option, use lcd_type instead");
 452
 453static int keypad_enabled = -1;
 454module_param(keypad_enabled, int, 0000);
 455MODULE_PARM_DESC(keypad_enabled, "Deprecated option, use keypad_type instead");
 456
 457static int lcd_type = -1;
 458module_param(lcd_type, int, 0000);
 459MODULE_PARM_DESC(lcd_type,
 460		 "LCD type: 0=none, 1=old //, 2=serial ks0074, 3=hantronix //, 4=nexcom //, 5=compiled-in");
 461
 462static int lcd_proto = -1;
 463module_param(lcd_proto, int, 0000);
 464MODULE_PARM_DESC(lcd_proto,
 465		"LCD communication: 0=parallel (//), 1=serial, 2=TI LCD Interface");
 466
 467static int lcd_charset = -1;
 468module_param(lcd_charset, int, 0000);
 469MODULE_PARM_DESC(lcd_charset, "LCD character set: 0=standard, 1=KS0074");
 470
 471static int keypad_type = -1;
 472module_param(keypad_type, int, 0000);
 473MODULE_PARM_DESC(keypad_type,
 474		 "Keypad type: 0=none, 1=old 6 keys, 2=new 6+1 keys, 3=nexcom 4 keys");
 475
 476static int profile = DEFAULT_PROFILE;
 477module_param(profile, int, 0000);
 478MODULE_PARM_DESC(profile,
 479		 "1=16x2 old kp; 2=serial 16x2, new kp; 3=16x2 hantronix; "
 480		 "4=16x2 nexcom; default=40x2, old kp");
 481
 482/*
 483 * These are the parallel port pins the LCD control signals are connected to.
 484 * Set this to 0 if the signal is not used. Set it to its opposite value
 485 * (negative) if the signal is negated. -MAXINT is used to indicate that the
 486 * pin has not been explicitly specified.
 487 *
 488 * WARNING! no check will be performed about collisions with keypad !
 489 */
 490
 491static int lcd_e_pin  = PIN_NOT_SET;
 492module_param(lcd_e_pin, int, 0000);
 493MODULE_PARM_DESC(lcd_e_pin,
 494		 "# of the // port pin connected to LCD 'E' signal, with polarity (-17..17)");
 495
 496static int lcd_rs_pin = PIN_NOT_SET;
 497module_param(lcd_rs_pin, int, 0000);
 498MODULE_PARM_DESC(lcd_rs_pin,
 499		 "# of the // port pin connected to LCD 'RS' signal, with polarity (-17..17)");
 500
 501static int lcd_rw_pin = PIN_NOT_SET;
 502module_param(lcd_rw_pin, int, 0000);
 503MODULE_PARM_DESC(lcd_rw_pin,
 504		 "# of the // port pin connected to LCD 'RW' signal, with polarity (-17..17)");
 505
 506static int lcd_bl_pin = PIN_NOT_SET;
 507module_param(lcd_bl_pin, int, 0000);
 508MODULE_PARM_DESC(lcd_bl_pin,
 509		 "# of the // port pin connected to LCD backlight, with polarity (-17..17)");
 510
 511static int lcd_da_pin = PIN_NOT_SET;
 512module_param(lcd_da_pin, int, 0000);
 513MODULE_PARM_DESC(lcd_da_pin,
 514		 "# of the // port pin connected to serial LCD 'SDA' signal, with polarity (-17..17)");
 515
 516static int lcd_cl_pin = PIN_NOT_SET;
 517module_param(lcd_cl_pin, int, 0000);
 518MODULE_PARM_DESC(lcd_cl_pin,
 519		 "# of the // port pin connected to serial LCD 'SCL' signal, with polarity (-17..17)");
 520
 521static const unsigned char *lcd_char_conv;
 522
 523/* for some LCD drivers (ks0074) we need a charset conversion table. */
 524static const unsigned char lcd_char_conv_ks0074[256] = {
 525	/*          0|8   1|9   2|A   3|B   4|C   5|D   6|E   7|F */
 526	/* 0x00 */ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
 527	/* 0x08 */ 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
 528	/* 0x10 */ 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
 529	/* 0x18 */ 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f,
 530	/* 0x20 */ 0x20, 0x21, 0x22, 0x23, 0xa2, 0x25, 0x26, 0x27,
 531	/* 0x28 */ 0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f,
 532	/* 0x30 */ 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37,
 533	/* 0x38 */ 0x38, 0x39, 0x3a, 0x3b, 0x3c, 0x3d, 0x3e, 0x3f,
 534	/* 0x40 */ 0xa0, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47,
 535	/* 0x48 */ 0x48, 0x49, 0x4a, 0x4b, 0x4c, 0x4d, 0x4e, 0x4f,
 536	/* 0x50 */ 0x50, 0x51, 0x52, 0x53, 0x54, 0x55, 0x56, 0x57,
 537	/* 0x58 */ 0x58, 0x59, 0x5a, 0xfa, 0xfb, 0xfc, 0x1d, 0xc4,
 538	/* 0x60 */ 0x96, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67,
 539	/* 0x68 */ 0x68, 0x69, 0x6a, 0x6b, 0x6c, 0x6d, 0x6e, 0x6f,
 540	/* 0x70 */ 0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76, 0x77,
 541	/* 0x78 */ 0x78, 0x79, 0x7a, 0xfd, 0xfe, 0xff, 0xce, 0x20,
 542	/* 0x80 */ 0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87,
 543	/* 0x88 */ 0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e, 0x8f,
 544	/* 0x90 */ 0x90, 0x91, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97,
 545	/* 0x98 */ 0x98, 0x99, 0x9a, 0x9b, 0x9c, 0x9d, 0x9e, 0x9f,
 546	/* 0xA0 */ 0x20, 0x40, 0xb1, 0xa1, 0x24, 0xa3, 0xfe, 0x5f,
 547	/* 0xA8 */ 0x22, 0xc8, 0x61, 0x14, 0x97, 0x2d, 0xad, 0x96,
 548	/* 0xB0 */ 0x80, 0x8c, 0x82, 0x83, 0x27, 0x8f, 0x86, 0xdd,
 549	/* 0xB8 */ 0x2c, 0x81, 0x6f, 0x15, 0x8b, 0x8a, 0x84, 0x60,
 550	/* 0xC0 */ 0xe2, 0xe2, 0xe2, 0x5b, 0x5b, 0xae, 0xbc, 0xa9,
 551	/* 0xC8 */ 0xc5, 0xbf, 0xc6, 0xf1, 0xe3, 0xe3, 0xe3, 0xe3,
 552	/* 0xD0 */ 0x44, 0x5d, 0xa8, 0xe4, 0xec, 0xec, 0x5c, 0x78,
 553	/* 0xD8 */ 0xab, 0xa6, 0xe5, 0x5e, 0x5e, 0xe6, 0xaa, 0xbe,
 554	/* 0xE0 */ 0x7f, 0xe7, 0xaf, 0x7b, 0x7b, 0xaf, 0xbd, 0xc8,
 555	/* 0xE8 */ 0xa4, 0xa5, 0xc7, 0xf6, 0xa7, 0xe8, 0x69, 0x69,
 556	/* 0xF0 */ 0xed, 0x7d, 0xa8, 0xe4, 0xec, 0x5c, 0x5c, 0x25,
 557	/* 0xF8 */ 0xac, 0xa6, 0xea, 0xef, 0x7e, 0xeb, 0xb2, 0x79,
 558};
 559
 560static const char old_keypad_profile[][4][9] = {
 561	{"S0", "Left\n", "Left\n", ""},
 562	{"S1", "Down\n", "Down\n", ""},
 563	{"S2", "Up\n", "Up\n", ""},
 564	{"S3", "Right\n", "Right\n", ""},
 565	{"S4", "Esc\n", "Esc\n", ""},
 566	{"S5", "Ret\n", "Ret\n", ""},
 567	{"", "", "", ""}
 568};
 569
 570/* signals, press, repeat, release */
 571static const char new_keypad_profile[][4][9] = {
 572	{"S0", "Left\n", "Left\n", ""},
 573	{"S1", "Down\n", "Down\n", ""},
 574	{"S2", "Up\n", "Up\n", ""},
 575	{"S3", "Right\n", "Right\n", ""},
 576	{"S4s5", "", "Esc\n", "Esc\n"},
 577	{"s4S5", "", "Ret\n", "Ret\n"},
 578	{"S4S5", "Help\n", "", ""},
 579	/* add new signals above this line */
 580	{"", "", "", ""}
 581};
 582
 583/* signals, press, repeat, release */
 584static const char nexcom_keypad_profile[][4][9] = {
 585	{"a-p-e-", "Down\n", "Down\n", ""},
 586	{"a-p-E-", "Ret\n", "Ret\n", ""},
 587	{"a-P-E-", "Esc\n", "Esc\n", ""},
 588	{"a-P-e-", "Up\n", "Up\n", ""},
 589	/* add new signals above this line */
 590	{"", "", "", ""}
 591};
 592
 593static const char (*keypad_profile)[4][9] = old_keypad_profile;
 594
 595/* FIXME: this should be converted to a bit array containing signals states */
 596static struct {
 597	unsigned char e;  /* parallel LCD E (data latch on falling edge) */
 598	unsigned char rs; /* parallel LCD RS  (0 = cmd, 1 = data) */
 599	unsigned char rw; /* parallel LCD R/W (0 = W, 1 = R) */
 600	unsigned char bl; /* parallel LCD backlight (0 = off, 1 = on) */
 601	unsigned char cl; /* serial LCD clock (latch on rising edge) */
 602	unsigned char da; /* serial LCD data */
 603} bits;
 604
 605static void init_scan_timer(void);
 606
 607/* sets data port bits according to current signals values */
 608static int set_data_bits(void)
 609{
 610	int val, bit;
 611
 612	val = r_dtr(pprt);
 613	for (bit = 0; bit < LCD_BITS; bit++)
 614		val &= lcd_bits[LCD_PORT_D][bit][BIT_MSK];
 615
 616	val |= lcd_bits[LCD_PORT_D][LCD_BIT_E][bits.e]
 617	    | lcd_bits[LCD_PORT_D][LCD_BIT_RS][bits.rs]
 618	    | lcd_bits[LCD_PORT_D][LCD_BIT_RW][bits.rw]
 619	    | lcd_bits[LCD_PORT_D][LCD_BIT_BL][bits.bl]
 620	    | lcd_bits[LCD_PORT_D][LCD_BIT_CL][bits.cl]
 621	    | lcd_bits[LCD_PORT_D][LCD_BIT_DA][bits.da];
 622
 623	w_dtr(pprt, val);
 624	return val;
 625}
 626
 627/* sets ctrl port bits according to current signals values */
 628static int set_ctrl_bits(void)
 629{
 630	int val, bit;
 631
 632	val = r_ctr(pprt);
 633	for (bit = 0; bit < LCD_BITS; bit++)
 634		val &= lcd_bits[LCD_PORT_C][bit][BIT_MSK];
 635
 636	val |= lcd_bits[LCD_PORT_C][LCD_BIT_E][bits.e]
 637	    | lcd_bits[LCD_PORT_C][LCD_BIT_RS][bits.rs]
 638	    | lcd_bits[LCD_PORT_C][LCD_BIT_RW][bits.rw]
 639	    | lcd_bits[LCD_PORT_C][LCD_BIT_BL][bits.bl]
 640	    | lcd_bits[LCD_PORT_C][LCD_BIT_CL][bits.cl]
 641	    | lcd_bits[LCD_PORT_C][LCD_BIT_DA][bits.da];
 642
 643	w_ctr(pprt, val);
 644	return val;
 645}
 646
 647/* sets ctrl & data port bits according to current signals values */
 648static void panel_set_bits(void)
 649{
 650	set_data_bits();
 651	set_ctrl_bits();
 652}
 653
 654/*
 655 * Converts a parallel port pin (from -25 to 25) to data and control ports
 656 * masks, and data and control port bits. The signal will be considered
 657 * unconnected if it's on pin 0 or an invalid pin (<-25 or >25).
 658 *
 659 * Result will be used this way :
 660 *   out(dport, in(dport) & d_val[2] | d_val[signal_state])
 661 *   out(cport, in(cport) & c_val[2] | c_val[signal_state])
 662 */
 663static void pin_to_bits(int pin, unsigned char *d_val, unsigned char *c_val)
 664{
 665	int d_bit, c_bit, inv;
 666
 667	d_val[0] = c_val[0] = d_val[1] = c_val[1] = 0;
 668	d_val[2] = c_val[2] = 0xFF;
 669
 670	if (pin == 0)
 671		return;
 672
 673	inv = (pin < 0);
 674	if (inv)
 675		pin = -pin;
 676
 677	d_bit = c_bit = 0;
 678
 679	switch (pin) {
 680	case PIN_STROBE:	/* strobe, inverted */
 681		c_bit = PNL_PSTROBE;
 682		inv = !inv;
 683		break;
 684	case PIN_D0...PIN_D7:	/* D0 - D7 = 2 - 9 */
 685		d_bit = 1 << (pin - 2);
 686		break;
 687	case PIN_AUTOLF:	/* autofeed, inverted */
 688		c_bit = PNL_PAUTOLF;
 689		inv = !inv;
 690		break;
 691	case PIN_INITP:		/* init, direct */
 692		c_bit = PNL_PINITP;
 693		break;
 694	case PIN_SELECP:	/* select_in, inverted */
 695		c_bit = PNL_PSELECP;
 696		inv = !inv;
 697		break;
 698	default:		/* unknown pin, ignore */
 699		break;
 700	}
 701
 702	if (c_bit) {
 703		c_val[2] &= ~c_bit;
 704		c_val[!inv] = c_bit;
 705	} else if (d_bit) {
 706		d_val[2] &= ~d_bit;
 707		d_val[!inv] = d_bit;
 708	}
 709}
 710
 711/* sleeps that many milliseconds with a reschedule */
 712static void long_sleep(int ms)
 713{
 714
 715	if (in_interrupt())
 716		mdelay(ms);
 717	else {
 718		current->state = TASK_INTERRUPTIBLE;
 719		schedule_timeout((ms * HZ + 999) / 1000);
 720	}
 721}
 722
 723/* send a serial byte to the LCD panel. The caller is responsible for locking
 724   if needed. */
 725static void lcd_send_serial(int byte)
 726{
 727	int bit;
 728
 729	/* the data bit is set on D0, and the clock on STROBE.
 730	 * LCD reads D0 on STROBE's rising edge. */
 731	for (bit = 0; bit < 8; bit++) {
 732		bits.cl = BIT_CLR;	/* CLK low */
 733		panel_set_bits();
 734		bits.da = byte & 1;
 735		panel_set_bits();
 736		udelay(2);  /* maintain the data during 2 us before CLK up */
 737		bits.cl = BIT_SET;	/* CLK high */
 738		panel_set_bits();
 739		udelay(1);  /* maintain the strobe during 1 us */
 740		byte >>= 1;
 741	}
 742}
 743
 744/* turn the backlight on or off */
 745static void lcd_backlight(int on)
 746{
 747	if (lcd_bl_pin == PIN_NONE)
 748		return;
 749
 750	/* The backlight is activated by setting the AUTOFEED line to +5V  */
 751	spin_lock_irq(&pprt_lock);
 752	bits.bl = on;
 753	panel_set_bits();
 754	spin_unlock_irq(&pprt_lock);
 755}
 756
 757/* send a command to the LCD panel in serial mode */
 758static void lcd_write_cmd_s(int cmd)
 759{
 760	spin_lock_irq(&pprt_lock);
 761	lcd_send_serial(0x1F);	/* R/W=W, RS=0 */
 762	lcd_send_serial(cmd & 0x0F);
 763	lcd_send_serial((cmd >> 4) & 0x0F);
 764	udelay(40);		/* the shortest command takes at least 40 us */
 765	spin_unlock_irq(&pprt_lock);
 766}
 767
 768/* send data to the LCD panel in serial mode */
 769static void lcd_write_data_s(int data)
 770{
 771	spin_lock_irq(&pprt_lock);
 772	lcd_send_serial(0x5F);	/* R/W=W, RS=1 */
 773	lcd_send_serial(data & 0x0F);
 774	lcd_send_serial((data >> 4) & 0x0F);
 775	udelay(40);		/* the shortest data takes at least 40 us */
 776	spin_unlock_irq(&pprt_lock);
 777}
 778
 779/* send a command to the LCD panel in 8 bits parallel mode */
 780static void lcd_write_cmd_p8(int cmd)
 781{
 782	spin_lock_irq(&pprt_lock);
 783	/* present the data to the data port */
 784	w_dtr(pprt, cmd);
 785	udelay(20);	/* maintain the data during 20 us before the strobe */
 786
 787	bits.e = BIT_SET;
 788	bits.rs = BIT_CLR;
 789	bits.rw = BIT_CLR;
 790	set_ctrl_bits();
 791
 792	udelay(40);	/* maintain the strobe during 40 us */
 793
 794	bits.e = BIT_CLR;
 795	set_ctrl_bits();
 796
 797	udelay(120);	/* the shortest command takes at least 120 us */
 798	spin_unlock_irq(&pprt_lock);
 799}
 800
 801/* send data to the LCD panel in 8 bits parallel mode */
 802static void lcd_write_data_p8(int data)
 803{
 804	spin_lock_irq(&pprt_lock);
 805	/* present the data to the data port */
 806	w_dtr(pprt, data);
 807	udelay(20);	/* maintain the data during 20 us before the strobe */
 808
 809	bits.e = BIT_SET;
 810	bits.rs = BIT_SET;
 811	bits.rw = BIT_CLR;
 812	set_ctrl_bits();
 813
 814	udelay(40);	/* maintain the strobe during 40 us */
 815
 816	bits.e = BIT_CLR;
 817	set_ctrl_bits();
 818
 819	udelay(45);	/* the shortest data takes at least 45 us */
 820	spin_unlock_irq(&pprt_lock);
 821}
 822
 823/* send a command to the TI LCD panel */
 824static void lcd_write_cmd_tilcd(int cmd)
 825{
 826	spin_lock_irq(&pprt_lock);
 827	/* present the data to the control port */
 828	w_ctr(pprt, cmd);
 829	udelay(60);
 830	spin_unlock_irq(&pprt_lock);
 831}
 832
 833/* send data to the TI LCD panel */
 834static void lcd_write_data_tilcd(int data)
 835{
 836	spin_lock_irq(&pprt_lock);
 837	/* present the data to the data port */
 838	w_dtr(pprt, data);
 839	udelay(60);
 840	spin_unlock_irq(&pprt_lock);
 841}
 842
 843static void lcd_gotoxy(void)
 844{
 845	lcd_write_cmd(0x80	/* set DDRAM address */
 846		      | (lcd_addr_y ? lcd_hwidth : 0)
 847		      /* we force the cursor to stay at the end of the
 848			 line if it wants to go farther */
 849		      | ((lcd_addr_x < lcd_bwidth) ? lcd_addr_x &
 850			 (lcd_hwidth - 1) : lcd_bwidth - 1));
 851}
 852
 853static void lcd_print(char c)
 854{
 855	if (lcd_addr_x < lcd_bwidth) {
 856		if (lcd_char_conv != NULL)
 857			c = lcd_char_conv[(unsigned char)c];
 858		lcd_write_data(c);
 859		lcd_addr_x++;
 860	}
 861	/* prevents the cursor from wrapping onto the next line */
 862	if (lcd_addr_x == lcd_bwidth)
 863		lcd_gotoxy();
 864}
 865
 866/* fills the display with spaces and resets X/Y */
 867static void lcd_clear_fast_s(void)
 868{
 869	int pos;
 870	lcd_addr_x = lcd_addr_y = 0;
 871	lcd_gotoxy();
 872
 873	spin_lock_irq(&pprt_lock);
 874	for (pos = 0; pos < lcd_height * lcd_hwidth; pos++) {
 875		lcd_send_serial(0x5F);	/* R/W=W, RS=1 */
 876		lcd_send_serial(' ' & 0x0F);
 877		lcd_send_serial((' ' >> 4) & 0x0F);
 878		udelay(40);	/* the shortest data takes at least 40 us */
 879	}
 880	spin_unlock_irq(&pprt_lock);
 881
 882	lcd_addr_x = lcd_addr_y = 0;
 883	lcd_gotoxy();
 884}
 885
 886/* fills the display with spaces and resets X/Y */
 887static void lcd_clear_fast_p8(void)
 888{
 889	int pos;
 890	lcd_addr_x = lcd_addr_y = 0;
 891	lcd_gotoxy();
 892
 893	spin_lock_irq(&pprt_lock);
 894	for (pos = 0; pos < lcd_height * lcd_hwidth; pos++) {
 895		/* present the data to the data port */
 896		w_dtr(pprt, ' ');
 897
 898		/* maintain the data during 20 us before the strobe */
 899		udelay(20);
 900
 901		bits.e = BIT_SET;
 902		bits.rs = BIT_SET;
 903		bits.rw = BIT_CLR;
 904		set_ctrl_bits();
 905
 906		/* maintain the strobe during 40 us */
 907		udelay(40);
 908
 909		bits.e = BIT_CLR;
 910		set_ctrl_bits();
 911
 912		/* the shortest data takes at least 45 us */
 913		udelay(45);
 914	}
 915	spin_unlock_irq(&pprt_lock);
 916
 917	lcd_addr_x = lcd_addr_y = 0;
 918	lcd_gotoxy();
 919}
 920
 921/* fills the display with spaces and resets X/Y */
 922static void lcd_clear_fast_tilcd(void)
 923{
 924	int pos;
 925	lcd_addr_x = lcd_addr_y = 0;
 926	lcd_gotoxy();
 927
 928	spin_lock_irq(&pprt_lock);
 929	for (pos = 0; pos < lcd_height * lcd_hwidth; pos++) {
 930		/* present the data to the data port */
 931		w_dtr(pprt, ' ');
 932		udelay(60);
 933	}
 934
 935	spin_unlock_irq(&pprt_lock);
 936
 937	lcd_addr_x = lcd_addr_y = 0;
 938	lcd_gotoxy();
 939}
 940
 941/* clears the display and resets X/Y */
 942static void lcd_clear_display(void)
 943{
 944	lcd_write_cmd(0x01);	/* clear display */
 945	lcd_addr_x = lcd_addr_y = 0;
 946	/* we must wait a few milliseconds (15) */
 947	long_sleep(15);
 948}
 949
 950static void lcd_init_display(void)
 951{
 952
 953	lcd_flags = ((lcd_height > 1) ? LCD_FLAG_N : 0)
 954	    | LCD_FLAG_D | LCD_FLAG_C | LCD_FLAG_B;
 955
 956	long_sleep(20);		/* wait 20 ms after power-up for the paranoid */
 957
 958	lcd_write_cmd(0x30);	/* 8bits, 1 line, small fonts */
 959	long_sleep(10);
 960	lcd_write_cmd(0x30);	/* 8bits, 1 line, small fonts */
 961	long_sleep(10);
 962	lcd_write_cmd(0x30);	/* 8bits, 1 line, small fonts */
 963	long_sleep(10);
 964
 965	lcd_write_cmd(0x30	/* set font height and lines number */
 966		      | ((lcd_flags & LCD_FLAG_F) ? 4 : 0)
 967		      | ((lcd_flags & LCD_FLAG_N) ? 8 : 0)
 968	    );
 969	long_sleep(10);
 970
 971	lcd_write_cmd(0x08);	/* display off, cursor off, blink off */
 972	long_sleep(10);
 973
 974	lcd_write_cmd(0x08	/* set display mode */
 975		      | ((lcd_flags & LCD_FLAG_D) ? 4 : 0)
 976		      | ((lcd_flags & LCD_FLAG_C) ? 2 : 0)
 977		      | ((lcd_flags & LCD_FLAG_B) ? 1 : 0)
 978	    );
 979
 980	lcd_backlight((lcd_flags & LCD_FLAG_L) ? 1 : 0);
 981
 982	long_sleep(10);
 983
 984	/* entry mode set : increment, cursor shifting */
 985	lcd_write_cmd(0x06);
 986
 987	lcd_clear_display();
 988}
 989
 990/*
 991 * These are the file operation function for user access to /dev/lcd
 992 * This function can also be called from inside the kernel, by
 993 * setting file and ppos to NULL.
 994 *
 995 */
 996
 997static inline int handle_lcd_special_code(void)
 998{
 999	/* LCD special codes */
1000
1001	int processed = 0;
1002
1003	char *esc = lcd_escape + 2;
1004	int oldflags = lcd_flags;
1005
1006	/* check for display mode flags */
1007	switch (*esc) {
1008	case 'D':	/* Display ON */
1009		lcd_flags |= LCD_FLAG_D;
1010		processed = 1;
1011		break;
1012	case 'd':	/* Display OFF */
1013		lcd_flags &= ~LCD_FLAG_D;
1014		processed = 1;
1015		break;
1016	case 'C':	/* Cursor ON */
1017		lcd_flags |= LCD_FLAG_C;
1018		processed = 1;
1019		break;
1020	case 'c':	/* Cursor OFF */
1021		lcd_flags &= ~LCD_FLAG_C;
1022		processed = 1;
1023		break;
1024	case 'B':	/* Blink ON */
1025		lcd_flags |= LCD_FLAG_B;
1026		processed = 1;
1027		break;
1028	case 'b':	/* Blink OFF */
1029		lcd_flags &= ~LCD_FLAG_B;
1030		processed = 1;
1031		break;
1032	case '+':	/* Back light ON */
1033		lcd_flags |= LCD_FLAG_L;
1034		processed = 1;
1035		break;
1036	case '-':	/* Back light OFF */
1037		lcd_flags &= ~LCD_FLAG_L;
1038		processed = 1;
1039		break;
1040	case '*':
1041		/* flash back light using the keypad timer */
1042		if (scan_timer.function != NULL) {
1043			if (light_tempo == 0 && ((lcd_flags & LCD_FLAG_L) == 0))
1044				lcd_backlight(1);
1045			light_tempo = FLASH_LIGHT_TEMPO;
1046		}
1047		processed = 1;
1048		break;
1049	case 'f':	/* Small Font */
1050		lcd_flags &= ~LCD_FLAG_F;
1051		processed = 1;
1052		break;
1053	case 'F':	/* Large Font */
1054		lcd_flags |= LCD_FLAG_F;
1055		processed = 1;
1056		break;
1057	case 'n':	/* One Line */
1058		lcd_flags &= ~LCD_FLAG_N;
1059		processed = 1;
1060		break;
1061	case 'N':	/* Two Lines */
1062		lcd_flags |= LCD_FLAG_N;
1063		break;
1064	case 'l':	/* Shift Cursor Left */
1065		if (lcd_addr_x > 0) {
1066			/* back one char if not at end of line */
1067			if (lcd_addr_x < lcd_bwidth)
1068				lcd_write_cmd(0x10);
1069			lcd_addr_x--;
1070		}
1071		processed = 1;
1072		break;
1073	case 'r':	/* shift cursor right */
1074		if (lcd_addr_x < lcd_width) {
1075			/* allow the cursor to pass the end of the line */
1076			if (lcd_addr_x <
1077			    (lcd_bwidth - 1))
1078				lcd_write_cmd(0x14);
1079			lcd_addr_x++;
1080		}
1081		processed = 1;
1082		break;
1083	case 'L':	/* shift display left */
1084		lcd_left_shift++;
1085		lcd_write_cmd(0x18);
1086		processed = 1;
1087		break;
1088	case 'R':	/* shift display right */
1089		lcd_left_shift--;
1090		lcd_write_cmd(0x1C);
1091		processed = 1;
1092		break;
1093	case 'k': {	/* kill end of line */
1094		int x;
1095		for (x = lcd_addr_x; x < lcd_bwidth; x++)
1096			lcd_write_data(' ');
1097
1098		/* restore cursor position */
1099		lcd_gotoxy();
1100		processed = 1;
1101		break;
1102	}
1103	case 'I':	/* reinitialize display */
1104		lcd_init_display();
1105		lcd_left_shift = 0;
1106		processed = 1;
1107		break;
1108	case 'G': {
1109		/* Generator : LGcxxxxx...xx; must have <c> between '0'
1110		 * and '7', representing the numerical ASCII code of the
1111		 * redefined character, and <xx...xx> a sequence of 16
1112		 * hex digits representing 8 bytes for each character.
1113		 * Most LCDs will only use 5 lower bits of the 7 first
1114		 * bytes.
1115		 */
1116
1117		unsigned char cgbytes[8];
1118		unsigned char cgaddr;
1119		int cgoffset;
1120		int shift;
1121		char value;
1122		int addr;
1123
1124		if (strchr(esc, ';') == NULL)
1125			break;
1126
1127		esc++;
1128
1129		cgaddr = *(esc++) - '0';
1130		if (cgaddr > 7) {
1131			processed = 1;
1132			break;
1133		}
1134
1135		cgoffset = 0;
1136		shift = 0;
1137		value = 0;
1138		while (*esc && cgoffset < 8) {
1139			shift ^= 4;
1140			if (*esc >= '0' && *esc <= '9')
1141				value |= (*esc - '0') << shift;
1142			else if (*esc >= 'A' && *esc <= 'Z')
1143				value |= (*esc - 'A' + 10) << shift;
1144			else if (*esc >= 'a' && *esc <= 'z')
1145				value |= (*esc - 'a' + 10) << shift;
1146			else {
1147				esc++;
1148				continue;
1149			}
1150
1151			if (shift == 0) {
1152				cgbytes[cgoffset++] = value;
1153				value = 0;
1154			}
1155
1156			esc++;
1157		}
1158
1159		lcd_write_cmd(0x40 | (cgaddr * 8));
1160		for (addr = 0; addr < cgoffset; addr++)
1161			lcd_write_data(cgbytes[addr]);
1162
1163		/* ensures that we stop writing to CGRAM */
1164		lcd_gotoxy();
1165		processed = 1;
1166		break;
1167	}
1168	case 'x':	/* gotoxy : LxXXX[yYYY]; */
1169	case 'y':	/* gotoxy : LyYYY[xXXX]; */
1170		if (strchr(esc, ';') == NULL)
1171			break;
1172
1173		while (*esc) {
1174			if (*esc == 'x') {
1175				esc++;
1176				if (kstrtoul(esc, 10, &lcd_addr_x) < 0)
1177					break;
1178			} else if (*esc == 'y') {
1179				esc++;
1180				if (kstrtoul(esc, 10, &lcd_addr_y) < 0)
1181					break;
1182			} else
1183				break;
1184		}
1185
1186		lcd_gotoxy();
1187		processed = 1;
1188		break;
1189	}
1190
1191	/* Check whether one flag was changed */
1192	if (oldflags != lcd_flags) {
1193		/* check whether one of B,C,D flags were changed */
1194		if ((oldflags ^ lcd_flags) &
1195		    (LCD_FLAG_B | LCD_FLAG_C | LCD_FLAG_D))
1196			/* set display mode */
1197			lcd_write_cmd(0x08
1198				      | ((lcd_flags & LCD_FLAG_D) ? 4 : 0)
1199				      | ((lcd_flags & LCD_FLAG_C) ? 2 : 0)
1200				      | ((lcd_flags & LCD_FLAG_B) ? 1 : 0));
1201		/* check whether one of F,N flags was changed */
1202		else if ((oldflags ^ lcd_flags) & (LCD_FLAG_F | LCD_FLAG_N))
1203			lcd_write_cmd(0x30
1204				      | ((lcd_flags & LCD_FLAG_F) ? 4 : 0)
1205				      | ((lcd_flags & LCD_FLAG_N) ? 8 : 0));
1206		/* check whether L flag was changed */
1207		else if ((oldflags ^ lcd_flags) & (LCD_FLAG_L)) {
1208			if (lcd_flags & (LCD_FLAG_L))
1209				lcd_backlight(1);
1210			else if (light_tempo == 0)
1211				/* switch off the light only when the tempo
1212				   lighting is gone */
1213				lcd_backlight(0);
1214		}
1215	}
1216
1217	return processed;
1218}
1219
1220static ssize_t lcd_write(struct file *file,
1221			 const char *buf, size_t count, loff_t *ppos)
1222{
1223	const char *tmp = buf;
1224	char c;
1225
1226	for (; count-- > 0; (ppos ? (*ppos)++ : 0), ++tmp) {
1227		if (!in_interrupt() && (((count + 1) & 0x1f) == 0))
1228			/* let's be a little nice with other processes
1229			   that need some CPU */
1230			schedule();
1231
1232		if (ppos == NULL && file == NULL)
1233			/* let's not use get_user() from the kernel ! */
1234			c = *tmp;
1235		else if (get_user(c, tmp))
1236			return -EFAULT;
1237
1238		/* first, we'll test if we're in escape mode */
1239		if ((c != '\n') && lcd_escape_len >= 0) {
1240			/* yes, let's add this char to the buffer */
1241			lcd_escape[lcd_escape_len++] = c;
1242			lcd_escape[lcd_escape_len] = 0;
1243		} else {
1244			/* aborts any previous escape sequence */
1245			lcd_escape_len = -1;
1246
1247			switch (c) {
1248			case LCD_ESCAPE_CHAR:
1249				/* start of an escape sequence */
1250				lcd_escape_len = 0;
1251				lcd_escape[lcd_escape_len] = 0;
1252				break;
1253			case '\b':
1254				/* go back one char and clear it */
1255				if (lcd_addr_x > 0) {
1256					/* check if we're not at the
1257					   end of the line */
1258					if (lcd_addr_x < lcd_bwidth)
1259						/* back one char */
1260						lcd_write_cmd(0x10);
1261					lcd_addr_x--;
1262				}
1263				/* replace with a space */
1264				lcd_write_data(' ');
1265				/* back one char again */
1266				lcd_write_cmd(0x10);
1267				break;
1268			case '\014':
1269				/* quickly clear the display */
1270				lcd_clear_fast();
1271				break;
1272			case '\n':
1273				/* flush the remainder of the current line and
1274				   go to the beginning of the next line */
1275				for (; lcd_addr_x < lcd_bwidth; lcd_addr_x++)
1276					lcd_write_data(' ');
1277				lcd_addr_x = 0;
1278				lcd_addr_y = (lcd_addr_y + 1) % lcd_height;
1279				lcd_gotoxy();
1280				break;
1281			case '\r':
1282				/* go to the beginning of the same line */
1283				lcd_addr_x = 0;
1284				lcd_gotoxy();
1285				break;
1286			case '\t':
1287				/* print a space instead of the tab */
1288				lcd_print(' ');
1289				break;
1290			default:
1291				/* simply print this char */
1292				lcd_print(c);
1293				break;
1294			}
1295		}
1296
1297		/* now we'll see if we're in an escape mode and if the current
1298		   escape sequence can be understood. */
1299		if (lcd_escape_len >= 2) {
1300			int processed = 0;
1301
1302			if (!strcmp(lcd_escape, "[2J")) {
1303				/* clear the display */
1304				lcd_clear_fast();
1305				processed = 1;
1306			} else if (!strcmp(lcd_escape, "[H")) {
1307				/* cursor to home */
1308				lcd_addr_x = lcd_addr_y = 0;
1309				lcd_gotoxy();
1310				processed = 1;
1311			}
1312			/* codes starting with ^[[L */
1313			else if ((lcd_escape_len >= 3) &&
1314				 (lcd_escape[0] == '[') &&
1315				 (lcd_escape[1] == 'L')) {
1316				processed = handle_lcd_special_code();
1317			}
1318
1319			/* LCD special escape codes */
1320			/* flush the escape sequence if it's been processed
1321			   or if it is getting too long. */
1322			if (processed || (lcd_escape_len >= LCD_ESCAPE_LEN))
1323				lcd_escape_len = -1;
1324		} /* escape codes */
1325	}
1326
1327	return tmp - buf;
1328}
1329
1330static int lcd_open(struct inode *inode, struct file *file)
1331{
1332	if (lcd_open_cnt)
1333		return -EBUSY;	/* open only once at a time */
1334
1335	if (file->f_mode & FMODE_READ)	/* device is write-only */
1336		return -EPERM;
1337
1338	if (lcd_must_clear) {
1339		lcd_clear_display();
1340		lcd_must_clear = 0;
1341	}
1342	lcd_open_cnt++;
1343	return nonseekable_open(inode, file);
1344}
1345
1346static int lcd_release(struct inode *inode, struct file *file)
1347{
1348	lcd_open_cnt--;
1349	return 0;
1350}
1351
1352static const struct file_operations lcd_fops = {
1353	.write   = lcd_write,
1354	.open    = lcd_open,
1355	.release = lcd_release,
1356	.llseek  = no_llseek,
1357};
1358
1359static struct miscdevice lcd_dev = {
1360	LCD_MINOR,
1361	"lcd",
1362	&lcd_fops
1363};
1364
1365/* public function usable from the kernel for any purpose */
1366static void panel_lcd_print(const char *s)
1367{
1368	if (lcd_enabled && lcd_initialized)
1369		lcd_write(NULL, s, strlen(s), NULL);
1370}
1371
1372/* initialize the LCD driver */
1373static void lcd_init(void)
1374{
1375	switch (lcd_type) {
1376	case LCD_TYPE_OLD:
1377		/* parallel mode, 8 bits */
1378		if (lcd_proto < 0)
1379			lcd_proto = LCD_PROTO_PARALLEL;
1380		if (lcd_charset < 0)
1381			lcd_charset = LCD_CHARSET_NORMAL;
1382		if (lcd_e_pin == PIN_NOT_SET)
1383			lcd_e_pin = PIN_STROBE;
1384		if (lcd_rs_pin == PIN_NOT_SET)
1385			lcd_rs_pin = PIN_AUTOLF;
1386
1387		if (lcd_width < 0)
1388			lcd_width = 40;
1389		if (lcd_bwidth < 0)
1390			lcd_bwidth = 40;
1391		if (lcd_hwidth < 0)
1392			lcd_hwidth = 64;
1393		if (lcd_height < 0)
1394			lcd_height = 2;
1395		break;
1396	case LCD_TYPE_KS0074:
1397		/* serial mode, ks0074 */
1398		if (lcd_proto < 0)
1399			lcd_proto = LCD_PROTO_SERIAL;
1400		if (lcd_charset < 0)
1401			lcd_charset = LCD_CHARSET_KS0074;
1402		if (lcd_bl_pin == PIN_NOT_SET)
1403			lcd_bl_pin = PIN_AUTOLF;
1404		if (lcd_cl_pin == PIN_NOT_SET)
1405			lcd_cl_pin = PIN_STROBE;
1406		if (lcd_da_pin == PIN_NOT_SET)
1407			lcd_da_pin = PIN_D0;
1408
1409		if (lcd_width < 0)
1410			lcd_width = 16;
1411		if (lcd_bwidth < 0)
1412			lcd_bwidth = 40;
1413		if (lcd_hwidth < 0)
1414			lcd_hwidth = 16;
1415		if (lcd_height < 0)
1416			lcd_height = 2;
1417		break;
1418	case LCD_TYPE_NEXCOM:
1419		/* parallel mode, 8 bits, generic */
1420		if (lcd_proto < 0)
1421			lcd_proto = LCD_PROTO_PARALLEL;
1422		if (lcd_charset < 0)
1423			lcd_charset = LCD_CHARSET_NORMAL;
1424		if (lcd_e_pin == PIN_NOT_SET)
1425			lcd_e_pin = PIN_AUTOLF;
1426		if (lcd_rs_pin == PIN_NOT_SET)
1427			lcd_rs_pin = PIN_SELECP;
1428		if (lcd_rw_pin == PIN_NOT_SET)
1429			lcd_rw_pin = PIN_INITP;
1430
1431		if (lcd_width < 0)
1432			lcd_width = 16;
1433		if (lcd_bwidth < 0)
1434			lcd_bwidth = 40;
1435		if (lcd_hwidth < 0)
1436			lcd_hwidth = 64;
1437		if (lcd_height < 0)
1438			lcd_height = 2;
1439		break;
1440	case LCD_TYPE_CUSTOM:
1441		/* customer-defined */
1442		if (lcd_proto < 0)
1443			lcd_proto = DEFAULT_LCD_PROTO;
1444		if (lcd_charset < 0)
1445			lcd_charset = DEFAULT_LCD_CHARSET;
1446		/* default geometry will be set later */
1447		break;
1448	case LCD_TYPE_HANTRONIX:
1449		/* parallel mode, 8 bits, hantronix-like */
1450	default:
1451		if (lcd_proto < 0)
1452			lcd_proto = LCD_PROTO_PARALLEL;
1453		if (lcd_charset < 0)
1454			lcd_charset = LCD_CHARSET_NORMAL;
1455		if (lcd_e_pin == PIN_NOT_SET)
1456			lcd_e_pin = PIN_STROBE;
1457		if (lcd_rs_pin == PIN_NOT_SET)
1458			lcd_rs_pin = PIN_SELECP;
1459
1460		if (lcd_width < 0)
1461			lcd_width = 16;
1462		if (lcd_bwidth < 0)
1463			lcd_bwidth = 40;
1464		if (lcd_hwidth < 0)
1465			lcd_hwidth = 64;
1466		if (lcd_height < 0)
1467			lcd_height = 2;
1468		break;
1469	}
1470
1471	/* this is used to catch wrong and default values */
1472	if (lcd_width <= 0)
1473		lcd_width = DEFAULT_LCD_WIDTH;
1474	if (lcd_bwidth <= 0)
1475		lcd_bwidth = DEFAULT_LCD_BWIDTH;
1476	if (lcd_hwidth <= 0)
1477		lcd_hwidth = DEFAULT_LCD_HWIDTH;
1478	if (lcd_height <= 0)
1479		lcd_height = DEFAULT_LCD_HEIGHT;
1480
1481	if (lcd_proto == LCD_PROTO_SERIAL) {	/* SERIAL */
1482		lcd_write_cmd = lcd_write_cmd_s;
1483		lcd_write_data = lcd_write_data_s;
1484		lcd_clear_fast = lcd_clear_fast_s;
1485
1486		if (lcd_cl_pin == PIN_NOT_SET)
1487			lcd_cl_pin = DEFAULT_LCD_PIN_SCL;
1488		if (lcd_da_pin == PIN_NOT_SET)
1489			lcd_da_pin = DEFAULT_LCD_PIN_SDA;
1490
1491	} else if (lcd_proto == LCD_PROTO_PARALLEL) {	/* PARALLEL */
1492		lcd_write_cmd = lcd_write_cmd_p8;
1493		lcd_write_data = lcd_write_data_p8;
1494		lcd_clear_fast = lcd_clear_fast_p8;
1495
1496		if (lcd_e_pin == PIN_NOT_SET)
1497			lcd_e_pin = DEFAULT_LCD_PIN_E;
1498		if (lcd_rs_pin == PIN_NOT_SET)
1499			lcd_rs_pin = DEFAULT_LCD_PIN_RS;
1500		if (lcd_rw_pin == PIN_NOT_SET)
1501			lcd_rw_pin = DEFAULT_LCD_PIN_RW;
1502	} else {
1503		lcd_write_cmd = lcd_write_cmd_tilcd;
1504		lcd_write_data = lcd_write_data_tilcd;
1505		lcd_clear_fast = lcd_clear_fast_tilcd;
1506	}
1507
1508	if (lcd_bl_pin == PIN_NOT_SET)
1509		lcd_bl_pin = DEFAULT_LCD_PIN_BL;
1510
1511	if (lcd_e_pin == PIN_NOT_SET)
1512		lcd_e_pin = PIN_NONE;
1513	if (lcd_rs_pin == PIN_NOT_SET)
1514		lcd_rs_pin = PIN_NONE;
1515	if (lcd_rw_pin == PIN_NOT_SET)
1516		lcd_rw_pin = PIN_NONE;
1517	if (lcd_bl_pin == PIN_NOT_SET)
1518		lcd_bl_pin = PIN_NONE;
1519	if (lcd_cl_pin == PIN_NOT_SET)
1520		lcd_cl_pin = PIN_NONE;
1521	if (lcd_da_pin == PIN_NOT_SET)
1522		lcd_da_pin = PIN_NONE;
1523
1524	if (lcd_charset < 0)
1525		lcd_charset = DEFAULT_LCD_CHARSET;
1526
1527	if (lcd_charset == LCD_CHARSET_KS0074)
1528		lcd_char_conv = lcd_char_conv_ks0074;
1529	else
1530		lcd_char_conv = NULL;
1531
1532	if (lcd_bl_pin != PIN_NONE)
1533		init_scan_timer();
1534
1535	pin_to_bits(lcd_e_pin, lcd_bits[LCD_PORT_D][LCD_BIT_E],
1536		    lcd_bits[LCD_PORT_C][LCD_BIT_E]);
1537	pin_to_bits(lcd_rs_pin, lcd_bits[LCD_PORT_D][LCD_BIT_RS],
1538		    lcd_bits[LCD_PORT_C][LCD_BIT_RS]);
1539	pin_to_bits(lcd_rw_pin, lcd_bits[LCD_PORT_D][LCD_BIT_RW],
1540		    lcd_bits[LCD_PORT_C][LCD_BIT_RW]);
1541	pin_to_bits(lcd_bl_pin, lcd_bits[LCD_PORT_D][LCD_BIT_BL],
1542		    lcd_bits[LCD_PORT_C][LCD_BIT_BL]);
1543	pin_to_bits(lcd_cl_pin, lcd_bits[LCD_PORT_D][LCD_BIT_CL],
1544		    lcd_bits[LCD_PORT_C][LCD_BIT_CL]);
1545	pin_to_bits(lcd_da_pin, lcd_bits[LCD_PORT_D][LCD_BIT_DA],
1546		    lcd_bits[LCD_PORT_C][LCD_BIT_DA]);
1547
1548	/* before this line, we must NOT send anything to the display.
1549	 * Since lcd_init_display() needs to write data, we have to
1550	 * enable mark the LCD initialized just before. */
1551	lcd_initialized = 1;
1552	lcd_init_display();
1553
1554	/* display a short message */
1555#ifdef CONFIG_PANEL_CHANGE_MESSAGE
1556#ifdef CONFIG_PANEL_BOOT_MESSAGE
1557	panel_lcd_print("\x1b[Lc\x1b[Lb\x1b[L*" CONFIG_PANEL_BOOT_MESSAGE);
1558#endif
1559#else
1560	panel_lcd_print("\x1b[Lc\x1b[Lb\x1b[L*Linux-" UTS_RELEASE "\nPanel-"
1561			PANEL_VERSION);
1562#endif
1563	lcd_addr_x = lcd_addr_y = 0;
1564	/* clear the display on the next device opening */
1565	lcd_must_clear = 1;
1566	lcd_gotoxy();
1567}
1568
1569/*
1570 * These are the file operation function for user access to /dev/keypad
1571 */
1572
1573static ssize_t keypad_read(struct file *file,
1574			   char *buf, size_t count, loff_t *ppos)
1575{
1576
1577	unsigned i = *ppos;
1578	char *tmp = buf;
1579
1580	if (keypad_buflen == 0) {
1581		if (file->f_flags & O_NONBLOCK)
1582			return -EAGAIN;
1583
1584		if (wait_event_interruptible(keypad_read_wait,
1585					     keypad_buflen != 0))
1586			return -EINTR;
1587	}
1588
1589	for (; count-- > 0 && (keypad_buflen > 0);
1590	     ++i, ++tmp, --keypad_buflen) {
1591		put_user(keypad_buffer[keypad_start], tmp);
1592		keypad_start = (keypad_start + 1) % KEYPAD_BUFFER;
1593	}
1594	*ppos = i;
1595
1596	return tmp - buf;
1597}
1598
1599static int keypad_open(struct inode *inode, struct file *file)
1600{
1601
1602	if (keypad_open_cnt)
1603		return -EBUSY;	/* open only once at a time */
1604
1605	if (file->f_mode & FMODE_WRITE)	/* device is read-only */
1606		return -EPERM;
1607
1608	keypad_buflen = 0;	/* flush the buffer on opening */
1609	keypad_open_cnt++;
1610	return 0;
1611}
1612
1613static int keypad_release(struct inode *inode, struct file *file)
1614{
1615	keypad_open_cnt--;
1616	return 0;
1617}
1618
1619static const struct file_operations keypad_fops = {
1620	.read    = keypad_read,		/* read */
1621	.open    = keypad_open,		/* open */
1622	.release = keypad_release,	/* close */
1623	.llseek  = default_llseek,
1624};
1625
1626static struct miscdevice keypad_dev = {
1627	KEYPAD_MINOR,
1628	"keypad",
1629	&keypad_fops
1630};
1631
1632static void keypad_send_key(const char *string, int max_len)
1633{
1634	if (init_in_progress)
1635		return;
1636
1637	/* send the key to the device only if a process is attached to it. */
1638	if (keypad_open_cnt > 0) {
1639		while (max_len-- && keypad_buflen < KEYPAD_BUFFER && *string) {
1640			keypad_buffer[(keypad_start + keypad_buflen++) %
1641				      KEYPAD_BUFFER] = *string++;
1642		}
1643		wake_up_interruptible(&keypad_read_wait);
1644	}
1645}
1646
1647/* this function scans all the bits involving at least one logical signal,
1648 * and puts the results in the bitfield "phys_read" (one bit per established
1649 * contact), and sets "phys_read_prev" to "phys_read".
1650 *
1651 * Note: to debounce input signals, we will only consider as switched a signal
1652 * which is stable across 2 measures. Signals which are different between two
1653 * reads will be kept as they previously were in their logical form (phys_prev).
1654 * A signal which has just switched will have a 1 in
1655 * (phys_read ^ phys_read_prev).
1656 */
1657static void phys_scan_contacts(void)
1658{
1659	int bit, bitval;
1660	char oldval;
1661	char bitmask;
1662	char gndmask;
1663
1664	phys_prev = phys_curr;
1665	phys_read_prev = phys_read;
1666	phys_read = 0;		/* flush all signals */
1667
1668	/* keep track of old value, with all outputs disabled */
1669	oldval = r_dtr(pprt) | scan_mask_o;
1670	/* activate all keyboard outputs (active low) */
1671	w_dtr(pprt, oldval & ~scan_mask_o);
1672
1673	/* will have a 1 for each bit set to gnd */
1674	bitmask = PNL_PINPUT(r_str(pprt)) & scan_mask_i;
1675	/* disable all matrix signals */
1676	w_dtr(pprt, oldval);
1677
1678	/* now that all outputs are cleared, the only active input bits are
1679	 * directly connected to the ground
1680	 */
1681
1682	/* 1 for each grounded input */
1683	gndmask = PNL_PINPUT(r_str(pprt)) & scan_mask_i;
1684
1685	/* grounded inputs are signals 40-44 */
1686	phys_read |= (pmask_t) gndmask << 40;
1687
1688	if (bitmask != gndmask) {
1689		/* since clearing the outputs changed some inputs, we know
1690		 * that some input signals are currently tied to some outputs.
1691		 * So we'll scan them.
1692		 */
1693		for (bit = 0; bit < 8; bit++) {
1694			bitval = 1 << bit;
1695
1696			if (!(scan_mask_o & bitval))	/* skip unused bits */
1697				continue;
1698
1699			w_dtr(pprt, oldval & ~bitval);	/* enable this output */
1700			bitmask = PNL_PINPUT(r_str(pprt)) & ~gndmask;
1701			phys_read |= (pmask_t) bitmask << (5 * bit);
1702		}
1703		w_dtr(pprt, oldval);	/* disable all outputs */
1704	}
1705	/* this is easy: use old bits when they are flapping,
1706	 * use new ones when stable */
1707	phys_curr = (phys_prev & (phys_read ^ phys_read_prev)) |
1708		    (phys_read & ~(phys_read ^ phys_read_prev));
1709}
1710
1711static inline int input_state_high(struct logical_input *input)
1712{
1713#if 0
1714	/* FIXME:
1715	 * this is an invalid test. It tries to catch
1716	 * transitions from single-key to multiple-key, but
1717	 * doesn't take into account the contacts polarity.
1718	 * The only solution to the problem is to parse keys
1719	 * from the most complex to the simplest combinations,
1720	 * and mark them as 'caught' once a combination
1721	 * matches, then unmatch it for all other ones.
1722	 */
1723
1724	/* try to catch dangerous transitions cases :
1725	 * someone adds a bit, so this signal was a false
1726	 * positive resulting from a transition. We should
1727	 * invalidate the signal immediately and not call the
1728	 * release function.
1729	 * eg: 0 -(press A)-> A -(press B)-> AB : don't match A's release.
1730	 */
1731	if (((phys_prev & input->mask) == input->value)
1732	    && ((phys_curr & input->mask) > input->value)) {
1733		input->state = INPUT_ST_LOW; /* invalidate */
1734		return 1;
1735	}
1736#endif
1737
1738	if ((phys_curr & input->mask) == input->value) {
1739		if ((input->type == INPUT_TYPE_STD) &&
1740		    (input->high_timer == 0)) {
1741			input->high_timer++;
1742			if (input->u.std.press_fct != NULL)
1743				input->u.std.press_fct(input->u.std.press_data);
1744		} else if (input->type == INPUT_TYPE_KBD) {
1745			/* will turn on the light */
1746			keypressed = 1;
1747
1748			if (input->high_timer == 0) {
1749				char *press_str = input->u.kbd.press_str;
1750				if (press_str[0]) {
1751					int s = sizeof(input->u.kbd.press_str);
1752					keypad_send_key(press_str, s);
1753				}
1754			}
1755
1756			if (input->u.kbd.repeat_str[0]) {
1757				char *repeat_str = input->u.kbd.repeat_str;
1758				if (input->high_timer >= KEYPAD_REP_START) {
1759					int s = sizeof(input->u.kbd.repeat_str);
1760					input->high_timer -= KEYPAD_REP_DELAY;
1761					keypad_send_key(repeat_str, s);
1762				}
1763				/* we will need to come back here soon */
1764				inputs_stable = 0;
1765			}
1766
1767			if (input->high_timer < 255)
1768				input->high_timer++;
1769		}
1770		return 1;
1771	} else {
1772		/* else signal falling down. Let's fall through. */
1773		input->state = INPUT_ST_FALLING;
1774		input->fall_timer = 0;
1775	}
1776	return 0;
1777}
1778
1779static inline void input_state_falling(struct logical_input *input)
1780{
1781#if 0
1782	/* FIXME !!! same comment as in input_state_high */
1783	if (((phys_prev & input->mask) == input->value)
1784	    && ((phys_curr & input->mask) > input->value)) {
1785		input->state = INPUT_ST_LOW;	/* invalidate */
1786		return;
1787	}
1788#endif
1789
1790	if ((phys_curr & input->mask) == input->value) {
1791		if (input->type == INPUT_TYPE_KBD) {
1792			/* will turn on the light */
1793			keypressed = 1;
1794
1795			if (input->u.kbd.repeat_str[0]) {
1796				char *repeat_str = input->u.kbd.repeat_str;
1797				if (input->high_timer >= KEYPAD_REP_START) {
1798					int s = sizeof(input->u.kbd.repeat_str);
1799					input->high_timer -= KEYPAD_REP_DELAY;
1800					keypad_send_key(repeat_str, s);
1801				}
1802				/* we will need to come back here soon */
1803				inputs_stable = 0;
1804			}
1805
1806			if (input->high_timer < 255)
1807				input->high_timer++;
1808		}
1809		input->state = INPUT_ST_HIGH;
1810	} else if (input->fall_timer >= input->fall_time) {
1811		/* call release event */
1812		if (input->type == INPUT_TYPE_STD) {
1813			void (*release_fct)(int) = input->u.std.release_fct;
1814			if (release_fct != NULL)
1815				release_fct(input->u.std.release_data);
1816		} else if (input->type == INPUT_TYPE_KBD) {
1817			char *release_str = input->u.kbd.release_str;
1818			if (release_str[0]) {
1819				int s = sizeof(input->u.kbd.release_str);
1820				keypad_send_key(release_str, s);
1821			}
1822		}
1823
1824		input->state = INPUT_ST_LOW;
1825	} else {
1826		input->fall_timer++;
1827		inputs_stable = 0;
1828	}
1829}
1830
1831static void panel_process_inputs(void)
1832{
1833	struct list_head *item;
1834	struct logical_input *input;
1835
1836	keypressed = 0;
1837	inputs_stable = 1;
1838	list_for_each(item, &logical_inputs) {
1839		input = list_entry(item, struct logical_input, list);
1840
1841		switch (input->state) {
1842		case INPUT_ST_LOW:
1843			if ((phys_curr & input->mask) != input->value)
1844				break;
1845			/* if all needed ones were already set previously,
1846			 * this means that this logical signal has been
1847			 * activated by the releasing of another combined
1848			 * signal, so we don't want to match.
1849			 * eg: AB -(release B)-> A -(release A)-> 0 :
1850			 *     don't match A.
1851			 */
1852			if ((phys_prev & input->mask) == input->value)
1853				break;
1854			input->rise_timer = 0;
1855			input->state = INPUT_ST_RISING;
1856			/* no break here, fall through */
1857		case INPUT_ST_RISING:
1858			if ((phys_curr & input->mask) != input->value) {
1859				input->state = INPUT_ST_LOW;
1860				break;
1861			}
1862			if (input->rise_timer < input->rise_time) {
1863				inputs_stable = 0;
1864				input->rise_timer++;
1865				break;
1866			}
1867			input->high_timer = 0;
1868			input->state = INPUT_ST_HIGH;
1869			/* no break here, fall through */
1870		case INPUT_ST_HIGH:
1871			if (input_state_high(input))
1872				break;
1873			/* no break here, fall through */
1874		case INPUT_ST_FALLING:
1875			input_state_falling(input);
1876		}
1877	}
1878}
1879
1880static void panel_scan_timer(void)
1881{
1882	if (keypad_enabled && keypad_initialized) {
1883		if (spin_trylock_irq(&pprt_lock)) {
1884			phys_scan_contacts();
1885
1886			/* no need for the parport anymore */
1887			spin_unlock_irq(&pprt_lock);
1888		}
1889
1890		if (!inputs_stable || phys_curr != phys_prev)
1891			panel_process_inputs();
1892	}
1893
1894	if (lcd_enabled && lcd_initialized) {
1895		if (keypressed) {
1896			if (light_tempo == 0 && ((lcd_flags & LCD_FLAG_L) == 0))
1897				lcd_backlight(1);
1898			light_tempo = FLASH_LIGHT_TEMPO;
1899		} else if (light_tempo > 0) {
1900			light_tempo--;
1901			if (light_tempo == 0 && ((lcd_flags & LCD_FLAG_L) == 0))
1902				lcd_backlight(0);
1903		}
1904	}
1905
1906	mod_timer(&scan_timer, jiffies + INPUT_POLL_TIME);
1907}
1908
1909static void init_scan_timer(void)
1910{
1911	if (scan_timer.function != NULL)
1912		return;		/* already started */
1913
1914	init_timer(&scan_timer);
1915	scan_timer.expires = jiffies + INPUT_POLL_TIME;
1916	scan_timer.data = 0;
1917	scan_timer.function = (void *)&panel_scan_timer;
1918	add_timer(&scan_timer);
1919}
1920
1921/* converts a name of the form "({BbAaPpSsEe}{01234567-})*" to a series of bits.
1922 * if <omask> or <imask> are non-null, they will be or'ed with the bits
1923 * corresponding to out and in bits respectively.
1924 * returns 1 if ok, 0 if error (in which case, nothing is written).
1925 */
1926static int input_name2mask(const char *name, pmask_t *mask, pmask_t *value,
1927			   char *imask, char *omask)
1928{
1929	static char sigtab[10] = "EeSsPpAaBb";
1930	char im, om;
1931	pmask_t m, v;
1932
1933	om = im = m = v = 0ULL;
1934	while (*name) {
1935		int in, out, bit, neg;
1936		for (in = 0; (in < sizeof(sigtab)) &&
1937			     (sigtab[in] != *name); in++)
1938			;
1939		if (in >= sizeof(sigtab))
1940			return 0;	/* input name not found */
1941		neg = (in & 1);	/* odd (lower) names are negated */
1942		in >>= 1;
1943		im |= (1 << in);
1944
1945		name++;
1946		if (isdigit(*name)) {
1947			out = *name - '0';
1948			om |= (1 << out);
1949		} else if (*name == '-')
1950			out = 8;
1951		else
1952			return 0;	/* unknown bit name */
1953
1954		bit = (out * 5) + in;
1955
1956		m |= 1ULL << bit;
1957		if (!neg)
1958			v |= 1ULL << bit;
1959		name++;
1960	}
1961	*mask = m;
1962	*value = v;
1963	if (imask)
1964		*imask |= im;
1965	if (omask)
1966		*omask |= om;
1967	return 1;
1968}
1969
1970/* tries to bind a key to the signal name <name>. The key will send the
1971 * strings <press>, <repeat>, <release> for these respective events.
1972 * Returns the pointer to the new key if ok, NULL if the key could not be bound.
1973 */
1974static struct logical_input *panel_bind_key(const char *name, const char *press,
1975					    const char *repeat,
1976					    const char *release)
1977{
1978	struct logical_input *key;
1979
1980	key = kzalloc(sizeof(struct logical_input), GFP_KERNEL);
1981	if (!key)
1982		return NULL;
1983
1984	if (!input_name2mask(name, &key->mask, &key->value, &scan_mask_i,
1985			     &scan_mask_o)) {
1986		kfree(key);
1987		return NULL;
1988	}
1989
1990	key->type = INPUT_TYPE_KBD;
1991	key->state = INPUT_ST_LOW;
1992	key->rise_time = 1;
1993	key->fall_time = 1;
1994
1995	strncpy(key->u.kbd.press_str, press, sizeof(key->u.kbd.press_str));
1996	strncpy(key->u.kbd.repeat_str, repeat, sizeof(key->u.kbd.repeat_str));
1997	strncpy(key->u.kbd.release_str, release,
1998		sizeof(key->u.kbd.release_str));
1999	list_add(&key->list, &logical_inputs);
2000	return key;
2001}
2002
2003#if 0
2004/* tries to bind a callback function to the signal name <name>. The function
2005 * <press_fct> will be called with the <press_data> arg when the signal is
2006 * activated, and so on for <release_fct>/<release_data>
2007 * Returns the pointer to the new signal if ok, NULL if the signal could not
2008 * be bound.
2009 */
2010static struct logical_input *panel_bind_callback(char *name,
2011						 void (*press_fct)(int),
2012						 int press_data,
2013						 void (*release_fct)(int),
2014						 int release_data)
2015{
2016	struct logical_input *callback;
2017
2018	callback = kmalloc(sizeof(struct logical_input), GFP_KERNEL);
2019	if (!callback)
2020		return NULL;
2021
2022	memset(callback, 0, sizeof(struct logical_input));
2023	if (!input_name2mask(name, &callback->mask, &callback->value,
2024			     &scan_mask_i, &scan_mask_o))
2025		return NULL;
2026
2027	callback->type = INPUT_TYPE_STD;
2028	callback->state = INPUT_ST_LOW;
2029	callback->rise_time = 1;
2030	callback->fall_time = 1;
2031	callback->u.std.press_fct = press_fct;
2032	callback->u.std.press_data = press_data;
2033	callback->u.std.release_fct = release_fct;
2034	callback->u.std.release_data = release_data;
2035	list_add(&callback->list, &logical_inputs);
2036	return callback;
2037}
2038#endif
2039
2040static void keypad_init(void)
2041{
2042	int keynum;
2043	init_waitqueue_head(&keypad_read_wait);
2044	keypad_buflen = 0;	/* flushes any eventual noisy keystroke */
2045
2046	/* Let's create all known keys */
2047
2048	for (keynum = 0; keypad_profile[keynum][0][0]; keynum++) {
2049		panel_bind_key(keypad_profile[keynum][0],
2050			       keypad_profile[keynum][1],
2051			       keypad_profile[keynum][2],
2052			       keypad_profile[keynum][3]);
2053	}
2054
2055	init_scan_timer();
2056	keypad_initialized = 1;
2057}
2058
2059/**************************************************/
2060/* device initialization                          */
2061/**************************************************/
2062
2063static int panel_notify_sys(struct notifier_block *this, unsigned long code,
2064			    void *unused)
2065{
2066	if (lcd_enabled && lcd_initialized) {
2067		switch (code) {
2068		case SYS_DOWN:
2069			panel_lcd_print
2070			    ("\x0cReloading\nSystem...\x1b[Lc\x1b[Lb\x1b[L+");
2071			break;
2072		case SYS_HALT:
2073			panel_lcd_print
2074			    ("\x0cSystem Halted.\x1b[Lc\x1b[Lb\x1b[L+");
2075			break;
2076		case SYS_POWER_OFF:
2077			panel_lcd_print("\x0cPower off.\x1b[Lc\x1b[Lb\x1b[L+");
2078			break;
2079		default:
2080			break;
2081		}
2082	}
2083	return NOTIFY_DONE;
2084}
2085
2086static struct notifier_block panel_notifier = {
2087	panel_notify_sys,
2088	NULL,
2089	0
2090};
2091
2092static void panel_attach(struct parport *port)
2093{
2094	if (port->number != parport)
2095		return;
2096
2097	if (pprt) {
2098		pr_err("%s: port->number=%d parport=%d, already registered!\n",
2099		       __func__, port->number, parport);
2100		return;
2101	}
2102
2103	pprt = parport_register_device(port, "panel", NULL, NULL,  /* pf, kf */
2104				       NULL,
2105				       /*PARPORT_DEV_EXCL */
2106				       0, (void *)&pprt);
2107	if (pprt == NULL) {
2108		pr_err("%s: port->number=%d parport=%d, parport_register_device() failed\n",
2109		       __func__, port->number, parport);
2110		return;
2111	}
2112
2113	if (parport_claim(pprt)) {
2114		pr_err("could not claim access to parport%d. Aborting.\n",
2115		       parport);
2116		goto err_unreg_device;
2117	}
2118
2119	/* must init LCD first, just in case an IRQ from the keypad is
2120	 * generated at keypad init
2121	 */
2122	if (lcd_enabled) {
2123		lcd_init();
2124		if (misc_register(&lcd_dev))
2125			goto err_unreg_device;
2126	}
2127
2128	if (keypad_enabled) {
2129		keypad_init();
2130		if (misc_register(&keypad_dev))
2131			goto err_lcd_unreg;
2132	}
2133	return;
2134
2135err_lcd_unreg:
2136	if (lcd_enabled)
2137		misc_deregister(&lcd_dev);
2138err_unreg_device:
2139	parport_unregister_device(pprt);
2140	pprt = NULL;
2141}
2142
2143static void panel_detach(struct parport *port)
2144{
2145	if (port->number != parport)
2146		return;
2147
2148	if (!pprt) {
2149		pr_err("%s: port->number=%d parport=%d, nothing to unregister.\n",
2150		       __func__, port->number, parport);
2151		return;
2152	}
2153
2154	if (keypad_enabled && keypad_initialized) {
2155		misc_deregister(&keypad_dev);
2156		keypad_initialized = 0;
2157	}
2158
2159	if (lcd_enabled && lcd_initialized) {
2160		misc_deregister(&lcd_dev);
2161		lcd_initialized = 0;
2162	}
2163
2164	parport_release(pprt);
2165	parport_unregister_device(pprt);
2166	pprt = NULL;
2167}
2168
2169static struct parport_driver panel_driver = {
2170	.name = "panel",
2171	.attach = panel_attach,
2172	.detach = panel_detach,
2173};
2174
2175/* init function */
2176static int panel_init(void)
2177{
2178	/* for backwards compatibility */
2179	if (keypad_type < 0)
2180		keypad_type = keypad_enabled;
2181
2182	if (lcd_type < 0)
2183		lcd_type = lcd_enabled;
2184
2185	if (parport < 0)
2186		parport = DEFAULT_PARPORT;
2187
2188	/* take care of an eventual profile */
2189	switch (profile) {
2190	case PANEL_PROFILE_CUSTOM:
2191		/* custom profile */
2192		if (keypad_type < 0)
2193			keypad_type = DEFAULT_KEYPAD;
2194		if (lcd_type < 0)
2195			lcd_type = DEFAULT_LCD;
2196		break;
2197	case PANEL_PROFILE_OLD:
2198		/* 8 bits, 2*16, old keypad */
2199		if (keypad_type < 0)
2200			keypad_type = KEYPAD_TYPE_OLD;
2201		if (lcd_type < 0)
2202			lcd_type = LCD_TYPE_OLD;
2203		if (lcd_width < 0)
2204			lcd_width = 16;
2205		if (lcd_hwidth < 0)
2206			lcd_hwidth = 16;
2207		break;
2208	case PANEL_PROFILE_NEW:
2209		/* serial, 2*16, new keypad */
2210		if (keypad_type < 0)
2211			keypad_type = KEYPAD_TYPE_NEW;
2212		if (lcd_type < 0)
2213			lcd_type = LCD_TYPE_KS0074;
2214		break;
2215	case PANEL_PROFILE_HANTRONIX:
2216		/* 8 bits, 2*16 hantronix-like, no keypad */
2217		if (keypad_type < 0)
2218			keypad_type = KEYPAD_TYPE_NONE;
2219		if (lcd_type < 0)
2220			lcd_type = LCD_TYPE_HANTRONIX;
2221		break;
2222	case PANEL_PROFILE_NEXCOM:
2223		/* generic 8 bits, 2*16, nexcom keypad, eg. Nexcom. */
2224		if (keypad_type < 0)
2225			keypad_type = KEYPAD_TYPE_NEXCOM;
2226		if (lcd_type < 0)
2227			lcd_type = LCD_TYPE_NEXCOM;
2228		break;
2229	case PANEL_PROFILE_LARGE:
2230		/* 8 bits, 2*40, old keypad */
2231		if (keypad_type < 0)
2232			keypad_type = KEYPAD_TYPE_OLD;
2233		if (lcd_type < 0)
2234			lcd_type = LCD_TYPE_OLD;
2235		break;
2236	}
2237
2238	lcd_enabled = (lcd_type > 0);
2239	keypad_enabled = (keypad_type > 0);
2240
2241	switch (keypad_type) {
2242	case KEYPAD_TYPE_OLD:
2243		keypad_profile = old_keypad_profile;
2244		break;
2245	case KEYPAD_TYPE_NEW:
2246		keypad_profile = new_keypad_profile;
2247		break;
2248	case KEYPAD_TYPE_NEXCOM:
2249		keypad_profile = nexcom_keypad_profile;
2250		break;
2251	default:
2252		keypad_profile = NULL;
2253		break;
2254	}
2255
2256	/* tells various subsystems about the fact that we are initializing */
2257	init_in_progress = 1;
2258
2259	if (parport_register_driver(&panel_driver)) {
2260		pr_err("could not register with parport. Aborting.\n");
2261		return -EIO;
2262	}
2263
2264	if (!lcd_enabled && !keypad_enabled) {
2265		/* no device enabled, let's release the parport */
2266		if (pprt) {
2267			parport_release(pprt);
2268			parport_unregister_device(pprt);
2269			pprt = NULL;
2270		}
2271		parport_unregister_driver(&panel_driver);
2272		pr_err("driver version " PANEL_VERSION " disabled.\n");
2273		return -ENODEV;
2274	}
2275
2276	register_reboot_notifier(&panel_notifier);
2277
2278	if (pprt)
2279		pr_info("driver version " PANEL_VERSION
2280			" registered on parport%d (io=0x%lx).\n", parport,
2281			pprt->port->base);
2282	else
2283		pr_info("driver version " PANEL_VERSION
2284			" not yet registered\n");
2285	/* tells various subsystems about the fact that initialization
2286	   is finished */
2287	init_in_progress = 0;
2288	return 0;
2289}
2290
2291static int __init panel_init_module(void)
2292{
2293	return panel_init();
2294}
2295
2296static void __exit panel_cleanup_module(void)
2297{
2298	unregister_reboot_notifier(&panel_notifier);
2299
2300	if (scan_timer.function != NULL)
2301		del_timer(&scan_timer);
2302
2303	if (pprt != NULL) {
2304		if (keypad_enabled) {
2305			misc_deregister(&keypad_dev);
2306			keypad_initialized = 0;
2307		}
2308
2309		if (lcd_enabled) {
2310			panel_lcd_print("\x0cLCD driver " PANEL_VERSION
2311					"\nunloaded.\x1b[Lc\x1b[Lb\x1b[L-");
2312			misc_deregister(&lcd_dev);
2313			lcd_initialized = 0;
2314		}
2315
2316		/* TODO: free all input signals */
2317		parport_release(pprt);
2318		parport_unregister_device(pprt);
2319		pprt = NULL;
2320	}
2321	parport_unregister_driver(&panel_driver);
2322}
2323
2324module_init(panel_init_module);
2325module_exit(panel_cleanup_module);
2326MODULE_AUTHOR("Willy Tarreau");
2327MODULE_LICENSE("GPL");
2328
2329/*
2330 * Local variables:
2331 *  c-indent-level: 4
2332 *  tab-width: 8
2333 * End:
2334 */