Linux Audio

Check our new training course

Loading...
v3.15
   1/*
   2 * Copyright (C) 2012 Red Hat. All rights reserved.
   3 *
   4 * This file is released under the GPL.
   5 */
   6
   7#include "dm.h"
   8#include "dm-bio-prison.h"
   9#include "dm-bio-record.h"
  10#include "dm-cache-metadata.h"
 
  11
  12#include <linux/dm-io.h>
  13#include <linux/dm-kcopyd.h>
 
  14#include <linux/init.h>
  15#include <linux/mempool.h>
  16#include <linux/module.h>
 
  17#include <linux/slab.h>
  18#include <linux/vmalloc.h>
  19
  20#define DM_MSG_PREFIX "cache"
  21
  22DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(cache_copy_throttle,
  23	"A percentage of time allocated for copying to and/or from cache");
  24
  25/*----------------------------------------------------------------*/
  26
  27/*
  28 * Glossary:
  29 *
  30 * oblock: index of an origin block
  31 * cblock: index of a cache block
  32 * promotion: movement of a block from origin to cache
  33 * demotion: movement of a block from cache to origin
  34 * migration: movement of a block between the origin and cache device,
  35 *	      either direction
  36 */
  37
  38/*----------------------------------------------------------------*/
  39
  40static size_t bitset_size_in_bytes(unsigned nr_entries)
 
 
 
 
 
 
 
 
 
 
  41{
  42	return sizeof(unsigned long) * dm_div_up(nr_entries, BITS_PER_LONG);
 
  43}
  44
  45static unsigned long *alloc_bitset(unsigned nr_entries)
 
  46{
  47	size_t s = bitset_size_in_bytes(nr_entries);
  48	return vzalloc(s);
  49}
  50
  51static void clear_bitset(void *bitset, unsigned nr_entries)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  52{
  53	size_t s = bitset_size_in_bytes(nr_entries);
  54	memset(bitset, 0, s);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  55}
  56
  57static void free_bitset(unsigned long *bits)
 
 
 
 
 
  58{
  59	vfree(bits);
 
 
 
 
 
 
 
 
 
 
  60}
  61
  62/*----------------------------------------------------------------*/
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  63
  64/*
  65 * There are a couple of places where we let a bio run, but want to do some
  66 * work before calling its endio function.  We do this by temporarily
  67 * changing the endio fn.
  68 */
  69struct dm_hook_info {
  70	bio_end_io_t *bi_end_io;
  71	void *bi_private;
  72};
  73
  74static void dm_hook_bio(struct dm_hook_info *h, struct bio *bio,
  75			bio_end_io_t *bi_end_io, void *bi_private)
  76{
  77	h->bi_end_io = bio->bi_end_io;
  78	h->bi_private = bio->bi_private;
  79
  80	bio->bi_end_io = bi_end_io;
  81	bio->bi_private = bi_private;
  82}
  83
  84static void dm_unhook_bio(struct dm_hook_info *h, struct bio *bio)
  85{
  86	bio->bi_end_io = h->bi_end_io;
  87	bio->bi_private = h->bi_private;
  88
  89	/*
  90	 * Must bump bi_remaining to allow bio to complete with
  91	 * restored bi_end_io.
  92	 */
  93	atomic_inc(&bio->bi_remaining);
  94}
  95
  96/*----------------------------------------------------------------*/
  97
  98#define PRISON_CELLS 1024
  99#define MIGRATION_POOL_SIZE 128
 100#define COMMIT_PERIOD HZ
 101#define MIGRATION_COUNT_WINDOW 10
 102
 103/*
 104 * The block size of the device holding cache data must be
 105 * between 32KB and 1GB.
 106 */
 107#define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (32 * 1024 >> SECTOR_SHIFT)
 108#define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
 109
 110/*
 111 * FIXME: the cache is read/write for the time being.
 112 */
 113enum cache_metadata_mode {
 114	CM_WRITE,		/* metadata may be changed */
 115	CM_READ_ONLY,		/* metadata may not be changed */
 
 116};
 117
 118enum cache_io_mode {
 119	/*
 120	 * Data is written to cached blocks only.  These blocks are marked
 121	 * dirty.  If you lose the cache device you will lose data.
 122	 * Potential performance increase for both reads and writes.
 123	 */
 124	CM_IO_WRITEBACK,
 125
 126	/*
 127	 * Data is written to both cache and origin.  Blocks are never
 128	 * dirty.  Potential performance benfit for reads only.
 129	 */
 130	CM_IO_WRITETHROUGH,
 131
 132	/*
 133	 * A degraded mode useful for various cache coherency situations
 134	 * (eg, rolling back snapshots).  Reads and writes always go to the
 135	 * origin.  If a write goes to a cached oblock, then the cache
 136	 * block is invalidated.
 137	 */
 138	CM_IO_PASSTHROUGH
 139};
 140
 141struct cache_features {
 142	enum cache_metadata_mode mode;
 143	enum cache_io_mode io_mode;
 
 
 144};
 145
 146struct cache_stats {
 147	atomic_t read_hit;
 148	atomic_t read_miss;
 149	atomic_t write_hit;
 150	atomic_t write_miss;
 151	atomic_t demotion;
 152	atomic_t promotion;
 
 153	atomic_t copies_avoided;
 154	atomic_t cache_cell_clash;
 155	atomic_t commit_count;
 156	atomic_t discard_count;
 157};
 158
 159/*
 160 * Defines a range of cblocks, begin to (end - 1) are in the range.  end is
 161 * the one-past-the-end value.
 162 */
 163struct cblock_range {
 164	dm_cblock_t begin;
 165	dm_cblock_t end;
 166};
 167
 168struct invalidation_request {
 169	struct list_head list;
 170	struct cblock_range *cblocks;
 171
 172	atomic_t complete;
 173	int err;
 174
 175	wait_queue_head_t result_wait;
 176};
 177
 178struct cache {
 179	struct dm_target *ti;
 180	struct dm_target_callbacks callbacks;
 
 
 
 
 
 
 181
 182	struct dm_cache_metadata *cmd;
 183
 184	/*
 185	 * Metadata is written to this device.
 186	 */
 187	struct dm_dev *metadata_dev;
 188
 189	/*
 190	 * The slower of the two data devices.  Typically a spindle.
 191	 */
 192	struct dm_dev *origin_dev;
 193
 194	/*
 195	 * The faster of the two data devices.  Typically an SSD.
 196	 */
 197	struct dm_dev *cache_dev;
 198
 199	/*
 200	 * Size of the origin device in _complete_ blocks and native sectors.
 201	 */
 202	dm_oblock_t origin_blocks;
 203	sector_t origin_sectors;
 204
 205	/*
 206	 * Size of the cache device in blocks.
 207	 */
 208	dm_cblock_t cache_size;
 209
 210	/*
 211	 * Fields for converting from sectors to blocks.
 212	 */
 213	uint32_t sectors_per_block;
 214	int sectors_per_block_shift;
 215
 216	spinlock_t lock;
 217	struct bio_list deferred_bios;
 218	struct bio_list deferred_flush_bios;
 219	struct bio_list deferred_writethrough_bios;
 220	struct list_head quiesced_migrations;
 221	struct list_head completed_migrations;
 222	struct list_head need_commit_migrations;
 223	sector_t migration_threshold;
 224	wait_queue_head_t migration_wait;
 225	atomic_t nr_migrations;
 226
 227	wait_queue_head_t quiescing_wait;
 228	atomic_t quiescing;
 229	atomic_t quiescing_ack;
 230
 231	/*
 232	 * cache_size entries, dirty if set
 
 233	 */
 234	dm_cblock_t nr_dirty;
 235	unsigned long *dirty_bitset;
 
 
 
 236
 237	/*
 238	 * origin_blocks entries, discarded if set.
 239	 */
 240	dm_oblock_t discard_nr_blocks;
 241	unsigned long *discard_bitset;
 
 242
 243	/*
 244	 * Rather than reconstructing the table line for the status we just
 245	 * save it and regurgitate.
 246	 */
 247	unsigned nr_ctr_args;
 248	const char **ctr_args;
 249
 250	struct dm_kcopyd_client *copier;
 
 
 251	struct workqueue_struct *wq;
 252	struct work_struct worker;
 253
 254	struct delayed_work waker;
 255	unsigned long last_commit_jiffies;
 256
 257	struct dm_bio_prison *prison;
 258	struct dm_deferred_set *all_io_ds;
 259
 260	mempool_t *migration_pool;
 261	struct dm_cache_migration *next_migration;
 
 
 
 262
 263	struct dm_cache_policy *policy;
 264	unsigned policy_nr_args;
 
 
 
 
 
 
 
 
 265
 266	bool need_tick_bio:1;
 267	bool sized:1;
 268	bool invalidate:1;
 269	bool commit_requested:1;
 270	bool loaded_mappings:1;
 271	bool loaded_discards:1;
 272
 273	/*
 274	 * Cache features such as write-through.
 275	 */
 276	struct cache_features features;
 277
 278	struct cache_stats stats;
 
 279
 280	/*
 281	 * Invalidation fields.
 282	 */
 283	spinlock_t invalidation_lock;
 284	struct list_head invalidation_requests;
 285};
 286
 287struct per_bio_data {
 288	bool tick:1;
 289	unsigned req_nr:2;
 290	struct dm_deferred_entry *all_io_entry;
 291	struct dm_hook_info hook_info;
 292
 293	/*
 294	 * writethrough fields.  These MUST remain at the end of this
 295	 * structure and the 'cache' member must be the first as it
 296	 * is used to determine the offset of the writethrough fields.
 297	 */
 298	struct cache *cache;
 299	dm_cblock_t cblock;
 300	struct dm_bio_details bio_details;
 301};
 302
 303struct dm_cache_migration {
 304	struct list_head list;
 305	struct cache *cache;
 306
 307	unsigned long start_jiffies;
 308	dm_oblock_t old_oblock;
 309	dm_oblock_t new_oblock;
 310	dm_cblock_t cblock;
 311
 312	bool err:1;
 313	bool writeback:1;
 314	bool demote:1;
 315	bool promote:1;
 316	bool requeue_holder:1;
 317	bool invalidate:1;
 318
 319	struct dm_bio_prison_cell *old_ocell;
 320	struct dm_bio_prison_cell *new_ocell;
 321};
 322
 323/*
 324 * Processing a bio in the worker thread may require these memory
 325 * allocations.  We prealloc to avoid deadlocks (the same worker thread
 326 * frees them back to the mempool).
 327 */
 328struct prealloc {
 329	struct dm_cache_migration *mg;
 330	struct dm_bio_prison_cell *cell1;
 331	struct dm_bio_prison_cell *cell2;
 332};
 333
 334static void wake_worker(struct cache *cache)
 335{
 336	queue_work(cache->wq, &cache->worker);
 337}
 338
 339/*----------------------------------------------------------------*/
 340
 341static struct dm_bio_prison_cell *alloc_prison_cell(struct cache *cache)
 342{
 343	/* FIXME: change to use a local slab. */
 344	return dm_bio_prison_alloc_cell(cache->prison, GFP_NOWAIT);
 345}
 346
 347static void free_prison_cell(struct cache *cache, struct dm_bio_prison_cell *cell)
 348{
 349	dm_bio_prison_free_cell(cache->prison, cell);
 350}
 351
 352static int prealloc_data_structs(struct cache *cache, struct prealloc *p)
 353{
 354	if (!p->mg) {
 355		p->mg = mempool_alloc(cache->migration_pool, GFP_NOWAIT);
 356		if (!p->mg)
 357			return -ENOMEM;
 358	}
 359
 360	if (!p->cell1) {
 361		p->cell1 = alloc_prison_cell(cache);
 362		if (!p->cell1)
 363			return -ENOMEM;
 364	}
 365
 366	if (!p->cell2) {
 367		p->cell2 = alloc_prison_cell(cache);
 368		if (!p->cell2)
 369			return -ENOMEM;
 370	}
 371
 372	return 0;
 
 
 373}
 374
 375static void prealloc_free_structs(struct cache *cache, struct prealloc *p)
 376{
 377	if (p->cell2)
 378		free_prison_cell(cache, p->cell2);
 379
 380	if (p->cell1)
 381		free_prison_cell(cache, p->cell1);
 382
 383	if (p->mg)
 384		mempool_free(p->mg, cache->migration_pool);
 385}
 386
 387static struct dm_cache_migration *prealloc_get_migration(struct prealloc *p)
 388{
 389	struct dm_cache_migration *mg = p->mg;
 390
 391	BUG_ON(!mg);
 392	p->mg = NULL;
 
 
 393
 394	return mg;
 
 
 395}
 396
 397/*
 398 * You must have a cell within the prealloc struct to return.  If not this
 399 * function will BUG() rather than returning NULL.
 400 */
 401static struct dm_bio_prison_cell *prealloc_get_cell(struct prealloc *p)
 402{
 403	struct dm_bio_prison_cell *r = NULL;
 404
 405	if (p->cell1) {
 406		r = p->cell1;
 407		p->cell1 = NULL;
 408
 409	} else if (p->cell2) {
 410		r = p->cell2;
 411		p->cell2 = NULL;
 412	} else
 413		BUG();
 414
 415	return r;
 
 
 
 416}
 417
 418/*
 419 * You can't have more than two cells in a prealloc struct.  BUG() will be
 420 * called if you try and overfill.
 421 */
 422static void prealloc_put_cell(struct prealloc *p, struct dm_bio_prison_cell *cell)
 423{
 424	if (!p->cell2)
 425		p->cell2 = cell;
 426
 427	else if (!p->cell1)
 428		p->cell1 = cell;
 429
 430	else
 431		BUG();
 432}
 433
 434/*----------------------------------------------------------------*/
 435
 436static void build_key(dm_oblock_t oblock, struct dm_cell_key *key)
 
 
 
 
 
 437{
 438	key->virtual = 0;
 439	key->dev = 0;
 440	key->block = from_oblock(oblock);
 
 441}
 442
 443/*
 444 * The caller hands in a preallocated cell, and a free function for it.
 445 * The cell will be freed if there's an error, or if it wasn't used because
 446 * a cell with that key already exists.
 447 */
 448typedef void (*cell_free_fn)(void *context, struct dm_bio_prison_cell *cell);
 
 449
 450static int bio_detain(struct cache *cache, dm_oblock_t oblock,
 451		      struct bio *bio, struct dm_bio_prison_cell *cell_prealloc,
 452		      cell_free_fn free_fn, void *free_context,
 453		      struct dm_bio_prison_cell **cell_result)
 454{
 455	int r;
 456	struct dm_cell_key key;
 
 
 457
 458	build_key(oblock, &key);
 459	r = dm_bio_detain(cache->prison, &key, bio, cell_prealloc, cell_result);
 460	if (r)
 461		free_fn(free_context, cell_prealloc);
 462
 463	return r;
 
 
 
 
 464}
 465
 466static int get_cell(struct cache *cache,
 467		    dm_oblock_t oblock,
 468		    struct prealloc *structs,
 469		    struct dm_bio_prison_cell **cell_result)
 470{
 471	int r;
 472	struct dm_cell_key key;
 473	struct dm_bio_prison_cell *cell_prealloc;
 474
 475	cell_prealloc = prealloc_get_cell(structs);
 476
 477	build_key(oblock, &key);
 478	r = dm_get_cell(cache->prison, &key, cell_prealloc, cell_result);
 479	if (r)
 480		prealloc_put_cell(structs, cell_prealloc);
 481
 482	return r;
 483}
 484
 485/*----------------------------------------------------------------*/
 486
 487static bool is_dirty(struct cache *cache, dm_cblock_t b)
 488{
 489	return test_bit(from_cblock(b), cache->dirty_bitset);
 490}
 
 491
 492static void set_dirty(struct cache *cache, dm_oblock_t oblock, dm_cblock_t cblock)
 493{
 494	if (!test_and_set_bit(from_cblock(cblock), cache->dirty_bitset)) {
 495		cache->nr_dirty = to_cblock(from_cblock(cache->nr_dirty) + 1);
 496		policy_set_dirty(cache->policy, oblock);
 497	}
 498}
 499
 500static void clear_dirty(struct cache *cache, dm_oblock_t oblock, dm_cblock_t cblock)
 501{
 502	if (test_and_clear_bit(from_cblock(cblock), cache->dirty_bitset)) {
 503		policy_clear_dirty(cache->policy, oblock);
 504		cache->nr_dirty = to_cblock(from_cblock(cache->nr_dirty) - 1);
 505		if (!from_cblock(cache->nr_dirty))
 506			dm_table_event(cache->ti->table);
 507	}
 508}
 509
 510/*----------------------------------------------------------------*/
 511
 512static bool block_size_is_power_of_two(struct cache *cache)
 513{
 514	return cache->sectors_per_block_shift >= 0;
 515}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 516
 517/* gcc on ARM generates spurious references to __udivdi3 and __umoddi3 */
 518#if defined(CONFIG_ARM) && __GNUC__ == 4 && __GNUC_MINOR__ <= 6
 519__always_inline
 520#endif
 521static dm_block_t block_div(dm_block_t b, uint32_t n)
 522{
 523	do_div(b, n);
 524
 525	return b;
 526}
 527
 528static void set_discard(struct cache *cache, dm_oblock_t b)
 529{
 530	unsigned long flags;
 531
 532	atomic_inc(&cache->stats.discard_count);
 533
 534	spin_lock_irqsave(&cache->lock, flags);
 535	set_bit(from_oblock(b), cache->discard_bitset);
 536	spin_unlock_irqrestore(&cache->lock, flags);
 537}
 538
 539static void clear_discard(struct cache *cache, dm_oblock_t b)
 540{
 541	unsigned long flags;
 542
 543	spin_lock_irqsave(&cache->lock, flags);
 544	clear_bit(from_oblock(b), cache->discard_bitset);
 545	spin_unlock_irqrestore(&cache->lock, flags);
 546}
 547
 548static bool is_discarded(struct cache *cache, dm_oblock_t b)
 
 
 
 
 549{
 550	int r;
 551	unsigned long flags;
 552
 553	spin_lock_irqsave(&cache->lock, flags);
 554	r = test_bit(from_oblock(b), cache->discard_bitset);
 555	spin_unlock_irqrestore(&cache->lock, flags);
 556
 557	return r;
 558}
 559
 560static bool is_discarded_oblock(struct cache *cache, dm_oblock_t b)
 561{
 562	int r;
 563	unsigned long flags;
 564
 565	spin_lock_irqsave(&cache->lock, flags);
 566	r = test_bit(from_oblock(b), cache->discard_bitset);
 567	spin_unlock_irqrestore(&cache->lock, flags);
 568
 569	return r;
 570}
 571
 572/*----------------------------------------------------------------*/
 573
 574static void load_stats(struct cache *cache)
 575{
 576	struct dm_cache_statistics stats;
 577
 578	dm_cache_metadata_get_stats(cache->cmd, &stats);
 579	atomic_set(&cache->stats.read_hit, stats.read_hits);
 580	atomic_set(&cache->stats.read_miss, stats.read_misses);
 581	atomic_set(&cache->stats.write_hit, stats.write_hits);
 582	atomic_set(&cache->stats.write_miss, stats.write_misses);
 583}
 584
 585static void save_stats(struct cache *cache)
 586{
 587	struct dm_cache_statistics stats;
 588
 589	stats.read_hits = atomic_read(&cache->stats.read_hit);
 590	stats.read_misses = atomic_read(&cache->stats.read_miss);
 591	stats.write_hits = atomic_read(&cache->stats.write_hit);
 592	stats.write_misses = atomic_read(&cache->stats.write_miss);
 593
 594	dm_cache_metadata_set_stats(cache->cmd, &stats);
 595}
 596
 597/*----------------------------------------------------------------
 598 * Per bio data
 599 *--------------------------------------------------------------*/
 600
 601/*
 602 * If using writeback, leave out struct per_bio_data's writethrough fields.
 603 */
 604#define PB_DATA_SIZE_WB (offsetof(struct per_bio_data, cache))
 605#define PB_DATA_SIZE_WT (sizeof(struct per_bio_data))
 606
 607static bool writethrough_mode(struct cache_features *f)
 608{
 609	return f->io_mode == CM_IO_WRITETHROUGH;
 610}
 611
 612static bool writeback_mode(struct cache_features *f)
 613{
 614	return f->io_mode == CM_IO_WRITEBACK;
 
 615}
 616
 617static bool passthrough_mode(struct cache_features *f)
 618{
 619	return f->io_mode == CM_IO_PASSTHROUGH;
 
 
 
 
 
 620}
 621
 622static size_t get_per_bio_data_size(struct cache *cache)
 623{
 624	return writethrough_mode(&cache->features) ? PB_DATA_SIZE_WT : PB_DATA_SIZE_WB;
 
 
 625}
 626
 627static struct per_bio_data *get_per_bio_data(struct bio *bio, size_t data_size)
 628{
 629	struct per_bio_data *pb = dm_per_bio_data(bio, data_size);
 630	BUG_ON(!pb);
 631	return pb;
 
 
 
 632}
 633
 634static struct per_bio_data *init_per_bio_data(struct bio *bio, size_t data_size)
 635{
 636	struct per_bio_data *pb = get_per_bio_data(bio, data_size);
 637
 638	pb->tick = false;
 639	pb->req_nr = dm_bio_get_target_bio_nr(bio);
 640	pb->all_io_entry = NULL;
 641
 642	return pb;
 643}
 644
 645/*----------------------------------------------------------------
 646 * Remapping
 647 *--------------------------------------------------------------*/
 648static void remap_to_origin(struct cache *cache, struct bio *bio)
 649{
 650	bio->bi_bdev = cache->origin_dev->bdev;
 651}
 652
 653static void remap_to_cache(struct cache *cache, struct bio *bio,
 654			   dm_cblock_t cblock)
 655{
 656	sector_t bi_sector = bio->bi_iter.bi_sector;
 657	sector_t block = from_cblock(cblock);
 658
 659	bio->bi_bdev = cache->cache_dev->bdev;
 660	if (!block_size_is_power_of_two(cache))
 661		bio->bi_iter.bi_sector =
 662			(block * cache->sectors_per_block) +
 663			sector_div(bi_sector, cache->sectors_per_block);
 664	else
 665		bio->bi_iter.bi_sector =
 666			(block << cache->sectors_per_block_shift) |
 667			(bi_sector & (cache->sectors_per_block - 1));
 668}
 669
 670static void check_if_tick_bio_needed(struct cache *cache, struct bio *bio)
 671{
 672	unsigned long flags;
 673	size_t pb_data_size = get_per_bio_data_size(cache);
 674	struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
 675
 676	spin_lock_irqsave(&cache->lock, flags);
 677	if (cache->need_tick_bio &&
 678	    !(bio->bi_rw & (REQ_FUA | REQ_FLUSH | REQ_DISCARD))) {
 
 679		pb->tick = true;
 680		cache->need_tick_bio = false;
 681	}
 682	spin_unlock_irqrestore(&cache->lock, flags);
 683}
 684
 685static void remap_to_origin_clear_discard(struct cache *cache, struct bio *bio,
 686				  dm_oblock_t oblock)
 687{
 688	check_if_tick_bio_needed(cache, bio);
 
 689	remap_to_origin(cache, bio);
 690	if (bio_data_dir(bio) == WRITE)
 691		clear_discard(cache, oblock);
 
 
 
 
 
 
 
 692}
 693
 694static void remap_to_cache_dirty(struct cache *cache, struct bio *bio,
 695				 dm_oblock_t oblock, dm_cblock_t cblock)
 696{
 697	check_if_tick_bio_needed(cache, bio);
 698	remap_to_cache(cache, bio, cblock);
 699	if (bio_data_dir(bio) == WRITE) {
 700		set_dirty(cache, oblock, cblock);
 701		clear_discard(cache, oblock);
 702	}
 703}
 704
 705static dm_oblock_t get_bio_block(struct cache *cache, struct bio *bio)
 706{
 707	sector_t block_nr = bio->bi_iter.bi_sector;
 708
 709	if (!block_size_is_power_of_two(cache))
 710		(void) sector_div(block_nr, cache->sectors_per_block);
 711	else
 712		block_nr >>= cache->sectors_per_block_shift;
 713
 714	return to_oblock(block_nr);
 715}
 716
 717static int bio_triggers_commit(struct cache *cache, struct bio *bio)
 718{
 719	return bio->bi_rw & (REQ_FLUSH | REQ_FUA);
 720}
 721
 722static void issue(struct cache *cache, struct bio *bio)
 723{
 724	unsigned long flags;
 725
 726	if (!bio_triggers_commit(cache, bio)) {
 727		generic_make_request(bio);
 728		return;
 
 729	}
 730
 731	/*
 732	 * Batch together any bios that trigger commits and then issue a
 733	 * single commit for them in do_worker().
 734	 */
 735	spin_lock_irqsave(&cache->lock, flags);
 736	cache->commit_requested = true;
 737	bio_list_add(&cache->deferred_flush_bios, bio);
 738	spin_unlock_irqrestore(&cache->lock, flags);
 739}
 740
 741static void defer_writethrough_bio(struct cache *cache, struct bio *bio)
 742{
 743	unsigned long flags;
 744
 745	spin_lock_irqsave(&cache->lock, flags);
 746	bio_list_add(&cache->deferred_writethrough_bios, bio);
 747	spin_unlock_irqrestore(&cache->lock, flags);
 748
 749	wake_worker(cache);
 750}
 751
 752static void writethrough_endio(struct bio *bio, int err)
 753{
 754	struct per_bio_data *pb = get_per_bio_data(bio, PB_DATA_SIZE_WT);
 755
 756	dm_unhook_bio(&pb->hook_info, bio);
 757
 758	if (err) {
 759		bio_endio(bio, err);
 760		return;
 761	}
 762
 763	dm_bio_restore(&pb->bio_details, bio);
 764	remap_to_cache(pb->cache, bio, pb->cblock);
 765
 766	/*
 767	 * We can't issue this bio directly, since we're in interrupt
 768	 * context.  So it gets put on a bio list for processing by the
 769	 * worker thread.
 770	 */
 771	defer_writethrough_bio(pb->cache, bio);
 772}
 773
 774/*
 775 * When running in writethrough mode we need to send writes to clean blocks
 776 * to both the cache and origin devices.  In future we'd like to clone the
 777 * bio and send them in parallel, but for now we're doing them in
 778 * series as this is easier.
 779 */
 780static void remap_to_origin_then_cache(struct cache *cache, struct bio *bio,
 781				       dm_oblock_t oblock, dm_cblock_t cblock)
 782{
 783	struct per_bio_data *pb = get_per_bio_data(bio, PB_DATA_SIZE_WT);
 
 
 784
 785	pb->cache = cache;
 786	pb->cblock = cblock;
 787	dm_hook_bio(&pb->hook_info, bio, writethrough_endio, NULL);
 788	dm_bio_record(&pb->bio_details, bio);
 
 
 
 789
 790	remap_to_origin_clear_discard(pb->cache, bio, oblock);
 791}
 792
 793/*----------------------------------------------------------------
 794 * Migration processing
 795 *
 796 * Migration covers moving data from the origin device to the cache, or
 797 * vice versa.
 798 *--------------------------------------------------------------*/
 799static void free_migration(struct dm_cache_migration *mg)
 800{
 801	mempool_free(mg, mg->cache->migration_pool);
 802}
 803
 804static void inc_nr_migrations(struct cache *cache)
 805{
 806	atomic_inc(&cache->nr_migrations);
 807}
 808
 809static void dec_nr_migrations(struct cache *cache)
 810{
 811	atomic_dec(&cache->nr_migrations);
 
 
 
 
 812
 813	/*
 814	 * Wake the worker in case we're suspending the target.
 815	 */
 816	wake_up(&cache->migration_wait);
 817}
 818
 819static void __cell_defer(struct cache *cache, struct dm_bio_prison_cell *cell,
 820			 bool holder)
 821{
 822	(holder ? dm_cell_release : dm_cell_release_no_holder)
 823		(cache->prison, cell, &cache->deferred_bios);
 824	free_prison_cell(cache, cell);
 825}
 826
 827static void cell_defer(struct cache *cache, struct dm_bio_prison_cell *cell,
 828		       bool holder)
 829{
 830	unsigned long flags;
 
 831
 832	spin_lock_irqsave(&cache->lock, flags);
 833	__cell_defer(cache, cell, holder);
 834	spin_unlock_irqrestore(&cache->lock, flags);
 
 
 
 
 
 835
 836	wake_worker(cache);
 837}
 
 838
 839static void cleanup_migration(struct dm_cache_migration *mg)
 840{
 841	struct cache *cache = mg->cache;
 842	free_migration(mg);
 843	dec_nr_migrations(cache);
 
 
 
 
 
 
 
 
 
 
 844}
 845
 846static void migration_failure(struct dm_cache_migration *mg)
 847{
 848	struct cache *cache = mg->cache;
 849
 850	if (mg->writeback) {
 851		DMWARN_LIMIT("writeback failed; couldn't copy block");
 852		set_dirty(cache, mg->old_oblock, mg->cblock);
 853		cell_defer(cache, mg->old_ocell, false);
 854
 855	} else if (mg->demote) {
 856		DMWARN_LIMIT("demotion failed; couldn't copy block");
 857		policy_force_mapping(cache->policy, mg->new_oblock, mg->old_oblock);
 858
 859		cell_defer(cache, mg->old_ocell, mg->promote ? false : true);
 860		if (mg->promote)
 861			cell_defer(cache, mg->new_ocell, true);
 862	} else {
 863		DMWARN_LIMIT("promotion failed; couldn't copy block");
 864		policy_remove_mapping(cache->policy, mg->new_oblock);
 865		cell_defer(cache, mg->new_ocell, true);
 866	}
 867
 868	cleanup_migration(mg);
 
 
 
 
 869}
 870
 871static void migration_success_pre_commit(struct dm_cache_migration *mg)
 872{
 873	unsigned long flags;
 874	struct cache *cache = mg->cache;
 
 
 
 875
 876	if (mg->writeback) {
 877		cell_defer(cache, mg->old_ocell, false);
 878		clear_dirty(cache, mg->old_oblock, mg->cblock);
 879		cleanup_migration(mg);
 880		return;
 881
 882	} else if (mg->demote) {
 883		if (dm_cache_remove_mapping(cache->cmd, mg->cblock)) {
 884			DMWARN_LIMIT("demotion failed; couldn't update on disk metadata");
 885			policy_force_mapping(cache->policy, mg->new_oblock,
 886					     mg->old_oblock);
 887			if (mg->promote)
 888				cell_defer(cache, mg->new_ocell, true);
 889			cleanup_migration(mg);
 890			return;
 891		}
 892	} else {
 893		if (dm_cache_insert_mapping(cache->cmd, mg->cblock, mg->new_oblock)) {
 894			DMWARN_LIMIT("promotion failed; couldn't update on disk metadata");
 895			policy_remove_mapping(cache->policy, mg->new_oblock);
 896			cleanup_migration(mg);
 897			return;
 898		}
 899	}
 900
 901	spin_lock_irqsave(&cache->lock, flags);
 902	list_add_tail(&mg->list, &cache->need_commit_migrations);
 903	cache->commit_requested = true;
 904	spin_unlock_irqrestore(&cache->lock, flags);
 
 905}
 906
 907static void migration_success_post_commit(struct dm_cache_migration *mg)
 908{
 909	unsigned long flags;
 910	struct cache *cache = mg->cache;
 911
 912	if (mg->writeback) {
 913		DMWARN("writeback unexpectedly triggered commit");
 914		return;
 915
 916	} else if (mg->demote) {
 917		cell_defer(cache, mg->old_ocell, mg->promote ? false : true);
 
 
 918
 919		if (mg->promote) {
 920			mg->demote = false;
 921
 922			spin_lock_irqsave(&cache->lock, flags);
 923			list_add_tail(&mg->list, &cache->quiesced_migrations);
 924			spin_unlock_irqrestore(&cache->lock, flags);
 
 
 
 925
 926		} else {
 927			if (mg->invalidate)
 928				policy_remove_mapping(cache->policy, mg->old_oblock);
 929			cleanup_migration(mg);
 930		}
 931
 932	} else {
 933		if (mg->requeue_holder)
 934			cell_defer(cache, mg->new_ocell, true);
 935		else {
 936			bio_endio(mg->new_ocell->holder, 0);
 937			cell_defer(cache, mg->new_ocell, false);
 938		}
 939		clear_dirty(cache, mg->new_oblock, mg->cblock);
 940		cleanup_migration(mg);
 941	}
 942}
 943
 944static void copy_complete(int read_err, unsigned long write_err, void *context)
 945{
 946	unsigned long flags;
 947	struct dm_cache_migration *mg = (struct dm_cache_migration *) context;
 948	struct cache *cache = mg->cache;
 
 949
 950	if (read_err || write_err)
 951		mg->err = true;
 
 
 952
 953	spin_lock_irqsave(&cache->lock, flags);
 954	list_add_tail(&mg->list, &cache->completed_migrations);
 955	spin_unlock_irqrestore(&cache->lock, flags);
 
 956
 957	wake_worker(cache);
 
 
 958}
 959
 960static void issue_copy_real(struct dm_cache_migration *mg)
 
 961{
 962	int r;
 963	struct dm_io_region o_region, c_region;
 964	struct cache *cache = mg->cache;
 965	sector_t cblock = from_cblock(mg->cblock);
 966
 967	o_region.bdev = cache->origin_dev->bdev;
 968	o_region.count = cache->sectors_per_block;
 969
 970	c_region.bdev = cache->cache_dev->bdev;
 971	c_region.sector = cblock * cache->sectors_per_block;
 972	c_region.count = cache->sectors_per_block;
 
 
 973
 974	if (mg->writeback || mg->demote) {
 975		/* demote */
 976		o_region.sector = from_oblock(mg->old_oblock) * cache->sectors_per_block;
 977		r = dm_kcopyd_copy(cache->copier, &c_region, 1, &o_region, 0, copy_complete, mg);
 978	} else {
 979		/* promote */
 980		o_region.sector = from_oblock(mg->new_oblock) * cache->sectors_per_block;
 981		r = dm_kcopyd_copy(cache->copier, &o_region, 1, &c_region, 0, copy_complete, mg);
 982	}
 983
 984	if (r < 0) {
 985		DMERR_LIMIT("issuing migration failed");
 986		migration_failure(mg);
 987	}
 
 988}
 989
 990static void overwrite_endio(struct bio *bio, int err)
 991{
 992	struct dm_cache_migration *mg = bio->bi_private;
 993	struct cache *cache = mg->cache;
 994	size_t pb_data_size = get_per_bio_data_size(cache);
 995	struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
 996	unsigned long flags;
 997
 998	dm_unhook_bio(&pb->hook_info, bio);
 999
1000	if (err)
1001		mg->err = true;
1002
1003	mg->requeue_holder = false;
 
 
1004
1005	spin_lock_irqsave(&cache->lock, flags);
1006	list_add_tail(&mg->list, &cache->completed_migrations);
1007	spin_unlock_irqrestore(&cache->lock, flags);
1008
1009	wake_worker(cache);
1010}
1011
1012static void issue_overwrite(struct dm_cache_migration *mg, struct bio *bio)
1013{
1014	size_t pb_data_size = get_per_bio_data_size(mg->cache);
1015	struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
1016
1017	dm_hook_bio(&pb->hook_info, bio, overwrite_endio, mg);
1018	remap_to_cache_dirty(mg->cache, bio, mg->new_oblock, mg->cblock);
1019	generic_make_request(bio);
1020}
1021
 
 
1022static bool bio_writes_complete_block(struct cache *cache, struct bio *bio)
1023{
1024	return (bio_data_dir(bio) == WRITE) &&
1025		(bio->bi_iter.bi_size == (cache->sectors_per_block << SECTOR_SHIFT));
1026}
1027
1028static void avoid_copy(struct dm_cache_migration *mg)
1029{
1030	atomic_inc(&mg->cache->stats.copies_avoided);
1031	migration_success_pre_commit(mg);
1032}
1033
1034static void issue_copy(struct dm_cache_migration *mg)
 
1035{
1036	bool avoid;
1037	struct cache *cache = mg->cache;
 
1038
1039	if (mg->writeback || mg->demote)
1040		avoid = !is_dirty(cache, mg->cblock) ||
1041			is_discarded_oblock(cache, mg->old_oblock);
1042	else {
1043		struct bio *bio = mg->new_ocell->holder;
1044
1045		avoid = is_discarded_oblock(cache, mg->new_oblock);
 
 
1046
1047		if (!avoid && bio_writes_complete_block(cache, bio)) {
1048			issue_overwrite(mg, bio);
1049			return;
1050		}
1051	}
1052
1053	avoid ? avoid_copy(mg) : issue_copy_real(mg);
1054}
1055
1056static void complete_migration(struct dm_cache_migration *mg)
1057{
1058	if (mg->err)
1059		migration_failure(mg);
1060	else
1061		migration_success_pre_commit(mg);
1062}
1063
1064static void process_migrations(struct cache *cache, struct list_head *head,
1065			       void (*fn)(struct dm_cache_migration *))
1066{
1067	unsigned long flags;
1068	struct list_head list;
1069	struct dm_cache_migration *mg, *tmp;
1070
1071	INIT_LIST_HEAD(&list);
1072	spin_lock_irqsave(&cache->lock, flags);
1073	list_splice_init(head, &list);
1074	spin_unlock_irqrestore(&cache->lock, flags);
1075
1076	list_for_each_entry_safe(mg, tmp, &list, list)
1077		fn(mg);
 
 
1078}
1079
1080static void __queue_quiesced_migration(struct dm_cache_migration *mg)
1081{
1082	list_add_tail(&mg->list, &mg->cache->quiesced_migrations);
 
 
 
 
1083}
1084
1085static void queue_quiesced_migration(struct dm_cache_migration *mg)
1086{
1087	unsigned long flags;
1088	struct cache *cache = mg->cache;
 
1089
1090	spin_lock_irqsave(&cache->lock, flags);
1091	__queue_quiesced_migration(mg);
1092	spin_unlock_irqrestore(&cache->lock, flags);
 
1093
1094	wake_worker(cache);
1095}
1096
1097static void queue_quiesced_migrations(struct cache *cache, struct list_head *work)
 
1098{
1099	unsigned long flags;
1100	struct dm_cache_migration *mg, *tmp;
 
 
1101
1102	spin_lock_irqsave(&cache->lock, flags);
1103	list_for_each_entry_safe(mg, tmp, work, list)
1104		__queue_quiesced_migration(mg);
1105	spin_unlock_irqrestore(&cache->lock, flags);
 
 
 
 
1106
1107	wake_worker(cache);
 
1108}
1109
1110static void check_for_quiesced_migrations(struct cache *cache,
1111					  struct per_bio_data *pb)
 
 
 
 
 
 
 
 
 
 
1112{
1113	struct list_head work;
 
 
 
1114
1115	if (!pb->all_io_entry)
1116		return;
1117
1118	INIT_LIST_HEAD(&work);
1119	if (pb->all_io_entry)
1120		dm_deferred_entry_dec(pb->all_io_entry, &work);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1121
1122	if (!list_empty(&work))
1123		queue_quiesced_migrations(cache, &work);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1124}
1125
1126static void quiesce_migration(struct dm_cache_migration *mg)
1127{
1128	if (!dm_deferred_set_add_work(mg->cache->all_io_ds, &mg->list))
1129		queue_quiesced_migration(mg);
1130}
1131
1132static void promote(struct cache *cache, struct prealloc *structs,
1133		    dm_oblock_t oblock, dm_cblock_t cblock,
1134		    struct dm_bio_prison_cell *cell)
1135{
1136	struct dm_cache_migration *mg = prealloc_get_migration(structs);
 
 
 
1137
1138	mg->err = false;
1139	mg->writeback = false;
1140	mg->demote = false;
1141	mg->promote = true;
1142	mg->requeue_holder = true;
1143	mg->invalidate = false;
1144	mg->cache = cache;
1145	mg->new_oblock = oblock;
1146	mg->cblock = cblock;
1147	mg->old_ocell = NULL;
1148	mg->new_ocell = cell;
1149	mg->start_jiffies = jiffies;
1150
1151	inc_nr_migrations(cache);
1152	quiesce_migration(mg);
1153}
1154
1155static void writeback(struct cache *cache, struct prealloc *structs,
1156		      dm_oblock_t oblock, dm_cblock_t cblock,
1157		      struct dm_bio_prison_cell *cell)
1158{
1159	struct dm_cache_migration *mg = prealloc_get_migration(structs);
1160
1161	mg->err = false;
1162	mg->writeback = true;
1163	mg->demote = false;
1164	mg->promote = false;
1165	mg->requeue_holder = true;
1166	mg->invalidate = false;
1167	mg->cache = cache;
1168	mg->old_oblock = oblock;
1169	mg->cblock = cblock;
1170	mg->old_ocell = cell;
1171	mg->new_ocell = NULL;
1172	mg->start_jiffies = jiffies;
1173
1174	inc_nr_migrations(cache);
1175	quiesce_migration(mg);
1176}
1177
1178static void demote_then_promote(struct cache *cache, struct prealloc *structs,
1179				dm_oblock_t old_oblock, dm_oblock_t new_oblock,
1180				dm_cblock_t cblock,
1181				struct dm_bio_prison_cell *old_ocell,
1182				struct dm_bio_prison_cell *new_ocell)
1183{
1184	struct dm_cache_migration *mg = prealloc_get_migration(structs);
1185
1186	mg->err = false;
1187	mg->writeback = false;
1188	mg->demote = true;
1189	mg->promote = true;
1190	mg->requeue_holder = true;
1191	mg->invalidate = false;
1192	mg->cache = cache;
1193	mg->old_oblock = old_oblock;
1194	mg->new_oblock = new_oblock;
1195	mg->cblock = cblock;
1196	mg->old_ocell = old_ocell;
1197	mg->new_ocell = new_ocell;
1198	mg->start_jiffies = jiffies;
1199
1200	inc_nr_migrations(cache);
1201	quiesce_migration(mg);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1202}
1203
1204/*
1205 * Invalidate a cache entry.  No writeback occurs; any changes in the cache
1206 * block are thrown away.
1207 */
1208static void invalidate(struct cache *cache, struct prealloc *structs,
1209		       dm_oblock_t oblock, dm_cblock_t cblock,
1210		       struct dm_bio_prison_cell *cell)
1211{
1212	struct dm_cache_migration *mg = prealloc_get_migration(structs);
1213
1214	mg->err = false;
1215	mg->writeback = false;
1216	mg->demote = true;
1217	mg->promote = false;
1218	mg->requeue_holder = true;
1219	mg->invalidate = true;
1220	mg->cache = cache;
1221	mg->old_oblock = oblock;
1222	mg->cblock = cblock;
1223	mg->old_ocell = cell;
1224	mg->new_ocell = NULL;
1225	mg->start_jiffies = jiffies;
1226
1227	inc_nr_migrations(cache);
1228	quiesce_migration(mg);
1229}
1230
1231/*----------------------------------------------------------------
1232 * bio processing
1233 *--------------------------------------------------------------*/
1234static void defer_bio(struct cache *cache, struct bio *bio)
1235{
1236	unsigned long flags;
 
1237
1238	spin_lock_irqsave(&cache->lock, flags);
1239	bio_list_add(&cache->deferred_bios, bio);
1240	spin_unlock_irqrestore(&cache->lock, flags);
 
 
 
 
 
 
 
 
 
 
 
1241
1242	wake_worker(cache);
 
 
 
 
 
1243}
1244
1245static void process_flush_bio(struct cache *cache, struct bio *bio)
1246{
1247	size_t pb_data_size = get_per_bio_data_size(cache);
1248	struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
 
 
1249
1250	BUG_ON(bio->bi_iter.bi_size);
1251	if (!pb->req_nr)
1252		remap_to_origin(cache, bio);
1253	else
1254		remap_to_cache(cache, bio, 0);
1255
1256	issue(cache, bio);
 
1257}
1258
1259/*
1260 * People generally discard large parts of a device, eg, the whole device
1261 * when formatting.  Splitting these large discards up into cache block
1262 * sized ios and then quiescing (always neccessary for discard) takes too
1263 * long.
1264 *
1265 * We keep it simple, and allow any size of discard to come in, and just
1266 * mark off blocks on the discard bitset.  No passdown occurs!
1267 *
1268 * To implement passdown we need to change the bio_prison such that a cell
1269 * can have a key that spans many blocks.
1270 */
1271static void process_discard_bio(struct cache *cache, struct bio *bio)
1272{
1273	dm_block_t start_block = dm_sector_div_up(bio->bi_iter.bi_sector,
1274						  cache->sectors_per_block);
1275	dm_block_t end_block = bio_end_sector(bio);
1276	dm_block_t b;
1277
1278	end_block = block_div(end_block, cache->sectors_per_block);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1279
1280	for (b = start_block; b < end_block; b++)
1281		set_discard(cache, to_oblock(b));
 
 
 
 
 
 
1282
1283	bio_endio(bio, 0);
 
1284}
1285
1286static bool spare_migration_bandwidth(struct cache *cache)
1287{
1288	sector_t current_volume = (atomic_read(&cache->nr_migrations) + 1) *
1289		cache->sectors_per_block;
1290	return current_volume < cache->migration_threshold;
1291}
1292
1293static void inc_hit_counter(struct cache *cache, struct bio *bio)
1294{
1295	atomic_inc(bio_data_dir(bio) == READ ?
1296		   &cache->stats.read_hit : &cache->stats.write_hit);
1297}
1298
1299static void inc_miss_counter(struct cache *cache, struct bio *bio)
1300{
1301	atomic_inc(bio_data_dir(bio) == READ ?
1302		   &cache->stats.read_miss : &cache->stats.write_miss);
1303}
 
 
 
 
 
 
 
 
 
1304
1305static void issue_cache_bio(struct cache *cache, struct bio *bio,
1306			    struct per_bio_data *pb,
1307			    dm_oblock_t oblock, dm_cblock_t cblock)
1308{
1309	pb->all_io_entry = dm_deferred_entry_inc(cache->all_io_ds);
1310	remap_to_cache_dirty(cache, bio, oblock, cblock);
1311	issue(cache, bio);
 
 
1312}
1313
1314static void process_bio(struct cache *cache, struct prealloc *structs,
1315			struct bio *bio)
1316{
1317	int r;
1318	bool release_cell = true;
1319	dm_oblock_t block = get_bio_block(cache, bio);
1320	struct dm_bio_prison_cell *cell_prealloc, *old_ocell, *new_ocell;
1321	struct policy_result lookup_result;
1322	size_t pb_data_size = get_per_bio_data_size(cache);
1323	struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
1324	bool discarded_block = is_discarded_oblock(cache, block);
1325	bool passthrough = passthrough_mode(&cache->features);
1326	bool can_migrate = !passthrough && (discarded_block || spare_migration_bandwidth(cache));
1327
1328	/*
1329	 * Check to see if that block is currently migrating.
1330	 */
1331	cell_prealloc = prealloc_get_cell(structs);
1332	r = bio_detain(cache, block, bio, cell_prealloc,
1333		       (cell_free_fn) prealloc_put_cell,
1334		       structs, &new_ocell);
1335	if (r > 0)
1336		return;
1337
1338	r = policy_map(cache->policy, block, true, can_migrate, discarded_block,
1339		       bio, &lookup_result);
 
 
1340
1341	if (r == -EWOULDBLOCK)
1342		/* migration has been denied */
1343		lookup_result.op = POLICY_MISS;
1344
1345	switch (lookup_result.op) {
1346	case POLICY_HIT:
1347		if (passthrough) {
1348			inc_miss_counter(cache, bio);
1349
1350			/*
1351			 * Passthrough always maps to the origin,
1352			 * invalidating any cache blocks that are written
1353			 * to.
1354			 */
1355
1356			if (bio_data_dir(bio) == WRITE) {
1357				atomic_inc(&cache->stats.demotion);
1358				invalidate(cache, structs, block, lookup_result.cblock, new_ocell);
1359				release_cell = false;
1360
1361			} else {
1362				/* FIXME: factor out issue_origin() */
1363				pb->all_io_entry = dm_deferred_entry_inc(cache->all_io_ds);
1364				remap_to_origin_clear_discard(cache, bio, block);
1365				issue(cache, bio);
1366			}
1367		} else {
1368			inc_hit_counter(cache, bio);
1369
1370			if (bio_data_dir(bio) == WRITE &&
1371			    writethrough_mode(&cache->features) &&
1372			    !is_dirty(cache, lookup_result.cblock)) {
1373				pb->all_io_entry = dm_deferred_entry_inc(cache->all_io_ds);
1374				remap_to_origin_then_cache(cache, bio, block, lookup_result.cblock);
1375				issue(cache, bio);
1376			} else
1377				issue_cache_bio(cache, bio, pb, block, lookup_result.cblock);
1378		}
1379
1380		break;
 
 
 
1381
1382	case POLICY_MISS:
1383		inc_miss_counter(cache, bio);
1384		pb->all_io_entry = dm_deferred_entry_inc(cache->all_io_ds);
1385		remap_to_origin_clear_discard(cache, bio, block);
1386		issue(cache, bio);
1387		break;
1388
1389	case POLICY_NEW:
1390		atomic_inc(&cache->stats.promotion);
1391		promote(cache, structs, block, lookup_result.cblock, new_ocell);
1392		release_cell = false;
1393		break;
1394
1395	case POLICY_REPLACE:
1396		cell_prealloc = prealloc_get_cell(structs);
1397		r = bio_detain(cache, lookup_result.old_oblock, bio, cell_prealloc,
1398			       (cell_free_fn) prealloc_put_cell,
1399			       structs, &old_ocell);
1400		if (r > 0) {
1401			/*
1402			 * We have to be careful to avoid lock inversion of
1403			 * the cells.  So we back off, and wait for the
1404			 * old_ocell to become free.
1405			 */
1406			policy_force_mapping(cache->policy, block,
1407					     lookup_result.old_oblock);
1408			atomic_inc(&cache->stats.cache_cell_clash);
1409			break;
1410		}
1411		atomic_inc(&cache->stats.demotion);
1412		atomic_inc(&cache->stats.promotion);
1413
1414		demote_then_promote(cache, structs, lookup_result.old_oblock,
1415				    block, lookup_result.cblock,
1416				    old_ocell, new_ocell);
1417		release_cell = false;
1418		break;
1419
1420	default:
1421		DMERR_LIMIT("%s: erroring bio, unknown policy op: %u", __func__,
1422			    (unsigned) lookup_result.op);
1423		bio_io_error(bio);
1424	}
1425
1426	if (release_cell)
1427		cell_defer(cache, new_ocell, false);
 
 
1428}
1429
1430static int need_commit_due_to_time(struct cache *cache)
1431{
1432	return jiffies < cache->last_commit_jiffies ||
1433	       jiffies > cache->last_commit_jiffies + COMMIT_PERIOD;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1434}
1435
1436static int commit_if_needed(struct cache *cache)
1437{
1438	int r = 0;
 
 
1439
1440	if ((cache->commit_requested || need_commit_due_to_time(cache)) &&
1441	    dm_cache_changed_this_transaction(cache->cmd)) {
1442		atomic_inc(&cache->stats.commit_count);
1443		cache->commit_requested = false;
1444		r = dm_cache_commit(cache->cmd, false);
1445		cache->last_commit_jiffies = jiffies;
1446	}
1447
1448	return r;
 
 
 
 
1449}
1450
1451static void process_deferred_bios(struct cache *cache)
1452{
1453	unsigned long flags;
1454	struct bio_list bios;
1455	struct bio *bio;
1456	struct prealloc structs;
1457
1458	memset(&structs, 0, sizeof(structs));
1459	bio_list_init(&bios);
1460
1461	spin_lock_irqsave(&cache->lock, flags);
1462	bio_list_merge(&bios, &cache->deferred_bios);
1463	bio_list_init(&cache->deferred_bios);
1464	spin_unlock_irqrestore(&cache->lock, flags);
 
 
 
 
1465
1466	while (!bio_list_empty(&bios)) {
1467		/*
1468		 * If we've got no free migration structs, and processing
1469		 * this bio might require one, we pause until there are some
1470		 * prepared mappings to process.
1471		 */
1472		if (prealloc_data_structs(cache, &structs)) {
1473			spin_lock_irqsave(&cache->lock, flags);
1474			bio_list_merge(&cache->deferred_bios, &bios);
1475			spin_unlock_irqrestore(&cache->lock, flags);
1476			break;
1477		}
1478
1479		bio = bio_list_pop(&bios);
 
1480
1481		if (bio->bi_rw & REQ_FLUSH)
1482			process_flush_bio(cache, bio);
1483		else if (bio->bi_rw & REQ_DISCARD)
1484			process_discard_bio(cache, bio);
1485		else
1486			process_bio(cache, &structs, bio);
 
1487	}
1488
1489	prealloc_free_structs(cache, &structs);
1490}
1491
1492static void process_deferred_flush_bios(struct cache *cache, bool submit_bios)
 
1493{
1494	unsigned long flags;
1495	struct bio_list bios;
1496	struct bio *bio;
1497
1498	bio_list_init(&bios);
 
 
 
1499
1500	spin_lock_irqsave(&cache->lock, flags);
1501	bio_list_merge(&bios, &cache->deferred_flush_bios);
1502	bio_list_init(&cache->deferred_flush_bios);
1503	spin_unlock_irqrestore(&cache->lock, flags);
1504
1505	while ((bio = bio_list_pop(&bios)))
1506		submit_bios ? generic_make_request(bio) : bio_io_error(bio);
1507}
1508
1509static void process_deferred_writethrough_bios(struct cache *cache)
1510{
1511	unsigned long flags;
1512	struct bio_list bios;
1513	struct bio *bio;
1514
1515	bio_list_init(&bios);
 
 
 
1516
1517	spin_lock_irqsave(&cache->lock, flags);
1518	bio_list_merge(&bios, &cache->deferred_writethrough_bios);
1519	bio_list_init(&cache->deferred_writethrough_bios);
1520	spin_unlock_irqrestore(&cache->lock, flags);
 
1521
1522	while ((bio = bio_list_pop(&bios)))
1523		generic_make_request(bio);
 
 
1524}
1525
1526static void writeback_some_dirty_blocks(struct cache *cache)
1527{
1528	int r = 0;
1529	dm_oblock_t oblock;
1530	dm_cblock_t cblock;
1531	struct prealloc structs;
1532	struct dm_bio_prison_cell *old_ocell;
1533
1534	memset(&structs, 0, sizeof(structs));
 
 
 
 
1535
1536	while (spare_migration_bandwidth(cache)) {
1537		if (prealloc_data_structs(cache, &structs))
1538			break;
1539
1540		r = policy_writeback_work(cache->policy, &oblock, &cblock);
1541		if (r)
1542			break;
 
 
 
1543
1544		r = get_cell(cache, oblock, &structs, &old_ocell);
1545		if (r) {
1546			policy_set_dirty(cache->policy, oblock);
1547			break;
1548		}
1549
1550		writeback(cache, &structs, oblock, cblock, old_ocell);
 
 
 
 
 
 
 
 
 
1551	}
1552
1553	prealloc_free_structs(cache, &structs);
1554}
1555
1556/*----------------------------------------------------------------
1557 * Invalidations.
1558 * Dropping something from the cache *without* writing back.
1559 *--------------------------------------------------------------*/
1560
1561static void process_invalidation_request(struct cache *cache, struct invalidation_request *req)
1562{
1563	int r = 0;
1564	uint64_t begin = from_cblock(req->cblocks->begin);
1565	uint64_t end = from_cblock(req->cblocks->end);
 
 
1566
1567	while (begin != end) {
1568		r = policy_remove_cblock(cache->policy, to_cblock(begin));
1569		if (!r) {
1570			r = dm_cache_remove_mapping(cache->cmd, to_cblock(begin));
1571			if (r)
1572				break;
 
 
 
 
 
 
 
 
 
 
 
 
1573
1574		} else if (r == -ENODATA) {
1575			/* harmless, already unmapped */
1576			r = 0;
1577
 
 
 
 
 
 
 
1578		} else {
1579			DMERR("policy_remove_cblock failed");
1580			break;
 
 
 
 
1581		}
 
 
 
 
 
1582
1583		begin++;
1584        }
1585
1586	cache->commit_requested = true;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1587
1588	req->err = r;
1589	atomic_set(&req->complete, 1);
 
 
 
 
 
 
 
 
 
 
 
1590
1591	wake_up(&req->result_wait);
1592}
1593
1594static void process_invalidation_requests(struct cache *cache)
1595{
1596	struct list_head list;
1597	struct invalidation_request *req, *tmp;
1598
1599	INIT_LIST_HEAD(&list);
1600	spin_lock(&cache->invalidation_lock);
1601	list_splice_init(&cache->invalidation_requests, &list);
1602	spin_unlock(&cache->invalidation_lock);
1603
1604	list_for_each_entry_safe (req, tmp, &list, list)
1605		process_invalidation_request(cache, req);
1606}
1607
1608/*----------------------------------------------------------------
1609 * Main worker loop
1610 *--------------------------------------------------------------*/
1611static bool is_quiescing(struct cache *cache)
1612{
1613	return atomic_read(&cache->quiescing);
1614}
1615
1616static void ack_quiescing(struct cache *cache)
1617{
1618	if (is_quiescing(cache)) {
1619		atomic_inc(&cache->quiescing_ack);
1620		wake_up(&cache->quiescing_wait);
1621	}
1622}
1623
1624static void wait_for_quiescing_ack(struct cache *cache)
1625{
1626	wait_event(cache->quiescing_wait, atomic_read(&cache->quiescing_ack));
1627}
1628
1629static void start_quiescing(struct cache *cache)
1630{
1631	atomic_inc(&cache->quiescing);
1632	wait_for_quiescing_ack(cache);
1633}
1634
1635static void stop_quiescing(struct cache *cache)
 
 
 
1636{
1637	atomic_set(&cache->quiescing, 0);
1638	atomic_set(&cache->quiescing_ack, 0);
 
 
 
 
1639}
1640
1641static void wait_for_migrations(struct cache *cache)
 
 
1642{
1643	wait_event(cache->migration_wait, !atomic_read(&cache->nr_migrations));
 
 
 
 
 
 
 
 
1644}
1645
1646static void stop_worker(struct cache *cache)
1647{
1648	cancel_delayed_work(&cache->waker);
1649	flush_workqueue(cache->wq);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1650}
1651
1652static void requeue_deferred_io(struct cache *cache)
1653{
1654	struct bio *bio;
 
 
1655	struct bio_list bios;
 
1656
1657	bio_list_init(&bios);
 
 
1658	bio_list_merge(&bios, &cache->deferred_bios);
1659	bio_list_init(&cache->deferred_bios);
 
1660
1661	while ((bio = bio_list_pop(&bios)))
1662		bio_endio(bio, DM_ENDIO_REQUEUE);
1663}
1664
1665static int more_work(struct cache *cache)
1666{
1667	if (is_quiescing(cache))
1668		return !list_empty(&cache->quiesced_migrations) ||
1669			!list_empty(&cache->completed_migrations) ||
1670			!list_empty(&cache->need_commit_migrations);
1671	else
1672		return !bio_list_empty(&cache->deferred_bios) ||
1673			!bio_list_empty(&cache->deferred_flush_bios) ||
1674			!bio_list_empty(&cache->deferred_writethrough_bios) ||
1675			!list_empty(&cache->quiesced_migrations) ||
1676			!list_empty(&cache->completed_migrations) ||
1677			!list_empty(&cache->need_commit_migrations) ||
1678			cache->invalidate;
1679}
1680
1681static void do_worker(struct work_struct *ws)
1682{
1683	struct cache *cache = container_of(ws, struct cache, worker);
1684
1685	do {
1686		if (!is_quiescing(cache)) {
1687			writeback_some_dirty_blocks(cache);
1688			process_deferred_writethrough_bios(cache);
1689			process_deferred_bios(cache);
1690			process_invalidation_requests(cache);
1691		}
1692
1693		process_migrations(cache, &cache->quiesced_migrations, issue_copy);
1694		process_migrations(cache, &cache->completed_migrations, complete_migration);
 
1695
1696		if (commit_if_needed(cache)) {
1697			process_deferred_flush_bios(cache, false);
 
1698
1699			/*
1700			 * FIXME: rollback metadata or just go into a
1701			 * failure mode and error everything
1702			 */
1703		} else {
1704			process_deferred_flush_bios(cache, true);
1705			process_migrations(cache, &cache->need_commit_migrations,
1706					   migration_success_post_commit);
1707		}
1708
1709		ack_quiescing(cache);
 
 
1710
1711	} while (more_work(cache));
 
 
 
1712}
1713
1714/*
1715 * We want to commit periodically so that not too much
1716 * unwritten metadata builds up.
1717 */
1718static void do_waker(struct work_struct *ws)
1719{
1720	struct cache *cache = container_of(to_delayed_work(ws), struct cache, waker);
1721	policy_tick(cache->policy);
1722	wake_worker(cache);
 
 
1723	queue_delayed_work(cache->wq, &cache->waker, COMMIT_PERIOD);
1724}
1725
1726/*----------------------------------------------------------------*/
1727
1728static int is_congested(struct dm_dev *dev, int bdi_bits)
1729{
1730	struct request_queue *q = bdev_get_queue(dev->bdev);
1731	return bdi_congested(&q->backing_dev_info, bdi_bits);
1732}
 
1733
1734static int cache_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
1735{
1736	struct cache *cache = container_of(cb, struct cache, callbacks);
 
 
 
1737
1738	return is_congested(cache->origin_dev, bdi_bits) ||
1739		is_congested(cache->cache_dev, bdi_bits);
 
 
 
 
 
 
 
 
1740}
1741
1742/*----------------------------------------------------------------
1743 * Target methods
1744 *--------------------------------------------------------------*/
1745
1746/*
1747 * This function gets called on the error paths of the constructor, so we
1748 * have to cope with a partially initialised struct.
1749 */
1750static void destroy(struct cache *cache)
1751{
1752	unsigned i;
1753
1754	if (cache->next_migration)
1755		mempool_free(cache->next_migration, cache->migration_pool);
1756
1757	if (cache->migration_pool)
1758		mempool_destroy(cache->migration_pool);
1759
1760	if (cache->all_io_ds)
1761		dm_deferred_set_destroy(cache->all_io_ds);
1762
1763	if (cache->prison)
1764		dm_bio_prison_destroy(cache->prison);
1765
1766	if (cache->wq)
1767		destroy_workqueue(cache->wq);
1768
1769	if (cache->dirty_bitset)
1770		free_bitset(cache->dirty_bitset);
1771
1772	if (cache->discard_bitset)
1773		free_bitset(cache->discard_bitset);
1774
1775	if (cache->copier)
1776		dm_kcopyd_client_destroy(cache->copier);
1777
1778	if (cache->cmd)
1779		dm_cache_metadata_close(cache->cmd);
1780
1781	if (cache->metadata_dev)
1782		dm_put_device(cache->ti, cache->metadata_dev);
1783
1784	if (cache->origin_dev)
1785		dm_put_device(cache->ti, cache->origin_dev);
1786
1787	if (cache->cache_dev)
1788		dm_put_device(cache->ti, cache->cache_dev);
1789
1790	if (cache->policy)
1791		dm_cache_policy_destroy(cache->policy);
1792
1793	for (i = 0; i < cache->nr_ctr_args ; i++)
1794		kfree(cache->ctr_args[i]);
1795	kfree(cache->ctr_args);
1796
 
 
1797	kfree(cache);
1798}
1799
1800static void cache_dtr(struct dm_target *ti)
1801{
1802	struct cache *cache = ti->private;
1803
1804	destroy(cache);
1805}
1806
1807static sector_t get_dev_size(struct dm_dev *dev)
1808{
1809	return i_size_read(dev->bdev->bd_inode) >> SECTOR_SHIFT;
1810}
1811
1812/*----------------------------------------------------------------*/
1813
1814/*
1815 * Construct a cache device mapping.
1816 *
1817 * cache <metadata dev> <cache dev> <origin dev> <block size>
1818 *       <#feature args> [<feature arg>]*
1819 *       <policy> <#policy args> [<policy arg>]*
1820 *
1821 * metadata dev    : fast device holding the persistent metadata
1822 * cache dev	   : fast device holding cached data blocks
1823 * origin dev	   : slow device holding original data blocks
1824 * block size	   : cache unit size in sectors
1825 *
1826 * #feature args   : number of feature arguments passed
1827 * feature args    : writethrough.  (The default is writeback.)
1828 *
1829 * policy	   : the replacement policy to use
1830 * #policy args    : an even number of policy arguments corresponding
1831 *		     to key/value pairs passed to the policy
1832 * policy args	   : key/value pairs passed to the policy
1833 *		     E.g. 'sequential_threshold 1024'
1834 *		     See cache-policies.txt for details.
1835 *
1836 * Optional feature arguments are:
1837 *   writethrough  : write through caching that prohibits cache block
1838 *		     content from being different from origin block content.
1839 *		     Without this argument, the default behaviour is to write
1840 *		     back cache block contents later for performance reasons,
1841 *		     so they may differ from the corresponding origin blocks.
1842 */
1843struct cache_args {
1844	struct dm_target *ti;
1845
1846	struct dm_dev *metadata_dev;
1847
1848	struct dm_dev *cache_dev;
1849	sector_t cache_sectors;
1850
1851	struct dm_dev *origin_dev;
1852	sector_t origin_sectors;
1853
1854	uint32_t block_size;
1855
1856	const char *policy_name;
1857	int policy_argc;
1858	const char **policy_argv;
1859
1860	struct cache_features features;
1861};
1862
1863static void destroy_cache_args(struct cache_args *ca)
1864{
1865	if (ca->metadata_dev)
1866		dm_put_device(ca->ti, ca->metadata_dev);
1867
1868	if (ca->cache_dev)
1869		dm_put_device(ca->ti, ca->cache_dev);
1870
1871	if (ca->origin_dev)
1872		dm_put_device(ca->ti, ca->origin_dev);
1873
1874	kfree(ca);
1875}
1876
1877static bool at_least_one_arg(struct dm_arg_set *as, char **error)
1878{
1879	if (!as->argc) {
1880		*error = "Insufficient args";
1881		return false;
1882	}
1883
1884	return true;
1885}
1886
1887static int parse_metadata_dev(struct cache_args *ca, struct dm_arg_set *as,
1888			      char **error)
1889{
1890	int r;
1891	sector_t metadata_dev_size;
1892	char b[BDEVNAME_SIZE];
1893
1894	if (!at_least_one_arg(as, error))
1895		return -EINVAL;
1896
1897	r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
1898			  &ca->metadata_dev);
1899	if (r) {
1900		*error = "Error opening metadata device";
1901		return r;
1902	}
1903
1904	metadata_dev_size = get_dev_size(ca->metadata_dev);
1905	if (metadata_dev_size > DM_CACHE_METADATA_MAX_SECTORS_WARNING)
1906		DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
1907		       bdevname(ca->metadata_dev->bdev, b), THIN_METADATA_MAX_SECTORS);
1908
1909	return 0;
1910}
1911
1912static int parse_cache_dev(struct cache_args *ca, struct dm_arg_set *as,
1913			   char **error)
1914{
1915	int r;
1916
1917	if (!at_least_one_arg(as, error))
1918		return -EINVAL;
1919
1920	r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
1921			  &ca->cache_dev);
1922	if (r) {
1923		*error = "Error opening cache device";
1924		return r;
1925	}
1926	ca->cache_sectors = get_dev_size(ca->cache_dev);
1927
1928	return 0;
1929}
1930
1931static int parse_origin_dev(struct cache_args *ca, struct dm_arg_set *as,
1932			    char **error)
1933{
1934	int r;
1935
1936	if (!at_least_one_arg(as, error))
1937		return -EINVAL;
1938
1939	r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
1940			  &ca->origin_dev);
1941	if (r) {
1942		*error = "Error opening origin device";
1943		return r;
1944	}
1945
1946	ca->origin_sectors = get_dev_size(ca->origin_dev);
1947	if (ca->ti->len > ca->origin_sectors) {
1948		*error = "Device size larger than cached device";
1949		return -EINVAL;
1950	}
1951
1952	return 0;
1953}
1954
1955static int parse_block_size(struct cache_args *ca, struct dm_arg_set *as,
1956			    char **error)
1957{
1958	unsigned long block_size;
1959
1960	if (!at_least_one_arg(as, error))
1961		return -EINVAL;
1962
1963	if (kstrtoul(dm_shift_arg(as), 10, &block_size) || !block_size ||
1964	    block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
1965	    block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
1966	    block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
1967		*error = "Invalid data block size";
1968		return -EINVAL;
1969	}
1970
1971	if (block_size > ca->cache_sectors) {
1972		*error = "Data block size is larger than the cache device";
1973		return -EINVAL;
1974	}
1975
1976	ca->block_size = block_size;
1977
1978	return 0;
1979}
1980
1981static void init_features(struct cache_features *cf)
1982{
1983	cf->mode = CM_WRITE;
1984	cf->io_mode = CM_IO_WRITEBACK;
 
 
1985}
1986
1987static int parse_features(struct cache_args *ca, struct dm_arg_set *as,
1988			  char **error)
1989{
1990	static struct dm_arg _args[] = {
1991		{0, 1, "Invalid number of cache feature arguments"},
1992	};
1993
1994	int r;
1995	unsigned argc;
1996	const char *arg;
1997	struct cache_features *cf = &ca->features;
1998
1999	init_features(cf);
2000
2001	r = dm_read_arg_group(_args, as, &argc, error);
2002	if (r)
2003		return -EINVAL;
2004
2005	while (argc--) {
2006		arg = dm_shift_arg(as);
2007
2008		if (!strcasecmp(arg, "writeback"))
2009			cf->io_mode = CM_IO_WRITEBACK;
 
 
2010
2011		else if (!strcasecmp(arg, "writethrough"))
2012			cf->io_mode = CM_IO_WRITETHROUGH;
 
 
2013
2014		else if (!strcasecmp(arg, "passthrough"))
2015			cf->io_mode = CM_IO_PASSTHROUGH;
 
 
 
 
 
 
 
 
2016
2017		else {
2018			*error = "Unrecognised cache feature requested";
2019			return -EINVAL;
2020		}
2021	}
2022
 
 
 
 
 
2023	return 0;
2024}
2025
2026static int parse_policy(struct cache_args *ca, struct dm_arg_set *as,
2027			char **error)
2028{
2029	static struct dm_arg _args[] = {
2030		{0, 1024, "Invalid number of policy arguments"},
2031	};
2032
2033	int r;
2034
2035	if (!at_least_one_arg(as, error))
2036		return -EINVAL;
2037
2038	ca->policy_name = dm_shift_arg(as);
2039
2040	r = dm_read_arg_group(_args, as, &ca->policy_argc, error);
2041	if (r)
2042		return -EINVAL;
2043
2044	ca->policy_argv = (const char **)as->argv;
2045	dm_consume_args(as, ca->policy_argc);
2046
2047	return 0;
2048}
2049
2050static int parse_cache_args(struct cache_args *ca, int argc, char **argv,
2051			    char **error)
2052{
2053	int r;
2054	struct dm_arg_set as;
2055
2056	as.argc = argc;
2057	as.argv = argv;
2058
2059	r = parse_metadata_dev(ca, &as, error);
2060	if (r)
2061		return r;
2062
2063	r = parse_cache_dev(ca, &as, error);
2064	if (r)
2065		return r;
2066
2067	r = parse_origin_dev(ca, &as, error);
2068	if (r)
2069		return r;
2070
2071	r = parse_block_size(ca, &as, error);
2072	if (r)
2073		return r;
2074
2075	r = parse_features(ca, &as, error);
2076	if (r)
2077		return r;
2078
2079	r = parse_policy(ca, &as, error);
2080	if (r)
2081		return r;
2082
2083	return 0;
2084}
2085
2086/*----------------------------------------------------------------*/
2087
2088static struct kmem_cache *migration_cache;
2089
2090#define NOT_CORE_OPTION 1
2091
2092static int process_config_option(struct cache *cache, const char *key, const char *value)
2093{
2094	unsigned long tmp;
2095
2096	if (!strcasecmp(key, "migration_threshold")) {
2097		if (kstrtoul(value, 10, &tmp))
2098			return -EINVAL;
2099
2100		cache->migration_threshold = tmp;
2101		return 0;
2102	}
2103
2104	return NOT_CORE_OPTION;
2105}
2106
2107static int set_config_value(struct cache *cache, const char *key, const char *value)
2108{
2109	int r = process_config_option(cache, key, value);
2110
2111	if (r == NOT_CORE_OPTION)
2112		r = policy_set_config_value(cache->policy, key, value);
2113
2114	if (r)
2115		DMWARN("bad config value for %s: %s", key, value);
2116
2117	return r;
2118}
2119
2120static int set_config_values(struct cache *cache, int argc, const char **argv)
2121{
2122	int r = 0;
2123
2124	if (argc & 1) {
2125		DMWARN("Odd number of policy arguments given but they should be <key> <value> pairs.");
2126		return -EINVAL;
2127	}
2128
2129	while (argc) {
2130		r = set_config_value(cache, argv[0], argv[1]);
2131		if (r)
2132			break;
2133
2134		argc -= 2;
2135		argv += 2;
2136	}
2137
2138	return r;
2139}
2140
2141static int create_cache_policy(struct cache *cache, struct cache_args *ca,
2142			       char **error)
2143{
2144	struct dm_cache_policy *p = dm_cache_policy_create(ca->policy_name,
2145							   cache->cache_size,
2146							   cache->origin_sectors,
2147							   cache->sectors_per_block);
2148	if (IS_ERR(p)) {
2149		*error = "Error creating cache's policy";
2150		return PTR_ERR(p);
2151	}
2152	cache->policy = p;
 
2153
2154	return 0;
2155}
2156
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2157#define DEFAULT_MIGRATION_THRESHOLD 2048
2158
2159static int cache_create(struct cache_args *ca, struct cache **result)
2160{
2161	int r = 0;
2162	char **error = &ca->ti->error;
2163	struct cache *cache;
2164	struct dm_target *ti = ca->ti;
2165	dm_block_t origin_blocks;
2166	struct dm_cache_metadata *cmd;
2167	bool may_format = ca->features.mode == CM_WRITE;
2168
2169	cache = kzalloc(sizeof(*cache), GFP_KERNEL);
2170	if (!cache)
2171		return -ENOMEM;
2172
2173	cache->ti = ca->ti;
2174	ti->private = cache;
2175	ti->num_flush_bios = 2;
2176	ti->flush_supported = true;
2177
2178	ti->num_discard_bios = 1;
2179	ti->discards_supported = true;
2180	ti->discard_zeroes_data_unsupported = true;
2181	/* Discard bios must be split on a block boundary */
2182	ti->split_discard_bios = true;
2183
2184	cache->features = ca->features;
2185	ti->per_bio_data_size = get_per_bio_data_size(cache);
2186
2187	cache->callbacks.congested_fn = cache_is_congested;
2188	dm_table_add_target_callbacks(ti->table, &cache->callbacks);
 
 
 
 
 
2189
2190	cache->metadata_dev = ca->metadata_dev;
2191	cache->origin_dev = ca->origin_dev;
2192	cache->cache_dev = ca->cache_dev;
2193
2194	ca->metadata_dev = ca->origin_dev = ca->cache_dev = NULL;
2195
2196	/* FIXME: factor out this whole section */
2197	origin_blocks = cache->origin_sectors = ca->origin_sectors;
2198	origin_blocks = block_div(origin_blocks, ca->block_size);
2199	cache->origin_blocks = to_oblock(origin_blocks);
2200
2201	cache->sectors_per_block = ca->block_size;
2202	if (dm_set_target_max_io_len(ti, cache->sectors_per_block)) {
2203		r = -EINVAL;
2204		goto bad;
2205	}
2206
2207	if (ca->block_size & (ca->block_size - 1)) {
2208		dm_block_t cache_size = ca->cache_sectors;
2209
2210		cache->sectors_per_block_shift = -1;
2211		cache_size = block_div(cache_size, ca->block_size);
2212		cache->cache_size = to_cblock(cache_size);
2213	} else {
2214		cache->sectors_per_block_shift = __ffs(ca->block_size);
2215		cache->cache_size = to_cblock(ca->cache_sectors >> cache->sectors_per_block_shift);
2216	}
2217
2218	r = create_cache_policy(cache, ca, error);
2219	if (r)
2220		goto bad;
2221
2222	cache->policy_nr_args = ca->policy_argc;
2223	cache->migration_threshold = DEFAULT_MIGRATION_THRESHOLD;
2224
2225	r = set_config_values(cache, ca->policy_argc, ca->policy_argv);
2226	if (r) {
2227		*error = "Error setting cache policy's config values";
2228		goto bad;
2229	}
2230
2231	cmd = dm_cache_metadata_open(cache->metadata_dev->bdev,
2232				     ca->block_size, may_format,
2233				     dm_cache_policy_get_hint_size(cache->policy));
 
2234	if (IS_ERR(cmd)) {
2235		*error = "Error creating metadata object";
2236		r = PTR_ERR(cmd);
2237		goto bad;
2238	}
2239	cache->cmd = cmd;
 
 
 
 
 
 
2240
2241	if (passthrough_mode(&cache->features)) {
2242		bool all_clean;
2243
2244		r = dm_cache_metadata_all_clean(cache->cmd, &all_clean);
2245		if (r) {
2246			*error = "dm_cache_metadata_all_clean() failed";
2247			goto bad;
2248		}
2249
2250		if (!all_clean) {
2251			*error = "Cannot enter passthrough mode unless all blocks are clean";
2252			r = -EINVAL;
2253			goto bad;
2254		}
 
 
2255	}
2256
2257	spin_lock_init(&cache->lock);
2258	bio_list_init(&cache->deferred_bios);
2259	bio_list_init(&cache->deferred_flush_bios);
2260	bio_list_init(&cache->deferred_writethrough_bios);
2261	INIT_LIST_HEAD(&cache->quiesced_migrations);
2262	INIT_LIST_HEAD(&cache->completed_migrations);
2263	INIT_LIST_HEAD(&cache->need_commit_migrations);
2264	atomic_set(&cache->nr_migrations, 0);
2265	init_waitqueue_head(&cache->migration_wait);
2266
2267	init_waitqueue_head(&cache->quiescing_wait);
2268	atomic_set(&cache->quiescing, 0);
2269	atomic_set(&cache->quiescing_ack, 0);
2270
2271	r = -ENOMEM;
2272	cache->nr_dirty = 0;
2273	cache->dirty_bitset = alloc_bitset(from_cblock(cache->cache_size));
2274	if (!cache->dirty_bitset) {
2275		*error = "could not allocate dirty bitset";
2276		goto bad;
2277	}
2278	clear_bitset(cache->dirty_bitset, from_cblock(cache->cache_size));
2279
2280	cache->discard_nr_blocks = cache->origin_blocks;
2281	cache->discard_bitset = alloc_bitset(from_oblock(cache->discard_nr_blocks));
 
 
 
 
2282	if (!cache->discard_bitset) {
2283		*error = "could not allocate discard bitset";
2284		goto bad;
2285	}
2286	clear_bitset(cache->discard_bitset, from_oblock(cache->discard_nr_blocks));
2287
2288	cache->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2289	if (IS_ERR(cache->copier)) {
2290		*error = "could not create kcopyd client";
2291		r = PTR_ERR(cache->copier);
2292		goto bad;
2293	}
2294
2295	cache->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
2296	if (!cache->wq) {
2297		*error = "could not create workqueue for metadata object";
2298		goto bad;
2299	}
2300	INIT_WORK(&cache->worker, do_worker);
 
2301	INIT_DELAYED_WORK(&cache->waker, do_waker);
2302	cache->last_commit_jiffies = jiffies;
2303
2304	cache->prison = dm_bio_prison_create(PRISON_CELLS);
2305	if (!cache->prison) {
2306		*error = "could not create bio prison";
2307		goto bad;
2308	}
2309
2310	cache->all_io_ds = dm_deferred_set_create();
2311	if (!cache->all_io_ds) {
2312		*error = "could not create all_io deferred set";
2313		goto bad;
2314	}
2315
2316	cache->migration_pool = mempool_create_slab_pool(MIGRATION_POOL_SIZE,
2317							 migration_cache);
2318	if (!cache->migration_pool) {
2319		*error = "Error creating cache's migration mempool";
2320		goto bad;
2321	}
2322
2323	cache->next_migration = NULL;
2324
2325	cache->need_tick_bio = true;
2326	cache->sized = false;
2327	cache->invalidate = false;
2328	cache->commit_requested = false;
2329	cache->loaded_mappings = false;
2330	cache->loaded_discards = false;
2331
2332	load_stats(cache);
2333
2334	atomic_set(&cache->stats.demotion, 0);
2335	atomic_set(&cache->stats.promotion, 0);
2336	atomic_set(&cache->stats.copies_avoided, 0);
2337	atomic_set(&cache->stats.cache_cell_clash, 0);
2338	atomic_set(&cache->stats.commit_count, 0);
2339	atomic_set(&cache->stats.discard_count, 0);
2340
2341	spin_lock_init(&cache->invalidation_lock);
2342	INIT_LIST_HEAD(&cache->invalidation_requests);
2343
 
 
 
 
 
 
 
2344	*result = cache;
2345	return 0;
2346
2347bad:
2348	destroy(cache);
2349	return r;
2350}
2351
2352static int copy_ctr_args(struct cache *cache, int argc, const char **argv)
2353{
2354	unsigned i;
2355	const char **copy;
2356
2357	copy = kcalloc(argc, sizeof(*copy), GFP_KERNEL);
2358	if (!copy)
2359		return -ENOMEM;
2360	for (i = 0; i < argc; i++) {
2361		copy[i] = kstrdup(argv[i], GFP_KERNEL);
2362		if (!copy[i]) {
2363			while (i--)
2364				kfree(copy[i]);
2365			kfree(copy);
2366			return -ENOMEM;
2367		}
2368	}
2369
2370	cache->nr_ctr_args = argc;
2371	cache->ctr_args = copy;
2372
2373	return 0;
2374}
2375
2376static int cache_ctr(struct dm_target *ti, unsigned argc, char **argv)
2377{
2378	int r = -EINVAL;
2379	struct cache_args *ca;
2380	struct cache *cache = NULL;
2381
2382	ca = kzalloc(sizeof(*ca), GFP_KERNEL);
2383	if (!ca) {
2384		ti->error = "Error allocating memory for cache";
2385		return -ENOMEM;
2386	}
2387	ca->ti = ti;
2388
2389	r = parse_cache_args(ca, argc, argv, &ti->error);
2390	if (r)
2391		goto out;
2392
2393	r = cache_create(ca, &cache);
2394	if (r)
2395		goto out;
2396
2397	r = copy_ctr_args(cache, argc - 3, (const char **)argv + 3);
2398	if (r) {
2399		destroy(cache);
2400		goto out;
2401	}
2402
2403	ti->private = cache;
2404
2405out:
2406	destroy_cache_args(ca);
2407	return r;
2408}
2409
 
 
2410static int cache_map(struct dm_target *ti, struct bio *bio)
2411{
2412	struct cache *cache = ti->private;
2413
2414	int r;
 
2415	dm_oblock_t block = get_bio_block(cache, bio);
2416	size_t pb_data_size = get_per_bio_data_size(cache);
2417	bool can_migrate = false;
2418	bool discarded_block;
2419	struct dm_bio_prison_cell *cell;
2420	struct policy_result lookup_result;
2421	struct per_bio_data *pb = init_per_bio_data(bio, pb_data_size);
2422
 
2423	if (unlikely(from_oblock(block) >= from_oblock(cache->origin_blocks))) {
2424		/*
2425		 * This can only occur if the io goes to a partial block at
2426		 * the end of the origin device.  We don't cache these.
2427		 * Just remap to the origin and carry on.
2428		 */
2429		remap_to_origin(cache, bio);
 
2430		return DM_MAPIO_REMAPPED;
2431	}
2432
2433	if (bio->bi_rw & (REQ_FLUSH | REQ_FUA | REQ_DISCARD)) {
2434		defer_bio(cache, bio);
2435		return DM_MAPIO_SUBMITTED;
2436	}
2437
2438	/*
2439	 * Check to see if that block is currently migrating.
2440	 */
2441	cell = alloc_prison_cell(cache);
2442	if (!cell) {
2443		defer_bio(cache, bio);
2444		return DM_MAPIO_SUBMITTED;
2445	}
2446
2447	r = bio_detain(cache, block, bio, cell,
2448		       (cell_free_fn) free_prison_cell,
2449		       cache, &cell);
2450	if (r) {
2451		if (r < 0)
2452			defer_bio(cache, bio);
2453
2454		return DM_MAPIO_SUBMITTED;
2455	}
2456
2457	discarded_block = is_discarded_oblock(cache, block);
2458
2459	r = policy_map(cache->policy, block, false, can_migrate, discarded_block,
2460		       bio, &lookup_result);
2461	if (r == -EWOULDBLOCK) {
2462		cell_defer(cache, cell, true);
2463		return DM_MAPIO_SUBMITTED;
2464
2465	} else if (r) {
2466		DMERR_LIMIT("Unexpected return from cache replacement policy: %d", r);
2467		bio_io_error(bio);
2468		return DM_MAPIO_SUBMITTED;
2469	}
2470
2471	r = DM_MAPIO_REMAPPED;
2472	switch (lookup_result.op) {
2473	case POLICY_HIT:
2474		if (passthrough_mode(&cache->features)) {
2475			if (bio_data_dir(bio) == WRITE) {
2476				/*
2477				 * We need to invalidate this block, so
2478				 * defer for the worker thread.
2479				 */
2480				cell_defer(cache, cell, true);
2481				r = DM_MAPIO_SUBMITTED;
2482
2483			} else {
2484				pb->all_io_entry = dm_deferred_entry_inc(cache->all_io_ds);
2485				inc_miss_counter(cache, bio);
2486				remap_to_origin_clear_discard(cache, bio, block);
2487
2488				cell_defer(cache, cell, false);
2489			}
2490
2491		} else {
2492			inc_hit_counter(cache, bio);
2493			pb->all_io_entry = dm_deferred_entry_inc(cache->all_io_ds);
2494
2495			if (bio_data_dir(bio) == WRITE && writethrough_mode(&cache->features) &&
2496			    !is_dirty(cache, lookup_result.cblock))
2497				remap_to_origin_then_cache(cache, bio, block, lookup_result.cblock);
2498			else
2499				remap_to_cache_dirty(cache, bio, block, lookup_result.cblock);
2500
2501			cell_defer(cache, cell, false);
2502		}
2503		break;
2504
2505	case POLICY_MISS:
2506		inc_miss_counter(cache, bio);
2507		pb->all_io_entry = dm_deferred_entry_inc(cache->all_io_ds);
2508
2509		if (pb->req_nr != 0) {
2510			/*
2511			 * This is a duplicate writethrough io that is no
2512			 * longer needed because the block has been demoted.
2513			 */
2514			bio_endio(bio, 0);
2515			cell_defer(cache, cell, false);
2516			return DM_MAPIO_SUBMITTED;
2517		} else {
2518			remap_to_origin_clear_discard(cache, bio, block);
2519			cell_defer(cache, cell, false);
2520		}
2521		break;
2522
2523	default:
2524		DMERR_LIMIT("%s: erroring bio: unknown policy op: %u", __func__,
2525			    (unsigned) lookup_result.op);
2526		bio_io_error(bio);
2527		r = DM_MAPIO_SUBMITTED;
2528	}
2529
2530	return r;
2531}
2532
2533static int cache_end_io(struct dm_target *ti, struct bio *bio, int error)
2534{
2535	struct cache *cache = ti->private;
2536	unsigned long flags;
2537	size_t pb_data_size = get_per_bio_data_size(cache);
2538	struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
2539
2540	if (pb->tick) {
2541		policy_tick(cache->policy);
2542
2543		spin_lock_irqsave(&cache->lock, flags);
2544		cache->need_tick_bio = true;
2545		spin_unlock_irqrestore(&cache->lock, flags);
2546	}
2547
2548	check_for_quiesced_migrations(cache, pb);
 
2549
2550	return 0;
2551}
2552
2553static int write_dirty_bitset(struct cache *cache)
2554{
2555	unsigned i, r;
2556
2557	for (i = 0; i < from_cblock(cache->cache_size); i++) {
2558		r = dm_cache_set_dirty(cache->cmd, to_cblock(i),
2559				       is_dirty(cache, to_cblock(i)));
2560		if (r)
2561			return r;
2562	}
2563
2564	return 0;
 
 
 
 
2565}
2566
2567static int write_discard_bitset(struct cache *cache)
2568{
2569	unsigned i, r;
2570
2571	r = dm_cache_discard_bitset_resize(cache->cmd, cache->sectors_per_block,
2572					   cache->origin_blocks);
 
 
 
2573	if (r) {
2574		DMERR("could not resize on-disk discard bitset");
 
2575		return r;
2576	}
2577
2578	for (i = 0; i < from_oblock(cache->discard_nr_blocks); i++) {
2579		r = dm_cache_set_discard(cache->cmd, to_oblock(i),
2580					 is_discarded(cache, to_oblock(i)));
2581		if (r)
 
2582			return r;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2583	}
2584
2585	return 0;
2586}
2587
2588/*
2589 * returns true on success
2590 */
2591static bool sync_metadata(struct cache *cache)
2592{
2593	int r1, r2, r3, r4;
2594
2595	r1 = write_dirty_bitset(cache);
2596	if (r1)
2597		DMERR("could not write dirty bitset");
2598
2599	r2 = write_discard_bitset(cache);
2600	if (r2)
2601		DMERR("could not write discard bitset");
2602
2603	save_stats(cache);
2604
2605	r3 = dm_cache_write_hints(cache->cmd, cache->policy);
2606	if (r3)
2607		DMERR("could not write hints");
2608
2609	/*
2610	 * If writing the above metadata failed, we still commit, but don't
2611	 * set the clean shutdown flag.  This will effectively force every
2612	 * dirty bit to be set on reload.
2613	 */
2614	r4 = dm_cache_commit(cache->cmd, !r1 && !r2 && !r3);
2615	if (r4)
2616		DMERR("could not write cache metadata.  Data loss may occur.");
2617
2618	return !r1 && !r2 && !r3 && !r4;
2619}
2620
2621static void cache_postsuspend(struct dm_target *ti)
2622{
2623	struct cache *cache = ti->private;
2624
2625	start_quiescing(cache);
2626	wait_for_migrations(cache);
2627	stop_worker(cache);
2628	requeue_deferred_io(cache);
2629	stop_quiescing(cache);
2630
2631	(void) sync_metadata(cache);
 
 
 
 
 
 
 
 
 
 
 
2632}
2633
2634static int load_mapping(void *context, dm_oblock_t oblock, dm_cblock_t cblock,
2635			bool dirty, uint32_t hint, bool hint_valid)
2636{
2637	int r;
2638	struct cache *cache = context;
2639
2640	r = policy_load_mapping(cache->policy, oblock, cblock, hint, hint_valid);
2641	if (r)
2642		return r;
 
 
2643
2644	if (dirty)
2645		set_dirty(cache, oblock, cblock);
2646	else
2647		clear_dirty(cache, oblock, cblock);
2648
2649	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2650}
2651
2652static int load_discard(void *context, sector_t discard_block_size,
2653			dm_oblock_t oblock, bool discard)
2654{
2655	struct cache *cache = context;
2656
2657	if (discard)
2658		set_discard(cache, oblock);
2659	else
2660		clear_discard(cache, oblock);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2661
2662	return 0;
2663}
2664
2665static dm_cblock_t get_cache_dev_size(struct cache *cache)
2666{
2667	sector_t size = get_dev_size(cache->cache_dev);
2668	(void) sector_div(size, cache->sectors_per_block);
2669	return to_cblock(size);
2670}
2671
2672static bool can_resize(struct cache *cache, dm_cblock_t new_size)
2673{
2674	if (from_cblock(new_size) > from_cblock(cache->cache_size))
2675		return true;
 
 
 
 
 
2676
2677	/*
2678	 * We can't drop a dirty block when shrinking the cache.
2679	 */
2680	while (from_cblock(new_size) < from_cblock(cache->cache_size)) {
2681		new_size = to_cblock(from_cblock(new_size) + 1);
2682		if (is_dirty(cache, new_size)) {
2683			DMERR("unable to shrink cache; cache block %llu is dirty",
 
2684			      (unsigned long long) from_cblock(new_size));
2685			return false;
2686		}
2687	}
2688
2689	return true;
2690}
2691
2692static int resize_cache_dev(struct cache *cache, dm_cblock_t new_size)
2693{
2694	int r;
2695
2696	r = dm_cache_resize(cache->cmd, new_size);
2697	if (r) {
2698		DMERR("could not resize cache metadata");
 
2699		return r;
2700	}
2701
2702	cache->cache_size = new_size;
2703
2704	return 0;
2705}
2706
2707static int cache_preresume(struct dm_target *ti)
2708{
2709	int r = 0;
2710	struct cache *cache = ti->private;
2711	dm_cblock_t csize = get_cache_dev_size(cache);
2712
2713	/*
2714	 * Check to see if the cache has resized.
2715	 */
2716	if (!cache->sized) {
2717		r = resize_cache_dev(cache, csize);
2718		if (r)
2719			return r;
2720
2721		cache->sized = true;
2722
2723	} else if (csize != cache->cache_size) {
2724		if (!can_resize(cache, csize))
2725			return -EINVAL;
2726
2727		r = resize_cache_dev(cache, csize);
2728		if (r)
2729			return r;
2730	}
2731
2732	if (!cache->loaded_mappings) {
2733		r = dm_cache_load_mappings(cache->cmd, cache->policy,
2734					   load_mapping, cache);
2735		if (r) {
2736			DMERR("could not load cache mappings");
 
2737			return r;
2738		}
2739
2740		cache->loaded_mappings = true;
2741	}
2742
2743	if (!cache->loaded_discards) {
2744		r = dm_cache_load_discards(cache->cmd, load_discard, cache);
 
 
 
 
 
 
 
 
 
 
2745		if (r) {
2746			DMERR("could not load origin discards");
 
2747			return r;
2748		}
 
2749
2750		cache->loaded_discards = true;
2751	}
2752
2753	return r;
2754}
2755
2756static void cache_resume(struct dm_target *ti)
2757{
2758	struct cache *cache = ti->private;
2759
2760	cache->need_tick_bio = true;
 
2761	do_waker(&cache->waker.work);
2762}
2763
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2764/*
2765 * Status format:
2766 *
2767 * <metadata block size> <#used metadata blocks>/<#total metadata blocks>
2768 * <cache block size> <#used cache blocks>/<#total cache blocks>
2769 * <#read hits> <#read misses> <#write hits> <#write misses>
2770 * <#demotions> <#promotions> <#dirty>
2771 * <#features> <features>*
2772 * <#core args> <core args>
2773 * <policy name> <#policy args> <policy args>*
2774 */
2775static void cache_status(struct dm_target *ti, status_type_t type,
2776			 unsigned status_flags, char *result, unsigned maxlen)
2777{
2778	int r = 0;
2779	unsigned i;
2780	ssize_t sz = 0;
2781	dm_block_t nr_free_blocks_metadata = 0;
2782	dm_block_t nr_blocks_metadata = 0;
2783	char buf[BDEVNAME_SIZE];
2784	struct cache *cache = ti->private;
2785	dm_cblock_t residency;
 
2786
2787	switch (type) {
2788	case STATUSTYPE_INFO:
2789		/* Commit to ensure statistics aren't out-of-date */
2790		if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti)) {
2791			r = dm_cache_commit(cache->cmd, false);
2792			if (r)
2793				DMERR("could not commit metadata for accurate status");
2794		}
2795
2796		r = dm_cache_get_free_metadata_block_count(cache->cmd,
2797							   &nr_free_blocks_metadata);
 
 
 
2798		if (r) {
2799			DMERR("could not get metadata free block count");
 
2800			goto err;
2801		}
2802
2803		r = dm_cache_get_metadata_dev_size(cache->cmd, &nr_blocks_metadata);
2804		if (r) {
2805			DMERR("could not get metadata device size");
 
2806			goto err;
2807		}
2808
2809		residency = policy_residency(cache->policy);
2810
2811		DMEMIT("%u %llu/%llu %u %llu/%llu %u %u %u %u %u %u %llu ",
2812		       (unsigned)(DM_CACHE_METADATA_BLOCK_SIZE >> SECTOR_SHIFT),
2813		       (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
2814		       (unsigned long long)nr_blocks_metadata,
2815		       cache->sectors_per_block,
2816		       (unsigned long long) from_cblock(residency),
2817		       (unsigned long long) from_cblock(cache->cache_size),
2818		       (unsigned) atomic_read(&cache->stats.read_hit),
2819		       (unsigned) atomic_read(&cache->stats.read_miss),
2820		       (unsigned) atomic_read(&cache->stats.write_hit),
2821		       (unsigned) atomic_read(&cache->stats.write_miss),
2822		       (unsigned) atomic_read(&cache->stats.demotion),
2823		       (unsigned) atomic_read(&cache->stats.promotion),
2824		       (unsigned long long) from_cblock(cache->nr_dirty));
2825
2826		if (writethrough_mode(&cache->features))
2827			DMEMIT("1 writethrough ");
2828
2829		else if (passthrough_mode(&cache->features))
2830			DMEMIT("1 passthrough ");
2831
2832		else if (writeback_mode(&cache->features))
2833			DMEMIT("1 writeback ");
2834
2835		else {
2836			DMERR("internal error: unknown io mode: %d", (int) cache->features.io_mode);
2837			goto err;
2838		}
2839
2840		DMEMIT("2 migration_threshold %llu ", (unsigned long long) cache->migration_threshold);
2841
2842		DMEMIT("%s ", dm_cache_policy_get_name(cache->policy));
2843		if (sz < maxlen) {
2844			r = policy_emit_config_values(cache->policy, result + sz, maxlen - sz);
2845			if (r)
2846				DMERR("policy_emit_config_values returned %d", r);
 
2847		}
2848
 
 
 
 
 
 
 
 
 
 
 
 
2849		break;
2850
2851	case STATUSTYPE_TABLE:
2852		format_dev_t(buf, cache->metadata_dev->bdev->bd_dev);
2853		DMEMIT("%s ", buf);
2854		format_dev_t(buf, cache->cache_dev->bdev->bd_dev);
2855		DMEMIT("%s ", buf);
2856		format_dev_t(buf, cache->origin_dev->bdev->bd_dev);
2857		DMEMIT("%s", buf);
2858
2859		for (i = 0; i < cache->nr_ctr_args - 1; i++)
2860			DMEMIT(" %s", cache->ctr_args[i]);
2861		if (cache->nr_ctr_args)
2862			DMEMIT(" %s", cache->ctr_args[cache->nr_ctr_args - 1]);
2863	}
2864
2865	return;
2866
2867err:
2868	DMEMIT("Error");
2869}
2870
2871/*
 
 
 
 
 
 
 
 
 
2872 * A cache block range can take two forms:
2873 *
2874 * i) A single cblock, eg. '3456'
2875 * ii) A begin and end cblock with dots between, eg. 123-234
2876 */
2877static int parse_cblock_range(struct cache *cache, const char *str,
2878			      struct cblock_range *result)
2879{
2880	char dummy;
2881	uint64_t b, e;
2882	int r;
2883
2884	/*
2885	 * Try and parse form (ii) first.
2886	 */
2887	r = sscanf(str, "%llu-%llu%c", &b, &e, &dummy);
2888	if (r < 0)
2889		return r;
2890
2891	if (r == 2) {
2892		result->begin = to_cblock(b);
2893		result->end = to_cblock(e);
2894		return 0;
2895	}
2896
2897	/*
2898	 * That didn't work, try form (i).
2899	 */
2900	r = sscanf(str, "%llu%c", &b, &dummy);
2901	if (r < 0)
2902		return r;
2903
2904	if (r == 1) {
2905		result->begin = to_cblock(b);
2906		result->end = to_cblock(from_cblock(result->begin) + 1u);
2907		return 0;
2908	}
2909
2910	DMERR("invalid cblock range '%s'", str);
2911	return -EINVAL;
2912}
2913
2914static int validate_cblock_range(struct cache *cache, struct cblock_range *range)
2915{
2916	uint64_t b = from_cblock(range->begin);
2917	uint64_t e = from_cblock(range->end);
2918	uint64_t n = from_cblock(cache->cache_size);
2919
2920	if (b >= n) {
2921		DMERR("begin cblock out of range: %llu >= %llu", b, n);
 
2922		return -EINVAL;
2923	}
2924
2925	if (e > n) {
2926		DMERR("end cblock out of range: %llu > %llu", e, n);
 
2927		return -EINVAL;
2928	}
2929
2930	if (b >= e) {
2931		DMERR("invalid cblock range: %llu >= %llu", b, e);
 
2932		return -EINVAL;
2933	}
2934
2935	return 0;
2936}
2937
 
 
 
 
 
2938static int request_invalidation(struct cache *cache, struct cblock_range *range)
2939{
2940	struct invalidation_request req;
2941
2942	INIT_LIST_HEAD(&req.list);
2943	req.cblocks = range;
2944	atomic_set(&req.complete, 0);
2945	req.err = 0;
2946	init_waitqueue_head(&req.result_wait);
2947
2948	spin_lock(&cache->invalidation_lock);
2949	list_add(&req.list, &cache->invalidation_requests);
2950	spin_unlock(&cache->invalidation_lock);
2951	wake_worker(cache);
2952
2953	wait_event(req.result_wait, atomic_read(&req.complete));
2954	return req.err;
 
 
 
2955}
2956
2957static int process_invalidate_cblocks_message(struct cache *cache, unsigned count,
2958					      const char **cblock_ranges)
2959{
2960	int r = 0;
2961	unsigned i;
2962	struct cblock_range range;
2963
2964	if (!passthrough_mode(&cache->features)) {
2965		DMERR("cache has to be in passthrough mode for invalidation");
 
2966		return -EPERM;
2967	}
2968
2969	for (i = 0; i < count; i++) {
2970		r = parse_cblock_range(cache, cblock_ranges[i], &range);
2971		if (r)
2972			break;
2973
2974		r = validate_cblock_range(cache, &range);
2975		if (r)
2976			break;
2977
2978		/*
2979		 * Pass begin and end origin blocks to the worker and wake it.
2980		 */
2981		r = request_invalidation(cache, &range);
2982		if (r)
2983			break;
2984	}
2985
2986	return r;
2987}
2988
2989/*
2990 * Supports
2991 *	"<key> <value>"
2992 * and
2993 *     "invalidate_cblocks [(<begin>)|(<begin>-<end>)]*
2994 *
2995 * The key migration_threshold is supported by the cache target core.
2996 */
2997static int cache_message(struct dm_target *ti, unsigned argc, char **argv)
 
2998{
2999	struct cache *cache = ti->private;
3000
3001	if (!argc)
3002		return -EINVAL;
3003
 
 
 
 
 
 
3004	if (!strcasecmp(argv[0], "invalidate_cblocks"))
3005		return process_invalidate_cblocks_message(cache, argc - 1, (const char **) argv + 1);
3006
3007	if (argc != 2)
3008		return -EINVAL;
3009
3010	return set_config_value(cache, argv[0], argv[1]);
3011}
3012
3013static int cache_iterate_devices(struct dm_target *ti,
3014				 iterate_devices_callout_fn fn, void *data)
3015{
3016	int r = 0;
3017	struct cache *cache = ti->private;
3018
3019	r = fn(ti, cache->cache_dev, 0, get_dev_size(cache->cache_dev), data);
3020	if (!r)
3021		r = fn(ti, cache->origin_dev, 0, ti->len, data);
3022
3023	return r;
3024}
3025
 
 
 
 
 
 
 
3026/*
3027 * We assume I/O is going to the origin (which is the volume
3028 * more likely to have restrictions e.g. by being striped).
3029 * (Looking up the exact location of the data would be expensive
3030 * and could always be out of date by the time the bio is submitted.)
3031 */
3032static int cache_bvec_merge(struct dm_target *ti,
3033			    struct bvec_merge_data *bvm,
3034			    struct bio_vec *biovec, int max_size)
3035{
3036	struct cache *cache = ti->private;
3037	struct request_queue *q = bdev_get_queue(cache->origin_dev->bdev);
 
 
3038
3039	if (!q->merge_bvec_fn)
3040		return max_size;
 
 
 
3041
3042	bvm->bi_bdev = cache->origin_dev->bdev;
3043	return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
 
 
 
 
 
 
3044}
3045
3046static void set_discard_limits(struct cache *cache, struct queue_limits *limits)
3047{
 
 
 
 
 
 
 
 
 
 
 
3048	/*
3049	 * FIXME: these limits may be incompatible with the cache device
 
3050	 */
3051	limits->max_discard_sectors = cache->sectors_per_block;
3052	limits->discard_granularity = cache->sectors_per_block << SECTOR_SHIFT;
 
 
 
3053}
3054
3055static void cache_io_hints(struct dm_target *ti, struct queue_limits *limits)
3056{
3057	struct cache *cache = ti->private;
3058	uint64_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
3059
3060	/*
3061	 * If the system-determined stacked limits are compatible with the
3062	 * cache's blocksize (io_opt is a factor) do not override them.
3063	 */
3064	if (io_opt_sectors < cache->sectors_per_block ||
3065	    do_div(io_opt_sectors, cache->sectors_per_block)) {
3066		blk_limits_io_min(limits, 0);
3067		blk_limits_io_opt(limits, cache->sectors_per_block << SECTOR_SHIFT);
3068	}
 
 
3069	set_discard_limits(cache, limits);
3070}
3071
3072/*----------------------------------------------------------------*/
3073
3074static struct target_type cache_target = {
3075	.name = "cache",
3076	.version = {1, 4, 0},
3077	.module = THIS_MODULE,
3078	.ctr = cache_ctr,
3079	.dtr = cache_dtr,
3080	.map = cache_map,
3081	.end_io = cache_end_io,
3082	.postsuspend = cache_postsuspend,
3083	.preresume = cache_preresume,
3084	.resume = cache_resume,
3085	.status = cache_status,
3086	.message = cache_message,
3087	.iterate_devices = cache_iterate_devices,
3088	.merge = cache_bvec_merge,
3089	.io_hints = cache_io_hints,
3090};
3091
3092static int __init dm_cache_init(void)
3093{
3094	int r;
3095
 
 
 
 
3096	r = dm_register_target(&cache_target);
3097	if (r) {
3098		DMERR("cache target registration failed: %d", r);
 
3099		return r;
3100	}
3101
3102	migration_cache = KMEM_CACHE(dm_cache_migration, 0);
3103	if (!migration_cache) {
3104		dm_unregister_target(&cache_target);
3105		return -ENOMEM;
3106	}
3107
3108	return 0;
3109}
3110
3111static void __exit dm_cache_exit(void)
3112{
3113	dm_unregister_target(&cache_target);
3114	kmem_cache_destroy(migration_cache);
3115}
3116
3117module_init(dm_cache_init);
3118module_exit(dm_cache_exit);
3119
3120MODULE_DESCRIPTION(DM_NAME " cache target");
3121MODULE_AUTHOR("Joe Thornber <ejt@redhat.com>");
3122MODULE_LICENSE("GPL");
v5.14.15
   1/*
   2 * Copyright (C) 2012 Red Hat. All rights reserved.
   3 *
   4 * This file is released under the GPL.
   5 */
   6
   7#include "dm.h"
   8#include "dm-bio-prison-v2.h"
   9#include "dm-bio-record.h"
  10#include "dm-cache-metadata.h"
  11#include "dm-io-tracker.h"
  12
  13#include <linux/dm-io.h>
  14#include <linux/dm-kcopyd.h>
  15#include <linux/jiffies.h>
  16#include <linux/init.h>
  17#include <linux/mempool.h>
  18#include <linux/module.h>
  19#include <linux/rwsem.h>
  20#include <linux/slab.h>
  21#include <linux/vmalloc.h>
  22
  23#define DM_MSG_PREFIX "cache"
  24
  25DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(cache_copy_throttle,
  26	"A percentage of time allocated for copying to and/or from cache");
  27
  28/*----------------------------------------------------------------*/
  29
  30/*
  31 * Glossary:
  32 *
  33 * oblock: index of an origin block
  34 * cblock: index of a cache block
  35 * promotion: movement of a block from origin to cache
  36 * demotion: movement of a block from cache to origin
  37 * migration: movement of a block between the origin and cache device,
  38 *	      either direction
  39 */
  40
  41/*----------------------------------------------------------------*/
  42
  43/*
  44 * Represents a chunk of future work.  'input' allows continuations to pass
  45 * values between themselves, typically error values.
  46 */
  47struct continuation {
  48	struct work_struct ws;
  49	blk_status_t input;
  50};
  51
  52static inline void init_continuation(struct continuation *k,
  53				     void (*fn)(struct work_struct *))
  54{
  55	INIT_WORK(&k->ws, fn);
  56	k->input = 0;
  57}
  58
  59static inline void queue_continuation(struct workqueue_struct *wq,
  60				      struct continuation *k)
  61{
  62	queue_work(wq, &k->ws);
 
  63}
  64
  65/*----------------------------------------------------------------*/
  66
  67/*
  68 * The batcher collects together pieces of work that need a particular
  69 * operation to occur before they can proceed (typically a commit).
  70 */
  71struct batcher {
  72	/*
  73	 * The operation that everyone is waiting for.
  74	 */
  75	blk_status_t (*commit_op)(void *context);
  76	void *commit_context;
  77
  78	/*
  79	 * This is how bios should be issued once the commit op is complete
  80	 * (accounted_request).
  81	 */
  82	void (*issue_op)(struct bio *bio, void *context);
  83	void *issue_context;
  84
  85	/*
  86	 * Queued work gets put on here after commit.
  87	 */
  88	struct workqueue_struct *wq;
  89
  90	spinlock_t lock;
  91	struct list_head work_items;
  92	struct bio_list bios;
  93	struct work_struct commit_work;
  94
  95	bool commit_scheduled;
  96};
  97
  98static void __commit(struct work_struct *_ws)
  99{
 100	struct batcher *b = container_of(_ws, struct batcher, commit_work);
 101	blk_status_t r;
 102	struct list_head work_items;
 103	struct work_struct *ws, *tmp;
 104	struct continuation *k;
 105	struct bio *bio;
 106	struct bio_list bios;
 107
 108	INIT_LIST_HEAD(&work_items);
 109	bio_list_init(&bios);
 110
 111	/*
 112	 * We have to grab these before the commit_op to avoid a race
 113	 * condition.
 114	 */
 115	spin_lock_irq(&b->lock);
 116	list_splice_init(&b->work_items, &work_items);
 117	bio_list_merge(&bios, &b->bios);
 118	bio_list_init(&b->bios);
 119	b->commit_scheduled = false;
 120	spin_unlock_irq(&b->lock);
 121
 122	r = b->commit_op(b->commit_context);
 123
 124	list_for_each_entry_safe(ws, tmp, &work_items, entry) {
 125		k = container_of(ws, struct continuation, ws);
 126		k->input = r;
 127		INIT_LIST_HEAD(&ws->entry); /* to avoid a WARN_ON */
 128		queue_work(b->wq, ws);
 129	}
 130
 131	while ((bio = bio_list_pop(&bios))) {
 132		if (r) {
 133			bio->bi_status = r;
 134			bio_endio(bio);
 135		} else
 136			b->issue_op(bio, b->issue_context);
 137	}
 138}
 139
 140static void batcher_init(struct batcher *b,
 141			 blk_status_t (*commit_op)(void *),
 142			 void *commit_context,
 143			 void (*issue_op)(struct bio *bio, void *),
 144			 void *issue_context,
 145			 struct workqueue_struct *wq)
 146{
 147	b->commit_op = commit_op;
 148	b->commit_context = commit_context;
 149	b->issue_op = issue_op;
 150	b->issue_context = issue_context;
 151	b->wq = wq;
 152
 153	spin_lock_init(&b->lock);
 154	INIT_LIST_HEAD(&b->work_items);
 155	bio_list_init(&b->bios);
 156	INIT_WORK(&b->commit_work, __commit);
 157	b->commit_scheduled = false;
 158}
 159
 160static void async_commit(struct batcher *b)
 161{
 162	queue_work(b->wq, &b->commit_work);
 163}
 164
 165static void continue_after_commit(struct batcher *b, struct continuation *k)
 166{
 167	bool commit_scheduled;
 168
 169	spin_lock_irq(&b->lock);
 170	commit_scheduled = b->commit_scheduled;
 171	list_add_tail(&k->ws.entry, &b->work_items);
 172	spin_unlock_irq(&b->lock);
 173
 174	if (commit_scheduled)
 175		async_commit(b);
 176}
 177
 178/*
 179 * Bios are errored if commit failed.
 180 */
 181static void issue_after_commit(struct batcher *b, struct bio *bio)
 182{
 183       bool commit_scheduled;
 184
 185       spin_lock_irq(&b->lock);
 186       commit_scheduled = b->commit_scheduled;
 187       bio_list_add(&b->bios, bio);
 188       spin_unlock_irq(&b->lock);
 189
 190       if (commit_scheduled)
 191	       async_commit(b);
 192}
 193
 194/*
 195 * Call this if some urgent work is waiting for the commit to complete.
 196 */
 197static void schedule_commit(struct batcher *b)
 198{
 199	bool immediate;
 200
 201	spin_lock_irq(&b->lock);
 202	immediate = !list_empty(&b->work_items) || !bio_list_empty(&b->bios);
 203	b->commit_scheduled = true;
 204	spin_unlock_irq(&b->lock);
 205
 206	if (immediate)
 207		async_commit(b);
 208}
 209
 210/*
 211 * There are a couple of places where we let a bio run, but want to do some
 212 * work before calling its endio function.  We do this by temporarily
 213 * changing the endio fn.
 214 */
 215struct dm_hook_info {
 216	bio_end_io_t *bi_end_io;
 
 217};
 218
 219static void dm_hook_bio(struct dm_hook_info *h, struct bio *bio,
 220			bio_end_io_t *bi_end_io, void *bi_private)
 221{
 222	h->bi_end_io = bio->bi_end_io;
 
 223
 224	bio->bi_end_io = bi_end_io;
 225	bio->bi_private = bi_private;
 226}
 227
 228static void dm_unhook_bio(struct dm_hook_info *h, struct bio *bio)
 229{
 230	bio->bi_end_io = h->bi_end_io;
 
 
 
 
 
 
 
 231}
 232
 233/*----------------------------------------------------------------*/
 234
 
 235#define MIGRATION_POOL_SIZE 128
 236#define COMMIT_PERIOD HZ
 237#define MIGRATION_COUNT_WINDOW 10
 238
 239/*
 240 * The block size of the device holding cache data must be
 241 * between 32KB and 1GB.
 242 */
 243#define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (32 * 1024 >> SECTOR_SHIFT)
 244#define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
 245
 
 
 
 246enum cache_metadata_mode {
 247	CM_WRITE,		/* metadata may be changed */
 248	CM_READ_ONLY,		/* metadata may not be changed */
 249	CM_FAIL
 250};
 251
 252enum cache_io_mode {
 253	/*
 254	 * Data is written to cached blocks only.  These blocks are marked
 255	 * dirty.  If you lose the cache device you will lose data.
 256	 * Potential performance increase for both reads and writes.
 257	 */
 258	CM_IO_WRITEBACK,
 259
 260	/*
 261	 * Data is written to both cache and origin.  Blocks are never
 262	 * dirty.  Potential performance benfit for reads only.
 263	 */
 264	CM_IO_WRITETHROUGH,
 265
 266	/*
 267	 * A degraded mode useful for various cache coherency situations
 268	 * (eg, rolling back snapshots).  Reads and writes always go to the
 269	 * origin.  If a write goes to a cached oblock, then the cache
 270	 * block is invalidated.
 271	 */
 272	CM_IO_PASSTHROUGH
 273};
 274
 275struct cache_features {
 276	enum cache_metadata_mode mode;
 277	enum cache_io_mode io_mode;
 278	unsigned metadata_version;
 279	bool discard_passdown:1;
 280};
 281
 282struct cache_stats {
 283	atomic_t read_hit;
 284	atomic_t read_miss;
 285	atomic_t write_hit;
 286	atomic_t write_miss;
 287	atomic_t demotion;
 288	atomic_t promotion;
 289	atomic_t writeback;
 290	atomic_t copies_avoided;
 291	atomic_t cache_cell_clash;
 292	atomic_t commit_count;
 293	atomic_t discard_count;
 294};
 295
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 296struct cache {
 297	struct dm_target *ti;
 298	spinlock_t lock;
 299
 300	/*
 301	 * Fields for converting from sectors to blocks.
 302	 */
 303	int sectors_per_block_shift;
 304	sector_t sectors_per_block;
 305
 306	struct dm_cache_metadata *cmd;
 307
 308	/*
 309	 * Metadata is written to this device.
 310	 */
 311	struct dm_dev *metadata_dev;
 312
 313	/*
 314	 * The slower of the two data devices.  Typically a spindle.
 315	 */
 316	struct dm_dev *origin_dev;
 317
 318	/*
 319	 * The faster of the two data devices.  Typically an SSD.
 320	 */
 321	struct dm_dev *cache_dev;
 322
 323	/*
 324	 * Size of the origin device in _complete_ blocks and native sectors.
 325	 */
 326	dm_oblock_t origin_blocks;
 327	sector_t origin_sectors;
 328
 329	/*
 330	 * Size of the cache device in blocks.
 331	 */
 332	dm_cblock_t cache_size;
 333
 334	/*
 335	 * Invalidation fields.
 336	 */
 337	spinlock_t invalidation_lock;
 338	struct list_head invalidation_requests;
 339
 
 
 
 
 
 
 
 340	sector_t migration_threshold;
 341	wait_queue_head_t migration_wait;
 342	atomic_t nr_allocated_migrations;
 
 
 
 
 343
 344	/*
 345	 * The number of in flight migrations that are performing
 346	 * background io. eg, promotion, writeback.
 347	 */
 348	atomic_t nr_io_migrations;
 349
 350	struct bio_list deferred_bios;
 351
 352	struct rw_semaphore quiesce_lock;
 353
 354	/*
 355	 * origin_blocks entries, discarded if set.
 356	 */
 357	dm_dblock_t discard_nr_blocks;
 358	unsigned long *discard_bitset;
 359	uint32_t discard_block_size; /* a power of 2 times sectors per block */
 360
 361	/*
 362	 * Rather than reconstructing the table line for the status we just
 363	 * save it and regurgitate.
 364	 */
 365	unsigned nr_ctr_args;
 366	const char **ctr_args;
 367
 368	struct dm_kcopyd_client *copier;
 369	struct work_struct deferred_bio_worker;
 370	struct work_struct migration_worker;
 371	struct workqueue_struct *wq;
 
 
 372	struct delayed_work waker;
 373	struct dm_bio_prison_v2 *prison;
 
 
 
 374
 375	/*
 376	 * cache_size entries, dirty if set
 377	 */
 378	unsigned long *dirty_bitset;
 379	atomic_t nr_dirty;
 380
 
 381	unsigned policy_nr_args;
 382	struct dm_cache_policy *policy;
 383
 384	/*
 385	 * Cache features such as write-through.
 386	 */
 387	struct cache_features features;
 388
 389	struct cache_stats stats;
 390
 391	bool need_tick_bio:1;
 392	bool sized:1;
 393	bool invalidate:1;
 394	bool commit_requested:1;
 395	bool loaded_mappings:1;
 396	bool loaded_discards:1;
 397
 398	struct rw_semaphore background_work_lock;
 
 
 
 399
 400	struct batcher committer;
 401	struct work_struct commit_ws;
 402
 403	struct dm_io_tracker tracker;
 404
 405	mempool_t migration_pool;
 406
 407	struct bio_set bs;
 408};
 409
 410struct per_bio_data {
 411	bool tick:1;
 412	unsigned req_nr:2;
 413	struct dm_bio_prison_cell_v2 *cell;
 414	struct dm_hook_info hook_info;
 415	sector_t len;
 
 
 
 
 
 
 
 
 416};
 417
 418struct dm_cache_migration {
 419	struct continuation k;
 420	struct cache *cache;
 421
 422	struct policy_work *op;
 423	struct bio *overwrite_bio;
 424	struct dm_bio_prison_cell_v2 *cell;
 
 
 
 
 
 
 
 
 425
 426	dm_cblock_t invalidate_cblock;
 427	dm_oblock_t invalidate_oblock;
 428};
 429
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 430/*----------------------------------------------------------------*/
 431
 432static bool writethrough_mode(struct cache *cache)
 433{
 434	return cache->features.io_mode == CM_IO_WRITETHROUGH;
 
 435}
 436
 437static bool writeback_mode(struct cache *cache)
 438{
 439	return cache->features.io_mode == CM_IO_WRITEBACK;
 440}
 441
 442static inline bool passthrough_mode(struct cache *cache)
 443{
 444	return unlikely(cache->features.io_mode == CM_IO_PASSTHROUGH);
 445}
 
 
 
 
 
 
 
 
 
 446
 447/*----------------------------------------------------------------*/
 
 
 
 
 448
 449static void wake_deferred_bio_worker(struct cache *cache)
 450{
 451	queue_work(cache->wq, &cache->deferred_bio_worker);
 452}
 453
 454static void wake_migration_worker(struct cache *cache)
 455{
 456	if (passthrough_mode(cache))
 457		return;
 
 
 
 458
 459	queue_work(cache->wq, &cache->migration_worker);
 
 460}
 461
 462/*----------------------------------------------------------------*/
 
 
 463
 464static struct dm_bio_prison_cell_v2 *alloc_prison_cell(struct cache *cache)
 465{
 466	return dm_bio_prison_alloc_cell_v2(cache->prison, GFP_NOIO);
 467}
 468
 469static void free_prison_cell(struct cache *cache, struct dm_bio_prison_cell_v2 *cell)
 470{
 471	dm_bio_prison_free_cell_v2(cache->prison, cell);
 472}
 473
 474static struct dm_cache_migration *alloc_migration(struct cache *cache)
 
 
 
 
 475{
 476	struct dm_cache_migration *mg;
 477
 478	mg = mempool_alloc(&cache->migration_pool, GFP_NOIO);
 
 
 479
 480	memset(mg, 0, sizeof(*mg));
 
 
 
 
 481
 482	mg->cache = cache;
 483	atomic_inc(&cache->nr_allocated_migrations);
 484
 485	return mg;
 486}
 487
 488static void free_migration(struct dm_cache_migration *mg)
 
 
 
 
 489{
 490	struct cache *cache = mg->cache;
 
 491
 492	if (atomic_dec_and_test(&cache->nr_allocated_migrations))
 493		wake_up(&cache->migration_wait);
 494
 495	mempool_free(mg, &cache->migration_pool);
 
 496}
 497
 498/*----------------------------------------------------------------*/
 499
 500static inline dm_oblock_t oblock_succ(dm_oblock_t b)
 501{
 502	return to_oblock(from_oblock(b) + 1ull);
 503}
 504
 505static void build_key(dm_oblock_t begin, dm_oblock_t end, struct dm_cell_key_v2 *key)
 506{
 507	key->virtual = 0;
 508	key->dev = 0;
 509	key->block_begin = from_oblock(begin);
 510	key->block_end = from_oblock(end);
 511}
 512
 513/*
 514 * We have two lock levels.  Level 0, which is used to prevent WRITEs, and
 515 * level 1 which prevents *both* READs and WRITEs.
 
 516 */
 517#define WRITE_LOCK_LEVEL 0
 518#define READ_WRITE_LOCK_LEVEL 1
 519
 520static unsigned lock_level(struct bio *bio)
 
 
 
 521{
 522	return bio_data_dir(bio) == WRITE ?
 523		WRITE_LOCK_LEVEL :
 524		READ_WRITE_LOCK_LEVEL;
 525}
 526
 527/*----------------------------------------------------------------
 528 * Per bio data
 529 *--------------------------------------------------------------*/
 
 530
 531static struct per_bio_data *get_per_bio_data(struct bio *bio)
 532{
 533	struct per_bio_data *pb = dm_per_bio_data(bio, sizeof(struct per_bio_data));
 534	BUG_ON(!pb);
 535	return pb;
 536}
 537
 538static struct per_bio_data *init_per_bio_data(struct bio *bio)
 
 
 
 539{
 540	struct per_bio_data *pb = get_per_bio_data(bio);
 
 
 541
 542	pb->tick = false;
 543	pb->req_nr = dm_bio_get_target_bio_nr(bio);
 544	pb->cell = NULL;
 545	pb->len = 0;
 
 
 546
 547	return pb;
 548}
 549
 550/*----------------------------------------------------------------*/
 551
 552static void defer_bio(struct cache *cache, struct bio *bio)
 553{
 554	spin_lock_irq(&cache->lock);
 555	bio_list_add(&cache->deferred_bios, bio);
 556	spin_unlock_irq(&cache->lock);
 557
 558	wake_deferred_bio_worker(cache);
 
 
 
 
 
 559}
 560
 561static void defer_bios(struct cache *cache, struct bio_list *bios)
 562{
 563	spin_lock_irq(&cache->lock);
 564	bio_list_merge(&cache->deferred_bios, bios);
 565	bio_list_init(bios);
 566	spin_unlock_irq(&cache->lock);
 567
 568	wake_deferred_bio_worker(cache);
 569}
 570
 571/*----------------------------------------------------------------*/
 572
 573static bool bio_detain_shared(struct cache *cache, dm_oblock_t oblock, struct bio *bio)
 574{
 575	bool r;
 576	struct per_bio_data *pb;
 577	struct dm_cell_key_v2 key;
 578	dm_oblock_t end = to_oblock(from_oblock(oblock) + 1ULL);
 579	struct dm_bio_prison_cell_v2 *cell_prealloc, *cell;
 580
 581	cell_prealloc = alloc_prison_cell(cache); /* FIXME: allow wait if calling from worker */
 582
 583	build_key(oblock, end, &key);
 584	r = dm_cell_get_v2(cache->prison, &key, lock_level(bio), bio, cell_prealloc, &cell);
 585	if (!r) {
 586		/*
 587		 * Failed to get the lock.
 588		 */
 589		free_prison_cell(cache, cell_prealloc);
 590		return r;
 591	}
 592
 593	if (cell != cell_prealloc)
 594		free_prison_cell(cache, cell_prealloc);
 
 
 
 
 
 595
 596	pb = get_per_bio_data(bio);
 597	pb->cell = cell;
 598
 599	return r;
 600}
 
 601
 602/*----------------------------------------------------------------*/
 603
 604static bool is_dirty(struct cache *cache, dm_cblock_t b)
 605{
 606	return test_bit(from_cblock(b), cache->dirty_bitset);
 607}
 608
 609static void set_dirty(struct cache *cache, dm_cblock_t cblock)
 610{
 611	if (!test_and_set_bit(from_cblock(cblock), cache->dirty_bitset)) {
 612		atomic_inc(&cache->nr_dirty);
 613		policy_set_dirty(cache->policy, cblock);
 614	}
 
 615}
 616
 617/*
 618 * These two are called when setting after migrations to force the policy
 619 * and dirty bitset to be in sync.
 620 */
 621static void force_set_dirty(struct cache *cache, dm_cblock_t cblock)
 622{
 623	if (!test_and_set_bit(from_cblock(cblock), cache->dirty_bitset))
 624		atomic_inc(&cache->nr_dirty);
 625	policy_set_dirty(cache->policy, cblock);
 
 
 
 
 
 626}
 627
 628static void force_clear_dirty(struct cache *cache, dm_cblock_t cblock)
 629{
 630	if (test_and_clear_bit(from_cblock(cblock), cache->dirty_bitset)) {
 631		if (atomic_dec_return(&cache->nr_dirty) == 0)
 632			dm_table_event(cache->ti->table);
 633	}
 
 
 634
 635	policy_clear_dirty(cache->policy, cblock);
 636}
 637
 638/*----------------------------------------------------------------*/
 639
 640static bool block_size_is_power_of_two(struct cache *cache)
 641{
 642	return cache->sectors_per_block_shift >= 0;
 
 
 
 
 
 
 643}
 644
 645static dm_block_t block_div(dm_block_t b, uint32_t n)
 646{
 647	do_div(b, n);
 
 
 
 
 
 648
 649	return b;
 650}
 651
 652static dm_block_t oblocks_per_dblock(struct cache *cache)
 653{
 654	dm_block_t oblocks = cache->discard_block_size;
 655
 656	if (block_size_is_power_of_two(cache))
 657		oblocks >>= cache->sectors_per_block_shift;
 658	else
 659		oblocks = block_div(oblocks, cache->sectors_per_block);
 
 660
 661	return oblocks;
 
 
 662}
 663
 664static dm_dblock_t oblock_to_dblock(struct cache *cache, dm_oblock_t oblock)
 665{
 666	return to_dblock(block_div(from_oblock(oblock),
 667				   oblocks_per_dblock(cache)));
 668}
 669
 670static void set_discard(struct cache *cache, dm_dblock_t b)
 671{
 672	BUG_ON(from_dblock(b) >= from_dblock(cache->discard_nr_blocks));
 673	atomic_inc(&cache->stats.discard_count);
 674
 675	spin_lock_irq(&cache->lock);
 676	set_bit(from_dblock(b), cache->discard_bitset);
 677	spin_unlock_irq(&cache->lock);
 678}
 679
 680static void clear_discard(struct cache *cache, dm_dblock_t b)
 681{
 682	spin_lock_irq(&cache->lock);
 683	clear_bit(from_dblock(b), cache->discard_bitset);
 684	spin_unlock_irq(&cache->lock);
 685}
 686
 687static bool is_discarded(struct cache *cache, dm_dblock_t b)
 688{
 689	int r;
 690	spin_lock_irq(&cache->lock);
 691	r = test_bit(from_dblock(b), cache->discard_bitset);
 692	spin_unlock_irq(&cache->lock);
 693
 694	return r;
 695}
 696
 697static bool is_discarded_oblock(struct cache *cache, dm_oblock_t b)
 698{
 699	int r;
 700	spin_lock_irq(&cache->lock);
 701	r = test_bit(from_dblock(oblock_to_dblock(cache, b)),
 702		     cache->discard_bitset);
 703	spin_unlock_irq(&cache->lock);
 704
 705	return r;
 706}
 707
 708/*----------------------------------------------------------------
 709 * Remapping
 710 *--------------------------------------------------------------*/
 711static void remap_to_origin(struct cache *cache, struct bio *bio)
 712{
 713	bio_set_dev(bio, cache->origin_dev->bdev);
 714}
 715
 716static void remap_to_cache(struct cache *cache, struct bio *bio,
 717			   dm_cblock_t cblock)
 718{
 719	sector_t bi_sector = bio->bi_iter.bi_sector;
 720	sector_t block = from_cblock(cblock);
 721
 722	bio_set_dev(bio, cache->cache_dev->bdev);
 723	if (!block_size_is_power_of_two(cache))
 724		bio->bi_iter.bi_sector =
 725			(block * cache->sectors_per_block) +
 726			sector_div(bi_sector, cache->sectors_per_block);
 727	else
 728		bio->bi_iter.bi_sector =
 729			(block << cache->sectors_per_block_shift) |
 730			(bi_sector & (cache->sectors_per_block - 1));
 731}
 732
 733static void check_if_tick_bio_needed(struct cache *cache, struct bio *bio)
 734{
 735	struct per_bio_data *pb;
 
 
 736
 737	spin_lock_irq(&cache->lock);
 738	if (cache->need_tick_bio && !op_is_flush(bio->bi_opf) &&
 739	    bio_op(bio) != REQ_OP_DISCARD) {
 740		pb = get_per_bio_data(bio);
 741		pb->tick = true;
 742		cache->need_tick_bio = false;
 743	}
 744	spin_unlock_irq(&cache->lock);
 745}
 746
 747static void __remap_to_origin_clear_discard(struct cache *cache, struct bio *bio,
 748					    dm_oblock_t oblock, bool bio_has_pbd)
 749{
 750	if (bio_has_pbd)
 751		check_if_tick_bio_needed(cache, bio);
 752	remap_to_origin(cache, bio);
 753	if (bio_data_dir(bio) == WRITE)
 754		clear_discard(cache, oblock_to_dblock(cache, oblock));
 755}
 756
 757static void remap_to_origin_clear_discard(struct cache *cache, struct bio *bio,
 758					  dm_oblock_t oblock)
 759{
 760	// FIXME: check_if_tick_bio_needed() is called way too much through this interface
 761	__remap_to_origin_clear_discard(cache, bio, oblock, true);
 762}
 763
 764static void remap_to_cache_dirty(struct cache *cache, struct bio *bio,
 765				 dm_oblock_t oblock, dm_cblock_t cblock)
 766{
 767	check_if_tick_bio_needed(cache, bio);
 768	remap_to_cache(cache, bio, cblock);
 769	if (bio_data_dir(bio) == WRITE) {
 770		set_dirty(cache, cblock);
 771		clear_discard(cache, oblock_to_dblock(cache, oblock));
 772	}
 773}
 774
 775static dm_oblock_t get_bio_block(struct cache *cache, struct bio *bio)
 776{
 777	sector_t block_nr = bio->bi_iter.bi_sector;
 778
 779	if (!block_size_is_power_of_two(cache))
 780		(void) sector_div(block_nr, cache->sectors_per_block);
 781	else
 782		block_nr >>= cache->sectors_per_block_shift;
 783
 784	return to_oblock(block_nr);
 785}
 786
 787static bool accountable_bio(struct cache *cache, struct bio *bio)
 788{
 789	return bio_op(bio) != REQ_OP_DISCARD;
 790}
 791
 792static void accounted_begin(struct cache *cache, struct bio *bio)
 793{
 794	struct per_bio_data *pb;
 795
 796	if (accountable_bio(cache, bio)) {
 797		pb = get_per_bio_data(bio);
 798		pb->len = bio_sectors(bio);
 799		dm_iot_io_begin(&cache->tracker, pb->len);
 800	}
 
 
 
 
 
 
 
 
 
 801}
 802
 803static void accounted_complete(struct cache *cache, struct bio *bio)
 804{
 805	struct per_bio_data *pb = get_per_bio_data(bio);
 806
 807	dm_iot_io_end(&cache->tracker, pb->len);
 
 
 
 
 808}
 809
 810static void accounted_request(struct cache *cache, struct bio *bio)
 811{
 812	accounted_begin(cache, bio);
 813	submit_bio_noacct(bio);
 814}
 
 
 
 
 
 
 
 
 815
 816static void issue_op(struct bio *bio, void *context)
 817{
 818	struct cache *cache = context;
 819	accounted_request(cache, bio);
 
 
 820}
 821
 822/*
 823 * When running in writethrough mode we need to send writes to clean blocks
 824 * to both the cache and origin devices.  Clone the bio and send them in parallel.
 
 
 825 */
 826static void remap_to_origin_and_cache(struct cache *cache, struct bio *bio,
 827				      dm_oblock_t oblock, dm_cblock_t cblock)
 828{
 829	struct bio *origin_bio = bio_clone_fast(bio, GFP_NOIO, &cache->bs);
 830
 831	BUG_ON(!origin_bio);
 832
 833	bio_chain(origin_bio, bio);
 834	/*
 835	 * Passing false to __remap_to_origin_clear_discard() skips
 836	 * all code that might use per_bio_data (since clone doesn't have it)
 837	 */
 838	__remap_to_origin_clear_discard(cache, origin_bio, oblock, false);
 839	submit_bio(origin_bio);
 840
 841	remap_to_cache(cache, bio, cblock);
 842}
 843
 844/*----------------------------------------------------------------
 845 * Failure modes
 
 
 
 846 *--------------------------------------------------------------*/
 847static enum cache_metadata_mode get_cache_mode(struct cache *cache)
 848{
 849	return cache->features.mode;
 850}
 851
 852static const char *cache_device_name(struct cache *cache)
 853{
 854	return dm_table_device_name(cache->ti->table);
 855}
 856
 857static void notify_mode_switch(struct cache *cache, enum cache_metadata_mode mode)
 858{
 859	const char *descs[] = {
 860		"write",
 861		"read-only",
 862		"fail"
 863	};
 864
 865	dm_table_event(cache->ti->table);
 866	DMINFO("%s: switching cache to %s mode",
 867	       cache_device_name(cache), descs[(int)mode]);
 
 868}
 869
 870static void set_cache_mode(struct cache *cache, enum cache_metadata_mode new_mode)
 
 871{
 872	bool needs_check;
 873	enum cache_metadata_mode old_mode = get_cache_mode(cache);
 
 
 874
 875	if (dm_cache_metadata_needs_check(cache->cmd, &needs_check)) {
 876		DMERR("%s: unable to read needs_check flag, setting failure mode.",
 877		      cache_device_name(cache));
 878		new_mode = CM_FAIL;
 879	}
 880
 881	if (new_mode == CM_WRITE && needs_check) {
 882		DMERR("%s: unable to switch cache to write mode until repaired.",
 883		      cache_device_name(cache));
 884		if (old_mode != new_mode)
 885			new_mode = old_mode;
 886		else
 887			new_mode = CM_READ_ONLY;
 888	}
 889
 890	/* Never move out of fail mode */
 891	if (old_mode == CM_FAIL)
 892		new_mode = CM_FAIL;
 893
 894	switch (new_mode) {
 895	case CM_FAIL:
 896	case CM_READ_ONLY:
 897		dm_cache_metadata_set_read_only(cache->cmd);
 898		break;
 899
 900	case CM_WRITE:
 901		dm_cache_metadata_set_read_write(cache->cmd);
 902		break;
 903	}
 904
 905	cache->features.mode = new_mode;
 906
 907	if (new_mode != old_mode)
 908		notify_mode_switch(cache, new_mode);
 909}
 910
 911static void abort_transaction(struct cache *cache)
 912{
 913	const char *dev_name = cache_device_name(cache);
 914
 915	if (get_cache_mode(cache) >= CM_READ_ONLY)
 916		return;
 917
 918	if (dm_cache_metadata_set_needs_check(cache->cmd)) {
 919		DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
 920		set_cache_mode(cache, CM_FAIL);
 
 
 
 
 
 
 
 
 
 
 921	}
 922
 923	DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
 924	if (dm_cache_metadata_abort(cache->cmd)) {
 925		DMERR("%s: failed to abort metadata transaction", dev_name);
 926		set_cache_mode(cache, CM_FAIL);
 927	}
 928}
 929
 930static void metadata_operation_failed(struct cache *cache, const char *op, int r)
 931{
 932	DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
 933		    cache_device_name(cache), op, r);
 934	abort_transaction(cache);
 935	set_cache_mode(cache, CM_READ_ONLY);
 936}
 937
 938/*----------------------------------------------------------------*/
 
 
 
 
 939
 940static void load_stats(struct cache *cache)
 941{
 942	struct dm_cache_statistics stats;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 943
 944	dm_cache_metadata_get_stats(cache->cmd, &stats);
 945	atomic_set(&cache->stats.read_hit, stats.read_hits);
 946	atomic_set(&cache->stats.read_miss, stats.read_misses);
 947	atomic_set(&cache->stats.write_hit, stats.write_hits);
 948	atomic_set(&cache->stats.write_miss, stats.write_misses);
 949}
 950
 951static void save_stats(struct cache *cache)
 952{
 953	struct dm_cache_statistics stats;
 
 954
 955	if (get_cache_mode(cache) >= CM_READ_ONLY)
 
 956		return;
 957
 958	stats.read_hits = atomic_read(&cache->stats.read_hit);
 959	stats.read_misses = atomic_read(&cache->stats.read_miss);
 960	stats.write_hits = atomic_read(&cache->stats.write_hit);
 961	stats.write_misses = atomic_read(&cache->stats.write_miss);
 962
 963	dm_cache_metadata_set_stats(cache->cmd, &stats);
 964}
 965
 966static void update_stats(struct cache_stats *stats, enum policy_operation op)
 967{
 968	switch (op) {
 969	case POLICY_PROMOTE:
 970		atomic_inc(&stats->promotion);
 971		break;
 972
 973	case POLICY_DEMOTE:
 974		atomic_inc(&stats->demotion);
 975		break;
 
 
 976
 977	case POLICY_WRITEBACK:
 978		atomic_inc(&stats->writeback);
 979		break;
 
 
 
 
 
 
 980	}
 981}
 982
 983/*----------------------------------------------------------------
 984 * Migration processing
 985 *
 986 * Migration covers moving data from the origin device to the cache, or
 987 * vice versa.
 988 *--------------------------------------------------------------*/
 989
 990static void inc_io_migrations(struct cache *cache)
 991{
 992	atomic_inc(&cache->nr_io_migrations);
 993}
 994
 995static void dec_io_migrations(struct cache *cache)
 996{
 997	atomic_dec(&cache->nr_io_migrations);
 998}
 999
1000static bool discard_or_flush(struct bio *bio)
1001{
1002	return bio_op(bio) == REQ_OP_DISCARD || op_is_flush(bio->bi_opf);
1003}
1004
1005static void calc_discard_block_range(struct cache *cache, struct bio *bio,
1006				     dm_dblock_t *b, dm_dblock_t *e)
1007{
1008	sector_t sb = bio->bi_iter.bi_sector;
1009	sector_t se = bio_end_sector(bio);
 
 
1010
1011	*b = to_dblock(dm_sector_div_up(sb, cache->discard_block_size));
 
1012
1013	if (se - sb < cache->discard_block_size)
1014		*e = *b;
1015	else
1016		*e = to_dblock(block_div(se, cache->discard_block_size));
1017}
1018
1019/*----------------------------------------------------------------*/
 
 
 
 
 
 
 
 
1020
1021static void prevent_background_work(struct cache *cache)
1022{
1023	lockdep_off();
1024	down_write(&cache->background_work_lock);
1025	lockdep_on();
1026}
1027
1028static void allow_background_work(struct cache *cache)
1029{
1030	lockdep_off();
1031	up_write(&cache->background_work_lock);
1032	lockdep_on();
1033}
 
 
 
 
 
 
1034
1035static bool background_work_begin(struct cache *cache)
1036{
1037	bool r;
1038
1039	lockdep_off();
1040	r = down_read_trylock(&cache->background_work_lock);
1041	lockdep_on();
1042
1043	return r;
1044}
1045
1046static void background_work_end(struct cache *cache)
1047{
1048	lockdep_off();
1049	up_read(&cache->background_work_lock);
1050	lockdep_on();
 
 
 
1051}
1052
1053/*----------------------------------------------------------------*/
1054
1055static bool bio_writes_complete_block(struct cache *cache, struct bio *bio)
1056{
1057	return (bio_data_dir(bio) == WRITE) &&
1058		(bio->bi_iter.bi_size == (cache->sectors_per_block << SECTOR_SHIFT));
1059}
1060
1061static bool optimisable_bio(struct cache *cache, struct bio *bio, dm_oblock_t block)
1062{
1063	return writeback_mode(cache) &&
1064		(is_discarded_oblock(cache, block) || bio_writes_complete_block(cache, bio));
1065}
1066
1067static void quiesce(struct dm_cache_migration *mg,
1068		    void (*continuation)(struct work_struct *))
1069{
1070	init_continuation(&mg->k, continuation);
1071	dm_cell_quiesce_v2(mg->cache->prison, mg->cell, &mg->k.ws);
1072}
1073
1074static struct dm_cache_migration *ws_to_mg(struct work_struct *ws)
1075{
1076	struct continuation *k = container_of(ws, struct continuation, ws);
1077	return container_of(k, struct dm_cache_migration, k);
1078}
1079
1080static void copy_complete(int read_err, unsigned long write_err, void *context)
1081{
1082	struct dm_cache_migration *mg = container_of(context, struct dm_cache_migration, k);
1083
1084	if (read_err || write_err)
1085		mg->k.input = BLK_STS_IOERR;
 
 
 
1086
1087	queue_continuation(mg->cache->wq, &mg->k);
1088}
1089
1090static void copy(struct dm_cache_migration *mg, bool promote)
1091{
1092	struct dm_io_region o_region, c_region;
1093	struct cache *cache = mg->cache;
 
 
 
1094
1095	o_region.bdev = cache->origin_dev->bdev;
1096	o_region.sector = from_oblock(mg->op->oblock) * cache->sectors_per_block;
1097	o_region.count = cache->sectors_per_block;
 
 
 
1098
1099	c_region.bdev = cache->cache_dev->bdev;
1100	c_region.sector = from_cblock(mg->op->cblock) * cache->sectors_per_block;
1101	c_region.count = cache->sectors_per_block;
 
1102
1103	if (promote)
1104		dm_kcopyd_copy(cache->copier, &o_region, 1, &c_region, 0, copy_complete, &mg->k);
1105	else
1106		dm_kcopyd_copy(cache->copier, &c_region, 1, &o_region, 0, copy_complete, &mg->k);
1107}
1108
1109static void bio_drop_shared_lock(struct cache *cache, struct bio *bio)
1110{
1111	struct per_bio_data *pb = get_per_bio_data(bio);
1112
1113	if (pb->cell && dm_cell_put_v2(cache->prison, pb->cell))
1114		free_prison_cell(cache, pb->cell);
1115	pb->cell = NULL;
1116}
1117
1118static void overwrite_endio(struct bio *bio)
1119{
1120	struct dm_cache_migration *mg = bio->bi_private;
1121	struct cache *cache = mg->cache;
1122	struct per_bio_data *pb = get_per_bio_data(bio);
1123
1124	dm_unhook_bio(&pb->hook_info, bio);
1125
1126	if (bio->bi_status)
1127		mg->k.input = bio->bi_status;
1128
1129	queue_continuation(cache->wq, &mg->k);
1130}
1131
1132static void overwrite(struct dm_cache_migration *mg,
1133		      void (*continuation)(struct work_struct *))
1134{
1135	struct bio *bio = mg->overwrite_bio;
1136	struct per_bio_data *pb = get_per_bio_data(bio);
1137
1138	dm_hook_bio(&pb->hook_info, bio, overwrite_endio, mg);
1139
1140	/*
1141	 * The overwrite bio is part of the copy operation, as such it does
1142	 * not set/clear discard or dirty flags.
1143	 */
1144	if (mg->op->op == POLICY_PROMOTE)
1145		remap_to_cache(mg->cache, bio, mg->op->cblock);
1146	else
1147		remap_to_origin(mg->cache, bio);
1148
1149	init_continuation(&mg->k, continuation);
1150	accounted_request(mg->cache, bio);
1151}
1152
1153/*
1154 * Migration steps:
1155 *
1156 * 1) exclusive lock preventing WRITEs
1157 * 2) quiesce
1158 * 3) copy or issue overwrite bio
1159 * 4) upgrade to exclusive lock preventing READs and WRITEs
1160 * 5) quiesce
1161 * 6) update metadata and commit
1162 * 7) unlock
1163 */
1164static void mg_complete(struct dm_cache_migration *mg, bool success)
1165{
1166	struct bio_list bios;
1167	struct cache *cache = mg->cache;
1168	struct policy_work *op = mg->op;
1169	dm_cblock_t cblock = op->cblock;
1170
1171	if (success)
1172		update_stats(&cache->stats, op->op);
1173
1174	switch (op->op) {
1175	case POLICY_PROMOTE:
1176		clear_discard(cache, oblock_to_dblock(cache, op->oblock));
1177		policy_complete_background_work(cache->policy, op, success);
1178
1179		if (mg->overwrite_bio) {
1180			if (success)
1181				force_set_dirty(cache, cblock);
1182			else if (mg->k.input)
1183				mg->overwrite_bio->bi_status = mg->k.input;
1184			else
1185				mg->overwrite_bio->bi_status = BLK_STS_IOERR;
1186			bio_endio(mg->overwrite_bio);
1187		} else {
1188			if (success)
1189				force_clear_dirty(cache, cblock);
1190			dec_io_migrations(cache);
1191		}
1192		break;
1193
1194	case POLICY_DEMOTE:
1195		/*
1196		 * We clear dirty here to update the nr_dirty counter.
1197		 */
1198		if (success)
1199			force_clear_dirty(cache, cblock);
1200		policy_complete_background_work(cache->policy, op, success);
1201		dec_io_migrations(cache);
1202		break;
1203
1204	case POLICY_WRITEBACK:
1205		if (success)
1206			force_clear_dirty(cache, cblock);
1207		policy_complete_background_work(cache->policy, op, success);
1208		dec_io_migrations(cache);
1209		break;
1210	}
1211
1212	bio_list_init(&bios);
1213	if (mg->cell) {
1214		if (dm_cell_unlock_v2(cache->prison, mg->cell, &bios))
1215			free_prison_cell(cache, mg->cell);
1216	}
1217
1218	free_migration(mg);
1219	defer_bios(cache, &bios);
1220	wake_migration_worker(cache);
1221
1222	background_work_end(cache);
1223}
1224
1225static void mg_success(struct work_struct *ws)
1226{
1227	struct dm_cache_migration *mg = ws_to_mg(ws);
1228	mg_complete(mg, mg->k.input == 0);
1229}
1230
1231static void mg_update_metadata(struct work_struct *ws)
 
 
1232{
1233	int r;
1234	struct dm_cache_migration *mg = ws_to_mg(ws);
1235	struct cache *cache = mg->cache;
1236	struct policy_work *op = mg->op;
1237
1238	switch (op->op) {
1239	case POLICY_PROMOTE:
1240		r = dm_cache_insert_mapping(cache->cmd, op->cblock, op->oblock);
1241		if (r) {
1242			DMERR_LIMIT("%s: migration failed; couldn't insert mapping",
1243				    cache_device_name(cache));
1244			metadata_operation_failed(cache, "dm_cache_insert_mapping", r);
1245
1246			mg_complete(mg, false);
1247			return;
1248		}
1249		mg_complete(mg, true);
1250		break;
1251
1252	case POLICY_DEMOTE:
1253		r = dm_cache_remove_mapping(cache->cmd, op->cblock);
1254		if (r) {
1255			DMERR_LIMIT("%s: migration failed; couldn't update on disk metadata",
1256				    cache_device_name(cache));
1257			metadata_operation_failed(cache, "dm_cache_remove_mapping", r);
1258
1259			mg_complete(mg, false);
1260			return;
1261		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1262
1263		/*
1264		 * It would be nice if we only had to commit when a REQ_FLUSH
1265		 * comes through.  But there's one scenario that we have to
1266		 * look out for:
1267		 *
1268		 * - vblock x in a cache block
1269		 * - domotion occurs
1270		 * - cache block gets reallocated and over written
1271		 * - crash
1272		 *
1273		 * When we recover, because there was no commit the cache will
1274		 * rollback to having the data for vblock x in the cache block.
1275		 * But the cache block has since been overwritten, so it'll end
1276		 * up pointing to data that was never in 'x' during the history
1277		 * of the device.
1278		 *
1279		 * To avoid this issue we require a commit as part of the
1280		 * demotion operation.
1281		 */
1282		init_continuation(&mg->k, mg_success);
1283		continue_after_commit(&cache->committer, &mg->k);
1284		schedule_commit(&cache->committer);
1285		break;
1286
1287	case POLICY_WRITEBACK:
1288		mg_complete(mg, true);
1289		break;
1290	}
1291}
1292
1293static void mg_update_metadata_after_copy(struct work_struct *ws)
 
 
 
 
 
 
1294{
1295	struct dm_cache_migration *mg = ws_to_mg(ws);
1296
1297	/*
1298	 * Did the copy succeed?
1299	 */
1300	if (mg->k.input)
1301		mg_complete(mg, false);
1302	else
1303		mg_update_metadata(ws);
 
 
 
 
 
 
 
 
1304}
1305
1306static void mg_upgrade_lock(struct work_struct *ws)
 
 
 
1307{
1308	int r;
1309	struct dm_cache_migration *mg = ws_to_mg(ws);
1310
1311	/*
1312	 * Did the copy succeed?
1313	 */
1314	if (mg->k.input)
1315		mg_complete(mg, false);
1316
1317	else {
1318		/*
1319		 * Now we want the lock to prevent both reads and writes.
1320		 */
1321		r = dm_cell_lock_promote_v2(mg->cache->prison, mg->cell,
1322					    READ_WRITE_LOCK_LEVEL);
1323		if (r < 0)
1324			mg_complete(mg, false);
1325
1326		else if (r)
1327			quiesce(mg, mg_update_metadata);
1328
1329		else
1330			mg_update_metadata(ws);
1331	}
1332}
1333
1334static void mg_full_copy(struct work_struct *ws)
1335{
1336	struct dm_cache_migration *mg = ws_to_mg(ws);
1337	struct cache *cache = mg->cache;
1338	struct policy_work *op = mg->op;
1339	bool is_policy_promote = (op->op == POLICY_PROMOTE);
1340
1341	if ((!is_policy_promote && !is_dirty(cache, op->cblock)) ||
1342	    is_discarded_oblock(cache, op->oblock)) {
1343		mg_upgrade_lock(ws);
1344		return;
1345	}
1346
1347	init_continuation(&mg->k, mg_upgrade_lock);
1348	copy(mg, is_policy_promote);
1349}
1350
1351static void mg_copy(struct work_struct *ws)
 
 
 
 
 
 
 
 
 
 
 
 
1352{
1353	struct dm_cache_migration *mg = ws_to_mg(ws);
 
 
 
1354
1355	if (mg->overwrite_bio) {
1356		/*
1357		 * No exclusive lock was held when we last checked if the bio
1358		 * was optimisable.  So we have to check again in case things
1359		 * have changed (eg, the block may no longer be discarded).
1360		 */
1361		if (!optimisable_bio(mg->cache, mg->overwrite_bio, mg->op->oblock)) {
1362			/*
1363			 * Fallback to a real full copy after doing some tidying up.
1364			 */
1365			bool rb = bio_detain_shared(mg->cache, mg->op->oblock, mg->overwrite_bio);
1366			BUG_ON(rb); /* An exclussive lock must _not_ be held for this block */
1367			mg->overwrite_bio = NULL;
1368			inc_io_migrations(mg->cache);
1369			mg_full_copy(ws);
1370			return;
1371		}
1372
1373		/*
1374		 * It's safe to do this here, even though it's new data
1375		 * because all IO has been locked out of the block.
1376		 *
1377		 * mg_lock_writes() already took READ_WRITE_LOCK_LEVEL
1378		 * so _not_ using mg_upgrade_lock() as continutation.
1379		 */
1380		overwrite(mg, mg_update_metadata_after_copy);
1381
1382	} else
1383		mg_full_copy(ws);
1384}
1385
1386static int mg_lock_writes(struct dm_cache_migration *mg)
1387{
1388	int r;
1389	struct dm_cell_key_v2 key;
1390	struct cache *cache = mg->cache;
1391	struct dm_bio_prison_cell_v2 *prealloc;
1392
1393	prealloc = alloc_prison_cell(cache);
 
 
 
 
1394
1395	/*
1396	 * Prevent writes to the block, but allow reads to continue.
1397	 * Unless we're using an overwrite bio, in which case we lock
1398	 * everything.
1399	 */
1400	build_key(mg->op->oblock, oblock_succ(mg->op->oblock), &key);
1401	r = dm_cell_lock_v2(cache->prison, &key,
1402			    mg->overwrite_bio ?  READ_WRITE_LOCK_LEVEL : WRITE_LOCK_LEVEL,
1403			    prealloc, &mg->cell);
1404	if (r < 0) {
1405		free_prison_cell(cache, prealloc);
1406		mg_complete(mg, false);
1407		return r;
1408	}
1409
1410	if (mg->cell != prealloc)
1411		free_prison_cell(cache, prealloc);
1412
1413	if (r == 0)
1414		mg_copy(&mg->k.ws);
1415	else
1416		quiesce(mg, mg_copy);
1417
1418	return 0;
1419}
1420
1421static int mg_start(struct cache *cache, struct policy_work *op, struct bio *bio)
 
1422{
1423	struct dm_cache_migration *mg;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1424
1425	if (!background_work_begin(cache)) {
1426		policy_complete_background_work(cache->policy, op, false);
1427		return -EPERM;
1428	}
1429
1430	mg = alloc_migration(cache);
 
 
 
 
 
 
 
1431
1432	mg->op = op;
1433	mg->overwrite_bio = bio;
 
 
 
1434
1435	if (!bio)
1436		inc_io_migrations(cache);
 
 
1437
1438	return mg_lock_writes(mg);
1439}
 
 
 
 
 
 
1440
1441/*----------------------------------------------------------------
1442 * invalidation processing
1443 *--------------------------------------------------------------*/
 
 
 
 
 
 
1444
1445static void invalidate_complete(struct dm_cache_migration *mg, bool success)
1446{
1447	struct bio_list bios;
1448	struct cache *cache = mg->cache;
1449
1450	bio_list_init(&bios);
1451	if (dm_cell_unlock_v2(cache->prison, mg->cell, &bios))
1452		free_prison_cell(cache, mg->cell);
 
 
 
1453
1454	if (!success && mg->overwrite_bio)
1455		bio_io_error(mg->overwrite_bio);
 
 
 
1456
1457	free_migration(mg);
1458	defer_bios(cache, &bios);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1459
1460	background_work_end(cache);
1461}
 
 
 
1462
1463static void invalidate_completed(struct work_struct *ws)
1464{
1465	struct dm_cache_migration *mg = ws_to_mg(ws);
1466	invalidate_complete(mg, !mg->k.input);
1467}
1468
1469static int invalidate_cblock(struct cache *cache, dm_cblock_t cblock)
1470{
1471	int r = policy_invalidate_mapping(cache->policy, cblock);
1472	if (!r) {
1473		r = dm_cache_remove_mapping(cache->cmd, cblock);
1474		if (r) {
1475			DMERR_LIMIT("%s: invalidation failed; couldn't update on disk metadata",
1476				    cache_device_name(cache));
1477			metadata_operation_failed(cache, "dm_cache_remove_mapping", r);
1478		}
1479
1480	} else if (r == -ENODATA) {
1481		/*
1482		 * Harmless, already unmapped.
1483		 */
1484		r = 0;
1485
1486	} else
1487		DMERR("%s: policy_invalidate_mapping failed", cache_device_name(cache));
1488
1489	return r;
1490}
1491
1492static void invalidate_remove(struct work_struct *ws)
1493{
1494	int r;
1495	struct dm_cache_migration *mg = ws_to_mg(ws);
1496	struct cache *cache = mg->cache;
1497
1498	r = invalidate_cblock(cache, mg->invalidate_cblock);
1499	if (r) {
1500		invalidate_complete(mg, false);
1501		return;
 
 
1502	}
1503
1504	init_continuation(&mg->k, invalidate_completed);
1505	continue_after_commit(&cache->committer, &mg->k);
1506	remap_to_origin_clear_discard(cache, mg->overwrite_bio, mg->invalidate_oblock);
1507	mg->overwrite_bio = NULL;
1508	schedule_commit(&cache->committer);
1509}
1510
1511static int invalidate_lock(struct dm_cache_migration *mg)
1512{
1513	int r;
1514	struct dm_cell_key_v2 key;
1515	struct cache *cache = mg->cache;
1516	struct dm_bio_prison_cell_v2 *prealloc;
1517
1518	prealloc = alloc_prison_cell(cache);
 
1519
1520	build_key(mg->invalidate_oblock, oblock_succ(mg->invalidate_oblock), &key);
1521	r = dm_cell_lock_v2(cache->prison, &key,
1522			    READ_WRITE_LOCK_LEVEL, prealloc, &mg->cell);
1523	if (r < 0) {
1524		free_prison_cell(cache, prealloc);
1525		invalidate_complete(mg, false);
1526		return r;
1527	}
1528
1529	if (mg->cell != prealloc)
1530		free_prison_cell(cache, prealloc);
 
 
 
 
 
 
 
 
 
 
1531
1532	if (r)
1533		quiesce(mg, invalidate_remove);
1534
1535	else {
1536		/*
1537		 * We can't call invalidate_remove() directly here because we
1538		 * might still be in request context.
1539		 */
1540		init_continuation(&mg->k, invalidate_remove);
1541		queue_work(cache->wq, &mg->k.ws);
1542	}
1543
1544	return 0;
1545}
1546
1547static int invalidate_start(struct cache *cache, dm_cblock_t cblock,
1548			    dm_oblock_t oblock, struct bio *bio)
1549{
1550	struct dm_cache_migration *mg;
 
 
1551
1552	if (!background_work_begin(cache))
1553		return -EPERM;
1554
1555	mg = alloc_migration(cache);
1556
1557	mg->overwrite_bio = bio;
1558	mg->invalidate_cblock = cblock;
1559	mg->invalidate_oblock = oblock;
 
1560
1561	return invalidate_lock(mg);
 
1562}
1563
1564/*----------------------------------------------------------------
1565 * bio processing
1566 *--------------------------------------------------------------*/
 
 
1567
1568enum busy {
1569	IDLE,
1570	BUSY
1571};
1572
1573static enum busy spare_migration_bandwidth(struct cache *cache)
1574{
1575	bool idle = dm_iot_idle_for(&cache->tracker, HZ);
1576	sector_t current_volume = (atomic_read(&cache->nr_io_migrations) + 1) *
1577		cache->sectors_per_block;
1578
1579	if (idle && current_volume <= cache->migration_threshold)
1580		return IDLE;
1581	else
1582		return BUSY;
1583}
1584
1585static void inc_hit_counter(struct cache *cache, struct bio *bio)
1586{
1587	atomic_inc(bio_data_dir(bio) == READ ?
1588		   &cache->stats.read_hit : &cache->stats.write_hit);
1589}
 
 
1590
1591static void inc_miss_counter(struct cache *cache, struct bio *bio)
1592{
1593	atomic_inc(bio_data_dir(bio) == READ ?
1594		   &cache->stats.read_miss : &cache->stats.write_miss);
1595}
1596
1597/*----------------------------------------------------------------*/
 
 
1598
1599static int map_bio(struct cache *cache, struct bio *bio, dm_oblock_t block,
1600		   bool *commit_needed)
1601{
1602	int r, data_dir;
1603	bool rb, background_queued;
1604	dm_cblock_t cblock;
1605
1606	*commit_needed = false;
 
 
 
 
1607
1608	rb = bio_detain_shared(cache, block, bio);
1609	if (!rb) {
1610		/*
1611		 * An exclusive lock is held for this block, so we have to
1612		 * wait.  We set the commit_needed flag so the current
1613		 * transaction will be committed asap, allowing this lock
1614		 * to be dropped.
1615		 */
1616		*commit_needed = true;
1617		return DM_MAPIO_SUBMITTED;
1618	}
1619
1620	data_dir = bio_data_dir(bio);
 
1621
1622	if (optimisable_bio(cache, bio, block)) {
1623		struct policy_work *op = NULL;
 
 
1624
1625		r = policy_lookup_with_work(cache->policy, block, &cblock, data_dir, true, &op);
1626		if (unlikely(r && r != -ENOENT)) {
1627			DMERR_LIMIT("%s: policy_lookup_with_work() failed with r = %d",
1628				    cache_device_name(cache), r);
1629			bio_io_error(bio);
1630			return DM_MAPIO_SUBMITTED;
1631		}
1632
1633		if (r == -ENOENT && op) {
1634			bio_drop_shared_lock(cache, bio);
1635			BUG_ON(op->op != POLICY_PROMOTE);
1636			mg_start(cache, op, bio);
1637			return DM_MAPIO_SUBMITTED;
1638		}
1639	} else {
1640		r = policy_lookup(cache->policy, block, &cblock, data_dir, false, &background_queued);
1641		if (unlikely(r && r != -ENOENT)) {
1642			DMERR_LIMIT("%s: policy_lookup() failed with r = %d",
1643				    cache_device_name(cache), r);
1644			bio_io_error(bio);
1645			return DM_MAPIO_SUBMITTED;
1646		}
1647
1648		if (background_queued)
1649			wake_migration_worker(cache);
1650	}
1651
1652	if (r == -ENOENT) {
1653		struct per_bio_data *pb = get_per_bio_data(bio);
 
1654
1655		/*
1656		 * Miss.
1657		 */
1658		inc_miss_counter(cache, bio);
1659		if (pb->req_nr == 0) {
1660			accounted_begin(cache, bio);
1661			remap_to_origin_clear_discard(cache, bio, block);
1662		} else {
1663			/*
1664			 * This is a duplicate writethrough io that is no
1665			 * longer needed because the block has been demoted.
1666			 */
1667			bio_endio(bio);
1668			return DM_MAPIO_SUBMITTED;
1669		}
1670	} else {
1671		/*
1672		 * Hit.
1673		 */
1674		inc_hit_counter(cache, bio);
1675
1676		/*
1677		 * Passthrough always maps to the origin, invalidating any
1678		 * cache blocks that are written to.
1679		 */
1680		if (passthrough_mode(cache)) {
1681			if (bio_data_dir(bio) == WRITE) {
1682				bio_drop_shared_lock(cache, bio);
1683				atomic_inc(&cache->stats.demotion);
1684				invalidate_start(cache, cblock, block, bio);
1685			} else
1686				remap_to_origin_clear_discard(cache, bio, block);
1687		} else {
1688			if (bio_data_dir(bio) == WRITE && writethrough_mode(cache) &&
1689			    !is_dirty(cache, cblock)) {
1690				remap_to_origin_and_cache(cache, bio, block, cblock);
1691				accounted_begin(cache, bio);
1692			} else
1693				remap_to_cache_dirty(cache, bio, block, cblock);
1694		}
1695	}
1696
1697	/*
1698	 * dm core turns FUA requests into a separate payload and FLUSH req.
1699	 */
1700	if (bio->bi_opf & REQ_FUA) {
1701		/*
1702		 * issue_after_commit will call accounted_begin a second time.  So
1703		 * we call accounted_complete() to avoid double accounting.
1704		 */
1705		accounted_complete(cache, bio);
1706		issue_after_commit(&cache->committer, bio);
1707		*commit_needed = true;
1708		return DM_MAPIO_SUBMITTED;
1709	}
1710
1711	return DM_MAPIO_REMAPPED;
1712}
1713
1714static bool process_bio(struct cache *cache, struct bio *bio)
1715{
1716	bool commit_needed;
 
1717
1718	if (map_bio(cache, bio, get_bio_block(cache, bio), &commit_needed) == DM_MAPIO_REMAPPED)
1719		submit_bio_noacct(bio);
 
 
1720
1721	return commit_needed;
 
1722}
1723
1724/*
1725 * A non-zero return indicates read_only or fail_io mode.
1726 */
1727static int commit(struct cache *cache, bool clean_shutdown)
1728{
1729	int r;
 
1730
1731	if (get_cache_mode(cache) >= CM_READ_ONLY)
1732		return -EINVAL;
 
 
 
 
 
1733
1734	atomic_inc(&cache->stats.commit_count);
1735	r = dm_cache_commit(cache->cmd, clean_shutdown);
1736	if (r)
1737		metadata_operation_failed(cache, "dm_cache_commit", r);
1738
1739	return r;
 
 
 
1740}
1741
1742/*
1743 * Used by the batcher.
1744 */
1745static blk_status_t commit_op(void *context)
1746{
1747	struct cache *cache = context;
1748
1749	if (dm_cache_changed_this_transaction(cache->cmd))
1750		return errno_to_blk_status(commit(cache, false));
1751
1752	return 0;
1753}
1754
1755/*----------------------------------------------------------------*/
1756
1757static bool process_flush_bio(struct cache *cache, struct bio *bio)
1758{
1759	struct per_bio_data *pb = get_per_bio_data(bio);
1760
1761	if (!pb->req_nr)
1762		remap_to_origin(cache, bio);
1763	else
1764		remap_to_cache(cache, bio, 0);
1765
1766	issue_after_commit(&cache->committer, bio);
1767	return true;
1768}
1769
1770static bool process_discard_bio(struct cache *cache, struct bio *bio)
1771{
1772	dm_dblock_t b, e;
1773
1774	// FIXME: do we need to lock the region?  Or can we just assume the
1775	// user wont be so foolish as to issue discard concurrently with
1776	// other IO?
1777	calc_discard_block_range(cache, bio, &b, &e);
1778	while (b != e) {
1779		set_discard(cache, b);
1780		b = to_dblock(from_dblock(b) + 1);
1781	}
1782
1783	if (cache->features.discard_passdown) {
1784		remap_to_origin(cache, bio);
1785		submit_bio_noacct(bio);
1786	} else
1787		bio_endio(bio);
1788
1789	return false;
1790}
1791
1792static void process_deferred_bios(struct work_struct *ws)
1793{
1794	struct cache *cache = container_of(ws, struct cache, deferred_bio_worker);
1795
1796	bool commit_needed = false;
1797	struct bio_list bios;
1798	struct bio *bio;
1799
1800	bio_list_init(&bios);
1801
1802	spin_lock_irq(&cache->lock);
1803	bio_list_merge(&bios, &cache->deferred_bios);
1804	bio_list_init(&cache->deferred_bios);
1805	spin_unlock_irq(&cache->lock);
1806
1807	while ((bio = bio_list_pop(&bios))) {
1808		if (bio->bi_opf & REQ_PREFLUSH)
1809			commit_needed = process_flush_bio(cache, bio) || commit_needed;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1810
1811		else if (bio_op(bio) == REQ_OP_DISCARD)
1812			commit_needed = process_discard_bio(cache, bio) || commit_needed;
 
1813
1814		else
1815			commit_needed = process_bio(cache, bio) || commit_needed;
1816	}
 
 
 
 
1817
1818	if (commit_needed)
1819		schedule_commit(&cache->committer);
1820}
1821
1822/*----------------------------------------------------------------
1823 * Main worker loop
1824 *--------------------------------------------------------------*/
1825
1826static void requeue_deferred_bios(struct cache *cache)
1827{
1828	struct bio *bio;
1829	struct bio_list bios;
 
 
 
 
 
1830
1831	bio_list_init(&bios);
1832	bio_list_merge(&bios, &cache->deferred_bios);
1833	bio_list_init(&cache->deferred_bios);
1834
1835	while ((bio = bio_list_pop(&bios))) {
1836		bio->bi_status = BLK_STS_DM_REQUEUE;
1837		bio_endio(bio);
1838	}
1839}
1840
1841/*
1842 * We want to commit periodically so that not too much
1843 * unwritten metadata builds up.
1844 */
1845static void do_waker(struct work_struct *ws)
1846{
1847	struct cache *cache = container_of(to_delayed_work(ws), struct cache, waker);
1848
1849	policy_tick(cache->policy, true);
1850	wake_migration_worker(cache);
1851	schedule_commit(&cache->committer);
1852	queue_delayed_work(cache->wq, &cache->waker, COMMIT_PERIOD);
1853}
1854
1855static void check_migrations(struct work_struct *ws)
 
 
1856{
1857	int r;
1858	struct policy_work *op;
1859	struct cache *cache = container_of(ws, struct cache, migration_worker);
1860	enum busy b;
1861
1862	for (;;) {
1863		b = spare_migration_bandwidth(cache);
1864
1865		r = policy_get_background_work(cache->policy, b == IDLE, &op);
1866		if (r == -ENODATA)
1867			break;
1868
1869		if (r) {
1870			DMERR_LIMIT("%s: policy_background_work failed",
1871				    cache_device_name(cache));
1872			break;
1873		}
1874
1875		r = mg_start(cache, op, NULL);
1876		if (r)
1877			break;
1878	}
1879}
1880
1881/*----------------------------------------------------------------
1882 * Target methods
1883 *--------------------------------------------------------------*/
1884
1885/*
1886 * This function gets called on the error paths of the constructor, so we
1887 * have to cope with a partially initialised struct.
1888 */
1889static void destroy(struct cache *cache)
1890{
1891	unsigned i;
1892
1893	mempool_exit(&cache->migration_pool);
 
 
 
 
 
 
 
1894
1895	if (cache->prison)
1896		dm_bio_prison_destroy_v2(cache->prison);
1897
1898	if (cache->wq)
1899		destroy_workqueue(cache->wq);
1900
1901	if (cache->dirty_bitset)
1902		free_bitset(cache->dirty_bitset);
1903
1904	if (cache->discard_bitset)
1905		free_bitset(cache->discard_bitset);
1906
1907	if (cache->copier)
1908		dm_kcopyd_client_destroy(cache->copier);
1909
1910	if (cache->cmd)
1911		dm_cache_metadata_close(cache->cmd);
1912
1913	if (cache->metadata_dev)
1914		dm_put_device(cache->ti, cache->metadata_dev);
1915
1916	if (cache->origin_dev)
1917		dm_put_device(cache->ti, cache->origin_dev);
1918
1919	if (cache->cache_dev)
1920		dm_put_device(cache->ti, cache->cache_dev);
1921
1922	if (cache->policy)
1923		dm_cache_policy_destroy(cache->policy);
1924
1925	for (i = 0; i < cache->nr_ctr_args ; i++)
1926		kfree(cache->ctr_args[i]);
1927	kfree(cache->ctr_args);
1928
1929	bioset_exit(&cache->bs);
1930
1931	kfree(cache);
1932}
1933
1934static void cache_dtr(struct dm_target *ti)
1935{
1936	struct cache *cache = ti->private;
1937
1938	destroy(cache);
1939}
1940
1941static sector_t get_dev_size(struct dm_dev *dev)
1942{
1943	return i_size_read(dev->bdev->bd_inode) >> SECTOR_SHIFT;
1944}
1945
1946/*----------------------------------------------------------------*/
1947
1948/*
1949 * Construct a cache device mapping.
1950 *
1951 * cache <metadata dev> <cache dev> <origin dev> <block size>
1952 *       <#feature args> [<feature arg>]*
1953 *       <policy> <#policy args> [<policy arg>]*
1954 *
1955 * metadata dev    : fast device holding the persistent metadata
1956 * cache dev	   : fast device holding cached data blocks
1957 * origin dev	   : slow device holding original data blocks
1958 * block size	   : cache unit size in sectors
1959 *
1960 * #feature args   : number of feature arguments passed
1961 * feature args    : writethrough.  (The default is writeback.)
1962 *
1963 * policy	   : the replacement policy to use
1964 * #policy args    : an even number of policy arguments corresponding
1965 *		     to key/value pairs passed to the policy
1966 * policy args	   : key/value pairs passed to the policy
1967 *		     E.g. 'sequential_threshold 1024'
1968 *		     See cache-policies.txt for details.
1969 *
1970 * Optional feature arguments are:
1971 *   writethrough  : write through caching that prohibits cache block
1972 *		     content from being different from origin block content.
1973 *		     Without this argument, the default behaviour is to write
1974 *		     back cache block contents later for performance reasons,
1975 *		     so they may differ from the corresponding origin blocks.
1976 */
1977struct cache_args {
1978	struct dm_target *ti;
1979
1980	struct dm_dev *metadata_dev;
1981
1982	struct dm_dev *cache_dev;
1983	sector_t cache_sectors;
1984
1985	struct dm_dev *origin_dev;
1986	sector_t origin_sectors;
1987
1988	uint32_t block_size;
1989
1990	const char *policy_name;
1991	int policy_argc;
1992	const char **policy_argv;
1993
1994	struct cache_features features;
1995};
1996
1997static void destroy_cache_args(struct cache_args *ca)
1998{
1999	if (ca->metadata_dev)
2000		dm_put_device(ca->ti, ca->metadata_dev);
2001
2002	if (ca->cache_dev)
2003		dm_put_device(ca->ti, ca->cache_dev);
2004
2005	if (ca->origin_dev)
2006		dm_put_device(ca->ti, ca->origin_dev);
2007
2008	kfree(ca);
2009}
2010
2011static bool at_least_one_arg(struct dm_arg_set *as, char **error)
2012{
2013	if (!as->argc) {
2014		*error = "Insufficient args";
2015		return false;
2016	}
2017
2018	return true;
2019}
2020
2021static int parse_metadata_dev(struct cache_args *ca, struct dm_arg_set *as,
2022			      char **error)
2023{
2024	int r;
2025	sector_t metadata_dev_size;
2026	char b[BDEVNAME_SIZE];
2027
2028	if (!at_least_one_arg(as, error))
2029		return -EINVAL;
2030
2031	r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2032			  &ca->metadata_dev);
2033	if (r) {
2034		*error = "Error opening metadata device";
2035		return r;
2036	}
2037
2038	metadata_dev_size = get_dev_size(ca->metadata_dev);
2039	if (metadata_dev_size > DM_CACHE_METADATA_MAX_SECTORS_WARNING)
2040		DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
2041		       bdevname(ca->metadata_dev->bdev, b), THIN_METADATA_MAX_SECTORS);
2042
2043	return 0;
2044}
2045
2046static int parse_cache_dev(struct cache_args *ca, struct dm_arg_set *as,
2047			   char **error)
2048{
2049	int r;
2050
2051	if (!at_least_one_arg(as, error))
2052		return -EINVAL;
2053
2054	r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2055			  &ca->cache_dev);
2056	if (r) {
2057		*error = "Error opening cache device";
2058		return r;
2059	}
2060	ca->cache_sectors = get_dev_size(ca->cache_dev);
2061
2062	return 0;
2063}
2064
2065static int parse_origin_dev(struct cache_args *ca, struct dm_arg_set *as,
2066			    char **error)
2067{
2068	int r;
2069
2070	if (!at_least_one_arg(as, error))
2071		return -EINVAL;
2072
2073	r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2074			  &ca->origin_dev);
2075	if (r) {
2076		*error = "Error opening origin device";
2077		return r;
2078	}
2079
2080	ca->origin_sectors = get_dev_size(ca->origin_dev);
2081	if (ca->ti->len > ca->origin_sectors) {
2082		*error = "Device size larger than cached device";
2083		return -EINVAL;
2084	}
2085
2086	return 0;
2087}
2088
2089static int parse_block_size(struct cache_args *ca, struct dm_arg_set *as,
2090			    char **error)
2091{
2092	unsigned long block_size;
2093
2094	if (!at_least_one_arg(as, error))
2095		return -EINVAL;
2096
2097	if (kstrtoul(dm_shift_arg(as), 10, &block_size) || !block_size ||
2098	    block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
2099	    block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
2100	    block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
2101		*error = "Invalid data block size";
2102		return -EINVAL;
2103	}
2104
2105	if (block_size > ca->cache_sectors) {
2106		*error = "Data block size is larger than the cache device";
2107		return -EINVAL;
2108	}
2109
2110	ca->block_size = block_size;
2111
2112	return 0;
2113}
2114
2115static void init_features(struct cache_features *cf)
2116{
2117	cf->mode = CM_WRITE;
2118	cf->io_mode = CM_IO_WRITEBACK;
2119	cf->metadata_version = 1;
2120	cf->discard_passdown = true;
2121}
2122
2123static int parse_features(struct cache_args *ca, struct dm_arg_set *as,
2124			  char **error)
2125{
2126	static const struct dm_arg _args[] = {
2127		{0, 3, "Invalid number of cache feature arguments"},
2128	};
2129
2130	int r, mode_ctr = 0;
2131	unsigned argc;
2132	const char *arg;
2133	struct cache_features *cf = &ca->features;
2134
2135	init_features(cf);
2136
2137	r = dm_read_arg_group(_args, as, &argc, error);
2138	if (r)
2139		return -EINVAL;
2140
2141	while (argc--) {
2142		arg = dm_shift_arg(as);
2143
2144		if (!strcasecmp(arg, "writeback")) {
2145			cf->io_mode = CM_IO_WRITEBACK;
2146			mode_ctr++;
2147		}
2148
2149		else if (!strcasecmp(arg, "writethrough")) {
2150			cf->io_mode = CM_IO_WRITETHROUGH;
2151			mode_ctr++;
2152		}
2153
2154		else if (!strcasecmp(arg, "passthrough")) {
2155			cf->io_mode = CM_IO_PASSTHROUGH;
2156			mode_ctr++;
2157		}
2158
2159		else if (!strcasecmp(arg, "metadata2"))
2160			cf->metadata_version = 2;
2161
2162		else if (!strcasecmp(arg, "no_discard_passdown"))
2163			cf->discard_passdown = false;
2164
2165		else {
2166			*error = "Unrecognised cache feature requested";
2167			return -EINVAL;
2168		}
2169	}
2170
2171	if (mode_ctr > 1) {
2172		*error = "Duplicate cache io_mode features requested";
2173		return -EINVAL;
2174	}
2175
2176	return 0;
2177}
2178
2179static int parse_policy(struct cache_args *ca, struct dm_arg_set *as,
2180			char **error)
2181{
2182	static const struct dm_arg _args[] = {
2183		{0, 1024, "Invalid number of policy arguments"},
2184	};
2185
2186	int r;
2187
2188	if (!at_least_one_arg(as, error))
2189		return -EINVAL;
2190
2191	ca->policy_name = dm_shift_arg(as);
2192
2193	r = dm_read_arg_group(_args, as, &ca->policy_argc, error);
2194	if (r)
2195		return -EINVAL;
2196
2197	ca->policy_argv = (const char **)as->argv;
2198	dm_consume_args(as, ca->policy_argc);
2199
2200	return 0;
2201}
2202
2203static int parse_cache_args(struct cache_args *ca, int argc, char **argv,
2204			    char **error)
2205{
2206	int r;
2207	struct dm_arg_set as;
2208
2209	as.argc = argc;
2210	as.argv = argv;
2211
2212	r = parse_metadata_dev(ca, &as, error);
2213	if (r)
2214		return r;
2215
2216	r = parse_cache_dev(ca, &as, error);
2217	if (r)
2218		return r;
2219
2220	r = parse_origin_dev(ca, &as, error);
2221	if (r)
2222		return r;
2223
2224	r = parse_block_size(ca, &as, error);
2225	if (r)
2226		return r;
2227
2228	r = parse_features(ca, &as, error);
2229	if (r)
2230		return r;
2231
2232	r = parse_policy(ca, &as, error);
2233	if (r)
2234		return r;
2235
2236	return 0;
2237}
2238
2239/*----------------------------------------------------------------*/
2240
2241static struct kmem_cache *migration_cache;
2242
2243#define NOT_CORE_OPTION 1
2244
2245static int process_config_option(struct cache *cache, const char *key, const char *value)
2246{
2247	unsigned long tmp;
2248
2249	if (!strcasecmp(key, "migration_threshold")) {
2250		if (kstrtoul(value, 10, &tmp))
2251			return -EINVAL;
2252
2253		cache->migration_threshold = tmp;
2254		return 0;
2255	}
2256
2257	return NOT_CORE_OPTION;
2258}
2259
2260static int set_config_value(struct cache *cache, const char *key, const char *value)
2261{
2262	int r = process_config_option(cache, key, value);
2263
2264	if (r == NOT_CORE_OPTION)
2265		r = policy_set_config_value(cache->policy, key, value);
2266
2267	if (r)
2268		DMWARN("bad config value for %s: %s", key, value);
2269
2270	return r;
2271}
2272
2273static int set_config_values(struct cache *cache, int argc, const char **argv)
2274{
2275	int r = 0;
2276
2277	if (argc & 1) {
2278		DMWARN("Odd number of policy arguments given but they should be <key> <value> pairs.");
2279		return -EINVAL;
2280	}
2281
2282	while (argc) {
2283		r = set_config_value(cache, argv[0], argv[1]);
2284		if (r)
2285			break;
2286
2287		argc -= 2;
2288		argv += 2;
2289	}
2290
2291	return r;
2292}
2293
2294static int create_cache_policy(struct cache *cache, struct cache_args *ca,
2295			       char **error)
2296{
2297	struct dm_cache_policy *p = dm_cache_policy_create(ca->policy_name,
2298							   cache->cache_size,
2299							   cache->origin_sectors,
2300							   cache->sectors_per_block);
2301	if (IS_ERR(p)) {
2302		*error = "Error creating cache's policy";
2303		return PTR_ERR(p);
2304	}
2305	cache->policy = p;
2306	BUG_ON(!cache->policy);
2307
2308	return 0;
2309}
2310
2311/*
2312 * We want the discard block size to be at least the size of the cache
2313 * block size and have no more than 2^14 discard blocks across the origin.
2314 */
2315#define MAX_DISCARD_BLOCKS (1 << 14)
2316
2317static bool too_many_discard_blocks(sector_t discard_block_size,
2318				    sector_t origin_size)
2319{
2320	(void) sector_div(origin_size, discard_block_size);
2321
2322	return origin_size > MAX_DISCARD_BLOCKS;
2323}
2324
2325static sector_t calculate_discard_block_size(sector_t cache_block_size,
2326					     sector_t origin_size)
2327{
2328	sector_t discard_block_size = cache_block_size;
2329
2330	if (origin_size)
2331		while (too_many_discard_blocks(discard_block_size, origin_size))
2332			discard_block_size *= 2;
2333
2334	return discard_block_size;
2335}
2336
2337static void set_cache_size(struct cache *cache, dm_cblock_t size)
2338{
2339	dm_block_t nr_blocks = from_cblock(size);
2340
2341	if (nr_blocks > (1 << 20) && cache->cache_size != size)
2342		DMWARN_LIMIT("You have created a cache device with a lot of individual cache blocks (%llu)\n"
2343			     "All these mappings can consume a lot of kernel memory, and take some time to read/write.\n"
2344			     "Please consider increasing the cache block size to reduce the overall cache block count.",
2345			     (unsigned long long) nr_blocks);
2346
2347	cache->cache_size = size;
2348}
2349
2350#define DEFAULT_MIGRATION_THRESHOLD 2048
2351
2352static int cache_create(struct cache_args *ca, struct cache **result)
2353{
2354	int r = 0;
2355	char **error = &ca->ti->error;
2356	struct cache *cache;
2357	struct dm_target *ti = ca->ti;
2358	dm_block_t origin_blocks;
2359	struct dm_cache_metadata *cmd;
2360	bool may_format = ca->features.mode == CM_WRITE;
2361
2362	cache = kzalloc(sizeof(*cache), GFP_KERNEL);
2363	if (!cache)
2364		return -ENOMEM;
2365
2366	cache->ti = ca->ti;
2367	ti->private = cache;
2368	ti->num_flush_bios = 2;
2369	ti->flush_supported = true;
2370
2371	ti->num_discard_bios = 1;
2372	ti->discards_supported = true;
 
 
 
2373
2374	ti->per_io_data_size = sizeof(struct per_bio_data);
 
2375
2376	cache->features = ca->features;
2377	if (writethrough_mode(cache)) {
2378		/* Create bioset for writethrough bios issued to origin */
2379		r = bioset_init(&cache->bs, BIO_POOL_SIZE, 0, 0);
2380		if (r)
2381			goto bad;
2382	}
2383
2384	cache->metadata_dev = ca->metadata_dev;
2385	cache->origin_dev = ca->origin_dev;
2386	cache->cache_dev = ca->cache_dev;
2387
2388	ca->metadata_dev = ca->origin_dev = ca->cache_dev = NULL;
2389
 
2390	origin_blocks = cache->origin_sectors = ca->origin_sectors;
2391	origin_blocks = block_div(origin_blocks, ca->block_size);
2392	cache->origin_blocks = to_oblock(origin_blocks);
2393
2394	cache->sectors_per_block = ca->block_size;
2395	if (dm_set_target_max_io_len(ti, cache->sectors_per_block)) {
2396		r = -EINVAL;
2397		goto bad;
2398	}
2399
2400	if (ca->block_size & (ca->block_size - 1)) {
2401		dm_block_t cache_size = ca->cache_sectors;
2402
2403		cache->sectors_per_block_shift = -1;
2404		cache_size = block_div(cache_size, ca->block_size);
2405		set_cache_size(cache, to_cblock(cache_size));
2406	} else {
2407		cache->sectors_per_block_shift = __ffs(ca->block_size);
2408		set_cache_size(cache, to_cblock(ca->cache_sectors >> cache->sectors_per_block_shift));
2409	}
2410
2411	r = create_cache_policy(cache, ca, error);
2412	if (r)
2413		goto bad;
2414
2415	cache->policy_nr_args = ca->policy_argc;
2416	cache->migration_threshold = DEFAULT_MIGRATION_THRESHOLD;
2417
2418	r = set_config_values(cache, ca->policy_argc, ca->policy_argv);
2419	if (r) {
2420		*error = "Error setting cache policy's config values";
2421		goto bad;
2422	}
2423
2424	cmd = dm_cache_metadata_open(cache->metadata_dev->bdev,
2425				     ca->block_size, may_format,
2426				     dm_cache_policy_get_hint_size(cache->policy),
2427				     ca->features.metadata_version);
2428	if (IS_ERR(cmd)) {
2429		*error = "Error creating metadata object";
2430		r = PTR_ERR(cmd);
2431		goto bad;
2432	}
2433	cache->cmd = cmd;
2434	set_cache_mode(cache, CM_WRITE);
2435	if (get_cache_mode(cache) != CM_WRITE) {
2436		*error = "Unable to get write access to metadata, please check/repair metadata.";
2437		r = -EINVAL;
2438		goto bad;
2439	}
2440
2441	if (passthrough_mode(cache)) {
2442		bool all_clean;
2443
2444		r = dm_cache_metadata_all_clean(cache->cmd, &all_clean);
2445		if (r) {
2446			*error = "dm_cache_metadata_all_clean() failed";
2447			goto bad;
2448		}
2449
2450		if (!all_clean) {
2451			*error = "Cannot enter passthrough mode unless all blocks are clean";
2452			r = -EINVAL;
2453			goto bad;
2454		}
2455
2456		policy_allow_migrations(cache->policy, false);
2457	}
2458
2459	spin_lock_init(&cache->lock);
2460	bio_list_init(&cache->deferred_bios);
2461	atomic_set(&cache->nr_allocated_migrations, 0);
2462	atomic_set(&cache->nr_io_migrations, 0);
 
 
 
 
2463	init_waitqueue_head(&cache->migration_wait);
2464
 
 
 
 
2465	r = -ENOMEM;
2466	atomic_set(&cache->nr_dirty, 0);
2467	cache->dirty_bitset = alloc_bitset(from_cblock(cache->cache_size));
2468	if (!cache->dirty_bitset) {
2469		*error = "could not allocate dirty bitset";
2470		goto bad;
2471	}
2472	clear_bitset(cache->dirty_bitset, from_cblock(cache->cache_size));
2473
2474	cache->discard_block_size =
2475		calculate_discard_block_size(cache->sectors_per_block,
2476					     cache->origin_sectors);
2477	cache->discard_nr_blocks = to_dblock(dm_sector_div_up(cache->origin_sectors,
2478							      cache->discard_block_size));
2479	cache->discard_bitset = alloc_bitset(from_dblock(cache->discard_nr_blocks));
2480	if (!cache->discard_bitset) {
2481		*error = "could not allocate discard bitset";
2482		goto bad;
2483	}
2484	clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks));
2485
2486	cache->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2487	if (IS_ERR(cache->copier)) {
2488		*error = "could not create kcopyd client";
2489		r = PTR_ERR(cache->copier);
2490		goto bad;
2491	}
2492
2493	cache->wq = alloc_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM, 0);
2494	if (!cache->wq) {
2495		*error = "could not create workqueue for metadata object";
2496		goto bad;
2497	}
2498	INIT_WORK(&cache->deferred_bio_worker, process_deferred_bios);
2499	INIT_WORK(&cache->migration_worker, check_migrations);
2500	INIT_DELAYED_WORK(&cache->waker, do_waker);
 
2501
2502	cache->prison = dm_bio_prison_create_v2(cache->wq);
2503	if (!cache->prison) {
2504		*error = "could not create bio prison";
2505		goto bad;
2506	}
2507
2508	r = mempool_init_slab_pool(&cache->migration_pool, MIGRATION_POOL_SIZE,
2509				   migration_cache);
2510	if (r) {
 
 
 
 
 
 
2511		*error = "Error creating cache's migration mempool";
2512		goto bad;
2513	}
2514
 
 
2515	cache->need_tick_bio = true;
2516	cache->sized = false;
2517	cache->invalidate = false;
2518	cache->commit_requested = false;
2519	cache->loaded_mappings = false;
2520	cache->loaded_discards = false;
2521
2522	load_stats(cache);
2523
2524	atomic_set(&cache->stats.demotion, 0);
2525	atomic_set(&cache->stats.promotion, 0);
2526	atomic_set(&cache->stats.copies_avoided, 0);
2527	atomic_set(&cache->stats.cache_cell_clash, 0);
2528	atomic_set(&cache->stats.commit_count, 0);
2529	atomic_set(&cache->stats.discard_count, 0);
2530
2531	spin_lock_init(&cache->invalidation_lock);
2532	INIT_LIST_HEAD(&cache->invalidation_requests);
2533
2534	batcher_init(&cache->committer, commit_op, cache,
2535		     issue_op, cache, cache->wq);
2536	dm_iot_init(&cache->tracker);
2537
2538	init_rwsem(&cache->background_work_lock);
2539	prevent_background_work(cache);
2540
2541	*result = cache;
2542	return 0;
 
2543bad:
2544	destroy(cache);
2545	return r;
2546}
2547
2548static int copy_ctr_args(struct cache *cache, int argc, const char **argv)
2549{
2550	unsigned i;
2551	const char **copy;
2552
2553	copy = kcalloc(argc, sizeof(*copy), GFP_KERNEL);
2554	if (!copy)
2555		return -ENOMEM;
2556	for (i = 0; i < argc; i++) {
2557		copy[i] = kstrdup(argv[i], GFP_KERNEL);
2558		if (!copy[i]) {
2559			while (i--)
2560				kfree(copy[i]);
2561			kfree(copy);
2562			return -ENOMEM;
2563		}
2564	}
2565
2566	cache->nr_ctr_args = argc;
2567	cache->ctr_args = copy;
2568
2569	return 0;
2570}
2571
2572static int cache_ctr(struct dm_target *ti, unsigned argc, char **argv)
2573{
2574	int r = -EINVAL;
2575	struct cache_args *ca;
2576	struct cache *cache = NULL;
2577
2578	ca = kzalloc(sizeof(*ca), GFP_KERNEL);
2579	if (!ca) {
2580		ti->error = "Error allocating memory for cache";
2581		return -ENOMEM;
2582	}
2583	ca->ti = ti;
2584
2585	r = parse_cache_args(ca, argc, argv, &ti->error);
2586	if (r)
2587		goto out;
2588
2589	r = cache_create(ca, &cache);
2590	if (r)
2591		goto out;
2592
2593	r = copy_ctr_args(cache, argc - 3, (const char **)argv + 3);
2594	if (r) {
2595		destroy(cache);
2596		goto out;
2597	}
2598
2599	ti->private = cache;
 
2600out:
2601	destroy_cache_args(ca);
2602	return r;
2603}
2604
2605/*----------------------------------------------------------------*/
2606
2607static int cache_map(struct dm_target *ti, struct bio *bio)
2608{
2609	struct cache *cache = ti->private;
2610
2611	int r;
2612	bool commit_needed;
2613	dm_oblock_t block = get_bio_block(cache, bio);
 
 
 
 
 
 
2614
2615	init_per_bio_data(bio);
2616	if (unlikely(from_oblock(block) >= from_oblock(cache->origin_blocks))) {
2617		/*
2618		 * This can only occur if the io goes to a partial block at
2619		 * the end of the origin device.  We don't cache these.
2620		 * Just remap to the origin and carry on.
2621		 */
2622		remap_to_origin(cache, bio);
2623		accounted_begin(cache, bio);
2624		return DM_MAPIO_REMAPPED;
2625	}
2626
2627	if (discard_or_flush(bio)) {
 
 
 
 
 
 
 
 
 
2628		defer_bio(cache, bio);
2629		return DM_MAPIO_SUBMITTED;
2630	}
2631
2632	r = map_bio(cache, bio, block, &commit_needed);
2633	if (commit_needed)
2634		schedule_commit(&cache->committer);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2635
2636	return r;
2637}
2638
2639static int cache_end_io(struct dm_target *ti, struct bio *bio, blk_status_t *error)
2640{
2641	struct cache *cache = ti->private;
2642	unsigned long flags;
2643	struct per_bio_data *pb = get_per_bio_data(bio);
 
2644
2645	if (pb->tick) {
2646		policy_tick(cache->policy, false);
2647
2648		spin_lock_irqsave(&cache->lock, flags);
2649		cache->need_tick_bio = true;
2650		spin_unlock_irqrestore(&cache->lock, flags);
2651	}
2652
2653	bio_drop_shared_lock(cache, bio);
2654	accounted_complete(cache, bio);
2655
2656	return DM_ENDIO_DONE;
2657}
2658
2659static int write_dirty_bitset(struct cache *cache)
2660{
2661	int r;
2662
2663	if (get_cache_mode(cache) >= CM_READ_ONLY)
2664		return -EINVAL;
 
 
 
 
2665
2666	r = dm_cache_set_dirty_bits(cache->cmd, from_cblock(cache->cache_size), cache->dirty_bitset);
2667	if (r)
2668		metadata_operation_failed(cache, "dm_cache_set_dirty_bits", r);
2669
2670	return r;
2671}
2672
2673static int write_discard_bitset(struct cache *cache)
2674{
2675	unsigned i, r;
2676
2677	if (get_cache_mode(cache) >= CM_READ_ONLY)
2678		return -EINVAL;
2679
2680	r = dm_cache_discard_bitset_resize(cache->cmd, cache->discard_block_size,
2681					   cache->discard_nr_blocks);
2682	if (r) {
2683		DMERR("%s: could not resize on-disk discard bitset", cache_device_name(cache));
2684		metadata_operation_failed(cache, "dm_cache_discard_bitset_resize", r);
2685		return r;
2686	}
2687
2688	for (i = 0; i < from_dblock(cache->discard_nr_blocks); i++) {
2689		r = dm_cache_set_discard(cache->cmd, to_dblock(i),
2690					 is_discarded(cache, to_dblock(i)));
2691		if (r) {
2692			metadata_operation_failed(cache, "dm_cache_set_discard", r);
2693			return r;
2694		}
2695	}
2696
2697	return 0;
2698}
2699
2700static int write_hints(struct cache *cache)
2701{
2702	int r;
2703
2704	if (get_cache_mode(cache) >= CM_READ_ONLY)
2705		return -EINVAL;
2706
2707	r = dm_cache_write_hints(cache->cmd, cache->policy);
2708	if (r) {
2709		metadata_operation_failed(cache, "dm_cache_write_hints", r);
2710		return r;
2711	}
2712
2713	return 0;
2714}
2715
2716/*
2717 * returns true on success
2718 */
2719static bool sync_metadata(struct cache *cache)
2720{
2721	int r1, r2, r3, r4;
2722
2723	r1 = write_dirty_bitset(cache);
2724	if (r1)
2725		DMERR("%s: could not write dirty bitset", cache_device_name(cache));
2726
2727	r2 = write_discard_bitset(cache);
2728	if (r2)
2729		DMERR("%s: could not write discard bitset", cache_device_name(cache));
2730
2731	save_stats(cache);
2732
2733	r3 = write_hints(cache);
2734	if (r3)
2735		DMERR("%s: could not write hints", cache_device_name(cache));
2736
2737	/*
2738	 * If writing the above metadata failed, we still commit, but don't
2739	 * set the clean shutdown flag.  This will effectively force every
2740	 * dirty bit to be set on reload.
2741	 */
2742	r4 = commit(cache, !r1 && !r2 && !r3);
2743	if (r4)
2744		DMERR("%s: could not write cache metadata", cache_device_name(cache));
2745
2746	return !r1 && !r2 && !r3 && !r4;
2747}
2748
2749static void cache_postsuspend(struct dm_target *ti)
2750{
2751	struct cache *cache = ti->private;
2752
2753	prevent_background_work(cache);
2754	BUG_ON(atomic_read(&cache->nr_io_migrations));
 
 
 
2755
2756	cancel_delayed_work_sync(&cache->waker);
2757	drain_workqueue(cache->wq);
2758	WARN_ON(cache->tracker.in_flight);
2759
2760	/*
2761	 * If it's a flush suspend there won't be any deferred bios, so this
2762	 * call is harmless.
2763	 */
2764	requeue_deferred_bios(cache);
2765
2766	if (get_cache_mode(cache) == CM_WRITE)
2767		(void) sync_metadata(cache);
2768}
2769
2770static int load_mapping(void *context, dm_oblock_t oblock, dm_cblock_t cblock,
2771			bool dirty, uint32_t hint, bool hint_valid)
2772{
 
2773	struct cache *cache = context;
2774
2775	if (dirty) {
2776		set_bit(from_cblock(cblock), cache->dirty_bitset);
2777		atomic_inc(&cache->nr_dirty);
2778	} else
2779		clear_bit(from_cblock(cblock), cache->dirty_bitset);
2780
2781	return policy_load_mapping(cache->policy, oblock, cblock, dirty, hint, hint_valid);
2782}
 
 
2783
2784/*
2785 * The discard block size in the on disk metadata is not
2786 * neccessarily the same as we're currently using.  So we have to
2787 * be careful to only set the discarded attribute if we know it
2788 * covers a complete block of the new size.
2789 */
2790struct discard_load_info {
2791	struct cache *cache;
2792
2793	/*
2794	 * These blocks are sized using the on disk dblock size, rather
2795	 * than the current one.
2796	 */
2797	dm_block_t block_size;
2798	dm_block_t discard_begin, discard_end;
2799};
2800
2801static void discard_load_info_init(struct cache *cache,
2802				   struct discard_load_info *li)
2803{
2804	li->cache = cache;
2805	li->discard_begin = li->discard_end = 0;
2806}
2807
2808static void set_discard_range(struct discard_load_info *li)
2809{
2810	sector_t b, e;
2811
2812	if (li->discard_begin == li->discard_end)
2813		return;
2814
2815	/*
2816	 * Convert to sectors.
2817	 */
2818	b = li->discard_begin * li->block_size;
2819	e = li->discard_end * li->block_size;
2820
2821	/*
2822	 * Then convert back to the current dblock size.
2823	 */
2824	b = dm_sector_div_up(b, li->cache->discard_block_size);
2825	sector_div(e, li->cache->discard_block_size);
2826
2827	/*
2828	 * The origin may have shrunk, so we need to check we're still in
2829	 * bounds.
2830	 */
2831	if (e > from_dblock(li->cache->discard_nr_blocks))
2832		e = from_dblock(li->cache->discard_nr_blocks);
2833
2834	for (; b < e; b++)
2835		set_discard(li->cache, to_dblock(b));
2836}
2837
2838static int load_discard(void *context, sector_t discard_block_size,
2839			dm_dblock_t dblock, bool discard)
2840{
2841	struct discard_load_info *li = context;
2842
2843	li->block_size = discard_block_size;
2844
2845	if (discard) {
2846		if (from_dblock(dblock) == li->discard_end)
2847			/*
2848			 * We're already in a discard range, just extend it.
2849			 */
2850			li->discard_end = li->discard_end + 1ULL;
2851
2852		else {
2853			/*
2854			 * Emit the old range and start a new one.
2855			 */
2856			set_discard_range(li);
2857			li->discard_begin = from_dblock(dblock);
2858			li->discard_end = li->discard_begin + 1ULL;
2859		}
2860	} else {
2861		set_discard_range(li);
2862		li->discard_begin = li->discard_end = 0;
2863	}
2864
2865	return 0;
2866}
2867
2868static dm_cblock_t get_cache_dev_size(struct cache *cache)
2869{
2870	sector_t size = get_dev_size(cache->cache_dev);
2871	(void) sector_div(size, cache->sectors_per_block);
2872	return to_cblock(size);
2873}
2874
2875static bool can_resize(struct cache *cache, dm_cblock_t new_size)
2876{
2877	if (from_cblock(new_size) > from_cblock(cache->cache_size)) {
2878		if (cache->sized) {
2879			DMERR("%s: unable to extend cache due to missing cache table reload",
2880			      cache_device_name(cache));
2881			return false;
2882		}
2883	}
2884
2885	/*
2886	 * We can't drop a dirty block when shrinking the cache.
2887	 */
2888	while (from_cblock(new_size) < from_cblock(cache->cache_size)) {
2889		new_size = to_cblock(from_cblock(new_size) + 1);
2890		if (is_dirty(cache, new_size)) {
2891			DMERR("%s: unable to shrink cache; cache block %llu is dirty",
2892			      cache_device_name(cache),
2893			      (unsigned long long) from_cblock(new_size));
2894			return false;
2895		}
2896	}
2897
2898	return true;
2899}
2900
2901static int resize_cache_dev(struct cache *cache, dm_cblock_t new_size)
2902{
2903	int r;
2904
2905	r = dm_cache_resize(cache->cmd, new_size);
2906	if (r) {
2907		DMERR("%s: could not resize cache metadata", cache_device_name(cache));
2908		metadata_operation_failed(cache, "dm_cache_resize", r);
2909		return r;
2910	}
2911
2912	set_cache_size(cache, new_size);
2913
2914	return 0;
2915}
2916
2917static int cache_preresume(struct dm_target *ti)
2918{
2919	int r = 0;
2920	struct cache *cache = ti->private;
2921	dm_cblock_t csize = get_cache_dev_size(cache);
2922
2923	/*
2924	 * Check to see if the cache has resized.
2925	 */
2926	if (!cache->sized) {
2927		r = resize_cache_dev(cache, csize);
2928		if (r)
2929			return r;
2930
2931		cache->sized = true;
2932
2933	} else if (csize != cache->cache_size) {
2934		if (!can_resize(cache, csize))
2935			return -EINVAL;
2936
2937		r = resize_cache_dev(cache, csize);
2938		if (r)
2939			return r;
2940	}
2941
2942	if (!cache->loaded_mappings) {
2943		r = dm_cache_load_mappings(cache->cmd, cache->policy,
2944					   load_mapping, cache);
2945		if (r) {
2946			DMERR("%s: could not load cache mappings", cache_device_name(cache));
2947			metadata_operation_failed(cache, "dm_cache_load_mappings", r);
2948			return r;
2949		}
2950
2951		cache->loaded_mappings = true;
2952	}
2953
2954	if (!cache->loaded_discards) {
2955		struct discard_load_info li;
2956
2957		/*
2958		 * The discard bitset could have been resized, or the
2959		 * discard block size changed.  To be safe we start by
2960		 * setting every dblock to not discarded.
2961		 */
2962		clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks));
2963
2964		discard_load_info_init(cache, &li);
2965		r = dm_cache_load_discards(cache->cmd, load_discard, &li);
2966		if (r) {
2967			DMERR("%s: could not load origin discards", cache_device_name(cache));
2968			metadata_operation_failed(cache, "dm_cache_load_discards", r);
2969			return r;
2970		}
2971		set_discard_range(&li);
2972
2973		cache->loaded_discards = true;
2974	}
2975
2976	return r;
2977}
2978
2979static void cache_resume(struct dm_target *ti)
2980{
2981	struct cache *cache = ti->private;
2982
2983	cache->need_tick_bio = true;
2984	allow_background_work(cache);
2985	do_waker(&cache->waker.work);
2986}
2987
2988static void emit_flags(struct cache *cache, char *result,
2989		       unsigned maxlen, ssize_t *sz_ptr)
2990{
2991	ssize_t sz = *sz_ptr;
2992	struct cache_features *cf = &cache->features;
2993	unsigned count = (cf->metadata_version == 2) + !cf->discard_passdown + 1;
2994
2995	DMEMIT("%u ", count);
2996
2997	if (cf->metadata_version == 2)
2998		DMEMIT("metadata2 ");
2999
3000	if (writethrough_mode(cache))
3001		DMEMIT("writethrough ");
3002
3003	else if (passthrough_mode(cache))
3004		DMEMIT("passthrough ");
3005
3006	else if (writeback_mode(cache))
3007		DMEMIT("writeback ");
3008
3009	else {
3010		DMEMIT("unknown ");
3011		DMERR("%s: internal error: unknown io mode: %d",
3012		      cache_device_name(cache), (int) cf->io_mode);
3013	}
3014
3015	if (!cf->discard_passdown)
3016		DMEMIT("no_discard_passdown ");
3017
3018	*sz_ptr = sz;
3019}
3020
3021/*
3022 * Status format:
3023 *
3024 * <metadata block size> <#used metadata blocks>/<#total metadata blocks>
3025 * <cache block size> <#used cache blocks>/<#total cache blocks>
3026 * <#read hits> <#read misses> <#write hits> <#write misses>
3027 * <#demotions> <#promotions> <#dirty>
3028 * <#features> <features>*
3029 * <#core args> <core args>
3030 * <policy name> <#policy args> <policy args>* <cache metadata mode> <needs_check>
3031 */
3032static void cache_status(struct dm_target *ti, status_type_t type,
3033			 unsigned status_flags, char *result, unsigned maxlen)
3034{
3035	int r = 0;
3036	unsigned i;
3037	ssize_t sz = 0;
3038	dm_block_t nr_free_blocks_metadata = 0;
3039	dm_block_t nr_blocks_metadata = 0;
3040	char buf[BDEVNAME_SIZE];
3041	struct cache *cache = ti->private;
3042	dm_cblock_t residency;
3043	bool needs_check;
3044
3045	switch (type) {
3046	case STATUSTYPE_INFO:
3047		if (get_cache_mode(cache) == CM_FAIL) {
3048			DMEMIT("Fail");
3049			break;
 
 
3050		}
3051
3052		/* Commit to ensure statistics aren't out-of-date */
3053		if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3054			(void) commit(cache, false);
3055
3056		r = dm_cache_get_free_metadata_block_count(cache->cmd, &nr_free_blocks_metadata);
3057		if (r) {
3058			DMERR("%s: dm_cache_get_free_metadata_block_count returned %d",
3059			      cache_device_name(cache), r);
3060			goto err;
3061		}
3062
3063		r = dm_cache_get_metadata_dev_size(cache->cmd, &nr_blocks_metadata);
3064		if (r) {
3065			DMERR("%s: dm_cache_get_metadata_dev_size returned %d",
3066			      cache_device_name(cache), r);
3067			goto err;
3068		}
3069
3070		residency = policy_residency(cache->policy);
3071
3072		DMEMIT("%u %llu/%llu %llu %llu/%llu %u %u %u %u %u %u %lu ",
3073		       (unsigned)DM_CACHE_METADATA_BLOCK_SIZE,
3074		       (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3075		       (unsigned long long)nr_blocks_metadata,
3076		       (unsigned long long)cache->sectors_per_block,
3077		       (unsigned long long) from_cblock(residency),
3078		       (unsigned long long) from_cblock(cache->cache_size),
3079		       (unsigned) atomic_read(&cache->stats.read_hit),
3080		       (unsigned) atomic_read(&cache->stats.read_miss),
3081		       (unsigned) atomic_read(&cache->stats.write_hit),
3082		       (unsigned) atomic_read(&cache->stats.write_miss),
3083		       (unsigned) atomic_read(&cache->stats.demotion),
3084		       (unsigned) atomic_read(&cache->stats.promotion),
3085		       (unsigned long) atomic_read(&cache->nr_dirty));
3086
3087		emit_flags(cache, result, maxlen, &sz);
 
 
 
 
 
 
 
 
 
 
 
 
3088
3089		DMEMIT("2 migration_threshold %llu ", (unsigned long long) cache->migration_threshold);
3090
3091		DMEMIT("%s ", dm_cache_policy_get_name(cache->policy));
3092		if (sz < maxlen) {
3093			r = policy_emit_config_values(cache->policy, result, maxlen, &sz);
3094			if (r)
3095				DMERR("%s: policy_emit_config_values returned %d",
3096				      cache_device_name(cache), r);
3097		}
3098
3099		if (get_cache_mode(cache) == CM_READ_ONLY)
3100			DMEMIT("ro ");
3101		else
3102			DMEMIT("rw ");
3103
3104		r = dm_cache_metadata_needs_check(cache->cmd, &needs_check);
3105
3106		if (r || needs_check)
3107			DMEMIT("needs_check ");
3108		else
3109			DMEMIT("- ");
3110
3111		break;
3112
3113	case STATUSTYPE_TABLE:
3114		format_dev_t(buf, cache->metadata_dev->bdev->bd_dev);
3115		DMEMIT("%s ", buf);
3116		format_dev_t(buf, cache->cache_dev->bdev->bd_dev);
3117		DMEMIT("%s ", buf);
3118		format_dev_t(buf, cache->origin_dev->bdev->bd_dev);
3119		DMEMIT("%s", buf);
3120
3121		for (i = 0; i < cache->nr_ctr_args - 1; i++)
3122			DMEMIT(" %s", cache->ctr_args[i]);
3123		if (cache->nr_ctr_args)
3124			DMEMIT(" %s", cache->ctr_args[cache->nr_ctr_args - 1]);
3125	}
3126
3127	return;
3128
3129err:
3130	DMEMIT("Error");
3131}
3132
3133/*
3134 * Defines a range of cblocks, begin to (end - 1) are in the range.  end is
3135 * the one-past-the-end value.
3136 */
3137struct cblock_range {
3138	dm_cblock_t begin;
3139	dm_cblock_t end;
3140};
3141
3142/*
3143 * A cache block range can take two forms:
3144 *
3145 * i) A single cblock, eg. '3456'
3146 * ii) A begin and end cblock with a dash between, eg. 123-234
3147 */
3148static int parse_cblock_range(struct cache *cache, const char *str,
3149			      struct cblock_range *result)
3150{
3151	char dummy;
3152	uint64_t b, e;
3153	int r;
3154
3155	/*
3156	 * Try and parse form (ii) first.
3157	 */
3158	r = sscanf(str, "%llu-%llu%c", &b, &e, &dummy);
3159	if (r < 0)
3160		return r;
3161
3162	if (r == 2) {
3163		result->begin = to_cblock(b);
3164		result->end = to_cblock(e);
3165		return 0;
3166	}
3167
3168	/*
3169	 * That didn't work, try form (i).
3170	 */
3171	r = sscanf(str, "%llu%c", &b, &dummy);
3172	if (r < 0)
3173		return r;
3174
3175	if (r == 1) {
3176		result->begin = to_cblock(b);
3177		result->end = to_cblock(from_cblock(result->begin) + 1u);
3178		return 0;
3179	}
3180
3181	DMERR("%s: invalid cblock range '%s'", cache_device_name(cache), str);
3182	return -EINVAL;
3183}
3184
3185static int validate_cblock_range(struct cache *cache, struct cblock_range *range)
3186{
3187	uint64_t b = from_cblock(range->begin);
3188	uint64_t e = from_cblock(range->end);
3189	uint64_t n = from_cblock(cache->cache_size);
3190
3191	if (b >= n) {
3192		DMERR("%s: begin cblock out of range: %llu >= %llu",
3193		      cache_device_name(cache), b, n);
3194		return -EINVAL;
3195	}
3196
3197	if (e > n) {
3198		DMERR("%s: end cblock out of range: %llu > %llu",
3199		      cache_device_name(cache), e, n);
3200		return -EINVAL;
3201	}
3202
3203	if (b >= e) {
3204		DMERR("%s: invalid cblock range: %llu >= %llu",
3205		      cache_device_name(cache), b, e);
3206		return -EINVAL;
3207	}
3208
3209	return 0;
3210}
3211
3212static inline dm_cblock_t cblock_succ(dm_cblock_t b)
3213{
3214	return to_cblock(from_cblock(b) + 1);
3215}
3216
3217static int request_invalidation(struct cache *cache, struct cblock_range *range)
3218{
3219	int r = 0;
3220
3221	/*
3222	 * We don't need to do any locking here because we know we're in
3223	 * passthrough mode.  There's is potential for a race between an
3224	 * invalidation triggered by an io and an invalidation message.  This
3225	 * is harmless, we must not worry if the policy call fails.
3226	 */
3227	while (range->begin != range->end) {
3228		r = invalidate_cblock(cache, range->begin);
3229		if (r)
3230			return r;
3231
3232		range->begin = cblock_succ(range->begin);
3233	}
3234
3235	cache->commit_requested = true;
3236	return r;
3237}
3238
3239static int process_invalidate_cblocks_message(struct cache *cache, unsigned count,
3240					      const char **cblock_ranges)
3241{
3242	int r = 0;
3243	unsigned i;
3244	struct cblock_range range;
3245
3246	if (!passthrough_mode(cache)) {
3247		DMERR("%s: cache has to be in passthrough mode for invalidation",
3248		      cache_device_name(cache));
3249		return -EPERM;
3250	}
3251
3252	for (i = 0; i < count; i++) {
3253		r = parse_cblock_range(cache, cblock_ranges[i], &range);
3254		if (r)
3255			break;
3256
3257		r = validate_cblock_range(cache, &range);
3258		if (r)
3259			break;
3260
3261		/*
3262		 * Pass begin and end origin blocks to the worker and wake it.
3263		 */
3264		r = request_invalidation(cache, &range);
3265		if (r)
3266			break;
3267	}
3268
3269	return r;
3270}
3271
3272/*
3273 * Supports
3274 *	"<key> <value>"
3275 * and
3276 *     "invalidate_cblocks [(<begin>)|(<begin>-<end>)]*
3277 *
3278 * The key migration_threshold is supported by the cache target core.
3279 */
3280static int cache_message(struct dm_target *ti, unsigned argc, char **argv,
3281			 char *result, unsigned maxlen)
3282{
3283	struct cache *cache = ti->private;
3284
3285	if (!argc)
3286		return -EINVAL;
3287
3288	if (get_cache_mode(cache) >= CM_READ_ONLY) {
3289		DMERR("%s: unable to service cache target messages in READ_ONLY or FAIL mode",
3290		      cache_device_name(cache));
3291		return -EOPNOTSUPP;
3292	}
3293
3294	if (!strcasecmp(argv[0], "invalidate_cblocks"))
3295		return process_invalidate_cblocks_message(cache, argc - 1, (const char **) argv + 1);
3296
3297	if (argc != 2)
3298		return -EINVAL;
3299
3300	return set_config_value(cache, argv[0], argv[1]);
3301}
3302
3303static int cache_iterate_devices(struct dm_target *ti,
3304				 iterate_devices_callout_fn fn, void *data)
3305{
3306	int r = 0;
3307	struct cache *cache = ti->private;
3308
3309	r = fn(ti, cache->cache_dev, 0, get_dev_size(cache->cache_dev), data);
3310	if (!r)
3311		r = fn(ti, cache->origin_dev, 0, ti->len, data);
3312
3313	return r;
3314}
3315
3316static bool origin_dev_supports_discard(struct block_device *origin_bdev)
3317{
3318	struct request_queue *q = bdev_get_queue(origin_bdev);
3319
3320	return blk_queue_discard(q);
3321}
3322
3323/*
3324 * If discard_passdown was enabled verify that the origin device
3325 * supports discards.  Disable discard_passdown if not.
3326 */
3327static void disable_passdown_if_not_supported(struct cache *cache)
 
 
 
 
3328{
3329	struct block_device *origin_bdev = cache->origin_dev->bdev;
3330	struct queue_limits *origin_limits = &bdev_get_queue(origin_bdev)->limits;
3331	const char *reason = NULL;
3332	char buf[BDEVNAME_SIZE];
3333
3334	if (!cache->features.discard_passdown)
3335		return;
3336
3337	if (!origin_dev_supports_discard(origin_bdev))
3338		reason = "discard unsupported";
3339
3340	else if (origin_limits->max_discard_sectors < cache->sectors_per_block)
3341		reason = "max discard sectors smaller than a block";
3342
3343	if (reason) {
3344		DMWARN("Origin device (%s) %s: Disabling discard passdown.",
3345		       bdevname(origin_bdev, buf), reason);
3346		cache->features.discard_passdown = false;
3347	}
3348}
3349
3350static void set_discard_limits(struct cache *cache, struct queue_limits *limits)
3351{
3352	struct block_device *origin_bdev = cache->origin_dev->bdev;
3353	struct queue_limits *origin_limits = &bdev_get_queue(origin_bdev)->limits;
3354
3355	if (!cache->features.discard_passdown) {
3356		/* No passdown is done so setting own virtual limits */
3357		limits->max_discard_sectors = min_t(sector_t, cache->discard_block_size * 1024,
3358						    cache->origin_sectors);
3359		limits->discard_granularity = cache->discard_block_size << SECTOR_SHIFT;
3360		return;
3361	}
3362
3363	/*
3364	 * cache_iterate_devices() is stacking both origin and fast device limits
3365	 * but discards aren't passed to fast device, so inherit origin's limits.
3366	 */
3367	limits->max_discard_sectors = origin_limits->max_discard_sectors;
3368	limits->max_hw_discard_sectors = origin_limits->max_hw_discard_sectors;
3369	limits->discard_granularity = origin_limits->discard_granularity;
3370	limits->discard_alignment = origin_limits->discard_alignment;
3371	limits->discard_misaligned = origin_limits->discard_misaligned;
3372}
3373
3374static void cache_io_hints(struct dm_target *ti, struct queue_limits *limits)
3375{
3376	struct cache *cache = ti->private;
3377	uint64_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
3378
3379	/*
3380	 * If the system-determined stacked limits are compatible with the
3381	 * cache's blocksize (io_opt is a factor) do not override them.
3382	 */
3383	if (io_opt_sectors < cache->sectors_per_block ||
3384	    do_div(io_opt_sectors, cache->sectors_per_block)) {
3385		blk_limits_io_min(limits, cache->sectors_per_block << SECTOR_SHIFT);
3386		blk_limits_io_opt(limits, cache->sectors_per_block << SECTOR_SHIFT);
3387	}
3388
3389	disable_passdown_if_not_supported(cache);
3390	set_discard_limits(cache, limits);
3391}
3392
3393/*----------------------------------------------------------------*/
3394
3395static struct target_type cache_target = {
3396	.name = "cache",
3397	.version = {2, 2, 0},
3398	.module = THIS_MODULE,
3399	.ctr = cache_ctr,
3400	.dtr = cache_dtr,
3401	.map = cache_map,
3402	.end_io = cache_end_io,
3403	.postsuspend = cache_postsuspend,
3404	.preresume = cache_preresume,
3405	.resume = cache_resume,
3406	.status = cache_status,
3407	.message = cache_message,
3408	.iterate_devices = cache_iterate_devices,
 
3409	.io_hints = cache_io_hints,
3410};
3411
3412static int __init dm_cache_init(void)
3413{
3414	int r;
3415
3416	migration_cache = KMEM_CACHE(dm_cache_migration, 0);
3417	if (!migration_cache)
3418		return -ENOMEM;
3419
3420	r = dm_register_target(&cache_target);
3421	if (r) {
3422		DMERR("cache target registration failed: %d", r);
3423		kmem_cache_destroy(migration_cache);
3424		return r;
 
 
 
 
 
 
3425	}
3426
3427	return 0;
3428}
3429
3430static void __exit dm_cache_exit(void)
3431{
3432	dm_unregister_target(&cache_target);
3433	kmem_cache_destroy(migration_cache);
3434}
3435
3436module_init(dm_cache_init);
3437module_exit(dm_cache_exit);
3438
3439MODULE_DESCRIPTION(DM_NAME " cache target");
3440MODULE_AUTHOR("Joe Thornber <ejt@redhat.com>");
3441MODULE_LICENSE("GPL");