Linux Audio

Check our new training course

Loading...
   1/*
   2 * Front panel driver for Linux
   3 * Copyright (C) 2000-2008, Willy Tarreau <w@1wt.eu>
   4 *
   5 * This program is free software; you can redistribute it and/or
   6 * modify it under the terms of the GNU General Public License
   7 * as published by the Free Software Foundation; either version
   8 * 2 of the License, or (at your option) any later version.
   9 *
  10 * This code drives an LCD module (/dev/lcd), and a keypad (/dev/keypad)
  11 * connected to a parallel printer port.
  12 *
  13 * The LCD module may either be an HD44780-like 8-bit parallel LCD, or a 1-bit
  14 * serial module compatible with Samsung's KS0074. The pins may be connected in
  15 * any combination, everything is programmable.
  16 *
  17 * The keypad consists in a matrix of push buttons connecting input pins to
  18 * data output pins or to the ground. The combinations have to be hard-coded
  19 * in the driver, though several profiles exist and adding new ones is easy.
  20 *
  21 * Several profiles are provided for commonly found LCD+keypad modules on the
  22 * market, such as those found in Nexcom's appliances.
  23 *
  24 * FIXME:
  25 *      - the initialization/deinitialization process is very dirty and should
  26 *        be rewritten. It may even be buggy.
  27 *
  28 * TODO:
  29 *	- document 24 keys keyboard (3 rows of 8 cols, 32 diodes + 2 inputs)
  30 *      - make the LCD a part of a virtual screen of Vx*Vy
  31 *	- make the inputs list smp-safe
  32 *      - change the keyboard to a double mapping : signals -> key_id -> values
  33 *        so that applications can change values without knowing signals
  34 *
  35 */
  36
  37#include <linux/module.h>
  38
  39#include <linux/types.h>
  40#include <linux/errno.h>
  41#include <linux/signal.h>
  42#include <linux/sched.h>
  43#include <linux/spinlock.h>
  44#include <linux/interrupt.h>
  45#include <linux/miscdevice.h>
  46#include <linux/slab.h>
  47#include <linux/ioport.h>
  48#include <linux/fcntl.h>
  49#include <linux/init.h>
  50#include <linux/delay.h>
  51#include <linux/kernel.h>
  52#include <linux/ctype.h>
  53#include <linux/parport.h>
  54#include <linux/list.h>
  55#include <linux/notifier.h>
  56#include <linux/reboot.h>
  57#include <generated/utsrelease.h>
  58
  59#include <linux/io.h>
  60#include <linux/uaccess.h>
  61
  62#define LCD_MINOR		156
  63#define KEYPAD_MINOR		185
  64
  65#define PANEL_VERSION		"0.9.5"
  66
  67#define LCD_MAXBYTES		256	/* max burst write */
  68
  69#define KEYPAD_BUFFER		64
  70
  71/* poll the keyboard this every second */
  72#define INPUT_POLL_TIME		(HZ/50)
  73/* a key starts to repeat after this times INPUT_POLL_TIME */
  74#define KEYPAD_REP_START	(10)
  75/* a key repeats this times INPUT_POLL_TIME */
  76#define KEYPAD_REP_DELAY	(2)
  77
  78/* keep the light on this times INPUT_POLL_TIME for each flash */
  79#define FLASH_LIGHT_TEMPO	(200)
  80
  81/* converts an r_str() input to an active high, bits string : 000BAOSE */
  82#define PNL_PINPUT(a)		((((unsigned char)(a)) ^ 0x7F) >> 3)
  83
  84#define PNL_PBUSY		0x80	/* inverted input, active low */
  85#define PNL_PACK		0x40	/* direct input, active low */
  86#define PNL_POUTPA		0x20	/* direct input, active high */
  87#define PNL_PSELECD		0x10	/* direct input, active high */
  88#define PNL_PERRORP		0x08	/* direct input, active low */
  89
  90#define PNL_PBIDIR		0x20	/* bi-directional ports */
  91/* high to read data in or-ed with data out */
  92#define PNL_PINTEN		0x10
  93#define PNL_PSELECP		0x08	/* inverted output, active low */
  94#define PNL_PINITP		0x04	/* direct output, active low */
  95#define PNL_PAUTOLF		0x02	/* inverted output, active low */
  96#define PNL_PSTROBE		0x01	/* inverted output */
  97
  98#define PNL_PD0			0x01
  99#define PNL_PD1			0x02
 100#define PNL_PD2			0x04
 101#define PNL_PD3			0x08
 102#define PNL_PD4			0x10
 103#define PNL_PD5			0x20
 104#define PNL_PD6			0x40
 105#define PNL_PD7			0x80
 106
 107#define PIN_NONE		0
 108#define PIN_STROBE		1
 109#define PIN_D0			2
 110#define PIN_D1			3
 111#define PIN_D2			4
 112#define PIN_D3			5
 113#define PIN_D4			6
 114#define PIN_D5			7
 115#define PIN_D6			8
 116#define PIN_D7			9
 117#define PIN_AUTOLF		14
 118#define PIN_INITP		16
 119#define PIN_SELECP		17
 120#define PIN_NOT_SET		127
 121
 122#define LCD_FLAG_S		0x0001
 123#define LCD_FLAG_ID		0x0002
 124#define LCD_FLAG_B		0x0004	/* blink on */
 125#define LCD_FLAG_C		0x0008	/* cursor on */
 126#define LCD_FLAG_D		0x0010	/* display on */
 127#define LCD_FLAG_F		0x0020	/* large font mode */
 128#define LCD_FLAG_N		0x0040	/* 2-rows mode */
 129#define LCD_FLAG_L		0x0080	/* backlight enabled */
 130
 131#define LCD_ESCAPE_LEN		24	/* max chars for LCD escape command */
 132#define LCD_ESCAPE_CHAR	27	/* use char 27 for escape command */
 133
 134/* macros to simplify use of the parallel port */
 135#define r_ctr(x)        (parport_read_control((x)->port))
 136#define r_dtr(x)        (parport_read_data((x)->port))
 137#define r_str(x)        (parport_read_status((x)->port))
 138#define w_ctr(x, y)     do { parport_write_control((x)->port, (y)); } while (0)
 139#define w_dtr(x, y)     do { parport_write_data((x)->port, (y)); } while (0)
 140
 141/* this defines which bits are to be used and which ones to be ignored */
 142/* logical or of the output bits involved in the scan matrix */
 143static __u8 scan_mask_o;
 144/* logical or of the input bits involved in the scan matrix */
 145static __u8 scan_mask_i;
 146
 147typedef __u64 pmask_t;
 148
 149enum input_type {
 150	INPUT_TYPE_STD,
 151	INPUT_TYPE_KBD,
 152};
 153
 154enum input_state {
 155	INPUT_ST_LOW,
 156	INPUT_ST_RISING,
 157	INPUT_ST_HIGH,
 158	INPUT_ST_FALLING,
 159};
 160
 161struct logical_input {
 162	struct list_head list;
 163	pmask_t mask;
 164	pmask_t value;
 165	enum input_type type;
 166	enum input_state state;
 167	__u8 rise_time, fall_time;
 168	__u8 rise_timer, fall_timer, high_timer;
 169
 170	union {
 171		struct {	/* valid when type == INPUT_TYPE_STD */
 172			void (*press_fct) (int);
 173			void (*release_fct) (int);
 174			int press_data;
 175			int release_data;
 176		} std;
 177		struct {	/* valid when type == INPUT_TYPE_KBD */
 178			/* strings can be non null-terminated */
 179			char press_str[sizeof(void *) + sizeof(int)];
 180			char repeat_str[sizeof(void *) + sizeof(int)];
 181			char release_str[sizeof(void *) + sizeof(int)];
 182		} kbd;
 183	} u;
 184};
 185
 186LIST_HEAD(logical_inputs);	/* list of all defined logical inputs */
 187
 188/* physical contacts history
 189 * Physical contacts are a 45 bits string of 9 groups of 5 bits each.
 190 * The 8 lower groups correspond to output bits 0 to 7, and the 9th group
 191 * corresponds to the ground.
 192 * Within each group, bits are stored in the same order as read on the port :
 193 * BAPSE (busy=4, ack=3, paper empty=2, select=1, error=0).
 194 * So, each __u64 (or pmask_t) is represented like this :
 195 * 0000000000000000000BAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSEBAPSE
 196 * <-----unused------><gnd><d07><d06><d05><d04><d03><d02><d01><d00>
 197 */
 198
 199/* what has just been read from the I/O ports */
 200static pmask_t phys_read;
 201/* previous phys_read */
 202static pmask_t phys_read_prev;
 203/* stabilized phys_read (phys_read|phys_read_prev) */
 204static pmask_t phys_curr;
 205/* previous phys_curr */
 206static pmask_t phys_prev;
 207/* 0 means that at least one logical signal needs be computed */
 208static char inputs_stable;
 209
 210/* these variables are specific to the keypad */
 211static char keypad_buffer[KEYPAD_BUFFER];
 212static int keypad_buflen;
 213static int keypad_start;
 214static char keypressed;
 215static wait_queue_head_t keypad_read_wait;
 216
 217/* lcd-specific variables */
 218
 219/* contains the LCD config state */
 220static unsigned long int lcd_flags;
 221/* contains the LCD X offset */
 222static unsigned long int lcd_addr_x;
 223/* contains the LCD Y offset */
 224static unsigned long int lcd_addr_y;
 225/* current escape sequence, 0 terminated */
 226static char lcd_escape[LCD_ESCAPE_LEN + 1];
 227/* not in escape state. >=0 = escape cmd len */
 228static int lcd_escape_len = -1;
 229
 230/*
 231 * Bit masks to convert LCD signals to parallel port outputs.
 232 * _d_ are values for data port, _c_ are for control port.
 233 * [0] = signal OFF, [1] = signal ON, [2] = mask
 234 */
 235#define BIT_CLR		0
 236#define BIT_SET		1
 237#define BIT_MSK		2
 238#define BIT_STATES	3
 239/*
 240 * one entry for each bit on the LCD
 241 */
 242#define LCD_BIT_E	0
 243#define LCD_BIT_RS	1
 244#define LCD_BIT_RW	2
 245#define LCD_BIT_BL	3
 246#define LCD_BIT_CL	4
 247#define LCD_BIT_DA	5
 248#define LCD_BITS	6
 249
 250/*
 251 * each bit can be either connected to a DATA or CTRL port
 252 */
 253#define LCD_PORT_C	0
 254#define LCD_PORT_D	1
 255#define LCD_PORTS	2
 256
 257static unsigned char lcd_bits[LCD_PORTS][LCD_BITS][BIT_STATES];
 258
 259/*
 260 * LCD protocols
 261 */
 262#define LCD_PROTO_PARALLEL      0
 263#define LCD_PROTO_SERIAL        1
 264#define LCD_PROTO_TI_DA8XX_LCD	2
 265
 266/*
 267 * LCD character sets
 268 */
 269#define LCD_CHARSET_NORMAL      0
 270#define LCD_CHARSET_KS0074      1
 271
 272/*
 273 * LCD types
 274 */
 275#define LCD_TYPE_NONE		0
 276#define LCD_TYPE_OLD		1
 277#define LCD_TYPE_KS0074		2
 278#define LCD_TYPE_HANTRONIX	3
 279#define LCD_TYPE_NEXCOM		4
 280#define LCD_TYPE_CUSTOM		5
 281
 282/*
 283 * keypad types
 284 */
 285#define KEYPAD_TYPE_NONE	0
 286#define KEYPAD_TYPE_OLD		1
 287#define KEYPAD_TYPE_NEW		2
 288#define KEYPAD_TYPE_NEXCOM	3
 289
 290/*
 291 * panel profiles
 292 */
 293#define PANEL_PROFILE_CUSTOM	0
 294#define PANEL_PROFILE_OLD	1
 295#define PANEL_PROFILE_NEW	2
 296#define PANEL_PROFILE_HANTRONIX	3
 297#define PANEL_PROFILE_NEXCOM	4
 298#define PANEL_PROFILE_LARGE	5
 299
 300/*
 301 * Construct custom config from the kernel's configuration
 302 */
 303#define DEFAULT_PROFILE         PANEL_PROFILE_LARGE
 304#define DEFAULT_PARPORT         0
 305#define DEFAULT_LCD             LCD_TYPE_OLD
 306#define DEFAULT_KEYPAD          KEYPAD_TYPE_OLD
 307#define DEFAULT_LCD_WIDTH       40
 308#define DEFAULT_LCD_BWIDTH      40
 309#define DEFAULT_LCD_HWIDTH      64
 310#define DEFAULT_LCD_HEIGHT      2
 311#define DEFAULT_LCD_PROTO       LCD_PROTO_PARALLEL
 312
 313#define DEFAULT_LCD_PIN_E       PIN_AUTOLF
 314#define DEFAULT_LCD_PIN_RS      PIN_SELECP
 315#define DEFAULT_LCD_PIN_RW      PIN_INITP
 316#define DEFAULT_LCD_PIN_SCL     PIN_STROBE
 317#define DEFAULT_LCD_PIN_SDA     PIN_D0
 318#define DEFAULT_LCD_PIN_BL      PIN_NOT_SET
 319#define DEFAULT_LCD_CHARSET     LCD_CHARSET_NORMAL
 320
 321#ifdef CONFIG_PANEL_PROFILE
 322#undef DEFAULT_PROFILE
 323#define DEFAULT_PROFILE CONFIG_PANEL_PROFILE
 324#endif
 325
 326#ifdef CONFIG_PANEL_PARPORT
 327#undef DEFAULT_PARPORT
 328#define DEFAULT_PARPORT CONFIG_PANEL_PARPORT
 329#endif
 330
 331#if DEFAULT_PROFILE == 0	/* custom */
 332#ifdef CONFIG_PANEL_KEYPAD
 333#undef DEFAULT_KEYPAD
 334#define DEFAULT_KEYPAD CONFIG_PANEL_KEYPAD
 335#endif
 336
 337#ifdef CONFIG_PANEL_LCD
 338#undef DEFAULT_LCD
 339#define DEFAULT_LCD CONFIG_PANEL_LCD
 340#endif
 341
 342#ifdef CONFIG_PANEL_LCD_WIDTH
 343#undef DEFAULT_LCD_WIDTH
 344#define DEFAULT_LCD_WIDTH CONFIG_PANEL_LCD_WIDTH
 345#endif
 346
 347#ifdef CONFIG_PANEL_LCD_BWIDTH
 348#undef DEFAULT_LCD_BWIDTH
 349#define DEFAULT_LCD_BWIDTH CONFIG_PANEL_LCD_BWIDTH
 350#endif
 351
 352#ifdef CONFIG_PANEL_LCD_HWIDTH
 353#undef DEFAULT_LCD_HWIDTH
 354#define DEFAULT_LCD_HWIDTH CONFIG_PANEL_LCD_HWIDTH
 355#endif
 356
 357#ifdef CONFIG_PANEL_LCD_HEIGHT
 358#undef DEFAULT_LCD_HEIGHT
 359#define DEFAULT_LCD_HEIGHT CONFIG_PANEL_LCD_HEIGHT
 360#endif
 361
 362#ifdef CONFIG_PANEL_LCD_PROTO
 363#undef DEFAULT_LCD_PROTO
 364#define DEFAULT_LCD_PROTO CONFIG_PANEL_LCD_PROTO
 365#endif
 366
 367#ifdef CONFIG_PANEL_LCD_PIN_E
 368#undef DEFAULT_LCD_PIN_E
 369#define DEFAULT_LCD_PIN_E CONFIG_PANEL_LCD_PIN_E
 370#endif
 371
 372#ifdef CONFIG_PANEL_LCD_PIN_RS
 373#undef DEFAULT_LCD_PIN_RS
 374#define DEFAULT_LCD_PIN_RS CONFIG_PANEL_LCD_PIN_RS
 375#endif
 376
 377#ifdef CONFIG_PANEL_LCD_PIN_RW
 378#undef DEFAULT_LCD_PIN_RW
 379#define DEFAULT_LCD_PIN_RW CONFIG_PANEL_LCD_PIN_RW
 380#endif
 381
 382#ifdef CONFIG_PANEL_LCD_PIN_SCL
 383#undef DEFAULT_LCD_PIN_SCL
 384#define DEFAULT_LCD_PIN_SCL CONFIG_PANEL_LCD_PIN_SCL
 385#endif
 386
 387#ifdef CONFIG_PANEL_LCD_PIN_SDA
 388#undef DEFAULT_LCD_PIN_SDA
 389#define DEFAULT_LCD_PIN_SDA CONFIG_PANEL_LCD_PIN_SDA
 390#endif
 391
 392#ifdef CONFIG_PANEL_LCD_PIN_BL
 393#undef DEFAULT_LCD_PIN_BL
 394#define DEFAULT_LCD_PIN_BL CONFIG_PANEL_LCD_PIN_BL
 395#endif
 396
 397#ifdef CONFIG_PANEL_LCD_CHARSET
 398#undef DEFAULT_LCD_CHARSET
 399#define DEFAULT_LCD_CHARSET CONFIG_PANEL_LCD_CHARSET
 400#endif
 401
 402#endif /* DEFAULT_PROFILE == 0 */
 403
 404/* global variables */
 405static int keypad_open_cnt;	/* #times opened */
 406static int lcd_open_cnt;	/* #times opened */
 407static struct pardevice *pprt;
 408
 409static int lcd_initialized;
 410static int keypad_initialized;
 411
 412static int light_tempo;
 413
 414static char lcd_must_clear;
 415static char lcd_left_shift;
 416static char init_in_progress;
 417
 418static void (*lcd_write_cmd) (int);
 419static void (*lcd_write_data) (int);
 420static void (*lcd_clear_fast) (void);
 421
 422static DEFINE_SPINLOCK(pprt_lock);
 423static struct timer_list scan_timer;
 424
 425MODULE_DESCRIPTION("Generic parallel port LCD/Keypad driver");
 426
 427static int parport = -1;
 428module_param(parport, int, 0000);
 429MODULE_PARM_DESC(parport, "Parallel port index (0=lpt1, 1=lpt2, ...)");
 430
 431static int lcd_height = -1;
 432module_param(lcd_height, int, 0000);
 433MODULE_PARM_DESC(lcd_height, "Number of lines on the LCD");
 434
 435static int lcd_width = -1;
 436module_param(lcd_width, int, 0000);
 437MODULE_PARM_DESC(lcd_width, "Number of columns on the LCD");
 438
 439static int lcd_bwidth = -1;	/* internal buffer width (usually 40) */
 440module_param(lcd_bwidth, int, 0000);
 441MODULE_PARM_DESC(lcd_bwidth, "Internal LCD line width (40)");
 442
 443static int lcd_hwidth = -1;	/* hardware buffer width (usually 64) */
 444module_param(lcd_hwidth, int, 0000);
 445MODULE_PARM_DESC(lcd_hwidth, "LCD line hardware address (64)");
 446
 447static int lcd_enabled = -1;
 448module_param(lcd_enabled, int, 0000);
 449MODULE_PARM_DESC(lcd_enabled, "Deprecated option, use lcd_type instead");
 450
 451static int keypad_enabled = -1;
 452module_param(keypad_enabled, int, 0000);
 453MODULE_PARM_DESC(keypad_enabled, "Deprecated option, use keypad_type instead");
 454
 455static int lcd_type = -1;
 456module_param(lcd_type, int, 0000);
 457MODULE_PARM_DESC(lcd_type,
 458		 "LCD type: 0=none, 1=old //, 2=serial ks0074, "
 459		 "3=hantronix //, 4=nexcom //, 5=compiled-in");
 460
 461static int lcd_proto = -1;
 462module_param(lcd_proto, int, 0000);
 463MODULE_PARM_DESC(lcd_proto,
 464		"LCD communication: 0=parallel (//), 1=serial,"
 465		"2=TI LCD Interface");
 466
 467static int lcd_charset = -1;
 468module_param(lcd_charset, int, 0000);
 469MODULE_PARM_DESC(lcd_charset, "LCD character set: 0=standard, 1=KS0074");
 470
 471static int keypad_type = -1;
 472module_param(keypad_type, int, 0000);
 473MODULE_PARM_DESC(keypad_type,
 474		 "Keypad type: 0=none, 1=old 6 keys, 2=new 6+1 keys, "
 475		 "3=nexcom 4 keys");
 476
 477static int profile = DEFAULT_PROFILE;
 478module_param(profile, int, 0000);
 479MODULE_PARM_DESC(profile,
 480		 "1=16x2 old kp; 2=serial 16x2, new kp; 3=16x2 hantronix; "
 481		 "4=16x2 nexcom; default=40x2, old kp");
 482
 483/*
 484 * These are the parallel port pins the LCD control signals are connected to.
 485 * Set this to 0 if the signal is not used. Set it to its opposite value
 486 * (negative) if the signal is negated. -MAXINT is used to indicate that the
 487 * pin has not been explicitly specified.
 488 *
 489 * WARNING! no check will be performed about collisions with keypad !
 490 */
 491
 492static int lcd_e_pin  = PIN_NOT_SET;
 493module_param(lcd_e_pin, int, 0000);
 494MODULE_PARM_DESC(lcd_e_pin,
 495		 "# of the // port pin connected to LCD 'E' signal, "
 496		 "with polarity (-17..17)");
 497
 498static int lcd_rs_pin = PIN_NOT_SET;
 499module_param(lcd_rs_pin, int, 0000);
 500MODULE_PARM_DESC(lcd_rs_pin,
 501		 "# of the // port pin connected to LCD 'RS' signal, "
 502		 "with polarity (-17..17)");
 503
 504static int lcd_rw_pin = PIN_NOT_SET;
 505module_param(lcd_rw_pin, int, 0000);
 506MODULE_PARM_DESC(lcd_rw_pin,
 507		 "# of the // port pin connected to LCD 'RW' signal, "
 508		 "with polarity (-17..17)");
 509
 510static int lcd_bl_pin = PIN_NOT_SET;
 511module_param(lcd_bl_pin, int, 0000);
 512MODULE_PARM_DESC(lcd_bl_pin,
 513		 "# of the // port pin connected to LCD backlight, "
 514		 "with polarity (-17..17)");
 515
 516static int lcd_da_pin = PIN_NOT_SET;
 517module_param(lcd_da_pin, int, 0000);
 518MODULE_PARM_DESC(lcd_da_pin,
 519		 "# of the // port pin connected to serial LCD 'SDA' "
 520		 "signal, with polarity (-17..17)");
 521
 522static int lcd_cl_pin = PIN_NOT_SET;
 523module_param(lcd_cl_pin, int, 0000);
 524MODULE_PARM_DESC(lcd_cl_pin,
 525		 "# of the // port pin connected to serial LCD 'SCL' "
 526		 "signal, with polarity (-17..17)");
 527
 528static unsigned char *lcd_char_conv;
 529
 530/* for some LCD drivers (ks0074) we need a charset conversion table. */
 531static unsigned char lcd_char_conv_ks0074[256] = {
 532	/*          0|8   1|9   2|A   3|B   4|C   5|D   6|E   7|F */
 533	/* 0x00 */ 0x00, 0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07,
 534	/* 0x08 */ 0x08, 0x09, 0x0a, 0x0b, 0x0c, 0x0d, 0x0e, 0x0f,
 535	/* 0x10 */ 0x10, 0x11, 0x12, 0x13, 0x14, 0x15, 0x16, 0x17,
 536	/* 0x18 */ 0x18, 0x19, 0x1a, 0x1b, 0x1c, 0x1d, 0x1e, 0x1f,
 537	/* 0x20 */ 0x20, 0x21, 0x22, 0x23, 0xa2, 0x25, 0x26, 0x27,
 538	/* 0x28 */ 0x28, 0x29, 0x2a, 0x2b, 0x2c, 0x2d, 0x2e, 0x2f,
 539	/* 0x30 */ 0x30, 0x31, 0x32, 0x33, 0x34, 0x35, 0x36, 0x37,
 540	/* 0x38 */ 0x38, 0x39, 0x3a, 0x3b, 0x3c, 0x3d, 0x3e, 0x3f,
 541	/* 0x40 */ 0xa0, 0x41, 0x42, 0x43, 0x44, 0x45, 0x46, 0x47,
 542	/* 0x48 */ 0x48, 0x49, 0x4a, 0x4b, 0x4c, 0x4d, 0x4e, 0x4f,
 543	/* 0x50 */ 0x50, 0x51, 0x52, 0x53, 0x54, 0x55, 0x56, 0x57,
 544	/* 0x58 */ 0x58, 0x59, 0x5a, 0xfa, 0xfb, 0xfc, 0x1d, 0xc4,
 545	/* 0x60 */ 0x96, 0x61, 0x62, 0x63, 0x64, 0x65, 0x66, 0x67,
 546	/* 0x68 */ 0x68, 0x69, 0x6a, 0x6b, 0x6c, 0x6d, 0x6e, 0x6f,
 547	/* 0x70 */ 0x70, 0x71, 0x72, 0x73, 0x74, 0x75, 0x76, 0x77,
 548	/* 0x78 */ 0x78, 0x79, 0x7a, 0xfd, 0xfe, 0xff, 0xce, 0x20,
 549	/* 0x80 */ 0x80, 0x81, 0x82, 0x83, 0x84, 0x85, 0x86, 0x87,
 550	/* 0x88 */ 0x88, 0x89, 0x8a, 0x8b, 0x8c, 0x8d, 0x8e, 0x8f,
 551	/* 0x90 */ 0x90, 0x91, 0x92, 0x93, 0x94, 0x95, 0x96, 0x97,
 552	/* 0x98 */ 0x98, 0x99, 0x9a, 0x9b, 0x9c, 0x9d, 0x9e, 0x9f,
 553	/* 0xA0 */ 0x20, 0x40, 0xb1, 0xa1, 0x24, 0xa3, 0xfe, 0x5f,
 554	/* 0xA8 */ 0x22, 0xc8, 0x61, 0x14, 0x97, 0x2d, 0xad, 0x96,
 555	/* 0xB0 */ 0x80, 0x8c, 0x82, 0x83, 0x27, 0x8f, 0x86, 0xdd,
 556	/* 0xB8 */ 0x2c, 0x81, 0x6f, 0x15, 0x8b, 0x8a, 0x84, 0x60,
 557	/* 0xC0 */ 0xe2, 0xe2, 0xe2, 0x5b, 0x5b, 0xae, 0xbc, 0xa9,
 558	/* 0xC8 */ 0xc5, 0xbf, 0xc6, 0xf1, 0xe3, 0xe3, 0xe3, 0xe3,
 559	/* 0xD0 */ 0x44, 0x5d, 0xa8, 0xe4, 0xec, 0xec, 0x5c, 0x78,
 560	/* 0xD8 */ 0xab, 0xa6, 0xe5, 0x5e, 0x5e, 0xe6, 0xaa, 0xbe,
 561	/* 0xE0 */ 0x7f, 0xe7, 0xaf, 0x7b, 0x7b, 0xaf, 0xbd, 0xc8,
 562	/* 0xE8 */ 0xa4, 0xa5, 0xc7, 0xf6, 0xa7, 0xe8, 0x69, 0x69,
 563	/* 0xF0 */ 0xed, 0x7d, 0xa8, 0xe4, 0xec, 0x5c, 0x5c, 0x25,
 564	/* 0xF8 */ 0xac, 0xa6, 0xea, 0xef, 0x7e, 0xeb, 0xb2, 0x79,
 565};
 566
 567char old_keypad_profile[][4][9] = {
 568	{"S0", "Left\n", "Left\n", ""},
 569	{"S1", "Down\n", "Down\n", ""},
 570	{"S2", "Up\n", "Up\n", ""},
 571	{"S3", "Right\n", "Right\n", ""},
 572	{"S4", "Esc\n", "Esc\n", ""},
 573	{"S5", "Ret\n", "Ret\n", ""},
 574	{"", "", "", ""}
 575};
 576
 577/* signals, press, repeat, release */
 578char new_keypad_profile[][4][9] = {
 579	{"S0", "Left\n", "Left\n", ""},
 580	{"S1", "Down\n", "Down\n", ""},
 581	{"S2", "Up\n", "Up\n", ""},
 582	{"S3", "Right\n", "Right\n", ""},
 583	{"S4s5", "", "Esc\n", "Esc\n"},
 584	{"s4S5", "", "Ret\n", "Ret\n"},
 585	{"S4S5", "Help\n", "", ""},
 586	/* add new signals above this line */
 587	{"", "", "", ""}
 588};
 589
 590/* signals, press, repeat, release */
 591char nexcom_keypad_profile[][4][9] = {
 592	{"a-p-e-", "Down\n", "Down\n", ""},
 593	{"a-p-E-", "Ret\n", "Ret\n", ""},
 594	{"a-P-E-", "Esc\n", "Esc\n", ""},
 595	{"a-P-e-", "Up\n", "Up\n", ""},
 596	/* add new signals above this line */
 597	{"", "", "", ""}
 598};
 599
 600static char (*keypad_profile)[4][9] = old_keypad_profile;
 601
 602/* FIXME: this should be converted to a bit array containing signals states */
 603static struct {
 604	unsigned char e;  /* parallel LCD E (data latch on falling edge) */
 605	unsigned char rs; /* parallel LCD RS  (0 = cmd, 1 = data) */
 606	unsigned char rw; /* parallel LCD R/W (0 = W, 1 = R) */
 607	unsigned char bl; /* parallel LCD backlight (0 = off, 1 = on) */
 608	unsigned char cl; /* serial LCD clock (latch on rising edge) */
 609	unsigned char da; /* serial LCD data */
 610} bits;
 611
 612static void init_scan_timer(void);
 613
 614/* sets data port bits according to current signals values */
 615static int set_data_bits(void)
 616{
 617	int val, bit;
 618
 619	val = r_dtr(pprt);
 620	for (bit = 0; bit < LCD_BITS; bit++)
 621		val &= lcd_bits[LCD_PORT_D][bit][BIT_MSK];
 622
 623	val |= lcd_bits[LCD_PORT_D][LCD_BIT_E][bits.e]
 624	    | lcd_bits[LCD_PORT_D][LCD_BIT_RS][bits.rs]
 625	    | lcd_bits[LCD_PORT_D][LCD_BIT_RW][bits.rw]
 626	    | lcd_bits[LCD_PORT_D][LCD_BIT_BL][bits.bl]
 627	    | lcd_bits[LCD_PORT_D][LCD_BIT_CL][bits.cl]
 628	    | lcd_bits[LCD_PORT_D][LCD_BIT_DA][bits.da];
 629
 630	w_dtr(pprt, val);
 631	return val;
 632}
 633
 634/* sets ctrl port bits according to current signals values */
 635static int set_ctrl_bits(void)
 636{
 637	int val, bit;
 638
 639	val = r_ctr(pprt);
 640	for (bit = 0; bit < LCD_BITS; bit++)
 641		val &= lcd_bits[LCD_PORT_C][bit][BIT_MSK];
 642
 643	val |= lcd_bits[LCD_PORT_C][LCD_BIT_E][bits.e]
 644	    | lcd_bits[LCD_PORT_C][LCD_BIT_RS][bits.rs]
 645	    | lcd_bits[LCD_PORT_C][LCD_BIT_RW][bits.rw]
 646	    | lcd_bits[LCD_PORT_C][LCD_BIT_BL][bits.bl]
 647	    | lcd_bits[LCD_PORT_C][LCD_BIT_CL][bits.cl]
 648	    | lcd_bits[LCD_PORT_C][LCD_BIT_DA][bits.da];
 649
 650	w_ctr(pprt, val);
 651	return val;
 652}
 653
 654/* sets ctrl & data port bits according to current signals values */
 655static void panel_set_bits(void)
 656{
 657	set_data_bits();
 658	set_ctrl_bits();
 659}
 660
 661/*
 662 * Converts a parallel port pin (from -25 to 25) to data and control ports
 663 * masks, and data and control port bits. The signal will be considered
 664 * unconnected if it's on pin 0 or an invalid pin (<-25 or >25).
 665 *
 666 * Result will be used this way :
 667 *   out(dport, in(dport) & d_val[2] | d_val[signal_state])
 668 *   out(cport, in(cport) & c_val[2] | c_val[signal_state])
 669 */
 670void pin_to_bits(int pin, unsigned char *d_val, unsigned char *c_val)
 671{
 672	int d_bit, c_bit, inv;
 673
 674	d_val[0] = c_val[0] = d_val[1] = c_val[1] = 0;
 675	d_val[2] = c_val[2] = 0xFF;
 676
 677	if (pin == 0)
 678		return;
 679
 680	inv = (pin < 0);
 681	if (inv)
 682		pin = -pin;
 683
 684	d_bit = c_bit = 0;
 685
 686	switch (pin) {
 687	case PIN_STROBE:	/* strobe, inverted */
 688		c_bit = PNL_PSTROBE;
 689		inv = !inv;
 690		break;
 691	case PIN_D0...PIN_D7:	/* D0 - D7 = 2 - 9 */
 692		d_bit = 1 << (pin - 2);
 693		break;
 694	case PIN_AUTOLF:	/* autofeed, inverted */
 695		c_bit = PNL_PAUTOLF;
 696		inv = !inv;
 697		break;
 698	case PIN_INITP:		/* init, direct */
 699		c_bit = PNL_PINITP;
 700		break;
 701	case PIN_SELECP:	/* select_in, inverted */
 702		c_bit = PNL_PSELECP;
 703		inv = !inv;
 704		break;
 705	default:		/* unknown pin, ignore */
 706		break;
 707	}
 708
 709	if (c_bit) {
 710		c_val[2] &= ~c_bit;
 711		c_val[!inv] = c_bit;
 712	} else if (d_bit) {
 713		d_val[2] &= ~d_bit;
 714		d_val[!inv] = d_bit;
 715	}
 716}
 717
 718/* sleeps that many milliseconds with a reschedule */
 719static void long_sleep(int ms)
 720{
 721
 722	if (in_interrupt())
 723		mdelay(ms);
 724	else {
 725		current->state = TASK_INTERRUPTIBLE;
 726		schedule_timeout((ms * HZ + 999) / 1000);
 727	}
 728}
 729
 730/* send a serial byte to the LCD panel. The caller is responsible for locking
 731   if needed. */
 732static void lcd_send_serial(int byte)
 733{
 734	int bit;
 735
 736	/* the data bit is set on D0, and the clock on STROBE.
 737	 * LCD reads D0 on STROBE's rising edge. */
 738	for (bit = 0; bit < 8; bit++) {
 739		bits.cl = BIT_CLR;	/* CLK low */
 740		panel_set_bits();
 741		bits.da = byte & 1;
 742		panel_set_bits();
 743		udelay(2);  /* maintain the data during 2 us before CLK up */
 744		bits.cl = BIT_SET;	/* CLK high */
 745		panel_set_bits();
 746		udelay(1);  /* maintain the strobe during 1 us */
 747		byte >>= 1;
 748	}
 749}
 750
 751/* turn the backlight on or off */
 752static void lcd_backlight(int on)
 753{
 754	if (lcd_bl_pin == PIN_NONE)
 755		return;
 756
 757	/* The backlight is activated by setting the AUTOFEED line to +5V  */
 758	spin_lock(&pprt_lock);
 759	bits.bl = on;
 760	panel_set_bits();
 761	spin_unlock(&pprt_lock);
 762}
 763
 764/* send a command to the LCD panel in serial mode */
 765static void lcd_write_cmd_s(int cmd)
 766{
 767	spin_lock(&pprt_lock);
 768	lcd_send_serial(0x1F);	/* R/W=W, RS=0 */
 769	lcd_send_serial(cmd & 0x0F);
 770	lcd_send_serial((cmd >> 4) & 0x0F);
 771	udelay(40);		/* the shortest command takes at least 40 us */
 772	spin_unlock(&pprt_lock);
 773}
 774
 775/* send data to the LCD panel in serial mode */
 776static void lcd_write_data_s(int data)
 777{
 778	spin_lock(&pprt_lock);
 779	lcd_send_serial(0x5F);	/* R/W=W, RS=1 */
 780	lcd_send_serial(data & 0x0F);
 781	lcd_send_serial((data >> 4) & 0x0F);
 782	udelay(40);		/* the shortest data takes at least 40 us */
 783	spin_unlock(&pprt_lock);
 784}
 785
 786/* send a command to the LCD panel in 8 bits parallel mode */
 787static void lcd_write_cmd_p8(int cmd)
 788{
 789	spin_lock(&pprt_lock);
 790	/* present the data to the data port */
 791	w_dtr(pprt, cmd);
 792	udelay(20);	/* maintain the data during 20 us before the strobe */
 793
 794	bits.e = BIT_SET;
 795	bits.rs = BIT_CLR;
 796	bits.rw = BIT_CLR;
 797	set_ctrl_bits();
 798
 799	udelay(40);	/* maintain the strobe during 40 us */
 800
 801	bits.e = BIT_CLR;
 802	set_ctrl_bits();
 803
 804	udelay(120);	/* the shortest command takes at least 120 us */
 805	spin_unlock(&pprt_lock);
 806}
 807
 808/* send data to the LCD panel in 8 bits parallel mode */
 809static void lcd_write_data_p8(int data)
 810{
 811	spin_lock(&pprt_lock);
 812	/* present the data to the data port */
 813	w_dtr(pprt, data);
 814	udelay(20);	/* maintain the data during 20 us before the strobe */
 815
 816	bits.e = BIT_SET;
 817	bits.rs = BIT_SET;
 818	bits.rw = BIT_CLR;
 819	set_ctrl_bits();
 820
 821	udelay(40);	/* maintain the strobe during 40 us */
 822
 823	bits.e = BIT_CLR;
 824	set_ctrl_bits();
 825
 826	udelay(45);	/* the shortest data takes at least 45 us */
 827	spin_unlock(&pprt_lock);
 828}
 829
 830/* send a command to the TI LCD panel */
 831static void lcd_write_cmd_tilcd(int cmd)
 832{
 833	spin_lock(&pprt_lock);
 834	/* present the data to the control port */
 835	w_ctr(pprt, cmd);
 836	udelay(60);
 837	spin_unlock(&pprt_lock);
 838}
 839
 840/* send data to the TI LCD panel */
 841static void lcd_write_data_tilcd(int data)
 842{
 843	spin_lock(&pprt_lock);
 844	/* present the data to the data port */
 845	w_dtr(pprt, data);
 846	udelay(60);
 847	spin_unlock(&pprt_lock);
 848}
 849
 850static void lcd_gotoxy(void)
 851{
 852	lcd_write_cmd(0x80	/* set DDRAM address */
 853		      | (lcd_addr_y ? lcd_hwidth : 0)
 854		      /* we force the cursor to stay at the end of the
 855			 line if it wants to go farther */
 856		      | ((lcd_addr_x < lcd_bwidth) ? lcd_addr_x &
 857			 (lcd_hwidth - 1) : lcd_bwidth - 1));
 858}
 859
 860static void lcd_print(char c)
 861{
 862	if (lcd_addr_x < lcd_bwidth) {
 863		if (lcd_char_conv != NULL)
 864			c = lcd_char_conv[(unsigned char)c];
 865		lcd_write_data(c);
 866		lcd_addr_x++;
 867	}
 868	/* prevents the cursor from wrapping onto the next line */
 869	if (lcd_addr_x == lcd_bwidth)
 870		lcd_gotoxy();
 871}
 872
 873/* fills the display with spaces and resets X/Y */
 874static void lcd_clear_fast_s(void)
 875{
 876	int pos;
 877	lcd_addr_x = lcd_addr_y = 0;
 878	lcd_gotoxy();
 879
 880	spin_lock(&pprt_lock);
 881	for (pos = 0; pos < lcd_height * lcd_hwidth; pos++) {
 882		lcd_send_serial(0x5F);	/* R/W=W, RS=1 */
 883		lcd_send_serial(' ' & 0x0F);
 884		lcd_send_serial((' ' >> 4) & 0x0F);
 885		udelay(40);	/* the shortest data takes at least 40 us */
 886	}
 887	spin_unlock(&pprt_lock);
 888
 889	lcd_addr_x = lcd_addr_y = 0;
 890	lcd_gotoxy();
 891}
 892
 893/* fills the display with spaces and resets X/Y */
 894static void lcd_clear_fast_p8(void)
 895{
 896	int pos;
 897	lcd_addr_x = lcd_addr_y = 0;
 898	lcd_gotoxy();
 899
 900	spin_lock(&pprt_lock);
 901	for (pos = 0; pos < lcd_height * lcd_hwidth; pos++) {
 902		/* present the data to the data port */
 903		w_dtr(pprt, ' ');
 904
 905		/* maintain the data during 20 us before the strobe */
 906		udelay(20);
 907
 908		bits.e = BIT_SET;
 909		bits.rs = BIT_SET;
 910		bits.rw = BIT_CLR;
 911		set_ctrl_bits();
 912
 913		/* maintain the strobe during 40 us */
 914		udelay(40);
 915
 916		bits.e = BIT_CLR;
 917		set_ctrl_bits();
 918
 919		/* the shortest data takes at least 45 us */
 920		udelay(45);
 921	}
 922	spin_unlock(&pprt_lock);
 923
 924	lcd_addr_x = lcd_addr_y = 0;
 925	lcd_gotoxy();
 926}
 927
 928/* fills the display with spaces and resets X/Y */
 929static void lcd_clear_fast_tilcd(void)
 930{
 931	int pos;
 932	lcd_addr_x = lcd_addr_y = 0;
 933	lcd_gotoxy();
 934
 935	spin_lock(&pprt_lock);
 936	for (pos = 0; pos < lcd_height * lcd_hwidth; pos++) {
 937		/* present the data to the data port */
 938		w_dtr(pprt, ' ');
 939		udelay(60);
 940	}
 941
 942	spin_unlock(&pprt_lock);
 943
 944	lcd_addr_x = lcd_addr_y = 0;
 945	lcd_gotoxy();
 946}
 947
 948/* clears the display and resets X/Y */
 949static void lcd_clear_display(void)
 950{
 951	lcd_write_cmd(0x01);	/* clear display */
 952	lcd_addr_x = lcd_addr_y = 0;
 953	/* we must wait a few milliseconds (15) */
 954	long_sleep(15);
 955}
 956
 957static void lcd_init_display(void)
 958{
 959
 960	lcd_flags = ((lcd_height > 1) ? LCD_FLAG_N : 0)
 961	    | LCD_FLAG_D | LCD_FLAG_C | LCD_FLAG_B;
 962
 963	long_sleep(20);		/* wait 20 ms after power-up for the paranoid */
 964
 965	lcd_write_cmd(0x30);	/* 8bits, 1 line, small fonts */
 966	long_sleep(10);
 967	lcd_write_cmd(0x30);	/* 8bits, 1 line, small fonts */
 968	long_sleep(10);
 969	lcd_write_cmd(0x30);	/* 8bits, 1 line, small fonts */
 970	long_sleep(10);
 971
 972	lcd_write_cmd(0x30	/* set font height and lines number */
 973		      | ((lcd_flags & LCD_FLAG_F) ? 4 : 0)
 974		      | ((lcd_flags & LCD_FLAG_N) ? 8 : 0)
 975	    );
 976	long_sleep(10);
 977
 978	lcd_write_cmd(0x08);	/* display off, cursor off, blink off */
 979	long_sleep(10);
 980
 981	lcd_write_cmd(0x08	/* set display mode */
 982		      | ((lcd_flags & LCD_FLAG_D) ? 4 : 0)
 983		      | ((lcd_flags & LCD_FLAG_C) ? 2 : 0)
 984		      | ((lcd_flags & LCD_FLAG_B) ? 1 : 0)
 985	    );
 986
 987	lcd_backlight((lcd_flags & LCD_FLAG_L) ? 1 : 0);
 988
 989	long_sleep(10);
 990
 991	/* entry mode set : increment, cursor shifting */
 992	lcd_write_cmd(0x06);
 993
 994	lcd_clear_display();
 995}
 996
 997/*
 998 * These are the file operation function for user access to /dev/lcd
 999 * This function can also be called from inside the kernel, by
1000 * setting file and ppos to NULL.
1001 *
1002 */
1003
1004static inline int handle_lcd_special_code(void)
1005{
1006	/* LCD special codes */
1007
1008	int processed = 0;
1009
1010	char *esc = lcd_escape + 2;
1011	int oldflags = lcd_flags;
1012
1013	/* check for display mode flags */
1014	switch (*esc) {
1015	case 'D':	/* Display ON */
1016		lcd_flags |= LCD_FLAG_D;
1017		processed = 1;
1018		break;
1019	case 'd':	/* Display OFF */
1020		lcd_flags &= ~LCD_FLAG_D;
1021		processed = 1;
1022		break;
1023	case 'C':	/* Cursor ON */
1024		lcd_flags |= LCD_FLAG_C;
1025		processed = 1;
1026		break;
1027	case 'c':	/* Cursor OFF */
1028		lcd_flags &= ~LCD_FLAG_C;
1029		processed = 1;
1030		break;
1031	case 'B':	/* Blink ON */
1032		lcd_flags |= LCD_FLAG_B;
1033		processed = 1;
1034		break;
1035	case 'b':	/* Blink OFF */
1036		lcd_flags &= ~LCD_FLAG_B;
1037		processed = 1;
1038		break;
1039	case '+':	/* Back light ON */
1040		lcd_flags |= LCD_FLAG_L;
1041		processed = 1;
1042		break;
1043	case '-':	/* Back light OFF */
1044		lcd_flags &= ~LCD_FLAG_L;
1045		processed = 1;
1046		break;
1047	case '*':
1048		/* flash back light using the keypad timer */
1049		if (scan_timer.function != NULL) {
1050			if (light_tempo == 0 && ((lcd_flags & LCD_FLAG_L) == 0))
1051				lcd_backlight(1);
1052			light_tempo = FLASH_LIGHT_TEMPO;
1053		}
1054		processed = 1;
1055		break;
1056	case 'f':	/* Small Font */
1057		lcd_flags &= ~LCD_FLAG_F;
1058		processed = 1;
1059		break;
1060	case 'F':	/* Large Font */
1061		lcd_flags |= LCD_FLAG_F;
1062		processed = 1;
1063		break;
1064	case 'n':	/* One Line */
1065		lcd_flags &= ~LCD_FLAG_N;
1066		processed = 1;
1067		break;
1068	case 'N':	/* Two Lines */
1069		lcd_flags |= LCD_FLAG_N;
1070		break;
1071	case 'l':	/* Shift Cursor Left */
1072		if (lcd_addr_x > 0) {
1073			/* back one char if not at end of line */
1074			if (lcd_addr_x < lcd_bwidth)
1075				lcd_write_cmd(0x10);
1076			lcd_addr_x--;
1077		}
1078		processed = 1;
1079		break;
1080	case 'r':	/* shift cursor right */
1081		if (lcd_addr_x < lcd_width) {
1082			/* allow the cursor to pass the end of the line */
1083			if (lcd_addr_x <
1084			    (lcd_bwidth - 1))
1085				lcd_write_cmd(0x14);
1086			lcd_addr_x++;
1087		}
1088		processed = 1;
1089		break;
1090	case 'L':	/* shift display left */
1091		lcd_left_shift++;
1092		lcd_write_cmd(0x18);
1093		processed = 1;
1094		break;
1095	case 'R':	/* shift display right */
1096		lcd_left_shift--;
1097		lcd_write_cmd(0x1C);
1098		processed = 1;
1099		break;
1100	case 'k': {	/* kill end of line */
1101		int x;
1102		for (x = lcd_addr_x; x < lcd_bwidth; x++)
1103			lcd_write_data(' ');
1104
1105		/* restore cursor position */
1106		lcd_gotoxy();
1107		processed = 1;
1108		break;
1109	}
1110	case 'I':	/* reinitialize display */
1111		lcd_init_display();
1112		lcd_left_shift = 0;
1113		processed = 1;
1114		break;
1115	case 'G': {
1116		/* Generator : LGcxxxxx...xx; must have <c> between '0'
1117		 * and '7', representing the numerical ASCII code of the
1118		 * redefined character, and <xx...xx> a sequence of 16
1119		 * hex digits representing 8 bytes for each character.
1120		 * Most LCDs will only use 5 lower bits of the 7 first
1121		 * bytes.
1122		 */
1123
1124		unsigned char cgbytes[8];
1125		unsigned char cgaddr;
1126		int cgoffset;
1127		int shift;
1128		char value;
1129		int addr;
1130
1131		if (strchr(esc, ';') == NULL)
1132			break;
1133
1134		esc++;
1135
1136		cgaddr = *(esc++) - '0';
1137		if (cgaddr > 7) {
1138			processed = 1;
1139			break;
1140		}
1141
1142		cgoffset = 0;
1143		shift = 0;
1144		value = 0;
1145		while (*esc && cgoffset < 8) {
1146			shift ^= 4;
1147			if (*esc >= '0' && *esc <= '9')
1148				value |= (*esc - '0') << shift;
1149			else if (*esc >= 'A' && *esc <= 'Z')
1150				value |= (*esc - 'A' + 10) << shift;
1151			else if (*esc >= 'a' && *esc <= 'z')
1152				value |= (*esc - 'a' + 10) << shift;
1153			else {
1154				esc++;
1155				continue;
1156			}
1157
1158			if (shift == 0) {
1159				cgbytes[cgoffset++] = value;
1160				value = 0;
1161			}
1162
1163			esc++;
1164		}
1165
1166		lcd_write_cmd(0x40 | (cgaddr * 8));
1167		for (addr = 0; addr < cgoffset; addr++)
1168			lcd_write_data(cgbytes[addr]);
1169
1170		/* ensures that we stop writing to CGRAM */
1171		lcd_gotoxy();
1172		processed = 1;
1173		break;
1174	}
1175	case 'x':	/* gotoxy : LxXXX[yYYY]; */
1176	case 'y':	/* gotoxy : LyYYY[xXXX]; */
1177		if (strchr(esc, ';') == NULL)
1178			break;
1179
1180		while (*esc) {
1181			if (*esc == 'x') {
1182				esc++;
1183				if (kstrtoul(esc, 10, &lcd_addr_x) < 0)
1184					break;
1185			} else if (*esc == 'y') {
1186				esc++;
1187				if (kstrtoul(esc, 10, &lcd_addr_y) < 0)
1188					break;
1189			} else
1190				break;
1191		}
1192
1193		lcd_gotoxy();
1194		processed = 1;
1195		break;
1196	}
1197
1198	/* Check wether one flag was changed */
1199	if (oldflags != lcd_flags) {
1200		/* check whether one of B,C,D flags were changed */
1201		if ((oldflags ^ lcd_flags) &
1202		    (LCD_FLAG_B | LCD_FLAG_C | LCD_FLAG_D))
1203			/* set display mode */
1204			lcd_write_cmd(0x08
1205				      | ((lcd_flags & LCD_FLAG_D) ? 4 : 0)
1206				      | ((lcd_flags & LCD_FLAG_C) ? 2 : 0)
1207				      | ((lcd_flags & LCD_FLAG_B) ? 1 : 0));
1208		/* check whether one of F,N flags was changed */
1209		else if ((oldflags ^ lcd_flags) & (LCD_FLAG_F | LCD_FLAG_N))
1210			lcd_write_cmd(0x30
1211				      | ((lcd_flags & LCD_FLAG_F) ? 4 : 0)
1212				      | ((lcd_flags & LCD_FLAG_N) ? 8 : 0));
1213		/* check wether L flag was changed */
1214		else if ((oldflags ^ lcd_flags) & (LCD_FLAG_L)) {
1215			if (lcd_flags & (LCD_FLAG_L))
1216				lcd_backlight(1);
1217			else if (light_tempo == 0)
1218				/* switch off the light only when the tempo
1219				   lighting is gone */
1220				lcd_backlight(0);
1221		}
1222	}
1223
1224	return processed;
1225}
1226
1227static ssize_t lcd_write(struct file *file,
1228			 const char *buf, size_t count, loff_t *ppos)
1229{
1230	const char *tmp = buf;
1231	char c;
1232
1233	for (; count-- > 0; (ppos ? (*ppos)++ : 0), ++tmp) {
1234		if (!in_interrupt() && (((count + 1) & 0x1f) == 0))
1235			/* let's be a little nice with other processes
1236			   that need some CPU */
1237			schedule();
1238
1239		if (ppos == NULL && file == NULL)
1240			/* let's not use get_user() from the kernel ! */
1241			c = *tmp;
1242		else if (get_user(c, tmp))
1243			return -EFAULT;
1244
1245		/* first, we'll test if we're in escape mode */
1246		if ((c != '\n') && lcd_escape_len >= 0) {
1247			/* yes, let's add this char to the buffer */
1248			lcd_escape[lcd_escape_len++] = c;
1249			lcd_escape[lcd_escape_len] = 0;
1250		} else {
1251			/* aborts any previous escape sequence */
1252			lcd_escape_len = -1;
1253
1254			switch (c) {
1255			case LCD_ESCAPE_CHAR:
1256				/* start of an escape sequence */
1257				lcd_escape_len = 0;
1258				lcd_escape[lcd_escape_len] = 0;
1259				break;
1260			case '\b':
1261				/* go back one char and clear it */
1262				if (lcd_addr_x > 0) {
1263					/* check if we're not at the
1264					   end of the line */
1265					if (lcd_addr_x < lcd_bwidth)
1266						/* back one char */
1267						lcd_write_cmd(0x10);
1268					lcd_addr_x--;
1269				}
1270				/* replace with a space */
1271				lcd_write_data(' ');
1272				/* back one char again */
1273				lcd_write_cmd(0x10);
1274				break;
1275			case '\014':
1276				/* quickly clear the display */
1277				lcd_clear_fast();
1278				break;
1279			case '\n':
1280				/* flush the remainder of the current line and
1281				   go to the beginning of the next line */
1282				for (; lcd_addr_x < lcd_bwidth; lcd_addr_x++)
1283					lcd_write_data(' ');
1284				lcd_addr_x = 0;
1285				lcd_addr_y = (lcd_addr_y + 1) % lcd_height;
1286				lcd_gotoxy();
1287				break;
1288			case '\r':
1289				/* go to the beginning of the same line */
1290				lcd_addr_x = 0;
1291				lcd_gotoxy();
1292				break;
1293			case '\t':
1294				/* print a space instead of the tab */
1295				lcd_print(' ');
1296				break;
1297			default:
1298				/* simply print this char */
1299				lcd_print(c);
1300				break;
1301			}
1302		}
1303
1304		/* now we'll see if we're in an escape mode and if the current
1305		   escape sequence can be understood. */
1306		if (lcd_escape_len >= 2) {
1307			int processed = 0;
1308
1309			if (!strcmp(lcd_escape, "[2J")) {
1310				/* clear the display */
1311				lcd_clear_fast();
1312				processed = 1;
1313			} else if (!strcmp(lcd_escape, "[H")) {
1314				/* cursor to home */
1315				lcd_addr_x = lcd_addr_y = 0;
1316				lcd_gotoxy();
1317				processed = 1;
1318			}
1319			/* codes starting with ^[[L */
1320			else if ((lcd_escape_len >= 3) &&
1321				 (lcd_escape[0] == '[') &&
1322				 (lcd_escape[1] == 'L')) {
1323				processed = handle_lcd_special_code();
1324			}
1325
1326			/* LCD special escape codes */
1327			/* flush the escape sequence if it's been processed
1328			   or if it is getting too long. */
1329			if (processed || (lcd_escape_len >= LCD_ESCAPE_LEN))
1330				lcd_escape_len = -1;
1331		} /* escape codes */
1332	}
1333
1334	return tmp - buf;
1335}
1336
1337static int lcd_open(struct inode *inode, struct file *file)
1338{
1339	if (lcd_open_cnt)
1340		return -EBUSY;	/* open only once at a time */
1341
1342	if (file->f_mode & FMODE_READ)	/* device is write-only */
1343		return -EPERM;
1344
1345	if (lcd_must_clear) {
1346		lcd_clear_display();
1347		lcd_must_clear = 0;
1348	}
1349	lcd_open_cnt++;
1350	return nonseekable_open(inode, file);
1351}
1352
1353static int lcd_release(struct inode *inode, struct file *file)
1354{
1355	lcd_open_cnt--;
1356	return 0;
1357}
1358
1359static const struct file_operations lcd_fops = {
1360	.write   = lcd_write,
1361	.open    = lcd_open,
1362	.release = lcd_release,
1363	.llseek  = no_llseek,
1364};
1365
1366static struct miscdevice lcd_dev = {
1367	LCD_MINOR,
1368	"lcd",
1369	&lcd_fops
1370};
1371
1372/* public function usable from the kernel for any purpose */
1373void panel_lcd_print(char *s)
1374{
1375	if (lcd_enabled && lcd_initialized)
1376		lcd_write(NULL, s, strlen(s), NULL);
1377}
1378
1379/* initialize the LCD driver */
1380void lcd_init(void)
1381{
1382	switch (lcd_type) {
1383	case LCD_TYPE_OLD:
1384		/* parallel mode, 8 bits */
1385		if (lcd_proto < 0)
1386			lcd_proto = LCD_PROTO_PARALLEL;
1387		if (lcd_charset < 0)
1388			lcd_charset = LCD_CHARSET_NORMAL;
1389		if (lcd_e_pin == PIN_NOT_SET)
1390			lcd_e_pin = PIN_STROBE;
1391		if (lcd_rs_pin == PIN_NOT_SET)
1392			lcd_rs_pin = PIN_AUTOLF;
1393
1394		if (lcd_width < 0)
1395			lcd_width = 40;
1396		if (lcd_bwidth < 0)
1397			lcd_bwidth = 40;
1398		if (lcd_hwidth < 0)
1399			lcd_hwidth = 64;
1400		if (lcd_height < 0)
1401			lcd_height = 2;
1402		break;
1403	case LCD_TYPE_KS0074:
1404		/* serial mode, ks0074 */
1405		if (lcd_proto < 0)
1406			lcd_proto = LCD_PROTO_SERIAL;
1407		if (lcd_charset < 0)
1408			lcd_charset = LCD_CHARSET_KS0074;
1409		if (lcd_bl_pin == PIN_NOT_SET)
1410			lcd_bl_pin = PIN_AUTOLF;
1411		if (lcd_cl_pin == PIN_NOT_SET)
1412			lcd_cl_pin = PIN_STROBE;
1413		if (lcd_da_pin == PIN_NOT_SET)
1414			lcd_da_pin = PIN_D0;
1415
1416		if (lcd_width < 0)
1417			lcd_width = 16;
1418		if (lcd_bwidth < 0)
1419			lcd_bwidth = 40;
1420		if (lcd_hwidth < 0)
1421			lcd_hwidth = 16;
1422		if (lcd_height < 0)
1423			lcd_height = 2;
1424		break;
1425	case LCD_TYPE_NEXCOM:
1426		/* parallel mode, 8 bits, generic */
1427		if (lcd_proto < 0)
1428			lcd_proto = LCD_PROTO_PARALLEL;
1429		if (lcd_charset < 0)
1430			lcd_charset = LCD_CHARSET_NORMAL;
1431		if (lcd_e_pin == PIN_NOT_SET)
1432			lcd_e_pin = PIN_AUTOLF;
1433		if (lcd_rs_pin == PIN_NOT_SET)
1434			lcd_rs_pin = PIN_SELECP;
1435		if (lcd_rw_pin == PIN_NOT_SET)
1436			lcd_rw_pin = PIN_INITP;
1437
1438		if (lcd_width < 0)
1439			lcd_width = 16;
1440		if (lcd_bwidth < 0)
1441			lcd_bwidth = 40;
1442		if (lcd_hwidth < 0)
1443			lcd_hwidth = 64;
1444		if (lcd_height < 0)
1445			lcd_height = 2;
1446		break;
1447	case LCD_TYPE_CUSTOM:
1448		/* customer-defined */
1449		if (lcd_proto < 0)
1450			lcd_proto = DEFAULT_LCD_PROTO;
1451		if (lcd_charset < 0)
1452			lcd_charset = DEFAULT_LCD_CHARSET;
1453		/* default geometry will be set later */
1454		break;
1455	case LCD_TYPE_HANTRONIX:
1456		/* parallel mode, 8 bits, hantronix-like */
1457	default:
1458		if (lcd_proto < 0)
1459			lcd_proto = LCD_PROTO_PARALLEL;
1460		if (lcd_charset < 0)
1461			lcd_charset = LCD_CHARSET_NORMAL;
1462		if (lcd_e_pin == PIN_NOT_SET)
1463			lcd_e_pin = PIN_STROBE;
1464		if (lcd_rs_pin == PIN_NOT_SET)
1465			lcd_rs_pin = PIN_SELECP;
1466
1467		if (lcd_width < 0)
1468			lcd_width = 16;
1469		if (lcd_bwidth < 0)
1470			lcd_bwidth = 40;
1471		if (lcd_hwidth < 0)
1472			lcd_hwidth = 64;
1473		if (lcd_height < 0)
1474			lcd_height = 2;
1475		break;
1476	}
1477
1478	/* this is used to catch wrong and default values */
1479	if (lcd_width <= 0)
1480		lcd_width = DEFAULT_LCD_WIDTH;
1481	if (lcd_bwidth <= 0)
1482		lcd_bwidth = DEFAULT_LCD_BWIDTH;
1483	if (lcd_hwidth <= 0)
1484		lcd_hwidth = DEFAULT_LCD_HWIDTH;
1485	if (lcd_height <= 0)
1486		lcd_height = DEFAULT_LCD_HEIGHT;
1487
1488	if (lcd_proto == LCD_PROTO_SERIAL) {	/* SERIAL */
1489		lcd_write_cmd = lcd_write_cmd_s;
1490		lcd_write_data = lcd_write_data_s;
1491		lcd_clear_fast = lcd_clear_fast_s;
1492
1493		if (lcd_cl_pin == PIN_NOT_SET)
1494			lcd_cl_pin = DEFAULT_LCD_PIN_SCL;
1495		if (lcd_da_pin == PIN_NOT_SET)
1496			lcd_da_pin = DEFAULT_LCD_PIN_SDA;
1497
1498	} else if (lcd_proto == LCD_PROTO_PARALLEL) {	/* PARALLEL */
1499		lcd_write_cmd = lcd_write_cmd_p8;
1500		lcd_write_data = lcd_write_data_p8;
1501		lcd_clear_fast = lcd_clear_fast_p8;
1502
1503		if (lcd_e_pin == PIN_NOT_SET)
1504			lcd_e_pin = DEFAULT_LCD_PIN_E;
1505		if (lcd_rs_pin == PIN_NOT_SET)
1506			lcd_rs_pin = DEFAULT_LCD_PIN_RS;
1507		if (lcd_rw_pin == PIN_NOT_SET)
1508			lcd_rw_pin = DEFAULT_LCD_PIN_RW;
1509	} else {
1510		lcd_write_cmd = lcd_write_cmd_tilcd;
1511		lcd_write_data = lcd_write_data_tilcd;
1512		lcd_clear_fast = lcd_clear_fast_tilcd;
1513	}
1514
1515	if (lcd_bl_pin == PIN_NOT_SET)
1516		lcd_bl_pin = DEFAULT_LCD_PIN_BL;
1517
1518	if (lcd_e_pin == PIN_NOT_SET)
1519		lcd_e_pin = PIN_NONE;
1520	if (lcd_rs_pin == PIN_NOT_SET)
1521		lcd_rs_pin = PIN_NONE;
1522	if (lcd_rw_pin == PIN_NOT_SET)
1523		lcd_rw_pin = PIN_NONE;
1524	if (lcd_bl_pin == PIN_NOT_SET)
1525		lcd_bl_pin = PIN_NONE;
1526	if (lcd_cl_pin == PIN_NOT_SET)
1527		lcd_cl_pin = PIN_NONE;
1528	if (lcd_da_pin == PIN_NOT_SET)
1529		lcd_da_pin = PIN_NONE;
1530
1531	if (lcd_charset < 0)
1532		lcd_charset = DEFAULT_LCD_CHARSET;
1533
1534	if (lcd_charset == LCD_CHARSET_KS0074)
1535		lcd_char_conv = lcd_char_conv_ks0074;
1536	else
1537		lcd_char_conv = NULL;
1538
1539	if (lcd_bl_pin != PIN_NONE)
1540		init_scan_timer();
1541
1542	pin_to_bits(lcd_e_pin, lcd_bits[LCD_PORT_D][LCD_BIT_E],
1543		    lcd_bits[LCD_PORT_C][LCD_BIT_E]);
1544	pin_to_bits(lcd_rs_pin, lcd_bits[LCD_PORT_D][LCD_BIT_RS],
1545		    lcd_bits[LCD_PORT_C][LCD_BIT_RS]);
1546	pin_to_bits(lcd_rw_pin, lcd_bits[LCD_PORT_D][LCD_BIT_RW],
1547		    lcd_bits[LCD_PORT_C][LCD_BIT_RW]);
1548	pin_to_bits(lcd_bl_pin, lcd_bits[LCD_PORT_D][LCD_BIT_BL],
1549		    lcd_bits[LCD_PORT_C][LCD_BIT_BL]);
1550	pin_to_bits(lcd_cl_pin, lcd_bits[LCD_PORT_D][LCD_BIT_CL],
1551		    lcd_bits[LCD_PORT_C][LCD_BIT_CL]);
1552	pin_to_bits(lcd_da_pin, lcd_bits[LCD_PORT_D][LCD_BIT_DA],
1553		    lcd_bits[LCD_PORT_C][LCD_BIT_DA]);
1554
1555	/* before this line, we must NOT send anything to the display.
1556	 * Since lcd_init_display() needs to write data, we have to
1557	 * enable mark the LCD initialized just before. */
1558	lcd_initialized = 1;
1559	lcd_init_display();
1560
1561	/* display a short message */
1562#ifdef CONFIG_PANEL_CHANGE_MESSAGE
1563#ifdef CONFIG_PANEL_BOOT_MESSAGE
1564	panel_lcd_print("\x1b[Lc\x1b[Lb\x1b[L*" CONFIG_PANEL_BOOT_MESSAGE);
1565#endif
1566#else
1567	panel_lcd_print("\x1b[Lc\x1b[Lb\x1b[L*Linux-" UTS_RELEASE "\nPanel-"
1568			PANEL_VERSION);
1569#endif
1570	lcd_addr_x = lcd_addr_y = 0;
1571	/* clear the display on the next device opening */
1572	lcd_must_clear = 1;
1573	lcd_gotoxy();
1574}
1575
1576/*
1577 * These are the file operation function for user access to /dev/keypad
1578 */
1579
1580static ssize_t keypad_read(struct file *file,
1581			   char *buf, size_t count, loff_t *ppos)
1582{
1583
1584	unsigned i = *ppos;
1585	char *tmp = buf;
1586
1587	if (keypad_buflen == 0) {
1588		if (file->f_flags & O_NONBLOCK)
1589			return -EAGAIN;
1590
1591		interruptible_sleep_on(&keypad_read_wait);
1592		if (signal_pending(current))
1593			return -EINTR;
1594	}
1595
1596	for (; count-- > 0 && (keypad_buflen > 0);
1597	     ++i, ++tmp, --keypad_buflen) {
1598		put_user(keypad_buffer[keypad_start], tmp);
1599		keypad_start = (keypad_start + 1) % KEYPAD_BUFFER;
1600	}
1601	*ppos = i;
1602
1603	return tmp - buf;
1604}
1605
1606static int keypad_open(struct inode *inode, struct file *file)
1607{
1608
1609	if (keypad_open_cnt)
1610		return -EBUSY;	/* open only once at a time */
1611
1612	if (file->f_mode & FMODE_WRITE)	/* device is read-only */
1613		return -EPERM;
1614
1615	keypad_buflen = 0;	/* flush the buffer on opening */
1616	keypad_open_cnt++;
1617	return 0;
1618}
1619
1620static int keypad_release(struct inode *inode, struct file *file)
1621{
1622	keypad_open_cnt--;
1623	return 0;
1624}
1625
1626static const struct file_operations keypad_fops = {
1627	.read    = keypad_read,		/* read */
1628	.open    = keypad_open,		/* open */
1629	.release = keypad_release,	/* close */
1630	.llseek  = default_llseek,
1631};
1632
1633static struct miscdevice keypad_dev = {
1634	KEYPAD_MINOR,
1635	"keypad",
1636	&keypad_fops
1637};
1638
1639static void keypad_send_key(char *string, int max_len)
1640{
1641	if (init_in_progress)
1642		return;
1643
1644	/* send the key to the device only if a process is attached to it. */
1645	if (keypad_open_cnt > 0) {
1646		while (max_len-- && keypad_buflen < KEYPAD_BUFFER && *string) {
1647			keypad_buffer[(keypad_start + keypad_buflen++) %
1648				      KEYPAD_BUFFER] = *string++;
1649		}
1650		wake_up_interruptible(&keypad_read_wait);
1651	}
1652}
1653
1654/* this function scans all the bits involving at least one logical signal,
1655 * and puts the results in the bitfield "phys_read" (one bit per established
1656 * contact), and sets "phys_read_prev" to "phys_read".
1657 *
1658 * Note: to debounce input signals, we will only consider as switched a signal
1659 * which is stable across 2 measures. Signals which are different between two
1660 * reads will be kept as they previously were in their logical form (phys_prev).
1661 * A signal which has just switched will have a 1 in
1662 * (phys_read ^ phys_read_prev).
1663 */
1664static void phys_scan_contacts(void)
1665{
1666	int bit, bitval;
1667	char oldval;
1668	char bitmask;
1669	char gndmask;
1670
1671	phys_prev = phys_curr;
1672	phys_read_prev = phys_read;
1673	phys_read = 0;		/* flush all signals */
1674
1675	/* keep track of old value, with all outputs disabled */
1676	oldval = r_dtr(pprt) | scan_mask_o;
1677	/* activate all keyboard outputs (active low) */
1678	w_dtr(pprt, oldval & ~scan_mask_o);
1679
1680	/* will have a 1 for each bit set to gnd */
1681	bitmask = PNL_PINPUT(r_str(pprt)) & scan_mask_i;
1682	/* disable all matrix signals */
1683	w_dtr(pprt, oldval);
1684
1685	/* now that all outputs are cleared, the only active input bits are
1686	 * directly connected to the ground
1687	 */
1688
1689	/* 1 for each grounded input */
1690	gndmask = PNL_PINPUT(r_str(pprt)) & scan_mask_i;
1691
1692	/* grounded inputs are signals 40-44 */
1693	phys_read |= (pmask_t) gndmask << 40;
1694
1695	if (bitmask != gndmask) {
1696		/* since clearing the outputs changed some inputs, we know
1697		 * that some input signals are currently tied to some outputs.
1698		 * So we'll scan them.
1699		 */
1700		for (bit = 0; bit < 8; bit++) {
1701			bitval = 1 << bit;
1702
1703			if (!(scan_mask_o & bitval))	/* skip unused bits */
1704				continue;
1705
1706			w_dtr(pprt, oldval & ~bitval);	/* enable this output */
1707			bitmask = PNL_PINPUT(r_str(pprt)) & ~gndmask;
1708			phys_read |= (pmask_t) bitmask << (5 * bit);
1709		}
1710		w_dtr(pprt, oldval);	/* disable all outputs */
1711	}
1712	/* this is easy: use old bits when they are flapping,
1713	 * use new ones when stable */
1714	phys_curr = (phys_prev & (phys_read ^ phys_read_prev)) |
1715		    (phys_read & ~(phys_read ^ phys_read_prev));
1716}
1717
1718static inline int input_state_high(struct logical_input *input)
1719{
1720#if 0
1721	/* FIXME:
1722	 * this is an invalid test. It tries to catch
1723	 * transitions from single-key to multiple-key, but
1724	 * doesn't take into account the contacts polarity.
1725	 * The only solution to the problem is to parse keys
1726	 * from the most complex to the simplest combinations,
1727	 * and mark them as 'caught' once a combination
1728	 * matches, then unmatch it for all other ones.
1729	 */
1730
1731	/* try to catch dangerous transitions cases :
1732	 * someone adds a bit, so this signal was a false
1733	 * positive resulting from a transition. We should
1734	 * invalidate the signal immediately and not call the
1735	 * release function.
1736	 * eg: 0 -(press A)-> A -(press B)-> AB : don't match A's release.
1737	 */
1738	if (((phys_prev & input->mask) == input->value)
1739	    && ((phys_curr & input->mask) > input->value)) {
1740		input->state = INPUT_ST_LOW; /* invalidate */
1741		return 1;
1742	}
1743#endif
1744
1745	if ((phys_curr & input->mask) == input->value) {
1746		if ((input->type == INPUT_TYPE_STD) &&
1747		    (input->high_timer == 0)) {
1748			input->high_timer++;
1749			if (input->u.std.press_fct != NULL)
1750				input->u.std.press_fct(input->u.std.press_data);
1751		} else if (input->type == INPUT_TYPE_KBD) {
1752			/* will turn on the light */
1753			keypressed = 1;
1754
1755			if (input->high_timer == 0) {
1756				char *press_str = input->u.kbd.press_str;
1757				if (press_str[0])
1758					keypad_send_key(press_str,
1759							sizeof(press_str));
1760			}
1761
1762			if (input->u.kbd.repeat_str[0]) {
1763				char *repeat_str = input->u.kbd.repeat_str;
1764				if (input->high_timer >= KEYPAD_REP_START) {
1765					input->high_timer -= KEYPAD_REP_DELAY;
1766					keypad_send_key(repeat_str,
1767							sizeof(repeat_str));
1768				}
1769				/* we will need to come back here soon */
1770				inputs_stable = 0;
1771			}
1772
1773			if (input->high_timer < 255)
1774				input->high_timer++;
1775		}
1776		return 1;
1777	} else {
1778		/* else signal falling down. Let's fall through. */
1779		input->state = INPUT_ST_FALLING;
1780		input->fall_timer = 0;
1781	}
1782	return 0;
1783}
1784
1785static inline void input_state_falling(struct logical_input *input)
1786{
1787#if 0
1788	/* FIXME !!! same comment as in input_state_high */
1789	if (((phys_prev & input->mask) == input->value)
1790	    && ((phys_curr & input->mask) > input->value)) {
1791		input->state = INPUT_ST_LOW;	/* invalidate */
1792		return;
1793	}
1794#endif
1795
1796	if ((phys_curr & input->mask) == input->value) {
1797		if (input->type == INPUT_TYPE_KBD) {
1798			/* will turn on the light */
1799			keypressed = 1;
1800
1801			if (input->u.kbd.repeat_str[0]) {
1802				char *repeat_str = input->u.kbd.repeat_str;
1803				if (input->high_timer >= KEYPAD_REP_START)
1804					input->high_timer -= KEYPAD_REP_DELAY;
1805					keypad_send_key(repeat_str,
1806							sizeof(repeat_str));
1807				/* we will need to come back here soon */
1808				inputs_stable = 0;
1809			}
1810
1811			if (input->high_timer < 255)
1812				input->high_timer++;
1813		}
1814		input->state = INPUT_ST_HIGH;
1815	} else if (input->fall_timer >= input->fall_time) {
1816		/* call release event */
1817		if (input->type == INPUT_TYPE_STD) {
1818			void (*release_fct)(int) = input->u.std.release_fct;
1819			if (release_fct != NULL)
1820				release_fct(input->u.std.release_data);
1821		} else if (input->type == INPUT_TYPE_KBD) {
1822			char *release_str = input->u.kbd.release_str;
1823			if (release_str[0])
1824				keypad_send_key(release_str,
1825						sizeof(release_str));
1826		}
1827
1828		input->state = INPUT_ST_LOW;
1829	} else {
1830		input->fall_timer++;
1831		inputs_stable = 0;
1832	}
1833}
1834
1835static void panel_process_inputs(void)
1836{
1837	struct list_head *item;
1838	struct logical_input *input;
1839
1840#if 0
1841	printk(KERN_DEBUG
1842	       "entering panel_process_inputs with pp=%016Lx & pc=%016Lx\n",
1843	       phys_prev, phys_curr);
1844#endif
1845
1846	keypressed = 0;
1847	inputs_stable = 1;
1848	list_for_each(item, &logical_inputs) {
1849		input = list_entry(item, struct logical_input, list);
1850
1851		switch (input->state) {
1852		case INPUT_ST_LOW:
1853			if ((phys_curr & input->mask) != input->value)
1854				break;
1855			/* if all needed ones were already set previously,
1856			 * this means that this logical signal has been
1857			 * activated by the releasing of another combined
1858			 * signal, so we don't want to match.
1859			 * eg: AB -(release B)-> A -(release A)-> 0 :
1860			 *     don't match A.
1861			 */
1862			if ((phys_prev & input->mask) == input->value)
1863				break;
1864			input->rise_timer = 0;
1865			input->state = INPUT_ST_RISING;
1866			/* no break here, fall through */
1867		case INPUT_ST_RISING:
1868			if ((phys_curr & input->mask) != input->value) {
1869				input->state = INPUT_ST_LOW;
1870				break;
1871			}
1872			if (input->rise_timer < input->rise_time) {
1873				inputs_stable = 0;
1874				input->rise_timer++;
1875				break;
1876			}
1877			input->high_timer = 0;
1878			input->state = INPUT_ST_HIGH;
1879			/* no break here, fall through */
1880		case INPUT_ST_HIGH:
1881			if (input_state_high(input))
1882				break;
1883			/* no break here, fall through */
1884		case INPUT_ST_FALLING:
1885			input_state_falling(input);
1886		}
1887	}
1888}
1889
1890static void panel_scan_timer(void)
1891{
1892	if (keypad_enabled && keypad_initialized) {
1893		if (spin_trylock(&pprt_lock)) {
1894			phys_scan_contacts();
1895
1896			/* no need for the parport anymore */
1897			spin_unlock(&pprt_lock);
1898		}
1899
1900		if (!inputs_stable || phys_curr != phys_prev)
1901			panel_process_inputs();
1902	}
1903
1904	if (lcd_enabled && lcd_initialized) {
1905		if (keypressed) {
1906			if (light_tempo == 0 && ((lcd_flags & LCD_FLAG_L) == 0))
1907				lcd_backlight(1);
1908			light_tempo = FLASH_LIGHT_TEMPO;
1909		} else if (light_tempo > 0) {
1910			light_tempo--;
1911			if (light_tempo == 0 && ((lcd_flags & LCD_FLAG_L) == 0))
1912				lcd_backlight(0);
1913		}
1914	}
1915
1916	mod_timer(&scan_timer, jiffies + INPUT_POLL_TIME);
1917}
1918
1919static void init_scan_timer(void)
1920{
1921	if (scan_timer.function != NULL)
1922		return;		/* already started */
1923
1924	init_timer(&scan_timer);
1925	scan_timer.expires = jiffies + INPUT_POLL_TIME;
1926	scan_timer.data = 0;
1927	scan_timer.function = (void *)&panel_scan_timer;
1928	add_timer(&scan_timer);
1929}
1930
1931/* converts a name of the form "({BbAaPpSsEe}{01234567-})*" to a series of bits.
1932 * if <omask> or <imask> are non-null, they will be or'ed with the bits
1933 * corresponding to out and in bits respectively.
1934 * returns 1 if ok, 0 if error (in which case, nothing is written).
1935 */
1936static int input_name2mask(char *name, pmask_t *mask, pmask_t *value,
1937			   char *imask, char *omask)
1938{
1939	static char sigtab[10] = "EeSsPpAaBb";
1940	char im, om;
1941	pmask_t m, v;
1942
1943	om = im = m = v = 0ULL;
1944	while (*name) {
1945		int in, out, bit, neg;
1946		for (in = 0; (in < sizeof(sigtab)) &&
1947			     (sigtab[in] != *name); in++)
1948			;
1949		if (in >= sizeof(sigtab))
1950			return 0;	/* input name not found */
1951		neg = (in & 1);	/* odd (lower) names are negated */
1952		in >>= 1;
1953		im |= (1 << in);
1954
1955		name++;
1956		if (isdigit(*name)) {
1957			out = *name - '0';
1958			om |= (1 << out);
1959		} else if (*name == '-')
1960			out = 8;
1961		else
1962			return 0;	/* unknown bit name */
1963
1964		bit = (out * 5) + in;
1965
1966		m |= 1ULL << bit;
1967		if (!neg)
1968			v |= 1ULL << bit;
1969		name++;
1970	}
1971	*mask = m;
1972	*value = v;
1973	if (imask)
1974		*imask |= im;
1975	if (omask)
1976		*omask |= om;
1977	return 1;
1978}
1979
1980/* tries to bind a key to the signal name <name>. The key will send the
1981 * strings <press>, <repeat>, <release> for these respective events.
1982 * Returns the pointer to the new key if ok, NULL if the key could not be bound.
1983 */
1984static struct logical_input *panel_bind_key(char *name, char *press,
1985					    char *repeat, char *release)
1986{
1987	struct logical_input *key;
1988
1989	key = kzalloc(sizeof(struct logical_input), GFP_KERNEL);
1990	if (!key) {
1991		printk(KERN_ERR "panel: not enough memory\n");
1992		return NULL;
1993	}
1994	if (!input_name2mask(name, &key->mask, &key->value, &scan_mask_i,
1995			     &scan_mask_o)) {
1996		kfree(key);
1997		return NULL;
1998	}
1999
2000	key->type = INPUT_TYPE_KBD;
2001	key->state = INPUT_ST_LOW;
2002	key->rise_time = 1;
2003	key->fall_time = 1;
2004
2005#if 0
2006	printk(KERN_DEBUG "bind: <%s> : m=%016Lx v=%016Lx\n", name, key->mask,
2007	       key->value);
2008#endif
2009	strncpy(key->u.kbd.press_str, press, sizeof(key->u.kbd.press_str));
2010	strncpy(key->u.kbd.repeat_str, repeat, sizeof(key->u.kbd.repeat_str));
2011	strncpy(key->u.kbd.release_str, release,
2012		sizeof(key->u.kbd.release_str));
2013	list_add(&key->list, &logical_inputs);
2014	return key;
2015}
2016
2017#if 0
2018/* tries to bind a callback function to the signal name <name>. The function
2019 * <press_fct> will be called with the <press_data> arg when the signal is
2020 * activated, and so on for <release_fct>/<release_data>
2021 * Returns the pointer to the new signal if ok, NULL if the signal could not
2022 * be bound.
2023 */
2024static struct logical_input *panel_bind_callback(char *name,
2025						 void (*press_fct) (int),
2026						 int press_data,
2027						 void (*release_fct) (int),
2028						 int release_data)
2029{
2030	struct logical_input *callback;
2031
2032	callback = kmalloc(sizeof(struct logical_input), GFP_KERNEL);
2033	if (!callback) {
2034		printk(KERN_ERR "panel: not enough memory\n");
2035		return NULL;
2036	}
2037	memset(callback, 0, sizeof(struct logical_input));
2038	if (!input_name2mask(name, &callback->mask, &callback->value,
2039			     &scan_mask_i, &scan_mask_o))
2040		return NULL;
2041
2042	callback->type = INPUT_TYPE_STD;
2043	callback->state = INPUT_ST_LOW;
2044	callback->rise_time = 1;
2045	callback->fall_time = 1;
2046	callback->u.std.press_fct = press_fct;
2047	callback->u.std.press_data = press_data;
2048	callback->u.std.release_fct = release_fct;
2049	callback->u.std.release_data = release_data;
2050	list_add(&callback->list, &logical_inputs);
2051	return callback;
2052}
2053#endif
2054
2055static void keypad_init(void)
2056{
2057	int keynum;
2058	init_waitqueue_head(&keypad_read_wait);
2059	keypad_buflen = 0;	/* flushes any eventual noisy keystroke */
2060
2061	/* Let's create all known keys */
2062
2063	for (keynum = 0; keypad_profile[keynum][0][0]; keynum++) {
2064		panel_bind_key(keypad_profile[keynum][0],
2065			       keypad_profile[keynum][1],
2066			       keypad_profile[keynum][2],
2067			       keypad_profile[keynum][3]);
2068	}
2069
2070	init_scan_timer();
2071	keypad_initialized = 1;
2072}
2073
2074/**************************************************/
2075/* device initialization                          */
2076/**************************************************/
2077
2078static int panel_notify_sys(struct notifier_block *this, unsigned long code,
2079			    void *unused)
2080{
2081	if (lcd_enabled && lcd_initialized) {
2082		switch (code) {
2083		case SYS_DOWN:
2084			panel_lcd_print
2085			    ("\x0cReloading\nSystem...\x1b[Lc\x1b[Lb\x1b[L+");
2086			break;
2087		case SYS_HALT:
2088			panel_lcd_print
2089			    ("\x0cSystem Halted.\x1b[Lc\x1b[Lb\x1b[L+");
2090			break;
2091		case SYS_POWER_OFF:
2092			panel_lcd_print("\x0cPower off.\x1b[Lc\x1b[Lb\x1b[L+");
2093			break;
2094		default:
2095			break;
2096		}
2097	}
2098	return NOTIFY_DONE;
2099}
2100
2101static struct notifier_block panel_notifier = {
2102	panel_notify_sys,
2103	NULL,
2104	0
2105};
2106
2107static void panel_attach(struct parport *port)
2108{
2109	if (port->number != parport)
2110		return;
2111
2112	if (pprt) {
2113		printk(KERN_ERR
2114		       "panel_attach(): port->number=%d parport=%d, "
2115		       "already registered !\n",
2116		       port->number, parport);
2117		return;
2118	}
2119
2120	pprt = parport_register_device(port, "panel", NULL, NULL,  /* pf, kf */
2121				       NULL,
2122				       /*PARPORT_DEV_EXCL */
2123				       0, (void *)&pprt);
2124	if (pprt == NULL) {
2125		pr_err("panel_attach(): port->number=%d parport=%d, "
2126		       "parport_register_device() failed\n",
2127		       port->number, parport);
2128		return;
2129	}
2130
2131	if (parport_claim(pprt)) {
2132		printk(KERN_ERR
2133		       "Panel: could not claim access to parport%d. "
2134		       "Aborting.\n", parport);
2135		goto err_unreg_device;
2136	}
2137
2138	/* must init LCD first, just in case an IRQ from the keypad is
2139	 * generated at keypad init
2140	 */
2141	if (lcd_enabled) {
2142		lcd_init();
2143		if (misc_register(&lcd_dev))
2144			goto err_unreg_device;
2145	}
2146
2147	if (keypad_enabled) {
2148		keypad_init();
2149		if (misc_register(&keypad_dev))
2150			goto err_lcd_unreg;
2151	}
2152	return;
2153
2154err_lcd_unreg:
2155	if (lcd_enabled)
2156		misc_deregister(&lcd_dev);
2157err_unreg_device:
2158	parport_unregister_device(pprt);
2159	pprt = NULL;
2160}
2161
2162static void panel_detach(struct parport *port)
2163{
2164	if (port->number != parport)
2165		return;
2166
2167	if (!pprt) {
2168		printk(KERN_ERR
2169		       "panel_detach(): port->number=%d parport=%d, "
2170		       "nothing to unregister.\n",
2171		       port->number, parport);
2172		return;
2173	}
2174
2175	if (keypad_enabled && keypad_initialized) {
2176		misc_deregister(&keypad_dev);
2177		keypad_initialized = 0;
2178	}
2179
2180	if (lcd_enabled && lcd_initialized) {
2181		misc_deregister(&lcd_dev);
2182		lcd_initialized = 0;
2183	}
2184
2185	parport_release(pprt);
2186	parport_unregister_device(pprt);
2187	pprt = NULL;
2188}
2189
2190static struct parport_driver panel_driver = {
2191	.name = "panel",
2192	.attach = panel_attach,
2193	.detach = panel_detach,
2194};
2195
2196/* init function */
2197int panel_init(void)
2198{
2199	/* for backwards compatibility */
2200	if (keypad_type < 0)
2201		keypad_type = keypad_enabled;
2202
2203	if (lcd_type < 0)
2204		lcd_type = lcd_enabled;
2205
2206	if (parport < 0)
2207		parport = DEFAULT_PARPORT;
2208
2209	/* take care of an eventual profile */
2210	switch (profile) {
2211	case PANEL_PROFILE_CUSTOM:
2212		/* custom profile */
2213		if (keypad_type < 0)
2214			keypad_type = DEFAULT_KEYPAD;
2215		if (lcd_type < 0)
2216			lcd_type = DEFAULT_LCD;
2217		break;
2218	case PANEL_PROFILE_OLD:
2219		/* 8 bits, 2*16, old keypad */
2220		if (keypad_type < 0)
2221			keypad_type = KEYPAD_TYPE_OLD;
2222		if (lcd_type < 0)
2223			lcd_type = LCD_TYPE_OLD;
2224		if (lcd_width < 0)
2225			lcd_width = 16;
2226		if (lcd_hwidth < 0)
2227			lcd_hwidth = 16;
2228		break;
2229	case PANEL_PROFILE_NEW:
2230		/* serial, 2*16, new keypad */
2231		if (keypad_type < 0)
2232			keypad_type = KEYPAD_TYPE_NEW;
2233		if (lcd_type < 0)
2234			lcd_type = LCD_TYPE_KS0074;
2235		break;
2236	case PANEL_PROFILE_HANTRONIX:
2237		/* 8 bits, 2*16 hantronix-like, no keypad */
2238		if (keypad_type < 0)
2239			keypad_type = KEYPAD_TYPE_NONE;
2240		if (lcd_type < 0)
2241			lcd_type = LCD_TYPE_HANTRONIX;
2242		break;
2243	case PANEL_PROFILE_NEXCOM:
2244		/* generic 8 bits, 2*16, nexcom keypad, eg. Nexcom. */
2245		if (keypad_type < 0)
2246			keypad_type = KEYPAD_TYPE_NEXCOM;
2247		if (lcd_type < 0)
2248			lcd_type = LCD_TYPE_NEXCOM;
2249		break;
2250	case PANEL_PROFILE_LARGE:
2251		/* 8 bits, 2*40, old keypad */
2252		if (keypad_type < 0)
2253			keypad_type = KEYPAD_TYPE_OLD;
2254		if (lcd_type < 0)
2255			lcd_type = LCD_TYPE_OLD;
2256		break;
2257	}
2258
2259	lcd_enabled = (lcd_type > 0);
2260	keypad_enabled = (keypad_type > 0);
2261
2262	switch (keypad_type) {
2263	case KEYPAD_TYPE_OLD:
2264		keypad_profile = old_keypad_profile;
2265		break;
2266	case KEYPAD_TYPE_NEW:
2267		keypad_profile = new_keypad_profile;
2268		break;
2269	case KEYPAD_TYPE_NEXCOM:
2270		keypad_profile = nexcom_keypad_profile;
2271		break;
2272	default:
2273		keypad_profile = NULL;
2274		break;
2275	}
2276
2277	/* tells various subsystems about the fact that we are initializing */
2278	init_in_progress = 1;
2279
2280	if (parport_register_driver(&panel_driver)) {
2281		printk(KERN_ERR
2282		       "Panel: could not register with parport. Aborting.\n");
2283		return -EIO;
2284	}
2285
2286	if (!lcd_enabled && !keypad_enabled) {
2287		/* no device enabled, let's release the parport */
2288		if (pprt) {
2289			parport_release(pprt);
2290			parport_unregister_device(pprt);
2291			pprt = NULL;
2292		}
2293		parport_unregister_driver(&panel_driver);
2294		printk(KERN_ERR "Panel driver version " PANEL_VERSION
2295		       " disabled.\n");
2296		return -ENODEV;
2297	}
2298
2299	register_reboot_notifier(&panel_notifier);
2300
2301	if (pprt)
2302		printk(KERN_INFO "Panel driver version " PANEL_VERSION
2303		       " registered on parport%d (io=0x%lx).\n", parport,
2304		       pprt->port->base);
2305	else
2306		printk(KERN_INFO "Panel driver version " PANEL_VERSION
2307		       " not yet registered\n");
2308	/* tells various subsystems about the fact that initialization
2309	   is finished */
2310	init_in_progress = 0;
2311	return 0;
2312}
2313
2314static int __init panel_init_module(void)
2315{
2316	return panel_init();
2317}
2318
2319static void __exit panel_cleanup_module(void)
2320{
2321	unregister_reboot_notifier(&panel_notifier);
2322
2323	if (scan_timer.function != NULL)
2324		del_timer(&scan_timer);
2325
2326	if (pprt != NULL) {
2327		if (keypad_enabled) {
2328			misc_deregister(&keypad_dev);
2329			keypad_initialized = 0;
2330		}
2331
2332		if (lcd_enabled) {
2333			panel_lcd_print("\x0cLCD driver " PANEL_VERSION
2334					"\nunloaded.\x1b[Lc\x1b[Lb\x1b[L-");
2335			misc_deregister(&lcd_dev);
2336			lcd_initialized = 0;
2337		}
2338
2339		/* TODO: free all input signals */
2340		parport_release(pprt);
2341		parport_unregister_device(pprt);
2342		pprt = NULL;
2343	}
2344	parport_unregister_driver(&panel_driver);
2345}
2346
2347module_init(panel_init_module);
2348module_exit(panel_cleanup_module);
2349MODULE_AUTHOR("Willy Tarreau");
2350MODULE_LICENSE("GPL");
2351
2352/*
2353 * Local variables:
2354 *  c-indent-level: 4
2355 *  tab-width: 8
2356 * End:
2357 */