Loading...
1/*
2 * Copyright (C) 2012 Red Hat. All rights reserved.
3 *
4 * This file is released under the GPL.
5 */
6
7#include "dm.h"
8#include "dm-bio-prison.h"
9#include "dm-bio-record.h"
10#include "dm-cache-metadata.h"
11
12#include <linux/dm-io.h>
13#include <linux/dm-kcopyd.h>
14#include <linux/init.h>
15#include <linux/mempool.h>
16#include <linux/module.h>
17#include <linux/slab.h>
18#include <linux/vmalloc.h>
19
20#define DM_MSG_PREFIX "cache"
21
22DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(cache_copy_throttle,
23 "A percentage of time allocated for copying to and/or from cache");
24
25/*----------------------------------------------------------------*/
26
27/*
28 * Glossary:
29 *
30 * oblock: index of an origin block
31 * cblock: index of a cache block
32 * promotion: movement of a block from origin to cache
33 * demotion: movement of a block from cache to origin
34 * migration: movement of a block between the origin and cache device,
35 * either direction
36 */
37
38/*----------------------------------------------------------------*/
39
40static size_t bitset_size_in_bytes(unsigned nr_entries)
41{
42 return sizeof(unsigned long) * dm_div_up(nr_entries, BITS_PER_LONG);
43}
44
45static unsigned long *alloc_bitset(unsigned nr_entries)
46{
47 size_t s = bitset_size_in_bytes(nr_entries);
48 return vzalloc(s);
49}
50
51static void clear_bitset(void *bitset, unsigned nr_entries)
52{
53 size_t s = bitset_size_in_bytes(nr_entries);
54 memset(bitset, 0, s);
55}
56
57static void free_bitset(unsigned long *bits)
58{
59 vfree(bits);
60}
61
62/*----------------------------------------------------------------*/
63
64/*
65 * There are a couple of places where we let a bio run, but want to do some
66 * work before calling its endio function. We do this by temporarily
67 * changing the endio fn.
68 */
69struct dm_hook_info {
70 bio_end_io_t *bi_end_io;
71 void *bi_private;
72};
73
74static void dm_hook_bio(struct dm_hook_info *h, struct bio *bio,
75 bio_end_io_t *bi_end_io, void *bi_private)
76{
77 h->bi_end_io = bio->bi_end_io;
78 h->bi_private = bio->bi_private;
79
80 bio->bi_end_io = bi_end_io;
81 bio->bi_private = bi_private;
82}
83
84static void dm_unhook_bio(struct dm_hook_info *h, struct bio *bio)
85{
86 bio->bi_end_io = h->bi_end_io;
87 bio->bi_private = h->bi_private;
88
89 /*
90 * Must bump bi_remaining to allow bio to complete with
91 * restored bi_end_io.
92 */
93 atomic_inc(&bio->bi_remaining);
94}
95
96/*----------------------------------------------------------------*/
97
98#define PRISON_CELLS 1024
99#define MIGRATION_POOL_SIZE 128
100#define COMMIT_PERIOD HZ
101#define MIGRATION_COUNT_WINDOW 10
102
103/*
104 * The block size of the device holding cache data must be
105 * between 32KB and 1GB.
106 */
107#define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (32 * 1024 >> SECTOR_SHIFT)
108#define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
109
110/*
111 * FIXME: the cache is read/write for the time being.
112 */
113enum cache_metadata_mode {
114 CM_WRITE, /* metadata may be changed */
115 CM_READ_ONLY, /* metadata may not be changed */
116};
117
118enum cache_io_mode {
119 /*
120 * Data is written to cached blocks only. These blocks are marked
121 * dirty. If you lose the cache device you will lose data.
122 * Potential performance increase for both reads and writes.
123 */
124 CM_IO_WRITEBACK,
125
126 /*
127 * Data is written to both cache and origin. Blocks are never
128 * dirty. Potential performance benfit for reads only.
129 */
130 CM_IO_WRITETHROUGH,
131
132 /*
133 * A degraded mode useful for various cache coherency situations
134 * (eg, rolling back snapshots). Reads and writes always go to the
135 * origin. If a write goes to a cached oblock, then the cache
136 * block is invalidated.
137 */
138 CM_IO_PASSTHROUGH
139};
140
141struct cache_features {
142 enum cache_metadata_mode mode;
143 enum cache_io_mode io_mode;
144};
145
146struct cache_stats {
147 atomic_t read_hit;
148 atomic_t read_miss;
149 atomic_t write_hit;
150 atomic_t write_miss;
151 atomic_t demotion;
152 atomic_t promotion;
153 atomic_t copies_avoided;
154 atomic_t cache_cell_clash;
155 atomic_t commit_count;
156 atomic_t discard_count;
157};
158
159/*
160 * Defines a range of cblocks, begin to (end - 1) are in the range. end is
161 * the one-past-the-end value.
162 */
163struct cblock_range {
164 dm_cblock_t begin;
165 dm_cblock_t end;
166};
167
168struct invalidation_request {
169 struct list_head list;
170 struct cblock_range *cblocks;
171
172 atomic_t complete;
173 int err;
174
175 wait_queue_head_t result_wait;
176};
177
178struct cache {
179 struct dm_target *ti;
180 struct dm_target_callbacks callbacks;
181
182 struct dm_cache_metadata *cmd;
183
184 /*
185 * Metadata is written to this device.
186 */
187 struct dm_dev *metadata_dev;
188
189 /*
190 * The slower of the two data devices. Typically a spindle.
191 */
192 struct dm_dev *origin_dev;
193
194 /*
195 * The faster of the two data devices. Typically an SSD.
196 */
197 struct dm_dev *cache_dev;
198
199 /*
200 * Size of the origin device in _complete_ blocks and native sectors.
201 */
202 dm_oblock_t origin_blocks;
203 sector_t origin_sectors;
204
205 /*
206 * Size of the cache device in blocks.
207 */
208 dm_cblock_t cache_size;
209
210 /*
211 * Fields for converting from sectors to blocks.
212 */
213 uint32_t sectors_per_block;
214 int sectors_per_block_shift;
215
216 spinlock_t lock;
217 struct bio_list deferred_bios;
218 struct bio_list deferred_flush_bios;
219 struct bio_list deferred_writethrough_bios;
220 struct list_head quiesced_migrations;
221 struct list_head completed_migrations;
222 struct list_head need_commit_migrations;
223 sector_t migration_threshold;
224 wait_queue_head_t migration_wait;
225 atomic_t nr_migrations;
226
227 wait_queue_head_t quiescing_wait;
228 atomic_t quiescing;
229 atomic_t quiescing_ack;
230
231 /*
232 * cache_size entries, dirty if set
233 */
234 dm_cblock_t nr_dirty;
235 unsigned long *dirty_bitset;
236
237 /*
238 * origin_blocks entries, discarded if set.
239 */
240 dm_oblock_t discard_nr_blocks;
241 unsigned long *discard_bitset;
242
243 /*
244 * Rather than reconstructing the table line for the status we just
245 * save it and regurgitate.
246 */
247 unsigned nr_ctr_args;
248 const char **ctr_args;
249
250 struct dm_kcopyd_client *copier;
251 struct workqueue_struct *wq;
252 struct work_struct worker;
253
254 struct delayed_work waker;
255 unsigned long last_commit_jiffies;
256
257 struct dm_bio_prison *prison;
258 struct dm_deferred_set *all_io_ds;
259
260 mempool_t *migration_pool;
261 struct dm_cache_migration *next_migration;
262
263 struct dm_cache_policy *policy;
264 unsigned policy_nr_args;
265
266 bool need_tick_bio:1;
267 bool sized:1;
268 bool invalidate:1;
269 bool commit_requested:1;
270 bool loaded_mappings:1;
271 bool loaded_discards:1;
272
273 /*
274 * Cache features such as write-through.
275 */
276 struct cache_features features;
277
278 struct cache_stats stats;
279
280 /*
281 * Invalidation fields.
282 */
283 spinlock_t invalidation_lock;
284 struct list_head invalidation_requests;
285};
286
287struct per_bio_data {
288 bool tick:1;
289 unsigned req_nr:2;
290 struct dm_deferred_entry *all_io_entry;
291 struct dm_hook_info hook_info;
292
293 /*
294 * writethrough fields. These MUST remain at the end of this
295 * structure and the 'cache' member must be the first as it
296 * is used to determine the offset of the writethrough fields.
297 */
298 struct cache *cache;
299 dm_cblock_t cblock;
300 struct dm_bio_details bio_details;
301};
302
303struct dm_cache_migration {
304 struct list_head list;
305 struct cache *cache;
306
307 unsigned long start_jiffies;
308 dm_oblock_t old_oblock;
309 dm_oblock_t new_oblock;
310 dm_cblock_t cblock;
311
312 bool err:1;
313 bool writeback:1;
314 bool demote:1;
315 bool promote:1;
316 bool requeue_holder:1;
317 bool invalidate:1;
318
319 struct dm_bio_prison_cell *old_ocell;
320 struct dm_bio_prison_cell *new_ocell;
321};
322
323/*
324 * Processing a bio in the worker thread may require these memory
325 * allocations. We prealloc to avoid deadlocks (the same worker thread
326 * frees them back to the mempool).
327 */
328struct prealloc {
329 struct dm_cache_migration *mg;
330 struct dm_bio_prison_cell *cell1;
331 struct dm_bio_prison_cell *cell2;
332};
333
334static void wake_worker(struct cache *cache)
335{
336 queue_work(cache->wq, &cache->worker);
337}
338
339/*----------------------------------------------------------------*/
340
341static struct dm_bio_prison_cell *alloc_prison_cell(struct cache *cache)
342{
343 /* FIXME: change to use a local slab. */
344 return dm_bio_prison_alloc_cell(cache->prison, GFP_NOWAIT);
345}
346
347static void free_prison_cell(struct cache *cache, struct dm_bio_prison_cell *cell)
348{
349 dm_bio_prison_free_cell(cache->prison, cell);
350}
351
352static int prealloc_data_structs(struct cache *cache, struct prealloc *p)
353{
354 if (!p->mg) {
355 p->mg = mempool_alloc(cache->migration_pool, GFP_NOWAIT);
356 if (!p->mg)
357 return -ENOMEM;
358 }
359
360 if (!p->cell1) {
361 p->cell1 = alloc_prison_cell(cache);
362 if (!p->cell1)
363 return -ENOMEM;
364 }
365
366 if (!p->cell2) {
367 p->cell2 = alloc_prison_cell(cache);
368 if (!p->cell2)
369 return -ENOMEM;
370 }
371
372 return 0;
373}
374
375static void prealloc_free_structs(struct cache *cache, struct prealloc *p)
376{
377 if (p->cell2)
378 free_prison_cell(cache, p->cell2);
379
380 if (p->cell1)
381 free_prison_cell(cache, p->cell1);
382
383 if (p->mg)
384 mempool_free(p->mg, cache->migration_pool);
385}
386
387static struct dm_cache_migration *prealloc_get_migration(struct prealloc *p)
388{
389 struct dm_cache_migration *mg = p->mg;
390
391 BUG_ON(!mg);
392 p->mg = NULL;
393
394 return mg;
395}
396
397/*
398 * You must have a cell within the prealloc struct to return. If not this
399 * function will BUG() rather than returning NULL.
400 */
401static struct dm_bio_prison_cell *prealloc_get_cell(struct prealloc *p)
402{
403 struct dm_bio_prison_cell *r = NULL;
404
405 if (p->cell1) {
406 r = p->cell1;
407 p->cell1 = NULL;
408
409 } else if (p->cell2) {
410 r = p->cell2;
411 p->cell2 = NULL;
412 } else
413 BUG();
414
415 return r;
416}
417
418/*
419 * You can't have more than two cells in a prealloc struct. BUG() will be
420 * called if you try and overfill.
421 */
422static void prealloc_put_cell(struct prealloc *p, struct dm_bio_prison_cell *cell)
423{
424 if (!p->cell2)
425 p->cell2 = cell;
426
427 else if (!p->cell1)
428 p->cell1 = cell;
429
430 else
431 BUG();
432}
433
434/*----------------------------------------------------------------*/
435
436static void build_key(dm_oblock_t oblock, struct dm_cell_key *key)
437{
438 key->virtual = 0;
439 key->dev = 0;
440 key->block = from_oblock(oblock);
441}
442
443/*
444 * The caller hands in a preallocated cell, and a free function for it.
445 * The cell will be freed if there's an error, or if it wasn't used because
446 * a cell with that key already exists.
447 */
448typedef void (*cell_free_fn)(void *context, struct dm_bio_prison_cell *cell);
449
450static int bio_detain(struct cache *cache, dm_oblock_t oblock,
451 struct bio *bio, struct dm_bio_prison_cell *cell_prealloc,
452 cell_free_fn free_fn, void *free_context,
453 struct dm_bio_prison_cell **cell_result)
454{
455 int r;
456 struct dm_cell_key key;
457
458 build_key(oblock, &key);
459 r = dm_bio_detain(cache->prison, &key, bio, cell_prealloc, cell_result);
460 if (r)
461 free_fn(free_context, cell_prealloc);
462
463 return r;
464}
465
466static int get_cell(struct cache *cache,
467 dm_oblock_t oblock,
468 struct prealloc *structs,
469 struct dm_bio_prison_cell **cell_result)
470{
471 int r;
472 struct dm_cell_key key;
473 struct dm_bio_prison_cell *cell_prealloc;
474
475 cell_prealloc = prealloc_get_cell(structs);
476
477 build_key(oblock, &key);
478 r = dm_get_cell(cache->prison, &key, cell_prealloc, cell_result);
479 if (r)
480 prealloc_put_cell(structs, cell_prealloc);
481
482 return r;
483}
484
485/*----------------------------------------------------------------*/
486
487static bool is_dirty(struct cache *cache, dm_cblock_t b)
488{
489 return test_bit(from_cblock(b), cache->dirty_bitset);
490}
491
492static void set_dirty(struct cache *cache, dm_oblock_t oblock, dm_cblock_t cblock)
493{
494 if (!test_and_set_bit(from_cblock(cblock), cache->dirty_bitset)) {
495 cache->nr_dirty = to_cblock(from_cblock(cache->nr_dirty) + 1);
496 policy_set_dirty(cache->policy, oblock);
497 }
498}
499
500static void clear_dirty(struct cache *cache, dm_oblock_t oblock, dm_cblock_t cblock)
501{
502 if (test_and_clear_bit(from_cblock(cblock), cache->dirty_bitset)) {
503 policy_clear_dirty(cache->policy, oblock);
504 cache->nr_dirty = to_cblock(from_cblock(cache->nr_dirty) - 1);
505 if (!from_cblock(cache->nr_dirty))
506 dm_table_event(cache->ti->table);
507 }
508}
509
510/*----------------------------------------------------------------*/
511
512static bool block_size_is_power_of_two(struct cache *cache)
513{
514 return cache->sectors_per_block_shift >= 0;
515}
516
517/* gcc on ARM generates spurious references to __udivdi3 and __umoddi3 */
518#if defined(CONFIG_ARM) && __GNUC__ == 4 && __GNUC_MINOR__ <= 6
519__always_inline
520#endif
521static dm_block_t block_div(dm_block_t b, uint32_t n)
522{
523 do_div(b, n);
524
525 return b;
526}
527
528static void set_discard(struct cache *cache, dm_oblock_t b)
529{
530 unsigned long flags;
531
532 atomic_inc(&cache->stats.discard_count);
533
534 spin_lock_irqsave(&cache->lock, flags);
535 set_bit(from_oblock(b), cache->discard_bitset);
536 spin_unlock_irqrestore(&cache->lock, flags);
537}
538
539static void clear_discard(struct cache *cache, dm_oblock_t b)
540{
541 unsigned long flags;
542
543 spin_lock_irqsave(&cache->lock, flags);
544 clear_bit(from_oblock(b), cache->discard_bitset);
545 spin_unlock_irqrestore(&cache->lock, flags);
546}
547
548static bool is_discarded(struct cache *cache, dm_oblock_t b)
549{
550 int r;
551 unsigned long flags;
552
553 spin_lock_irqsave(&cache->lock, flags);
554 r = test_bit(from_oblock(b), cache->discard_bitset);
555 spin_unlock_irqrestore(&cache->lock, flags);
556
557 return r;
558}
559
560static bool is_discarded_oblock(struct cache *cache, dm_oblock_t b)
561{
562 int r;
563 unsigned long flags;
564
565 spin_lock_irqsave(&cache->lock, flags);
566 r = test_bit(from_oblock(b), cache->discard_bitset);
567 spin_unlock_irqrestore(&cache->lock, flags);
568
569 return r;
570}
571
572/*----------------------------------------------------------------*/
573
574static void load_stats(struct cache *cache)
575{
576 struct dm_cache_statistics stats;
577
578 dm_cache_metadata_get_stats(cache->cmd, &stats);
579 atomic_set(&cache->stats.read_hit, stats.read_hits);
580 atomic_set(&cache->stats.read_miss, stats.read_misses);
581 atomic_set(&cache->stats.write_hit, stats.write_hits);
582 atomic_set(&cache->stats.write_miss, stats.write_misses);
583}
584
585static void save_stats(struct cache *cache)
586{
587 struct dm_cache_statistics stats;
588
589 stats.read_hits = atomic_read(&cache->stats.read_hit);
590 stats.read_misses = atomic_read(&cache->stats.read_miss);
591 stats.write_hits = atomic_read(&cache->stats.write_hit);
592 stats.write_misses = atomic_read(&cache->stats.write_miss);
593
594 dm_cache_metadata_set_stats(cache->cmd, &stats);
595}
596
597/*----------------------------------------------------------------
598 * Per bio data
599 *--------------------------------------------------------------*/
600
601/*
602 * If using writeback, leave out struct per_bio_data's writethrough fields.
603 */
604#define PB_DATA_SIZE_WB (offsetof(struct per_bio_data, cache))
605#define PB_DATA_SIZE_WT (sizeof(struct per_bio_data))
606
607static bool writethrough_mode(struct cache_features *f)
608{
609 return f->io_mode == CM_IO_WRITETHROUGH;
610}
611
612static bool writeback_mode(struct cache_features *f)
613{
614 return f->io_mode == CM_IO_WRITEBACK;
615}
616
617static bool passthrough_mode(struct cache_features *f)
618{
619 return f->io_mode == CM_IO_PASSTHROUGH;
620}
621
622static size_t get_per_bio_data_size(struct cache *cache)
623{
624 return writethrough_mode(&cache->features) ? PB_DATA_SIZE_WT : PB_DATA_SIZE_WB;
625}
626
627static struct per_bio_data *get_per_bio_data(struct bio *bio, size_t data_size)
628{
629 struct per_bio_data *pb = dm_per_bio_data(bio, data_size);
630 BUG_ON(!pb);
631 return pb;
632}
633
634static struct per_bio_data *init_per_bio_data(struct bio *bio, size_t data_size)
635{
636 struct per_bio_data *pb = get_per_bio_data(bio, data_size);
637
638 pb->tick = false;
639 pb->req_nr = dm_bio_get_target_bio_nr(bio);
640 pb->all_io_entry = NULL;
641
642 return pb;
643}
644
645/*----------------------------------------------------------------
646 * Remapping
647 *--------------------------------------------------------------*/
648static void remap_to_origin(struct cache *cache, struct bio *bio)
649{
650 bio->bi_bdev = cache->origin_dev->bdev;
651}
652
653static void remap_to_cache(struct cache *cache, struct bio *bio,
654 dm_cblock_t cblock)
655{
656 sector_t bi_sector = bio->bi_iter.bi_sector;
657 sector_t block = from_cblock(cblock);
658
659 bio->bi_bdev = cache->cache_dev->bdev;
660 if (!block_size_is_power_of_two(cache))
661 bio->bi_iter.bi_sector =
662 (block * cache->sectors_per_block) +
663 sector_div(bi_sector, cache->sectors_per_block);
664 else
665 bio->bi_iter.bi_sector =
666 (block << cache->sectors_per_block_shift) |
667 (bi_sector & (cache->sectors_per_block - 1));
668}
669
670static void check_if_tick_bio_needed(struct cache *cache, struct bio *bio)
671{
672 unsigned long flags;
673 size_t pb_data_size = get_per_bio_data_size(cache);
674 struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
675
676 spin_lock_irqsave(&cache->lock, flags);
677 if (cache->need_tick_bio &&
678 !(bio->bi_rw & (REQ_FUA | REQ_FLUSH | REQ_DISCARD))) {
679 pb->tick = true;
680 cache->need_tick_bio = false;
681 }
682 spin_unlock_irqrestore(&cache->lock, flags);
683}
684
685static void remap_to_origin_clear_discard(struct cache *cache, struct bio *bio,
686 dm_oblock_t oblock)
687{
688 check_if_tick_bio_needed(cache, bio);
689 remap_to_origin(cache, bio);
690 if (bio_data_dir(bio) == WRITE)
691 clear_discard(cache, oblock);
692}
693
694static void remap_to_cache_dirty(struct cache *cache, struct bio *bio,
695 dm_oblock_t oblock, dm_cblock_t cblock)
696{
697 check_if_tick_bio_needed(cache, bio);
698 remap_to_cache(cache, bio, cblock);
699 if (bio_data_dir(bio) == WRITE) {
700 set_dirty(cache, oblock, cblock);
701 clear_discard(cache, oblock);
702 }
703}
704
705static dm_oblock_t get_bio_block(struct cache *cache, struct bio *bio)
706{
707 sector_t block_nr = bio->bi_iter.bi_sector;
708
709 if (!block_size_is_power_of_two(cache))
710 (void) sector_div(block_nr, cache->sectors_per_block);
711 else
712 block_nr >>= cache->sectors_per_block_shift;
713
714 return to_oblock(block_nr);
715}
716
717static int bio_triggers_commit(struct cache *cache, struct bio *bio)
718{
719 return bio->bi_rw & (REQ_FLUSH | REQ_FUA);
720}
721
722static void issue(struct cache *cache, struct bio *bio)
723{
724 unsigned long flags;
725
726 if (!bio_triggers_commit(cache, bio)) {
727 generic_make_request(bio);
728 return;
729 }
730
731 /*
732 * Batch together any bios that trigger commits and then issue a
733 * single commit for them in do_worker().
734 */
735 spin_lock_irqsave(&cache->lock, flags);
736 cache->commit_requested = true;
737 bio_list_add(&cache->deferred_flush_bios, bio);
738 spin_unlock_irqrestore(&cache->lock, flags);
739}
740
741static void defer_writethrough_bio(struct cache *cache, struct bio *bio)
742{
743 unsigned long flags;
744
745 spin_lock_irqsave(&cache->lock, flags);
746 bio_list_add(&cache->deferred_writethrough_bios, bio);
747 spin_unlock_irqrestore(&cache->lock, flags);
748
749 wake_worker(cache);
750}
751
752static void writethrough_endio(struct bio *bio, int err)
753{
754 struct per_bio_data *pb = get_per_bio_data(bio, PB_DATA_SIZE_WT);
755
756 dm_unhook_bio(&pb->hook_info, bio);
757
758 if (err) {
759 bio_endio(bio, err);
760 return;
761 }
762
763 dm_bio_restore(&pb->bio_details, bio);
764 remap_to_cache(pb->cache, bio, pb->cblock);
765
766 /*
767 * We can't issue this bio directly, since we're in interrupt
768 * context. So it gets put on a bio list for processing by the
769 * worker thread.
770 */
771 defer_writethrough_bio(pb->cache, bio);
772}
773
774/*
775 * When running in writethrough mode we need to send writes to clean blocks
776 * to both the cache and origin devices. In future we'd like to clone the
777 * bio and send them in parallel, but for now we're doing them in
778 * series as this is easier.
779 */
780static void remap_to_origin_then_cache(struct cache *cache, struct bio *bio,
781 dm_oblock_t oblock, dm_cblock_t cblock)
782{
783 struct per_bio_data *pb = get_per_bio_data(bio, PB_DATA_SIZE_WT);
784
785 pb->cache = cache;
786 pb->cblock = cblock;
787 dm_hook_bio(&pb->hook_info, bio, writethrough_endio, NULL);
788 dm_bio_record(&pb->bio_details, bio);
789
790 remap_to_origin_clear_discard(pb->cache, bio, oblock);
791}
792
793/*----------------------------------------------------------------
794 * Migration processing
795 *
796 * Migration covers moving data from the origin device to the cache, or
797 * vice versa.
798 *--------------------------------------------------------------*/
799static void free_migration(struct dm_cache_migration *mg)
800{
801 mempool_free(mg, mg->cache->migration_pool);
802}
803
804static void inc_nr_migrations(struct cache *cache)
805{
806 atomic_inc(&cache->nr_migrations);
807}
808
809static void dec_nr_migrations(struct cache *cache)
810{
811 atomic_dec(&cache->nr_migrations);
812
813 /*
814 * Wake the worker in case we're suspending the target.
815 */
816 wake_up(&cache->migration_wait);
817}
818
819static void __cell_defer(struct cache *cache, struct dm_bio_prison_cell *cell,
820 bool holder)
821{
822 (holder ? dm_cell_release : dm_cell_release_no_holder)
823 (cache->prison, cell, &cache->deferred_bios);
824 free_prison_cell(cache, cell);
825}
826
827static void cell_defer(struct cache *cache, struct dm_bio_prison_cell *cell,
828 bool holder)
829{
830 unsigned long flags;
831
832 spin_lock_irqsave(&cache->lock, flags);
833 __cell_defer(cache, cell, holder);
834 spin_unlock_irqrestore(&cache->lock, flags);
835
836 wake_worker(cache);
837}
838
839static void cleanup_migration(struct dm_cache_migration *mg)
840{
841 struct cache *cache = mg->cache;
842 free_migration(mg);
843 dec_nr_migrations(cache);
844}
845
846static void migration_failure(struct dm_cache_migration *mg)
847{
848 struct cache *cache = mg->cache;
849
850 if (mg->writeback) {
851 DMWARN_LIMIT("writeback failed; couldn't copy block");
852 set_dirty(cache, mg->old_oblock, mg->cblock);
853 cell_defer(cache, mg->old_ocell, false);
854
855 } else if (mg->demote) {
856 DMWARN_LIMIT("demotion failed; couldn't copy block");
857 policy_force_mapping(cache->policy, mg->new_oblock, mg->old_oblock);
858
859 cell_defer(cache, mg->old_ocell, mg->promote ? false : true);
860 if (mg->promote)
861 cell_defer(cache, mg->new_ocell, true);
862 } else {
863 DMWARN_LIMIT("promotion failed; couldn't copy block");
864 policy_remove_mapping(cache->policy, mg->new_oblock);
865 cell_defer(cache, mg->new_ocell, true);
866 }
867
868 cleanup_migration(mg);
869}
870
871static void migration_success_pre_commit(struct dm_cache_migration *mg)
872{
873 unsigned long flags;
874 struct cache *cache = mg->cache;
875
876 if (mg->writeback) {
877 cell_defer(cache, mg->old_ocell, false);
878 clear_dirty(cache, mg->old_oblock, mg->cblock);
879 cleanup_migration(mg);
880 return;
881
882 } else if (mg->demote) {
883 if (dm_cache_remove_mapping(cache->cmd, mg->cblock)) {
884 DMWARN_LIMIT("demotion failed; couldn't update on disk metadata");
885 policy_force_mapping(cache->policy, mg->new_oblock,
886 mg->old_oblock);
887 if (mg->promote)
888 cell_defer(cache, mg->new_ocell, true);
889 cleanup_migration(mg);
890 return;
891 }
892 } else {
893 if (dm_cache_insert_mapping(cache->cmd, mg->cblock, mg->new_oblock)) {
894 DMWARN_LIMIT("promotion failed; couldn't update on disk metadata");
895 policy_remove_mapping(cache->policy, mg->new_oblock);
896 cleanup_migration(mg);
897 return;
898 }
899 }
900
901 spin_lock_irqsave(&cache->lock, flags);
902 list_add_tail(&mg->list, &cache->need_commit_migrations);
903 cache->commit_requested = true;
904 spin_unlock_irqrestore(&cache->lock, flags);
905}
906
907static void migration_success_post_commit(struct dm_cache_migration *mg)
908{
909 unsigned long flags;
910 struct cache *cache = mg->cache;
911
912 if (mg->writeback) {
913 DMWARN("writeback unexpectedly triggered commit");
914 return;
915
916 } else if (mg->demote) {
917 cell_defer(cache, mg->old_ocell, mg->promote ? false : true);
918
919 if (mg->promote) {
920 mg->demote = false;
921
922 spin_lock_irqsave(&cache->lock, flags);
923 list_add_tail(&mg->list, &cache->quiesced_migrations);
924 spin_unlock_irqrestore(&cache->lock, flags);
925
926 } else {
927 if (mg->invalidate)
928 policy_remove_mapping(cache->policy, mg->old_oblock);
929 cleanup_migration(mg);
930 }
931
932 } else {
933 if (mg->requeue_holder)
934 cell_defer(cache, mg->new_ocell, true);
935 else {
936 bio_endio(mg->new_ocell->holder, 0);
937 cell_defer(cache, mg->new_ocell, false);
938 }
939 clear_dirty(cache, mg->new_oblock, mg->cblock);
940 cleanup_migration(mg);
941 }
942}
943
944static void copy_complete(int read_err, unsigned long write_err, void *context)
945{
946 unsigned long flags;
947 struct dm_cache_migration *mg = (struct dm_cache_migration *) context;
948 struct cache *cache = mg->cache;
949
950 if (read_err || write_err)
951 mg->err = true;
952
953 spin_lock_irqsave(&cache->lock, flags);
954 list_add_tail(&mg->list, &cache->completed_migrations);
955 spin_unlock_irqrestore(&cache->lock, flags);
956
957 wake_worker(cache);
958}
959
960static void issue_copy_real(struct dm_cache_migration *mg)
961{
962 int r;
963 struct dm_io_region o_region, c_region;
964 struct cache *cache = mg->cache;
965 sector_t cblock = from_cblock(mg->cblock);
966
967 o_region.bdev = cache->origin_dev->bdev;
968 o_region.count = cache->sectors_per_block;
969
970 c_region.bdev = cache->cache_dev->bdev;
971 c_region.sector = cblock * cache->sectors_per_block;
972 c_region.count = cache->sectors_per_block;
973
974 if (mg->writeback || mg->demote) {
975 /* demote */
976 o_region.sector = from_oblock(mg->old_oblock) * cache->sectors_per_block;
977 r = dm_kcopyd_copy(cache->copier, &c_region, 1, &o_region, 0, copy_complete, mg);
978 } else {
979 /* promote */
980 o_region.sector = from_oblock(mg->new_oblock) * cache->sectors_per_block;
981 r = dm_kcopyd_copy(cache->copier, &o_region, 1, &c_region, 0, copy_complete, mg);
982 }
983
984 if (r < 0) {
985 DMERR_LIMIT("issuing migration failed");
986 migration_failure(mg);
987 }
988}
989
990static void overwrite_endio(struct bio *bio, int err)
991{
992 struct dm_cache_migration *mg = bio->bi_private;
993 struct cache *cache = mg->cache;
994 size_t pb_data_size = get_per_bio_data_size(cache);
995 struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
996 unsigned long flags;
997
998 dm_unhook_bio(&pb->hook_info, bio);
999
1000 if (err)
1001 mg->err = true;
1002
1003 mg->requeue_holder = false;
1004
1005 spin_lock_irqsave(&cache->lock, flags);
1006 list_add_tail(&mg->list, &cache->completed_migrations);
1007 spin_unlock_irqrestore(&cache->lock, flags);
1008
1009 wake_worker(cache);
1010}
1011
1012static void issue_overwrite(struct dm_cache_migration *mg, struct bio *bio)
1013{
1014 size_t pb_data_size = get_per_bio_data_size(mg->cache);
1015 struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
1016
1017 dm_hook_bio(&pb->hook_info, bio, overwrite_endio, mg);
1018 remap_to_cache_dirty(mg->cache, bio, mg->new_oblock, mg->cblock);
1019 generic_make_request(bio);
1020}
1021
1022static bool bio_writes_complete_block(struct cache *cache, struct bio *bio)
1023{
1024 return (bio_data_dir(bio) == WRITE) &&
1025 (bio->bi_iter.bi_size == (cache->sectors_per_block << SECTOR_SHIFT));
1026}
1027
1028static void avoid_copy(struct dm_cache_migration *mg)
1029{
1030 atomic_inc(&mg->cache->stats.copies_avoided);
1031 migration_success_pre_commit(mg);
1032}
1033
1034static void issue_copy(struct dm_cache_migration *mg)
1035{
1036 bool avoid;
1037 struct cache *cache = mg->cache;
1038
1039 if (mg->writeback || mg->demote)
1040 avoid = !is_dirty(cache, mg->cblock) ||
1041 is_discarded_oblock(cache, mg->old_oblock);
1042 else {
1043 struct bio *bio = mg->new_ocell->holder;
1044
1045 avoid = is_discarded_oblock(cache, mg->new_oblock);
1046
1047 if (!avoid && bio_writes_complete_block(cache, bio)) {
1048 issue_overwrite(mg, bio);
1049 return;
1050 }
1051 }
1052
1053 avoid ? avoid_copy(mg) : issue_copy_real(mg);
1054}
1055
1056static void complete_migration(struct dm_cache_migration *mg)
1057{
1058 if (mg->err)
1059 migration_failure(mg);
1060 else
1061 migration_success_pre_commit(mg);
1062}
1063
1064static void process_migrations(struct cache *cache, struct list_head *head,
1065 void (*fn)(struct dm_cache_migration *))
1066{
1067 unsigned long flags;
1068 struct list_head list;
1069 struct dm_cache_migration *mg, *tmp;
1070
1071 INIT_LIST_HEAD(&list);
1072 spin_lock_irqsave(&cache->lock, flags);
1073 list_splice_init(head, &list);
1074 spin_unlock_irqrestore(&cache->lock, flags);
1075
1076 list_for_each_entry_safe(mg, tmp, &list, list)
1077 fn(mg);
1078}
1079
1080static void __queue_quiesced_migration(struct dm_cache_migration *mg)
1081{
1082 list_add_tail(&mg->list, &mg->cache->quiesced_migrations);
1083}
1084
1085static void queue_quiesced_migration(struct dm_cache_migration *mg)
1086{
1087 unsigned long flags;
1088 struct cache *cache = mg->cache;
1089
1090 spin_lock_irqsave(&cache->lock, flags);
1091 __queue_quiesced_migration(mg);
1092 spin_unlock_irqrestore(&cache->lock, flags);
1093
1094 wake_worker(cache);
1095}
1096
1097static void queue_quiesced_migrations(struct cache *cache, struct list_head *work)
1098{
1099 unsigned long flags;
1100 struct dm_cache_migration *mg, *tmp;
1101
1102 spin_lock_irqsave(&cache->lock, flags);
1103 list_for_each_entry_safe(mg, tmp, work, list)
1104 __queue_quiesced_migration(mg);
1105 spin_unlock_irqrestore(&cache->lock, flags);
1106
1107 wake_worker(cache);
1108}
1109
1110static void check_for_quiesced_migrations(struct cache *cache,
1111 struct per_bio_data *pb)
1112{
1113 struct list_head work;
1114
1115 if (!pb->all_io_entry)
1116 return;
1117
1118 INIT_LIST_HEAD(&work);
1119 if (pb->all_io_entry)
1120 dm_deferred_entry_dec(pb->all_io_entry, &work);
1121
1122 if (!list_empty(&work))
1123 queue_quiesced_migrations(cache, &work);
1124}
1125
1126static void quiesce_migration(struct dm_cache_migration *mg)
1127{
1128 if (!dm_deferred_set_add_work(mg->cache->all_io_ds, &mg->list))
1129 queue_quiesced_migration(mg);
1130}
1131
1132static void promote(struct cache *cache, struct prealloc *structs,
1133 dm_oblock_t oblock, dm_cblock_t cblock,
1134 struct dm_bio_prison_cell *cell)
1135{
1136 struct dm_cache_migration *mg = prealloc_get_migration(structs);
1137
1138 mg->err = false;
1139 mg->writeback = false;
1140 mg->demote = false;
1141 mg->promote = true;
1142 mg->requeue_holder = true;
1143 mg->invalidate = false;
1144 mg->cache = cache;
1145 mg->new_oblock = oblock;
1146 mg->cblock = cblock;
1147 mg->old_ocell = NULL;
1148 mg->new_ocell = cell;
1149 mg->start_jiffies = jiffies;
1150
1151 inc_nr_migrations(cache);
1152 quiesce_migration(mg);
1153}
1154
1155static void writeback(struct cache *cache, struct prealloc *structs,
1156 dm_oblock_t oblock, dm_cblock_t cblock,
1157 struct dm_bio_prison_cell *cell)
1158{
1159 struct dm_cache_migration *mg = prealloc_get_migration(structs);
1160
1161 mg->err = false;
1162 mg->writeback = true;
1163 mg->demote = false;
1164 mg->promote = false;
1165 mg->requeue_holder = true;
1166 mg->invalidate = false;
1167 mg->cache = cache;
1168 mg->old_oblock = oblock;
1169 mg->cblock = cblock;
1170 mg->old_ocell = cell;
1171 mg->new_ocell = NULL;
1172 mg->start_jiffies = jiffies;
1173
1174 inc_nr_migrations(cache);
1175 quiesce_migration(mg);
1176}
1177
1178static void demote_then_promote(struct cache *cache, struct prealloc *structs,
1179 dm_oblock_t old_oblock, dm_oblock_t new_oblock,
1180 dm_cblock_t cblock,
1181 struct dm_bio_prison_cell *old_ocell,
1182 struct dm_bio_prison_cell *new_ocell)
1183{
1184 struct dm_cache_migration *mg = prealloc_get_migration(structs);
1185
1186 mg->err = false;
1187 mg->writeback = false;
1188 mg->demote = true;
1189 mg->promote = true;
1190 mg->requeue_holder = true;
1191 mg->invalidate = false;
1192 mg->cache = cache;
1193 mg->old_oblock = old_oblock;
1194 mg->new_oblock = new_oblock;
1195 mg->cblock = cblock;
1196 mg->old_ocell = old_ocell;
1197 mg->new_ocell = new_ocell;
1198 mg->start_jiffies = jiffies;
1199
1200 inc_nr_migrations(cache);
1201 quiesce_migration(mg);
1202}
1203
1204/*
1205 * Invalidate a cache entry. No writeback occurs; any changes in the cache
1206 * block are thrown away.
1207 */
1208static void invalidate(struct cache *cache, struct prealloc *structs,
1209 dm_oblock_t oblock, dm_cblock_t cblock,
1210 struct dm_bio_prison_cell *cell)
1211{
1212 struct dm_cache_migration *mg = prealloc_get_migration(structs);
1213
1214 mg->err = false;
1215 mg->writeback = false;
1216 mg->demote = true;
1217 mg->promote = false;
1218 mg->requeue_holder = true;
1219 mg->invalidate = true;
1220 mg->cache = cache;
1221 mg->old_oblock = oblock;
1222 mg->cblock = cblock;
1223 mg->old_ocell = cell;
1224 mg->new_ocell = NULL;
1225 mg->start_jiffies = jiffies;
1226
1227 inc_nr_migrations(cache);
1228 quiesce_migration(mg);
1229}
1230
1231/*----------------------------------------------------------------
1232 * bio processing
1233 *--------------------------------------------------------------*/
1234static void defer_bio(struct cache *cache, struct bio *bio)
1235{
1236 unsigned long flags;
1237
1238 spin_lock_irqsave(&cache->lock, flags);
1239 bio_list_add(&cache->deferred_bios, bio);
1240 spin_unlock_irqrestore(&cache->lock, flags);
1241
1242 wake_worker(cache);
1243}
1244
1245static void process_flush_bio(struct cache *cache, struct bio *bio)
1246{
1247 size_t pb_data_size = get_per_bio_data_size(cache);
1248 struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
1249
1250 BUG_ON(bio->bi_iter.bi_size);
1251 if (!pb->req_nr)
1252 remap_to_origin(cache, bio);
1253 else
1254 remap_to_cache(cache, bio, 0);
1255
1256 issue(cache, bio);
1257}
1258
1259/*
1260 * People generally discard large parts of a device, eg, the whole device
1261 * when formatting. Splitting these large discards up into cache block
1262 * sized ios and then quiescing (always neccessary for discard) takes too
1263 * long.
1264 *
1265 * We keep it simple, and allow any size of discard to come in, and just
1266 * mark off blocks on the discard bitset. No passdown occurs!
1267 *
1268 * To implement passdown we need to change the bio_prison such that a cell
1269 * can have a key that spans many blocks.
1270 */
1271static void process_discard_bio(struct cache *cache, struct bio *bio)
1272{
1273 dm_block_t start_block = dm_sector_div_up(bio->bi_iter.bi_sector,
1274 cache->sectors_per_block);
1275 dm_block_t end_block = bio_end_sector(bio);
1276 dm_block_t b;
1277
1278 end_block = block_div(end_block, cache->sectors_per_block);
1279
1280 for (b = start_block; b < end_block; b++)
1281 set_discard(cache, to_oblock(b));
1282
1283 bio_endio(bio, 0);
1284}
1285
1286static bool spare_migration_bandwidth(struct cache *cache)
1287{
1288 sector_t current_volume = (atomic_read(&cache->nr_migrations) + 1) *
1289 cache->sectors_per_block;
1290 return current_volume < cache->migration_threshold;
1291}
1292
1293static void inc_hit_counter(struct cache *cache, struct bio *bio)
1294{
1295 atomic_inc(bio_data_dir(bio) == READ ?
1296 &cache->stats.read_hit : &cache->stats.write_hit);
1297}
1298
1299static void inc_miss_counter(struct cache *cache, struct bio *bio)
1300{
1301 atomic_inc(bio_data_dir(bio) == READ ?
1302 &cache->stats.read_miss : &cache->stats.write_miss);
1303}
1304
1305static void issue_cache_bio(struct cache *cache, struct bio *bio,
1306 struct per_bio_data *pb,
1307 dm_oblock_t oblock, dm_cblock_t cblock)
1308{
1309 pb->all_io_entry = dm_deferred_entry_inc(cache->all_io_ds);
1310 remap_to_cache_dirty(cache, bio, oblock, cblock);
1311 issue(cache, bio);
1312}
1313
1314static void process_bio(struct cache *cache, struct prealloc *structs,
1315 struct bio *bio)
1316{
1317 int r;
1318 bool release_cell = true;
1319 dm_oblock_t block = get_bio_block(cache, bio);
1320 struct dm_bio_prison_cell *cell_prealloc, *old_ocell, *new_ocell;
1321 struct policy_result lookup_result;
1322 size_t pb_data_size = get_per_bio_data_size(cache);
1323 struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
1324 bool discarded_block = is_discarded_oblock(cache, block);
1325 bool passthrough = passthrough_mode(&cache->features);
1326 bool can_migrate = !passthrough && (discarded_block || spare_migration_bandwidth(cache));
1327
1328 /*
1329 * Check to see if that block is currently migrating.
1330 */
1331 cell_prealloc = prealloc_get_cell(structs);
1332 r = bio_detain(cache, block, bio, cell_prealloc,
1333 (cell_free_fn) prealloc_put_cell,
1334 structs, &new_ocell);
1335 if (r > 0)
1336 return;
1337
1338 r = policy_map(cache->policy, block, true, can_migrate, discarded_block,
1339 bio, &lookup_result);
1340
1341 if (r == -EWOULDBLOCK)
1342 /* migration has been denied */
1343 lookup_result.op = POLICY_MISS;
1344
1345 switch (lookup_result.op) {
1346 case POLICY_HIT:
1347 if (passthrough) {
1348 inc_miss_counter(cache, bio);
1349
1350 /*
1351 * Passthrough always maps to the origin,
1352 * invalidating any cache blocks that are written
1353 * to.
1354 */
1355
1356 if (bio_data_dir(bio) == WRITE) {
1357 atomic_inc(&cache->stats.demotion);
1358 invalidate(cache, structs, block, lookup_result.cblock, new_ocell);
1359 release_cell = false;
1360
1361 } else {
1362 /* FIXME: factor out issue_origin() */
1363 pb->all_io_entry = dm_deferred_entry_inc(cache->all_io_ds);
1364 remap_to_origin_clear_discard(cache, bio, block);
1365 issue(cache, bio);
1366 }
1367 } else {
1368 inc_hit_counter(cache, bio);
1369
1370 if (bio_data_dir(bio) == WRITE &&
1371 writethrough_mode(&cache->features) &&
1372 !is_dirty(cache, lookup_result.cblock)) {
1373 pb->all_io_entry = dm_deferred_entry_inc(cache->all_io_ds);
1374 remap_to_origin_then_cache(cache, bio, block, lookup_result.cblock);
1375 issue(cache, bio);
1376 } else
1377 issue_cache_bio(cache, bio, pb, block, lookup_result.cblock);
1378 }
1379
1380 break;
1381
1382 case POLICY_MISS:
1383 inc_miss_counter(cache, bio);
1384 pb->all_io_entry = dm_deferred_entry_inc(cache->all_io_ds);
1385 remap_to_origin_clear_discard(cache, bio, block);
1386 issue(cache, bio);
1387 break;
1388
1389 case POLICY_NEW:
1390 atomic_inc(&cache->stats.promotion);
1391 promote(cache, structs, block, lookup_result.cblock, new_ocell);
1392 release_cell = false;
1393 break;
1394
1395 case POLICY_REPLACE:
1396 cell_prealloc = prealloc_get_cell(structs);
1397 r = bio_detain(cache, lookup_result.old_oblock, bio, cell_prealloc,
1398 (cell_free_fn) prealloc_put_cell,
1399 structs, &old_ocell);
1400 if (r > 0) {
1401 /*
1402 * We have to be careful to avoid lock inversion of
1403 * the cells. So we back off, and wait for the
1404 * old_ocell to become free.
1405 */
1406 policy_force_mapping(cache->policy, block,
1407 lookup_result.old_oblock);
1408 atomic_inc(&cache->stats.cache_cell_clash);
1409 break;
1410 }
1411 atomic_inc(&cache->stats.demotion);
1412 atomic_inc(&cache->stats.promotion);
1413
1414 demote_then_promote(cache, structs, lookup_result.old_oblock,
1415 block, lookup_result.cblock,
1416 old_ocell, new_ocell);
1417 release_cell = false;
1418 break;
1419
1420 default:
1421 DMERR_LIMIT("%s: erroring bio, unknown policy op: %u", __func__,
1422 (unsigned) lookup_result.op);
1423 bio_io_error(bio);
1424 }
1425
1426 if (release_cell)
1427 cell_defer(cache, new_ocell, false);
1428}
1429
1430static int need_commit_due_to_time(struct cache *cache)
1431{
1432 return jiffies < cache->last_commit_jiffies ||
1433 jiffies > cache->last_commit_jiffies + COMMIT_PERIOD;
1434}
1435
1436static int commit_if_needed(struct cache *cache)
1437{
1438 int r = 0;
1439
1440 if ((cache->commit_requested || need_commit_due_to_time(cache)) &&
1441 dm_cache_changed_this_transaction(cache->cmd)) {
1442 atomic_inc(&cache->stats.commit_count);
1443 cache->commit_requested = false;
1444 r = dm_cache_commit(cache->cmd, false);
1445 cache->last_commit_jiffies = jiffies;
1446 }
1447
1448 return r;
1449}
1450
1451static void process_deferred_bios(struct cache *cache)
1452{
1453 unsigned long flags;
1454 struct bio_list bios;
1455 struct bio *bio;
1456 struct prealloc structs;
1457
1458 memset(&structs, 0, sizeof(structs));
1459 bio_list_init(&bios);
1460
1461 spin_lock_irqsave(&cache->lock, flags);
1462 bio_list_merge(&bios, &cache->deferred_bios);
1463 bio_list_init(&cache->deferred_bios);
1464 spin_unlock_irqrestore(&cache->lock, flags);
1465
1466 while (!bio_list_empty(&bios)) {
1467 /*
1468 * If we've got no free migration structs, and processing
1469 * this bio might require one, we pause until there are some
1470 * prepared mappings to process.
1471 */
1472 if (prealloc_data_structs(cache, &structs)) {
1473 spin_lock_irqsave(&cache->lock, flags);
1474 bio_list_merge(&cache->deferred_bios, &bios);
1475 spin_unlock_irqrestore(&cache->lock, flags);
1476 break;
1477 }
1478
1479 bio = bio_list_pop(&bios);
1480
1481 if (bio->bi_rw & REQ_FLUSH)
1482 process_flush_bio(cache, bio);
1483 else if (bio->bi_rw & REQ_DISCARD)
1484 process_discard_bio(cache, bio);
1485 else
1486 process_bio(cache, &structs, bio);
1487 }
1488
1489 prealloc_free_structs(cache, &structs);
1490}
1491
1492static void process_deferred_flush_bios(struct cache *cache, bool submit_bios)
1493{
1494 unsigned long flags;
1495 struct bio_list bios;
1496 struct bio *bio;
1497
1498 bio_list_init(&bios);
1499
1500 spin_lock_irqsave(&cache->lock, flags);
1501 bio_list_merge(&bios, &cache->deferred_flush_bios);
1502 bio_list_init(&cache->deferred_flush_bios);
1503 spin_unlock_irqrestore(&cache->lock, flags);
1504
1505 while ((bio = bio_list_pop(&bios)))
1506 submit_bios ? generic_make_request(bio) : bio_io_error(bio);
1507}
1508
1509static void process_deferred_writethrough_bios(struct cache *cache)
1510{
1511 unsigned long flags;
1512 struct bio_list bios;
1513 struct bio *bio;
1514
1515 bio_list_init(&bios);
1516
1517 spin_lock_irqsave(&cache->lock, flags);
1518 bio_list_merge(&bios, &cache->deferred_writethrough_bios);
1519 bio_list_init(&cache->deferred_writethrough_bios);
1520 spin_unlock_irqrestore(&cache->lock, flags);
1521
1522 while ((bio = bio_list_pop(&bios)))
1523 generic_make_request(bio);
1524}
1525
1526static void writeback_some_dirty_blocks(struct cache *cache)
1527{
1528 int r = 0;
1529 dm_oblock_t oblock;
1530 dm_cblock_t cblock;
1531 struct prealloc structs;
1532 struct dm_bio_prison_cell *old_ocell;
1533
1534 memset(&structs, 0, sizeof(structs));
1535
1536 while (spare_migration_bandwidth(cache)) {
1537 if (prealloc_data_structs(cache, &structs))
1538 break;
1539
1540 r = policy_writeback_work(cache->policy, &oblock, &cblock);
1541 if (r)
1542 break;
1543
1544 r = get_cell(cache, oblock, &structs, &old_ocell);
1545 if (r) {
1546 policy_set_dirty(cache->policy, oblock);
1547 break;
1548 }
1549
1550 writeback(cache, &structs, oblock, cblock, old_ocell);
1551 }
1552
1553 prealloc_free_structs(cache, &structs);
1554}
1555
1556/*----------------------------------------------------------------
1557 * Invalidations.
1558 * Dropping something from the cache *without* writing back.
1559 *--------------------------------------------------------------*/
1560
1561static void process_invalidation_request(struct cache *cache, struct invalidation_request *req)
1562{
1563 int r = 0;
1564 uint64_t begin = from_cblock(req->cblocks->begin);
1565 uint64_t end = from_cblock(req->cblocks->end);
1566
1567 while (begin != end) {
1568 r = policy_remove_cblock(cache->policy, to_cblock(begin));
1569 if (!r) {
1570 r = dm_cache_remove_mapping(cache->cmd, to_cblock(begin));
1571 if (r)
1572 break;
1573
1574 } else if (r == -ENODATA) {
1575 /* harmless, already unmapped */
1576 r = 0;
1577
1578 } else {
1579 DMERR("policy_remove_cblock failed");
1580 break;
1581 }
1582
1583 begin++;
1584 }
1585
1586 cache->commit_requested = true;
1587
1588 req->err = r;
1589 atomic_set(&req->complete, 1);
1590
1591 wake_up(&req->result_wait);
1592}
1593
1594static void process_invalidation_requests(struct cache *cache)
1595{
1596 struct list_head list;
1597 struct invalidation_request *req, *tmp;
1598
1599 INIT_LIST_HEAD(&list);
1600 spin_lock(&cache->invalidation_lock);
1601 list_splice_init(&cache->invalidation_requests, &list);
1602 spin_unlock(&cache->invalidation_lock);
1603
1604 list_for_each_entry_safe (req, tmp, &list, list)
1605 process_invalidation_request(cache, req);
1606}
1607
1608/*----------------------------------------------------------------
1609 * Main worker loop
1610 *--------------------------------------------------------------*/
1611static bool is_quiescing(struct cache *cache)
1612{
1613 return atomic_read(&cache->quiescing);
1614}
1615
1616static void ack_quiescing(struct cache *cache)
1617{
1618 if (is_quiescing(cache)) {
1619 atomic_inc(&cache->quiescing_ack);
1620 wake_up(&cache->quiescing_wait);
1621 }
1622}
1623
1624static void wait_for_quiescing_ack(struct cache *cache)
1625{
1626 wait_event(cache->quiescing_wait, atomic_read(&cache->quiescing_ack));
1627}
1628
1629static void start_quiescing(struct cache *cache)
1630{
1631 atomic_inc(&cache->quiescing);
1632 wait_for_quiescing_ack(cache);
1633}
1634
1635static void stop_quiescing(struct cache *cache)
1636{
1637 atomic_set(&cache->quiescing, 0);
1638 atomic_set(&cache->quiescing_ack, 0);
1639}
1640
1641static void wait_for_migrations(struct cache *cache)
1642{
1643 wait_event(cache->migration_wait, !atomic_read(&cache->nr_migrations));
1644}
1645
1646static void stop_worker(struct cache *cache)
1647{
1648 cancel_delayed_work(&cache->waker);
1649 flush_workqueue(cache->wq);
1650}
1651
1652static void requeue_deferred_io(struct cache *cache)
1653{
1654 struct bio *bio;
1655 struct bio_list bios;
1656
1657 bio_list_init(&bios);
1658 bio_list_merge(&bios, &cache->deferred_bios);
1659 bio_list_init(&cache->deferred_bios);
1660
1661 while ((bio = bio_list_pop(&bios)))
1662 bio_endio(bio, DM_ENDIO_REQUEUE);
1663}
1664
1665static int more_work(struct cache *cache)
1666{
1667 if (is_quiescing(cache))
1668 return !list_empty(&cache->quiesced_migrations) ||
1669 !list_empty(&cache->completed_migrations) ||
1670 !list_empty(&cache->need_commit_migrations);
1671 else
1672 return !bio_list_empty(&cache->deferred_bios) ||
1673 !bio_list_empty(&cache->deferred_flush_bios) ||
1674 !bio_list_empty(&cache->deferred_writethrough_bios) ||
1675 !list_empty(&cache->quiesced_migrations) ||
1676 !list_empty(&cache->completed_migrations) ||
1677 !list_empty(&cache->need_commit_migrations) ||
1678 cache->invalidate;
1679}
1680
1681static void do_worker(struct work_struct *ws)
1682{
1683 struct cache *cache = container_of(ws, struct cache, worker);
1684
1685 do {
1686 if (!is_quiescing(cache)) {
1687 writeback_some_dirty_blocks(cache);
1688 process_deferred_writethrough_bios(cache);
1689 process_deferred_bios(cache);
1690 process_invalidation_requests(cache);
1691 }
1692
1693 process_migrations(cache, &cache->quiesced_migrations, issue_copy);
1694 process_migrations(cache, &cache->completed_migrations, complete_migration);
1695
1696 if (commit_if_needed(cache)) {
1697 process_deferred_flush_bios(cache, false);
1698
1699 /*
1700 * FIXME: rollback metadata or just go into a
1701 * failure mode and error everything
1702 */
1703 } else {
1704 process_deferred_flush_bios(cache, true);
1705 process_migrations(cache, &cache->need_commit_migrations,
1706 migration_success_post_commit);
1707 }
1708
1709 ack_quiescing(cache);
1710
1711 } while (more_work(cache));
1712}
1713
1714/*
1715 * We want to commit periodically so that not too much
1716 * unwritten metadata builds up.
1717 */
1718static void do_waker(struct work_struct *ws)
1719{
1720 struct cache *cache = container_of(to_delayed_work(ws), struct cache, waker);
1721 policy_tick(cache->policy);
1722 wake_worker(cache);
1723 queue_delayed_work(cache->wq, &cache->waker, COMMIT_PERIOD);
1724}
1725
1726/*----------------------------------------------------------------*/
1727
1728static int is_congested(struct dm_dev *dev, int bdi_bits)
1729{
1730 struct request_queue *q = bdev_get_queue(dev->bdev);
1731 return bdi_congested(&q->backing_dev_info, bdi_bits);
1732}
1733
1734static int cache_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
1735{
1736 struct cache *cache = container_of(cb, struct cache, callbacks);
1737
1738 return is_congested(cache->origin_dev, bdi_bits) ||
1739 is_congested(cache->cache_dev, bdi_bits);
1740}
1741
1742/*----------------------------------------------------------------
1743 * Target methods
1744 *--------------------------------------------------------------*/
1745
1746/*
1747 * This function gets called on the error paths of the constructor, so we
1748 * have to cope with a partially initialised struct.
1749 */
1750static void destroy(struct cache *cache)
1751{
1752 unsigned i;
1753
1754 if (cache->next_migration)
1755 mempool_free(cache->next_migration, cache->migration_pool);
1756
1757 if (cache->migration_pool)
1758 mempool_destroy(cache->migration_pool);
1759
1760 if (cache->all_io_ds)
1761 dm_deferred_set_destroy(cache->all_io_ds);
1762
1763 if (cache->prison)
1764 dm_bio_prison_destroy(cache->prison);
1765
1766 if (cache->wq)
1767 destroy_workqueue(cache->wq);
1768
1769 if (cache->dirty_bitset)
1770 free_bitset(cache->dirty_bitset);
1771
1772 if (cache->discard_bitset)
1773 free_bitset(cache->discard_bitset);
1774
1775 if (cache->copier)
1776 dm_kcopyd_client_destroy(cache->copier);
1777
1778 if (cache->cmd)
1779 dm_cache_metadata_close(cache->cmd);
1780
1781 if (cache->metadata_dev)
1782 dm_put_device(cache->ti, cache->metadata_dev);
1783
1784 if (cache->origin_dev)
1785 dm_put_device(cache->ti, cache->origin_dev);
1786
1787 if (cache->cache_dev)
1788 dm_put_device(cache->ti, cache->cache_dev);
1789
1790 if (cache->policy)
1791 dm_cache_policy_destroy(cache->policy);
1792
1793 for (i = 0; i < cache->nr_ctr_args ; i++)
1794 kfree(cache->ctr_args[i]);
1795 kfree(cache->ctr_args);
1796
1797 kfree(cache);
1798}
1799
1800static void cache_dtr(struct dm_target *ti)
1801{
1802 struct cache *cache = ti->private;
1803
1804 destroy(cache);
1805}
1806
1807static sector_t get_dev_size(struct dm_dev *dev)
1808{
1809 return i_size_read(dev->bdev->bd_inode) >> SECTOR_SHIFT;
1810}
1811
1812/*----------------------------------------------------------------*/
1813
1814/*
1815 * Construct a cache device mapping.
1816 *
1817 * cache <metadata dev> <cache dev> <origin dev> <block size>
1818 * <#feature args> [<feature arg>]*
1819 * <policy> <#policy args> [<policy arg>]*
1820 *
1821 * metadata dev : fast device holding the persistent metadata
1822 * cache dev : fast device holding cached data blocks
1823 * origin dev : slow device holding original data blocks
1824 * block size : cache unit size in sectors
1825 *
1826 * #feature args : number of feature arguments passed
1827 * feature args : writethrough. (The default is writeback.)
1828 *
1829 * policy : the replacement policy to use
1830 * #policy args : an even number of policy arguments corresponding
1831 * to key/value pairs passed to the policy
1832 * policy args : key/value pairs passed to the policy
1833 * E.g. 'sequential_threshold 1024'
1834 * See cache-policies.txt for details.
1835 *
1836 * Optional feature arguments are:
1837 * writethrough : write through caching that prohibits cache block
1838 * content from being different from origin block content.
1839 * Without this argument, the default behaviour is to write
1840 * back cache block contents later for performance reasons,
1841 * so they may differ from the corresponding origin blocks.
1842 */
1843struct cache_args {
1844 struct dm_target *ti;
1845
1846 struct dm_dev *metadata_dev;
1847
1848 struct dm_dev *cache_dev;
1849 sector_t cache_sectors;
1850
1851 struct dm_dev *origin_dev;
1852 sector_t origin_sectors;
1853
1854 uint32_t block_size;
1855
1856 const char *policy_name;
1857 int policy_argc;
1858 const char **policy_argv;
1859
1860 struct cache_features features;
1861};
1862
1863static void destroy_cache_args(struct cache_args *ca)
1864{
1865 if (ca->metadata_dev)
1866 dm_put_device(ca->ti, ca->metadata_dev);
1867
1868 if (ca->cache_dev)
1869 dm_put_device(ca->ti, ca->cache_dev);
1870
1871 if (ca->origin_dev)
1872 dm_put_device(ca->ti, ca->origin_dev);
1873
1874 kfree(ca);
1875}
1876
1877static bool at_least_one_arg(struct dm_arg_set *as, char **error)
1878{
1879 if (!as->argc) {
1880 *error = "Insufficient args";
1881 return false;
1882 }
1883
1884 return true;
1885}
1886
1887static int parse_metadata_dev(struct cache_args *ca, struct dm_arg_set *as,
1888 char **error)
1889{
1890 int r;
1891 sector_t metadata_dev_size;
1892 char b[BDEVNAME_SIZE];
1893
1894 if (!at_least_one_arg(as, error))
1895 return -EINVAL;
1896
1897 r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
1898 &ca->metadata_dev);
1899 if (r) {
1900 *error = "Error opening metadata device";
1901 return r;
1902 }
1903
1904 metadata_dev_size = get_dev_size(ca->metadata_dev);
1905 if (metadata_dev_size > DM_CACHE_METADATA_MAX_SECTORS_WARNING)
1906 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
1907 bdevname(ca->metadata_dev->bdev, b), THIN_METADATA_MAX_SECTORS);
1908
1909 return 0;
1910}
1911
1912static int parse_cache_dev(struct cache_args *ca, struct dm_arg_set *as,
1913 char **error)
1914{
1915 int r;
1916
1917 if (!at_least_one_arg(as, error))
1918 return -EINVAL;
1919
1920 r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
1921 &ca->cache_dev);
1922 if (r) {
1923 *error = "Error opening cache device";
1924 return r;
1925 }
1926 ca->cache_sectors = get_dev_size(ca->cache_dev);
1927
1928 return 0;
1929}
1930
1931static int parse_origin_dev(struct cache_args *ca, struct dm_arg_set *as,
1932 char **error)
1933{
1934 int r;
1935
1936 if (!at_least_one_arg(as, error))
1937 return -EINVAL;
1938
1939 r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
1940 &ca->origin_dev);
1941 if (r) {
1942 *error = "Error opening origin device";
1943 return r;
1944 }
1945
1946 ca->origin_sectors = get_dev_size(ca->origin_dev);
1947 if (ca->ti->len > ca->origin_sectors) {
1948 *error = "Device size larger than cached device";
1949 return -EINVAL;
1950 }
1951
1952 return 0;
1953}
1954
1955static int parse_block_size(struct cache_args *ca, struct dm_arg_set *as,
1956 char **error)
1957{
1958 unsigned long block_size;
1959
1960 if (!at_least_one_arg(as, error))
1961 return -EINVAL;
1962
1963 if (kstrtoul(dm_shift_arg(as), 10, &block_size) || !block_size ||
1964 block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
1965 block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
1966 block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
1967 *error = "Invalid data block size";
1968 return -EINVAL;
1969 }
1970
1971 if (block_size > ca->cache_sectors) {
1972 *error = "Data block size is larger than the cache device";
1973 return -EINVAL;
1974 }
1975
1976 ca->block_size = block_size;
1977
1978 return 0;
1979}
1980
1981static void init_features(struct cache_features *cf)
1982{
1983 cf->mode = CM_WRITE;
1984 cf->io_mode = CM_IO_WRITEBACK;
1985}
1986
1987static int parse_features(struct cache_args *ca, struct dm_arg_set *as,
1988 char **error)
1989{
1990 static struct dm_arg _args[] = {
1991 {0, 1, "Invalid number of cache feature arguments"},
1992 };
1993
1994 int r;
1995 unsigned argc;
1996 const char *arg;
1997 struct cache_features *cf = &ca->features;
1998
1999 init_features(cf);
2000
2001 r = dm_read_arg_group(_args, as, &argc, error);
2002 if (r)
2003 return -EINVAL;
2004
2005 while (argc--) {
2006 arg = dm_shift_arg(as);
2007
2008 if (!strcasecmp(arg, "writeback"))
2009 cf->io_mode = CM_IO_WRITEBACK;
2010
2011 else if (!strcasecmp(arg, "writethrough"))
2012 cf->io_mode = CM_IO_WRITETHROUGH;
2013
2014 else if (!strcasecmp(arg, "passthrough"))
2015 cf->io_mode = CM_IO_PASSTHROUGH;
2016
2017 else {
2018 *error = "Unrecognised cache feature requested";
2019 return -EINVAL;
2020 }
2021 }
2022
2023 return 0;
2024}
2025
2026static int parse_policy(struct cache_args *ca, struct dm_arg_set *as,
2027 char **error)
2028{
2029 static struct dm_arg _args[] = {
2030 {0, 1024, "Invalid number of policy arguments"},
2031 };
2032
2033 int r;
2034
2035 if (!at_least_one_arg(as, error))
2036 return -EINVAL;
2037
2038 ca->policy_name = dm_shift_arg(as);
2039
2040 r = dm_read_arg_group(_args, as, &ca->policy_argc, error);
2041 if (r)
2042 return -EINVAL;
2043
2044 ca->policy_argv = (const char **)as->argv;
2045 dm_consume_args(as, ca->policy_argc);
2046
2047 return 0;
2048}
2049
2050static int parse_cache_args(struct cache_args *ca, int argc, char **argv,
2051 char **error)
2052{
2053 int r;
2054 struct dm_arg_set as;
2055
2056 as.argc = argc;
2057 as.argv = argv;
2058
2059 r = parse_metadata_dev(ca, &as, error);
2060 if (r)
2061 return r;
2062
2063 r = parse_cache_dev(ca, &as, error);
2064 if (r)
2065 return r;
2066
2067 r = parse_origin_dev(ca, &as, error);
2068 if (r)
2069 return r;
2070
2071 r = parse_block_size(ca, &as, error);
2072 if (r)
2073 return r;
2074
2075 r = parse_features(ca, &as, error);
2076 if (r)
2077 return r;
2078
2079 r = parse_policy(ca, &as, error);
2080 if (r)
2081 return r;
2082
2083 return 0;
2084}
2085
2086/*----------------------------------------------------------------*/
2087
2088static struct kmem_cache *migration_cache;
2089
2090#define NOT_CORE_OPTION 1
2091
2092static int process_config_option(struct cache *cache, const char *key, const char *value)
2093{
2094 unsigned long tmp;
2095
2096 if (!strcasecmp(key, "migration_threshold")) {
2097 if (kstrtoul(value, 10, &tmp))
2098 return -EINVAL;
2099
2100 cache->migration_threshold = tmp;
2101 return 0;
2102 }
2103
2104 return NOT_CORE_OPTION;
2105}
2106
2107static int set_config_value(struct cache *cache, const char *key, const char *value)
2108{
2109 int r = process_config_option(cache, key, value);
2110
2111 if (r == NOT_CORE_OPTION)
2112 r = policy_set_config_value(cache->policy, key, value);
2113
2114 if (r)
2115 DMWARN("bad config value for %s: %s", key, value);
2116
2117 return r;
2118}
2119
2120static int set_config_values(struct cache *cache, int argc, const char **argv)
2121{
2122 int r = 0;
2123
2124 if (argc & 1) {
2125 DMWARN("Odd number of policy arguments given but they should be <key> <value> pairs.");
2126 return -EINVAL;
2127 }
2128
2129 while (argc) {
2130 r = set_config_value(cache, argv[0], argv[1]);
2131 if (r)
2132 break;
2133
2134 argc -= 2;
2135 argv += 2;
2136 }
2137
2138 return r;
2139}
2140
2141static int create_cache_policy(struct cache *cache, struct cache_args *ca,
2142 char **error)
2143{
2144 struct dm_cache_policy *p = dm_cache_policy_create(ca->policy_name,
2145 cache->cache_size,
2146 cache->origin_sectors,
2147 cache->sectors_per_block);
2148 if (IS_ERR(p)) {
2149 *error = "Error creating cache's policy";
2150 return PTR_ERR(p);
2151 }
2152 cache->policy = p;
2153
2154 return 0;
2155}
2156
2157#define DEFAULT_MIGRATION_THRESHOLD 2048
2158
2159static int cache_create(struct cache_args *ca, struct cache **result)
2160{
2161 int r = 0;
2162 char **error = &ca->ti->error;
2163 struct cache *cache;
2164 struct dm_target *ti = ca->ti;
2165 dm_block_t origin_blocks;
2166 struct dm_cache_metadata *cmd;
2167 bool may_format = ca->features.mode == CM_WRITE;
2168
2169 cache = kzalloc(sizeof(*cache), GFP_KERNEL);
2170 if (!cache)
2171 return -ENOMEM;
2172
2173 cache->ti = ca->ti;
2174 ti->private = cache;
2175 ti->num_flush_bios = 2;
2176 ti->flush_supported = true;
2177
2178 ti->num_discard_bios = 1;
2179 ti->discards_supported = true;
2180 ti->discard_zeroes_data_unsupported = true;
2181 /* Discard bios must be split on a block boundary */
2182 ti->split_discard_bios = true;
2183
2184 cache->features = ca->features;
2185 ti->per_bio_data_size = get_per_bio_data_size(cache);
2186
2187 cache->callbacks.congested_fn = cache_is_congested;
2188 dm_table_add_target_callbacks(ti->table, &cache->callbacks);
2189
2190 cache->metadata_dev = ca->metadata_dev;
2191 cache->origin_dev = ca->origin_dev;
2192 cache->cache_dev = ca->cache_dev;
2193
2194 ca->metadata_dev = ca->origin_dev = ca->cache_dev = NULL;
2195
2196 /* FIXME: factor out this whole section */
2197 origin_blocks = cache->origin_sectors = ca->origin_sectors;
2198 origin_blocks = block_div(origin_blocks, ca->block_size);
2199 cache->origin_blocks = to_oblock(origin_blocks);
2200
2201 cache->sectors_per_block = ca->block_size;
2202 if (dm_set_target_max_io_len(ti, cache->sectors_per_block)) {
2203 r = -EINVAL;
2204 goto bad;
2205 }
2206
2207 if (ca->block_size & (ca->block_size - 1)) {
2208 dm_block_t cache_size = ca->cache_sectors;
2209
2210 cache->sectors_per_block_shift = -1;
2211 cache_size = block_div(cache_size, ca->block_size);
2212 cache->cache_size = to_cblock(cache_size);
2213 } else {
2214 cache->sectors_per_block_shift = __ffs(ca->block_size);
2215 cache->cache_size = to_cblock(ca->cache_sectors >> cache->sectors_per_block_shift);
2216 }
2217
2218 r = create_cache_policy(cache, ca, error);
2219 if (r)
2220 goto bad;
2221
2222 cache->policy_nr_args = ca->policy_argc;
2223 cache->migration_threshold = DEFAULT_MIGRATION_THRESHOLD;
2224
2225 r = set_config_values(cache, ca->policy_argc, ca->policy_argv);
2226 if (r) {
2227 *error = "Error setting cache policy's config values";
2228 goto bad;
2229 }
2230
2231 cmd = dm_cache_metadata_open(cache->metadata_dev->bdev,
2232 ca->block_size, may_format,
2233 dm_cache_policy_get_hint_size(cache->policy));
2234 if (IS_ERR(cmd)) {
2235 *error = "Error creating metadata object";
2236 r = PTR_ERR(cmd);
2237 goto bad;
2238 }
2239 cache->cmd = cmd;
2240
2241 if (passthrough_mode(&cache->features)) {
2242 bool all_clean;
2243
2244 r = dm_cache_metadata_all_clean(cache->cmd, &all_clean);
2245 if (r) {
2246 *error = "dm_cache_metadata_all_clean() failed";
2247 goto bad;
2248 }
2249
2250 if (!all_clean) {
2251 *error = "Cannot enter passthrough mode unless all blocks are clean";
2252 r = -EINVAL;
2253 goto bad;
2254 }
2255 }
2256
2257 spin_lock_init(&cache->lock);
2258 bio_list_init(&cache->deferred_bios);
2259 bio_list_init(&cache->deferred_flush_bios);
2260 bio_list_init(&cache->deferred_writethrough_bios);
2261 INIT_LIST_HEAD(&cache->quiesced_migrations);
2262 INIT_LIST_HEAD(&cache->completed_migrations);
2263 INIT_LIST_HEAD(&cache->need_commit_migrations);
2264 atomic_set(&cache->nr_migrations, 0);
2265 init_waitqueue_head(&cache->migration_wait);
2266
2267 init_waitqueue_head(&cache->quiescing_wait);
2268 atomic_set(&cache->quiescing, 0);
2269 atomic_set(&cache->quiescing_ack, 0);
2270
2271 r = -ENOMEM;
2272 cache->nr_dirty = 0;
2273 cache->dirty_bitset = alloc_bitset(from_cblock(cache->cache_size));
2274 if (!cache->dirty_bitset) {
2275 *error = "could not allocate dirty bitset";
2276 goto bad;
2277 }
2278 clear_bitset(cache->dirty_bitset, from_cblock(cache->cache_size));
2279
2280 cache->discard_nr_blocks = cache->origin_blocks;
2281 cache->discard_bitset = alloc_bitset(from_oblock(cache->discard_nr_blocks));
2282 if (!cache->discard_bitset) {
2283 *error = "could not allocate discard bitset";
2284 goto bad;
2285 }
2286 clear_bitset(cache->discard_bitset, from_oblock(cache->discard_nr_blocks));
2287
2288 cache->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2289 if (IS_ERR(cache->copier)) {
2290 *error = "could not create kcopyd client";
2291 r = PTR_ERR(cache->copier);
2292 goto bad;
2293 }
2294
2295 cache->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
2296 if (!cache->wq) {
2297 *error = "could not create workqueue for metadata object";
2298 goto bad;
2299 }
2300 INIT_WORK(&cache->worker, do_worker);
2301 INIT_DELAYED_WORK(&cache->waker, do_waker);
2302 cache->last_commit_jiffies = jiffies;
2303
2304 cache->prison = dm_bio_prison_create(PRISON_CELLS);
2305 if (!cache->prison) {
2306 *error = "could not create bio prison";
2307 goto bad;
2308 }
2309
2310 cache->all_io_ds = dm_deferred_set_create();
2311 if (!cache->all_io_ds) {
2312 *error = "could not create all_io deferred set";
2313 goto bad;
2314 }
2315
2316 cache->migration_pool = mempool_create_slab_pool(MIGRATION_POOL_SIZE,
2317 migration_cache);
2318 if (!cache->migration_pool) {
2319 *error = "Error creating cache's migration mempool";
2320 goto bad;
2321 }
2322
2323 cache->next_migration = NULL;
2324
2325 cache->need_tick_bio = true;
2326 cache->sized = false;
2327 cache->invalidate = false;
2328 cache->commit_requested = false;
2329 cache->loaded_mappings = false;
2330 cache->loaded_discards = false;
2331
2332 load_stats(cache);
2333
2334 atomic_set(&cache->stats.demotion, 0);
2335 atomic_set(&cache->stats.promotion, 0);
2336 atomic_set(&cache->stats.copies_avoided, 0);
2337 atomic_set(&cache->stats.cache_cell_clash, 0);
2338 atomic_set(&cache->stats.commit_count, 0);
2339 atomic_set(&cache->stats.discard_count, 0);
2340
2341 spin_lock_init(&cache->invalidation_lock);
2342 INIT_LIST_HEAD(&cache->invalidation_requests);
2343
2344 *result = cache;
2345 return 0;
2346
2347bad:
2348 destroy(cache);
2349 return r;
2350}
2351
2352static int copy_ctr_args(struct cache *cache, int argc, const char **argv)
2353{
2354 unsigned i;
2355 const char **copy;
2356
2357 copy = kcalloc(argc, sizeof(*copy), GFP_KERNEL);
2358 if (!copy)
2359 return -ENOMEM;
2360 for (i = 0; i < argc; i++) {
2361 copy[i] = kstrdup(argv[i], GFP_KERNEL);
2362 if (!copy[i]) {
2363 while (i--)
2364 kfree(copy[i]);
2365 kfree(copy);
2366 return -ENOMEM;
2367 }
2368 }
2369
2370 cache->nr_ctr_args = argc;
2371 cache->ctr_args = copy;
2372
2373 return 0;
2374}
2375
2376static int cache_ctr(struct dm_target *ti, unsigned argc, char **argv)
2377{
2378 int r = -EINVAL;
2379 struct cache_args *ca;
2380 struct cache *cache = NULL;
2381
2382 ca = kzalloc(sizeof(*ca), GFP_KERNEL);
2383 if (!ca) {
2384 ti->error = "Error allocating memory for cache";
2385 return -ENOMEM;
2386 }
2387 ca->ti = ti;
2388
2389 r = parse_cache_args(ca, argc, argv, &ti->error);
2390 if (r)
2391 goto out;
2392
2393 r = cache_create(ca, &cache);
2394 if (r)
2395 goto out;
2396
2397 r = copy_ctr_args(cache, argc - 3, (const char **)argv + 3);
2398 if (r) {
2399 destroy(cache);
2400 goto out;
2401 }
2402
2403 ti->private = cache;
2404
2405out:
2406 destroy_cache_args(ca);
2407 return r;
2408}
2409
2410static int cache_map(struct dm_target *ti, struct bio *bio)
2411{
2412 struct cache *cache = ti->private;
2413
2414 int r;
2415 dm_oblock_t block = get_bio_block(cache, bio);
2416 size_t pb_data_size = get_per_bio_data_size(cache);
2417 bool can_migrate = false;
2418 bool discarded_block;
2419 struct dm_bio_prison_cell *cell;
2420 struct policy_result lookup_result;
2421 struct per_bio_data *pb = init_per_bio_data(bio, pb_data_size);
2422
2423 if (unlikely(from_oblock(block) >= from_oblock(cache->origin_blocks))) {
2424 /*
2425 * This can only occur if the io goes to a partial block at
2426 * the end of the origin device. We don't cache these.
2427 * Just remap to the origin and carry on.
2428 */
2429 remap_to_origin(cache, bio);
2430 return DM_MAPIO_REMAPPED;
2431 }
2432
2433 if (bio->bi_rw & (REQ_FLUSH | REQ_FUA | REQ_DISCARD)) {
2434 defer_bio(cache, bio);
2435 return DM_MAPIO_SUBMITTED;
2436 }
2437
2438 /*
2439 * Check to see if that block is currently migrating.
2440 */
2441 cell = alloc_prison_cell(cache);
2442 if (!cell) {
2443 defer_bio(cache, bio);
2444 return DM_MAPIO_SUBMITTED;
2445 }
2446
2447 r = bio_detain(cache, block, bio, cell,
2448 (cell_free_fn) free_prison_cell,
2449 cache, &cell);
2450 if (r) {
2451 if (r < 0)
2452 defer_bio(cache, bio);
2453
2454 return DM_MAPIO_SUBMITTED;
2455 }
2456
2457 discarded_block = is_discarded_oblock(cache, block);
2458
2459 r = policy_map(cache->policy, block, false, can_migrate, discarded_block,
2460 bio, &lookup_result);
2461 if (r == -EWOULDBLOCK) {
2462 cell_defer(cache, cell, true);
2463 return DM_MAPIO_SUBMITTED;
2464
2465 } else if (r) {
2466 DMERR_LIMIT("Unexpected return from cache replacement policy: %d", r);
2467 bio_io_error(bio);
2468 return DM_MAPIO_SUBMITTED;
2469 }
2470
2471 r = DM_MAPIO_REMAPPED;
2472 switch (lookup_result.op) {
2473 case POLICY_HIT:
2474 if (passthrough_mode(&cache->features)) {
2475 if (bio_data_dir(bio) == WRITE) {
2476 /*
2477 * We need to invalidate this block, so
2478 * defer for the worker thread.
2479 */
2480 cell_defer(cache, cell, true);
2481 r = DM_MAPIO_SUBMITTED;
2482
2483 } else {
2484 pb->all_io_entry = dm_deferred_entry_inc(cache->all_io_ds);
2485 inc_miss_counter(cache, bio);
2486 remap_to_origin_clear_discard(cache, bio, block);
2487
2488 cell_defer(cache, cell, false);
2489 }
2490
2491 } else {
2492 inc_hit_counter(cache, bio);
2493 pb->all_io_entry = dm_deferred_entry_inc(cache->all_io_ds);
2494
2495 if (bio_data_dir(bio) == WRITE && writethrough_mode(&cache->features) &&
2496 !is_dirty(cache, lookup_result.cblock))
2497 remap_to_origin_then_cache(cache, bio, block, lookup_result.cblock);
2498 else
2499 remap_to_cache_dirty(cache, bio, block, lookup_result.cblock);
2500
2501 cell_defer(cache, cell, false);
2502 }
2503 break;
2504
2505 case POLICY_MISS:
2506 inc_miss_counter(cache, bio);
2507 pb->all_io_entry = dm_deferred_entry_inc(cache->all_io_ds);
2508
2509 if (pb->req_nr != 0) {
2510 /*
2511 * This is a duplicate writethrough io that is no
2512 * longer needed because the block has been demoted.
2513 */
2514 bio_endio(bio, 0);
2515 cell_defer(cache, cell, false);
2516 return DM_MAPIO_SUBMITTED;
2517 } else {
2518 remap_to_origin_clear_discard(cache, bio, block);
2519 cell_defer(cache, cell, false);
2520 }
2521 break;
2522
2523 default:
2524 DMERR_LIMIT("%s: erroring bio: unknown policy op: %u", __func__,
2525 (unsigned) lookup_result.op);
2526 bio_io_error(bio);
2527 r = DM_MAPIO_SUBMITTED;
2528 }
2529
2530 return r;
2531}
2532
2533static int cache_end_io(struct dm_target *ti, struct bio *bio, int error)
2534{
2535 struct cache *cache = ti->private;
2536 unsigned long flags;
2537 size_t pb_data_size = get_per_bio_data_size(cache);
2538 struct per_bio_data *pb = get_per_bio_data(bio, pb_data_size);
2539
2540 if (pb->tick) {
2541 policy_tick(cache->policy);
2542
2543 spin_lock_irqsave(&cache->lock, flags);
2544 cache->need_tick_bio = true;
2545 spin_unlock_irqrestore(&cache->lock, flags);
2546 }
2547
2548 check_for_quiesced_migrations(cache, pb);
2549
2550 return 0;
2551}
2552
2553static int write_dirty_bitset(struct cache *cache)
2554{
2555 unsigned i, r;
2556
2557 for (i = 0; i < from_cblock(cache->cache_size); i++) {
2558 r = dm_cache_set_dirty(cache->cmd, to_cblock(i),
2559 is_dirty(cache, to_cblock(i)));
2560 if (r)
2561 return r;
2562 }
2563
2564 return 0;
2565}
2566
2567static int write_discard_bitset(struct cache *cache)
2568{
2569 unsigned i, r;
2570
2571 r = dm_cache_discard_bitset_resize(cache->cmd, cache->sectors_per_block,
2572 cache->origin_blocks);
2573 if (r) {
2574 DMERR("could not resize on-disk discard bitset");
2575 return r;
2576 }
2577
2578 for (i = 0; i < from_oblock(cache->discard_nr_blocks); i++) {
2579 r = dm_cache_set_discard(cache->cmd, to_oblock(i),
2580 is_discarded(cache, to_oblock(i)));
2581 if (r)
2582 return r;
2583 }
2584
2585 return 0;
2586}
2587
2588/*
2589 * returns true on success
2590 */
2591static bool sync_metadata(struct cache *cache)
2592{
2593 int r1, r2, r3, r4;
2594
2595 r1 = write_dirty_bitset(cache);
2596 if (r1)
2597 DMERR("could not write dirty bitset");
2598
2599 r2 = write_discard_bitset(cache);
2600 if (r2)
2601 DMERR("could not write discard bitset");
2602
2603 save_stats(cache);
2604
2605 r3 = dm_cache_write_hints(cache->cmd, cache->policy);
2606 if (r3)
2607 DMERR("could not write hints");
2608
2609 /*
2610 * If writing the above metadata failed, we still commit, but don't
2611 * set the clean shutdown flag. This will effectively force every
2612 * dirty bit to be set on reload.
2613 */
2614 r4 = dm_cache_commit(cache->cmd, !r1 && !r2 && !r3);
2615 if (r4)
2616 DMERR("could not write cache metadata. Data loss may occur.");
2617
2618 return !r1 && !r2 && !r3 && !r4;
2619}
2620
2621static void cache_postsuspend(struct dm_target *ti)
2622{
2623 struct cache *cache = ti->private;
2624
2625 start_quiescing(cache);
2626 wait_for_migrations(cache);
2627 stop_worker(cache);
2628 requeue_deferred_io(cache);
2629 stop_quiescing(cache);
2630
2631 (void) sync_metadata(cache);
2632}
2633
2634static int load_mapping(void *context, dm_oblock_t oblock, dm_cblock_t cblock,
2635 bool dirty, uint32_t hint, bool hint_valid)
2636{
2637 int r;
2638 struct cache *cache = context;
2639
2640 r = policy_load_mapping(cache->policy, oblock, cblock, hint, hint_valid);
2641 if (r)
2642 return r;
2643
2644 if (dirty)
2645 set_dirty(cache, oblock, cblock);
2646 else
2647 clear_dirty(cache, oblock, cblock);
2648
2649 return 0;
2650}
2651
2652static int load_discard(void *context, sector_t discard_block_size,
2653 dm_oblock_t oblock, bool discard)
2654{
2655 struct cache *cache = context;
2656
2657 if (discard)
2658 set_discard(cache, oblock);
2659 else
2660 clear_discard(cache, oblock);
2661
2662 return 0;
2663}
2664
2665static dm_cblock_t get_cache_dev_size(struct cache *cache)
2666{
2667 sector_t size = get_dev_size(cache->cache_dev);
2668 (void) sector_div(size, cache->sectors_per_block);
2669 return to_cblock(size);
2670}
2671
2672static bool can_resize(struct cache *cache, dm_cblock_t new_size)
2673{
2674 if (from_cblock(new_size) > from_cblock(cache->cache_size))
2675 return true;
2676
2677 /*
2678 * We can't drop a dirty block when shrinking the cache.
2679 */
2680 while (from_cblock(new_size) < from_cblock(cache->cache_size)) {
2681 new_size = to_cblock(from_cblock(new_size) + 1);
2682 if (is_dirty(cache, new_size)) {
2683 DMERR("unable to shrink cache; cache block %llu is dirty",
2684 (unsigned long long) from_cblock(new_size));
2685 return false;
2686 }
2687 }
2688
2689 return true;
2690}
2691
2692static int resize_cache_dev(struct cache *cache, dm_cblock_t new_size)
2693{
2694 int r;
2695
2696 r = dm_cache_resize(cache->cmd, new_size);
2697 if (r) {
2698 DMERR("could not resize cache metadata");
2699 return r;
2700 }
2701
2702 cache->cache_size = new_size;
2703
2704 return 0;
2705}
2706
2707static int cache_preresume(struct dm_target *ti)
2708{
2709 int r = 0;
2710 struct cache *cache = ti->private;
2711 dm_cblock_t csize = get_cache_dev_size(cache);
2712
2713 /*
2714 * Check to see if the cache has resized.
2715 */
2716 if (!cache->sized) {
2717 r = resize_cache_dev(cache, csize);
2718 if (r)
2719 return r;
2720
2721 cache->sized = true;
2722
2723 } else if (csize != cache->cache_size) {
2724 if (!can_resize(cache, csize))
2725 return -EINVAL;
2726
2727 r = resize_cache_dev(cache, csize);
2728 if (r)
2729 return r;
2730 }
2731
2732 if (!cache->loaded_mappings) {
2733 r = dm_cache_load_mappings(cache->cmd, cache->policy,
2734 load_mapping, cache);
2735 if (r) {
2736 DMERR("could not load cache mappings");
2737 return r;
2738 }
2739
2740 cache->loaded_mappings = true;
2741 }
2742
2743 if (!cache->loaded_discards) {
2744 r = dm_cache_load_discards(cache->cmd, load_discard, cache);
2745 if (r) {
2746 DMERR("could not load origin discards");
2747 return r;
2748 }
2749
2750 cache->loaded_discards = true;
2751 }
2752
2753 return r;
2754}
2755
2756static void cache_resume(struct dm_target *ti)
2757{
2758 struct cache *cache = ti->private;
2759
2760 cache->need_tick_bio = true;
2761 do_waker(&cache->waker.work);
2762}
2763
2764/*
2765 * Status format:
2766 *
2767 * <metadata block size> <#used metadata blocks>/<#total metadata blocks>
2768 * <cache block size> <#used cache blocks>/<#total cache blocks>
2769 * <#read hits> <#read misses> <#write hits> <#write misses>
2770 * <#demotions> <#promotions> <#dirty>
2771 * <#features> <features>*
2772 * <#core args> <core args>
2773 * <policy name> <#policy args> <policy args>*
2774 */
2775static void cache_status(struct dm_target *ti, status_type_t type,
2776 unsigned status_flags, char *result, unsigned maxlen)
2777{
2778 int r = 0;
2779 unsigned i;
2780 ssize_t sz = 0;
2781 dm_block_t nr_free_blocks_metadata = 0;
2782 dm_block_t nr_blocks_metadata = 0;
2783 char buf[BDEVNAME_SIZE];
2784 struct cache *cache = ti->private;
2785 dm_cblock_t residency;
2786
2787 switch (type) {
2788 case STATUSTYPE_INFO:
2789 /* Commit to ensure statistics aren't out-of-date */
2790 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti)) {
2791 r = dm_cache_commit(cache->cmd, false);
2792 if (r)
2793 DMERR("could not commit metadata for accurate status");
2794 }
2795
2796 r = dm_cache_get_free_metadata_block_count(cache->cmd,
2797 &nr_free_blocks_metadata);
2798 if (r) {
2799 DMERR("could not get metadata free block count");
2800 goto err;
2801 }
2802
2803 r = dm_cache_get_metadata_dev_size(cache->cmd, &nr_blocks_metadata);
2804 if (r) {
2805 DMERR("could not get metadata device size");
2806 goto err;
2807 }
2808
2809 residency = policy_residency(cache->policy);
2810
2811 DMEMIT("%u %llu/%llu %u %llu/%llu %u %u %u %u %u %u %llu ",
2812 (unsigned)(DM_CACHE_METADATA_BLOCK_SIZE >> SECTOR_SHIFT),
2813 (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
2814 (unsigned long long)nr_blocks_metadata,
2815 cache->sectors_per_block,
2816 (unsigned long long) from_cblock(residency),
2817 (unsigned long long) from_cblock(cache->cache_size),
2818 (unsigned) atomic_read(&cache->stats.read_hit),
2819 (unsigned) atomic_read(&cache->stats.read_miss),
2820 (unsigned) atomic_read(&cache->stats.write_hit),
2821 (unsigned) atomic_read(&cache->stats.write_miss),
2822 (unsigned) atomic_read(&cache->stats.demotion),
2823 (unsigned) atomic_read(&cache->stats.promotion),
2824 (unsigned long long) from_cblock(cache->nr_dirty));
2825
2826 if (writethrough_mode(&cache->features))
2827 DMEMIT("1 writethrough ");
2828
2829 else if (passthrough_mode(&cache->features))
2830 DMEMIT("1 passthrough ");
2831
2832 else if (writeback_mode(&cache->features))
2833 DMEMIT("1 writeback ");
2834
2835 else {
2836 DMERR("internal error: unknown io mode: %d", (int) cache->features.io_mode);
2837 goto err;
2838 }
2839
2840 DMEMIT("2 migration_threshold %llu ", (unsigned long long) cache->migration_threshold);
2841
2842 DMEMIT("%s ", dm_cache_policy_get_name(cache->policy));
2843 if (sz < maxlen) {
2844 r = policy_emit_config_values(cache->policy, result + sz, maxlen - sz);
2845 if (r)
2846 DMERR("policy_emit_config_values returned %d", r);
2847 }
2848
2849 break;
2850
2851 case STATUSTYPE_TABLE:
2852 format_dev_t(buf, cache->metadata_dev->bdev->bd_dev);
2853 DMEMIT("%s ", buf);
2854 format_dev_t(buf, cache->cache_dev->bdev->bd_dev);
2855 DMEMIT("%s ", buf);
2856 format_dev_t(buf, cache->origin_dev->bdev->bd_dev);
2857 DMEMIT("%s", buf);
2858
2859 for (i = 0; i < cache->nr_ctr_args - 1; i++)
2860 DMEMIT(" %s", cache->ctr_args[i]);
2861 if (cache->nr_ctr_args)
2862 DMEMIT(" %s", cache->ctr_args[cache->nr_ctr_args - 1]);
2863 }
2864
2865 return;
2866
2867err:
2868 DMEMIT("Error");
2869}
2870
2871/*
2872 * A cache block range can take two forms:
2873 *
2874 * i) A single cblock, eg. '3456'
2875 * ii) A begin and end cblock with dots between, eg. 123-234
2876 */
2877static int parse_cblock_range(struct cache *cache, const char *str,
2878 struct cblock_range *result)
2879{
2880 char dummy;
2881 uint64_t b, e;
2882 int r;
2883
2884 /*
2885 * Try and parse form (ii) first.
2886 */
2887 r = sscanf(str, "%llu-%llu%c", &b, &e, &dummy);
2888 if (r < 0)
2889 return r;
2890
2891 if (r == 2) {
2892 result->begin = to_cblock(b);
2893 result->end = to_cblock(e);
2894 return 0;
2895 }
2896
2897 /*
2898 * That didn't work, try form (i).
2899 */
2900 r = sscanf(str, "%llu%c", &b, &dummy);
2901 if (r < 0)
2902 return r;
2903
2904 if (r == 1) {
2905 result->begin = to_cblock(b);
2906 result->end = to_cblock(from_cblock(result->begin) + 1u);
2907 return 0;
2908 }
2909
2910 DMERR("invalid cblock range '%s'", str);
2911 return -EINVAL;
2912}
2913
2914static int validate_cblock_range(struct cache *cache, struct cblock_range *range)
2915{
2916 uint64_t b = from_cblock(range->begin);
2917 uint64_t e = from_cblock(range->end);
2918 uint64_t n = from_cblock(cache->cache_size);
2919
2920 if (b >= n) {
2921 DMERR("begin cblock out of range: %llu >= %llu", b, n);
2922 return -EINVAL;
2923 }
2924
2925 if (e > n) {
2926 DMERR("end cblock out of range: %llu > %llu", e, n);
2927 return -EINVAL;
2928 }
2929
2930 if (b >= e) {
2931 DMERR("invalid cblock range: %llu >= %llu", b, e);
2932 return -EINVAL;
2933 }
2934
2935 return 0;
2936}
2937
2938static int request_invalidation(struct cache *cache, struct cblock_range *range)
2939{
2940 struct invalidation_request req;
2941
2942 INIT_LIST_HEAD(&req.list);
2943 req.cblocks = range;
2944 atomic_set(&req.complete, 0);
2945 req.err = 0;
2946 init_waitqueue_head(&req.result_wait);
2947
2948 spin_lock(&cache->invalidation_lock);
2949 list_add(&req.list, &cache->invalidation_requests);
2950 spin_unlock(&cache->invalidation_lock);
2951 wake_worker(cache);
2952
2953 wait_event(req.result_wait, atomic_read(&req.complete));
2954 return req.err;
2955}
2956
2957static int process_invalidate_cblocks_message(struct cache *cache, unsigned count,
2958 const char **cblock_ranges)
2959{
2960 int r = 0;
2961 unsigned i;
2962 struct cblock_range range;
2963
2964 if (!passthrough_mode(&cache->features)) {
2965 DMERR("cache has to be in passthrough mode for invalidation");
2966 return -EPERM;
2967 }
2968
2969 for (i = 0; i < count; i++) {
2970 r = parse_cblock_range(cache, cblock_ranges[i], &range);
2971 if (r)
2972 break;
2973
2974 r = validate_cblock_range(cache, &range);
2975 if (r)
2976 break;
2977
2978 /*
2979 * Pass begin and end origin blocks to the worker and wake it.
2980 */
2981 r = request_invalidation(cache, &range);
2982 if (r)
2983 break;
2984 }
2985
2986 return r;
2987}
2988
2989/*
2990 * Supports
2991 * "<key> <value>"
2992 * and
2993 * "invalidate_cblocks [(<begin>)|(<begin>-<end>)]*
2994 *
2995 * The key migration_threshold is supported by the cache target core.
2996 */
2997static int cache_message(struct dm_target *ti, unsigned argc, char **argv)
2998{
2999 struct cache *cache = ti->private;
3000
3001 if (!argc)
3002 return -EINVAL;
3003
3004 if (!strcasecmp(argv[0], "invalidate_cblocks"))
3005 return process_invalidate_cblocks_message(cache, argc - 1, (const char **) argv + 1);
3006
3007 if (argc != 2)
3008 return -EINVAL;
3009
3010 return set_config_value(cache, argv[0], argv[1]);
3011}
3012
3013static int cache_iterate_devices(struct dm_target *ti,
3014 iterate_devices_callout_fn fn, void *data)
3015{
3016 int r = 0;
3017 struct cache *cache = ti->private;
3018
3019 r = fn(ti, cache->cache_dev, 0, get_dev_size(cache->cache_dev), data);
3020 if (!r)
3021 r = fn(ti, cache->origin_dev, 0, ti->len, data);
3022
3023 return r;
3024}
3025
3026/*
3027 * We assume I/O is going to the origin (which is the volume
3028 * more likely to have restrictions e.g. by being striped).
3029 * (Looking up the exact location of the data would be expensive
3030 * and could always be out of date by the time the bio is submitted.)
3031 */
3032static int cache_bvec_merge(struct dm_target *ti,
3033 struct bvec_merge_data *bvm,
3034 struct bio_vec *biovec, int max_size)
3035{
3036 struct cache *cache = ti->private;
3037 struct request_queue *q = bdev_get_queue(cache->origin_dev->bdev);
3038
3039 if (!q->merge_bvec_fn)
3040 return max_size;
3041
3042 bvm->bi_bdev = cache->origin_dev->bdev;
3043 return min(max_size, q->merge_bvec_fn(q, bvm, biovec));
3044}
3045
3046static void set_discard_limits(struct cache *cache, struct queue_limits *limits)
3047{
3048 /*
3049 * FIXME: these limits may be incompatible with the cache device
3050 */
3051 limits->max_discard_sectors = cache->sectors_per_block;
3052 limits->discard_granularity = cache->sectors_per_block << SECTOR_SHIFT;
3053}
3054
3055static void cache_io_hints(struct dm_target *ti, struct queue_limits *limits)
3056{
3057 struct cache *cache = ti->private;
3058 uint64_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
3059
3060 /*
3061 * If the system-determined stacked limits are compatible with the
3062 * cache's blocksize (io_opt is a factor) do not override them.
3063 */
3064 if (io_opt_sectors < cache->sectors_per_block ||
3065 do_div(io_opt_sectors, cache->sectors_per_block)) {
3066 blk_limits_io_min(limits, 0);
3067 blk_limits_io_opt(limits, cache->sectors_per_block << SECTOR_SHIFT);
3068 }
3069 set_discard_limits(cache, limits);
3070}
3071
3072/*----------------------------------------------------------------*/
3073
3074static struct target_type cache_target = {
3075 .name = "cache",
3076 .version = {1, 4, 0},
3077 .module = THIS_MODULE,
3078 .ctr = cache_ctr,
3079 .dtr = cache_dtr,
3080 .map = cache_map,
3081 .end_io = cache_end_io,
3082 .postsuspend = cache_postsuspend,
3083 .preresume = cache_preresume,
3084 .resume = cache_resume,
3085 .status = cache_status,
3086 .message = cache_message,
3087 .iterate_devices = cache_iterate_devices,
3088 .merge = cache_bvec_merge,
3089 .io_hints = cache_io_hints,
3090};
3091
3092static int __init dm_cache_init(void)
3093{
3094 int r;
3095
3096 r = dm_register_target(&cache_target);
3097 if (r) {
3098 DMERR("cache target registration failed: %d", r);
3099 return r;
3100 }
3101
3102 migration_cache = KMEM_CACHE(dm_cache_migration, 0);
3103 if (!migration_cache) {
3104 dm_unregister_target(&cache_target);
3105 return -ENOMEM;
3106 }
3107
3108 return 0;
3109}
3110
3111static void __exit dm_cache_exit(void)
3112{
3113 dm_unregister_target(&cache_target);
3114 kmem_cache_destroy(migration_cache);
3115}
3116
3117module_init(dm_cache_init);
3118module_exit(dm_cache_exit);
3119
3120MODULE_DESCRIPTION(DM_NAME " cache target");
3121MODULE_AUTHOR("Joe Thornber <ejt@redhat.com>");
3122MODULE_LICENSE("GPL");
1/*
2 * Copyright (C) 2012 Red Hat. All rights reserved.
3 *
4 * This file is released under the GPL.
5 */
6
7#include "dm.h"
8#include "dm-bio-prison-v2.h"
9#include "dm-bio-record.h"
10#include "dm-cache-metadata.h"
11
12#include <linux/dm-io.h>
13#include <linux/dm-kcopyd.h>
14#include <linux/jiffies.h>
15#include <linux/init.h>
16#include <linux/mempool.h>
17#include <linux/module.h>
18#include <linux/rwsem.h>
19#include <linux/slab.h>
20#include <linux/vmalloc.h>
21
22#define DM_MSG_PREFIX "cache"
23
24DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(cache_copy_throttle,
25 "A percentage of time allocated for copying to and/or from cache");
26
27/*----------------------------------------------------------------*/
28
29/*
30 * Glossary:
31 *
32 * oblock: index of an origin block
33 * cblock: index of a cache block
34 * promotion: movement of a block from origin to cache
35 * demotion: movement of a block from cache to origin
36 * migration: movement of a block between the origin and cache device,
37 * either direction
38 */
39
40/*----------------------------------------------------------------*/
41
42struct io_tracker {
43 spinlock_t lock;
44
45 /*
46 * Sectors of in-flight IO.
47 */
48 sector_t in_flight;
49
50 /*
51 * The time, in jiffies, when this device became idle (if it is
52 * indeed idle).
53 */
54 unsigned long idle_time;
55 unsigned long last_update_time;
56};
57
58static void iot_init(struct io_tracker *iot)
59{
60 spin_lock_init(&iot->lock);
61 iot->in_flight = 0ul;
62 iot->idle_time = 0ul;
63 iot->last_update_time = jiffies;
64}
65
66static bool __iot_idle_for(struct io_tracker *iot, unsigned long jifs)
67{
68 if (iot->in_flight)
69 return false;
70
71 return time_after(jiffies, iot->idle_time + jifs);
72}
73
74static bool iot_idle_for(struct io_tracker *iot, unsigned long jifs)
75{
76 bool r;
77 unsigned long flags;
78
79 spin_lock_irqsave(&iot->lock, flags);
80 r = __iot_idle_for(iot, jifs);
81 spin_unlock_irqrestore(&iot->lock, flags);
82
83 return r;
84}
85
86static void iot_io_begin(struct io_tracker *iot, sector_t len)
87{
88 unsigned long flags;
89
90 spin_lock_irqsave(&iot->lock, flags);
91 iot->in_flight += len;
92 spin_unlock_irqrestore(&iot->lock, flags);
93}
94
95static void __iot_io_end(struct io_tracker *iot, sector_t len)
96{
97 if (!len)
98 return;
99
100 iot->in_flight -= len;
101 if (!iot->in_flight)
102 iot->idle_time = jiffies;
103}
104
105static void iot_io_end(struct io_tracker *iot, sector_t len)
106{
107 unsigned long flags;
108
109 spin_lock_irqsave(&iot->lock, flags);
110 __iot_io_end(iot, len);
111 spin_unlock_irqrestore(&iot->lock, flags);
112}
113
114/*----------------------------------------------------------------*/
115
116/*
117 * Represents a chunk of future work. 'input' allows continuations to pass
118 * values between themselves, typically error values.
119 */
120struct continuation {
121 struct work_struct ws;
122 blk_status_t input;
123};
124
125static inline void init_continuation(struct continuation *k,
126 void (*fn)(struct work_struct *))
127{
128 INIT_WORK(&k->ws, fn);
129 k->input = 0;
130}
131
132static inline void queue_continuation(struct workqueue_struct *wq,
133 struct continuation *k)
134{
135 queue_work(wq, &k->ws);
136}
137
138/*----------------------------------------------------------------*/
139
140/*
141 * The batcher collects together pieces of work that need a particular
142 * operation to occur before they can proceed (typically a commit).
143 */
144struct batcher {
145 /*
146 * The operation that everyone is waiting for.
147 */
148 blk_status_t (*commit_op)(void *context);
149 void *commit_context;
150
151 /*
152 * This is how bios should be issued once the commit op is complete
153 * (accounted_request).
154 */
155 void (*issue_op)(struct bio *bio, void *context);
156 void *issue_context;
157
158 /*
159 * Queued work gets put on here after commit.
160 */
161 struct workqueue_struct *wq;
162
163 spinlock_t lock;
164 struct list_head work_items;
165 struct bio_list bios;
166 struct work_struct commit_work;
167
168 bool commit_scheduled;
169};
170
171static void __commit(struct work_struct *_ws)
172{
173 struct batcher *b = container_of(_ws, struct batcher, commit_work);
174 blk_status_t r;
175 unsigned long flags;
176 struct list_head work_items;
177 struct work_struct *ws, *tmp;
178 struct continuation *k;
179 struct bio *bio;
180 struct bio_list bios;
181
182 INIT_LIST_HEAD(&work_items);
183 bio_list_init(&bios);
184
185 /*
186 * We have to grab these before the commit_op to avoid a race
187 * condition.
188 */
189 spin_lock_irqsave(&b->lock, flags);
190 list_splice_init(&b->work_items, &work_items);
191 bio_list_merge(&bios, &b->bios);
192 bio_list_init(&b->bios);
193 b->commit_scheduled = false;
194 spin_unlock_irqrestore(&b->lock, flags);
195
196 r = b->commit_op(b->commit_context);
197
198 list_for_each_entry_safe(ws, tmp, &work_items, entry) {
199 k = container_of(ws, struct continuation, ws);
200 k->input = r;
201 INIT_LIST_HEAD(&ws->entry); /* to avoid a WARN_ON */
202 queue_work(b->wq, ws);
203 }
204
205 while ((bio = bio_list_pop(&bios))) {
206 if (r) {
207 bio->bi_status = r;
208 bio_endio(bio);
209 } else
210 b->issue_op(bio, b->issue_context);
211 }
212}
213
214static void batcher_init(struct batcher *b,
215 blk_status_t (*commit_op)(void *),
216 void *commit_context,
217 void (*issue_op)(struct bio *bio, void *),
218 void *issue_context,
219 struct workqueue_struct *wq)
220{
221 b->commit_op = commit_op;
222 b->commit_context = commit_context;
223 b->issue_op = issue_op;
224 b->issue_context = issue_context;
225 b->wq = wq;
226
227 spin_lock_init(&b->lock);
228 INIT_LIST_HEAD(&b->work_items);
229 bio_list_init(&b->bios);
230 INIT_WORK(&b->commit_work, __commit);
231 b->commit_scheduled = false;
232}
233
234static void async_commit(struct batcher *b)
235{
236 queue_work(b->wq, &b->commit_work);
237}
238
239static void continue_after_commit(struct batcher *b, struct continuation *k)
240{
241 unsigned long flags;
242 bool commit_scheduled;
243
244 spin_lock_irqsave(&b->lock, flags);
245 commit_scheduled = b->commit_scheduled;
246 list_add_tail(&k->ws.entry, &b->work_items);
247 spin_unlock_irqrestore(&b->lock, flags);
248
249 if (commit_scheduled)
250 async_commit(b);
251}
252
253/*
254 * Bios are errored if commit failed.
255 */
256static void issue_after_commit(struct batcher *b, struct bio *bio)
257{
258 unsigned long flags;
259 bool commit_scheduled;
260
261 spin_lock_irqsave(&b->lock, flags);
262 commit_scheduled = b->commit_scheduled;
263 bio_list_add(&b->bios, bio);
264 spin_unlock_irqrestore(&b->lock, flags);
265
266 if (commit_scheduled)
267 async_commit(b);
268}
269
270/*
271 * Call this if some urgent work is waiting for the commit to complete.
272 */
273static void schedule_commit(struct batcher *b)
274{
275 bool immediate;
276 unsigned long flags;
277
278 spin_lock_irqsave(&b->lock, flags);
279 immediate = !list_empty(&b->work_items) || !bio_list_empty(&b->bios);
280 b->commit_scheduled = true;
281 spin_unlock_irqrestore(&b->lock, flags);
282
283 if (immediate)
284 async_commit(b);
285}
286
287/*
288 * There are a couple of places where we let a bio run, but want to do some
289 * work before calling its endio function. We do this by temporarily
290 * changing the endio fn.
291 */
292struct dm_hook_info {
293 bio_end_io_t *bi_end_io;
294};
295
296static void dm_hook_bio(struct dm_hook_info *h, struct bio *bio,
297 bio_end_io_t *bi_end_io, void *bi_private)
298{
299 h->bi_end_io = bio->bi_end_io;
300
301 bio->bi_end_io = bi_end_io;
302 bio->bi_private = bi_private;
303}
304
305static void dm_unhook_bio(struct dm_hook_info *h, struct bio *bio)
306{
307 bio->bi_end_io = h->bi_end_io;
308}
309
310/*----------------------------------------------------------------*/
311
312#define MIGRATION_POOL_SIZE 128
313#define COMMIT_PERIOD HZ
314#define MIGRATION_COUNT_WINDOW 10
315
316/*
317 * The block size of the device holding cache data must be
318 * between 32KB and 1GB.
319 */
320#define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (32 * 1024 >> SECTOR_SHIFT)
321#define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
322
323enum cache_metadata_mode {
324 CM_WRITE, /* metadata may be changed */
325 CM_READ_ONLY, /* metadata may not be changed */
326 CM_FAIL
327};
328
329enum cache_io_mode {
330 /*
331 * Data is written to cached blocks only. These blocks are marked
332 * dirty. If you lose the cache device you will lose data.
333 * Potential performance increase for both reads and writes.
334 */
335 CM_IO_WRITEBACK,
336
337 /*
338 * Data is written to both cache and origin. Blocks are never
339 * dirty. Potential performance benfit for reads only.
340 */
341 CM_IO_WRITETHROUGH,
342
343 /*
344 * A degraded mode useful for various cache coherency situations
345 * (eg, rolling back snapshots). Reads and writes always go to the
346 * origin. If a write goes to a cached oblock, then the cache
347 * block is invalidated.
348 */
349 CM_IO_PASSTHROUGH
350};
351
352struct cache_features {
353 enum cache_metadata_mode mode;
354 enum cache_io_mode io_mode;
355 unsigned metadata_version;
356};
357
358struct cache_stats {
359 atomic_t read_hit;
360 atomic_t read_miss;
361 atomic_t write_hit;
362 atomic_t write_miss;
363 atomic_t demotion;
364 atomic_t promotion;
365 atomic_t writeback;
366 atomic_t copies_avoided;
367 atomic_t cache_cell_clash;
368 atomic_t commit_count;
369 atomic_t discard_count;
370};
371
372struct cache {
373 struct dm_target *ti;
374 struct dm_target_callbacks callbacks;
375
376 struct dm_cache_metadata *cmd;
377
378 /*
379 * Metadata is written to this device.
380 */
381 struct dm_dev *metadata_dev;
382
383 /*
384 * The slower of the two data devices. Typically a spindle.
385 */
386 struct dm_dev *origin_dev;
387
388 /*
389 * The faster of the two data devices. Typically an SSD.
390 */
391 struct dm_dev *cache_dev;
392
393 /*
394 * Size of the origin device in _complete_ blocks and native sectors.
395 */
396 dm_oblock_t origin_blocks;
397 sector_t origin_sectors;
398
399 /*
400 * Size of the cache device in blocks.
401 */
402 dm_cblock_t cache_size;
403
404 /*
405 * Fields for converting from sectors to blocks.
406 */
407 sector_t sectors_per_block;
408 int sectors_per_block_shift;
409
410 spinlock_t lock;
411 struct bio_list deferred_bios;
412 sector_t migration_threshold;
413 wait_queue_head_t migration_wait;
414 atomic_t nr_allocated_migrations;
415
416 /*
417 * The number of in flight migrations that are performing
418 * background io. eg, promotion, writeback.
419 */
420 atomic_t nr_io_migrations;
421
422 struct rw_semaphore quiesce_lock;
423
424 /*
425 * cache_size entries, dirty if set
426 */
427 atomic_t nr_dirty;
428 unsigned long *dirty_bitset;
429
430 /*
431 * origin_blocks entries, discarded if set.
432 */
433 dm_dblock_t discard_nr_blocks;
434 unsigned long *discard_bitset;
435 uint32_t discard_block_size; /* a power of 2 times sectors per block */
436
437 /*
438 * Rather than reconstructing the table line for the status we just
439 * save it and regurgitate.
440 */
441 unsigned nr_ctr_args;
442 const char **ctr_args;
443
444 struct dm_kcopyd_client *copier;
445 struct workqueue_struct *wq;
446 struct work_struct deferred_bio_worker;
447 struct work_struct migration_worker;
448 struct delayed_work waker;
449 struct dm_bio_prison_v2 *prison;
450 struct bio_set *bs;
451
452 mempool_t *migration_pool;
453
454 struct dm_cache_policy *policy;
455 unsigned policy_nr_args;
456
457 bool need_tick_bio:1;
458 bool sized:1;
459 bool invalidate:1;
460 bool commit_requested:1;
461 bool loaded_mappings:1;
462 bool loaded_discards:1;
463
464 /*
465 * Cache features such as write-through.
466 */
467 struct cache_features features;
468
469 struct cache_stats stats;
470
471 /*
472 * Invalidation fields.
473 */
474 spinlock_t invalidation_lock;
475 struct list_head invalidation_requests;
476
477 struct io_tracker tracker;
478
479 struct work_struct commit_ws;
480 struct batcher committer;
481
482 struct rw_semaphore background_work_lock;
483};
484
485struct per_bio_data {
486 bool tick:1;
487 unsigned req_nr:2;
488 struct dm_bio_prison_cell_v2 *cell;
489 struct dm_hook_info hook_info;
490 sector_t len;
491};
492
493struct dm_cache_migration {
494 struct continuation k;
495 struct cache *cache;
496
497 struct policy_work *op;
498 struct bio *overwrite_bio;
499 struct dm_bio_prison_cell_v2 *cell;
500
501 dm_cblock_t invalidate_cblock;
502 dm_oblock_t invalidate_oblock;
503};
504
505/*----------------------------------------------------------------*/
506
507static bool writethrough_mode(struct cache *cache)
508{
509 return cache->features.io_mode == CM_IO_WRITETHROUGH;
510}
511
512static bool writeback_mode(struct cache *cache)
513{
514 return cache->features.io_mode == CM_IO_WRITEBACK;
515}
516
517static inline bool passthrough_mode(struct cache *cache)
518{
519 return unlikely(cache->features.io_mode == CM_IO_PASSTHROUGH);
520}
521
522/*----------------------------------------------------------------*/
523
524static void wake_deferred_bio_worker(struct cache *cache)
525{
526 queue_work(cache->wq, &cache->deferred_bio_worker);
527}
528
529static void wake_migration_worker(struct cache *cache)
530{
531 if (passthrough_mode(cache))
532 return;
533
534 queue_work(cache->wq, &cache->migration_worker);
535}
536
537/*----------------------------------------------------------------*/
538
539static struct dm_bio_prison_cell_v2 *alloc_prison_cell(struct cache *cache)
540{
541 return dm_bio_prison_alloc_cell_v2(cache->prison, GFP_NOWAIT);
542}
543
544static void free_prison_cell(struct cache *cache, struct dm_bio_prison_cell_v2 *cell)
545{
546 dm_bio_prison_free_cell_v2(cache->prison, cell);
547}
548
549static struct dm_cache_migration *alloc_migration(struct cache *cache)
550{
551 struct dm_cache_migration *mg;
552
553 mg = mempool_alloc(cache->migration_pool, GFP_NOWAIT);
554 if (!mg)
555 return NULL;
556
557 memset(mg, 0, sizeof(*mg));
558
559 mg->cache = cache;
560 atomic_inc(&cache->nr_allocated_migrations);
561
562 return mg;
563}
564
565static void free_migration(struct dm_cache_migration *mg)
566{
567 struct cache *cache = mg->cache;
568
569 if (atomic_dec_and_test(&cache->nr_allocated_migrations))
570 wake_up(&cache->migration_wait);
571
572 mempool_free(mg, cache->migration_pool);
573}
574
575/*----------------------------------------------------------------*/
576
577static inline dm_oblock_t oblock_succ(dm_oblock_t b)
578{
579 return to_oblock(from_oblock(b) + 1ull);
580}
581
582static void build_key(dm_oblock_t begin, dm_oblock_t end, struct dm_cell_key_v2 *key)
583{
584 key->virtual = 0;
585 key->dev = 0;
586 key->block_begin = from_oblock(begin);
587 key->block_end = from_oblock(end);
588}
589
590/*
591 * We have two lock levels. Level 0, which is used to prevent WRITEs, and
592 * level 1 which prevents *both* READs and WRITEs.
593 */
594#define WRITE_LOCK_LEVEL 0
595#define READ_WRITE_LOCK_LEVEL 1
596
597static unsigned lock_level(struct bio *bio)
598{
599 return bio_data_dir(bio) == WRITE ?
600 WRITE_LOCK_LEVEL :
601 READ_WRITE_LOCK_LEVEL;
602}
603
604/*----------------------------------------------------------------
605 * Per bio data
606 *--------------------------------------------------------------*/
607
608static struct per_bio_data *get_per_bio_data(struct bio *bio)
609{
610 struct per_bio_data *pb = dm_per_bio_data(bio, sizeof(struct per_bio_data));
611 BUG_ON(!pb);
612 return pb;
613}
614
615static struct per_bio_data *init_per_bio_data(struct bio *bio)
616{
617 struct per_bio_data *pb = get_per_bio_data(bio);
618
619 pb->tick = false;
620 pb->req_nr = dm_bio_get_target_bio_nr(bio);
621 pb->cell = NULL;
622 pb->len = 0;
623
624 return pb;
625}
626
627/*----------------------------------------------------------------*/
628
629static void defer_bio(struct cache *cache, struct bio *bio)
630{
631 unsigned long flags;
632
633 spin_lock_irqsave(&cache->lock, flags);
634 bio_list_add(&cache->deferred_bios, bio);
635 spin_unlock_irqrestore(&cache->lock, flags);
636
637 wake_deferred_bio_worker(cache);
638}
639
640static void defer_bios(struct cache *cache, struct bio_list *bios)
641{
642 unsigned long flags;
643
644 spin_lock_irqsave(&cache->lock, flags);
645 bio_list_merge(&cache->deferred_bios, bios);
646 bio_list_init(bios);
647 spin_unlock_irqrestore(&cache->lock, flags);
648
649 wake_deferred_bio_worker(cache);
650}
651
652/*----------------------------------------------------------------*/
653
654static bool bio_detain_shared(struct cache *cache, dm_oblock_t oblock, struct bio *bio)
655{
656 bool r;
657 struct per_bio_data *pb;
658 struct dm_cell_key_v2 key;
659 dm_oblock_t end = to_oblock(from_oblock(oblock) + 1ULL);
660 struct dm_bio_prison_cell_v2 *cell_prealloc, *cell;
661
662 cell_prealloc = alloc_prison_cell(cache); /* FIXME: allow wait if calling from worker */
663 if (!cell_prealloc) {
664 defer_bio(cache, bio);
665 return false;
666 }
667
668 build_key(oblock, end, &key);
669 r = dm_cell_get_v2(cache->prison, &key, lock_level(bio), bio, cell_prealloc, &cell);
670 if (!r) {
671 /*
672 * Failed to get the lock.
673 */
674 free_prison_cell(cache, cell_prealloc);
675 return r;
676 }
677
678 if (cell != cell_prealloc)
679 free_prison_cell(cache, cell_prealloc);
680
681 pb = get_per_bio_data(bio);
682 pb->cell = cell;
683
684 return r;
685}
686
687/*----------------------------------------------------------------*/
688
689static bool is_dirty(struct cache *cache, dm_cblock_t b)
690{
691 return test_bit(from_cblock(b), cache->dirty_bitset);
692}
693
694static void set_dirty(struct cache *cache, dm_cblock_t cblock)
695{
696 if (!test_and_set_bit(from_cblock(cblock), cache->dirty_bitset)) {
697 atomic_inc(&cache->nr_dirty);
698 policy_set_dirty(cache->policy, cblock);
699 }
700}
701
702/*
703 * These two are called when setting after migrations to force the policy
704 * and dirty bitset to be in sync.
705 */
706static void force_set_dirty(struct cache *cache, dm_cblock_t cblock)
707{
708 if (!test_and_set_bit(from_cblock(cblock), cache->dirty_bitset))
709 atomic_inc(&cache->nr_dirty);
710 policy_set_dirty(cache->policy, cblock);
711}
712
713static void force_clear_dirty(struct cache *cache, dm_cblock_t cblock)
714{
715 if (test_and_clear_bit(from_cblock(cblock), cache->dirty_bitset)) {
716 if (atomic_dec_return(&cache->nr_dirty) == 0)
717 dm_table_event(cache->ti->table);
718 }
719
720 policy_clear_dirty(cache->policy, cblock);
721}
722
723/*----------------------------------------------------------------*/
724
725static bool block_size_is_power_of_two(struct cache *cache)
726{
727 return cache->sectors_per_block_shift >= 0;
728}
729
730/* gcc on ARM generates spurious references to __udivdi3 and __umoddi3 */
731#if defined(CONFIG_ARM) && __GNUC__ == 4 && __GNUC_MINOR__ <= 6
732__always_inline
733#endif
734static dm_block_t block_div(dm_block_t b, uint32_t n)
735{
736 do_div(b, n);
737
738 return b;
739}
740
741static dm_block_t oblocks_per_dblock(struct cache *cache)
742{
743 dm_block_t oblocks = cache->discard_block_size;
744
745 if (block_size_is_power_of_two(cache))
746 oblocks >>= cache->sectors_per_block_shift;
747 else
748 oblocks = block_div(oblocks, cache->sectors_per_block);
749
750 return oblocks;
751}
752
753static dm_dblock_t oblock_to_dblock(struct cache *cache, dm_oblock_t oblock)
754{
755 return to_dblock(block_div(from_oblock(oblock),
756 oblocks_per_dblock(cache)));
757}
758
759static void set_discard(struct cache *cache, dm_dblock_t b)
760{
761 unsigned long flags;
762
763 BUG_ON(from_dblock(b) >= from_dblock(cache->discard_nr_blocks));
764 atomic_inc(&cache->stats.discard_count);
765
766 spin_lock_irqsave(&cache->lock, flags);
767 set_bit(from_dblock(b), cache->discard_bitset);
768 spin_unlock_irqrestore(&cache->lock, flags);
769}
770
771static void clear_discard(struct cache *cache, dm_dblock_t b)
772{
773 unsigned long flags;
774
775 spin_lock_irqsave(&cache->lock, flags);
776 clear_bit(from_dblock(b), cache->discard_bitset);
777 spin_unlock_irqrestore(&cache->lock, flags);
778}
779
780static bool is_discarded(struct cache *cache, dm_dblock_t b)
781{
782 int r;
783 unsigned long flags;
784
785 spin_lock_irqsave(&cache->lock, flags);
786 r = test_bit(from_dblock(b), cache->discard_bitset);
787 spin_unlock_irqrestore(&cache->lock, flags);
788
789 return r;
790}
791
792static bool is_discarded_oblock(struct cache *cache, dm_oblock_t b)
793{
794 int r;
795 unsigned long flags;
796
797 spin_lock_irqsave(&cache->lock, flags);
798 r = test_bit(from_dblock(oblock_to_dblock(cache, b)),
799 cache->discard_bitset);
800 spin_unlock_irqrestore(&cache->lock, flags);
801
802 return r;
803}
804
805/*----------------------------------------------------------------
806 * Remapping
807 *--------------------------------------------------------------*/
808static void remap_to_origin(struct cache *cache, struct bio *bio)
809{
810 bio_set_dev(bio, cache->origin_dev->bdev);
811}
812
813static void remap_to_cache(struct cache *cache, struct bio *bio,
814 dm_cblock_t cblock)
815{
816 sector_t bi_sector = bio->bi_iter.bi_sector;
817 sector_t block = from_cblock(cblock);
818
819 bio_set_dev(bio, cache->cache_dev->bdev);
820 if (!block_size_is_power_of_two(cache))
821 bio->bi_iter.bi_sector =
822 (block * cache->sectors_per_block) +
823 sector_div(bi_sector, cache->sectors_per_block);
824 else
825 bio->bi_iter.bi_sector =
826 (block << cache->sectors_per_block_shift) |
827 (bi_sector & (cache->sectors_per_block - 1));
828}
829
830static void check_if_tick_bio_needed(struct cache *cache, struct bio *bio)
831{
832 unsigned long flags;
833 struct per_bio_data *pb;
834
835 spin_lock_irqsave(&cache->lock, flags);
836 if (cache->need_tick_bio && !op_is_flush(bio->bi_opf) &&
837 bio_op(bio) != REQ_OP_DISCARD) {
838 pb = get_per_bio_data(bio);
839 pb->tick = true;
840 cache->need_tick_bio = false;
841 }
842 spin_unlock_irqrestore(&cache->lock, flags);
843}
844
845static void __remap_to_origin_clear_discard(struct cache *cache, struct bio *bio,
846 dm_oblock_t oblock, bool bio_has_pbd)
847{
848 if (bio_has_pbd)
849 check_if_tick_bio_needed(cache, bio);
850 remap_to_origin(cache, bio);
851 if (bio_data_dir(bio) == WRITE)
852 clear_discard(cache, oblock_to_dblock(cache, oblock));
853}
854
855static void remap_to_origin_clear_discard(struct cache *cache, struct bio *bio,
856 dm_oblock_t oblock)
857{
858 // FIXME: check_if_tick_bio_needed() is called way too much through this interface
859 __remap_to_origin_clear_discard(cache, bio, oblock, true);
860}
861
862static void remap_to_cache_dirty(struct cache *cache, struct bio *bio,
863 dm_oblock_t oblock, dm_cblock_t cblock)
864{
865 check_if_tick_bio_needed(cache, bio);
866 remap_to_cache(cache, bio, cblock);
867 if (bio_data_dir(bio) == WRITE) {
868 set_dirty(cache, cblock);
869 clear_discard(cache, oblock_to_dblock(cache, oblock));
870 }
871}
872
873static dm_oblock_t get_bio_block(struct cache *cache, struct bio *bio)
874{
875 sector_t block_nr = bio->bi_iter.bi_sector;
876
877 if (!block_size_is_power_of_two(cache))
878 (void) sector_div(block_nr, cache->sectors_per_block);
879 else
880 block_nr >>= cache->sectors_per_block_shift;
881
882 return to_oblock(block_nr);
883}
884
885static bool accountable_bio(struct cache *cache, struct bio *bio)
886{
887 return bio_op(bio) != REQ_OP_DISCARD;
888}
889
890static void accounted_begin(struct cache *cache, struct bio *bio)
891{
892 struct per_bio_data *pb;
893
894 if (accountable_bio(cache, bio)) {
895 pb = get_per_bio_data(bio);
896 pb->len = bio_sectors(bio);
897 iot_io_begin(&cache->tracker, pb->len);
898 }
899}
900
901static void accounted_complete(struct cache *cache, struct bio *bio)
902{
903 struct per_bio_data *pb = get_per_bio_data(bio);
904
905 iot_io_end(&cache->tracker, pb->len);
906}
907
908static void accounted_request(struct cache *cache, struct bio *bio)
909{
910 accounted_begin(cache, bio);
911 generic_make_request(bio);
912}
913
914static void issue_op(struct bio *bio, void *context)
915{
916 struct cache *cache = context;
917 accounted_request(cache, bio);
918}
919
920/*
921 * When running in writethrough mode we need to send writes to clean blocks
922 * to both the cache and origin devices. Clone the bio and send them in parallel.
923 */
924static void remap_to_origin_and_cache(struct cache *cache, struct bio *bio,
925 dm_oblock_t oblock, dm_cblock_t cblock)
926{
927 struct bio *origin_bio = bio_clone_fast(bio, GFP_NOIO, cache->bs);
928
929 BUG_ON(!origin_bio);
930
931 bio_chain(origin_bio, bio);
932 /*
933 * Passing false to __remap_to_origin_clear_discard() skips
934 * all code that might use per_bio_data (since clone doesn't have it)
935 */
936 __remap_to_origin_clear_discard(cache, origin_bio, oblock, false);
937 submit_bio(origin_bio);
938
939 remap_to_cache(cache, bio, cblock);
940}
941
942/*----------------------------------------------------------------
943 * Failure modes
944 *--------------------------------------------------------------*/
945static enum cache_metadata_mode get_cache_mode(struct cache *cache)
946{
947 return cache->features.mode;
948}
949
950static const char *cache_device_name(struct cache *cache)
951{
952 return dm_device_name(dm_table_get_md(cache->ti->table));
953}
954
955static void notify_mode_switch(struct cache *cache, enum cache_metadata_mode mode)
956{
957 const char *descs[] = {
958 "write",
959 "read-only",
960 "fail"
961 };
962
963 dm_table_event(cache->ti->table);
964 DMINFO("%s: switching cache to %s mode",
965 cache_device_name(cache), descs[(int)mode]);
966}
967
968static void set_cache_mode(struct cache *cache, enum cache_metadata_mode new_mode)
969{
970 bool needs_check;
971 enum cache_metadata_mode old_mode = get_cache_mode(cache);
972
973 if (dm_cache_metadata_needs_check(cache->cmd, &needs_check)) {
974 DMERR("%s: unable to read needs_check flag, setting failure mode.",
975 cache_device_name(cache));
976 new_mode = CM_FAIL;
977 }
978
979 if (new_mode == CM_WRITE && needs_check) {
980 DMERR("%s: unable to switch cache to write mode until repaired.",
981 cache_device_name(cache));
982 if (old_mode != new_mode)
983 new_mode = old_mode;
984 else
985 new_mode = CM_READ_ONLY;
986 }
987
988 /* Never move out of fail mode */
989 if (old_mode == CM_FAIL)
990 new_mode = CM_FAIL;
991
992 switch (new_mode) {
993 case CM_FAIL:
994 case CM_READ_ONLY:
995 dm_cache_metadata_set_read_only(cache->cmd);
996 break;
997
998 case CM_WRITE:
999 dm_cache_metadata_set_read_write(cache->cmd);
1000 break;
1001 }
1002
1003 cache->features.mode = new_mode;
1004
1005 if (new_mode != old_mode)
1006 notify_mode_switch(cache, new_mode);
1007}
1008
1009static void abort_transaction(struct cache *cache)
1010{
1011 const char *dev_name = cache_device_name(cache);
1012
1013 if (get_cache_mode(cache) >= CM_READ_ONLY)
1014 return;
1015
1016 if (dm_cache_metadata_set_needs_check(cache->cmd)) {
1017 DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
1018 set_cache_mode(cache, CM_FAIL);
1019 }
1020
1021 DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
1022 if (dm_cache_metadata_abort(cache->cmd)) {
1023 DMERR("%s: failed to abort metadata transaction", dev_name);
1024 set_cache_mode(cache, CM_FAIL);
1025 }
1026}
1027
1028static void metadata_operation_failed(struct cache *cache, const char *op, int r)
1029{
1030 DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
1031 cache_device_name(cache), op, r);
1032 abort_transaction(cache);
1033 set_cache_mode(cache, CM_READ_ONLY);
1034}
1035
1036/*----------------------------------------------------------------*/
1037
1038static void load_stats(struct cache *cache)
1039{
1040 struct dm_cache_statistics stats;
1041
1042 dm_cache_metadata_get_stats(cache->cmd, &stats);
1043 atomic_set(&cache->stats.read_hit, stats.read_hits);
1044 atomic_set(&cache->stats.read_miss, stats.read_misses);
1045 atomic_set(&cache->stats.write_hit, stats.write_hits);
1046 atomic_set(&cache->stats.write_miss, stats.write_misses);
1047}
1048
1049static void save_stats(struct cache *cache)
1050{
1051 struct dm_cache_statistics stats;
1052
1053 if (get_cache_mode(cache) >= CM_READ_ONLY)
1054 return;
1055
1056 stats.read_hits = atomic_read(&cache->stats.read_hit);
1057 stats.read_misses = atomic_read(&cache->stats.read_miss);
1058 stats.write_hits = atomic_read(&cache->stats.write_hit);
1059 stats.write_misses = atomic_read(&cache->stats.write_miss);
1060
1061 dm_cache_metadata_set_stats(cache->cmd, &stats);
1062}
1063
1064static void update_stats(struct cache_stats *stats, enum policy_operation op)
1065{
1066 switch (op) {
1067 case POLICY_PROMOTE:
1068 atomic_inc(&stats->promotion);
1069 break;
1070
1071 case POLICY_DEMOTE:
1072 atomic_inc(&stats->demotion);
1073 break;
1074
1075 case POLICY_WRITEBACK:
1076 atomic_inc(&stats->writeback);
1077 break;
1078 }
1079}
1080
1081/*----------------------------------------------------------------
1082 * Migration processing
1083 *
1084 * Migration covers moving data from the origin device to the cache, or
1085 * vice versa.
1086 *--------------------------------------------------------------*/
1087
1088static void inc_io_migrations(struct cache *cache)
1089{
1090 atomic_inc(&cache->nr_io_migrations);
1091}
1092
1093static void dec_io_migrations(struct cache *cache)
1094{
1095 atomic_dec(&cache->nr_io_migrations);
1096}
1097
1098static bool discard_or_flush(struct bio *bio)
1099{
1100 return bio_op(bio) == REQ_OP_DISCARD || op_is_flush(bio->bi_opf);
1101}
1102
1103static void calc_discard_block_range(struct cache *cache, struct bio *bio,
1104 dm_dblock_t *b, dm_dblock_t *e)
1105{
1106 sector_t sb = bio->bi_iter.bi_sector;
1107 sector_t se = bio_end_sector(bio);
1108
1109 *b = to_dblock(dm_sector_div_up(sb, cache->discard_block_size));
1110
1111 if (se - sb < cache->discard_block_size)
1112 *e = *b;
1113 else
1114 *e = to_dblock(block_div(se, cache->discard_block_size));
1115}
1116
1117/*----------------------------------------------------------------*/
1118
1119static void prevent_background_work(struct cache *cache)
1120{
1121 lockdep_off();
1122 down_write(&cache->background_work_lock);
1123 lockdep_on();
1124}
1125
1126static void allow_background_work(struct cache *cache)
1127{
1128 lockdep_off();
1129 up_write(&cache->background_work_lock);
1130 lockdep_on();
1131}
1132
1133static bool background_work_begin(struct cache *cache)
1134{
1135 bool r;
1136
1137 lockdep_off();
1138 r = down_read_trylock(&cache->background_work_lock);
1139 lockdep_on();
1140
1141 return r;
1142}
1143
1144static void background_work_end(struct cache *cache)
1145{
1146 lockdep_off();
1147 up_read(&cache->background_work_lock);
1148 lockdep_on();
1149}
1150
1151/*----------------------------------------------------------------*/
1152
1153static bool bio_writes_complete_block(struct cache *cache, struct bio *bio)
1154{
1155 return (bio_data_dir(bio) == WRITE) &&
1156 (bio->bi_iter.bi_size == (cache->sectors_per_block << SECTOR_SHIFT));
1157}
1158
1159static bool optimisable_bio(struct cache *cache, struct bio *bio, dm_oblock_t block)
1160{
1161 return writeback_mode(cache) &&
1162 (is_discarded_oblock(cache, block) || bio_writes_complete_block(cache, bio));
1163}
1164
1165static void quiesce(struct dm_cache_migration *mg,
1166 void (*continuation)(struct work_struct *))
1167{
1168 init_continuation(&mg->k, continuation);
1169 dm_cell_quiesce_v2(mg->cache->prison, mg->cell, &mg->k.ws);
1170}
1171
1172static struct dm_cache_migration *ws_to_mg(struct work_struct *ws)
1173{
1174 struct continuation *k = container_of(ws, struct continuation, ws);
1175 return container_of(k, struct dm_cache_migration, k);
1176}
1177
1178static void copy_complete(int read_err, unsigned long write_err, void *context)
1179{
1180 struct dm_cache_migration *mg = container_of(context, struct dm_cache_migration, k);
1181
1182 if (read_err || write_err)
1183 mg->k.input = BLK_STS_IOERR;
1184
1185 queue_continuation(mg->cache->wq, &mg->k);
1186}
1187
1188static int copy(struct dm_cache_migration *mg, bool promote)
1189{
1190 int r;
1191 struct dm_io_region o_region, c_region;
1192 struct cache *cache = mg->cache;
1193
1194 o_region.bdev = cache->origin_dev->bdev;
1195 o_region.sector = from_oblock(mg->op->oblock) * cache->sectors_per_block;
1196 o_region.count = cache->sectors_per_block;
1197
1198 c_region.bdev = cache->cache_dev->bdev;
1199 c_region.sector = from_cblock(mg->op->cblock) * cache->sectors_per_block;
1200 c_region.count = cache->sectors_per_block;
1201
1202 if (promote)
1203 r = dm_kcopyd_copy(cache->copier, &o_region, 1, &c_region, 0, copy_complete, &mg->k);
1204 else
1205 r = dm_kcopyd_copy(cache->copier, &c_region, 1, &o_region, 0, copy_complete, &mg->k);
1206
1207 return r;
1208}
1209
1210static void bio_drop_shared_lock(struct cache *cache, struct bio *bio)
1211{
1212 struct per_bio_data *pb = get_per_bio_data(bio);
1213
1214 if (pb->cell && dm_cell_put_v2(cache->prison, pb->cell))
1215 free_prison_cell(cache, pb->cell);
1216 pb->cell = NULL;
1217}
1218
1219static void overwrite_endio(struct bio *bio)
1220{
1221 struct dm_cache_migration *mg = bio->bi_private;
1222 struct cache *cache = mg->cache;
1223 struct per_bio_data *pb = get_per_bio_data(bio);
1224
1225 dm_unhook_bio(&pb->hook_info, bio);
1226
1227 if (bio->bi_status)
1228 mg->k.input = bio->bi_status;
1229
1230 queue_continuation(cache->wq, &mg->k);
1231}
1232
1233static void overwrite(struct dm_cache_migration *mg,
1234 void (*continuation)(struct work_struct *))
1235{
1236 struct bio *bio = mg->overwrite_bio;
1237 struct per_bio_data *pb = get_per_bio_data(bio);
1238
1239 dm_hook_bio(&pb->hook_info, bio, overwrite_endio, mg);
1240
1241 /*
1242 * The overwrite bio is part of the copy operation, as such it does
1243 * not set/clear discard or dirty flags.
1244 */
1245 if (mg->op->op == POLICY_PROMOTE)
1246 remap_to_cache(mg->cache, bio, mg->op->cblock);
1247 else
1248 remap_to_origin(mg->cache, bio);
1249
1250 init_continuation(&mg->k, continuation);
1251 accounted_request(mg->cache, bio);
1252}
1253
1254/*
1255 * Migration steps:
1256 *
1257 * 1) exclusive lock preventing WRITEs
1258 * 2) quiesce
1259 * 3) copy or issue overwrite bio
1260 * 4) upgrade to exclusive lock preventing READs and WRITEs
1261 * 5) quiesce
1262 * 6) update metadata and commit
1263 * 7) unlock
1264 */
1265static void mg_complete(struct dm_cache_migration *mg, bool success)
1266{
1267 struct bio_list bios;
1268 struct cache *cache = mg->cache;
1269 struct policy_work *op = mg->op;
1270 dm_cblock_t cblock = op->cblock;
1271
1272 if (success)
1273 update_stats(&cache->stats, op->op);
1274
1275 switch (op->op) {
1276 case POLICY_PROMOTE:
1277 clear_discard(cache, oblock_to_dblock(cache, op->oblock));
1278 policy_complete_background_work(cache->policy, op, success);
1279
1280 if (mg->overwrite_bio) {
1281 if (success)
1282 force_set_dirty(cache, cblock);
1283 else if (mg->k.input)
1284 mg->overwrite_bio->bi_status = mg->k.input;
1285 else
1286 mg->overwrite_bio->bi_status = BLK_STS_IOERR;
1287 bio_endio(mg->overwrite_bio);
1288 } else {
1289 if (success)
1290 force_clear_dirty(cache, cblock);
1291 dec_io_migrations(cache);
1292 }
1293 break;
1294
1295 case POLICY_DEMOTE:
1296 /*
1297 * We clear dirty here to update the nr_dirty counter.
1298 */
1299 if (success)
1300 force_clear_dirty(cache, cblock);
1301 policy_complete_background_work(cache->policy, op, success);
1302 dec_io_migrations(cache);
1303 break;
1304
1305 case POLICY_WRITEBACK:
1306 if (success)
1307 force_clear_dirty(cache, cblock);
1308 policy_complete_background_work(cache->policy, op, success);
1309 dec_io_migrations(cache);
1310 break;
1311 }
1312
1313 bio_list_init(&bios);
1314 if (mg->cell) {
1315 if (dm_cell_unlock_v2(cache->prison, mg->cell, &bios))
1316 free_prison_cell(cache, mg->cell);
1317 }
1318
1319 free_migration(mg);
1320 defer_bios(cache, &bios);
1321 wake_migration_worker(cache);
1322
1323 background_work_end(cache);
1324}
1325
1326static void mg_success(struct work_struct *ws)
1327{
1328 struct dm_cache_migration *mg = ws_to_mg(ws);
1329 mg_complete(mg, mg->k.input == 0);
1330}
1331
1332static void mg_update_metadata(struct work_struct *ws)
1333{
1334 int r;
1335 struct dm_cache_migration *mg = ws_to_mg(ws);
1336 struct cache *cache = mg->cache;
1337 struct policy_work *op = mg->op;
1338
1339 switch (op->op) {
1340 case POLICY_PROMOTE:
1341 r = dm_cache_insert_mapping(cache->cmd, op->cblock, op->oblock);
1342 if (r) {
1343 DMERR_LIMIT("%s: migration failed; couldn't insert mapping",
1344 cache_device_name(cache));
1345 metadata_operation_failed(cache, "dm_cache_insert_mapping", r);
1346
1347 mg_complete(mg, false);
1348 return;
1349 }
1350 mg_complete(mg, true);
1351 break;
1352
1353 case POLICY_DEMOTE:
1354 r = dm_cache_remove_mapping(cache->cmd, op->cblock);
1355 if (r) {
1356 DMERR_LIMIT("%s: migration failed; couldn't update on disk metadata",
1357 cache_device_name(cache));
1358 metadata_operation_failed(cache, "dm_cache_remove_mapping", r);
1359
1360 mg_complete(mg, false);
1361 return;
1362 }
1363
1364 /*
1365 * It would be nice if we only had to commit when a REQ_FLUSH
1366 * comes through. But there's one scenario that we have to
1367 * look out for:
1368 *
1369 * - vblock x in a cache block
1370 * - domotion occurs
1371 * - cache block gets reallocated and over written
1372 * - crash
1373 *
1374 * When we recover, because there was no commit the cache will
1375 * rollback to having the data for vblock x in the cache block.
1376 * But the cache block has since been overwritten, so it'll end
1377 * up pointing to data that was never in 'x' during the history
1378 * of the device.
1379 *
1380 * To avoid this issue we require a commit as part of the
1381 * demotion operation.
1382 */
1383 init_continuation(&mg->k, mg_success);
1384 continue_after_commit(&cache->committer, &mg->k);
1385 schedule_commit(&cache->committer);
1386 break;
1387
1388 case POLICY_WRITEBACK:
1389 mg_complete(mg, true);
1390 break;
1391 }
1392}
1393
1394static void mg_update_metadata_after_copy(struct work_struct *ws)
1395{
1396 struct dm_cache_migration *mg = ws_to_mg(ws);
1397
1398 /*
1399 * Did the copy succeed?
1400 */
1401 if (mg->k.input)
1402 mg_complete(mg, false);
1403 else
1404 mg_update_metadata(ws);
1405}
1406
1407static void mg_upgrade_lock(struct work_struct *ws)
1408{
1409 int r;
1410 struct dm_cache_migration *mg = ws_to_mg(ws);
1411
1412 /*
1413 * Did the copy succeed?
1414 */
1415 if (mg->k.input)
1416 mg_complete(mg, false);
1417
1418 else {
1419 /*
1420 * Now we want the lock to prevent both reads and writes.
1421 */
1422 r = dm_cell_lock_promote_v2(mg->cache->prison, mg->cell,
1423 READ_WRITE_LOCK_LEVEL);
1424 if (r < 0)
1425 mg_complete(mg, false);
1426
1427 else if (r)
1428 quiesce(mg, mg_update_metadata);
1429
1430 else
1431 mg_update_metadata(ws);
1432 }
1433}
1434
1435static void mg_full_copy(struct work_struct *ws)
1436{
1437 struct dm_cache_migration *mg = ws_to_mg(ws);
1438 struct cache *cache = mg->cache;
1439 struct policy_work *op = mg->op;
1440 bool is_policy_promote = (op->op == POLICY_PROMOTE);
1441
1442 if ((!is_policy_promote && !is_dirty(cache, op->cblock)) ||
1443 is_discarded_oblock(cache, op->oblock)) {
1444 mg_upgrade_lock(ws);
1445 return;
1446 }
1447
1448 init_continuation(&mg->k, mg_upgrade_lock);
1449
1450 if (copy(mg, is_policy_promote)) {
1451 DMERR_LIMIT("%s: migration copy failed", cache_device_name(cache));
1452 mg->k.input = BLK_STS_IOERR;
1453 mg_complete(mg, false);
1454 }
1455}
1456
1457static void mg_copy(struct work_struct *ws)
1458{
1459 struct dm_cache_migration *mg = ws_to_mg(ws);
1460
1461 if (mg->overwrite_bio) {
1462 /*
1463 * No exclusive lock was held when we last checked if the bio
1464 * was optimisable. So we have to check again in case things
1465 * have changed (eg, the block may no longer be discarded).
1466 */
1467 if (!optimisable_bio(mg->cache, mg->overwrite_bio, mg->op->oblock)) {
1468 /*
1469 * Fallback to a real full copy after doing some tidying up.
1470 */
1471 bool rb = bio_detain_shared(mg->cache, mg->op->oblock, mg->overwrite_bio);
1472 BUG_ON(rb); /* An exclussive lock must _not_ be held for this block */
1473 mg->overwrite_bio = NULL;
1474 inc_io_migrations(mg->cache);
1475 mg_full_copy(ws);
1476 return;
1477 }
1478
1479 /*
1480 * It's safe to do this here, even though it's new data
1481 * because all IO has been locked out of the block.
1482 *
1483 * mg_lock_writes() already took READ_WRITE_LOCK_LEVEL
1484 * so _not_ using mg_upgrade_lock() as continutation.
1485 */
1486 overwrite(mg, mg_update_metadata_after_copy);
1487
1488 } else
1489 mg_full_copy(ws);
1490}
1491
1492static int mg_lock_writes(struct dm_cache_migration *mg)
1493{
1494 int r;
1495 struct dm_cell_key_v2 key;
1496 struct cache *cache = mg->cache;
1497 struct dm_bio_prison_cell_v2 *prealloc;
1498
1499 prealloc = alloc_prison_cell(cache);
1500 if (!prealloc) {
1501 DMERR_LIMIT("%s: alloc_prison_cell failed", cache_device_name(cache));
1502 mg_complete(mg, false);
1503 return -ENOMEM;
1504 }
1505
1506 /*
1507 * Prevent writes to the block, but allow reads to continue.
1508 * Unless we're using an overwrite bio, in which case we lock
1509 * everything.
1510 */
1511 build_key(mg->op->oblock, oblock_succ(mg->op->oblock), &key);
1512 r = dm_cell_lock_v2(cache->prison, &key,
1513 mg->overwrite_bio ? READ_WRITE_LOCK_LEVEL : WRITE_LOCK_LEVEL,
1514 prealloc, &mg->cell);
1515 if (r < 0) {
1516 free_prison_cell(cache, prealloc);
1517 mg_complete(mg, false);
1518 return r;
1519 }
1520
1521 if (mg->cell != prealloc)
1522 free_prison_cell(cache, prealloc);
1523
1524 if (r == 0)
1525 mg_copy(&mg->k.ws);
1526 else
1527 quiesce(mg, mg_copy);
1528
1529 return 0;
1530}
1531
1532static int mg_start(struct cache *cache, struct policy_work *op, struct bio *bio)
1533{
1534 struct dm_cache_migration *mg;
1535
1536 if (!background_work_begin(cache)) {
1537 policy_complete_background_work(cache->policy, op, false);
1538 return -EPERM;
1539 }
1540
1541 mg = alloc_migration(cache);
1542 if (!mg) {
1543 policy_complete_background_work(cache->policy, op, false);
1544 background_work_end(cache);
1545 return -ENOMEM;
1546 }
1547
1548 mg->op = op;
1549 mg->overwrite_bio = bio;
1550
1551 if (!bio)
1552 inc_io_migrations(cache);
1553
1554 return mg_lock_writes(mg);
1555}
1556
1557/*----------------------------------------------------------------
1558 * invalidation processing
1559 *--------------------------------------------------------------*/
1560
1561static void invalidate_complete(struct dm_cache_migration *mg, bool success)
1562{
1563 struct bio_list bios;
1564 struct cache *cache = mg->cache;
1565
1566 bio_list_init(&bios);
1567 if (dm_cell_unlock_v2(cache->prison, mg->cell, &bios))
1568 free_prison_cell(cache, mg->cell);
1569
1570 if (!success && mg->overwrite_bio)
1571 bio_io_error(mg->overwrite_bio);
1572
1573 free_migration(mg);
1574 defer_bios(cache, &bios);
1575
1576 background_work_end(cache);
1577}
1578
1579static void invalidate_completed(struct work_struct *ws)
1580{
1581 struct dm_cache_migration *mg = ws_to_mg(ws);
1582 invalidate_complete(mg, !mg->k.input);
1583}
1584
1585static int invalidate_cblock(struct cache *cache, dm_cblock_t cblock)
1586{
1587 int r = policy_invalidate_mapping(cache->policy, cblock);
1588 if (!r) {
1589 r = dm_cache_remove_mapping(cache->cmd, cblock);
1590 if (r) {
1591 DMERR_LIMIT("%s: invalidation failed; couldn't update on disk metadata",
1592 cache_device_name(cache));
1593 metadata_operation_failed(cache, "dm_cache_remove_mapping", r);
1594 }
1595
1596 } else if (r == -ENODATA) {
1597 /*
1598 * Harmless, already unmapped.
1599 */
1600 r = 0;
1601
1602 } else
1603 DMERR("%s: policy_invalidate_mapping failed", cache_device_name(cache));
1604
1605 return r;
1606}
1607
1608static void invalidate_remove(struct work_struct *ws)
1609{
1610 int r;
1611 struct dm_cache_migration *mg = ws_to_mg(ws);
1612 struct cache *cache = mg->cache;
1613
1614 r = invalidate_cblock(cache, mg->invalidate_cblock);
1615 if (r) {
1616 invalidate_complete(mg, false);
1617 return;
1618 }
1619
1620 init_continuation(&mg->k, invalidate_completed);
1621 continue_after_commit(&cache->committer, &mg->k);
1622 remap_to_origin_clear_discard(cache, mg->overwrite_bio, mg->invalidate_oblock);
1623 mg->overwrite_bio = NULL;
1624 schedule_commit(&cache->committer);
1625}
1626
1627static int invalidate_lock(struct dm_cache_migration *mg)
1628{
1629 int r;
1630 struct dm_cell_key_v2 key;
1631 struct cache *cache = mg->cache;
1632 struct dm_bio_prison_cell_v2 *prealloc;
1633
1634 prealloc = alloc_prison_cell(cache);
1635 if (!prealloc) {
1636 invalidate_complete(mg, false);
1637 return -ENOMEM;
1638 }
1639
1640 build_key(mg->invalidate_oblock, oblock_succ(mg->invalidate_oblock), &key);
1641 r = dm_cell_lock_v2(cache->prison, &key,
1642 READ_WRITE_LOCK_LEVEL, prealloc, &mg->cell);
1643 if (r < 0) {
1644 free_prison_cell(cache, prealloc);
1645 invalidate_complete(mg, false);
1646 return r;
1647 }
1648
1649 if (mg->cell != prealloc)
1650 free_prison_cell(cache, prealloc);
1651
1652 if (r)
1653 quiesce(mg, invalidate_remove);
1654
1655 else {
1656 /*
1657 * We can't call invalidate_remove() directly here because we
1658 * might still be in request context.
1659 */
1660 init_continuation(&mg->k, invalidate_remove);
1661 queue_work(cache->wq, &mg->k.ws);
1662 }
1663
1664 return 0;
1665}
1666
1667static int invalidate_start(struct cache *cache, dm_cblock_t cblock,
1668 dm_oblock_t oblock, struct bio *bio)
1669{
1670 struct dm_cache_migration *mg;
1671
1672 if (!background_work_begin(cache))
1673 return -EPERM;
1674
1675 mg = alloc_migration(cache);
1676 if (!mg) {
1677 background_work_end(cache);
1678 return -ENOMEM;
1679 }
1680
1681 mg->overwrite_bio = bio;
1682 mg->invalidate_cblock = cblock;
1683 mg->invalidate_oblock = oblock;
1684
1685 return invalidate_lock(mg);
1686}
1687
1688/*----------------------------------------------------------------
1689 * bio processing
1690 *--------------------------------------------------------------*/
1691
1692enum busy {
1693 IDLE,
1694 BUSY
1695};
1696
1697static enum busy spare_migration_bandwidth(struct cache *cache)
1698{
1699 bool idle = iot_idle_for(&cache->tracker, HZ);
1700 sector_t current_volume = (atomic_read(&cache->nr_io_migrations) + 1) *
1701 cache->sectors_per_block;
1702
1703 if (idle && current_volume <= cache->migration_threshold)
1704 return IDLE;
1705 else
1706 return BUSY;
1707}
1708
1709static void inc_hit_counter(struct cache *cache, struct bio *bio)
1710{
1711 atomic_inc(bio_data_dir(bio) == READ ?
1712 &cache->stats.read_hit : &cache->stats.write_hit);
1713}
1714
1715static void inc_miss_counter(struct cache *cache, struct bio *bio)
1716{
1717 atomic_inc(bio_data_dir(bio) == READ ?
1718 &cache->stats.read_miss : &cache->stats.write_miss);
1719}
1720
1721/*----------------------------------------------------------------*/
1722
1723static int map_bio(struct cache *cache, struct bio *bio, dm_oblock_t block,
1724 bool *commit_needed)
1725{
1726 int r, data_dir;
1727 bool rb, background_queued;
1728 dm_cblock_t cblock;
1729
1730 *commit_needed = false;
1731
1732 rb = bio_detain_shared(cache, block, bio);
1733 if (!rb) {
1734 /*
1735 * An exclusive lock is held for this block, so we have to
1736 * wait. We set the commit_needed flag so the current
1737 * transaction will be committed asap, allowing this lock
1738 * to be dropped.
1739 */
1740 *commit_needed = true;
1741 return DM_MAPIO_SUBMITTED;
1742 }
1743
1744 data_dir = bio_data_dir(bio);
1745
1746 if (optimisable_bio(cache, bio, block)) {
1747 struct policy_work *op = NULL;
1748
1749 r = policy_lookup_with_work(cache->policy, block, &cblock, data_dir, true, &op);
1750 if (unlikely(r && r != -ENOENT)) {
1751 DMERR_LIMIT("%s: policy_lookup_with_work() failed with r = %d",
1752 cache_device_name(cache), r);
1753 bio_io_error(bio);
1754 return DM_MAPIO_SUBMITTED;
1755 }
1756
1757 if (r == -ENOENT && op) {
1758 bio_drop_shared_lock(cache, bio);
1759 BUG_ON(op->op != POLICY_PROMOTE);
1760 mg_start(cache, op, bio);
1761 return DM_MAPIO_SUBMITTED;
1762 }
1763 } else {
1764 r = policy_lookup(cache->policy, block, &cblock, data_dir, false, &background_queued);
1765 if (unlikely(r && r != -ENOENT)) {
1766 DMERR_LIMIT("%s: policy_lookup() failed with r = %d",
1767 cache_device_name(cache), r);
1768 bio_io_error(bio);
1769 return DM_MAPIO_SUBMITTED;
1770 }
1771
1772 if (background_queued)
1773 wake_migration_worker(cache);
1774 }
1775
1776 if (r == -ENOENT) {
1777 struct per_bio_data *pb = get_per_bio_data(bio);
1778
1779 /*
1780 * Miss.
1781 */
1782 inc_miss_counter(cache, bio);
1783 if (pb->req_nr == 0) {
1784 accounted_begin(cache, bio);
1785 remap_to_origin_clear_discard(cache, bio, block);
1786 } else {
1787 /*
1788 * This is a duplicate writethrough io that is no
1789 * longer needed because the block has been demoted.
1790 */
1791 bio_endio(bio);
1792 return DM_MAPIO_SUBMITTED;
1793 }
1794 } else {
1795 /*
1796 * Hit.
1797 */
1798 inc_hit_counter(cache, bio);
1799
1800 /*
1801 * Passthrough always maps to the origin, invalidating any
1802 * cache blocks that are written to.
1803 */
1804 if (passthrough_mode(cache)) {
1805 if (bio_data_dir(bio) == WRITE) {
1806 bio_drop_shared_lock(cache, bio);
1807 atomic_inc(&cache->stats.demotion);
1808 invalidate_start(cache, cblock, block, bio);
1809 } else
1810 remap_to_origin_clear_discard(cache, bio, block);
1811 } else {
1812 if (bio_data_dir(bio) == WRITE && writethrough_mode(cache) &&
1813 !is_dirty(cache, cblock)) {
1814 remap_to_origin_and_cache(cache, bio, block, cblock);
1815 accounted_begin(cache, bio);
1816 } else
1817 remap_to_cache_dirty(cache, bio, block, cblock);
1818 }
1819 }
1820
1821 /*
1822 * dm core turns FUA requests into a separate payload and FLUSH req.
1823 */
1824 if (bio->bi_opf & REQ_FUA) {
1825 /*
1826 * issue_after_commit will call accounted_begin a second time. So
1827 * we call accounted_complete() to avoid double accounting.
1828 */
1829 accounted_complete(cache, bio);
1830 issue_after_commit(&cache->committer, bio);
1831 *commit_needed = true;
1832 return DM_MAPIO_SUBMITTED;
1833 }
1834
1835 return DM_MAPIO_REMAPPED;
1836}
1837
1838static bool process_bio(struct cache *cache, struct bio *bio)
1839{
1840 bool commit_needed;
1841
1842 if (map_bio(cache, bio, get_bio_block(cache, bio), &commit_needed) == DM_MAPIO_REMAPPED)
1843 generic_make_request(bio);
1844
1845 return commit_needed;
1846}
1847
1848/*
1849 * A non-zero return indicates read_only or fail_io mode.
1850 */
1851static int commit(struct cache *cache, bool clean_shutdown)
1852{
1853 int r;
1854
1855 if (get_cache_mode(cache) >= CM_READ_ONLY)
1856 return -EINVAL;
1857
1858 atomic_inc(&cache->stats.commit_count);
1859 r = dm_cache_commit(cache->cmd, clean_shutdown);
1860 if (r)
1861 metadata_operation_failed(cache, "dm_cache_commit", r);
1862
1863 return r;
1864}
1865
1866/*
1867 * Used by the batcher.
1868 */
1869static blk_status_t commit_op(void *context)
1870{
1871 struct cache *cache = context;
1872
1873 if (dm_cache_changed_this_transaction(cache->cmd))
1874 return errno_to_blk_status(commit(cache, false));
1875
1876 return 0;
1877}
1878
1879/*----------------------------------------------------------------*/
1880
1881static bool process_flush_bio(struct cache *cache, struct bio *bio)
1882{
1883 struct per_bio_data *pb = get_per_bio_data(bio);
1884
1885 if (!pb->req_nr)
1886 remap_to_origin(cache, bio);
1887 else
1888 remap_to_cache(cache, bio, 0);
1889
1890 issue_after_commit(&cache->committer, bio);
1891 return true;
1892}
1893
1894static bool process_discard_bio(struct cache *cache, struct bio *bio)
1895{
1896 dm_dblock_t b, e;
1897
1898 // FIXME: do we need to lock the region? Or can we just assume the
1899 // user wont be so foolish as to issue discard concurrently with
1900 // other IO?
1901 calc_discard_block_range(cache, bio, &b, &e);
1902 while (b != e) {
1903 set_discard(cache, b);
1904 b = to_dblock(from_dblock(b) + 1);
1905 }
1906
1907 bio_endio(bio);
1908
1909 return false;
1910}
1911
1912static void process_deferred_bios(struct work_struct *ws)
1913{
1914 struct cache *cache = container_of(ws, struct cache, deferred_bio_worker);
1915
1916 unsigned long flags;
1917 bool commit_needed = false;
1918 struct bio_list bios;
1919 struct bio *bio;
1920
1921 bio_list_init(&bios);
1922
1923 spin_lock_irqsave(&cache->lock, flags);
1924 bio_list_merge(&bios, &cache->deferred_bios);
1925 bio_list_init(&cache->deferred_bios);
1926 spin_unlock_irqrestore(&cache->lock, flags);
1927
1928 while ((bio = bio_list_pop(&bios))) {
1929 if (bio->bi_opf & REQ_PREFLUSH)
1930 commit_needed = process_flush_bio(cache, bio) || commit_needed;
1931
1932 else if (bio_op(bio) == REQ_OP_DISCARD)
1933 commit_needed = process_discard_bio(cache, bio) || commit_needed;
1934
1935 else
1936 commit_needed = process_bio(cache, bio) || commit_needed;
1937 }
1938
1939 if (commit_needed)
1940 schedule_commit(&cache->committer);
1941}
1942
1943/*----------------------------------------------------------------
1944 * Main worker loop
1945 *--------------------------------------------------------------*/
1946
1947static void requeue_deferred_bios(struct cache *cache)
1948{
1949 struct bio *bio;
1950 struct bio_list bios;
1951
1952 bio_list_init(&bios);
1953 bio_list_merge(&bios, &cache->deferred_bios);
1954 bio_list_init(&cache->deferred_bios);
1955
1956 while ((bio = bio_list_pop(&bios))) {
1957 bio->bi_status = BLK_STS_DM_REQUEUE;
1958 bio_endio(bio);
1959 }
1960}
1961
1962/*
1963 * We want to commit periodically so that not too much
1964 * unwritten metadata builds up.
1965 */
1966static void do_waker(struct work_struct *ws)
1967{
1968 struct cache *cache = container_of(to_delayed_work(ws), struct cache, waker);
1969
1970 policy_tick(cache->policy, true);
1971 wake_migration_worker(cache);
1972 schedule_commit(&cache->committer);
1973 queue_delayed_work(cache->wq, &cache->waker, COMMIT_PERIOD);
1974}
1975
1976static void check_migrations(struct work_struct *ws)
1977{
1978 int r;
1979 struct policy_work *op;
1980 struct cache *cache = container_of(ws, struct cache, migration_worker);
1981 enum busy b;
1982
1983 for (;;) {
1984 b = spare_migration_bandwidth(cache);
1985
1986 r = policy_get_background_work(cache->policy, b == IDLE, &op);
1987 if (r == -ENODATA)
1988 break;
1989
1990 if (r) {
1991 DMERR_LIMIT("%s: policy_background_work failed",
1992 cache_device_name(cache));
1993 break;
1994 }
1995
1996 r = mg_start(cache, op, NULL);
1997 if (r)
1998 break;
1999 }
2000}
2001
2002/*----------------------------------------------------------------
2003 * Target methods
2004 *--------------------------------------------------------------*/
2005
2006/*
2007 * This function gets called on the error paths of the constructor, so we
2008 * have to cope with a partially initialised struct.
2009 */
2010static void destroy(struct cache *cache)
2011{
2012 unsigned i;
2013
2014 mempool_destroy(cache->migration_pool);
2015
2016 if (cache->prison)
2017 dm_bio_prison_destroy_v2(cache->prison);
2018
2019 if (cache->wq)
2020 destroy_workqueue(cache->wq);
2021
2022 if (cache->dirty_bitset)
2023 free_bitset(cache->dirty_bitset);
2024
2025 if (cache->discard_bitset)
2026 free_bitset(cache->discard_bitset);
2027
2028 if (cache->copier)
2029 dm_kcopyd_client_destroy(cache->copier);
2030
2031 if (cache->cmd)
2032 dm_cache_metadata_close(cache->cmd);
2033
2034 if (cache->metadata_dev)
2035 dm_put_device(cache->ti, cache->metadata_dev);
2036
2037 if (cache->origin_dev)
2038 dm_put_device(cache->ti, cache->origin_dev);
2039
2040 if (cache->cache_dev)
2041 dm_put_device(cache->ti, cache->cache_dev);
2042
2043 if (cache->policy)
2044 dm_cache_policy_destroy(cache->policy);
2045
2046 for (i = 0; i < cache->nr_ctr_args ; i++)
2047 kfree(cache->ctr_args[i]);
2048 kfree(cache->ctr_args);
2049
2050 if (cache->bs)
2051 bioset_free(cache->bs);
2052
2053 kfree(cache);
2054}
2055
2056static void cache_dtr(struct dm_target *ti)
2057{
2058 struct cache *cache = ti->private;
2059
2060 destroy(cache);
2061}
2062
2063static sector_t get_dev_size(struct dm_dev *dev)
2064{
2065 return i_size_read(dev->bdev->bd_inode) >> SECTOR_SHIFT;
2066}
2067
2068/*----------------------------------------------------------------*/
2069
2070/*
2071 * Construct a cache device mapping.
2072 *
2073 * cache <metadata dev> <cache dev> <origin dev> <block size>
2074 * <#feature args> [<feature arg>]*
2075 * <policy> <#policy args> [<policy arg>]*
2076 *
2077 * metadata dev : fast device holding the persistent metadata
2078 * cache dev : fast device holding cached data blocks
2079 * origin dev : slow device holding original data blocks
2080 * block size : cache unit size in sectors
2081 *
2082 * #feature args : number of feature arguments passed
2083 * feature args : writethrough. (The default is writeback.)
2084 *
2085 * policy : the replacement policy to use
2086 * #policy args : an even number of policy arguments corresponding
2087 * to key/value pairs passed to the policy
2088 * policy args : key/value pairs passed to the policy
2089 * E.g. 'sequential_threshold 1024'
2090 * See cache-policies.txt for details.
2091 *
2092 * Optional feature arguments are:
2093 * writethrough : write through caching that prohibits cache block
2094 * content from being different from origin block content.
2095 * Without this argument, the default behaviour is to write
2096 * back cache block contents later for performance reasons,
2097 * so they may differ from the corresponding origin blocks.
2098 */
2099struct cache_args {
2100 struct dm_target *ti;
2101
2102 struct dm_dev *metadata_dev;
2103
2104 struct dm_dev *cache_dev;
2105 sector_t cache_sectors;
2106
2107 struct dm_dev *origin_dev;
2108 sector_t origin_sectors;
2109
2110 uint32_t block_size;
2111
2112 const char *policy_name;
2113 int policy_argc;
2114 const char **policy_argv;
2115
2116 struct cache_features features;
2117};
2118
2119static void destroy_cache_args(struct cache_args *ca)
2120{
2121 if (ca->metadata_dev)
2122 dm_put_device(ca->ti, ca->metadata_dev);
2123
2124 if (ca->cache_dev)
2125 dm_put_device(ca->ti, ca->cache_dev);
2126
2127 if (ca->origin_dev)
2128 dm_put_device(ca->ti, ca->origin_dev);
2129
2130 kfree(ca);
2131}
2132
2133static bool at_least_one_arg(struct dm_arg_set *as, char **error)
2134{
2135 if (!as->argc) {
2136 *error = "Insufficient args";
2137 return false;
2138 }
2139
2140 return true;
2141}
2142
2143static int parse_metadata_dev(struct cache_args *ca, struct dm_arg_set *as,
2144 char **error)
2145{
2146 int r;
2147 sector_t metadata_dev_size;
2148 char b[BDEVNAME_SIZE];
2149
2150 if (!at_least_one_arg(as, error))
2151 return -EINVAL;
2152
2153 r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2154 &ca->metadata_dev);
2155 if (r) {
2156 *error = "Error opening metadata device";
2157 return r;
2158 }
2159
2160 metadata_dev_size = get_dev_size(ca->metadata_dev);
2161 if (metadata_dev_size > DM_CACHE_METADATA_MAX_SECTORS_WARNING)
2162 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
2163 bdevname(ca->metadata_dev->bdev, b), THIN_METADATA_MAX_SECTORS);
2164
2165 return 0;
2166}
2167
2168static int parse_cache_dev(struct cache_args *ca, struct dm_arg_set *as,
2169 char **error)
2170{
2171 int r;
2172
2173 if (!at_least_one_arg(as, error))
2174 return -EINVAL;
2175
2176 r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2177 &ca->cache_dev);
2178 if (r) {
2179 *error = "Error opening cache device";
2180 return r;
2181 }
2182 ca->cache_sectors = get_dev_size(ca->cache_dev);
2183
2184 return 0;
2185}
2186
2187static int parse_origin_dev(struct cache_args *ca, struct dm_arg_set *as,
2188 char **error)
2189{
2190 int r;
2191
2192 if (!at_least_one_arg(as, error))
2193 return -EINVAL;
2194
2195 r = dm_get_device(ca->ti, dm_shift_arg(as), FMODE_READ | FMODE_WRITE,
2196 &ca->origin_dev);
2197 if (r) {
2198 *error = "Error opening origin device";
2199 return r;
2200 }
2201
2202 ca->origin_sectors = get_dev_size(ca->origin_dev);
2203 if (ca->ti->len > ca->origin_sectors) {
2204 *error = "Device size larger than cached device";
2205 return -EINVAL;
2206 }
2207
2208 return 0;
2209}
2210
2211static int parse_block_size(struct cache_args *ca, struct dm_arg_set *as,
2212 char **error)
2213{
2214 unsigned long block_size;
2215
2216 if (!at_least_one_arg(as, error))
2217 return -EINVAL;
2218
2219 if (kstrtoul(dm_shift_arg(as), 10, &block_size) || !block_size ||
2220 block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
2221 block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
2222 block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
2223 *error = "Invalid data block size";
2224 return -EINVAL;
2225 }
2226
2227 if (block_size > ca->cache_sectors) {
2228 *error = "Data block size is larger than the cache device";
2229 return -EINVAL;
2230 }
2231
2232 ca->block_size = block_size;
2233
2234 return 0;
2235}
2236
2237static void init_features(struct cache_features *cf)
2238{
2239 cf->mode = CM_WRITE;
2240 cf->io_mode = CM_IO_WRITEBACK;
2241 cf->metadata_version = 1;
2242}
2243
2244static int parse_features(struct cache_args *ca, struct dm_arg_set *as,
2245 char **error)
2246{
2247 static const struct dm_arg _args[] = {
2248 {0, 2, "Invalid number of cache feature arguments"},
2249 };
2250
2251 int r;
2252 unsigned argc;
2253 const char *arg;
2254 struct cache_features *cf = &ca->features;
2255
2256 init_features(cf);
2257
2258 r = dm_read_arg_group(_args, as, &argc, error);
2259 if (r)
2260 return -EINVAL;
2261
2262 while (argc--) {
2263 arg = dm_shift_arg(as);
2264
2265 if (!strcasecmp(arg, "writeback"))
2266 cf->io_mode = CM_IO_WRITEBACK;
2267
2268 else if (!strcasecmp(arg, "writethrough"))
2269 cf->io_mode = CM_IO_WRITETHROUGH;
2270
2271 else if (!strcasecmp(arg, "passthrough"))
2272 cf->io_mode = CM_IO_PASSTHROUGH;
2273
2274 else if (!strcasecmp(arg, "metadata2"))
2275 cf->metadata_version = 2;
2276
2277 else {
2278 *error = "Unrecognised cache feature requested";
2279 return -EINVAL;
2280 }
2281 }
2282
2283 return 0;
2284}
2285
2286static int parse_policy(struct cache_args *ca, struct dm_arg_set *as,
2287 char **error)
2288{
2289 static const struct dm_arg _args[] = {
2290 {0, 1024, "Invalid number of policy arguments"},
2291 };
2292
2293 int r;
2294
2295 if (!at_least_one_arg(as, error))
2296 return -EINVAL;
2297
2298 ca->policy_name = dm_shift_arg(as);
2299
2300 r = dm_read_arg_group(_args, as, &ca->policy_argc, error);
2301 if (r)
2302 return -EINVAL;
2303
2304 ca->policy_argv = (const char **)as->argv;
2305 dm_consume_args(as, ca->policy_argc);
2306
2307 return 0;
2308}
2309
2310static int parse_cache_args(struct cache_args *ca, int argc, char **argv,
2311 char **error)
2312{
2313 int r;
2314 struct dm_arg_set as;
2315
2316 as.argc = argc;
2317 as.argv = argv;
2318
2319 r = parse_metadata_dev(ca, &as, error);
2320 if (r)
2321 return r;
2322
2323 r = parse_cache_dev(ca, &as, error);
2324 if (r)
2325 return r;
2326
2327 r = parse_origin_dev(ca, &as, error);
2328 if (r)
2329 return r;
2330
2331 r = parse_block_size(ca, &as, error);
2332 if (r)
2333 return r;
2334
2335 r = parse_features(ca, &as, error);
2336 if (r)
2337 return r;
2338
2339 r = parse_policy(ca, &as, error);
2340 if (r)
2341 return r;
2342
2343 return 0;
2344}
2345
2346/*----------------------------------------------------------------*/
2347
2348static struct kmem_cache *migration_cache;
2349
2350#define NOT_CORE_OPTION 1
2351
2352static int process_config_option(struct cache *cache, const char *key, const char *value)
2353{
2354 unsigned long tmp;
2355
2356 if (!strcasecmp(key, "migration_threshold")) {
2357 if (kstrtoul(value, 10, &tmp))
2358 return -EINVAL;
2359
2360 cache->migration_threshold = tmp;
2361 return 0;
2362 }
2363
2364 return NOT_CORE_OPTION;
2365}
2366
2367static int set_config_value(struct cache *cache, const char *key, const char *value)
2368{
2369 int r = process_config_option(cache, key, value);
2370
2371 if (r == NOT_CORE_OPTION)
2372 r = policy_set_config_value(cache->policy, key, value);
2373
2374 if (r)
2375 DMWARN("bad config value for %s: %s", key, value);
2376
2377 return r;
2378}
2379
2380static int set_config_values(struct cache *cache, int argc, const char **argv)
2381{
2382 int r = 0;
2383
2384 if (argc & 1) {
2385 DMWARN("Odd number of policy arguments given but they should be <key> <value> pairs.");
2386 return -EINVAL;
2387 }
2388
2389 while (argc) {
2390 r = set_config_value(cache, argv[0], argv[1]);
2391 if (r)
2392 break;
2393
2394 argc -= 2;
2395 argv += 2;
2396 }
2397
2398 return r;
2399}
2400
2401static int create_cache_policy(struct cache *cache, struct cache_args *ca,
2402 char **error)
2403{
2404 struct dm_cache_policy *p = dm_cache_policy_create(ca->policy_name,
2405 cache->cache_size,
2406 cache->origin_sectors,
2407 cache->sectors_per_block);
2408 if (IS_ERR(p)) {
2409 *error = "Error creating cache's policy";
2410 return PTR_ERR(p);
2411 }
2412 cache->policy = p;
2413 BUG_ON(!cache->policy);
2414
2415 return 0;
2416}
2417
2418/*
2419 * We want the discard block size to be at least the size of the cache
2420 * block size and have no more than 2^14 discard blocks across the origin.
2421 */
2422#define MAX_DISCARD_BLOCKS (1 << 14)
2423
2424static bool too_many_discard_blocks(sector_t discard_block_size,
2425 sector_t origin_size)
2426{
2427 (void) sector_div(origin_size, discard_block_size);
2428
2429 return origin_size > MAX_DISCARD_BLOCKS;
2430}
2431
2432static sector_t calculate_discard_block_size(sector_t cache_block_size,
2433 sector_t origin_size)
2434{
2435 sector_t discard_block_size = cache_block_size;
2436
2437 if (origin_size)
2438 while (too_many_discard_blocks(discard_block_size, origin_size))
2439 discard_block_size *= 2;
2440
2441 return discard_block_size;
2442}
2443
2444static void set_cache_size(struct cache *cache, dm_cblock_t size)
2445{
2446 dm_block_t nr_blocks = from_cblock(size);
2447
2448 if (nr_blocks > (1 << 20) && cache->cache_size != size)
2449 DMWARN_LIMIT("You have created a cache device with a lot of individual cache blocks (%llu)\n"
2450 "All these mappings can consume a lot of kernel memory, and take some time to read/write.\n"
2451 "Please consider increasing the cache block size to reduce the overall cache block count.",
2452 (unsigned long long) nr_blocks);
2453
2454 cache->cache_size = size;
2455}
2456
2457static int is_congested(struct dm_dev *dev, int bdi_bits)
2458{
2459 struct request_queue *q = bdev_get_queue(dev->bdev);
2460 return bdi_congested(q->backing_dev_info, bdi_bits);
2461}
2462
2463static int cache_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
2464{
2465 struct cache *cache = container_of(cb, struct cache, callbacks);
2466
2467 return is_congested(cache->origin_dev, bdi_bits) ||
2468 is_congested(cache->cache_dev, bdi_bits);
2469}
2470
2471#define DEFAULT_MIGRATION_THRESHOLD 2048
2472
2473static int cache_create(struct cache_args *ca, struct cache **result)
2474{
2475 int r = 0;
2476 char **error = &ca->ti->error;
2477 struct cache *cache;
2478 struct dm_target *ti = ca->ti;
2479 dm_block_t origin_blocks;
2480 struct dm_cache_metadata *cmd;
2481 bool may_format = ca->features.mode == CM_WRITE;
2482
2483 cache = kzalloc(sizeof(*cache), GFP_KERNEL);
2484 if (!cache)
2485 return -ENOMEM;
2486
2487 cache->ti = ca->ti;
2488 ti->private = cache;
2489 ti->num_flush_bios = 2;
2490 ti->flush_supported = true;
2491
2492 ti->num_discard_bios = 1;
2493 ti->discards_supported = true;
2494 ti->split_discard_bios = false;
2495
2496 ti->per_io_data_size = sizeof(struct per_bio_data);
2497
2498 cache->features = ca->features;
2499 if (writethrough_mode(cache)) {
2500 /* Create bioset for writethrough bios issued to origin */
2501 cache->bs = bioset_create(BIO_POOL_SIZE, 0, 0);
2502 if (!cache->bs)
2503 goto bad;
2504 }
2505
2506 cache->callbacks.congested_fn = cache_is_congested;
2507 dm_table_add_target_callbacks(ti->table, &cache->callbacks);
2508
2509 cache->metadata_dev = ca->metadata_dev;
2510 cache->origin_dev = ca->origin_dev;
2511 cache->cache_dev = ca->cache_dev;
2512
2513 ca->metadata_dev = ca->origin_dev = ca->cache_dev = NULL;
2514
2515 origin_blocks = cache->origin_sectors = ca->origin_sectors;
2516 origin_blocks = block_div(origin_blocks, ca->block_size);
2517 cache->origin_blocks = to_oblock(origin_blocks);
2518
2519 cache->sectors_per_block = ca->block_size;
2520 if (dm_set_target_max_io_len(ti, cache->sectors_per_block)) {
2521 r = -EINVAL;
2522 goto bad;
2523 }
2524
2525 if (ca->block_size & (ca->block_size - 1)) {
2526 dm_block_t cache_size = ca->cache_sectors;
2527
2528 cache->sectors_per_block_shift = -1;
2529 cache_size = block_div(cache_size, ca->block_size);
2530 set_cache_size(cache, to_cblock(cache_size));
2531 } else {
2532 cache->sectors_per_block_shift = __ffs(ca->block_size);
2533 set_cache_size(cache, to_cblock(ca->cache_sectors >> cache->sectors_per_block_shift));
2534 }
2535
2536 r = create_cache_policy(cache, ca, error);
2537 if (r)
2538 goto bad;
2539
2540 cache->policy_nr_args = ca->policy_argc;
2541 cache->migration_threshold = DEFAULT_MIGRATION_THRESHOLD;
2542
2543 r = set_config_values(cache, ca->policy_argc, ca->policy_argv);
2544 if (r) {
2545 *error = "Error setting cache policy's config values";
2546 goto bad;
2547 }
2548
2549 cmd = dm_cache_metadata_open(cache->metadata_dev->bdev,
2550 ca->block_size, may_format,
2551 dm_cache_policy_get_hint_size(cache->policy),
2552 ca->features.metadata_version);
2553 if (IS_ERR(cmd)) {
2554 *error = "Error creating metadata object";
2555 r = PTR_ERR(cmd);
2556 goto bad;
2557 }
2558 cache->cmd = cmd;
2559 set_cache_mode(cache, CM_WRITE);
2560 if (get_cache_mode(cache) != CM_WRITE) {
2561 *error = "Unable to get write access to metadata, please check/repair metadata.";
2562 r = -EINVAL;
2563 goto bad;
2564 }
2565
2566 if (passthrough_mode(cache)) {
2567 bool all_clean;
2568
2569 r = dm_cache_metadata_all_clean(cache->cmd, &all_clean);
2570 if (r) {
2571 *error = "dm_cache_metadata_all_clean() failed";
2572 goto bad;
2573 }
2574
2575 if (!all_clean) {
2576 *error = "Cannot enter passthrough mode unless all blocks are clean";
2577 r = -EINVAL;
2578 goto bad;
2579 }
2580
2581 policy_allow_migrations(cache->policy, false);
2582 }
2583
2584 spin_lock_init(&cache->lock);
2585 bio_list_init(&cache->deferred_bios);
2586 atomic_set(&cache->nr_allocated_migrations, 0);
2587 atomic_set(&cache->nr_io_migrations, 0);
2588 init_waitqueue_head(&cache->migration_wait);
2589
2590 r = -ENOMEM;
2591 atomic_set(&cache->nr_dirty, 0);
2592 cache->dirty_bitset = alloc_bitset(from_cblock(cache->cache_size));
2593 if (!cache->dirty_bitset) {
2594 *error = "could not allocate dirty bitset";
2595 goto bad;
2596 }
2597 clear_bitset(cache->dirty_bitset, from_cblock(cache->cache_size));
2598
2599 cache->discard_block_size =
2600 calculate_discard_block_size(cache->sectors_per_block,
2601 cache->origin_sectors);
2602 cache->discard_nr_blocks = to_dblock(dm_sector_div_up(cache->origin_sectors,
2603 cache->discard_block_size));
2604 cache->discard_bitset = alloc_bitset(from_dblock(cache->discard_nr_blocks));
2605 if (!cache->discard_bitset) {
2606 *error = "could not allocate discard bitset";
2607 goto bad;
2608 }
2609 clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks));
2610
2611 cache->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2612 if (IS_ERR(cache->copier)) {
2613 *error = "could not create kcopyd client";
2614 r = PTR_ERR(cache->copier);
2615 goto bad;
2616 }
2617
2618 cache->wq = alloc_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM, 0);
2619 if (!cache->wq) {
2620 *error = "could not create workqueue for metadata object";
2621 goto bad;
2622 }
2623 INIT_WORK(&cache->deferred_bio_worker, process_deferred_bios);
2624 INIT_WORK(&cache->migration_worker, check_migrations);
2625 INIT_DELAYED_WORK(&cache->waker, do_waker);
2626
2627 cache->prison = dm_bio_prison_create_v2(cache->wq);
2628 if (!cache->prison) {
2629 *error = "could not create bio prison";
2630 goto bad;
2631 }
2632
2633 cache->migration_pool = mempool_create_slab_pool(MIGRATION_POOL_SIZE,
2634 migration_cache);
2635 if (!cache->migration_pool) {
2636 *error = "Error creating cache's migration mempool";
2637 goto bad;
2638 }
2639
2640 cache->need_tick_bio = true;
2641 cache->sized = false;
2642 cache->invalidate = false;
2643 cache->commit_requested = false;
2644 cache->loaded_mappings = false;
2645 cache->loaded_discards = false;
2646
2647 load_stats(cache);
2648
2649 atomic_set(&cache->stats.demotion, 0);
2650 atomic_set(&cache->stats.promotion, 0);
2651 atomic_set(&cache->stats.copies_avoided, 0);
2652 atomic_set(&cache->stats.cache_cell_clash, 0);
2653 atomic_set(&cache->stats.commit_count, 0);
2654 atomic_set(&cache->stats.discard_count, 0);
2655
2656 spin_lock_init(&cache->invalidation_lock);
2657 INIT_LIST_HEAD(&cache->invalidation_requests);
2658
2659 batcher_init(&cache->committer, commit_op, cache,
2660 issue_op, cache, cache->wq);
2661 iot_init(&cache->tracker);
2662
2663 init_rwsem(&cache->background_work_lock);
2664 prevent_background_work(cache);
2665
2666 *result = cache;
2667 return 0;
2668bad:
2669 destroy(cache);
2670 return r;
2671}
2672
2673static int copy_ctr_args(struct cache *cache, int argc, const char **argv)
2674{
2675 unsigned i;
2676 const char **copy;
2677
2678 copy = kcalloc(argc, sizeof(*copy), GFP_KERNEL);
2679 if (!copy)
2680 return -ENOMEM;
2681 for (i = 0; i < argc; i++) {
2682 copy[i] = kstrdup(argv[i], GFP_KERNEL);
2683 if (!copy[i]) {
2684 while (i--)
2685 kfree(copy[i]);
2686 kfree(copy);
2687 return -ENOMEM;
2688 }
2689 }
2690
2691 cache->nr_ctr_args = argc;
2692 cache->ctr_args = copy;
2693
2694 return 0;
2695}
2696
2697static int cache_ctr(struct dm_target *ti, unsigned argc, char **argv)
2698{
2699 int r = -EINVAL;
2700 struct cache_args *ca;
2701 struct cache *cache = NULL;
2702
2703 ca = kzalloc(sizeof(*ca), GFP_KERNEL);
2704 if (!ca) {
2705 ti->error = "Error allocating memory for cache";
2706 return -ENOMEM;
2707 }
2708 ca->ti = ti;
2709
2710 r = parse_cache_args(ca, argc, argv, &ti->error);
2711 if (r)
2712 goto out;
2713
2714 r = cache_create(ca, &cache);
2715 if (r)
2716 goto out;
2717
2718 r = copy_ctr_args(cache, argc - 3, (const char **)argv + 3);
2719 if (r) {
2720 destroy(cache);
2721 goto out;
2722 }
2723
2724 ti->private = cache;
2725out:
2726 destroy_cache_args(ca);
2727 return r;
2728}
2729
2730/*----------------------------------------------------------------*/
2731
2732static int cache_map(struct dm_target *ti, struct bio *bio)
2733{
2734 struct cache *cache = ti->private;
2735
2736 int r;
2737 bool commit_needed;
2738 dm_oblock_t block = get_bio_block(cache, bio);
2739
2740 init_per_bio_data(bio);
2741 if (unlikely(from_oblock(block) >= from_oblock(cache->origin_blocks))) {
2742 /*
2743 * This can only occur if the io goes to a partial block at
2744 * the end of the origin device. We don't cache these.
2745 * Just remap to the origin and carry on.
2746 */
2747 remap_to_origin(cache, bio);
2748 accounted_begin(cache, bio);
2749 return DM_MAPIO_REMAPPED;
2750 }
2751
2752 if (discard_or_flush(bio)) {
2753 defer_bio(cache, bio);
2754 return DM_MAPIO_SUBMITTED;
2755 }
2756
2757 r = map_bio(cache, bio, block, &commit_needed);
2758 if (commit_needed)
2759 schedule_commit(&cache->committer);
2760
2761 return r;
2762}
2763
2764static int cache_end_io(struct dm_target *ti, struct bio *bio, blk_status_t *error)
2765{
2766 struct cache *cache = ti->private;
2767 unsigned long flags;
2768 struct per_bio_data *pb = get_per_bio_data(bio);
2769
2770 if (pb->tick) {
2771 policy_tick(cache->policy, false);
2772
2773 spin_lock_irqsave(&cache->lock, flags);
2774 cache->need_tick_bio = true;
2775 spin_unlock_irqrestore(&cache->lock, flags);
2776 }
2777
2778 bio_drop_shared_lock(cache, bio);
2779 accounted_complete(cache, bio);
2780
2781 return DM_ENDIO_DONE;
2782}
2783
2784static int write_dirty_bitset(struct cache *cache)
2785{
2786 int r;
2787
2788 if (get_cache_mode(cache) >= CM_READ_ONLY)
2789 return -EINVAL;
2790
2791 r = dm_cache_set_dirty_bits(cache->cmd, from_cblock(cache->cache_size), cache->dirty_bitset);
2792 if (r)
2793 metadata_operation_failed(cache, "dm_cache_set_dirty_bits", r);
2794
2795 return r;
2796}
2797
2798static int write_discard_bitset(struct cache *cache)
2799{
2800 unsigned i, r;
2801
2802 if (get_cache_mode(cache) >= CM_READ_ONLY)
2803 return -EINVAL;
2804
2805 r = dm_cache_discard_bitset_resize(cache->cmd, cache->discard_block_size,
2806 cache->discard_nr_blocks);
2807 if (r) {
2808 DMERR("%s: could not resize on-disk discard bitset", cache_device_name(cache));
2809 metadata_operation_failed(cache, "dm_cache_discard_bitset_resize", r);
2810 return r;
2811 }
2812
2813 for (i = 0; i < from_dblock(cache->discard_nr_blocks); i++) {
2814 r = dm_cache_set_discard(cache->cmd, to_dblock(i),
2815 is_discarded(cache, to_dblock(i)));
2816 if (r) {
2817 metadata_operation_failed(cache, "dm_cache_set_discard", r);
2818 return r;
2819 }
2820 }
2821
2822 return 0;
2823}
2824
2825static int write_hints(struct cache *cache)
2826{
2827 int r;
2828
2829 if (get_cache_mode(cache) >= CM_READ_ONLY)
2830 return -EINVAL;
2831
2832 r = dm_cache_write_hints(cache->cmd, cache->policy);
2833 if (r) {
2834 metadata_operation_failed(cache, "dm_cache_write_hints", r);
2835 return r;
2836 }
2837
2838 return 0;
2839}
2840
2841/*
2842 * returns true on success
2843 */
2844static bool sync_metadata(struct cache *cache)
2845{
2846 int r1, r2, r3, r4;
2847
2848 r1 = write_dirty_bitset(cache);
2849 if (r1)
2850 DMERR("%s: could not write dirty bitset", cache_device_name(cache));
2851
2852 r2 = write_discard_bitset(cache);
2853 if (r2)
2854 DMERR("%s: could not write discard bitset", cache_device_name(cache));
2855
2856 save_stats(cache);
2857
2858 r3 = write_hints(cache);
2859 if (r3)
2860 DMERR("%s: could not write hints", cache_device_name(cache));
2861
2862 /*
2863 * If writing the above metadata failed, we still commit, but don't
2864 * set the clean shutdown flag. This will effectively force every
2865 * dirty bit to be set on reload.
2866 */
2867 r4 = commit(cache, !r1 && !r2 && !r3);
2868 if (r4)
2869 DMERR("%s: could not write cache metadata", cache_device_name(cache));
2870
2871 return !r1 && !r2 && !r3 && !r4;
2872}
2873
2874static void cache_postsuspend(struct dm_target *ti)
2875{
2876 struct cache *cache = ti->private;
2877
2878 prevent_background_work(cache);
2879 BUG_ON(atomic_read(&cache->nr_io_migrations));
2880
2881 cancel_delayed_work(&cache->waker);
2882 flush_workqueue(cache->wq);
2883 WARN_ON(cache->tracker.in_flight);
2884
2885 /*
2886 * If it's a flush suspend there won't be any deferred bios, so this
2887 * call is harmless.
2888 */
2889 requeue_deferred_bios(cache);
2890
2891 if (get_cache_mode(cache) == CM_WRITE)
2892 (void) sync_metadata(cache);
2893}
2894
2895static int load_mapping(void *context, dm_oblock_t oblock, dm_cblock_t cblock,
2896 bool dirty, uint32_t hint, bool hint_valid)
2897{
2898 int r;
2899 struct cache *cache = context;
2900
2901 if (dirty) {
2902 set_bit(from_cblock(cblock), cache->dirty_bitset);
2903 atomic_inc(&cache->nr_dirty);
2904 } else
2905 clear_bit(from_cblock(cblock), cache->dirty_bitset);
2906
2907 r = policy_load_mapping(cache->policy, oblock, cblock, dirty, hint, hint_valid);
2908 if (r)
2909 return r;
2910
2911 return 0;
2912}
2913
2914/*
2915 * The discard block size in the on disk metadata is not
2916 * neccessarily the same as we're currently using. So we have to
2917 * be careful to only set the discarded attribute if we know it
2918 * covers a complete block of the new size.
2919 */
2920struct discard_load_info {
2921 struct cache *cache;
2922
2923 /*
2924 * These blocks are sized using the on disk dblock size, rather
2925 * than the current one.
2926 */
2927 dm_block_t block_size;
2928 dm_block_t discard_begin, discard_end;
2929};
2930
2931static void discard_load_info_init(struct cache *cache,
2932 struct discard_load_info *li)
2933{
2934 li->cache = cache;
2935 li->discard_begin = li->discard_end = 0;
2936}
2937
2938static void set_discard_range(struct discard_load_info *li)
2939{
2940 sector_t b, e;
2941
2942 if (li->discard_begin == li->discard_end)
2943 return;
2944
2945 /*
2946 * Convert to sectors.
2947 */
2948 b = li->discard_begin * li->block_size;
2949 e = li->discard_end * li->block_size;
2950
2951 /*
2952 * Then convert back to the current dblock size.
2953 */
2954 b = dm_sector_div_up(b, li->cache->discard_block_size);
2955 sector_div(e, li->cache->discard_block_size);
2956
2957 /*
2958 * The origin may have shrunk, so we need to check we're still in
2959 * bounds.
2960 */
2961 if (e > from_dblock(li->cache->discard_nr_blocks))
2962 e = from_dblock(li->cache->discard_nr_blocks);
2963
2964 for (; b < e; b++)
2965 set_discard(li->cache, to_dblock(b));
2966}
2967
2968static int load_discard(void *context, sector_t discard_block_size,
2969 dm_dblock_t dblock, bool discard)
2970{
2971 struct discard_load_info *li = context;
2972
2973 li->block_size = discard_block_size;
2974
2975 if (discard) {
2976 if (from_dblock(dblock) == li->discard_end)
2977 /*
2978 * We're already in a discard range, just extend it.
2979 */
2980 li->discard_end = li->discard_end + 1ULL;
2981
2982 else {
2983 /*
2984 * Emit the old range and start a new one.
2985 */
2986 set_discard_range(li);
2987 li->discard_begin = from_dblock(dblock);
2988 li->discard_end = li->discard_begin + 1ULL;
2989 }
2990 } else {
2991 set_discard_range(li);
2992 li->discard_begin = li->discard_end = 0;
2993 }
2994
2995 return 0;
2996}
2997
2998static dm_cblock_t get_cache_dev_size(struct cache *cache)
2999{
3000 sector_t size = get_dev_size(cache->cache_dev);
3001 (void) sector_div(size, cache->sectors_per_block);
3002 return to_cblock(size);
3003}
3004
3005static bool can_resize(struct cache *cache, dm_cblock_t new_size)
3006{
3007 if (from_cblock(new_size) > from_cblock(cache->cache_size))
3008 return true;
3009
3010 /*
3011 * We can't drop a dirty block when shrinking the cache.
3012 */
3013 while (from_cblock(new_size) < from_cblock(cache->cache_size)) {
3014 new_size = to_cblock(from_cblock(new_size) + 1);
3015 if (is_dirty(cache, new_size)) {
3016 DMERR("%s: unable to shrink cache; cache block %llu is dirty",
3017 cache_device_name(cache),
3018 (unsigned long long) from_cblock(new_size));
3019 return false;
3020 }
3021 }
3022
3023 return true;
3024}
3025
3026static int resize_cache_dev(struct cache *cache, dm_cblock_t new_size)
3027{
3028 int r;
3029
3030 r = dm_cache_resize(cache->cmd, new_size);
3031 if (r) {
3032 DMERR("%s: could not resize cache metadata", cache_device_name(cache));
3033 metadata_operation_failed(cache, "dm_cache_resize", r);
3034 return r;
3035 }
3036
3037 set_cache_size(cache, new_size);
3038
3039 return 0;
3040}
3041
3042static int cache_preresume(struct dm_target *ti)
3043{
3044 int r = 0;
3045 struct cache *cache = ti->private;
3046 dm_cblock_t csize = get_cache_dev_size(cache);
3047
3048 /*
3049 * Check to see if the cache has resized.
3050 */
3051 if (!cache->sized) {
3052 r = resize_cache_dev(cache, csize);
3053 if (r)
3054 return r;
3055
3056 cache->sized = true;
3057
3058 } else if (csize != cache->cache_size) {
3059 if (!can_resize(cache, csize))
3060 return -EINVAL;
3061
3062 r = resize_cache_dev(cache, csize);
3063 if (r)
3064 return r;
3065 }
3066
3067 if (!cache->loaded_mappings) {
3068 r = dm_cache_load_mappings(cache->cmd, cache->policy,
3069 load_mapping, cache);
3070 if (r) {
3071 DMERR("%s: could not load cache mappings", cache_device_name(cache));
3072 metadata_operation_failed(cache, "dm_cache_load_mappings", r);
3073 return r;
3074 }
3075
3076 cache->loaded_mappings = true;
3077 }
3078
3079 if (!cache->loaded_discards) {
3080 struct discard_load_info li;
3081
3082 /*
3083 * The discard bitset could have been resized, or the
3084 * discard block size changed. To be safe we start by
3085 * setting every dblock to not discarded.
3086 */
3087 clear_bitset(cache->discard_bitset, from_dblock(cache->discard_nr_blocks));
3088
3089 discard_load_info_init(cache, &li);
3090 r = dm_cache_load_discards(cache->cmd, load_discard, &li);
3091 if (r) {
3092 DMERR("%s: could not load origin discards", cache_device_name(cache));
3093 metadata_operation_failed(cache, "dm_cache_load_discards", r);
3094 return r;
3095 }
3096 set_discard_range(&li);
3097
3098 cache->loaded_discards = true;
3099 }
3100
3101 return r;
3102}
3103
3104static void cache_resume(struct dm_target *ti)
3105{
3106 struct cache *cache = ti->private;
3107
3108 cache->need_tick_bio = true;
3109 allow_background_work(cache);
3110 do_waker(&cache->waker.work);
3111}
3112
3113/*
3114 * Status format:
3115 *
3116 * <metadata block size> <#used metadata blocks>/<#total metadata blocks>
3117 * <cache block size> <#used cache blocks>/<#total cache blocks>
3118 * <#read hits> <#read misses> <#write hits> <#write misses>
3119 * <#demotions> <#promotions> <#dirty>
3120 * <#features> <features>*
3121 * <#core args> <core args>
3122 * <policy name> <#policy args> <policy args>* <cache metadata mode> <needs_check>
3123 */
3124static void cache_status(struct dm_target *ti, status_type_t type,
3125 unsigned status_flags, char *result, unsigned maxlen)
3126{
3127 int r = 0;
3128 unsigned i;
3129 ssize_t sz = 0;
3130 dm_block_t nr_free_blocks_metadata = 0;
3131 dm_block_t nr_blocks_metadata = 0;
3132 char buf[BDEVNAME_SIZE];
3133 struct cache *cache = ti->private;
3134 dm_cblock_t residency;
3135 bool needs_check;
3136
3137 switch (type) {
3138 case STATUSTYPE_INFO:
3139 if (get_cache_mode(cache) == CM_FAIL) {
3140 DMEMIT("Fail");
3141 break;
3142 }
3143
3144 /* Commit to ensure statistics aren't out-of-date */
3145 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3146 (void) commit(cache, false);
3147
3148 r = dm_cache_get_free_metadata_block_count(cache->cmd, &nr_free_blocks_metadata);
3149 if (r) {
3150 DMERR("%s: dm_cache_get_free_metadata_block_count returned %d",
3151 cache_device_name(cache), r);
3152 goto err;
3153 }
3154
3155 r = dm_cache_get_metadata_dev_size(cache->cmd, &nr_blocks_metadata);
3156 if (r) {
3157 DMERR("%s: dm_cache_get_metadata_dev_size returned %d",
3158 cache_device_name(cache), r);
3159 goto err;
3160 }
3161
3162 residency = policy_residency(cache->policy);
3163
3164 DMEMIT("%u %llu/%llu %llu %llu/%llu %u %u %u %u %u %u %lu ",
3165 (unsigned)DM_CACHE_METADATA_BLOCK_SIZE,
3166 (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3167 (unsigned long long)nr_blocks_metadata,
3168 (unsigned long long)cache->sectors_per_block,
3169 (unsigned long long) from_cblock(residency),
3170 (unsigned long long) from_cblock(cache->cache_size),
3171 (unsigned) atomic_read(&cache->stats.read_hit),
3172 (unsigned) atomic_read(&cache->stats.read_miss),
3173 (unsigned) atomic_read(&cache->stats.write_hit),
3174 (unsigned) atomic_read(&cache->stats.write_miss),
3175 (unsigned) atomic_read(&cache->stats.demotion),
3176 (unsigned) atomic_read(&cache->stats.promotion),
3177 (unsigned long) atomic_read(&cache->nr_dirty));
3178
3179 if (cache->features.metadata_version == 2)
3180 DMEMIT("2 metadata2 ");
3181 else
3182 DMEMIT("1 ");
3183
3184 if (writethrough_mode(cache))
3185 DMEMIT("writethrough ");
3186
3187 else if (passthrough_mode(cache))
3188 DMEMIT("passthrough ");
3189
3190 else if (writeback_mode(cache))
3191 DMEMIT("writeback ");
3192
3193 else {
3194 DMERR("%s: internal error: unknown io mode: %d",
3195 cache_device_name(cache), (int) cache->features.io_mode);
3196 goto err;
3197 }
3198
3199 DMEMIT("2 migration_threshold %llu ", (unsigned long long) cache->migration_threshold);
3200
3201 DMEMIT("%s ", dm_cache_policy_get_name(cache->policy));
3202 if (sz < maxlen) {
3203 r = policy_emit_config_values(cache->policy, result, maxlen, &sz);
3204 if (r)
3205 DMERR("%s: policy_emit_config_values returned %d",
3206 cache_device_name(cache), r);
3207 }
3208
3209 if (get_cache_mode(cache) == CM_READ_ONLY)
3210 DMEMIT("ro ");
3211 else
3212 DMEMIT("rw ");
3213
3214 r = dm_cache_metadata_needs_check(cache->cmd, &needs_check);
3215
3216 if (r || needs_check)
3217 DMEMIT("needs_check ");
3218 else
3219 DMEMIT("- ");
3220
3221 break;
3222
3223 case STATUSTYPE_TABLE:
3224 format_dev_t(buf, cache->metadata_dev->bdev->bd_dev);
3225 DMEMIT("%s ", buf);
3226 format_dev_t(buf, cache->cache_dev->bdev->bd_dev);
3227 DMEMIT("%s ", buf);
3228 format_dev_t(buf, cache->origin_dev->bdev->bd_dev);
3229 DMEMIT("%s", buf);
3230
3231 for (i = 0; i < cache->nr_ctr_args - 1; i++)
3232 DMEMIT(" %s", cache->ctr_args[i]);
3233 if (cache->nr_ctr_args)
3234 DMEMIT(" %s", cache->ctr_args[cache->nr_ctr_args - 1]);
3235 }
3236
3237 return;
3238
3239err:
3240 DMEMIT("Error");
3241}
3242
3243/*
3244 * Defines a range of cblocks, begin to (end - 1) are in the range. end is
3245 * the one-past-the-end value.
3246 */
3247struct cblock_range {
3248 dm_cblock_t begin;
3249 dm_cblock_t end;
3250};
3251
3252/*
3253 * A cache block range can take two forms:
3254 *
3255 * i) A single cblock, eg. '3456'
3256 * ii) A begin and end cblock with a dash between, eg. 123-234
3257 */
3258static int parse_cblock_range(struct cache *cache, const char *str,
3259 struct cblock_range *result)
3260{
3261 char dummy;
3262 uint64_t b, e;
3263 int r;
3264
3265 /*
3266 * Try and parse form (ii) first.
3267 */
3268 r = sscanf(str, "%llu-%llu%c", &b, &e, &dummy);
3269 if (r < 0)
3270 return r;
3271
3272 if (r == 2) {
3273 result->begin = to_cblock(b);
3274 result->end = to_cblock(e);
3275 return 0;
3276 }
3277
3278 /*
3279 * That didn't work, try form (i).
3280 */
3281 r = sscanf(str, "%llu%c", &b, &dummy);
3282 if (r < 0)
3283 return r;
3284
3285 if (r == 1) {
3286 result->begin = to_cblock(b);
3287 result->end = to_cblock(from_cblock(result->begin) + 1u);
3288 return 0;
3289 }
3290
3291 DMERR("%s: invalid cblock range '%s'", cache_device_name(cache), str);
3292 return -EINVAL;
3293}
3294
3295static int validate_cblock_range(struct cache *cache, struct cblock_range *range)
3296{
3297 uint64_t b = from_cblock(range->begin);
3298 uint64_t e = from_cblock(range->end);
3299 uint64_t n = from_cblock(cache->cache_size);
3300
3301 if (b >= n) {
3302 DMERR("%s: begin cblock out of range: %llu >= %llu",
3303 cache_device_name(cache), b, n);
3304 return -EINVAL;
3305 }
3306
3307 if (e > n) {
3308 DMERR("%s: end cblock out of range: %llu > %llu",
3309 cache_device_name(cache), e, n);
3310 return -EINVAL;
3311 }
3312
3313 if (b >= e) {
3314 DMERR("%s: invalid cblock range: %llu >= %llu",
3315 cache_device_name(cache), b, e);
3316 return -EINVAL;
3317 }
3318
3319 return 0;
3320}
3321
3322static inline dm_cblock_t cblock_succ(dm_cblock_t b)
3323{
3324 return to_cblock(from_cblock(b) + 1);
3325}
3326
3327static int request_invalidation(struct cache *cache, struct cblock_range *range)
3328{
3329 int r = 0;
3330
3331 /*
3332 * We don't need to do any locking here because we know we're in
3333 * passthrough mode. There's is potential for a race between an
3334 * invalidation triggered by an io and an invalidation message. This
3335 * is harmless, we must not worry if the policy call fails.
3336 */
3337 while (range->begin != range->end) {
3338 r = invalidate_cblock(cache, range->begin);
3339 if (r)
3340 return r;
3341
3342 range->begin = cblock_succ(range->begin);
3343 }
3344
3345 cache->commit_requested = true;
3346 return r;
3347}
3348
3349static int process_invalidate_cblocks_message(struct cache *cache, unsigned count,
3350 const char **cblock_ranges)
3351{
3352 int r = 0;
3353 unsigned i;
3354 struct cblock_range range;
3355
3356 if (!passthrough_mode(cache)) {
3357 DMERR("%s: cache has to be in passthrough mode for invalidation",
3358 cache_device_name(cache));
3359 return -EPERM;
3360 }
3361
3362 for (i = 0; i < count; i++) {
3363 r = parse_cblock_range(cache, cblock_ranges[i], &range);
3364 if (r)
3365 break;
3366
3367 r = validate_cblock_range(cache, &range);
3368 if (r)
3369 break;
3370
3371 /*
3372 * Pass begin and end origin blocks to the worker and wake it.
3373 */
3374 r = request_invalidation(cache, &range);
3375 if (r)
3376 break;
3377 }
3378
3379 return r;
3380}
3381
3382/*
3383 * Supports
3384 * "<key> <value>"
3385 * and
3386 * "invalidate_cblocks [(<begin>)|(<begin>-<end>)]*
3387 *
3388 * The key migration_threshold is supported by the cache target core.
3389 */
3390static int cache_message(struct dm_target *ti, unsigned argc, char **argv,
3391 char *result, unsigned maxlen)
3392{
3393 struct cache *cache = ti->private;
3394
3395 if (!argc)
3396 return -EINVAL;
3397
3398 if (get_cache_mode(cache) >= CM_READ_ONLY) {
3399 DMERR("%s: unable to service cache target messages in READ_ONLY or FAIL mode",
3400 cache_device_name(cache));
3401 return -EOPNOTSUPP;
3402 }
3403
3404 if (!strcasecmp(argv[0], "invalidate_cblocks"))
3405 return process_invalidate_cblocks_message(cache, argc - 1, (const char **) argv + 1);
3406
3407 if (argc != 2)
3408 return -EINVAL;
3409
3410 return set_config_value(cache, argv[0], argv[1]);
3411}
3412
3413static int cache_iterate_devices(struct dm_target *ti,
3414 iterate_devices_callout_fn fn, void *data)
3415{
3416 int r = 0;
3417 struct cache *cache = ti->private;
3418
3419 r = fn(ti, cache->cache_dev, 0, get_dev_size(cache->cache_dev), data);
3420 if (!r)
3421 r = fn(ti, cache->origin_dev, 0, ti->len, data);
3422
3423 return r;
3424}
3425
3426static void set_discard_limits(struct cache *cache, struct queue_limits *limits)
3427{
3428 /*
3429 * FIXME: these limits may be incompatible with the cache device
3430 */
3431 limits->max_discard_sectors = min_t(sector_t, cache->discard_block_size * 1024,
3432 cache->origin_sectors);
3433 limits->discard_granularity = cache->discard_block_size << SECTOR_SHIFT;
3434}
3435
3436static void cache_io_hints(struct dm_target *ti, struct queue_limits *limits)
3437{
3438 struct cache *cache = ti->private;
3439 uint64_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
3440
3441 /*
3442 * If the system-determined stacked limits are compatible with the
3443 * cache's blocksize (io_opt is a factor) do not override them.
3444 */
3445 if (io_opt_sectors < cache->sectors_per_block ||
3446 do_div(io_opt_sectors, cache->sectors_per_block)) {
3447 blk_limits_io_min(limits, cache->sectors_per_block << SECTOR_SHIFT);
3448 blk_limits_io_opt(limits, cache->sectors_per_block << SECTOR_SHIFT);
3449 }
3450 set_discard_limits(cache, limits);
3451}
3452
3453/*----------------------------------------------------------------*/
3454
3455static struct target_type cache_target = {
3456 .name = "cache",
3457 .version = {2, 0, 0},
3458 .module = THIS_MODULE,
3459 .ctr = cache_ctr,
3460 .dtr = cache_dtr,
3461 .map = cache_map,
3462 .end_io = cache_end_io,
3463 .postsuspend = cache_postsuspend,
3464 .preresume = cache_preresume,
3465 .resume = cache_resume,
3466 .status = cache_status,
3467 .message = cache_message,
3468 .iterate_devices = cache_iterate_devices,
3469 .io_hints = cache_io_hints,
3470};
3471
3472static int __init dm_cache_init(void)
3473{
3474 int r;
3475
3476 migration_cache = KMEM_CACHE(dm_cache_migration, 0);
3477 if (!migration_cache) {
3478 dm_unregister_target(&cache_target);
3479 return -ENOMEM;
3480 }
3481
3482 r = dm_register_target(&cache_target);
3483 if (r) {
3484 DMERR("cache target registration failed: %d", r);
3485 return r;
3486 }
3487
3488 return 0;
3489}
3490
3491static void __exit dm_cache_exit(void)
3492{
3493 dm_unregister_target(&cache_target);
3494 kmem_cache_destroy(migration_cache);
3495}
3496
3497module_init(dm_cache_init);
3498module_exit(dm_cache_exit);
3499
3500MODULE_DESCRIPTION(DM_NAME " cache target");
3501MODULE_AUTHOR("Joe Thornber <ejt@redhat.com>");
3502MODULE_LICENSE("GPL");