Linux Audio

Check our new training course

Loading...
v3.15
   1/*
   2 *  Copyright (C) 2009  Red Hat, Inc.
   3 *
   4 *  This work is licensed under the terms of the GNU GPL, version 2. See
   5 *  the COPYING file in the top-level directory.
   6 */
   7
 
 
   8#include <linux/mm.h>
   9#include <linux/sched.h>
  10#include <linux/highmem.h>
  11#include <linux/hugetlb.h>
  12#include <linux/mmu_notifier.h>
  13#include <linux/rmap.h>
  14#include <linux/swap.h>
  15#include <linux/shrinker.h>
  16#include <linux/mm_inline.h>
 
 
  17#include <linux/kthread.h>
  18#include <linux/khugepaged.h>
  19#include <linux/freezer.h>
 
  20#include <linux/mman.h>
 
  21#include <linux/pagemap.h>
 
  22#include <linux/migrate.h>
  23#include <linux/hashtable.h>
 
 
  24
  25#include <asm/tlb.h>
  26#include <asm/pgalloc.h>
  27#include "internal.h"
  28
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  29/*
  30 * By default transparent hugepage support is disabled in order that avoid
  31 * to risk increase the memory footprint of applications without a guaranteed
  32 * benefit. When transparent hugepage support is enabled, is for all mappings,
  33 * and khugepaged scans all mappings.
  34 * Defrag is invoked by khugepaged hugepage allocations and by page faults
  35 * for all hugepage allocations.
  36 */
  37unsigned long transparent_hugepage_flags __read_mostly =
  38#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
  39	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
  40#endif
  41#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
  42	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
  43#endif
  44	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
  45	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
  46	(1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
  47
  48/* default scan 8*512 pte (or vmas) every 30 second */
  49static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
  50static unsigned int khugepaged_pages_collapsed;
  51static unsigned int khugepaged_full_scans;
  52static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
  53/* during fragmentation poll the hugepage allocator once every minute */
  54static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
  55static struct task_struct *khugepaged_thread __read_mostly;
  56static DEFINE_MUTEX(khugepaged_mutex);
  57static DEFINE_SPINLOCK(khugepaged_mm_lock);
  58static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
  59/*
  60 * default collapse hugepages if there is at least one pte mapped like
  61 * it would have happened if the vma was large enough during page
  62 * fault.
  63 */
  64static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
  65
  66static int khugepaged(void *none);
  67static int khugepaged_slab_init(void);
 
  68
  69#define MM_SLOTS_HASH_BITS 10
  70static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
  71
  72static struct kmem_cache *mm_slot_cache __read_mostly;
  73
  74/**
  75 * struct mm_slot - hash lookup from mm to mm_slot
  76 * @hash: hash collision list
  77 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
  78 * @mm: the mm that this information is valid for
  79 */
  80struct mm_slot {
  81	struct hlist_node hash;
  82	struct list_head mm_node;
  83	struct mm_struct *mm;
  84};
  85
  86/**
  87 * struct khugepaged_scan - cursor for scanning
  88 * @mm_head: the head of the mm list to scan
  89 * @mm_slot: the current mm_slot we are scanning
  90 * @address: the next address inside that to be scanned
  91 *
  92 * There is only the one khugepaged_scan instance of this cursor structure.
  93 */
  94struct khugepaged_scan {
  95	struct list_head mm_head;
  96	struct mm_slot *mm_slot;
  97	unsigned long address;
  98};
  99static struct khugepaged_scan khugepaged_scan = {
 100	.mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
 101};
 102
 
 103
 104static int set_recommended_min_free_kbytes(void)
 105{
 106	struct zone *zone;
 107	int nr_zones = 0;
 108	unsigned long recommended_min;
 109
 110	if (!khugepaged_enabled())
 111		return 0;
 112
 113	for_each_populated_zone(zone)
 114		nr_zones++;
 115
 116	/* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
 117	recommended_min = pageblock_nr_pages * nr_zones * 2;
 118
 119	/*
 120	 * Make sure that on average at least two pageblocks are almost free
 121	 * of another type, one for a migratetype to fall back to and a
 122	 * second to avoid subsequent fallbacks of other types There are 3
 123	 * MIGRATE_TYPES we care about.
 124	 */
 125	recommended_min += pageblock_nr_pages * nr_zones *
 126			   MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
 127
 128	/* don't ever allow to reserve more than 5% of the lowmem */
 129	recommended_min = min(recommended_min,
 130			      (unsigned long) nr_free_buffer_pages() / 20);
 131	recommended_min <<= (PAGE_SHIFT-10);
 132
 133	if (recommended_min > min_free_kbytes) {
 134		if (user_min_free_kbytes >= 0)
 135			pr_info("raising min_free_kbytes from %d to %lu "
 136				"to help transparent hugepage allocations\n",
 137				min_free_kbytes, recommended_min);
 138
 139		min_free_kbytes = recommended_min;
 140	}
 141	setup_per_zone_wmarks();
 142	return 0;
 143}
 144late_initcall(set_recommended_min_free_kbytes);
 145
 146static int start_khugepaged(void)
 147{
 148	int err = 0;
 149	if (khugepaged_enabled()) {
 150		if (!khugepaged_thread)
 151			khugepaged_thread = kthread_run(khugepaged, NULL,
 152							"khugepaged");
 153		if (unlikely(IS_ERR(khugepaged_thread))) {
 154			printk(KERN_ERR
 155			       "khugepaged: kthread_run(khugepaged) failed\n");
 156			err = PTR_ERR(khugepaged_thread);
 157			khugepaged_thread = NULL;
 
 158		}
 159
 160		if (!list_empty(&khugepaged_scan.mm_head))
 161			wake_up_interruptible(&khugepaged_wait);
 162
 163		set_recommended_min_free_kbytes();
 164	} else if (khugepaged_thread) {
 165		kthread_stop(khugepaged_thread);
 166		khugepaged_thread = NULL;
 167	}
 168
 169	return err;
 170}
 171
 172static atomic_t huge_zero_refcount;
 173static struct page *huge_zero_page __read_mostly;
 174
 175static inline bool is_huge_zero_page(struct page *page)
 176{
 177	return ACCESS_ONCE(huge_zero_page) == page;
 178}
 179
 180static inline bool is_huge_zero_pmd(pmd_t pmd)
 181{
 182	return is_huge_zero_page(pmd_page(pmd));
 183}
 184
 185static struct page *get_huge_zero_page(void)
 186{
 187	struct page *zero_page;
 188retry:
 189	if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
 190		return ACCESS_ONCE(huge_zero_page);
 191
 192	zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
 193			HPAGE_PMD_ORDER);
 194	if (!zero_page) {
 195		count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
 196		return NULL;
 197	}
 198	count_vm_event(THP_ZERO_PAGE_ALLOC);
 199	preempt_disable();
 200	if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
 201		preempt_enable();
 202		__free_page(zero_page);
 203		goto retry;
 204	}
 205
 206	/* We take additional reference here. It will be put back by shrinker */
 207	atomic_set(&huge_zero_refcount, 2);
 208	preempt_enable();
 209	return ACCESS_ONCE(huge_zero_page);
 210}
 211
 212static void put_huge_zero_page(void)
 213{
 214	/*
 215	 * Counter should never go to zero here. Only shrinker can put
 216	 * last reference.
 217	 */
 218	BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
 219}
 220
 221static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
 222					struct shrink_control *sc)
 223{
 224	/* we can free zero page only if last reference remains */
 225	return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
 226}
 227
 228static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
 229				       struct shrink_control *sc)
 230{
 231	if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
 232		struct page *zero_page = xchg(&huge_zero_page, NULL);
 233		BUG_ON(zero_page == NULL);
 234		__free_page(zero_page);
 235		return HPAGE_PMD_NR;
 236	}
 237
 238	return 0;
 239}
 240
 241static struct shrinker huge_zero_page_shrinker = {
 242	.count_objects = shrink_huge_zero_page_count,
 243	.scan_objects = shrink_huge_zero_page_scan,
 244	.seeks = DEFAULT_SEEKS,
 245};
 246
 247#ifdef CONFIG_SYSFS
 248
 249static ssize_t double_flag_show(struct kobject *kobj,
 250				struct kobj_attribute *attr, char *buf,
 251				enum transparent_hugepage_flag enabled,
 252				enum transparent_hugepage_flag req_madv)
 253{
 254	if (test_bit(enabled, &transparent_hugepage_flags)) {
 255		VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
 256		return sprintf(buf, "[always] madvise never\n");
 257	} else if (test_bit(req_madv, &transparent_hugepage_flags))
 258		return sprintf(buf, "always [madvise] never\n");
 259	else
 260		return sprintf(buf, "always madvise [never]\n");
 261}
 262static ssize_t double_flag_store(struct kobject *kobj,
 263				 struct kobj_attribute *attr,
 264				 const char *buf, size_t count,
 265				 enum transparent_hugepage_flag enabled,
 
 266				 enum transparent_hugepage_flag req_madv)
 267{
 268	if (!memcmp("always", buf,
 
 
 
 
 
 
 
 269		    min(sizeof("always")-1, count))) {
 270		set_bit(enabled, &transparent_hugepage_flags);
 271		clear_bit(req_madv, &transparent_hugepage_flags);
 
 272	} else if (!memcmp("madvise", buf,
 273			   min(sizeof("madvise")-1, count))) {
 274		clear_bit(enabled, &transparent_hugepage_flags);
 
 275		set_bit(req_madv, &transparent_hugepage_flags);
 276	} else if (!memcmp("never", buf,
 277			   min(sizeof("never")-1, count))) {
 278		clear_bit(enabled, &transparent_hugepage_flags);
 279		clear_bit(req_madv, &transparent_hugepage_flags);
 
 280	} else
 281		return -EINVAL;
 282
 283	return count;
 284}
 285
 286static ssize_t enabled_show(struct kobject *kobj,
 287			    struct kobj_attribute *attr, char *buf)
 288{
 289	return double_flag_show(kobj, attr, buf,
 290				TRANSPARENT_HUGEPAGE_FLAG,
 291				TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
 
 
 
 292}
 
 293static ssize_t enabled_store(struct kobject *kobj,
 294			     struct kobj_attribute *attr,
 295			     const char *buf, size_t count)
 296{
 297	ssize_t ret;
 298
 299	ret = double_flag_store(kobj, attr, buf, count,
 
 300				TRANSPARENT_HUGEPAGE_FLAG,
 301				TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
 302
 303	if (ret > 0) {
 304		int err;
 305
 306		mutex_lock(&khugepaged_mutex);
 307		err = start_khugepaged();
 308		mutex_unlock(&khugepaged_mutex);
 309
 310		if (err)
 311			ret = err;
 312	}
 313
 314	return ret;
 315}
 316static struct kobj_attribute enabled_attr =
 317	__ATTR(enabled, 0644, enabled_show, enabled_store);
 318
 319static ssize_t single_flag_show(struct kobject *kobj,
 320				struct kobj_attribute *attr, char *buf,
 321				enum transparent_hugepage_flag flag)
 322{
 323	return sprintf(buf, "%d\n",
 324		       !!test_bit(flag, &transparent_hugepage_flags));
 325}
 326
 327static ssize_t single_flag_store(struct kobject *kobj,
 328				 struct kobj_attribute *attr,
 329				 const char *buf, size_t count,
 330				 enum transparent_hugepage_flag flag)
 331{
 332	unsigned long value;
 333	int ret;
 334
 335	ret = kstrtoul(buf, 10, &value);
 336	if (ret < 0)
 337		return ret;
 338	if (value > 1)
 339		return -EINVAL;
 340
 341	if (value)
 342		set_bit(flag, &transparent_hugepage_flags);
 343	else
 344		clear_bit(flag, &transparent_hugepage_flags);
 345
 346	return count;
 347}
 348
 349/*
 350 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
 351 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
 352 * memory just to allocate one more hugepage.
 353 */
 354static ssize_t defrag_show(struct kobject *kobj,
 355			   struct kobj_attribute *attr, char *buf)
 356{
 357	return double_flag_show(kobj, attr, buf,
 358				TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
 359				TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
 
 
 
 
 
 
 360}
 361static ssize_t defrag_store(struct kobject *kobj,
 362			    struct kobj_attribute *attr,
 363			    const char *buf, size_t count)
 364{
 365	return double_flag_store(kobj, attr, buf, count,
 366				 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
 
 367				 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
 368}
 369static struct kobj_attribute defrag_attr =
 370	__ATTR(defrag, 0644, defrag_show, defrag_store);
 371
 372static ssize_t use_zero_page_show(struct kobject *kobj,
 373		struct kobj_attribute *attr, char *buf)
 374{
 375	return single_flag_show(kobj, attr, buf,
 376				TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
 377}
 378static ssize_t use_zero_page_store(struct kobject *kobj,
 379		struct kobj_attribute *attr, const char *buf, size_t count)
 380{
 381	return single_flag_store(kobj, attr, buf, count,
 382				 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
 383}
 384static struct kobj_attribute use_zero_page_attr =
 385	__ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
 386#ifdef CONFIG_DEBUG_VM
 387static ssize_t debug_cow_show(struct kobject *kobj,
 388				struct kobj_attribute *attr, char *buf)
 389{
 390	return single_flag_show(kobj, attr, buf,
 391				TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
 392}
 393static ssize_t debug_cow_store(struct kobject *kobj,
 394			       struct kobj_attribute *attr,
 395			       const char *buf, size_t count)
 396{
 397	return single_flag_store(kobj, attr, buf, count,
 398				 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
 399}
 400static struct kobj_attribute debug_cow_attr =
 401	__ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
 402#endif /* CONFIG_DEBUG_VM */
 403
 404static struct attribute *hugepage_attr[] = {
 405	&enabled_attr.attr,
 406	&defrag_attr.attr,
 407	&use_zero_page_attr.attr,
 408#ifdef CONFIG_DEBUG_VM
 409	&debug_cow_attr.attr,
 410#endif
 411	NULL,
 412};
 413
 414static struct attribute_group hugepage_attr_group = {
 415	.attrs = hugepage_attr,
 416};
 417
 418static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
 419					 struct kobj_attribute *attr,
 420					 char *buf)
 421{
 422	return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
 423}
 424
 425static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
 426					  struct kobj_attribute *attr,
 427					  const char *buf, size_t count)
 428{
 429	unsigned long msecs;
 430	int err;
 431
 432	err = kstrtoul(buf, 10, &msecs);
 433	if (err || msecs > UINT_MAX)
 434		return -EINVAL;
 435
 436	khugepaged_scan_sleep_millisecs = msecs;
 437	wake_up_interruptible(&khugepaged_wait);
 438
 439	return count;
 440}
 441static struct kobj_attribute scan_sleep_millisecs_attr =
 442	__ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
 443	       scan_sleep_millisecs_store);
 444
 445static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
 446					  struct kobj_attribute *attr,
 447					  char *buf)
 448{
 449	return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
 450}
 451
 452static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
 453					   struct kobj_attribute *attr,
 454					   const char *buf, size_t count)
 455{
 456	unsigned long msecs;
 457	int err;
 458
 459	err = kstrtoul(buf, 10, &msecs);
 460	if (err || msecs > UINT_MAX)
 461		return -EINVAL;
 462
 463	khugepaged_alloc_sleep_millisecs = msecs;
 464	wake_up_interruptible(&khugepaged_wait);
 465
 466	return count;
 467}
 468static struct kobj_attribute alloc_sleep_millisecs_attr =
 469	__ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
 470	       alloc_sleep_millisecs_store);
 471
 472static ssize_t pages_to_scan_show(struct kobject *kobj,
 473				  struct kobj_attribute *attr,
 474				  char *buf)
 475{
 476	return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
 477}
 478static ssize_t pages_to_scan_store(struct kobject *kobj,
 479				   struct kobj_attribute *attr,
 480				   const char *buf, size_t count)
 481{
 482	int err;
 483	unsigned long pages;
 484
 485	err = kstrtoul(buf, 10, &pages);
 486	if (err || !pages || pages > UINT_MAX)
 487		return -EINVAL;
 488
 489	khugepaged_pages_to_scan = pages;
 490
 491	return count;
 492}
 493static struct kobj_attribute pages_to_scan_attr =
 494	__ATTR(pages_to_scan, 0644, pages_to_scan_show,
 495	       pages_to_scan_store);
 496
 497static ssize_t pages_collapsed_show(struct kobject *kobj,
 498				    struct kobj_attribute *attr,
 499				    char *buf)
 500{
 501	return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
 502}
 503static struct kobj_attribute pages_collapsed_attr =
 504	__ATTR_RO(pages_collapsed);
 505
 506static ssize_t full_scans_show(struct kobject *kobj,
 507			       struct kobj_attribute *attr,
 508			       char *buf)
 509{
 510	return sprintf(buf, "%u\n", khugepaged_full_scans);
 511}
 512static struct kobj_attribute full_scans_attr =
 513	__ATTR_RO(full_scans);
 514
 515static ssize_t khugepaged_defrag_show(struct kobject *kobj,
 516				      struct kobj_attribute *attr, char *buf)
 517{
 518	return single_flag_show(kobj, attr, buf,
 519				TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
 520}
 521static ssize_t khugepaged_defrag_store(struct kobject *kobj,
 522				       struct kobj_attribute *attr,
 523				       const char *buf, size_t count)
 524{
 525	return single_flag_store(kobj, attr, buf, count,
 526				 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
 527}
 528static struct kobj_attribute khugepaged_defrag_attr =
 529	__ATTR(defrag, 0644, khugepaged_defrag_show,
 530	       khugepaged_defrag_store);
 531
 532/*
 533 * max_ptes_none controls if khugepaged should collapse hugepages over
 534 * any unmapped ptes in turn potentially increasing the memory
 535 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
 536 * reduce the available free memory in the system as it
 537 * runs. Increasing max_ptes_none will instead potentially reduce the
 538 * free memory in the system during the khugepaged scan.
 539 */
 540static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
 541					     struct kobj_attribute *attr,
 542					     char *buf)
 543{
 544	return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
 545}
 546static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
 547					      struct kobj_attribute *attr,
 548					      const char *buf, size_t count)
 549{
 550	int err;
 551	unsigned long max_ptes_none;
 552
 553	err = kstrtoul(buf, 10, &max_ptes_none);
 554	if (err || max_ptes_none > HPAGE_PMD_NR-1)
 555		return -EINVAL;
 556
 557	khugepaged_max_ptes_none = max_ptes_none;
 558
 559	return count;
 560}
 561static struct kobj_attribute khugepaged_max_ptes_none_attr =
 562	__ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
 563	       khugepaged_max_ptes_none_store);
 564
 565static struct attribute *khugepaged_attr[] = {
 566	&khugepaged_defrag_attr.attr,
 567	&khugepaged_max_ptes_none_attr.attr,
 568	&pages_to_scan_attr.attr,
 569	&pages_collapsed_attr.attr,
 570	&full_scans_attr.attr,
 571	&scan_sleep_millisecs_attr.attr,
 572	&alloc_sleep_millisecs_attr.attr,
 573	NULL,
 574};
 575
 576static struct attribute_group khugepaged_attr_group = {
 577	.attrs = khugepaged_attr,
 578	.name = "khugepaged",
 579};
 580
 581static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
 582{
 583	int err;
 584
 585	*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
 586	if (unlikely(!*hugepage_kobj)) {
 587		printk(KERN_ERR "hugepage: failed to create transparent hugepage kobject\n");
 588		return -ENOMEM;
 589	}
 590
 591	err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
 592	if (err) {
 593		printk(KERN_ERR "hugepage: failed to register transparent hugepage group\n");
 594		goto delete_obj;
 595	}
 596
 597	err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
 598	if (err) {
 599		printk(KERN_ERR "hugepage: failed to register transparent hugepage group\n");
 600		goto remove_hp_group;
 601	}
 602
 603	return 0;
 604
 605remove_hp_group:
 606	sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
 607delete_obj:
 608	kobject_put(*hugepage_kobj);
 609	return err;
 610}
 611
 612static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
 613{
 614	sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
 615	sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
 616	kobject_put(hugepage_kobj);
 617}
 618#else
 619static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
 620{
 621	return 0;
 622}
 623
 624static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
 625{
 626}
 627#endif /* CONFIG_SYSFS */
 628
 629static int __init hugepage_init(void)
 630{
 631	int err;
 632	struct kobject *hugepage_kobj;
 633
 634	if (!has_transparent_hugepage()) {
 635		transparent_hugepage_flags = 0;
 636		return -EINVAL;
 637	}
 638
 
 
 
 
 
 
 
 
 
 
 
 
 639	err = hugepage_init_sysfs(&hugepage_kobj);
 640	if (err)
 641		return err;
 642
 643	err = khugepaged_slab_init();
 644	if (err)
 645		goto out;
 646
 647	register_shrinker(&huge_zero_page_shrinker);
 
 
 
 
 
 648
 649	/*
 650	 * By default disable transparent hugepages on smaller systems,
 651	 * where the extra memory used could hurt more than TLB overhead
 652	 * is likely to save.  The admin can still enable it through /sys.
 653	 */
 654	if (totalram_pages < (512 << (20 - PAGE_SHIFT)))
 655		transparent_hugepage_flags = 0;
 
 
 656
 657	start_khugepaged();
 
 
 658
 659	return 0;
 660out:
 
 
 
 
 
 
 661	hugepage_exit_sysfs(hugepage_kobj);
 
 662	return err;
 663}
 664subsys_initcall(hugepage_init);
 665
 666static int __init setup_transparent_hugepage(char *str)
 667{
 668	int ret = 0;
 669	if (!str)
 670		goto out;
 671	if (!strcmp(str, "always")) {
 672		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
 673			&transparent_hugepage_flags);
 674		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 675			  &transparent_hugepage_flags);
 676		ret = 1;
 677	} else if (!strcmp(str, "madvise")) {
 678		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
 679			  &transparent_hugepage_flags);
 680		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 681			&transparent_hugepage_flags);
 682		ret = 1;
 683	} else if (!strcmp(str, "never")) {
 684		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
 685			  &transparent_hugepage_flags);
 686		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 687			  &transparent_hugepage_flags);
 688		ret = 1;
 689	}
 690out:
 691	if (!ret)
 692		printk(KERN_WARNING
 693		       "transparent_hugepage= cannot parse, ignored\n");
 694	return ret;
 695}
 696__setup("transparent_hugepage=", setup_transparent_hugepage);
 697
 698pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
 699{
 700	if (likely(vma->vm_flags & VM_WRITE))
 701		pmd = pmd_mkwrite(pmd);
 702	return pmd;
 703}
 704
 705static inline pmd_t mk_huge_pmd(struct page *page, pgprot_t prot)
 706{
 707	pmd_t entry;
 708	entry = mk_pmd(page, prot);
 709	entry = pmd_mkhuge(entry);
 710	return entry;
 711}
 712
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 713static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
 714					struct vm_area_struct *vma,
 715					unsigned long haddr, pmd_t *pmd,
 716					struct page *page)
 
 717{
 
 718	pgtable_t pgtable;
 719	spinlock_t *ptl;
 
 720
 721	VM_BUG_ON_PAGE(!PageCompound(page), page);
 
 
 
 
 
 
 
 722	pgtable = pte_alloc_one(mm, haddr);
 723	if (unlikely(!pgtable))
 
 
 724		return VM_FAULT_OOM;
 
 725
 726	clear_huge_page(page, haddr, HPAGE_PMD_NR);
 727	/*
 728	 * The memory barrier inside __SetPageUptodate makes sure that
 729	 * clear_huge_page writes become visible before the set_pmd_at()
 730	 * write.
 731	 */
 732	__SetPageUptodate(page);
 733
 734	ptl = pmd_lock(mm, pmd);
 735	if (unlikely(!pmd_none(*pmd))) {
 736		spin_unlock(ptl);
 737		mem_cgroup_uncharge_page(page);
 738		put_page(page);
 739		pte_free(mm, pgtable);
 740	} else {
 741		pmd_t entry;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 742		entry = mk_huge_pmd(page, vma->vm_page_prot);
 743		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
 744		page_add_new_anon_rmap(page, vma, haddr);
 
 
 745		pgtable_trans_huge_deposit(mm, pmd, pgtable);
 746		set_pmd_at(mm, haddr, pmd, entry);
 747		add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
 748		atomic_long_inc(&mm->nr_ptes);
 749		spin_unlock(ptl);
 
 750	}
 751
 752	return 0;
 753}
 754
 755static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
 
 
 
 
 
 756{
 757	return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp;
 
 
 
 
 
 
 
 
 
 
 758}
 759
 760static inline struct page *alloc_hugepage_vma(int defrag,
 761					      struct vm_area_struct *vma,
 762					      unsigned long haddr, int nd,
 763					      gfp_t extra_gfp)
 764{
 765	return alloc_pages_vma(alloc_hugepage_gfpmask(defrag, extra_gfp),
 766			       HPAGE_PMD_ORDER, vma, haddr, nd);
 767}
 768
 769/* Caller must hold page table lock. */
 770static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
 771		struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
 772		struct page *zero_page)
 773{
 774	pmd_t entry;
 775	if (!pmd_none(*pmd))
 776		return false;
 777	entry = mk_pmd(zero_page, vma->vm_page_prot);
 778	entry = pmd_wrprotect(entry);
 779	entry = pmd_mkhuge(entry);
 780	pgtable_trans_huge_deposit(mm, pmd, pgtable);
 
 781	set_pmd_at(mm, haddr, pmd, entry);
 782	atomic_long_inc(&mm->nr_ptes);
 783	return true;
 784}
 785
 786int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
 787			       unsigned long address, pmd_t *pmd,
 788			       unsigned int flags)
 789{
 
 790	struct page *page;
 791	unsigned long haddr = address & HPAGE_PMD_MASK;
 792
 793	if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
 794		return VM_FAULT_FALLBACK;
 795	if (unlikely(anon_vma_prepare(vma)))
 796		return VM_FAULT_OOM;
 797	if (unlikely(khugepaged_enter(vma)))
 798		return VM_FAULT_OOM;
 799	if (!(flags & FAULT_FLAG_WRITE) &&
 800			transparent_hugepage_use_zero_page()) {
 801		spinlock_t *ptl;
 802		pgtable_t pgtable;
 803		struct page *zero_page;
 804		bool set;
 
 805		pgtable = pte_alloc_one(mm, haddr);
 806		if (unlikely(!pgtable))
 807			return VM_FAULT_OOM;
 808		zero_page = get_huge_zero_page();
 809		if (unlikely(!zero_page)) {
 810			pte_free(mm, pgtable);
 811			count_vm_event(THP_FAULT_FALLBACK);
 812			return VM_FAULT_FALLBACK;
 813		}
 814		ptl = pmd_lock(mm, pmd);
 815		set = set_huge_zero_page(pgtable, mm, vma, haddr, pmd,
 816				zero_page);
 817		spin_unlock(ptl);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 818		if (!set) {
 819			pte_free(mm, pgtable);
 820			put_huge_zero_page();
 821		}
 822		return 0;
 823	}
 824	page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
 825			vma, haddr, numa_node_id(), 0);
 826	if (unlikely(!page)) {
 827		count_vm_event(THP_FAULT_FALLBACK);
 828		return VM_FAULT_FALLBACK;
 829	}
 830	if (unlikely(mem_cgroup_charge_anon(page, mm, GFP_KERNEL))) {
 831		put_page(page);
 832		count_vm_event(THP_FAULT_FALLBACK);
 833		return VM_FAULT_FALLBACK;
 834	}
 835	if (unlikely(__do_huge_pmd_anonymous_page(mm, vma, haddr, pmd, page))) {
 836		mem_cgroup_uncharge_page(page);
 837		put_page(page);
 838		count_vm_event(THP_FAULT_FALLBACK);
 839		return VM_FAULT_FALLBACK;
 
 
 
 
 
 
 
 
 
 840	}
 
 
 
 
 841
 842	count_vm_event(THP_FAULT_ALLOC);
 843	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 844}
 845
 846int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
 847		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
 848		  struct vm_area_struct *vma)
 849{
 850	spinlock_t *dst_ptl, *src_ptl;
 851	struct page *src_page;
 852	pmd_t pmd;
 853	pgtable_t pgtable;
 854	int ret;
 855
 856	ret = -ENOMEM;
 857	pgtable = pte_alloc_one(dst_mm, addr);
 858	if (unlikely(!pgtable))
 859		goto out;
 
 
 860
 861	dst_ptl = pmd_lock(dst_mm, dst_pmd);
 862	src_ptl = pmd_lockptr(src_mm, src_pmd);
 863	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
 864
 865	ret = -EAGAIN;
 866	pmd = *src_pmd;
 867	if (unlikely(!pmd_trans_huge(pmd))) {
 868		pte_free(dst_mm, pgtable);
 869		goto out_unlock;
 870	}
 871	/*
 872	 * When page table lock is held, the huge zero pmd should not be
 873	 * under splitting since we don't split the page itself, only pmd to
 874	 * a page table.
 875	 */
 876	if (is_huge_zero_pmd(pmd)) {
 877		struct page *zero_page;
 878		bool set;
 879		/*
 880		 * get_huge_zero_page() will never allocate a new page here,
 881		 * since we already have a zero page to copy. It just takes a
 882		 * reference.
 883		 */
 884		zero_page = get_huge_zero_page();
 885		set = set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
 886				zero_page);
 887		BUG_ON(!set); /* unexpected !pmd_none(dst_pmd) */
 888		ret = 0;
 889		goto out_unlock;
 890	}
 891
 892	if (unlikely(pmd_trans_splitting(pmd))) {
 893		/* split huge page running from under us */
 894		spin_unlock(src_ptl);
 895		spin_unlock(dst_ptl);
 896		pte_free(dst_mm, pgtable);
 897
 898		wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
 899		goto out;
 
 900	}
 901	src_page = pmd_page(pmd);
 902	VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
 903	get_page(src_page);
 904	page_dup_rmap(src_page);
 905	add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
 906
 907	pmdp_set_wrprotect(src_mm, addr, src_pmd);
 908	pmd = pmd_mkold(pmd_wrprotect(pmd));
 909	pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
 910	set_pmd_at(dst_mm, addr, dst_pmd, pmd);
 911	atomic_long_inc(&dst_mm->nr_ptes);
 912
 913	ret = 0;
 914out_unlock:
 915	spin_unlock(src_ptl);
 916	spin_unlock(dst_ptl);
 917out:
 918	return ret;
 919}
 920
 921void huge_pmd_set_accessed(struct mm_struct *mm,
 922			   struct vm_area_struct *vma,
 923			   unsigned long address,
 924			   pmd_t *pmd, pmd_t orig_pmd,
 925			   int dirty)
 926{
 927	spinlock_t *ptl;
 928	pmd_t entry;
 929	unsigned long haddr;
 930
 931	ptl = pmd_lock(mm, pmd);
 932	if (unlikely(!pmd_same(*pmd, orig_pmd)))
 933		goto unlock;
 934
 935	entry = pmd_mkyoung(orig_pmd);
 936	haddr = address & HPAGE_PMD_MASK;
 937	if (pmdp_set_access_flags(vma, haddr, pmd, entry, dirty))
 938		update_mmu_cache_pmd(vma, address, pmd);
 939
 940unlock:
 941	spin_unlock(ptl);
 942}
 943
 944static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
 945					struct vm_area_struct *vma,
 946					unsigned long address,
 947					pmd_t *pmd, pmd_t orig_pmd,
 948					struct page *page,
 949					unsigned long haddr)
 950{
 
 951	spinlock_t *ptl;
 952	pgtable_t pgtable;
 953	pmd_t _pmd;
 954	int ret = 0, i;
 955	struct page **pages;
 956	unsigned long mmun_start;	/* For mmu_notifiers */
 957	unsigned long mmun_end;		/* For mmu_notifiers */
 958
 959	pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
 960			GFP_KERNEL);
 961	if (unlikely(!pages)) {
 962		ret |= VM_FAULT_OOM;
 963		goto out;
 964	}
 965
 966	for (i = 0; i < HPAGE_PMD_NR; i++) {
 967		pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
 968					       __GFP_OTHER_NODE,
 969					       vma, address, page_to_nid(page));
 970		if (unlikely(!pages[i] ||
 971			     mem_cgroup_charge_anon(pages[i], mm,
 972						       GFP_KERNEL))) {
 973			if (pages[i])
 974				put_page(pages[i]);
 975			mem_cgroup_uncharge_start();
 976			while (--i >= 0) {
 977				mem_cgroup_uncharge_page(pages[i]);
 
 
 
 978				put_page(pages[i]);
 979			}
 980			mem_cgroup_uncharge_end();
 981			kfree(pages);
 982			ret |= VM_FAULT_OOM;
 983			goto out;
 984		}
 
 985	}
 986
 987	for (i = 0; i < HPAGE_PMD_NR; i++) {
 988		copy_user_highpage(pages[i], page + i,
 989				   haddr + PAGE_SIZE * i, vma);
 990		__SetPageUptodate(pages[i]);
 991		cond_resched();
 992	}
 993
 994	mmun_start = haddr;
 995	mmun_end   = haddr + HPAGE_PMD_SIZE;
 996	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
 997
 998	ptl = pmd_lock(mm, pmd);
 999	if (unlikely(!pmd_same(*pmd, orig_pmd)))
1000		goto out_free_pages;
1001	VM_BUG_ON_PAGE(!PageHead(page), page);
1002
1003	pmdp_clear_flush(vma, haddr, pmd);
1004	/* leave pmd empty until pte is filled */
1005
1006	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1007	pmd_populate(mm, &_pmd, pgtable);
1008
1009	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1010		pte_t *pte, entry;
1011		entry = mk_pte(pages[i], vma->vm_page_prot);
1012		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1013		page_add_new_anon_rmap(pages[i], vma, haddr);
 
 
 
 
1014		pte = pte_offset_map(&_pmd, haddr);
1015		VM_BUG_ON(!pte_none(*pte));
1016		set_pte_at(mm, haddr, pte, entry);
1017		pte_unmap(pte);
1018	}
1019	kfree(pages);
1020
1021	smp_wmb(); /* make pte visible before pmd */
1022	pmd_populate(mm, pmd, pgtable);
1023	page_remove_rmap(page);
1024	spin_unlock(ptl);
1025
1026	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1027
1028	ret |= VM_FAULT_WRITE;
1029	put_page(page);
1030
1031out:
1032	return ret;
1033
1034out_free_pages:
1035	spin_unlock(ptl);
1036	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1037	mem_cgroup_uncharge_start();
1038	for (i = 0; i < HPAGE_PMD_NR; i++) {
1039		mem_cgroup_uncharge_page(pages[i]);
 
 
1040		put_page(pages[i]);
1041	}
1042	mem_cgroup_uncharge_end();
1043	kfree(pages);
1044	goto out;
1045}
1046
1047int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1048			unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
1049{
1050	spinlock_t *ptl;
1051	int ret = 0;
1052	struct page *page = NULL, *new_page;
 
1053	unsigned long haddr;
1054	unsigned long mmun_start;	/* For mmu_notifiers */
1055	unsigned long mmun_end;		/* For mmu_notifiers */
 
1056
1057	ptl = pmd_lockptr(mm, pmd);
1058	VM_BUG_ON(!vma->anon_vma);
1059	haddr = address & HPAGE_PMD_MASK;
1060	if (is_huge_zero_pmd(orig_pmd))
1061		goto alloc;
1062	spin_lock(ptl);
1063	if (unlikely(!pmd_same(*pmd, orig_pmd)))
1064		goto out_unlock;
1065
1066	page = pmd_page(orig_pmd);
1067	VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1068	if (page_mapcount(page) == 1) {
 
 
 
 
1069		pmd_t entry;
1070		entry = pmd_mkyoung(orig_pmd);
1071		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1072		if (pmdp_set_access_flags(vma, haddr, pmd, entry,  1))
1073			update_mmu_cache_pmd(vma, address, pmd);
1074		ret |= VM_FAULT_WRITE;
1075		goto out_unlock;
1076	}
1077	get_page(page);
1078	spin_unlock(ptl);
1079alloc:
1080	if (transparent_hugepage_enabled(vma) &&
1081	    !transparent_hugepage_debug_cow())
1082		new_page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
1083					      vma, haddr, numa_node_id(), 0);
1084	else
1085		new_page = NULL;
1086
1087	if (unlikely(!new_page)) {
 
 
1088		if (!page) {
1089			split_huge_page_pmd(vma, address, pmd);
1090			ret |= VM_FAULT_FALLBACK;
1091		} else {
1092			ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
1093					pmd, orig_pmd, page, haddr);
1094			if (ret & VM_FAULT_OOM) {
1095				split_huge_page(page);
1096				ret |= VM_FAULT_FALLBACK;
1097			}
1098			put_page(page);
1099		}
1100		count_vm_event(THP_FAULT_FALLBACK);
1101		goto out;
1102	}
1103
1104	if (unlikely(mem_cgroup_charge_anon(new_page, mm, GFP_KERNEL))) {
 
1105		put_page(new_page);
1106		if (page) {
1107			split_huge_page(page);
1108			put_page(page);
1109		} else
1110			split_huge_page_pmd(vma, address, pmd);
1111		ret |= VM_FAULT_FALLBACK;
1112		count_vm_event(THP_FAULT_FALLBACK);
1113		goto out;
1114	}
1115
1116	count_vm_event(THP_FAULT_ALLOC);
1117
1118	if (!page)
1119		clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
1120	else
1121		copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
1122	__SetPageUptodate(new_page);
1123
1124	mmun_start = haddr;
1125	mmun_end   = haddr + HPAGE_PMD_SIZE;
1126	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1127
1128	spin_lock(ptl);
1129	if (page)
1130		put_page(page);
1131	if (unlikely(!pmd_same(*pmd, orig_pmd))) {
1132		spin_unlock(ptl);
1133		mem_cgroup_uncharge_page(new_page);
1134		put_page(new_page);
1135		goto out_mn;
1136	} else {
1137		pmd_t entry;
1138		entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1139		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1140		pmdp_clear_flush(vma, haddr, pmd);
1141		page_add_new_anon_rmap(new_page, vma, haddr);
 
 
1142		set_pmd_at(mm, haddr, pmd, entry);
1143		update_mmu_cache_pmd(vma, address, pmd);
1144		if (!page) {
1145			add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
1146			put_huge_zero_page();
1147		} else {
1148			VM_BUG_ON_PAGE(!PageHead(page), page);
1149			page_remove_rmap(page);
1150			put_page(page);
1151		}
1152		ret |= VM_FAULT_WRITE;
1153	}
1154	spin_unlock(ptl);
1155out_mn:
1156	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1157out:
1158	return ret;
1159out_unlock:
1160	spin_unlock(ptl);
1161	return ret;
1162}
1163
1164struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1165				   unsigned long addr,
1166				   pmd_t *pmd,
1167				   unsigned int flags)
1168{
1169	struct mm_struct *mm = vma->vm_mm;
1170	struct page *page = NULL;
1171
1172	assert_spin_locked(pmd_lockptr(mm, pmd));
1173
1174	if (flags & FOLL_WRITE && !pmd_write(*pmd))
1175		goto out;
1176
1177	/* Avoid dumping huge zero page */
1178	if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1179		return ERR_PTR(-EFAULT);
1180
1181	/* Full NUMA hinting faults to serialise migration in fault paths */
1182	if ((flags & FOLL_NUMA) && pmd_numa(*pmd))
1183		goto out;
1184
1185	page = pmd_page(*pmd);
1186	VM_BUG_ON_PAGE(!PageHead(page), page);
1187	if (flags & FOLL_TOUCH) {
1188		pmd_t _pmd;
 
1189		/*
1190		 * We should set the dirty bit only for FOLL_WRITE but
1191		 * for now the dirty bit in the pmd is meaningless.
1192		 * And if the dirty bit will become meaningful and
1193		 * we'll only set it with FOLL_WRITE, an atomic
1194		 * set_bit will be required on the pmd to set the
1195		 * young bit, instead of the current set_pmd_at.
 
 
 
 
1196		 */
1197		_pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
1198		if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
1199					  pmd, _pmd,  1))
1200			update_mmu_cache_pmd(vma, addr, pmd);
1201	}
1202	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1203		if (page->mapping && trylock_page(page)) {
1204			lru_add_drain();
1205			if (page->mapping)
1206				mlock_vma_page(page);
1207			unlock_page(page);
1208		}
1209	}
1210	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1211	VM_BUG_ON_PAGE(!PageCompound(page), page);
1212	if (flags & FOLL_GET)
1213		get_page_foll(page);
1214
1215out:
1216	return page;
1217}
1218
1219/* NUMA hinting page fault entry point for trans huge pmds */
1220int do_huge_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
1221				unsigned long addr, pmd_t pmd, pmd_t *pmdp)
1222{
1223	spinlock_t *ptl;
1224	struct anon_vma *anon_vma = NULL;
1225	struct page *page;
1226	unsigned long haddr = addr & HPAGE_PMD_MASK;
1227	int page_nid = -1, this_nid = numa_node_id();
1228	int target_nid, last_cpupid = -1;
1229	bool page_locked;
1230	bool migrated = false;
 
1231	int flags = 0;
1232
 
 
 
1233	ptl = pmd_lock(mm, pmdp);
1234	if (unlikely(!pmd_same(pmd, *pmdp)))
1235		goto out_unlock;
1236
1237	/*
1238	 * If there are potential migrations, wait for completion and retry
1239	 * without disrupting NUMA hinting information. Do not relock and
1240	 * check_same as the page may no longer be mapped.
1241	 */
1242	if (unlikely(pmd_trans_migrating(*pmdp))) {
 
1243		spin_unlock(ptl);
1244		wait_migrate_huge_page(vma->anon_vma, pmdp);
1245		goto out;
1246	}
1247
1248	page = pmd_page(pmd);
1249	BUG_ON(is_huge_zero_page(page));
1250	page_nid = page_to_nid(page);
1251	last_cpupid = page_cpupid_last(page);
1252	count_vm_numa_event(NUMA_HINT_FAULTS);
1253	if (page_nid == this_nid) {
1254		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1255		flags |= TNF_FAULT_LOCAL;
1256	}
1257
1258	/*
1259	 * Avoid grouping on DSO/COW pages in specific and RO pages
1260	 * in general, RO pages shouldn't hurt as much anyway since
1261	 * they can be in shared cache state.
1262	 */
1263	if (!pmd_write(pmd))
1264		flags |= TNF_NO_GROUP;
1265
1266	/*
1267	 * Acquire the page lock to serialise THP migrations but avoid dropping
1268	 * page_table_lock if at all possible
1269	 */
1270	page_locked = trylock_page(page);
1271	target_nid = mpol_misplaced(page, vma, haddr);
1272	if (target_nid == -1) {
1273		/* If the page was locked, there are no parallel migrations */
1274		if (page_locked)
1275			goto clear_pmdnuma;
1276	}
1277
1278	/* Migration could have started since the pmd_trans_migrating check */
1279	if (!page_locked) {
1280		spin_unlock(ptl);
1281		wait_on_page_locked(page);
1282		page_nid = -1;
1283		goto out;
1284	}
1285
1286	/*
1287	 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1288	 * to serialises splits
1289	 */
1290	get_page(page);
1291	spin_unlock(ptl);
1292	anon_vma = page_lock_anon_vma_read(page);
1293
1294	/* Confirm the PMD did not change while page_table_lock was released */
1295	spin_lock(ptl);
1296	if (unlikely(!pmd_same(pmd, *pmdp))) {
1297		unlock_page(page);
1298		put_page(page);
1299		page_nid = -1;
1300		goto out_unlock;
1301	}
1302
1303	/* Bail if we fail to protect against THP splits for any reason */
1304	if (unlikely(!anon_vma)) {
1305		put_page(page);
1306		page_nid = -1;
1307		goto clear_pmdnuma;
1308	}
1309
1310	/*
1311	 * Migrate the THP to the requested node, returns with page unlocked
1312	 * and pmd_numa cleared.
1313	 */
1314	spin_unlock(ptl);
1315	migrated = migrate_misplaced_transhuge_page(mm, vma,
1316				pmdp, pmd, addr, page, target_nid);
1317	if (migrated) {
1318		flags |= TNF_MIGRATED;
1319		page_nid = target_nid;
1320	}
 
1321
1322	goto out;
1323clear_pmdnuma:
1324	BUG_ON(!PageLocked(page));
1325	pmd = pmd_mknonnuma(pmd);
 
 
 
 
1326	set_pmd_at(mm, haddr, pmdp, pmd);
1327	VM_BUG_ON(pmd_numa(*pmdp));
1328	update_mmu_cache_pmd(vma, addr, pmdp);
1329	unlock_page(page);
1330out_unlock:
1331	spin_unlock(ptl);
1332
1333out:
1334	if (anon_vma)
1335		page_unlock_anon_vma_read(anon_vma);
1336
1337	if (page_nid != -1)
1338		task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, flags);
1339
1340	return 0;
1341}
1342
1343int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1344		 pmd_t *pmd, unsigned long addr)
 
1345{
1346	spinlock_t *ptl;
 
 
 
1347	int ret = 0;
1348
1349	if (__pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
1350		struct page *page;
1351		pgtable_t pgtable;
1352		pmd_t orig_pmd;
1353		/*
1354		 * For architectures like ppc64 we look at deposited pgtable
1355		 * when calling pmdp_get_and_clear. So do the
1356		 * pgtable_trans_huge_withdraw after finishing pmdp related
1357		 * operations.
1358		 */
1359		orig_pmd = pmdp_get_and_clear(tlb->mm, addr, pmd);
1360		tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1361		pgtable = pgtable_trans_huge_withdraw(tlb->mm, pmd);
1362		if (is_huge_zero_pmd(orig_pmd)) {
1363			atomic_long_dec(&tlb->mm->nr_ptes);
1364			spin_unlock(ptl);
1365			put_huge_zero_page();
1366		} else {
1367			page = pmd_page(orig_pmd);
1368			page_remove_rmap(page);
1369			VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1370			add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1371			VM_BUG_ON_PAGE(!PageHead(page), page);
1372			atomic_long_dec(&tlb->mm->nr_ptes);
1373			spin_unlock(ptl);
1374			tlb_remove_page(tlb, page);
 
 
 
 
 
 
1375		}
1376		pte_free(tlb->mm, pgtable);
 
1377		ret = 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1378	}
 
 
 
 
1379	return ret;
1380}
1381
1382int mincore_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1383		unsigned long addr, unsigned long end,
1384		unsigned char *vec)
1385{
 
1386	spinlock_t *ptl;
1387	int ret = 0;
1388
1389	if (__pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
1390		/*
1391		 * All logical pages in the range are present
1392		 * if backed by a huge page.
1393		 */
 
 
 
 
 
 
 
 
1394		spin_unlock(ptl);
1395		memset(vec, 1, (end - addr) >> PAGE_SHIFT);
1396		ret = 1;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1397	}
1398
1399	return ret;
1400}
1401
1402int move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
1403		  unsigned long old_addr,
1404		  unsigned long new_addr, unsigned long old_end,
1405		  pmd_t *old_pmd, pmd_t *new_pmd)
1406{
1407	spinlock_t *old_ptl, *new_ptl;
1408	int ret = 0;
1409	pmd_t pmd;
1410
1411	struct mm_struct *mm = vma->vm_mm;
1412
1413	if ((old_addr & ~HPAGE_PMD_MASK) ||
1414	    (new_addr & ~HPAGE_PMD_MASK) ||
1415	    old_end - old_addr < HPAGE_PMD_SIZE ||
1416	    (new_vma->vm_flags & VM_NOHUGEPAGE))
1417		goto out;
1418
1419	/*
1420	 * The destination pmd shouldn't be established, free_pgtables()
1421	 * should have release it.
1422	 */
1423	if (WARN_ON(!pmd_none(*new_pmd))) {
1424		VM_BUG_ON(pmd_trans_huge(*new_pmd));
1425		goto out;
1426	}
1427
1428	/*
1429	 * We don't have to worry about the ordering of src and dst
1430	 * ptlocks because exclusive mmap_sem prevents deadlock.
1431	 */
1432	ret = __pmd_trans_huge_lock(old_pmd, vma, &old_ptl);
1433	if (ret == 1) {
1434		new_ptl = pmd_lockptr(mm, new_pmd);
1435		if (new_ptl != old_ptl)
1436			spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1437		pmd = pmdp_get_and_clear(mm, old_addr, old_pmd);
1438		VM_BUG_ON(!pmd_none(*new_pmd));
1439
1440		if (pmd_move_must_withdraw(new_ptl, old_ptl)) {
 
1441			pgtable_t pgtable;
1442			pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1443			pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1444		}
1445		set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
1446		if (new_ptl != old_ptl)
1447			spin_unlock(new_ptl);
1448		spin_unlock(old_ptl);
 
1449	}
1450out:
1451	return ret;
1452}
1453
1454/*
1455 * Returns
1456 *  - 0 if PMD could not be locked
1457 *  - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1458 *  - HPAGE_PMD_NR is protections changed and TLB flush necessary
1459 */
1460int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1461		unsigned long addr, pgprot_t newprot, int prot_numa)
1462{
1463	struct mm_struct *mm = vma->vm_mm;
1464	spinlock_t *ptl;
1465	int ret = 0;
1466
1467	if (__pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
 
1468		pmd_t entry;
 
1469		ret = 1;
1470		if (!prot_numa) {
1471			entry = pmdp_get_and_clear(mm, addr, pmd);
1472			if (pmd_numa(entry))
1473				entry = pmd_mknonnuma(entry);
 
 
 
 
 
 
 
 
 
1474			entry = pmd_modify(entry, newprot);
 
 
1475			ret = HPAGE_PMD_NR;
1476			set_pmd_at(mm, addr, pmd, entry);
1477			BUG_ON(pmd_write(entry));
1478		} else {
1479			struct page *page = pmd_page(*pmd);
1480
1481			/*
1482			 * Do not trap faults against the zero page. The
1483			 * read-only data is likely to be read-cached on the
1484			 * local CPU cache and it is less useful to know about
1485			 * local vs remote hits on the zero page.
1486			 */
1487			if (!is_huge_zero_page(page) &&
1488			    !pmd_numa(*pmd)) {
1489				pmdp_set_numa(mm, addr, pmd);
1490				ret = HPAGE_PMD_NR;
1491			}
1492		}
1493		spin_unlock(ptl);
1494	}
1495
1496	return ret;
1497}
1498
1499/*
1500 * Returns 1 if a given pmd maps a stable (not under splitting) thp.
1501 * Returns -1 if it maps a thp under splitting. Returns 0 otherwise.
1502 *
1503 * Note that if it returns 1, this routine returns without unlocking page
1504 * table locks. So callers must unlock them.
1505 */
1506int __pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma,
1507		spinlock_t **ptl)
1508{
1509	*ptl = pmd_lock(vma->vm_mm, pmd);
1510	if (likely(pmd_trans_huge(*pmd))) {
1511		if (unlikely(pmd_trans_splitting(*pmd))) {
1512			spin_unlock(*ptl);
1513			wait_split_huge_page(vma->anon_vma, pmd);
1514			return -1;
1515		} else {
1516			/* Thp mapped by 'pmd' is stable, so we can
1517			 * handle it as it is. */
1518			return 1;
1519		}
1520	}
1521	spin_unlock(*ptl);
1522	return 0;
1523}
1524
1525/*
1526 * This function returns whether a given @page is mapped onto the @address
1527 * in the virtual space of @mm.
1528 *
1529 * When it's true, this function returns *pmd with holding the page table lock
1530 * and passing it back to the caller via @ptl.
1531 * If it's false, returns NULL without holding the page table lock.
1532 */
1533pmd_t *page_check_address_pmd(struct page *page,
1534			      struct mm_struct *mm,
1535			      unsigned long address,
1536			      enum page_check_address_pmd_flag flag,
1537			      spinlock_t **ptl)
1538{
1539	pgd_t *pgd;
1540	pud_t *pud;
1541	pmd_t *pmd;
1542
1543	if (address & ~HPAGE_PMD_MASK)
1544		return NULL;
1545
1546	pgd = pgd_offset(mm, address);
1547	if (!pgd_present(*pgd))
1548		return NULL;
1549	pud = pud_offset(pgd, address);
1550	if (!pud_present(*pud))
1551		return NULL;
1552	pmd = pmd_offset(pud, address);
1553
1554	*ptl = pmd_lock(mm, pmd);
1555	if (!pmd_present(*pmd))
1556		goto unlock;
1557	if (pmd_page(*pmd) != page)
1558		goto unlock;
1559	/*
1560	 * split_vma() may create temporary aliased mappings. There is
1561	 * no risk as long as all huge pmd are found and have their
1562	 * splitting bit set before __split_huge_page_refcount
1563	 * runs. Finding the same huge pmd more than once during the
1564	 * same rmap walk is not a problem.
1565	 */
1566	if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
1567	    pmd_trans_splitting(*pmd))
1568		goto unlock;
1569	if (pmd_trans_huge(*pmd)) {
1570		VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
1571			  !pmd_trans_splitting(*pmd));
1572		return pmd;
1573	}
1574unlock:
1575	spin_unlock(*ptl);
1576	return NULL;
1577}
1578
1579static int __split_huge_page_splitting(struct page *page,
1580				       struct vm_area_struct *vma,
1581				       unsigned long address)
1582{
1583	struct mm_struct *mm = vma->vm_mm;
1584	spinlock_t *ptl;
1585	pmd_t *pmd;
1586	int ret = 0;
1587	/* For mmu_notifiers */
1588	const unsigned long mmun_start = address;
1589	const unsigned long mmun_end   = address + HPAGE_PMD_SIZE;
1590
1591	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1592	pmd = page_check_address_pmd(page, mm, address,
1593			PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG, &ptl);
1594	if (pmd) {
1595		/*
1596		 * We can't temporarily set the pmd to null in order
1597		 * to split it, the pmd must remain marked huge at all
1598		 * times or the VM won't take the pmd_trans_huge paths
1599		 * and it won't wait on the anon_vma->root->rwsem to
1600		 * serialize against split_huge_page*.
1601		 */
1602		pmdp_splitting_flush(vma, address, pmd);
1603		ret = 1;
1604		spin_unlock(ptl);
1605	}
1606	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1607
1608	return ret;
1609}
1610
1611static void __split_huge_page_refcount(struct page *page,
1612				       struct list_head *list)
1613{
1614	int i;
1615	struct zone *zone = page_zone(page);
1616	struct lruvec *lruvec;
1617	int tail_count = 0;
1618
1619	/* prevent PageLRU to go away from under us, and freeze lru stats */
1620	spin_lock_irq(&zone->lru_lock);
1621	lruvec = mem_cgroup_page_lruvec(page, zone);
1622
1623	compound_lock(page);
1624	/* complete memcg works before add pages to LRU */
1625	mem_cgroup_split_huge_fixup(page);
1626
1627	for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
1628		struct page *page_tail = page + i;
1629
1630		/* tail_page->_mapcount cannot change */
1631		BUG_ON(page_mapcount(page_tail) < 0);
1632		tail_count += page_mapcount(page_tail);
1633		/* check for overflow */
1634		BUG_ON(tail_count < 0);
1635		BUG_ON(atomic_read(&page_tail->_count) != 0);
1636		/*
1637		 * tail_page->_count is zero and not changing from
1638		 * under us. But get_page_unless_zero() may be running
1639		 * from under us on the tail_page. If we used
1640		 * atomic_set() below instead of atomic_add(), we
1641		 * would then run atomic_set() concurrently with
1642		 * get_page_unless_zero(), and atomic_set() is
1643		 * implemented in C not using locked ops. spin_unlock
1644		 * on x86 sometime uses locked ops because of PPro
1645		 * errata 66, 92, so unless somebody can guarantee
1646		 * atomic_set() here would be safe on all archs (and
1647		 * not only on x86), it's safer to use atomic_add().
1648		 */
1649		atomic_add(page_mapcount(page) + page_mapcount(page_tail) + 1,
1650			   &page_tail->_count);
1651
1652		/* after clearing PageTail the gup refcount can be released */
1653		smp_mb();
1654
1655		/*
1656		 * retain hwpoison flag of the poisoned tail page:
1657		 *   fix for the unsuitable process killed on Guest Machine(KVM)
1658		 *   by the memory-failure.
1659		 */
1660		page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP | __PG_HWPOISON;
1661		page_tail->flags |= (page->flags &
1662				     ((1L << PG_referenced) |
1663				      (1L << PG_swapbacked) |
1664				      (1L << PG_mlocked) |
1665				      (1L << PG_uptodate) |
1666				      (1L << PG_active) |
1667				      (1L << PG_unevictable)));
1668		page_tail->flags |= (1L << PG_dirty);
1669
1670		/* clear PageTail before overwriting first_page */
1671		smp_wmb();
1672
1673		/*
1674		 * __split_huge_page_splitting() already set the
1675		 * splitting bit in all pmd that could map this
1676		 * hugepage, that will ensure no CPU can alter the
1677		 * mapcount on the head page. The mapcount is only
1678		 * accounted in the head page and it has to be
1679		 * transferred to all tail pages in the below code. So
1680		 * for this code to be safe, the split the mapcount
1681		 * can't change. But that doesn't mean userland can't
1682		 * keep changing and reading the page contents while
1683		 * we transfer the mapcount, so the pmd splitting
1684		 * status is achieved setting a reserved bit in the
1685		 * pmd, not by clearing the present bit.
1686		*/
1687		page_tail->_mapcount = page->_mapcount;
1688
1689		BUG_ON(page_tail->mapping);
1690		page_tail->mapping = page->mapping;
1691
1692		page_tail->index = page->index + i;
1693		page_cpupid_xchg_last(page_tail, page_cpupid_last(page));
1694
1695		BUG_ON(!PageAnon(page_tail));
1696		BUG_ON(!PageUptodate(page_tail));
1697		BUG_ON(!PageDirty(page_tail));
1698		BUG_ON(!PageSwapBacked(page_tail));
1699
1700		lru_add_page_tail(page, page_tail, lruvec, list);
1701	}
1702	atomic_sub(tail_count, &page->_count);
1703	BUG_ON(atomic_read(&page->_count) <= 0);
1704
1705	__mod_zone_page_state(zone, NR_ANON_TRANSPARENT_HUGEPAGES, -1);
1706
1707	ClearPageCompound(page);
1708	compound_unlock(page);
1709	spin_unlock_irq(&zone->lru_lock);
1710
1711	for (i = 1; i < HPAGE_PMD_NR; i++) {
1712		struct page *page_tail = page + i;
1713		BUG_ON(page_count(page_tail) <= 0);
1714		/*
1715		 * Tail pages may be freed if there wasn't any mapping
1716		 * like if add_to_swap() is running on a lru page that
1717		 * had its mapping zapped. And freeing these pages
1718		 * requires taking the lru_lock so we do the put_page
1719		 * of the tail pages after the split is complete.
1720		 */
1721		put_page(page_tail);
1722	}
1723
1724	/*
1725	 * Only the head page (now become a regular page) is required
1726	 * to be pinned by the caller.
1727	 */
1728	BUG_ON(page_count(page) <= 0);
1729}
1730
1731static int __split_huge_page_map(struct page *page,
1732				 struct vm_area_struct *vma,
1733				 unsigned long address)
1734{
1735	struct mm_struct *mm = vma->vm_mm;
1736	spinlock_t *ptl;
1737	pmd_t *pmd, _pmd;
1738	int ret = 0, i;
1739	pgtable_t pgtable;
1740	unsigned long haddr;
1741
1742	pmd = page_check_address_pmd(page, mm, address,
1743			PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG, &ptl);
1744	if (pmd) {
1745		pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1746		pmd_populate(mm, &_pmd, pgtable);
1747
1748		haddr = address;
1749		for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1750			pte_t *pte, entry;
1751			BUG_ON(PageCompound(page+i));
1752			entry = mk_pte(page + i, vma->vm_page_prot);
1753			entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1754			if (!pmd_write(*pmd))
1755				entry = pte_wrprotect(entry);
1756			else
1757				BUG_ON(page_mapcount(page) != 1);
1758			if (!pmd_young(*pmd))
1759				entry = pte_mkold(entry);
1760			if (pmd_numa(*pmd))
1761				entry = pte_mknuma(entry);
1762			pte = pte_offset_map(&_pmd, haddr);
1763			BUG_ON(!pte_none(*pte));
1764			set_pte_at(mm, haddr, pte, entry);
1765			pte_unmap(pte);
1766		}
1767
1768		smp_wmb(); /* make pte visible before pmd */
1769		/*
1770		 * Up to this point the pmd is present and huge and
1771		 * userland has the whole access to the hugepage
1772		 * during the split (which happens in place). If we
1773		 * overwrite the pmd with the not-huge version
1774		 * pointing to the pte here (which of course we could
1775		 * if all CPUs were bug free), userland could trigger
1776		 * a small page size TLB miss on the small sized TLB
1777		 * while the hugepage TLB entry is still established
1778		 * in the huge TLB. Some CPU doesn't like that. See
1779		 * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
1780		 * Erratum 383 on page 93. Intel should be safe but is
1781		 * also warns that it's only safe if the permission
1782		 * and cache attributes of the two entries loaded in
1783		 * the two TLB is identical (which should be the case
1784		 * here). But it is generally safer to never allow
1785		 * small and huge TLB entries for the same virtual
1786		 * address to be loaded simultaneously. So instead of
1787		 * doing "pmd_populate(); flush_tlb_range();" we first
1788		 * mark the current pmd notpresent (atomically because
1789		 * here the pmd_trans_huge and pmd_trans_splitting
1790		 * must remain set at all times on the pmd until the
1791		 * split is complete for this pmd), then we flush the
1792		 * SMP TLB and finally we write the non-huge version
1793		 * of the pmd entry with pmd_populate.
1794		 */
1795		pmdp_invalidate(vma, address, pmd);
1796		pmd_populate(mm, pmd, pgtable);
1797		ret = 1;
1798		spin_unlock(ptl);
1799	}
1800
1801	return ret;
1802}
1803
1804/* must be called with anon_vma->root->rwsem held */
1805static void __split_huge_page(struct page *page,
1806			      struct anon_vma *anon_vma,
1807			      struct list_head *list)
1808{
1809	int mapcount, mapcount2;
1810	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1811	struct anon_vma_chain *avc;
1812
1813	BUG_ON(!PageHead(page));
1814	BUG_ON(PageTail(page));
1815
1816	mapcount = 0;
1817	anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1818		struct vm_area_struct *vma = avc->vma;
1819		unsigned long addr = vma_address(page, vma);
1820		BUG_ON(is_vma_temporary_stack(vma));
1821		mapcount += __split_huge_page_splitting(page, vma, addr);
1822	}
1823	/*
1824	 * It is critical that new vmas are added to the tail of the
1825	 * anon_vma list. This guarantes that if copy_huge_pmd() runs
1826	 * and establishes a child pmd before
1827	 * __split_huge_page_splitting() freezes the parent pmd (so if
1828	 * we fail to prevent copy_huge_pmd() from running until the
1829	 * whole __split_huge_page() is complete), we will still see
1830	 * the newly established pmd of the child later during the
1831	 * walk, to be able to set it as pmd_trans_splitting too.
1832	 */
1833	if (mapcount != page_mapcount(page))
1834		printk(KERN_ERR "mapcount %d page_mapcount %d\n",
1835		       mapcount, page_mapcount(page));
1836	BUG_ON(mapcount != page_mapcount(page));
1837
1838	__split_huge_page_refcount(page, list);
1839
1840	mapcount2 = 0;
1841	anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1842		struct vm_area_struct *vma = avc->vma;
1843		unsigned long addr = vma_address(page, vma);
1844		BUG_ON(is_vma_temporary_stack(vma));
1845		mapcount2 += __split_huge_page_map(page, vma, addr);
1846	}
1847	if (mapcount != mapcount2)
1848		printk(KERN_ERR "mapcount %d mapcount2 %d page_mapcount %d\n",
1849		       mapcount, mapcount2, page_mapcount(page));
1850	BUG_ON(mapcount != mapcount2);
1851}
1852
1853/*
1854 * Split a hugepage into normal pages. This doesn't change the position of head
1855 * page. If @list is null, tail pages will be added to LRU list, otherwise, to
1856 * @list. Both head page and tail pages will inherit mapping, flags, and so on
1857 * from the hugepage.
1858 * Return 0 if the hugepage is split successfully otherwise return 1.
1859 */
1860int split_huge_page_to_list(struct page *page, struct list_head *list)
1861{
1862	struct anon_vma *anon_vma;
1863	int ret = 1;
1864
1865	BUG_ON(is_huge_zero_page(page));
1866	BUG_ON(!PageAnon(page));
1867
1868	/*
1869	 * The caller does not necessarily hold an mmap_sem that would prevent
1870	 * the anon_vma disappearing so we first we take a reference to it
1871	 * and then lock the anon_vma for write. This is similar to
1872	 * page_lock_anon_vma_read except the write lock is taken to serialise
1873	 * against parallel split or collapse operations.
1874	 */
1875	anon_vma = page_get_anon_vma(page);
1876	if (!anon_vma)
1877		goto out;
1878	anon_vma_lock_write(anon_vma);
1879
1880	ret = 0;
1881	if (!PageCompound(page))
1882		goto out_unlock;
1883
1884	BUG_ON(!PageSwapBacked(page));
1885	__split_huge_page(page, anon_vma, list);
1886	count_vm_event(THP_SPLIT);
1887
1888	BUG_ON(PageCompound(page));
1889out_unlock:
1890	anon_vma_unlock_write(anon_vma);
1891	put_anon_vma(anon_vma);
1892out:
1893	return ret;
1894}
1895
1896#define VM_NO_THP (VM_SPECIAL | VM_HUGETLB | VM_SHARED | VM_MAYSHARE)
1897
1898int hugepage_madvise(struct vm_area_struct *vma,
1899		     unsigned long *vm_flags, int advice)
1900{
1901	switch (advice) {
1902	case MADV_HUGEPAGE:
1903#ifdef CONFIG_S390
1904		/*
1905		 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
1906		 * can't handle this properly after s390_enable_sie, so we simply
1907		 * ignore the madvise to prevent qemu from causing a SIGSEGV.
1908		 */
1909		if (mm_has_pgste(vma->vm_mm))
1910			return 0;
1911#endif
1912		/*
1913		 * Be somewhat over-protective like KSM for now!
1914		 */
1915		if (*vm_flags & (VM_HUGEPAGE | VM_NO_THP))
1916			return -EINVAL;
1917		*vm_flags &= ~VM_NOHUGEPAGE;
1918		*vm_flags |= VM_HUGEPAGE;
1919		/*
1920		 * If the vma become good for khugepaged to scan,
1921		 * register it here without waiting a page fault that
1922		 * may not happen any time soon.
1923		 */
1924		if (unlikely(khugepaged_enter_vma_merge(vma)))
1925			return -ENOMEM;
1926		break;
1927	case MADV_NOHUGEPAGE:
1928		/*
1929		 * Be somewhat over-protective like KSM for now!
1930		 */
1931		if (*vm_flags & (VM_NOHUGEPAGE | VM_NO_THP))
1932			return -EINVAL;
1933		*vm_flags &= ~VM_HUGEPAGE;
1934		*vm_flags |= VM_NOHUGEPAGE;
1935		/*
1936		 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
1937		 * this vma even if we leave the mm registered in khugepaged if
1938		 * it got registered before VM_NOHUGEPAGE was set.
1939		 */
1940		break;
1941	}
1942
1943	return 0;
1944}
1945
1946static int __init khugepaged_slab_init(void)
1947{
1948	mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
1949					  sizeof(struct mm_slot),
1950					  __alignof__(struct mm_slot), 0, NULL);
1951	if (!mm_slot_cache)
1952		return -ENOMEM;
1953
1954	return 0;
1955}
1956
 
 
 
 
 
1957static inline struct mm_slot *alloc_mm_slot(void)
1958{
1959	if (!mm_slot_cache)	/* initialization failed */
1960		return NULL;
1961	return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
1962}
1963
1964static inline void free_mm_slot(struct mm_slot *mm_slot)
1965{
1966	kmem_cache_free(mm_slot_cache, mm_slot);
1967}
1968
1969static struct mm_slot *get_mm_slot(struct mm_struct *mm)
1970{
1971	struct mm_slot *mm_slot;
1972
1973	hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
1974		if (mm == mm_slot->mm)
1975			return mm_slot;
1976
1977	return NULL;
1978}
1979
1980static void insert_to_mm_slots_hash(struct mm_struct *mm,
1981				    struct mm_slot *mm_slot)
1982{
1983	mm_slot->mm = mm;
1984	hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
1985}
1986
1987static inline int khugepaged_test_exit(struct mm_struct *mm)
1988{
1989	return atomic_read(&mm->mm_users) == 0;
1990}
1991
1992int __khugepaged_enter(struct mm_struct *mm)
1993{
1994	struct mm_slot *mm_slot;
1995	int wakeup;
1996
1997	mm_slot = alloc_mm_slot();
1998	if (!mm_slot)
1999		return -ENOMEM;
2000
2001	/* __khugepaged_exit() must not run from under us */
2002	VM_BUG_ON(khugepaged_test_exit(mm));
2003	if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
2004		free_mm_slot(mm_slot);
2005		return 0;
2006	}
2007
2008	spin_lock(&khugepaged_mm_lock);
2009	insert_to_mm_slots_hash(mm, mm_slot);
2010	/*
2011	 * Insert just behind the scanning cursor, to let the area settle
2012	 * down a little.
2013	 */
2014	wakeup = list_empty(&khugepaged_scan.mm_head);
2015	list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
2016	spin_unlock(&khugepaged_mm_lock);
2017
2018	atomic_inc(&mm->mm_count);
2019	if (wakeup)
2020		wake_up_interruptible(&khugepaged_wait);
2021
2022	return 0;
2023}
2024
2025int khugepaged_enter_vma_merge(struct vm_area_struct *vma)
 
2026{
2027	unsigned long hstart, hend;
2028	if (!vma->anon_vma)
2029		/*
2030		 * Not yet faulted in so we will register later in the
2031		 * page fault if needed.
2032		 */
2033		return 0;
2034	if (vma->vm_ops)
2035		/* khugepaged not yet working on file or special mappings */
2036		return 0;
2037	VM_BUG_ON(vma->vm_flags & VM_NO_THP);
2038	hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2039	hend = vma->vm_end & HPAGE_PMD_MASK;
2040	if (hstart < hend)
2041		return khugepaged_enter(vma);
2042	return 0;
2043}
2044
2045void __khugepaged_exit(struct mm_struct *mm)
2046{
2047	struct mm_slot *mm_slot;
2048	int free = 0;
2049
2050	spin_lock(&khugepaged_mm_lock);
2051	mm_slot = get_mm_slot(mm);
2052	if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
2053		hash_del(&mm_slot->hash);
2054		list_del(&mm_slot->mm_node);
2055		free = 1;
2056	}
2057	spin_unlock(&khugepaged_mm_lock);
2058
2059	if (free) {
2060		clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2061		free_mm_slot(mm_slot);
2062		mmdrop(mm);
2063	} else if (mm_slot) {
2064		/*
2065		 * This is required to serialize against
2066		 * khugepaged_test_exit() (which is guaranteed to run
2067		 * under mmap sem read mode). Stop here (after we
2068		 * return all pagetables will be destroyed) until
2069		 * khugepaged has finished working on the pagetables
2070		 * under the mmap_sem.
2071		 */
2072		down_write(&mm->mmap_sem);
2073		up_write(&mm->mmap_sem);
2074	}
2075}
2076
2077static void release_pte_page(struct page *page)
2078{
2079	/* 0 stands for page_is_file_cache(page) == false */
2080	dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
2081	unlock_page(page);
2082	putback_lru_page(page);
2083}
2084
2085static void release_pte_pages(pte_t *pte, pte_t *_pte)
2086{
2087	while (--_pte >= pte) {
2088		pte_t pteval = *_pte;
2089		if (!pte_none(pteval))
2090			release_pte_page(pte_page(pteval));
2091	}
2092}
2093
2094static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
2095					unsigned long address,
2096					pte_t *pte)
2097{
2098	struct page *page;
2099	pte_t *_pte;
2100	int referenced = 0, none = 0;
 
 
2101	for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
2102	     _pte++, address += PAGE_SIZE) {
2103		pte_t pteval = *_pte;
2104		if (pte_none(pteval)) {
2105			if (++none <= khugepaged_max_ptes_none)
 
 
2106				continue;
2107			else
 
2108				goto out;
 
2109		}
2110		if (!pte_present(pteval) || !pte_write(pteval))
 
2111			goto out;
 
2112		page = vm_normal_page(vma, address, pteval);
2113		if (unlikely(!page))
 
2114			goto out;
 
2115
2116		VM_BUG_ON_PAGE(PageCompound(page), page);
2117		VM_BUG_ON_PAGE(!PageAnon(page), page);
2118		VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
2119
2120		/* cannot use mapcount: can't collapse if there's a gup pin */
2121		if (page_count(page) != 1)
2122			goto out;
2123		/*
2124		 * We can do it before isolate_lru_page because the
2125		 * page can't be freed from under us. NOTE: PG_lock
2126		 * is needed to serialize against split_huge_page
2127		 * when invoked from the VM.
2128		 */
2129		if (!trylock_page(page))
 
2130			goto out;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2131		/*
2132		 * Isolate the page to avoid collapsing an hugepage
2133		 * currently in use by the VM.
2134		 */
2135		if (isolate_lru_page(page)) {
2136			unlock_page(page);
 
2137			goto out;
2138		}
2139		/* 0 stands for page_is_file_cache(page) == false */
2140		inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
2141		VM_BUG_ON_PAGE(!PageLocked(page), page);
2142		VM_BUG_ON_PAGE(PageLRU(page), page);
2143
2144		/* If there is no mapped pte young don't collapse the page */
2145		if (pte_young(pteval) || PageReferenced(page) ||
 
2146		    mmu_notifier_test_young(vma->vm_mm, address))
2147			referenced = 1;
2148	}
2149	if (likely(referenced))
2150		return 1;
 
 
 
 
 
 
 
 
 
2151out:
2152	release_pte_pages(pte, _pte);
 
 
2153	return 0;
2154}
2155
2156static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
2157				      struct vm_area_struct *vma,
2158				      unsigned long address,
2159				      spinlock_t *ptl)
2160{
2161	pte_t *_pte;
2162	for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
2163		pte_t pteval = *_pte;
2164		struct page *src_page;
2165
2166		if (pte_none(pteval)) {
2167			clear_user_highpage(page, address);
2168			add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
 
 
 
 
 
 
 
 
 
 
 
 
2169		} else {
2170			src_page = pte_page(pteval);
2171			copy_user_highpage(page, src_page, address, vma);
2172			VM_BUG_ON_PAGE(page_mapcount(src_page) != 1, src_page);
2173			release_pte_page(src_page);
2174			/*
2175			 * ptl mostly unnecessary, but preempt has to
2176			 * be disabled to update the per-cpu stats
2177			 * inside page_remove_rmap().
2178			 */
2179			spin_lock(ptl);
2180			/*
2181			 * paravirt calls inside pte_clear here are
2182			 * superfluous.
2183			 */
2184			pte_clear(vma->vm_mm, address, _pte);
2185			page_remove_rmap(src_page);
2186			spin_unlock(ptl);
2187			free_page_and_swap_cache(src_page);
2188		}
2189
2190		address += PAGE_SIZE;
2191		page++;
2192	}
2193}
2194
2195static void khugepaged_alloc_sleep(void)
2196{
2197	wait_event_freezable_timeout(khugepaged_wait, false,
2198			msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
 
 
 
 
2199}
2200
2201static int khugepaged_node_load[MAX_NUMNODES];
2202
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2203#ifdef CONFIG_NUMA
2204static int khugepaged_find_target_node(void)
2205{
2206	static int last_khugepaged_target_node = NUMA_NO_NODE;
2207	int nid, target_node = 0, max_value = 0;
2208
2209	/* find first node with max normal pages hit */
2210	for (nid = 0; nid < MAX_NUMNODES; nid++)
2211		if (khugepaged_node_load[nid] > max_value) {
2212			max_value = khugepaged_node_load[nid];
2213			target_node = nid;
2214		}
2215
2216	/* do some balance if several nodes have the same hit record */
2217	if (target_node <= last_khugepaged_target_node)
2218		for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
2219				nid++)
2220			if (max_value == khugepaged_node_load[nid]) {
2221				target_node = nid;
2222				break;
2223			}
2224
2225	last_khugepaged_target_node = target_node;
2226	return target_node;
2227}
2228
2229static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2230{
2231	if (IS_ERR(*hpage)) {
2232		if (!*wait)
2233			return false;
2234
2235		*wait = false;
2236		*hpage = NULL;
2237		khugepaged_alloc_sleep();
2238	} else if (*hpage) {
2239		put_page(*hpage);
2240		*hpage = NULL;
2241	}
2242
2243	return true;
2244}
2245
2246static struct page
2247*khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
2248		       struct vm_area_struct *vma, unsigned long address,
2249		       int node)
2250{
2251	VM_BUG_ON_PAGE(*hpage, *hpage);
 
2252	/*
2253	 * Allocate the page while the vma is still valid and under
2254	 * the mmap_sem read mode so there is no memory allocation
2255	 * later when we take the mmap_sem in write mode. This is more
2256	 * friendly behavior (OTOH it may actually hide bugs) to
2257	 * filesystems in userland with daemons allocating memory in
2258	 * the userland I/O paths.  Allocating memory with the
2259	 * mmap_sem in read mode is good idea also to allow greater
2260	 * scalability.
2261	 */
2262	*hpage = alloc_pages_exact_node(node, alloc_hugepage_gfpmask(
2263		khugepaged_defrag(), __GFP_OTHER_NODE), HPAGE_PMD_ORDER);
2264	/*
2265	 * After allocating the hugepage, release the mmap_sem read lock in
2266	 * preparation for taking it in write mode.
2267	 */
2268	up_read(&mm->mmap_sem);
 
 
2269	if (unlikely(!*hpage)) {
2270		count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2271		*hpage = ERR_PTR(-ENOMEM);
2272		return NULL;
2273	}
2274
 
2275	count_vm_event(THP_COLLAPSE_ALLOC);
2276	return *hpage;
2277}
2278#else
2279static int khugepaged_find_target_node(void)
2280{
2281	return 0;
2282}
2283
2284static inline struct page *alloc_hugepage(int defrag)
2285{
2286	return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
 
 
2287			   HPAGE_PMD_ORDER);
 
 
 
2288}
2289
2290static struct page *khugepaged_alloc_hugepage(bool *wait)
2291{
2292	struct page *hpage;
2293
2294	do {
2295		hpage = alloc_hugepage(khugepaged_defrag());
2296		if (!hpage) {
2297			count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2298			if (!*wait)
2299				return NULL;
2300
2301			*wait = false;
2302			khugepaged_alloc_sleep();
2303		} else
2304			count_vm_event(THP_COLLAPSE_ALLOC);
2305	} while (unlikely(!hpage) && likely(khugepaged_enabled()));
2306
2307	return hpage;
2308}
2309
2310static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2311{
2312	if (!*hpage)
2313		*hpage = khugepaged_alloc_hugepage(wait);
2314
2315	if (unlikely(!*hpage))
2316		return false;
2317
2318	return true;
2319}
2320
2321static struct page
2322*khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
2323		       struct vm_area_struct *vma, unsigned long address,
2324		       int node)
2325{
2326	up_read(&mm->mmap_sem);
2327	VM_BUG_ON(!*hpage);
 
2328	return  *hpage;
2329}
2330#endif
2331
2332static bool hugepage_vma_check(struct vm_area_struct *vma)
2333{
2334	if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
2335	    (vma->vm_flags & VM_NOHUGEPAGE))
2336		return false;
2337
2338	if (!vma->anon_vma || vma->vm_ops)
2339		return false;
2340	if (is_vma_temporary_stack(vma))
2341		return false;
2342	VM_BUG_ON(vma->vm_flags & VM_NO_THP);
2343	return true;
2344}
2345
2346static void collapse_huge_page(struct mm_struct *mm,
2347				   unsigned long address,
2348				   struct page **hpage,
2349				   struct vm_area_struct *vma,
2350				   int node)
2351{
2352	pmd_t *pmd, _pmd;
2353	pte_t *pte;
2354	pgtable_t pgtable;
2355	struct page *new_page;
2356	spinlock_t *pmd_ptl, *pte_ptl;
2357	int isolated;
2358	unsigned long hstart, hend;
 
2359	unsigned long mmun_start;	/* For mmu_notifiers */
2360	unsigned long mmun_end;		/* For mmu_notifiers */
 
2361
2362	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2363
 
 
 
2364	/* release the mmap_sem read lock. */
2365	new_page = khugepaged_alloc_page(hpage, mm, vma, address, node);
2366	if (!new_page)
2367		return;
 
 
2368
2369	if (unlikely(mem_cgroup_charge_anon(new_page, mm, GFP_KERNEL)))
2370		return;
 
 
2371
2372	/*
2373	 * Prevent all access to pagetables with the exception of
2374	 * gup_fast later hanlded by the ptep_clear_flush and the VM
2375	 * handled by the anon_vma lock + PG_lock.
2376	 */
2377	down_write(&mm->mmap_sem);
2378	if (unlikely(khugepaged_test_exit(mm)))
 
2379		goto out;
 
2380
2381	vma = find_vma(mm, address);
2382	if (!vma)
 
2383		goto out;
 
2384	hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2385	hend = vma->vm_end & HPAGE_PMD_MASK;
2386	if (address < hstart || address + HPAGE_PMD_SIZE > hend)
 
2387		goto out;
2388	if (!hugepage_vma_check(vma))
 
 
2389		goto out;
 
2390	pmd = mm_find_pmd(mm, address);
2391	if (!pmd)
2392		goto out;
2393	if (pmd_trans_huge(*pmd))
2394		goto out;
 
2395
2396	anon_vma_lock_write(vma->anon_vma);
2397
2398	pte = pte_offset_map(pmd, address);
2399	pte_ptl = pte_lockptr(mm, pmd);
2400
2401	mmun_start = address;
2402	mmun_end   = address + HPAGE_PMD_SIZE;
2403	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2404	pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
2405	/*
2406	 * After this gup_fast can't run anymore. This also removes
2407	 * any huge TLB entry from the CPU so we won't allow
2408	 * huge and small TLB entries for the same virtual address
2409	 * to avoid the risk of CPU bugs in that area.
2410	 */
2411	_pmd = pmdp_clear_flush(vma, address, pmd);
2412	spin_unlock(pmd_ptl);
2413	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2414
2415	spin_lock(pte_ptl);
2416	isolated = __collapse_huge_page_isolate(vma, address, pte);
2417	spin_unlock(pte_ptl);
2418
2419	if (unlikely(!isolated)) {
2420		pte_unmap(pte);
2421		spin_lock(pmd_ptl);
2422		BUG_ON(!pmd_none(*pmd));
2423		/*
2424		 * We can only use set_pmd_at when establishing
2425		 * hugepmds and never for establishing regular pmds that
2426		 * points to regular pagetables. Use pmd_populate for that
2427		 */
2428		pmd_populate(mm, pmd, pmd_pgtable(_pmd));
2429		spin_unlock(pmd_ptl);
2430		anon_vma_unlock_write(vma->anon_vma);
 
2431		goto out;
2432	}
2433
2434	/*
2435	 * All pages are isolated and locked so anon_vma rmap
2436	 * can't run anymore.
2437	 */
2438	anon_vma_unlock_write(vma->anon_vma);
2439
2440	__collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl);
2441	pte_unmap(pte);
2442	__SetPageUptodate(new_page);
2443	pgtable = pmd_pgtable(_pmd);
2444
2445	_pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
2446	_pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
2447
2448	/*
2449	 * spin_lock() below is not the equivalent of smp_wmb(), so
2450	 * this is needed to avoid the copy_huge_page writes to become
2451	 * visible after the set_pmd_at() write.
2452	 */
2453	smp_wmb();
2454
2455	spin_lock(pmd_ptl);
2456	BUG_ON(!pmd_none(*pmd));
2457	page_add_new_anon_rmap(new_page, vma, address);
 
 
2458	pgtable_trans_huge_deposit(mm, pmd, pgtable);
2459	set_pmd_at(mm, address, pmd, _pmd);
2460	update_mmu_cache_pmd(vma, address, pmd);
2461	spin_unlock(pmd_ptl);
2462
2463	*hpage = NULL;
2464
2465	khugepaged_pages_collapsed++;
 
2466out_up_write:
2467	up_write(&mm->mmap_sem);
 
2468	return;
2469
 
 
 
2470out:
2471	mem_cgroup_uncharge_page(new_page);
2472	goto out_up_write;
2473}
2474
2475static int khugepaged_scan_pmd(struct mm_struct *mm,
2476			       struct vm_area_struct *vma,
2477			       unsigned long address,
2478			       struct page **hpage)
2479{
2480	pmd_t *pmd;
2481	pte_t *pte, *_pte;
2482	int ret = 0, referenced = 0, none = 0;
2483	struct page *page;
2484	unsigned long _address;
2485	spinlock_t *ptl;
2486	int node = NUMA_NO_NODE;
 
2487
2488	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2489
2490	pmd = mm_find_pmd(mm, address);
2491	if (!pmd)
2492		goto out;
2493	if (pmd_trans_huge(*pmd))
2494		goto out;
 
2495
2496	memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
2497	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2498	for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
2499	     _pte++, _address += PAGE_SIZE) {
2500		pte_t pteval = *_pte;
2501		if (pte_none(pteval)) {
2502			if (++none <= khugepaged_max_ptes_none)
 
2503				continue;
2504			else
 
2505				goto out_unmap;
 
2506		}
2507		if (!pte_present(pteval) || !pte_write(pteval))
 
2508			goto out_unmap;
 
 
 
 
2509		page = vm_normal_page(vma, _address, pteval);
2510		if (unlikely(!page))
 
 
 
 
 
 
 
2511			goto out_unmap;
 
 
2512		/*
2513		 * Record which node the original page is from and save this
2514		 * information to khugepaged_node_load[].
2515		 * Khupaged will allocate hugepage from the node has the max
2516		 * hit record.
2517		 */
2518		node = page_to_nid(page);
 
 
 
 
2519		khugepaged_node_load[node]++;
2520		VM_BUG_ON_PAGE(PageCompound(page), page);
2521		if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
2522			goto out_unmap;
2523		/* cannot use mapcount: can't collapse if there's a gup pin */
2524		if (page_count(page) != 1)
 
 
 
 
 
2525			goto out_unmap;
2526		if (pte_young(pteval) || PageReferenced(page) ||
 
 
 
 
 
 
 
 
 
 
 
 
2527		    mmu_notifier_test_young(vma->vm_mm, address))
2528			referenced = 1;
 
 
 
 
 
 
 
 
 
 
2529	}
2530	if (referenced)
2531		ret = 1;
2532out_unmap:
2533	pte_unmap_unlock(pte, ptl);
2534	if (ret) {
2535		node = khugepaged_find_target_node();
2536		/* collapse_huge_page will return with the mmap_sem released */
2537		collapse_huge_page(mm, address, hpage, vma, node);
2538	}
2539out:
 
 
2540	return ret;
2541}
2542
2543static void collect_mm_slot(struct mm_slot *mm_slot)
2544{
2545	struct mm_struct *mm = mm_slot->mm;
2546
2547	VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2548
2549	if (khugepaged_test_exit(mm)) {
2550		/* free mm_slot */
2551		hash_del(&mm_slot->hash);
2552		list_del(&mm_slot->mm_node);
2553
2554		/*
2555		 * Not strictly needed because the mm exited already.
2556		 *
2557		 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2558		 */
2559
2560		/* khugepaged_mm_lock actually not necessary for the below */
2561		free_mm_slot(mm_slot);
2562		mmdrop(mm);
2563	}
2564}
2565
2566static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2567					    struct page **hpage)
2568	__releases(&khugepaged_mm_lock)
2569	__acquires(&khugepaged_mm_lock)
2570{
2571	struct mm_slot *mm_slot;
2572	struct mm_struct *mm;
2573	struct vm_area_struct *vma;
2574	int progress = 0;
2575
2576	VM_BUG_ON(!pages);
2577	VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2578
2579	if (khugepaged_scan.mm_slot)
2580		mm_slot = khugepaged_scan.mm_slot;
2581	else {
2582		mm_slot = list_entry(khugepaged_scan.mm_head.next,
2583				     struct mm_slot, mm_node);
2584		khugepaged_scan.address = 0;
2585		khugepaged_scan.mm_slot = mm_slot;
2586	}
2587	spin_unlock(&khugepaged_mm_lock);
2588
2589	mm = mm_slot->mm;
2590	down_read(&mm->mmap_sem);
2591	if (unlikely(khugepaged_test_exit(mm)))
2592		vma = NULL;
2593	else
2594		vma = find_vma(mm, khugepaged_scan.address);
2595
2596	progress++;
2597	for (; vma; vma = vma->vm_next) {
2598		unsigned long hstart, hend;
2599
2600		cond_resched();
2601		if (unlikely(khugepaged_test_exit(mm))) {
2602			progress++;
2603			break;
2604		}
2605		if (!hugepage_vma_check(vma)) {
2606skip:
2607			progress++;
2608			continue;
2609		}
2610		hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2611		hend = vma->vm_end & HPAGE_PMD_MASK;
2612		if (hstart >= hend)
2613			goto skip;
2614		if (khugepaged_scan.address > hend)
2615			goto skip;
2616		if (khugepaged_scan.address < hstart)
2617			khugepaged_scan.address = hstart;
2618		VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2619
2620		while (khugepaged_scan.address < hend) {
2621			int ret;
2622			cond_resched();
2623			if (unlikely(khugepaged_test_exit(mm)))
2624				goto breakouterloop;
2625
2626			VM_BUG_ON(khugepaged_scan.address < hstart ||
2627				  khugepaged_scan.address + HPAGE_PMD_SIZE >
2628				  hend);
2629			ret = khugepaged_scan_pmd(mm, vma,
2630						  khugepaged_scan.address,
2631						  hpage);
2632			/* move to next address */
2633			khugepaged_scan.address += HPAGE_PMD_SIZE;
2634			progress += HPAGE_PMD_NR;
2635			if (ret)
2636				/* we released mmap_sem so break loop */
2637				goto breakouterloop_mmap_sem;
2638			if (progress >= pages)
2639				goto breakouterloop;
2640		}
2641	}
2642breakouterloop:
2643	up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2644breakouterloop_mmap_sem:
2645
2646	spin_lock(&khugepaged_mm_lock);
2647	VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2648	/*
2649	 * Release the current mm_slot if this mm is about to die, or
2650	 * if we scanned all vmas of this mm.
2651	 */
2652	if (khugepaged_test_exit(mm) || !vma) {
2653		/*
2654		 * Make sure that if mm_users is reaching zero while
2655		 * khugepaged runs here, khugepaged_exit will find
2656		 * mm_slot not pointing to the exiting mm.
2657		 */
2658		if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2659			khugepaged_scan.mm_slot = list_entry(
2660				mm_slot->mm_node.next,
2661				struct mm_slot, mm_node);
2662			khugepaged_scan.address = 0;
2663		} else {
2664			khugepaged_scan.mm_slot = NULL;
2665			khugepaged_full_scans++;
2666		}
2667
2668		collect_mm_slot(mm_slot);
2669	}
2670
2671	return progress;
2672}
2673
2674static int khugepaged_has_work(void)
2675{
2676	return !list_empty(&khugepaged_scan.mm_head) &&
2677		khugepaged_enabled();
2678}
2679
2680static int khugepaged_wait_event(void)
2681{
2682	return !list_empty(&khugepaged_scan.mm_head) ||
2683		kthread_should_stop();
2684}
2685
2686static void khugepaged_do_scan(void)
2687{
2688	struct page *hpage = NULL;
2689	unsigned int progress = 0, pass_through_head = 0;
2690	unsigned int pages = khugepaged_pages_to_scan;
2691	bool wait = true;
2692
2693	barrier(); /* write khugepaged_pages_to_scan to local stack */
2694
2695	while (progress < pages) {
2696		if (!khugepaged_prealloc_page(&hpage, &wait))
2697			break;
2698
2699		cond_resched();
2700
2701		if (unlikely(kthread_should_stop() || freezing(current)))
2702			break;
2703
2704		spin_lock(&khugepaged_mm_lock);
2705		if (!khugepaged_scan.mm_slot)
2706			pass_through_head++;
2707		if (khugepaged_has_work() &&
2708		    pass_through_head < 2)
2709			progress += khugepaged_scan_mm_slot(pages - progress,
2710							    &hpage);
2711		else
2712			progress = pages;
2713		spin_unlock(&khugepaged_mm_lock);
2714	}
2715
2716	if (!IS_ERR_OR_NULL(hpage))
2717		put_page(hpage);
2718}
2719
2720static void khugepaged_wait_work(void)
2721{
2722	try_to_freeze();
2723
2724	if (khugepaged_has_work()) {
2725		if (!khugepaged_scan_sleep_millisecs)
2726			return;
2727
2728		wait_event_freezable_timeout(khugepaged_wait,
2729					     kthread_should_stop(),
2730			msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
2731		return;
2732	}
2733
2734	if (khugepaged_enabled())
2735		wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2736}
2737
2738static int khugepaged(void *none)
2739{
2740	struct mm_slot *mm_slot;
2741
2742	set_freezable();
2743	set_user_nice(current, 19);
2744
2745	while (!kthread_should_stop()) {
2746		khugepaged_do_scan();
2747		khugepaged_wait_work();
2748	}
2749
2750	spin_lock(&khugepaged_mm_lock);
2751	mm_slot = khugepaged_scan.mm_slot;
2752	khugepaged_scan.mm_slot = NULL;
2753	if (mm_slot)
2754		collect_mm_slot(mm_slot);
2755	spin_unlock(&khugepaged_mm_lock);
2756	return 0;
2757}
2758
2759static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2760		unsigned long haddr, pmd_t *pmd)
2761{
2762	struct mm_struct *mm = vma->vm_mm;
2763	pgtable_t pgtable;
2764	pmd_t _pmd;
2765	int i;
2766
2767	pmdp_clear_flush(vma, haddr, pmd);
2768	/* leave pmd empty until pte is filled */
 
2769
2770	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2771	pmd_populate(mm, &_pmd, pgtable);
2772
2773	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2774		pte_t *pte, entry;
2775		entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2776		entry = pte_mkspecial(entry);
2777		pte = pte_offset_map(&_pmd, haddr);
2778		VM_BUG_ON(!pte_none(*pte));
2779		set_pte_at(mm, haddr, pte, entry);
2780		pte_unmap(pte);
2781	}
2782	smp_wmb(); /* make pte visible before pmd */
2783	pmd_populate(mm, pmd, pgtable);
2784	put_huge_zero_page();
2785}
2786
2787void __split_huge_page_pmd(struct vm_area_struct *vma, unsigned long address,
2788		pmd_t *pmd)
2789{
2790	spinlock_t *ptl;
2791	struct page *page;
2792	struct mm_struct *mm = vma->vm_mm;
2793	unsigned long haddr = address & HPAGE_PMD_MASK;
2794	unsigned long mmun_start;	/* For mmu_notifiers */
2795	unsigned long mmun_end;		/* For mmu_notifiers */
2796
2797	BUG_ON(vma->vm_start > haddr || vma->vm_end < haddr + HPAGE_PMD_SIZE);
 
2798
2799	mmun_start = haddr;
2800	mmun_end   = haddr + HPAGE_PMD_SIZE;
2801again:
2802	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2803	ptl = pmd_lock(mm, pmd);
2804	if (unlikely(!pmd_trans_huge(*pmd))) {
2805		spin_unlock(ptl);
2806		mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2807		return;
2808	}
2809	if (is_huge_zero_pmd(*pmd)) {
2810		__split_huge_zero_page_pmd(vma, haddr, pmd);
2811		spin_unlock(ptl);
2812		mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2813		return;
 
 
2814	}
 
2815	page = pmd_page(*pmd);
2816	VM_BUG_ON_PAGE(!page_count(page), page);
2817	get_page(page);
2818	spin_unlock(ptl);
2819	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
 
2820
2821	split_huge_page(page);
 
 
2822
2823	put_page(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2824
2825	/*
2826	 * We don't always have down_write of mmap_sem here: a racing
2827	 * do_huge_pmd_wp_page() might have copied-on-write to another
2828	 * huge page before our split_huge_page() got the anon_vma lock.
2829	 */
2830	if (unlikely(pmd_trans_huge(*pmd)))
2831		goto again;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2832}
2833
2834void split_huge_page_pmd_mm(struct mm_struct *mm, unsigned long address,
2835		pmd_t *pmd)
2836{
2837	struct vm_area_struct *vma;
 
 
2838
2839	vma = find_vma(mm, address);
2840	BUG_ON(vma == NULL);
2841	split_huge_page_pmd(vma, address, pmd);
 
 
 
 
 
 
 
 
 
2842}
2843
2844static void split_huge_page_address(struct mm_struct *mm,
2845				    unsigned long address)
2846{
 
 
2847	pmd_t *pmd;
2848
2849	VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
 
 
2850
2851	pmd = mm_find_pmd(mm, address);
2852	if (!pmd)
 
 
 
 
 
 
 
 
 
 
 
 
2853		return;
 
2854	/*
2855	 * Caller holds the mmap_sem write mode, so a huge pmd cannot
2856	 * materialize from under us.
2857	 */
2858	split_huge_page_pmd_mm(mm, address, pmd);
2859}
2860
2861void __vma_adjust_trans_huge(struct vm_area_struct *vma,
2862			     unsigned long start,
2863			     unsigned long end,
2864			     long adjust_next)
2865{
2866	/*
2867	 * If the new start address isn't hpage aligned and it could
2868	 * previously contain an hugepage: check if we need to split
2869	 * an huge pmd.
2870	 */
2871	if (start & ~HPAGE_PMD_MASK &&
2872	    (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2873	    (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2874		split_huge_page_address(vma->vm_mm, start);
2875
2876	/*
2877	 * If the new end address isn't hpage aligned and it could
2878	 * previously contain an hugepage: check if we need to split
2879	 * an huge pmd.
2880	 */
2881	if (end & ~HPAGE_PMD_MASK &&
2882	    (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2883	    (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2884		split_huge_page_address(vma->vm_mm, end);
2885
2886	/*
2887	 * If we're also updating the vma->vm_next->vm_start, if the new
2888	 * vm_next->vm_start isn't page aligned and it could previously
2889	 * contain an hugepage: check if we need to split an huge pmd.
2890	 */
2891	if (adjust_next > 0) {
2892		struct vm_area_struct *next = vma->vm_next;
2893		unsigned long nstart = next->vm_start;
2894		nstart += adjust_next << PAGE_SHIFT;
2895		if (nstart & ~HPAGE_PMD_MASK &&
2896		    (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2897		    (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2898			split_huge_page_address(next->vm_mm, nstart);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2899	}
 
 
2900}
v4.6
   1/*
   2 *  Copyright (C) 2009  Red Hat, Inc.
   3 *
   4 *  This work is licensed under the terms of the GNU GPL, version 2. See
   5 *  the COPYING file in the top-level directory.
   6 */
   7
   8#define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
   9
  10#include <linux/mm.h>
  11#include <linux/sched.h>
  12#include <linux/highmem.h>
  13#include <linux/hugetlb.h>
  14#include <linux/mmu_notifier.h>
  15#include <linux/rmap.h>
  16#include <linux/swap.h>
  17#include <linux/shrinker.h>
  18#include <linux/mm_inline.h>
  19#include <linux/swapops.h>
  20#include <linux/dax.h>
  21#include <linux/kthread.h>
  22#include <linux/khugepaged.h>
  23#include <linux/freezer.h>
  24#include <linux/pfn_t.h>
  25#include <linux/mman.h>
  26#include <linux/memremap.h>
  27#include <linux/pagemap.h>
  28#include <linux/debugfs.h>
  29#include <linux/migrate.h>
  30#include <linux/hashtable.h>
  31#include <linux/userfaultfd_k.h>
  32#include <linux/page_idle.h>
  33
  34#include <asm/tlb.h>
  35#include <asm/pgalloc.h>
  36#include "internal.h"
  37
  38enum scan_result {
  39	SCAN_FAIL,
  40	SCAN_SUCCEED,
  41	SCAN_PMD_NULL,
  42	SCAN_EXCEED_NONE_PTE,
  43	SCAN_PTE_NON_PRESENT,
  44	SCAN_PAGE_RO,
  45	SCAN_NO_REFERENCED_PAGE,
  46	SCAN_PAGE_NULL,
  47	SCAN_SCAN_ABORT,
  48	SCAN_PAGE_COUNT,
  49	SCAN_PAGE_LRU,
  50	SCAN_PAGE_LOCK,
  51	SCAN_PAGE_ANON,
  52	SCAN_PAGE_COMPOUND,
  53	SCAN_ANY_PROCESS,
  54	SCAN_VMA_NULL,
  55	SCAN_VMA_CHECK,
  56	SCAN_ADDRESS_RANGE,
  57	SCAN_SWAP_CACHE_PAGE,
  58	SCAN_DEL_PAGE_LRU,
  59	SCAN_ALLOC_HUGE_PAGE_FAIL,
  60	SCAN_CGROUP_CHARGE_FAIL
  61};
  62
  63#define CREATE_TRACE_POINTS
  64#include <trace/events/huge_memory.h>
  65
  66/*
  67 * By default transparent hugepage support is disabled in order that avoid
  68 * to risk increase the memory footprint of applications without a guaranteed
  69 * benefit. When transparent hugepage support is enabled, is for all mappings,
  70 * and khugepaged scans all mappings.
  71 * Defrag is invoked by khugepaged hugepage allocations and by page faults
  72 * for all hugepage allocations.
  73 */
  74unsigned long transparent_hugepage_flags __read_mostly =
  75#ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
  76	(1<<TRANSPARENT_HUGEPAGE_FLAG)|
  77#endif
  78#ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
  79	(1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
  80#endif
  81	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
  82	(1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
  83	(1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
  84
  85/* default scan 8*512 pte (or vmas) every 30 second */
  86static unsigned int khugepaged_pages_to_scan __read_mostly;
  87static unsigned int khugepaged_pages_collapsed;
  88static unsigned int khugepaged_full_scans;
  89static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
  90/* during fragmentation poll the hugepage allocator once every minute */
  91static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
  92static struct task_struct *khugepaged_thread __read_mostly;
  93static DEFINE_MUTEX(khugepaged_mutex);
  94static DEFINE_SPINLOCK(khugepaged_mm_lock);
  95static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
  96/*
  97 * default collapse hugepages if there is at least one pte mapped like
  98 * it would have happened if the vma was large enough during page
  99 * fault.
 100 */
 101static unsigned int khugepaged_max_ptes_none __read_mostly;
 102
 103static int khugepaged(void *none);
 104static int khugepaged_slab_init(void);
 105static void khugepaged_slab_exit(void);
 106
 107#define MM_SLOTS_HASH_BITS 10
 108static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
 109
 110static struct kmem_cache *mm_slot_cache __read_mostly;
 111
 112/**
 113 * struct mm_slot - hash lookup from mm to mm_slot
 114 * @hash: hash collision list
 115 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
 116 * @mm: the mm that this information is valid for
 117 */
 118struct mm_slot {
 119	struct hlist_node hash;
 120	struct list_head mm_node;
 121	struct mm_struct *mm;
 122};
 123
 124/**
 125 * struct khugepaged_scan - cursor for scanning
 126 * @mm_head: the head of the mm list to scan
 127 * @mm_slot: the current mm_slot we are scanning
 128 * @address: the next address inside that to be scanned
 129 *
 130 * There is only the one khugepaged_scan instance of this cursor structure.
 131 */
 132struct khugepaged_scan {
 133	struct list_head mm_head;
 134	struct mm_slot *mm_slot;
 135	unsigned long address;
 136};
 137static struct khugepaged_scan khugepaged_scan = {
 138	.mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
 139};
 140
 141static struct shrinker deferred_split_shrinker;
 142
 143static void set_recommended_min_free_kbytes(void)
 144{
 145	struct zone *zone;
 146	int nr_zones = 0;
 147	unsigned long recommended_min;
 148
 
 
 
 149	for_each_populated_zone(zone)
 150		nr_zones++;
 151
 152	/* Ensure 2 pageblocks are free to assist fragmentation avoidance */
 153	recommended_min = pageblock_nr_pages * nr_zones * 2;
 154
 155	/*
 156	 * Make sure that on average at least two pageblocks are almost free
 157	 * of another type, one for a migratetype to fall back to and a
 158	 * second to avoid subsequent fallbacks of other types There are 3
 159	 * MIGRATE_TYPES we care about.
 160	 */
 161	recommended_min += pageblock_nr_pages * nr_zones *
 162			   MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
 163
 164	/* don't ever allow to reserve more than 5% of the lowmem */
 165	recommended_min = min(recommended_min,
 166			      (unsigned long) nr_free_buffer_pages() / 20);
 167	recommended_min <<= (PAGE_SHIFT-10);
 168
 169	if (recommended_min > min_free_kbytes) {
 170		if (user_min_free_kbytes >= 0)
 171			pr_info("raising min_free_kbytes from %d to %lu to help transparent hugepage allocations\n",
 
 172				min_free_kbytes, recommended_min);
 173
 174		min_free_kbytes = recommended_min;
 175	}
 176	setup_per_zone_wmarks();
 
 177}
 
 178
 179static int start_stop_khugepaged(void)
 180{
 181	int err = 0;
 182	if (khugepaged_enabled()) {
 183		if (!khugepaged_thread)
 184			khugepaged_thread = kthread_run(khugepaged, NULL,
 185							"khugepaged");
 186		if (IS_ERR(khugepaged_thread)) {
 187			pr_err("khugepaged: kthread_run(khugepaged) failed\n");
 
 188			err = PTR_ERR(khugepaged_thread);
 189			khugepaged_thread = NULL;
 190			goto fail;
 191		}
 192
 193		if (!list_empty(&khugepaged_scan.mm_head))
 194			wake_up_interruptible(&khugepaged_wait);
 195
 196		set_recommended_min_free_kbytes();
 197	} else if (khugepaged_thread) {
 198		kthread_stop(khugepaged_thread);
 199		khugepaged_thread = NULL;
 200	}
 201fail:
 202	return err;
 203}
 204
 205static atomic_t huge_zero_refcount;
 206struct page *huge_zero_page __read_mostly;
 
 
 
 
 
 207
 208struct page *get_huge_zero_page(void)
 
 
 
 
 
 209{
 210	struct page *zero_page;
 211retry:
 212	if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
 213		return READ_ONCE(huge_zero_page);
 214
 215	zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
 216			HPAGE_PMD_ORDER);
 217	if (!zero_page) {
 218		count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
 219		return NULL;
 220	}
 221	count_vm_event(THP_ZERO_PAGE_ALLOC);
 222	preempt_disable();
 223	if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
 224		preempt_enable();
 225		__free_pages(zero_page, compound_order(zero_page));
 226		goto retry;
 227	}
 228
 229	/* We take additional reference here. It will be put back by shrinker */
 230	atomic_set(&huge_zero_refcount, 2);
 231	preempt_enable();
 232	return READ_ONCE(huge_zero_page);
 233}
 234
 235void put_huge_zero_page(void)
 236{
 237	/*
 238	 * Counter should never go to zero here. Only shrinker can put
 239	 * last reference.
 240	 */
 241	BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
 242}
 243
 244static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
 245					struct shrink_control *sc)
 246{
 247	/* we can free zero page only if last reference remains */
 248	return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
 249}
 250
 251static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
 252				       struct shrink_control *sc)
 253{
 254	if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
 255		struct page *zero_page = xchg(&huge_zero_page, NULL);
 256		BUG_ON(zero_page == NULL);
 257		__free_pages(zero_page, compound_order(zero_page));
 258		return HPAGE_PMD_NR;
 259	}
 260
 261	return 0;
 262}
 263
 264static struct shrinker huge_zero_page_shrinker = {
 265	.count_objects = shrink_huge_zero_page_count,
 266	.scan_objects = shrink_huge_zero_page_scan,
 267	.seeks = DEFAULT_SEEKS,
 268};
 269
 270#ifdef CONFIG_SYSFS
 271
 272static ssize_t triple_flag_store(struct kobject *kobj,
 
 
 
 
 
 
 
 
 
 
 
 
 
 273				 struct kobj_attribute *attr,
 274				 const char *buf, size_t count,
 275				 enum transparent_hugepage_flag enabled,
 276				 enum transparent_hugepage_flag deferred,
 277				 enum transparent_hugepage_flag req_madv)
 278{
 279	if (!memcmp("defer", buf,
 280		    min(sizeof("defer")-1, count))) {
 281		if (enabled == deferred)
 282			return -EINVAL;
 283		clear_bit(enabled, &transparent_hugepage_flags);
 284		clear_bit(req_madv, &transparent_hugepage_flags);
 285		set_bit(deferred, &transparent_hugepage_flags);
 286	} else if (!memcmp("always", buf,
 287		    min(sizeof("always")-1, count))) {
 288		clear_bit(deferred, &transparent_hugepage_flags);
 289		clear_bit(req_madv, &transparent_hugepage_flags);
 290		set_bit(enabled, &transparent_hugepage_flags);
 291	} else if (!memcmp("madvise", buf,
 292			   min(sizeof("madvise")-1, count))) {
 293		clear_bit(enabled, &transparent_hugepage_flags);
 294		clear_bit(deferred, &transparent_hugepage_flags);
 295		set_bit(req_madv, &transparent_hugepage_flags);
 296	} else if (!memcmp("never", buf,
 297			   min(sizeof("never")-1, count))) {
 298		clear_bit(enabled, &transparent_hugepage_flags);
 299		clear_bit(req_madv, &transparent_hugepage_flags);
 300		clear_bit(deferred, &transparent_hugepage_flags);
 301	} else
 302		return -EINVAL;
 303
 304	return count;
 305}
 306
 307static ssize_t enabled_show(struct kobject *kobj,
 308			    struct kobj_attribute *attr, char *buf)
 309{
 310	if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
 311		return sprintf(buf, "[always] madvise never\n");
 312	else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
 313		return sprintf(buf, "always [madvise] never\n");
 314	else
 315		return sprintf(buf, "always madvise [never]\n");
 316}
 317
 318static ssize_t enabled_store(struct kobject *kobj,
 319			     struct kobj_attribute *attr,
 320			     const char *buf, size_t count)
 321{
 322	ssize_t ret;
 323
 324	ret = triple_flag_store(kobj, attr, buf, count,
 325				TRANSPARENT_HUGEPAGE_FLAG,
 326				TRANSPARENT_HUGEPAGE_FLAG,
 327				TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
 328
 329	if (ret > 0) {
 330		int err;
 331
 332		mutex_lock(&khugepaged_mutex);
 333		err = start_stop_khugepaged();
 334		mutex_unlock(&khugepaged_mutex);
 335
 336		if (err)
 337			ret = err;
 338	}
 339
 340	return ret;
 341}
 342static struct kobj_attribute enabled_attr =
 343	__ATTR(enabled, 0644, enabled_show, enabled_store);
 344
 345static ssize_t single_flag_show(struct kobject *kobj,
 346				struct kobj_attribute *attr, char *buf,
 347				enum transparent_hugepage_flag flag)
 348{
 349	return sprintf(buf, "%d\n",
 350		       !!test_bit(flag, &transparent_hugepage_flags));
 351}
 352
 353static ssize_t single_flag_store(struct kobject *kobj,
 354				 struct kobj_attribute *attr,
 355				 const char *buf, size_t count,
 356				 enum transparent_hugepage_flag flag)
 357{
 358	unsigned long value;
 359	int ret;
 360
 361	ret = kstrtoul(buf, 10, &value);
 362	if (ret < 0)
 363		return ret;
 364	if (value > 1)
 365		return -EINVAL;
 366
 367	if (value)
 368		set_bit(flag, &transparent_hugepage_flags);
 369	else
 370		clear_bit(flag, &transparent_hugepage_flags);
 371
 372	return count;
 373}
 374
 375/*
 376 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
 377 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
 378 * memory just to allocate one more hugepage.
 379 */
 380static ssize_t defrag_show(struct kobject *kobj,
 381			   struct kobj_attribute *attr, char *buf)
 382{
 383	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
 384		return sprintf(buf, "[always] defer madvise never\n");
 385	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
 386		return sprintf(buf, "always [defer] madvise never\n");
 387	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
 388		return sprintf(buf, "always defer [madvise] never\n");
 389	else
 390		return sprintf(buf, "always defer madvise [never]\n");
 391
 392}
 393static ssize_t defrag_store(struct kobject *kobj,
 394			    struct kobj_attribute *attr,
 395			    const char *buf, size_t count)
 396{
 397	return triple_flag_store(kobj, attr, buf, count,
 398				 TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
 399				 TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
 400				 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
 401}
 402static struct kobj_attribute defrag_attr =
 403	__ATTR(defrag, 0644, defrag_show, defrag_store);
 404
 405static ssize_t use_zero_page_show(struct kobject *kobj,
 406		struct kobj_attribute *attr, char *buf)
 407{
 408	return single_flag_show(kobj, attr, buf,
 409				TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
 410}
 411static ssize_t use_zero_page_store(struct kobject *kobj,
 412		struct kobj_attribute *attr, const char *buf, size_t count)
 413{
 414	return single_flag_store(kobj, attr, buf, count,
 415				 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
 416}
 417static struct kobj_attribute use_zero_page_attr =
 418	__ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
 419#ifdef CONFIG_DEBUG_VM
 420static ssize_t debug_cow_show(struct kobject *kobj,
 421				struct kobj_attribute *attr, char *buf)
 422{
 423	return single_flag_show(kobj, attr, buf,
 424				TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
 425}
 426static ssize_t debug_cow_store(struct kobject *kobj,
 427			       struct kobj_attribute *attr,
 428			       const char *buf, size_t count)
 429{
 430	return single_flag_store(kobj, attr, buf, count,
 431				 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
 432}
 433static struct kobj_attribute debug_cow_attr =
 434	__ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
 435#endif /* CONFIG_DEBUG_VM */
 436
 437static struct attribute *hugepage_attr[] = {
 438	&enabled_attr.attr,
 439	&defrag_attr.attr,
 440	&use_zero_page_attr.attr,
 441#ifdef CONFIG_DEBUG_VM
 442	&debug_cow_attr.attr,
 443#endif
 444	NULL,
 445};
 446
 447static struct attribute_group hugepage_attr_group = {
 448	.attrs = hugepage_attr,
 449};
 450
 451static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
 452					 struct kobj_attribute *attr,
 453					 char *buf)
 454{
 455	return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
 456}
 457
 458static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
 459					  struct kobj_attribute *attr,
 460					  const char *buf, size_t count)
 461{
 462	unsigned long msecs;
 463	int err;
 464
 465	err = kstrtoul(buf, 10, &msecs);
 466	if (err || msecs > UINT_MAX)
 467		return -EINVAL;
 468
 469	khugepaged_scan_sleep_millisecs = msecs;
 470	wake_up_interruptible(&khugepaged_wait);
 471
 472	return count;
 473}
 474static struct kobj_attribute scan_sleep_millisecs_attr =
 475	__ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
 476	       scan_sleep_millisecs_store);
 477
 478static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
 479					  struct kobj_attribute *attr,
 480					  char *buf)
 481{
 482	return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
 483}
 484
 485static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
 486					   struct kobj_attribute *attr,
 487					   const char *buf, size_t count)
 488{
 489	unsigned long msecs;
 490	int err;
 491
 492	err = kstrtoul(buf, 10, &msecs);
 493	if (err || msecs > UINT_MAX)
 494		return -EINVAL;
 495
 496	khugepaged_alloc_sleep_millisecs = msecs;
 497	wake_up_interruptible(&khugepaged_wait);
 498
 499	return count;
 500}
 501static struct kobj_attribute alloc_sleep_millisecs_attr =
 502	__ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
 503	       alloc_sleep_millisecs_store);
 504
 505static ssize_t pages_to_scan_show(struct kobject *kobj,
 506				  struct kobj_attribute *attr,
 507				  char *buf)
 508{
 509	return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
 510}
 511static ssize_t pages_to_scan_store(struct kobject *kobj,
 512				   struct kobj_attribute *attr,
 513				   const char *buf, size_t count)
 514{
 515	int err;
 516	unsigned long pages;
 517
 518	err = kstrtoul(buf, 10, &pages);
 519	if (err || !pages || pages > UINT_MAX)
 520		return -EINVAL;
 521
 522	khugepaged_pages_to_scan = pages;
 523
 524	return count;
 525}
 526static struct kobj_attribute pages_to_scan_attr =
 527	__ATTR(pages_to_scan, 0644, pages_to_scan_show,
 528	       pages_to_scan_store);
 529
 530static ssize_t pages_collapsed_show(struct kobject *kobj,
 531				    struct kobj_attribute *attr,
 532				    char *buf)
 533{
 534	return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
 535}
 536static struct kobj_attribute pages_collapsed_attr =
 537	__ATTR_RO(pages_collapsed);
 538
 539static ssize_t full_scans_show(struct kobject *kobj,
 540			       struct kobj_attribute *attr,
 541			       char *buf)
 542{
 543	return sprintf(buf, "%u\n", khugepaged_full_scans);
 544}
 545static struct kobj_attribute full_scans_attr =
 546	__ATTR_RO(full_scans);
 547
 548static ssize_t khugepaged_defrag_show(struct kobject *kobj,
 549				      struct kobj_attribute *attr, char *buf)
 550{
 551	return single_flag_show(kobj, attr, buf,
 552				TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
 553}
 554static ssize_t khugepaged_defrag_store(struct kobject *kobj,
 555				       struct kobj_attribute *attr,
 556				       const char *buf, size_t count)
 557{
 558	return single_flag_store(kobj, attr, buf, count,
 559				 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
 560}
 561static struct kobj_attribute khugepaged_defrag_attr =
 562	__ATTR(defrag, 0644, khugepaged_defrag_show,
 563	       khugepaged_defrag_store);
 564
 565/*
 566 * max_ptes_none controls if khugepaged should collapse hugepages over
 567 * any unmapped ptes in turn potentially increasing the memory
 568 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
 569 * reduce the available free memory in the system as it
 570 * runs. Increasing max_ptes_none will instead potentially reduce the
 571 * free memory in the system during the khugepaged scan.
 572 */
 573static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
 574					     struct kobj_attribute *attr,
 575					     char *buf)
 576{
 577	return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
 578}
 579static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
 580					      struct kobj_attribute *attr,
 581					      const char *buf, size_t count)
 582{
 583	int err;
 584	unsigned long max_ptes_none;
 585
 586	err = kstrtoul(buf, 10, &max_ptes_none);
 587	if (err || max_ptes_none > HPAGE_PMD_NR-1)
 588		return -EINVAL;
 589
 590	khugepaged_max_ptes_none = max_ptes_none;
 591
 592	return count;
 593}
 594static struct kobj_attribute khugepaged_max_ptes_none_attr =
 595	__ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
 596	       khugepaged_max_ptes_none_store);
 597
 598static struct attribute *khugepaged_attr[] = {
 599	&khugepaged_defrag_attr.attr,
 600	&khugepaged_max_ptes_none_attr.attr,
 601	&pages_to_scan_attr.attr,
 602	&pages_collapsed_attr.attr,
 603	&full_scans_attr.attr,
 604	&scan_sleep_millisecs_attr.attr,
 605	&alloc_sleep_millisecs_attr.attr,
 606	NULL,
 607};
 608
 609static struct attribute_group khugepaged_attr_group = {
 610	.attrs = khugepaged_attr,
 611	.name = "khugepaged",
 612};
 613
 614static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
 615{
 616	int err;
 617
 618	*hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
 619	if (unlikely(!*hugepage_kobj)) {
 620		pr_err("failed to create transparent hugepage kobject\n");
 621		return -ENOMEM;
 622	}
 623
 624	err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
 625	if (err) {
 626		pr_err("failed to register transparent hugepage group\n");
 627		goto delete_obj;
 628	}
 629
 630	err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
 631	if (err) {
 632		pr_err("failed to register transparent hugepage group\n");
 633		goto remove_hp_group;
 634	}
 635
 636	return 0;
 637
 638remove_hp_group:
 639	sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
 640delete_obj:
 641	kobject_put(*hugepage_kobj);
 642	return err;
 643}
 644
 645static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
 646{
 647	sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
 648	sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
 649	kobject_put(hugepage_kobj);
 650}
 651#else
 652static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
 653{
 654	return 0;
 655}
 656
 657static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
 658{
 659}
 660#endif /* CONFIG_SYSFS */
 661
 662static int __init hugepage_init(void)
 663{
 664	int err;
 665	struct kobject *hugepage_kobj;
 666
 667	if (!has_transparent_hugepage()) {
 668		transparent_hugepage_flags = 0;
 669		return -EINVAL;
 670	}
 671
 672	khugepaged_pages_to_scan = HPAGE_PMD_NR * 8;
 673	khugepaged_max_ptes_none = HPAGE_PMD_NR - 1;
 674	/*
 675	 * hugepages can't be allocated by the buddy allocator
 676	 */
 677	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
 678	/*
 679	 * we use page->mapping and page->index in second tail page
 680	 * as list_head: assuming THP order >= 2
 681	 */
 682	MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
 683
 684	err = hugepage_init_sysfs(&hugepage_kobj);
 685	if (err)
 686		goto err_sysfs;
 687
 688	err = khugepaged_slab_init();
 689	if (err)
 690		goto err_slab;
 691
 692	err = register_shrinker(&huge_zero_page_shrinker);
 693	if (err)
 694		goto err_hzp_shrinker;
 695	err = register_shrinker(&deferred_split_shrinker);
 696	if (err)
 697		goto err_split_shrinker;
 698
 699	/*
 700	 * By default disable transparent hugepages on smaller systems,
 701	 * where the extra memory used could hurt more than TLB overhead
 702	 * is likely to save.  The admin can still enable it through /sys.
 703	 */
 704	if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
 705		transparent_hugepage_flags = 0;
 706		return 0;
 707	}
 708
 709	err = start_stop_khugepaged();
 710	if (err)
 711		goto err_khugepaged;
 712
 713	return 0;
 714err_khugepaged:
 715	unregister_shrinker(&deferred_split_shrinker);
 716err_split_shrinker:
 717	unregister_shrinker(&huge_zero_page_shrinker);
 718err_hzp_shrinker:
 719	khugepaged_slab_exit();
 720err_slab:
 721	hugepage_exit_sysfs(hugepage_kobj);
 722err_sysfs:
 723	return err;
 724}
 725subsys_initcall(hugepage_init);
 726
 727static int __init setup_transparent_hugepage(char *str)
 728{
 729	int ret = 0;
 730	if (!str)
 731		goto out;
 732	if (!strcmp(str, "always")) {
 733		set_bit(TRANSPARENT_HUGEPAGE_FLAG,
 734			&transparent_hugepage_flags);
 735		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 736			  &transparent_hugepage_flags);
 737		ret = 1;
 738	} else if (!strcmp(str, "madvise")) {
 739		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
 740			  &transparent_hugepage_flags);
 741		set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 742			&transparent_hugepage_flags);
 743		ret = 1;
 744	} else if (!strcmp(str, "never")) {
 745		clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
 746			  &transparent_hugepage_flags);
 747		clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
 748			  &transparent_hugepage_flags);
 749		ret = 1;
 750	}
 751out:
 752	if (!ret)
 753		pr_warn("transparent_hugepage= cannot parse, ignored\n");
 
 754	return ret;
 755}
 756__setup("transparent_hugepage=", setup_transparent_hugepage);
 757
 758pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
 759{
 760	if (likely(vma->vm_flags & VM_WRITE))
 761		pmd = pmd_mkwrite(pmd);
 762	return pmd;
 763}
 764
 765static inline pmd_t mk_huge_pmd(struct page *page, pgprot_t prot)
 766{
 767	pmd_t entry;
 768	entry = mk_pmd(page, prot);
 769	entry = pmd_mkhuge(entry);
 770	return entry;
 771}
 772
 773static inline struct list_head *page_deferred_list(struct page *page)
 774{
 775	/*
 776	 * ->lru in the tail pages is occupied by compound_head.
 777	 * Let's use ->mapping + ->index in the second tail page as list_head.
 778	 */
 779	return (struct list_head *)&page[2].mapping;
 780}
 781
 782void prep_transhuge_page(struct page *page)
 783{
 784	/*
 785	 * we use page->mapping and page->indexlru in second tail page
 786	 * as list_head: assuming THP order >= 2
 787	 */
 788
 789	INIT_LIST_HEAD(page_deferred_list(page));
 790	set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
 791}
 792
 793static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
 794					struct vm_area_struct *vma,
 795					unsigned long address, pmd_t *pmd,
 796					struct page *page, gfp_t gfp,
 797					unsigned int flags)
 798{
 799	struct mem_cgroup *memcg;
 800	pgtable_t pgtable;
 801	spinlock_t *ptl;
 802	unsigned long haddr = address & HPAGE_PMD_MASK;
 803
 804	VM_BUG_ON_PAGE(!PageCompound(page), page);
 805
 806	if (mem_cgroup_try_charge(page, mm, gfp, &memcg, true)) {
 807		put_page(page);
 808		count_vm_event(THP_FAULT_FALLBACK);
 809		return VM_FAULT_FALLBACK;
 810	}
 811
 812	pgtable = pte_alloc_one(mm, haddr);
 813	if (unlikely(!pgtable)) {
 814		mem_cgroup_cancel_charge(page, memcg, true);
 815		put_page(page);
 816		return VM_FAULT_OOM;
 817	}
 818
 819	clear_huge_page(page, haddr, HPAGE_PMD_NR);
 820	/*
 821	 * The memory barrier inside __SetPageUptodate makes sure that
 822	 * clear_huge_page writes become visible before the set_pmd_at()
 823	 * write.
 824	 */
 825	__SetPageUptodate(page);
 826
 827	ptl = pmd_lock(mm, pmd);
 828	if (unlikely(!pmd_none(*pmd))) {
 829		spin_unlock(ptl);
 830		mem_cgroup_cancel_charge(page, memcg, true);
 831		put_page(page);
 832		pte_free(mm, pgtable);
 833	} else {
 834		pmd_t entry;
 835
 836		/* Deliver the page fault to userland */
 837		if (userfaultfd_missing(vma)) {
 838			int ret;
 839
 840			spin_unlock(ptl);
 841			mem_cgroup_cancel_charge(page, memcg, true);
 842			put_page(page);
 843			pte_free(mm, pgtable);
 844			ret = handle_userfault(vma, address, flags,
 845					       VM_UFFD_MISSING);
 846			VM_BUG_ON(ret & VM_FAULT_FALLBACK);
 847			return ret;
 848		}
 849
 850		entry = mk_huge_pmd(page, vma->vm_page_prot);
 851		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
 852		page_add_new_anon_rmap(page, vma, haddr, true);
 853		mem_cgroup_commit_charge(page, memcg, false, true);
 854		lru_cache_add_active_or_unevictable(page, vma);
 855		pgtable_trans_huge_deposit(mm, pmd, pgtable);
 856		set_pmd_at(mm, haddr, pmd, entry);
 857		add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
 858		atomic_long_inc(&mm->nr_ptes);
 859		spin_unlock(ptl);
 860		count_vm_event(THP_FAULT_ALLOC);
 861	}
 862
 863	return 0;
 864}
 865
 866/*
 867 * If THP is set to always then directly reclaim/compact as necessary
 868 * If set to defer then do no reclaim and defer to khugepaged
 869 * If set to madvise and the VMA is flagged then directly reclaim/compact
 870 */
 871static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
 872{
 873	gfp_t reclaim_flags = 0;
 874
 875	if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags) &&
 876	    (vma->vm_flags & VM_HUGEPAGE))
 877		reclaim_flags = __GFP_DIRECT_RECLAIM;
 878	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
 879		reclaim_flags = __GFP_KSWAPD_RECLAIM;
 880	else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
 881		reclaim_flags = __GFP_DIRECT_RECLAIM;
 882
 883	return GFP_TRANSHUGE | reclaim_flags;
 884}
 885
 886/* Defrag for khugepaged will enter direct reclaim/compaction if necessary */
 887static inline gfp_t alloc_hugepage_khugepaged_gfpmask(void)
 
 
 888{
 889	return GFP_TRANSHUGE | (khugepaged_defrag() ? __GFP_DIRECT_RECLAIM : 0);
 
 890}
 891
 892/* Caller must hold page table lock. */
 893static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
 894		struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
 895		struct page *zero_page)
 896{
 897	pmd_t entry;
 898	if (!pmd_none(*pmd))
 899		return false;
 900	entry = mk_pmd(zero_page, vma->vm_page_prot);
 
 901	entry = pmd_mkhuge(entry);
 902	if (pgtable)
 903		pgtable_trans_huge_deposit(mm, pmd, pgtable);
 904	set_pmd_at(mm, haddr, pmd, entry);
 905	atomic_long_inc(&mm->nr_ptes);
 906	return true;
 907}
 908
 909int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
 910			       unsigned long address, pmd_t *pmd,
 911			       unsigned int flags)
 912{
 913	gfp_t gfp;
 914	struct page *page;
 915	unsigned long haddr = address & HPAGE_PMD_MASK;
 916
 917	if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
 918		return VM_FAULT_FALLBACK;
 919	if (unlikely(anon_vma_prepare(vma)))
 920		return VM_FAULT_OOM;
 921	if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
 922		return VM_FAULT_OOM;
 923	if (!(flags & FAULT_FLAG_WRITE) && !mm_forbids_zeropage(mm) &&
 924			transparent_hugepage_use_zero_page()) {
 925		spinlock_t *ptl;
 926		pgtable_t pgtable;
 927		struct page *zero_page;
 928		bool set;
 929		int ret;
 930		pgtable = pte_alloc_one(mm, haddr);
 931		if (unlikely(!pgtable))
 932			return VM_FAULT_OOM;
 933		zero_page = get_huge_zero_page();
 934		if (unlikely(!zero_page)) {
 935			pte_free(mm, pgtable);
 936			count_vm_event(THP_FAULT_FALLBACK);
 937			return VM_FAULT_FALLBACK;
 938		}
 939		ptl = pmd_lock(mm, pmd);
 940		ret = 0;
 941		set = false;
 942		if (pmd_none(*pmd)) {
 943			if (userfaultfd_missing(vma)) {
 944				spin_unlock(ptl);
 945				ret = handle_userfault(vma, address, flags,
 946						       VM_UFFD_MISSING);
 947				VM_BUG_ON(ret & VM_FAULT_FALLBACK);
 948			} else {
 949				set_huge_zero_page(pgtable, mm, vma,
 950						   haddr, pmd,
 951						   zero_page);
 952				spin_unlock(ptl);
 953				set = true;
 954			}
 955		} else
 956			spin_unlock(ptl);
 957		if (!set) {
 958			pte_free(mm, pgtable);
 959			put_huge_zero_page();
 960		}
 961		return ret;
 962	}
 963	gfp = alloc_hugepage_direct_gfpmask(vma);
 964	page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
 965	if (unlikely(!page)) {
 966		count_vm_event(THP_FAULT_FALLBACK);
 967		return VM_FAULT_FALLBACK;
 968	}
 969	prep_transhuge_page(page);
 970	return __do_huge_pmd_anonymous_page(mm, vma, address, pmd, page, gfp,
 971					    flags);
 972}
 973
 974static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
 975		pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write)
 976{
 977	struct mm_struct *mm = vma->vm_mm;
 978	pmd_t entry;
 979	spinlock_t *ptl;
 980
 981	ptl = pmd_lock(mm, pmd);
 982	entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
 983	if (pfn_t_devmap(pfn))
 984		entry = pmd_mkdevmap(entry);
 985	if (write) {
 986		entry = pmd_mkyoung(pmd_mkdirty(entry));
 987		entry = maybe_pmd_mkwrite(entry, vma);
 988	}
 989	set_pmd_at(mm, addr, pmd, entry);
 990	update_mmu_cache_pmd(vma, addr, pmd);
 991	spin_unlock(ptl);
 992}
 993
 994int vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
 995			pmd_t *pmd, pfn_t pfn, bool write)
 996{
 997	pgprot_t pgprot = vma->vm_page_prot;
 998	/*
 999	 * If we had pmd_special, we could avoid all these restrictions,
1000	 * but we need to be consistent with PTEs and architectures that
1001	 * can't support a 'special' bit.
1002	 */
1003	BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1004	BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1005						(VM_PFNMAP|VM_MIXEDMAP));
1006	BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1007	BUG_ON(!pfn_t_devmap(pfn));
1008
1009	if (addr < vma->vm_start || addr >= vma->vm_end)
1010		return VM_FAULT_SIGBUS;
1011	if (track_pfn_insert(vma, &pgprot, pfn))
1012		return VM_FAULT_SIGBUS;
1013	insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write);
1014	return VM_FAULT_NOPAGE;
1015}
1016
1017static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
1018		pmd_t *pmd)
1019{
1020	pmd_t _pmd;
1021
1022	/*
1023	 * We should set the dirty bit only for FOLL_WRITE but for now
1024	 * the dirty bit in the pmd is meaningless.  And if the dirty
1025	 * bit will become meaningful and we'll only set it with
1026	 * FOLL_WRITE, an atomic set_bit will be required on the pmd to
1027	 * set the young bit, instead of the current set_pmd_at.
1028	 */
1029	_pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
1030	if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
1031				pmd, _pmd,  1))
1032		update_mmu_cache_pmd(vma, addr, pmd);
1033}
1034
1035struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
1036		pmd_t *pmd, int flags)
1037{
1038	unsigned long pfn = pmd_pfn(*pmd);
1039	struct mm_struct *mm = vma->vm_mm;
1040	struct dev_pagemap *pgmap;
1041	struct page *page;
1042
1043	assert_spin_locked(pmd_lockptr(mm, pmd));
1044
1045	if (flags & FOLL_WRITE && !pmd_write(*pmd))
1046		return NULL;
1047
1048	if (pmd_present(*pmd) && pmd_devmap(*pmd))
1049		/* pass */;
1050	else
1051		return NULL;
1052
1053	if (flags & FOLL_TOUCH)
1054		touch_pmd(vma, addr, pmd);
1055
1056	/*
1057	 * device mapped pages can only be returned if the
1058	 * caller will manage the page reference count.
1059	 */
1060	if (!(flags & FOLL_GET))
1061		return ERR_PTR(-EEXIST);
1062
1063	pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
1064	pgmap = get_dev_pagemap(pfn, NULL);
1065	if (!pgmap)
1066		return ERR_PTR(-EFAULT);
1067	page = pfn_to_page(pfn);
1068	get_page(page);
1069	put_dev_pagemap(pgmap);
1070
1071	return page;
1072}
1073
1074int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1075		  pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1076		  struct vm_area_struct *vma)
1077{
1078	spinlock_t *dst_ptl, *src_ptl;
1079	struct page *src_page;
1080	pmd_t pmd;
1081	pgtable_t pgtable = NULL;
1082	int ret;
1083
1084	if (!vma_is_dax(vma)) {
1085		ret = -ENOMEM;
1086		pgtable = pte_alloc_one(dst_mm, addr);
1087		if (unlikely(!pgtable))
1088			goto out;
1089	}
1090
1091	dst_ptl = pmd_lock(dst_mm, dst_pmd);
1092	src_ptl = pmd_lockptr(src_mm, src_pmd);
1093	spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1094
1095	ret = -EAGAIN;
1096	pmd = *src_pmd;
1097	if (unlikely(!pmd_trans_huge(pmd) && !pmd_devmap(pmd))) {
1098		pte_free(dst_mm, pgtable);
1099		goto out_unlock;
1100	}
1101	/*
1102	 * When page table lock is held, the huge zero pmd should not be
1103	 * under splitting since we don't split the page itself, only pmd to
1104	 * a page table.
1105	 */
1106	if (is_huge_zero_pmd(pmd)) {
1107		struct page *zero_page;
 
1108		/*
1109		 * get_huge_zero_page() will never allocate a new page here,
1110		 * since we already have a zero page to copy. It just takes a
1111		 * reference.
1112		 */
1113		zero_page = get_huge_zero_page();
1114		set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
1115				zero_page);
 
1116		ret = 0;
1117		goto out_unlock;
1118	}
1119
1120	if (!vma_is_dax(vma)) {
1121		/* thp accounting separate from pmd_devmap accounting */
1122		src_page = pmd_page(pmd);
1123		VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1124		get_page(src_page);
1125		page_dup_rmap(src_page, true);
1126		add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1127		atomic_long_inc(&dst_mm->nr_ptes);
1128		pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1129	}
 
 
 
 
 
1130
1131	pmdp_set_wrprotect(src_mm, addr, src_pmd);
1132	pmd = pmd_mkold(pmd_wrprotect(pmd));
 
1133	set_pmd_at(dst_mm, addr, dst_pmd, pmd);
 
1134
1135	ret = 0;
1136out_unlock:
1137	spin_unlock(src_ptl);
1138	spin_unlock(dst_ptl);
1139out:
1140	return ret;
1141}
1142
1143void huge_pmd_set_accessed(struct mm_struct *mm,
1144			   struct vm_area_struct *vma,
1145			   unsigned long address,
1146			   pmd_t *pmd, pmd_t orig_pmd,
1147			   int dirty)
1148{
1149	spinlock_t *ptl;
1150	pmd_t entry;
1151	unsigned long haddr;
1152
1153	ptl = pmd_lock(mm, pmd);
1154	if (unlikely(!pmd_same(*pmd, orig_pmd)))
1155		goto unlock;
1156
1157	entry = pmd_mkyoung(orig_pmd);
1158	haddr = address & HPAGE_PMD_MASK;
1159	if (pmdp_set_access_flags(vma, haddr, pmd, entry, dirty))
1160		update_mmu_cache_pmd(vma, address, pmd);
1161
1162unlock:
1163	spin_unlock(ptl);
1164}
1165
1166static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
1167					struct vm_area_struct *vma,
1168					unsigned long address,
1169					pmd_t *pmd, pmd_t orig_pmd,
1170					struct page *page,
1171					unsigned long haddr)
1172{
1173	struct mem_cgroup *memcg;
1174	spinlock_t *ptl;
1175	pgtable_t pgtable;
1176	pmd_t _pmd;
1177	int ret = 0, i;
1178	struct page **pages;
1179	unsigned long mmun_start;	/* For mmu_notifiers */
1180	unsigned long mmun_end;		/* For mmu_notifiers */
1181
1182	pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
1183			GFP_KERNEL);
1184	if (unlikely(!pages)) {
1185		ret |= VM_FAULT_OOM;
1186		goto out;
1187	}
1188
1189	for (i = 0; i < HPAGE_PMD_NR; i++) {
1190		pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
1191					       __GFP_OTHER_NODE,
1192					       vma, address, page_to_nid(page));
1193		if (unlikely(!pages[i] ||
1194			     mem_cgroup_try_charge(pages[i], mm, GFP_KERNEL,
1195						   &memcg, false))) {
1196			if (pages[i])
1197				put_page(pages[i]);
 
1198			while (--i >= 0) {
1199				memcg = (void *)page_private(pages[i]);
1200				set_page_private(pages[i], 0);
1201				mem_cgroup_cancel_charge(pages[i], memcg,
1202						false);
1203				put_page(pages[i]);
1204			}
 
1205			kfree(pages);
1206			ret |= VM_FAULT_OOM;
1207			goto out;
1208		}
1209		set_page_private(pages[i], (unsigned long)memcg);
1210	}
1211
1212	for (i = 0; i < HPAGE_PMD_NR; i++) {
1213		copy_user_highpage(pages[i], page + i,
1214				   haddr + PAGE_SIZE * i, vma);
1215		__SetPageUptodate(pages[i]);
1216		cond_resched();
1217	}
1218
1219	mmun_start = haddr;
1220	mmun_end   = haddr + HPAGE_PMD_SIZE;
1221	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1222
1223	ptl = pmd_lock(mm, pmd);
1224	if (unlikely(!pmd_same(*pmd, orig_pmd)))
1225		goto out_free_pages;
1226	VM_BUG_ON_PAGE(!PageHead(page), page);
1227
1228	pmdp_huge_clear_flush_notify(vma, haddr, pmd);
1229	/* leave pmd empty until pte is filled */
1230
1231	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1232	pmd_populate(mm, &_pmd, pgtable);
1233
1234	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1235		pte_t *pte, entry;
1236		entry = mk_pte(pages[i], vma->vm_page_prot);
1237		entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1238		memcg = (void *)page_private(pages[i]);
1239		set_page_private(pages[i], 0);
1240		page_add_new_anon_rmap(pages[i], vma, haddr, false);
1241		mem_cgroup_commit_charge(pages[i], memcg, false, false);
1242		lru_cache_add_active_or_unevictable(pages[i], vma);
1243		pte = pte_offset_map(&_pmd, haddr);
1244		VM_BUG_ON(!pte_none(*pte));
1245		set_pte_at(mm, haddr, pte, entry);
1246		pte_unmap(pte);
1247	}
1248	kfree(pages);
1249
1250	smp_wmb(); /* make pte visible before pmd */
1251	pmd_populate(mm, pmd, pgtable);
1252	page_remove_rmap(page, true);
1253	spin_unlock(ptl);
1254
1255	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1256
1257	ret |= VM_FAULT_WRITE;
1258	put_page(page);
1259
1260out:
1261	return ret;
1262
1263out_free_pages:
1264	spin_unlock(ptl);
1265	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
 
1266	for (i = 0; i < HPAGE_PMD_NR; i++) {
1267		memcg = (void *)page_private(pages[i]);
1268		set_page_private(pages[i], 0);
1269		mem_cgroup_cancel_charge(pages[i], memcg, false);
1270		put_page(pages[i]);
1271	}
 
1272	kfree(pages);
1273	goto out;
1274}
1275
1276int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1277			unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
1278{
1279	spinlock_t *ptl;
1280	int ret = 0;
1281	struct page *page = NULL, *new_page;
1282	struct mem_cgroup *memcg;
1283	unsigned long haddr;
1284	unsigned long mmun_start;	/* For mmu_notifiers */
1285	unsigned long mmun_end;		/* For mmu_notifiers */
1286	gfp_t huge_gfp;			/* for allocation and charge */
1287
1288	ptl = pmd_lockptr(mm, pmd);
1289	VM_BUG_ON_VMA(!vma->anon_vma, vma);
1290	haddr = address & HPAGE_PMD_MASK;
1291	if (is_huge_zero_pmd(orig_pmd))
1292		goto alloc;
1293	spin_lock(ptl);
1294	if (unlikely(!pmd_same(*pmd, orig_pmd)))
1295		goto out_unlock;
1296
1297	page = pmd_page(orig_pmd);
1298	VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1299	/*
1300	 * We can only reuse the page if nobody else maps the huge page or it's
1301	 * part.
1302	 */
1303	if (page_trans_huge_mapcount(page, NULL) == 1) {
1304		pmd_t entry;
1305		entry = pmd_mkyoung(orig_pmd);
1306		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1307		if (pmdp_set_access_flags(vma, haddr, pmd, entry,  1))
1308			update_mmu_cache_pmd(vma, address, pmd);
1309		ret |= VM_FAULT_WRITE;
1310		goto out_unlock;
1311	}
1312	get_page(page);
1313	spin_unlock(ptl);
1314alloc:
1315	if (transparent_hugepage_enabled(vma) &&
1316	    !transparent_hugepage_debug_cow()) {
1317		huge_gfp = alloc_hugepage_direct_gfpmask(vma);
1318		new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
1319	} else
1320		new_page = NULL;
1321
1322	if (likely(new_page)) {
1323		prep_transhuge_page(new_page);
1324	} else {
1325		if (!page) {
1326			split_huge_pmd(vma, pmd, address);
1327			ret |= VM_FAULT_FALLBACK;
1328		} else {
1329			ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
1330					pmd, orig_pmd, page, haddr);
1331			if (ret & VM_FAULT_OOM) {
1332				split_huge_pmd(vma, pmd, address);
1333				ret |= VM_FAULT_FALLBACK;
1334			}
1335			put_page(page);
1336		}
1337		count_vm_event(THP_FAULT_FALLBACK);
1338		goto out;
1339	}
1340
1341	if (unlikely(mem_cgroup_try_charge(new_page, mm, huge_gfp, &memcg,
1342					   true))) {
1343		put_page(new_page);
1344		if (page) {
1345			split_huge_pmd(vma, pmd, address);
1346			put_page(page);
1347		} else
1348			split_huge_pmd(vma, pmd, address);
1349		ret |= VM_FAULT_FALLBACK;
1350		count_vm_event(THP_FAULT_FALLBACK);
1351		goto out;
1352	}
1353
1354	count_vm_event(THP_FAULT_ALLOC);
1355
1356	if (!page)
1357		clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
1358	else
1359		copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
1360	__SetPageUptodate(new_page);
1361
1362	mmun_start = haddr;
1363	mmun_end   = haddr + HPAGE_PMD_SIZE;
1364	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1365
1366	spin_lock(ptl);
1367	if (page)
1368		put_page(page);
1369	if (unlikely(!pmd_same(*pmd, orig_pmd))) {
1370		spin_unlock(ptl);
1371		mem_cgroup_cancel_charge(new_page, memcg, true);
1372		put_page(new_page);
1373		goto out_mn;
1374	} else {
1375		pmd_t entry;
1376		entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1377		entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1378		pmdp_huge_clear_flush_notify(vma, haddr, pmd);
1379		page_add_new_anon_rmap(new_page, vma, haddr, true);
1380		mem_cgroup_commit_charge(new_page, memcg, false, true);
1381		lru_cache_add_active_or_unevictable(new_page, vma);
1382		set_pmd_at(mm, haddr, pmd, entry);
1383		update_mmu_cache_pmd(vma, address, pmd);
1384		if (!page) {
1385			add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
1386			put_huge_zero_page();
1387		} else {
1388			VM_BUG_ON_PAGE(!PageHead(page), page);
1389			page_remove_rmap(page, true);
1390			put_page(page);
1391		}
1392		ret |= VM_FAULT_WRITE;
1393	}
1394	spin_unlock(ptl);
1395out_mn:
1396	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1397out:
1398	return ret;
1399out_unlock:
1400	spin_unlock(ptl);
1401	return ret;
1402}
1403
1404struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1405				   unsigned long addr,
1406				   pmd_t *pmd,
1407				   unsigned int flags)
1408{
1409	struct mm_struct *mm = vma->vm_mm;
1410	struct page *page = NULL;
1411
1412	assert_spin_locked(pmd_lockptr(mm, pmd));
1413
1414	if (flags & FOLL_WRITE && !pmd_write(*pmd))
1415		goto out;
1416
1417	/* Avoid dumping huge zero page */
1418	if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1419		return ERR_PTR(-EFAULT);
1420
1421	/* Full NUMA hinting faults to serialise migration in fault paths */
1422	if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1423		goto out;
1424
1425	page = pmd_page(*pmd);
1426	VM_BUG_ON_PAGE(!PageHead(page), page);
1427	if (flags & FOLL_TOUCH)
1428		touch_pmd(vma, addr, pmd);
1429	if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1430		/*
1431		 * We don't mlock() pte-mapped THPs. This way we can avoid
1432		 * leaking mlocked pages into non-VM_LOCKED VMAs.
1433		 *
1434		 * In most cases the pmd is the only mapping of the page as we
1435		 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1436		 * writable private mappings in populate_vma_page_range().
1437		 *
1438		 * The only scenario when we have the page shared here is if we
1439		 * mlocking read-only mapping shared over fork(). We skip
1440		 * mlocking such pages.
1441		 */
1442		if (compound_mapcount(page) == 1 && !PageDoubleMap(page) &&
1443				page->mapping && trylock_page(page)) {
 
 
 
 
 
1444			lru_add_drain();
1445			if (page->mapping)
1446				mlock_vma_page(page);
1447			unlock_page(page);
1448		}
1449	}
1450	page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1451	VM_BUG_ON_PAGE(!PageCompound(page), page);
1452	if (flags & FOLL_GET)
1453		get_page(page);
1454
1455out:
1456	return page;
1457}
1458
1459/* NUMA hinting page fault entry point for trans huge pmds */
1460int do_huge_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
1461				unsigned long addr, pmd_t pmd, pmd_t *pmdp)
1462{
1463	spinlock_t *ptl;
1464	struct anon_vma *anon_vma = NULL;
1465	struct page *page;
1466	unsigned long haddr = addr & HPAGE_PMD_MASK;
1467	int page_nid = -1, this_nid = numa_node_id();
1468	int target_nid, last_cpupid = -1;
1469	bool page_locked;
1470	bool migrated = false;
1471	bool was_writable;
1472	int flags = 0;
1473
1474	/* A PROT_NONE fault should not end up here */
1475	BUG_ON(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)));
1476
1477	ptl = pmd_lock(mm, pmdp);
1478	if (unlikely(!pmd_same(pmd, *pmdp)))
1479		goto out_unlock;
1480
1481	/*
1482	 * If there are potential migrations, wait for completion and retry
1483	 * without disrupting NUMA hinting information. Do not relock and
1484	 * check_same as the page may no longer be mapped.
1485	 */
1486	if (unlikely(pmd_trans_migrating(*pmdp))) {
1487		page = pmd_page(*pmdp);
1488		spin_unlock(ptl);
1489		wait_on_page_locked(page);
1490		goto out;
1491	}
1492
1493	page = pmd_page(pmd);
1494	BUG_ON(is_huge_zero_page(page));
1495	page_nid = page_to_nid(page);
1496	last_cpupid = page_cpupid_last(page);
1497	count_vm_numa_event(NUMA_HINT_FAULTS);
1498	if (page_nid == this_nid) {
1499		count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1500		flags |= TNF_FAULT_LOCAL;
1501	}
1502
1503	/* See similar comment in do_numa_page for explanation */
1504	if (!(vma->vm_flags & VM_WRITE))
 
 
 
 
1505		flags |= TNF_NO_GROUP;
1506
1507	/*
1508	 * Acquire the page lock to serialise THP migrations but avoid dropping
1509	 * page_table_lock if at all possible
1510	 */
1511	page_locked = trylock_page(page);
1512	target_nid = mpol_misplaced(page, vma, haddr);
1513	if (target_nid == -1) {
1514		/* If the page was locked, there are no parallel migrations */
1515		if (page_locked)
1516			goto clear_pmdnuma;
1517	}
1518
1519	/* Migration could have started since the pmd_trans_migrating check */
1520	if (!page_locked) {
1521		spin_unlock(ptl);
1522		wait_on_page_locked(page);
1523		page_nid = -1;
1524		goto out;
1525	}
1526
1527	/*
1528	 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1529	 * to serialises splits
1530	 */
1531	get_page(page);
1532	spin_unlock(ptl);
1533	anon_vma = page_lock_anon_vma_read(page);
1534
1535	/* Confirm the PMD did not change while page_table_lock was released */
1536	spin_lock(ptl);
1537	if (unlikely(!pmd_same(pmd, *pmdp))) {
1538		unlock_page(page);
1539		put_page(page);
1540		page_nid = -1;
1541		goto out_unlock;
1542	}
1543
1544	/* Bail if we fail to protect against THP splits for any reason */
1545	if (unlikely(!anon_vma)) {
1546		put_page(page);
1547		page_nid = -1;
1548		goto clear_pmdnuma;
1549	}
1550
1551	/*
1552	 * Migrate the THP to the requested node, returns with page unlocked
1553	 * and access rights restored.
1554	 */
1555	spin_unlock(ptl);
1556	migrated = migrate_misplaced_transhuge_page(mm, vma,
1557				pmdp, pmd, addr, page, target_nid);
1558	if (migrated) {
1559		flags |= TNF_MIGRATED;
1560		page_nid = target_nid;
1561	} else
1562		flags |= TNF_MIGRATE_FAIL;
1563
1564	goto out;
1565clear_pmdnuma:
1566	BUG_ON(!PageLocked(page));
1567	was_writable = pmd_write(pmd);
1568	pmd = pmd_modify(pmd, vma->vm_page_prot);
1569	pmd = pmd_mkyoung(pmd);
1570	if (was_writable)
1571		pmd = pmd_mkwrite(pmd);
1572	set_pmd_at(mm, haddr, pmdp, pmd);
 
1573	update_mmu_cache_pmd(vma, addr, pmdp);
1574	unlock_page(page);
1575out_unlock:
1576	spin_unlock(ptl);
1577
1578out:
1579	if (anon_vma)
1580		page_unlock_anon_vma_read(anon_vma);
1581
1582	if (page_nid != -1)
1583		task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, flags);
1584
1585	return 0;
1586}
1587
1588int madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1589		pmd_t *pmd, unsigned long addr, unsigned long next)
1590
1591{
1592	spinlock_t *ptl;
1593	pmd_t orig_pmd;
1594	struct page *page;
1595	struct mm_struct *mm = tlb->mm;
1596	int ret = 0;
1597
1598	ptl = pmd_trans_huge_lock(pmd, vma);
1599	if (!ptl)
1600		goto out_unlocked;
1601
1602	orig_pmd = *pmd;
1603	if (is_huge_zero_pmd(orig_pmd)) {
1604		ret = 1;
1605		goto out;
1606	}
1607
1608	page = pmd_page(orig_pmd);
1609	/*
1610	 * If other processes are mapping this page, we couldn't discard
1611	 * the page unless they all do MADV_FREE so let's skip the page.
1612	 */
1613	if (page_mapcount(page) != 1)
1614		goto out;
1615
1616	if (!trylock_page(page))
1617		goto out;
1618
1619	/*
1620	 * If user want to discard part-pages of THP, split it so MADV_FREE
1621	 * will deactivate only them.
1622	 */
1623	if (next - addr != HPAGE_PMD_SIZE) {
1624		get_page(page);
1625		spin_unlock(ptl);
1626		if (split_huge_page(page)) {
1627			put_page(page);
1628			unlock_page(page);
1629			goto out_unlocked;
1630		}
1631		put_page(page);
1632		unlock_page(page);
1633		ret = 1;
1634		goto out_unlocked;
1635	}
1636
1637	if (PageDirty(page))
1638		ClearPageDirty(page);
1639	unlock_page(page);
1640
1641	if (PageActive(page))
1642		deactivate_page(page);
1643
1644	if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1645		orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1646			tlb->fullmm);
1647		orig_pmd = pmd_mkold(orig_pmd);
1648		orig_pmd = pmd_mkclean(orig_pmd);
1649
1650		set_pmd_at(mm, addr, pmd, orig_pmd);
1651		tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1652	}
1653	ret = 1;
1654out:
1655	spin_unlock(ptl);
1656out_unlocked:
1657	return ret;
1658}
1659
1660int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1661		 pmd_t *pmd, unsigned long addr)
 
1662{
1663	pmd_t orig_pmd;
1664	spinlock_t *ptl;
 
1665
1666	ptl = __pmd_trans_huge_lock(pmd, vma);
1667	if (!ptl)
1668		return 0;
1669	/*
1670	 * For architectures like ppc64 we look at deposited pgtable
1671	 * when calling pmdp_huge_get_and_clear. So do the
1672	 * pgtable_trans_huge_withdraw after finishing pmdp related
1673	 * operations.
1674	 */
1675	orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1676			tlb->fullmm);
1677	tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1678	if (vma_is_dax(vma)) {
1679		spin_unlock(ptl);
1680		if (is_huge_zero_pmd(orig_pmd))
1681			tlb_remove_page(tlb, pmd_page(orig_pmd));
1682	} else if (is_huge_zero_pmd(orig_pmd)) {
1683		pte_free(tlb->mm, pgtable_trans_huge_withdraw(tlb->mm, pmd));
1684		atomic_long_dec(&tlb->mm->nr_ptes);
1685		spin_unlock(ptl);
1686		tlb_remove_page(tlb, pmd_page(orig_pmd));
1687	} else {
1688		struct page *page = pmd_page(orig_pmd);
1689		page_remove_rmap(page, true);
1690		VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1691		add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1692		VM_BUG_ON_PAGE(!PageHead(page), page);
1693		pte_free(tlb->mm, pgtable_trans_huge_withdraw(tlb->mm, pmd));
1694		atomic_long_dec(&tlb->mm->nr_ptes);
1695		spin_unlock(ptl);
1696		tlb_remove_page(tlb, page);
1697	}
1698	return 1;
 
1699}
1700
1701bool move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
1702		  unsigned long old_addr,
1703		  unsigned long new_addr, unsigned long old_end,
1704		  pmd_t *old_pmd, pmd_t *new_pmd)
1705{
1706	spinlock_t *old_ptl, *new_ptl;
 
1707	pmd_t pmd;
1708
1709	struct mm_struct *mm = vma->vm_mm;
1710
1711	if ((old_addr & ~HPAGE_PMD_MASK) ||
1712	    (new_addr & ~HPAGE_PMD_MASK) ||
1713	    old_end - old_addr < HPAGE_PMD_SIZE ||
1714	    (new_vma->vm_flags & VM_NOHUGEPAGE))
1715		return false;
1716
1717	/*
1718	 * The destination pmd shouldn't be established, free_pgtables()
1719	 * should have release it.
1720	 */
1721	if (WARN_ON(!pmd_none(*new_pmd))) {
1722		VM_BUG_ON(pmd_trans_huge(*new_pmd));
1723		return false;
1724	}
1725
1726	/*
1727	 * We don't have to worry about the ordering of src and dst
1728	 * ptlocks because exclusive mmap_sem prevents deadlock.
1729	 */
1730	old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1731	if (old_ptl) {
1732		new_ptl = pmd_lockptr(mm, new_pmd);
1733		if (new_ptl != old_ptl)
1734			spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1735		pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1736		VM_BUG_ON(!pmd_none(*new_pmd));
1737
1738		if (pmd_move_must_withdraw(new_ptl, old_ptl) &&
1739				vma_is_anonymous(vma)) {
1740			pgtable_t pgtable;
1741			pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1742			pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1743		}
1744		set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
1745		if (new_ptl != old_ptl)
1746			spin_unlock(new_ptl);
1747		spin_unlock(old_ptl);
1748		return true;
1749	}
1750	return false;
 
1751}
1752
1753/*
1754 * Returns
1755 *  - 0 if PMD could not be locked
1756 *  - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1757 *  - HPAGE_PMD_NR is protections changed and TLB flush necessary
1758 */
1759int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1760		unsigned long addr, pgprot_t newprot, int prot_numa)
1761{
1762	struct mm_struct *mm = vma->vm_mm;
1763	spinlock_t *ptl;
1764	int ret = 0;
1765
1766	ptl = __pmd_trans_huge_lock(pmd, vma);
1767	if (ptl) {
1768		pmd_t entry;
1769		bool preserve_write = prot_numa && pmd_write(*pmd);
1770		ret = 1;
1771
1772		/*
1773		 * Avoid trapping faults against the zero page. The read-only
1774		 * data is likely to be read-cached on the local CPU and
1775		 * local/remote hits to the zero page are not interesting.
1776		 */
1777		if (prot_numa && is_huge_zero_pmd(*pmd)) {
1778			spin_unlock(ptl);
1779			return ret;
1780		}
1781
1782		if (!prot_numa || !pmd_protnone(*pmd)) {
1783			entry = pmdp_huge_get_and_clear_notify(mm, addr, pmd);
1784			entry = pmd_modify(entry, newprot);
1785			if (preserve_write)
1786				entry = pmd_mkwrite(entry);
1787			ret = HPAGE_PMD_NR;
1788			set_pmd_at(mm, addr, pmd, entry);
1789			BUG_ON(!preserve_write && pmd_write(entry));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1790		}
1791		spin_unlock(ptl);
1792	}
1793
1794	return ret;
1795}
1796
1797/*
1798 * Returns true if a given pmd maps a thp, false otherwise.
 
1799 *
1800 * Note that if it returns true, this routine returns without unlocking page
1801 * table lock. So callers must unlock it.
1802 */
1803spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1804{
 
1805	spinlock_t *ptl;
1806	ptl = pmd_lock(vma->vm_mm, pmd);
1807	if (likely(pmd_trans_huge(*pmd) || pmd_devmap(*pmd)))
1808		return ptl;
1809	spin_unlock(ptl);
1810	return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1811}
1812
1813#define VM_NO_THP (VM_SPECIAL | VM_HUGETLB | VM_SHARED | VM_MAYSHARE)
1814
1815int hugepage_madvise(struct vm_area_struct *vma,
1816		     unsigned long *vm_flags, int advice)
1817{
1818	switch (advice) {
1819	case MADV_HUGEPAGE:
1820#ifdef CONFIG_S390
1821		/*
1822		 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
1823		 * can't handle this properly after s390_enable_sie, so we simply
1824		 * ignore the madvise to prevent qemu from causing a SIGSEGV.
1825		 */
1826		if (mm_has_pgste(vma->vm_mm))
1827			return 0;
1828#endif
1829		/*
1830		 * Be somewhat over-protective like KSM for now!
1831		 */
1832		if (*vm_flags & VM_NO_THP)
1833			return -EINVAL;
1834		*vm_flags &= ~VM_NOHUGEPAGE;
1835		*vm_flags |= VM_HUGEPAGE;
1836		/*
1837		 * If the vma become good for khugepaged to scan,
1838		 * register it here without waiting a page fault that
1839		 * may not happen any time soon.
1840		 */
1841		if (unlikely(khugepaged_enter_vma_merge(vma, *vm_flags)))
1842			return -ENOMEM;
1843		break;
1844	case MADV_NOHUGEPAGE:
1845		/*
1846		 * Be somewhat over-protective like KSM for now!
1847		 */
1848		if (*vm_flags & VM_NO_THP)
1849			return -EINVAL;
1850		*vm_flags &= ~VM_HUGEPAGE;
1851		*vm_flags |= VM_NOHUGEPAGE;
1852		/*
1853		 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
1854		 * this vma even if we leave the mm registered in khugepaged if
1855		 * it got registered before VM_NOHUGEPAGE was set.
1856		 */
1857		break;
1858	}
1859
1860	return 0;
1861}
1862
1863static int __init khugepaged_slab_init(void)
1864{
1865	mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
1866					  sizeof(struct mm_slot),
1867					  __alignof__(struct mm_slot), 0, NULL);
1868	if (!mm_slot_cache)
1869		return -ENOMEM;
1870
1871	return 0;
1872}
1873
1874static void __init khugepaged_slab_exit(void)
1875{
1876	kmem_cache_destroy(mm_slot_cache);
1877}
1878
1879static inline struct mm_slot *alloc_mm_slot(void)
1880{
1881	if (!mm_slot_cache)	/* initialization failed */
1882		return NULL;
1883	return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
1884}
1885
1886static inline void free_mm_slot(struct mm_slot *mm_slot)
1887{
1888	kmem_cache_free(mm_slot_cache, mm_slot);
1889}
1890
1891static struct mm_slot *get_mm_slot(struct mm_struct *mm)
1892{
1893	struct mm_slot *mm_slot;
1894
1895	hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
1896		if (mm == mm_slot->mm)
1897			return mm_slot;
1898
1899	return NULL;
1900}
1901
1902static void insert_to_mm_slots_hash(struct mm_struct *mm,
1903				    struct mm_slot *mm_slot)
1904{
1905	mm_slot->mm = mm;
1906	hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
1907}
1908
1909static inline int khugepaged_test_exit(struct mm_struct *mm)
1910{
1911	return atomic_read(&mm->mm_users) == 0;
1912}
1913
1914int __khugepaged_enter(struct mm_struct *mm)
1915{
1916	struct mm_slot *mm_slot;
1917	int wakeup;
1918
1919	mm_slot = alloc_mm_slot();
1920	if (!mm_slot)
1921		return -ENOMEM;
1922
1923	/* __khugepaged_exit() must not run from under us */
1924	VM_BUG_ON_MM(khugepaged_test_exit(mm), mm);
1925	if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
1926		free_mm_slot(mm_slot);
1927		return 0;
1928	}
1929
1930	spin_lock(&khugepaged_mm_lock);
1931	insert_to_mm_slots_hash(mm, mm_slot);
1932	/*
1933	 * Insert just behind the scanning cursor, to let the area settle
1934	 * down a little.
1935	 */
1936	wakeup = list_empty(&khugepaged_scan.mm_head);
1937	list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
1938	spin_unlock(&khugepaged_mm_lock);
1939
1940	atomic_inc(&mm->mm_count);
1941	if (wakeup)
1942		wake_up_interruptible(&khugepaged_wait);
1943
1944	return 0;
1945}
1946
1947int khugepaged_enter_vma_merge(struct vm_area_struct *vma,
1948			       unsigned long vm_flags)
1949{
1950	unsigned long hstart, hend;
1951	if (!vma->anon_vma)
1952		/*
1953		 * Not yet faulted in so we will register later in the
1954		 * page fault if needed.
1955		 */
1956		return 0;
1957	if (vma->vm_ops || (vm_flags & VM_NO_THP))
1958		/* khugepaged not yet working on file or special mappings */
1959		return 0;
 
1960	hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1961	hend = vma->vm_end & HPAGE_PMD_MASK;
1962	if (hstart < hend)
1963		return khugepaged_enter(vma, vm_flags);
1964	return 0;
1965}
1966
1967void __khugepaged_exit(struct mm_struct *mm)
1968{
1969	struct mm_slot *mm_slot;
1970	int free = 0;
1971
1972	spin_lock(&khugepaged_mm_lock);
1973	mm_slot = get_mm_slot(mm);
1974	if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
1975		hash_del(&mm_slot->hash);
1976		list_del(&mm_slot->mm_node);
1977		free = 1;
1978	}
1979	spin_unlock(&khugepaged_mm_lock);
1980
1981	if (free) {
1982		clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1983		free_mm_slot(mm_slot);
1984		mmdrop(mm);
1985	} else if (mm_slot) {
1986		/*
1987		 * This is required to serialize against
1988		 * khugepaged_test_exit() (which is guaranteed to run
1989		 * under mmap sem read mode). Stop here (after we
1990		 * return all pagetables will be destroyed) until
1991		 * khugepaged has finished working on the pagetables
1992		 * under the mmap_sem.
1993		 */
1994		down_write(&mm->mmap_sem);
1995		up_write(&mm->mmap_sem);
1996	}
1997}
1998
1999static void release_pte_page(struct page *page)
2000{
2001	/* 0 stands for page_is_file_cache(page) == false */
2002	dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
2003	unlock_page(page);
2004	putback_lru_page(page);
2005}
2006
2007static void release_pte_pages(pte_t *pte, pte_t *_pte)
2008{
2009	while (--_pte >= pte) {
2010		pte_t pteval = *_pte;
2011		if (!pte_none(pteval) && !is_zero_pfn(pte_pfn(pteval)))
2012			release_pte_page(pte_page(pteval));
2013	}
2014}
2015
2016static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
2017					unsigned long address,
2018					pte_t *pte)
2019{
2020	struct page *page = NULL;
2021	pte_t *_pte;
2022	int none_or_zero = 0, result = 0;
2023	bool referenced = false, writable = false;
2024
2025	for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
2026	     _pte++, address += PAGE_SIZE) {
2027		pte_t pteval = *_pte;
2028		if (pte_none(pteval) || (pte_present(pteval) &&
2029				is_zero_pfn(pte_pfn(pteval)))) {
2030			if (!userfaultfd_armed(vma) &&
2031			    ++none_or_zero <= khugepaged_max_ptes_none) {
2032				continue;
2033			} else {
2034				result = SCAN_EXCEED_NONE_PTE;
2035				goto out;
2036			}
2037		}
2038		if (!pte_present(pteval)) {
2039			result = SCAN_PTE_NON_PRESENT;
2040			goto out;
2041		}
2042		page = vm_normal_page(vma, address, pteval);
2043		if (unlikely(!page)) {
2044			result = SCAN_PAGE_NULL;
2045			goto out;
2046		}
2047
2048		VM_BUG_ON_PAGE(PageCompound(page), page);
2049		VM_BUG_ON_PAGE(!PageAnon(page), page);
2050		VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
2051
 
 
 
2052		/*
2053		 * We can do it before isolate_lru_page because the
2054		 * page can't be freed from under us. NOTE: PG_lock
2055		 * is needed to serialize against split_huge_page
2056		 * when invoked from the VM.
2057		 */
2058		if (!trylock_page(page)) {
2059			result = SCAN_PAGE_LOCK;
2060			goto out;
2061		}
2062
2063		/*
2064		 * cannot use mapcount: can't collapse if there's a gup pin.
2065		 * The page must only be referenced by the scanned process
2066		 * and page swap cache.
2067		 */
2068		if (page_count(page) != 1 + !!PageSwapCache(page)) {
2069			unlock_page(page);
2070			result = SCAN_PAGE_COUNT;
2071			goto out;
2072		}
2073		if (pte_write(pteval)) {
2074			writable = true;
2075		} else {
2076			if (PageSwapCache(page) &&
2077			    !reuse_swap_page(page, NULL)) {
2078				unlock_page(page);
2079				result = SCAN_SWAP_CACHE_PAGE;
2080				goto out;
2081			}
2082			/*
2083			 * Page is not in the swap cache. It can be collapsed
2084			 * into a THP.
2085			 */
2086		}
2087
2088		/*
2089		 * Isolate the page to avoid collapsing an hugepage
2090		 * currently in use by the VM.
2091		 */
2092		if (isolate_lru_page(page)) {
2093			unlock_page(page);
2094			result = SCAN_DEL_PAGE_LRU;
2095			goto out;
2096		}
2097		/* 0 stands for page_is_file_cache(page) == false */
2098		inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
2099		VM_BUG_ON_PAGE(!PageLocked(page), page);
2100		VM_BUG_ON_PAGE(PageLRU(page), page);
2101
2102		/* If there is no mapped pte young don't collapse the page */
2103		if (pte_young(pteval) ||
2104		    page_is_young(page) || PageReferenced(page) ||
2105		    mmu_notifier_test_young(vma->vm_mm, address))
2106			referenced = true;
2107	}
2108	if (likely(writable)) {
2109		if (likely(referenced)) {
2110			result = SCAN_SUCCEED;
2111			trace_mm_collapse_huge_page_isolate(page, none_or_zero,
2112							    referenced, writable, result);
2113			return 1;
2114		}
2115	} else {
2116		result = SCAN_PAGE_RO;
2117	}
2118
2119out:
2120	release_pte_pages(pte, _pte);
2121	trace_mm_collapse_huge_page_isolate(page, none_or_zero,
2122					    referenced, writable, result);
2123	return 0;
2124}
2125
2126static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
2127				      struct vm_area_struct *vma,
2128				      unsigned long address,
2129				      spinlock_t *ptl)
2130{
2131	pte_t *_pte;
2132	for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
2133		pte_t pteval = *_pte;
2134		struct page *src_page;
2135
2136		if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
2137			clear_user_highpage(page, address);
2138			add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
2139			if (is_zero_pfn(pte_pfn(pteval))) {
2140				/*
2141				 * ptl mostly unnecessary.
2142				 */
2143				spin_lock(ptl);
2144				/*
2145				 * paravirt calls inside pte_clear here are
2146				 * superfluous.
2147				 */
2148				pte_clear(vma->vm_mm, address, _pte);
2149				spin_unlock(ptl);
2150			}
2151		} else {
2152			src_page = pte_page(pteval);
2153			copy_user_highpage(page, src_page, address, vma);
2154			VM_BUG_ON_PAGE(page_mapcount(src_page) != 1, src_page);
2155			release_pte_page(src_page);
2156			/*
2157			 * ptl mostly unnecessary, but preempt has to
2158			 * be disabled to update the per-cpu stats
2159			 * inside page_remove_rmap().
2160			 */
2161			spin_lock(ptl);
2162			/*
2163			 * paravirt calls inside pte_clear here are
2164			 * superfluous.
2165			 */
2166			pte_clear(vma->vm_mm, address, _pte);
2167			page_remove_rmap(src_page, false);
2168			spin_unlock(ptl);
2169			free_page_and_swap_cache(src_page);
2170		}
2171
2172		address += PAGE_SIZE;
2173		page++;
2174	}
2175}
2176
2177static void khugepaged_alloc_sleep(void)
2178{
2179	DEFINE_WAIT(wait);
2180
2181	add_wait_queue(&khugepaged_wait, &wait);
2182	freezable_schedule_timeout_interruptible(
2183		msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
2184	remove_wait_queue(&khugepaged_wait, &wait);
2185}
2186
2187static int khugepaged_node_load[MAX_NUMNODES];
2188
2189static bool khugepaged_scan_abort(int nid)
2190{
2191	int i;
2192
2193	/*
2194	 * If zone_reclaim_mode is disabled, then no extra effort is made to
2195	 * allocate memory locally.
2196	 */
2197	if (!zone_reclaim_mode)
2198		return false;
2199
2200	/* If there is a count for this node already, it must be acceptable */
2201	if (khugepaged_node_load[nid])
2202		return false;
2203
2204	for (i = 0; i < MAX_NUMNODES; i++) {
2205		if (!khugepaged_node_load[i])
2206			continue;
2207		if (node_distance(nid, i) > RECLAIM_DISTANCE)
2208			return true;
2209	}
2210	return false;
2211}
2212
2213#ifdef CONFIG_NUMA
2214static int khugepaged_find_target_node(void)
2215{
2216	static int last_khugepaged_target_node = NUMA_NO_NODE;
2217	int nid, target_node = 0, max_value = 0;
2218
2219	/* find first node with max normal pages hit */
2220	for (nid = 0; nid < MAX_NUMNODES; nid++)
2221		if (khugepaged_node_load[nid] > max_value) {
2222			max_value = khugepaged_node_load[nid];
2223			target_node = nid;
2224		}
2225
2226	/* do some balance if several nodes have the same hit record */
2227	if (target_node <= last_khugepaged_target_node)
2228		for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
2229				nid++)
2230			if (max_value == khugepaged_node_load[nid]) {
2231				target_node = nid;
2232				break;
2233			}
2234
2235	last_khugepaged_target_node = target_node;
2236	return target_node;
2237}
2238
2239static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2240{
2241	if (IS_ERR(*hpage)) {
2242		if (!*wait)
2243			return false;
2244
2245		*wait = false;
2246		*hpage = NULL;
2247		khugepaged_alloc_sleep();
2248	} else if (*hpage) {
2249		put_page(*hpage);
2250		*hpage = NULL;
2251	}
2252
2253	return true;
2254}
2255
2256static struct page *
2257khugepaged_alloc_page(struct page **hpage, gfp_t gfp, struct mm_struct *mm,
2258		       unsigned long address, int node)
 
2259{
2260	VM_BUG_ON_PAGE(*hpage, *hpage);
2261
2262	/*
2263	 * Before allocating the hugepage, release the mmap_sem read lock.
2264	 * The allocation can take potentially a long time if it involves
2265	 * sync compaction, and we do not need to hold the mmap_sem during
2266	 * that. We will recheck the vma after taking it again in write mode.
 
 
 
 
 
 
 
 
 
 
2267	 */
2268	up_read(&mm->mmap_sem);
2269
2270	*hpage = __alloc_pages_node(node, gfp, HPAGE_PMD_ORDER);
2271	if (unlikely(!*hpage)) {
2272		count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2273		*hpage = ERR_PTR(-ENOMEM);
2274		return NULL;
2275	}
2276
2277	prep_transhuge_page(*hpage);
2278	count_vm_event(THP_COLLAPSE_ALLOC);
2279	return *hpage;
2280}
2281#else
2282static int khugepaged_find_target_node(void)
2283{
2284	return 0;
2285}
2286
2287static inline struct page *alloc_khugepaged_hugepage(void)
2288{
2289	struct page *page;
2290
2291	page = alloc_pages(alloc_hugepage_khugepaged_gfpmask(),
2292			   HPAGE_PMD_ORDER);
2293	if (page)
2294		prep_transhuge_page(page);
2295	return page;
2296}
2297
2298static struct page *khugepaged_alloc_hugepage(bool *wait)
2299{
2300	struct page *hpage;
2301
2302	do {
2303		hpage = alloc_khugepaged_hugepage();
2304		if (!hpage) {
2305			count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2306			if (!*wait)
2307				return NULL;
2308
2309			*wait = false;
2310			khugepaged_alloc_sleep();
2311		} else
2312			count_vm_event(THP_COLLAPSE_ALLOC);
2313	} while (unlikely(!hpage) && likely(khugepaged_enabled()));
2314
2315	return hpage;
2316}
2317
2318static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2319{
2320	if (!*hpage)
2321		*hpage = khugepaged_alloc_hugepage(wait);
2322
2323	if (unlikely(!*hpage))
2324		return false;
2325
2326	return true;
2327}
2328
2329static struct page *
2330khugepaged_alloc_page(struct page **hpage, gfp_t gfp, struct mm_struct *mm,
2331		       unsigned long address, int node)
 
2332{
2333	up_read(&mm->mmap_sem);
2334	VM_BUG_ON(!*hpage);
2335
2336	return  *hpage;
2337}
2338#endif
2339
2340static bool hugepage_vma_check(struct vm_area_struct *vma)
2341{
2342	if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
2343	    (vma->vm_flags & VM_NOHUGEPAGE))
2344		return false;
 
2345	if (!vma->anon_vma || vma->vm_ops)
2346		return false;
2347	if (is_vma_temporary_stack(vma))
2348		return false;
2349	return !(vma->vm_flags & VM_NO_THP);
 
2350}
2351
2352static void collapse_huge_page(struct mm_struct *mm,
2353				   unsigned long address,
2354				   struct page **hpage,
2355				   struct vm_area_struct *vma,
2356				   int node)
2357{
2358	pmd_t *pmd, _pmd;
2359	pte_t *pte;
2360	pgtable_t pgtable;
2361	struct page *new_page;
2362	spinlock_t *pmd_ptl, *pte_ptl;
2363	int isolated = 0, result = 0;
2364	unsigned long hstart, hend;
2365	struct mem_cgroup *memcg;
2366	unsigned long mmun_start;	/* For mmu_notifiers */
2367	unsigned long mmun_end;		/* For mmu_notifiers */
2368	gfp_t gfp;
2369
2370	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2371
2372	/* Only allocate from the target node */
2373	gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_OTHER_NODE | __GFP_THISNODE;
2374
2375	/* release the mmap_sem read lock. */
2376	new_page = khugepaged_alloc_page(hpage, gfp, mm, address, node);
2377	if (!new_page) {
2378		result = SCAN_ALLOC_HUGE_PAGE_FAIL;
2379		goto out_nolock;
2380	}
2381
2382	if (unlikely(mem_cgroup_try_charge(new_page, mm, gfp, &memcg, true))) {
2383		result = SCAN_CGROUP_CHARGE_FAIL;
2384		goto out_nolock;
2385	}
2386
2387	/*
2388	 * Prevent all access to pagetables with the exception of
2389	 * gup_fast later hanlded by the ptep_clear_flush and the VM
2390	 * handled by the anon_vma lock + PG_lock.
2391	 */
2392	down_write(&mm->mmap_sem);
2393	if (unlikely(khugepaged_test_exit(mm))) {
2394		result = SCAN_ANY_PROCESS;
2395		goto out;
2396	}
2397
2398	vma = find_vma(mm, address);
2399	if (!vma) {
2400		result = SCAN_VMA_NULL;
2401		goto out;
2402	}
2403	hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2404	hend = vma->vm_end & HPAGE_PMD_MASK;
2405	if (address < hstart || address + HPAGE_PMD_SIZE > hend) {
2406		result = SCAN_ADDRESS_RANGE;
2407		goto out;
2408	}
2409	if (!hugepage_vma_check(vma)) {
2410		result = SCAN_VMA_CHECK;
2411		goto out;
2412	}
2413	pmd = mm_find_pmd(mm, address);
2414	if (!pmd) {
2415		result = SCAN_PMD_NULL;
 
2416		goto out;
2417	}
2418
2419	anon_vma_lock_write(vma->anon_vma);
2420
2421	pte = pte_offset_map(pmd, address);
2422	pte_ptl = pte_lockptr(mm, pmd);
2423
2424	mmun_start = address;
2425	mmun_end   = address + HPAGE_PMD_SIZE;
2426	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2427	pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
2428	/*
2429	 * After this gup_fast can't run anymore. This also removes
2430	 * any huge TLB entry from the CPU so we won't allow
2431	 * huge and small TLB entries for the same virtual address
2432	 * to avoid the risk of CPU bugs in that area.
2433	 */
2434	_pmd = pmdp_collapse_flush(vma, address, pmd);
2435	spin_unlock(pmd_ptl);
2436	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2437
2438	spin_lock(pte_ptl);
2439	isolated = __collapse_huge_page_isolate(vma, address, pte);
2440	spin_unlock(pte_ptl);
2441
2442	if (unlikely(!isolated)) {
2443		pte_unmap(pte);
2444		spin_lock(pmd_ptl);
2445		BUG_ON(!pmd_none(*pmd));
2446		/*
2447		 * We can only use set_pmd_at when establishing
2448		 * hugepmds and never for establishing regular pmds that
2449		 * points to regular pagetables. Use pmd_populate for that
2450		 */
2451		pmd_populate(mm, pmd, pmd_pgtable(_pmd));
2452		spin_unlock(pmd_ptl);
2453		anon_vma_unlock_write(vma->anon_vma);
2454		result = SCAN_FAIL;
2455		goto out;
2456	}
2457
2458	/*
2459	 * All pages are isolated and locked so anon_vma rmap
2460	 * can't run anymore.
2461	 */
2462	anon_vma_unlock_write(vma->anon_vma);
2463
2464	__collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl);
2465	pte_unmap(pte);
2466	__SetPageUptodate(new_page);
2467	pgtable = pmd_pgtable(_pmd);
2468
2469	_pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
2470	_pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
2471
2472	/*
2473	 * spin_lock() below is not the equivalent of smp_wmb(), so
2474	 * this is needed to avoid the copy_huge_page writes to become
2475	 * visible after the set_pmd_at() write.
2476	 */
2477	smp_wmb();
2478
2479	spin_lock(pmd_ptl);
2480	BUG_ON(!pmd_none(*pmd));
2481	page_add_new_anon_rmap(new_page, vma, address, true);
2482	mem_cgroup_commit_charge(new_page, memcg, false, true);
2483	lru_cache_add_active_or_unevictable(new_page, vma);
2484	pgtable_trans_huge_deposit(mm, pmd, pgtable);
2485	set_pmd_at(mm, address, pmd, _pmd);
2486	update_mmu_cache_pmd(vma, address, pmd);
2487	spin_unlock(pmd_ptl);
2488
2489	*hpage = NULL;
2490
2491	khugepaged_pages_collapsed++;
2492	result = SCAN_SUCCEED;
2493out_up_write:
2494	up_write(&mm->mmap_sem);
2495	trace_mm_collapse_huge_page(mm, isolated, result);
2496	return;
2497
2498out_nolock:
2499	trace_mm_collapse_huge_page(mm, isolated, result);
2500	return;
2501out:
2502	mem_cgroup_cancel_charge(new_page, memcg, true);
2503	goto out_up_write;
2504}
2505
2506static int khugepaged_scan_pmd(struct mm_struct *mm,
2507			       struct vm_area_struct *vma,
2508			       unsigned long address,
2509			       struct page **hpage)
2510{
2511	pmd_t *pmd;
2512	pte_t *pte, *_pte;
2513	int ret = 0, none_or_zero = 0, result = 0;
2514	struct page *page = NULL;
2515	unsigned long _address;
2516	spinlock_t *ptl;
2517	int node = NUMA_NO_NODE;
2518	bool writable = false, referenced = false;
2519
2520	VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2521
2522	pmd = mm_find_pmd(mm, address);
2523	if (!pmd) {
2524		result = SCAN_PMD_NULL;
 
2525		goto out;
2526	}
2527
2528	memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
2529	pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2530	for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
2531	     _pte++, _address += PAGE_SIZE) {
2532		pte_t pteval = *_pte;
2533		if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
2534			if (!userfaultfd_armed(vma) &&
2535			    ++none_or_zero <= khugepaged_max_ptes_none) {
2536				continue;
2537			} else {
2538				result = SCAN_EXCEED_NONE_PTE;
2539				goto out_unmap;
2540			}
2541		}
2542		if (!pte_present(pteval)) {
2543			result = SCAN_PTE_NON_PRESENT;
2544			goto out_unmap;
2545		}
2546		if (pte_write(pteval))
2547			writable = true;
2548
2549		page = vm_normal_page(vma, _address, pteval);
2550		if (unlikely(!page)) {
2551			result = SCAN_PAGE_NULL;
2552			goto out_unmap;
2553		}
2554
2555		/* TODO: teach khugepaged to collapse THP mapped with pte */
2556		if (PageCompound(page)) {
2557			result = SCAN_PAGE_COMPOUND;
2558			goto out_unmap;
2559		}
2560
2561		/*
2562		 * Record which node the original page is from and save this
2563		 * information to khugepaged_node_load[].
2564		 * Khupaged will allocate hugepage from the node has the max
2565		 * hit record.
2566		 */
2567		node = page_to_nid(page);
2568		if (khugepaged_scan_abort(node)) {
2569			result = SCAN_SCAN_ABORT;
2570			goto out_unmap;
2571		}
2572		khugepaged_node_load[node]++;
2573		if (!PageLRU(page)) {
2574			result = SCAN_PAGE_LRU;
2575			goto out_unmap;
2576		}
2577		if (PageLocked(page)) {
2578			result = SCAN_PAGE_LOCK;
2579			goto out_unmap;
2580		}
2581		if (!PageAnon(page)) {
2582			result = SCAN_PAGE_ANON;
2583			goto out_unmap;
2584		}
2585
2586		/*
2587		 * cannot use mapcount: can't collapse if there's a gup pin.
2588		 * The page must only be referenced by the scanned process
2589		 * and page swap cache.
2590		 */
2591		if (page_count(page) != 1 + !!PageSwapCache(page)) {
2592			result = SCAN_PAGE_COUNT;
2593			goto out_unmap;
2594		}
2595		if (pte_young(pteval) ||
2596		    page_is_young(page) || PageReferenced(page) ||
2597		    mmu_notifier_test_young(vma->vm_mm, address))
2598			referenced = true;
2599	}
2600	if (writable) {
2601		if (referenced) {
2602			result = SCAN_SUCCEED;
2603			ret = 1;
2604		} else {
2605			result = SCAN_NO_REFERENCED_PAGE;
2606		}
2607	} else {
2608		result = SCAN_PAGE_RO;
2609	}
 
 
2610out_unmap:
2611	pte_unmap_unlock(pte, ptl);
2612	if (ret) {
2613		node = khugepaged_find_target_node();
2614		/* collapse_huge_page will return with the mmap_sem released */
2615		collapse_huge_page(mm, address, hpage, vma, node);
2616	}
2617out:
2618	trace_mm_khugepaged_scan_pmd(mm, page, writable, referenced,
2619				     none_or_zero, result);
2620	return ret;
2621}
2622
2623static void collect_mm_slot(struct mm_slot *mm_slot)
2624{
2625	struct mm_struct *mm = mm_slot->mm;
2626
2627	VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2628
2629	if (khugepaged_test_exit(mm)) {
2630		/* free mm_slot */
2631		hash_del(&mm_slot->hash);
2632		list_del(&mm_slot->mm_node);
2633
2634		/*
2635		 * Not strictly needed because the mm exited already.
2636		 *
2637		 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2638		 */
2639
2640		/* khugepaged_mm_lock actually not necessary for the below */
2641		free_mm_slot(mm_slot);
2642		mmdrop(mm);
2643	}
2644}
2645
2646static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2647					    struct page **hpage)
2648	__releases(&khugepaged_mm_lock)
2649	__acquires(&khugepaged_mm_lock)
2650{
2651	struct mm_slot *mm_slot;
2652	struct mm_struct *mm;
2653	struct vm_area_struct *vma;
2654	int progress = 0;
2655
2656	VM_BUG_ON(!pages);
2657	VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2658
2659	if (khugepaged_scan.mm_slot)
2660		mm_slot = khugepaged_scan.mm_slot;
2661	else {
2662		mm_slot = list_entry(khugepaged_scan.mm_head.next,
2663				     struct mm_slot, mm_node);
2664		khugepaged_scan.address = 0;
2665		khugepaged_scan.mm_slot = mm_slot;
2666	}
2667	spin_unlock(&khugepaged_mm_lock);
2668
2669	mm = mm_slot->mm;
2670	down_read(&mm->mmap_sem);
2671	if (unlikely(khugepaged_test_exit(mm)))
2672		vma = NULL;
2673	else
2674		vma = find_vma(mm, khugepaged_scan.address);
2675
2676	progress++;
2677	for (; vma; vma = vma->vm_next) {
2678		unsigned long hstart, hend;
2679
2680		cond_resched();
2681		if (unlikely(khugepaged_test_exit(mm))) {
2682			progress++;
2683			break;
2684		}
2685		if (!hugepage_vma_check(vma)) {
2686skip:
2687			progress++;
2688			continue;
2689		}
2690		hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2691		hend = vma->vm_end & HPAGE_PMD_MASK;
2692		if (hstart >= hend)
2693			goto skip;
2694		if (khugepaged_scan.address > hend)
2695			goto skip;
2696		if (khugepaged_scan.address < hstart)
2697			khugepaged_scan.address = hstart;
2698		VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2699
2700		while (khugepaged_scan.address < hend) {
2701			int ret;
2702			cond_resched();
2703			if (unlikely(khugepaged_test_exit(mm)))
2704				goto breakouterloop;
2705
2706			VM_BUG_ON(khugepaged_scan.address < hstart ||
2707				  khugepaged_scan.address + HPAGE_PMD_SIZE >
2708				  hend);
2709			ret = khugepaged_scan_pmd(mm, vma,
2710						  khugepaged_scan.address,
2711						  hpage);
2712			/* move to next address */
2713			khugepaged_scan.address += HPAGE_PMD_SIZE;
2714			progress += HPAGE_PMD_NR;
2715			if (ret)
2716				/* we released mmap_sem so break loop */
2717				goto breakouterloop_mmap_sem;
2718			if (progress >= pages)
2719				goto breakouterloop;
2720		}
2721	}
2722breakouterloop:
2723	up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2724breakouterloop_mmap_sem:
2725
2726	spin_lock(&khugepaged_mm_lock);
2727	VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2728	/*
2729	 * Release the current mm_slot if this mm is about to die, or
2730	 * if we scanned all vmas of this mm.
2731	 */
2732	if (khugepaged_test_exit(mm) || !vma) {
2733		/*
2734		 * Make sure that if mm_users is reaching zero while
2735		 * khugepaged runs here, khugepaged_exit will find
2736		 * mm_slot not pointing to the exiting mm.
2737		 */
2738		if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2739			khugepaged_scan.mm_slot = list_entry(
2740				mm_slot->mm_node.next,
2741				struct mm_slot, mm_node);
2742			khugepaged_scan.address = 0;
2743		} else {
2744			khugepaged_scan.mm_slot = NULL;
2745			khugepaged_full_scans++;
2746		}
2747
2748		collect_mm_slot(mm_slot);
2749	}
2750
2751	return progress;
2752}
2753
2754static int khugepaged_has_work(void)
2755{
2756	return !list_empty(&khugepaged_scan.mm_head) &&
2757		khugepaged_enabled();
2758}
2759
2760static int khugepaged_wait_event(void)
2761{
2762	return !list_empty(&khugepaged_scan.mm_head) ||
2763		kthread_should_stop();
2764}
2765
2766static void khugepaged_do_scan(void)
2767{
2768	struct page *hpage = NULL;
2769	unsigned int progress = 0, pass_through_head = 0;
2770	unsigned int pages = khugepaged_pages_to_scan;
2771	bool wait = true;
2772
2773	barrier(); /* write khugepaged_pages_to_scan to local stack */
2774
2775	while (progress < pages) {
2776		if (!khugepaged_prealloc_page(&hpage, &wait))
2777			break;
2778
2779		cond_resched();
2780
2781		if (unlikely(kthread_should_stop() || try_to_freeze()))
2782			break;
2783
2784		spin_lock(&khugepaged_mm_lock);
2785		if (!khugepaged_scan.mm_slot)
2786			pass_through_head++;
2787		if (khugepaged_has_work() &&
2788		    pass_through_head < 2)
2789			progress += khugepaged_scan_mm_slot(pages - progress,
2790							    &hpage);
2791		else
2792			progress = pages;
2793		spin_unlock(&khugepaged_mm_lock);
2794	}
2795
2796	if (!IS_ERR_OR_NULL(hpage))
2797		put_page(hpage);
2798}
2799
2800static void khugepaged_wait_work(void)
2801{
 
 
2802	if (khugepaged_has_work()) {
2803		if (!khugepaged_scan_sleep_millisecs)
2804			return;
2805
2806		wait_event_freezable_timeout(khugepaged_wait,
2807					     kthread_should_stop(),
2808			msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
2809		return;
2810	}
2811
2812	if (khugepaged_enabled())
2813		wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2814}
2815
2816static int khugepaged(void *none)
2817{
2818	struct mm_slot *mm_slot;
2819
2820	set_freezable();
2821	set_user_nice(current, MAX_NICE);
2822
2823	while (!kthread_should_stop()) {
2824		khugepaged_do_scan();
2825		khugepaged_wait_work();
2826	}
2827
2828	spin_lock(&khugepaged_mm_lock);
2829	mm_slot = khugepaged_scan.mm_slot;
2830	khugepaged_scan.mm_slot = NULL;
2831	if (mm_slot)
2832		collect_mm_slot(mm_slot);
2833	spin_unlock(&khugepaged_mm_lock);
2834	return 0;
2835}
2836
2837static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2838		unsigned long haddr, pmd_t *pmd)
2839{
2840	struct mm_struct *mm = vma->vm_mm;
2841	pgtable_t pgtable;
2842	pmd_t _pmd;
2843	int i;
2844
 
2845	/* leave pmd empty until pte is filled */
2846	pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2847
2848	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2849	pmd_populate(mm, &_pmd, pgtable);
2850
2851	for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2852		pte_t *pte, entry;
2853		entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2854		entry = pte_mkspecial(entry);
2855		pte = pte_offset_map(&_pmd, haddr);
2856		VM_BUG_ON(!pte_none(*pte));
2857		set_pte_at(mm, haddr, pte, entry);
2858		pte_unmap(pte);
2859	}
2860	smp_wmb(); /* make pte visible before pmd */
2861	pmd_populate(mm, pmd, pgtable);
2862	put_huge_zero_page();
2863}
2864
2865static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2866		unsigned long haddr, bool freeze)
2867{
 
 
2868	struct mm_struct *mm = vma->vm_mm;
2869	struct page *page;
2870	pgtable_t pgtable;
2871	pmd_t _pmd;
2872	bool young, write, dirty;
2873	unsigned long addr;
2874	int i;
2875
2876	VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2877	VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2878	VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2879	VM_BUG_ON(!pmd_trans_huge(*pmd) && !pmd_devmap(*pmd));
2880
2881	count_vm_event(THP_SPLIT_PMD);
2882
2883	if (vma_is_dax(vma)) {
2884		pmd_t _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2885		if (is_huge_zero_pmd(_pmd))
2886			put_huge_zero_page();
 
 
 
2887		return;
2888	} else if (is_huge_zero_pmd(*pmd)) {
2889		return __split_huge_zero_page_pmd(vma, haddr, pmd);
2890	}
2891
2892	page = pmd_page(*pmd);
2893	VM_BUG_ON_PAGE(!page_count(page), page);
2894	page_ref_add(page, HPAGE_PMD_NR - 1);
2895	write = pmd_write(*pmd);
2896	young = pmd_young(*pmd);
2897	dirty = pmd_dirty(*pmd);
2898
2899	pmdp_huge_split_prepare(vma, haddr, pmd);
2900	pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2901	pmd_populate(mm, &_pmd, pgtable);
2902
2903	for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
2904		pte_t entry, *pte;
2905		/*
2906		 * Note that NUMA hinting access restrictions are not
2907		 * transferred to avoid any possibility of altering
2908		 * permissions across VMAs.
2909		 */
2910		if (freeze) {
2911			swp_entry_t swp_entry;
2912			swp_entry = make_migration_entry(page + i, write);
2913			entry = swp_entry_to_pte(swp_entry);
2914		} else {
2915			entry = mk_pte(page + i, vma->vm_page_prot);
2916			entry = maybe_mkwrite(entry, vma);
2917			if (!write)
2918				entry = pte_wrprotect(entry);
2919			if (!young)
2920				entry = pte_mkold(entry);
2921		}
2922		if (dirty)
2923			SetPageDirty(page + i);
2924		pte = pte_offset_map(&_pmd, addr);
2925		BUG_ON(!pte_none(*pte));
2926		set_pte_at(mm, addr, pte, entry);
2927		atomic_inc(&page[i]._mapcount);
2928		pte_unmap(pte);
2929	}
2930
2931	/*
2932	 * Set PG_double_map before dropping compound_mapcount to avoid
2933	 * false-negative page_mapped().
 
2934	 */
2935	if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
2936		for (i = 0; i < HPAGE_PMD_NR; i++)
2937			atomic_inc(&page[i]._mapcount);
2938	}
2939
2940	if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
2941		/* Last compound_mapcount is gone. */
2942		__dec_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
2943		if (TestClearPageDoubleMap(page)) {
2944			/* No need in mapcount reference anymore */
2945			for (i = 0; i < HPAGE_PMD_NR; i++)
2946				atomic_dec(&page[i]._mapcount);
2947		}
2948	}
2949
2950	smp_wmb(); /* make pte visible before pmd */
2951	/*
2952	 * Up to this point the pmd is present and huge and userland has the
2953	 * whole access to the hugepage during the split (which happens in
2954	 * place). If we overwrite the pmd with the not-huge version pointing
2955	 * to the pte here (which of course we could if all CPUs were bug
2956	 * free), userland could trigger a small page size TLB miss on the
2957	 * small sized TLB while the hugepage TLB entry is still established in
2958	 * the huge TLB. Some CPU doesn't like that.
2959	 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
2960	 * 383 on page 93. Intel should be safe but is also warns that it's
2961	 * only safe if the permission and cache attributes of the two entries
2962	 * loaded in the two TLB is identical (which should be the case here).
2963	 * But it is generally safer to never allow small and huge TLB entries
2964	 * for the same virtual address to be loaded simultaneously. So instead
2965	 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
2966	 * current pmd notpresent (atomically because here the pmd_trans_huge
2967	 * and pmd_trans_splitting must remain set at all times on the pmd
2968	 * until the split is complete for this pmd), then we flush the SMP TLB
2969	 * and finally we write the non-huge version of the pmd entry with
2970	 * pmd_populate.
2971	 */
2972	pmdp_invalidate(vma, haddr, pmd);
2973	pmd_populate(mm, pmd, pgtable);
2974
2975	if (freeze) {
2976		for (i = 0; i < HPAGE_PMD_NR; i++) {
2977			page_remove_rmap(page + i, false);
2978			put_page(page + i);
2979		}
2980	}
2981}
2982
2983void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
2984		unsigned long address, bool freeze)
2985{
2986	spinlock_t *ptl;
2987	struct mm_struct *mm = vma->vm_mm;
2988	unsigned long haddr = address & HPAGE_PMD_MASK;
2989
2990	mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PMD_SIZE);
2991	ptl = pmd_lock(mm, pmd);
2992	if (pmd_trans_huge(*pmd)) {
2993		struct page *page = pmd_page(*pmd);
2994		if (PageMlocked(page))
2995			clear_page_mlock(page);
2996	} else if (!pmd_devmap(*pmd))
2997		goto out;
2998	__split_huge_pmd_locked(vma, pmd, haddr, freeze);
2999out:
3000	spin_unlock(ptl);
3001	mmu_notifier_invalidate_range_end(mm, haddr, haddr + HPAGE_PMD_SIZE);
3002}
3003
3004void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
3005		bool freeze, struct page *page)
3006{
3007	pgd_t *pgd;
3008	pud_t *pud;
3009	pmd_t *pmd;
3010
3011	pgd = pgd_offset(vma->vm_mm, address);
3012	if (!pgd_present(*pgd))
3013		return;
3014
3015	pud = pud_offset(pgd, address);
3016	if (!pud_present(*pud))
3017		return;
3018
3019	pmd = pmd_offset(pud, address);
3020	if (!pmd_present(*pmd) || (!pmd_trans_huge(*pmd) && !pmd_devmap(*pmd)))
3021		return;
3022
3023	/*
3024	 * If caller asks to setup a migration entries, we need a page to check
3025	 * pmd against. Otherwise we can end up replacing wrong page.
3026	 */
3027	VM_BUG_ON(freeze && !page);
3028	if (page && page != pmd_page(*pmd))
3029		return;
3030
3031	/*
3032	 * Caller holds the mmap_sem write mode, so a huge pmd cannot
3033	 * materialize from under us.
3034	 */
3035	__split_huge_pmd(vma, pmd, address, freeze);
3036}
3037
3038void vma_adjust_trans_huge(struct vm_area_struct *vma,
3039			     unsigned long start,
3040			     unsigned long end,
3041			     long adjust_next)
3042{
3043	/*
3044	 * If the new start address isn't hpage aligned and it could
3045	 * previously contain an hugepage: check if we need to split
3046	 * an huge pmd.
3047	 */
3048	if (start & ~HPAGE_PMD_MASK &&
3049	    (start & HPAGE_PMD_MASK) >= vma->vm_start &&
3050	    (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
3051		split_huge_pmd_address(vma, start, false, NULL);
3052
3053	/*
3054	 * If the new end address isn't hpage aligned and it could
3055	 * previously contain an hugepage: check if we need to split
3056	 * an huge pmd.
3057	 */
3058	if (end & ~HPAGE_PMD_MASK &&
3059	    (end & HPAGE_PMD_MASK) >= vma->vm_start &&
3060	    (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
3061		split_huge_pmd_address(vma, end, false, NULL);
3062
3063	/*
3064	 * If we're also updating the vma->vm_next->vm_start, if the new
3065	 * vm_next->vm_start isn't page aligned and it could previously
3066	 * contain an hugepage: check if we need to split an huge pmd.
3067	 */
3068	if (adjust_next > 0) {
3069		struct vm_area_struct *next = vma->vm_next;
3070		unsigned long nstart = next->vm_start;
3071		nstart += adjust_next << PAGE_SHIFT;
3072		if (nstart & ~HPAGE_PMD_MASK &&
3073		    (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
3074		    (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
3075			split_huge_pmd_address(next, nstart, false, NULL);
3076	}
3077}
3078
3079static void freeze_page(struct page *page)
3080{
3081	enum ttu_flags ttu_flags = TTU_MIGRATION | TTU_IGNORE_MLOCK |
3082		TTU_IGNORE_ACCESS | TTU_RMAP_LOCKED;
3083	int i, ret;
3084
3085	VM_BUG_ON_PAGE(!PageHead(page), page);
3086
3087	/* We only need TTU_SPLIT_HUGE_PMD once */
3088	ret = try_to_unmap(page, ttu_flags | TTU_SPLIT_HUGE_PMD);
3089	for (i = 1; !ret && i < HPAGE_PMD_NR; i++) {
3090		/* Cut short if the page is unmapped */
3091		if (page_count(page) == 1)
3092			return;
3093
3094		ret = try_to_unmap(page + i, ttu_flags);
3095	}
3096	VM_BUG_ON(ret);
3097}
3098
3099static void unfreeze_page(struct page *page)
3100{
3101	int i;
3102
3103	for (i = 0; i < HPAGE_PMD_NR; i++)
3104		remove_migration_ptes(page + i, page + i, true);
3105}
3106
3107static void __split_huge_page_tail(struct page *head, int tail,
3108		struct lruvec *lruvec, struct list_head *list)
3109{
3110	struct page *page_tail = head + tail;
3111
3112	VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
3113	VM_BUG_ON_PAGE(page_ref_count(page_tail) != 0, page_tail);
3114
3115	/*
3116	 * tail_page->_count is zero and not changing from under us. But
3117	 * get_page_unless_zero() may be running from under us on the
3118	 * tail_page. If we used atomic_set() below instead of atomic_inc(), we
3119	 * would then run atomic_set() concurrently with
3120	 * get_page_unless_zero(), and atomic_set() is implemented in C not
3121	 * using locked ops. spin_unlock on x86 sometime uses locked ops
3122	 * because of PPro errata 66, 92, so unless somebody can guarantee
3123	 * atomic_set() here would be safe on all archs (and not only on x86),
3124	 * it's safer to use atomic_inc().
3125	 */
3126	page_ref_inc(page_tail);
3127
3128	page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
3129	page_tail->flags |= (head->flags &
3130			((1L << PG_referenced) |
3131			 (1L << PG_swapbacked) |
3132			 (1L << PG_mlocked) |
3133			 (1L << PG_uptodate) |
3134			 (1L << PG_active) |
3135			 (1L << PG_locked) |
3136			 (1L << PG_unevictable) |
3137			 (1L << PG_dirty)));
3138
3139	/*
3140	 * After clearing PageTail the gup refcount can be released.
3141	 * Page flags also must be visible before we make the page non-compound.
3142	 */
3143	smp_wmb();
3144
3145	clear_compound_head(page_tail);
3146
3147	if (page_is_young(head))
3148		set_page_young(page_tail);
3149	if (page_is_idle(head))
3150		set_page_idle(page_tail);
3151
3152	/* ->mapping in first tail page is compound_mapcount */
3153	VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
3154			page_tail);
3155	page_tail->mapping = head->mapping;
3156
3157	page_tail->index = head->index + tail;
3158	page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
3159	lru_add_page_tail(head, page_tail, lruvec, list);
3160}
3161
3162static void __split_huge_page(struct page *page, struct list_head *list)
3163{
3164	struct page *head = compound_head(page);
3165	struct zone *zone = page_zone(head);
3166	struct lruvec *lruvec;
3167	int i;
3168
3169	/* prevent PageLRU to go away from under us, and freeze lru stats */
3170	spin_lock_irq(&zone->lru_lock);
3171	lruvec = mem_cgroup_page_lruvec(head, zone);
3172
3173	/* complete memcg works before add pages to LRU */
3174	mem_cgroup_split_huge_fixup(head);
3175
3176	for (i = HPAGE_PMD_NR - 1; i >= 1; i--)
3177		__split_huge_page_tail(head, i, lruvec, list);
3178
3179	ClearPageCompound(head);
3180	spin_unlock_irq(&zone->lru_lock);
3181
3182	unfreeze_page(head);
3183
3184	for (i = 0; i < HPAGE_PMD_NR; i++) {
3185		struct page *subpage = head + i;
3186		if (subpage == page)
3187			continue;
3188		unlock_page(subpage);
3189
3190		/*
3191		 * Subpages may be freed if there wasn't any mapping
3192		 * like if add_to_swap() is running on a lru page that
3193		 * had its mapping zapped. And freeing these pages
3194		 * requires taking the lru_lock so we do the put_page
3195		 * of the tail pages after the split is complete.
3196		 */
3197		put_page(subpage);
3198	}
3199}
3200
3201int total_mapcount(struct page *page)
3202{
3203	int i, ret;
3204
3205	VM_BUG_ON_PAGE(PageTail(page), page);
3206
3207	if (likely(!PageCompound(page)))
3208		return atomic_read(&page->_mapcount) + 1;
3209
3210	ret = compound_mapcount(page);
3211	if (PageHuge(page))
3212		return ret;
3213	for (i = 0; i < HPAGE_PMD_NR; i++)
3214		ret += atomic_read(&page[i]._mapcount) + 1;
3215	if (PageDoubleMap(page))
3216		ret -= HPAGE_PMD_NR;
3217	return ret;
3218}
3219
3220/*
3221 * This calculates accurately how many mappings a transparent hugepage
3222 * has (unlike page_mapcount() which isn't fully accurate). This full
3223 * accuracy is primarily needed to know if copy-on-write faults can
3224 * reuse the page and change the mapping to read-write instead of
3225 * copying them. At the same time this returns the total_mapcount too.
3226 *
3227 * The function returns the highest mapcount any one of the subpages
3228 * has. If the return value is one, even if different processes are
3229 * mapping different subpages of the transparent hugepage, they can
3230 * all reuse it, because each process is reusing a different subpage.
3231 *
3232 * The total_mapcount is instead counting all virtual mappings of the
3233 * subpages. If the total_mapcount is equal to "one", it tells the
3234 * caller all mappings belong to the same "mm" and in turn the
3235 * anon_vma of the transparent hugepage can become the vma->anon_vma
3236 * local one as no other process may be mapping any of the subpages.
3237 *
3238 * It would be more accurate to replace page_mapcount() with
3239 * page_trans_huge_mapcount(), however we only use
3240 * page_trans_huge_mapcount() in the copy-on-write faults where we
3241 * need full accuracy to avoid breaking page pinning, because
3242 * page_trans_huge_mapcount() is slower than page_mapcount().
3243 */
3244int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
3245{
3246	int i, ret, _total_mapcount, mapcount;
3247
3248	/* hugetlbfs shouldn't call it */
3249	VM_BUG_ON_PAGE(PageHuge(page), page);
3250
3251	if (likely(!PageTransCompound(page))) {
3252		mapcount = atomic_read(&page->_mapcount) + 1;
3253		if (total_mapcount)
3254			*total_mapcount = mapcount;
3255		return mapcount;
3256	}
3257
3258	page = compound_head(page);
3259
3260	_total_mapcount = ret = 0;
3261	for (i = 0; i < HPAGE_PMD_NR; i++) {
3262		mapcount = atomic_read(&page[i]._mapcount) + 1;
3263		ret = max(ret, mapcount);
3264		_total_mapcount += mapcount;
3265	}
3266	if (PageDoubleMap(page)) {
3267		ret -= 1;
3268		_total_mapcount -= HPAGE_PMD_NR;
3269	}
3270	mapcount = compound_mapcount(page);
3271	ret += mapcount;
3272	_total_mapcount += mapcount;
3273	if (total_mapcount)
3274		*total_mapcount = _total_mapcount;
3275	return ret;
3276}
3277
3278/*
3279 * This function splits huge page into normal pages. @page can point to any
3280 * subpage of huge page to split. Split doesn't change the position of @page.
3281 *
3282 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
3283 * The huge page must be locked.
3284 *
3285 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
3286 *
3287 * Both head page and tail pages will inherit mapping, flags, and so on from
3288 * the hugepage.
3289 *
3290 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
3291 * they are not mapped.
3292 *
3293 * Returns 0 if the hugepage is split successfully.
3294 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
3295 * us.
3296 */
3297int split_huge_page_to_list(struct page *page, struct list_head *list)
3298{
3299	struct page *head = compound_head(page);
3300	struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
3301	struct anon_vma *anon_vma;
3302	int count, mapcount, ret;
3303	bool mlocked;
3304	unsigned long flags;
3305
3306	VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
3307	VM_BUG_ON_PAGE(!PageAnon(page), page);
3308	VM_BUG_ON_PAGE(!PageLocked(page), page);
3309	VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
3310	VM_BUG_ON_PAGE(!PageCompound(page), page);
3311
3312	/*
3313	 * The caller does not necessarily hold an mmap_sem that would prevent
3314	 * the anon_vma disappearing so we first we take a reference to it
3315	 * and then lock the anon_vma for write. This is similar to
3316	 * page_lock_anon_vma_read except the write lock is taken to serialise
3317	 * against parallel split or collapse operations.
3318	 */
3319	anon_vma = page_get_anon_vma(head);
3320	if (!anon_vma) {
3321		ret = -EBUSY;
3322		goto out;
3323	}
3324	anon_vma_lock_write(anon_vma);
3325
3326	/*
3327	 * Racy check if we can split the page, before freeze_page() will
3328	 * split PMDs
3329	 */
3330	if (total_mapcount(head) != page_count(head) - 1) {
3331		ret = -EBUSY;
3332		goto out_unlock;
3333	}
3334
3335	mlocked = PageMlocked(page);
3336	freeze_page(head);
3337	VM_BUG_ON_PAGE(compound_mapcount(head), head);
3338
3339	/* Make sure the page is not on per-CPU pagevec as it takes pin */
3340	if (mlocked)
3341		lru_add_drain();
3342
3343	/* Prevent deferred_split_scan() touching ->_count */
3344	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
3345	count = page_count(head);
3346	mapcount = total_mapcount(head);
3347	if (!mapcount && count == 1) {
3348		if (!list_empty(page_deferred_list(head))) {
3349			pgdata->split_queue_len--;
3350			list_del(page_deferred_list(head));
3351		}
3352		spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
3353		__split_huge_page(page, list);
3354		ret = 0;
3355	} else if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
3356		spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
3357		pr_alert("total_mapcount: %u, page_count(): %u\n",
3358				mapcount, count);
3359		if (PageTail(page))
3360			dump_page(head, NULL);
3361		dump_page(page, "total_mapcount(head) > 0");
3362		BUG();
3363	} else {
3364		spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
3365		unfreeze_page(head);
3366		ret = -EBUSY;
3367	}
3368
3369out_unlock:
3370	anon_vma_unlock_write(anon_vma);
3371	put_anon_vma(anon_vma);
3372out:
3373	count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
3374	return ret;
3375}
3376
3377void free_transhuge_page(struct page *page)
3378{
3379	struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
3380	unsigned long flags;
3381
3382	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
3383	if (!list_empty(page_deferred_list(page))) {
3384		pgdata->split_queue_len--;
3385		list_del(page_deferred_list(page));
3386	}
3387	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
3388	free_compound_page(page);
3389}
3390
3391void deferred_split_huge_page(struct page *page)
3392{
3393	struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
3394	unsigned long flags;
3395
3396	VM_BUG_ON_PAGE(!PageTransHuge(page), page);
3397
3398	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
3399	if (list_empty(page_deferred_list(page))) {
3400		count_vm_event(THP_DEFERRED_SPLIT_PAGE);
3401		list_add_tail(page_deferred_list(page), &pgdata->split_queue);
3402		pgdata->split_queue_len++;
3403	}
3404	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
3405}
3406
3407static unsigned long deferred_split_count(struct shrinker *shrink,
3408		struct shrink_control *sc)
3409{
3410	struct pglist_data *pgdata = NODE_DATA(sc->nid);
3411	return ACCESS_ONCE(pgdata->split_queue_len);
3412}
3413
3414static unsigned long deferred_split_scan(struct shrinker *shrink,
3415		struct shrink_control *sc)
3416{
3417	struct pglist_data *pgdata = NODE_DATA(sc->nid);
3418	unsigned long flags;
3419	LIST_HEAD(list), *pos, *next;
3420	struct page *page;
3421	int split = 0;
3422
3423	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
3424	/* Take pin on all head pages to avoid freeing them under us */
3425	list_for_each_safe(pos, next, &pgdata->split_queue) {
3426		page = list_entry((void *)pos, struct page, mapping);
3427		page = compound_head(page);
3428		if (get_page_unless_zero(page)) {
3429			list_move(page_deferred_list(page), &list);
3430		} else {
3431			/* We lost race with put_compound_page() */
3432			list_del_init(page_deferred_list(page));
3433			pgdata->split_queue_len--;
3434		}
3435		if (!--sc->nr_to_scan)
3436			break;
3437	}
3438	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
3439
3440	list_for_each_safe(pos, next, &list) {
3441		page = list_entry((void *)pos, struct page, mapping);
3442		lock_page(page);
3443		/* split_huge_page() removes page from list on success */
3444		if (!split_huge_page(page))
3445			split++;
3446		unlock_page(page);
3447		put_page(page);
3448	}
3449
3450	spin_lock_irqsave(&pgdata->split_queue_lock, flags);
3451	list_splice_tail(&list, &pgdata->split_queue);
3452	spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
3453
3454	/*
3455	 * Stop shrinker if we didn't split any page, but the queue is empty.
3456	 * This can happen if pages were freed under us.
3457	 */
3458	if (!split && list_empty(&pgdata->split_queue))
3459		return SHRINK_STOP;
3460	return split;
3461}
3462
3463static struct shrinker deferred_split_shrinker = {
3464	.count_objects = deferred_split_count,
3465	.scan_objects = deferred_split_scan,
3466	.seeks = DEFAULT_SEEKS,
3467	.flags = SHRINKER_NUMA_AWARE,
3468};
3469
3470#ifdef CONFIG_DEBUG_FS
3471static int split_huge_pages_set(void *data, u64 val)
3472{
3473	struct zone *zone;
3474	struct page *page;
3475	unsigned long pfn, max_zone_pfn;
3476	unsigned long total = 0, split = 0;
3477
3478	if (val != 1)
3479		return -EINVAL;
3480
3481	for_each_populated_zone(zone) {
3482		max_zone_pfn = zone_end_pfn(zone);
3483		for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
3484			if (!pfn_valid(pfn))
3485				continue;
3486
3487			page = pfn_to_page(pfn);
3488			if (!get_page_unless_zero(page))
3489				continue;
3490
3491			if (zone != page_zone(page))
3492				goto next;
3493
3494			if (!PageHead(page) || !PageAnon(page) ||
3495					PageHuge(page))
3496				goto next;
3497
3498			total++;
3499			lock_page(page);
3500			if (!split_huge_page(page))
3501				split++;
3502			unlock_page(page);
3503next:
3504			put_page(page);
3505		}
3506	}
3507
3508	pr_info("%lu of %lu THP split\n", split, total);
3509
3510	return 0;
3511}
3512DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
3513		"%llu\n");
3514
3515static int __init split_huge_pages_debugfs(void)
3516{
3517	void *ret;
3518
3519	ret = debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
3520			&split_huge_pages_fops);
3521	if (!ret)
3522		pr_warn("Failed to create split_huge_pages in debugfs");
3523	return 0;
3524}
3525late_initcall(split_huge_pages_debugfs);
3526#endif