Loading...
1/*
2 * linux/kernel/time/tick-sched.c
3 *
4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
7 *
8 * No idle tick implementation for low and high resolution timers
9 *
10 * Started by: Thomas Gleixner and Ingo Molnar
11 *
12 * Distribute under GPLv2.
13 */
14#include <linux/cpu.h>
15#include <linux/err.h>
16#include <linux/hrtimer.h>
17#include <linux/interrupt.h>
18#include <linux/kernel_stat.h>
19#include <linux/percpu.h>
20#include <linux/profile.h>
21#include <linux/sched.h>
22#include <linux/module.h>
23#include <linux/irq_work.h>
24#include <linux/posix-timers.h>
25#include <linux/perf_event.h>
26#include <linux/context_tracking.h>
27
28#include <asm/irq_regs.h>
29
30#include "tick-internal.h"
31
32#include <trace/events/timer.h>
33
34/*
35 * Per cpu nohz control structure
36 */
37DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
38
39/*
40 * The time, when the last jiffy update happened. Protected by jiffies_lock.
41 */
42static ktime_t last_jiffies_update;
43
44struct tick_sched *tick_get_tick_sched(int cpu)
45{
46 return &per_cpu(tick_cpu_sched, cpu);
47}
48
49/*
50 * Must be called with interrupts disabled !
51 */
52static void tick_do_update_jiffies64(ktime_t now)
53{
54 unsigned long ticks = 0;
55 ktime_t delta;
56
57 /*
58 * Do a quick check without holding jiffies_lock:
59 */
60 delta = ktime_sub(now, last_jiffies_update);
61 if (delta.tv64 < tick_period.tv64)
62 return;
63
64 /* Reevalute with jiffies_lock held */
65 write_seqlock(&jiffies_lock);
66
67 delta = ktime_sub(now, last_jiffies_update);
68 if (delta.tv64 >= tick_period.tv64) {
69
70 delta = ktime_sub(delta, tick_period);
71 last_jiffies_update = ktime_add(last_jiffies_update,
72 tick_period);
73
74 /* Slow path for long timeouts */
75 if (unlikely(delta.tv64 >= tick_period.tv64)) {
76 s64 incr = ktime_to_ns(tick_period);
77
78 ticks = ktime_divns(delta, incr);
79
80 last_jiffies_update = ktime_add_ns(last_jiffies_update,
81 incr * ticks);
82 }
83 do_timer(++ticks);
84
85 /* Keep the tick_next_period variable up to date */
86 tick_next_period = ktime_add(last_jiffies_update, tick_period);
87 } else {
88 write_sequnlock(&jiffies_lock);
89 return;
90 }
91 write_sequnlock(&jiffies_lock);
92 update_wall_time();
93}
94
95/*
96 * Initialize and return retrieve the jiffies update.
97 */
98static ktime_t tick_init_jiffy_update(void)
99{
100 ktime_t period;
101
102 write_seqlock(&jiffies_lock);
103 /* Did we start the jiffies update yet ? */
104 if (last_jiffies_update.tv64 == 0)
105 last_jiffies_update = tick_next_period;
106 period = last_jiffies_update;
107 write_sequnlock(&jiffies_lock);
108 return period;
109}
110
111
112static void tick_sched_do_timer(ktime_t now)
113{
114 int cpu = smp_processor_id();
115
116#ifdef CONFIG_NO_HZ_COMMON
117 /*
118 * Check if the do_timer duty was dropped. We don't care about
119 * concurrency: This happens only when the cpu in charge went
120 * into a long sleep. If two cpus happen to assign themself to
121 * this duty, then the jiffies update is still serialized by
122 * jiffies_lock.
123 */
124 if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)
125 && !tick_nohz_full_cpu(cpu))
126 tick_do_timer_cpu = cpu;
127#endif
128
129 /* Check, if the jiffies need an update */
130 if (tick_do_timer_cpu == cpu)
131 tick_do_update_jiffies64(now);
132}
133
134static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
135{
136#ifdef CONFIG_NO_HZ_COMMON
137 /*
138 * When we are idle and the tick is stopped, we have to touch
139 * the watchdog as we might not schedule for a really long
140 * time. This happens on complete idle SMP systems while
141 * waiting on the login prompt. We also increment the "start of
142 * idle" jiffy stamp so the idle accounting adjustment we do
143 * when we go busy again does not account too much ticks.
144 */
145 if (ts->tick_stopped) {
146 touch_softlockup_watchdog();
147 if (is_idle_task(current))
148 ts->idle_jiffies++;
149 }
150#endif
151 update_process_times(user_mode(regs));
152 profile_tick(CPU_PROFILING);
153}
154
155#ifdef CONFIG_NO_HZ_FULL
156cpumask_var_t tick_nohz_full_mask;
157bool tick_nohz_full_running;
158
159static bool can_stop_full_tick(void)
160{
161 WARN_ON_ONCE(!irqs_disabled());
162
163 if (!sched_can_stop_tick()) {
164 trace_tick_stop(0, "more than 1 task in runqueue\n");
165 return false;
166 }
167
168 if (!posix_cpu_timers_can_stop_tick(current)) {
169 trace_tick_stop(0, "posix timers running\n");
170 return false;
171 }
172
173 if (!perf_event_can_stop_tick()) {
174 trace_tick_stop(0, "perf events running\n");
175 return false;
176 }
177
178 /* sched_clock_tick() needs us? */
179#ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
180 /*
181 * TODO: kick full dynticks CPUs when
182 * sched_clock_stable is set.
183 */
184 if (!sched_clock_stable()) {
185 trace_tick_stop(0, "unstable sched clock\n");
186 /*
187 * Don't allow the user to think they can get
188 * full NO_HZ with this machine.
189 */
190 WARN_ONCE(tick_nohz_full_running,
191 "NO_HZ FULL will not work with unstable sched clock");
192 return false;
193 }
194#endif
195
196 return true;
197}
198
199static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now);
200
201/*
202 * Re-evaluate the need for the tick on the current CPU
203 * and restart it if necessary.
204 */
205void __tick_nohz_full_check(void)
206{
207 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
208
209 if (tick_nohz_full_cpu(smp_processor_id())) {
210 if (ts->tick_stopped && !is_idle_task(current)) {
211 if (!can_stop_full_tick())
212 tick_nohz_restart_sched_tick(ts, ktime_get());
213 }
214 }
215}
216
217static void nohz_full_kick_work_func(struct irq_work *work)
218{
219 __tick_nohz_full_check();
220}
221
222static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) = {
223 .func = nohz_full_kick_work_func,
224};
225
226/*
227 * Kick the current CPU if it's full dynticks in order to force it to
228 * re-evaluate its dependency on the tick and restart it if necessary.
229 */
230void tick_nohz_full_kick(void)
231{
232 if (tick_nohz_full_cpu(smp_processor_id()))
233 irq_work_queue(&__get_cpu_var(nohz_full_kick_work));
234}
235
236static void nohz_full_kick_ipi(void *info)
237{
238 __tick_nohz_full_check();
239}
240
241/*
242 * Kick all full dynticks CPUs in order to force these to re-evaluate
243 * their dependency on the tick and restart it if necessary.
244 */
245void tick_nohz_full_kick_all(void)
246{
247 if (!tick_nohz_full_running)
248 return;
249
250 preempt_disable();
251 smp_call_function_many(tick_nohz_full_mask,
252 nohz_full_kick_ipi, NULL, false);
253 tick_nohz_full_kick();
254 preempt_enable();
255}
256
257/*
258 * Re-evaluate the need for the tick as we switch the current task.
259 * It might need the tick due to per task/process properties:
260 * perf events, posix cpu timers, ...
261 */
262void __tick_nohz_task_switch(struct task_struct *tsk)
263{
264 unsigned long flags;
265
266 local_irq_save(flags);
267
268 if (!tick_nohz_full_cpu(smp_processor_id()))
269 goto out;
270
271 if (tick_nohz_tick_stopped() && !can_stop_full_tick())
272 tick_nohz_full_kick();
273
274out:
275 local_irq_restore(flags);
276}
277
278/* Parse the boot-time nohz CPU list from the kernel parameters. */
279static int __init tick_nohz_full_setup(char *str)
280{
281 int cpu;
282
283 alloc_bootmem_cpumask_var(&tick_nohz_full_mask);
284 if (cpulist_parse(str, tick_nohz_full_mask) < 0) {
285 pr_warning("NOHZ: Incorrect nohz_full cpumask\n");
286 return 1;
287 }
288
289 cpu = smp_processor_id();
290 if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) {
291 pr_warning("NO_HZ: Clearing %d from nohz_full range for timekeeping\n", cpu);
292 cpumask_clear_cpu(cpu, tick_nohz_full_mask);
293 }
294 tick_nohz_full_running = true;
295
296 return 1;
297}
298__setup("nohz_full=", tick_nohz_full_setup);
299
300static int tick_nohz_cpu_down_callback(struct notifier_block *nfb,
301 unsigned long action,
302 void *hcpu)
303{
304 unsigned int cpu = (unsigned long)hcpu;
305
306 switch (action & ~CPU_TASKS_FROZEN) {
307 case CPU_DOWN_PREPARE:
308 /*
309 * If we handle the timekeeping duty for full dynticks CPUs,
310 * we can't safely shutdown that CPU.
311 */
312 if (tick_nohz_full_running && tick_do_timer_cpu == cpu)
313 return NOTIFY_BAD;
314 break;
315 }
316 return NOTIFY_OK;
317}
318
319/*
320 * Worst case string length in chunks of CPU range seems 2 steps
321 * separations: 0,2,4,6,...
322 * This is NR_CPUS + sizeof('\0')
323 */
324static char __initdata nohz_full_buf[NR_CPUS + 1];
325
326static int tick_nohz_init_all(void)
327{
328 int err = -1;
329
330#ifdef CONFIG_NO_HZ_FULL_ALL
331 if (!alloc_cpumask_var(&tick_nohz_full_mask, GFP_KERNEL)) {
332 pr_err("NO_HZ: Can't allocate full dynticks cpumask\n");
333 return err;
334 }
335 err = 0;
336 cpumask_setall(tick_nohz_full_mask);
337 cpumask_clear_cpu(smp_processor_id(), tick_nohz_full_mask);
338 tick_nohz_full_running = true;
339#endif
340 return err;
341}
342
343void __init tick_nohz_init(void)
344{
345 int cpu;
346
347 if (!tick_nohz_full_running) {
348 if (tick_nohz_init_all() < 0)
349 return;
350 }
351
352 for_each_cpu(cpu, tick_nohz_full_mask)
353 context_tracking_cpu_set(cpu);
354
355 cpu_notifier(tick_nohz_cpu_down_callback, 0);
356 cpulist_scnprintf(nohz_full_buf, sizeof(nohz_full_buf), tick_nohz_full_mask);
357 pr_info("NO_HZ: Full dynticks CPUs: %s.\n", nohz_full_buf);
358}
359#endif
360
361/*
362 * NOHZ - aka dynamic tick functionality
363 */
364#ifdef CONFIG_NO_HZ_COMMON
365/*
366 * NO HZ enabled ?
367 */
368static int tick_nohz_enabled __read_mostly = 1;
369int tick_nohz_active __read_mostly;
370/*
371 * Enable / Disable tickless mode
372 */
373static int __init setup_tick_nohz(char *str)
374{
375 if (!strcmp(str, "off"))
376 tick_nohz_enabled = 0;
377 else if (!strcmp(str, "on"))
378 tick_nohz_enabled = 1;
379 else
380 return 0;
381 return 1;
382}
383
384__setup("nohz=", setup_tick_nohz);
385
386/**
387 * tick_nohz_update_jiffies - update jiffies when idle was interrupted
388 *
389 * Called from interrupt entry when the CPU was idle
390 *
391 * In case the sched_tick was stopped on this CPU, we have to check if jiffies
392 * must be updated. Otherwise an interrupt handler could use a stale jiffy
393 * value. We do this unconditionally on any cpu, as we don't know whether the
394 * cpu, which has the update task assigned is in a long sleep.
395 */
396static void tick_nohz_update_jiffies(ktime_t now)
397{
398 unsigned long flags;
399
400 __this_cpu_write(tick_cpu_sched.idle_waketime, now);
401
402 local_irq_save(flags);
403 tick_do_update_jiffies64(now);
404 local_irq_restore(flags);
405
406 touch_softlockup_watchdog();
407}
408
409/*
410 * Updates the per cpu time idle statistics counters
411 */
412static void
413update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
414{
415 ktime_t delta;
416
417 if (ts->idle_active) {
418 delta = ktime_sub(now, ts->idle_entrytime);
419 if (nr_iowait_cpu(cpu) > 0)
420 ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
421 else
422 ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
423 ts->idle_entrytime = now;
424 }
425
426 if (last_update_time)
427 *last_update_time = ktime_to_us(now);
428
429}
430
431static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now)
432{
433 update_ts_time_stats(smp_processor_id(), ts, now, NULL);
434 ts->idle_active = 0;
435
436 sched_clock_idle_wakeup_event(0);
437}
438
439static ktime_t tick_nohz_start_idle(struct tick_sched *ts)
440{
441 ktime_t now = ktime_get();
442
443 ts->idle_entrytime = now;
444 ts->idle_active = 1;
445 sched_clock_idle_sleep_event();
446 return now;
447}
448
449/**
450 * get_cpu_idle_time_us - get the total idle time of a cpu
451 * @cpu: CPU number to query
452 * @last_update_time: variable to store update time in. Do not update
453 * counters if NULL.
454 *
455 * Return the cummulative idle time (since boot) for a given
456 * CPU, in microseconds.
457 *
458 * This time is measured via accounting rather than sampling,
459 * and is as accurate as ktime_get() is.
460 *
461 * This function returns -1 if NOHZ is not enabled.
462 */
463u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
464{
465 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
466 ktime_t now, idle;
467
468 if (!tick_nohz_active)
469 return -1;
470
471 now = ktime_get();
472 if (last_update_time) {
473 update_ts_time_stats(cpu, ts, now, last_update_time);
474 idle = ts->idle_sleeptime;
475 } else {
476 if (ts->idle_active && !nr_iowait_cpu(cpu)) {
477 ktime_t delta = ktime_sub(now, ts->idle_entrytime);
478
479 idle = ktime_add(ts->idle_sleeptime, delta);
480 } else {
481 idle = ts->idle_sleeptime;
482 }
483 }
484
485 return ktime_to_us(idle);
486
487}
488EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
489
490/**
491 * get_cpu_iowait_time_us - get the total iowait time of a cpu
492 * @cpu: CPU number to query
493 * @last_update_time: variable to store update time in. Do not update
494 * counters if NULL.
495 *
496 * Return the cummulative iowait time (since boot) for a given
497 * CPU, in microseconds.
498 *
499 * This time is measured via accounting rather than sampling,
500 * and is as accurate as ktime_get() is.
501 *
502 * This function returns -1 if NOHZ is not enabled.
503 */
504u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
505{
506 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
507 ktime_t now, iowait;
508
509 if (!tick_nohz_active)
510 return -1;
511
512 now = ktime_get();
513 if (last_update_time) {
514 update_ts_time_stats(cpu, ts, now, last_update_time);
515 iowait = ts->iowait_sleeptime;
516 } else {
517 if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
518 ktime_t delta = ktime_sub(now, ts->idle_entrytime);
519
520 iowait = ktime_add(ts->iowait_sleeptime, delta);
521 } else {
522 iowait = ts->iowait_sleeptime;
523 }
524 }
525
526 return ktime_to_us(iowait);
527}
528EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
529
530static ktime_t tick_nohz_stop_sched_tick(struct tick_sched *ts,
531 ktime_t now, int cpu)
532{
533 unsigned long seq, last_jiffies, next_jiffies, delta_jiffies;
534 ktime_t last_update, expires, ret = { .tv64 = 0 };
535 unsigned long rcu_delta_jiffies;
536 struct clock_event_device *dev = __get_cpu_var(tick_cpu_device).evtdev;
537 u64 time_delta;
538
539 time_delta = timekeeping_max_deferment();
540
541 /* Read jiffies and the time when jiffies were updated last */
542 do {
543 seq = read_seqbegin(&jiffies_lock);
544 last_update = last_jiffies_update;
545 last_jiffies = jiffies;
546 } while (read_seqretry(&jiffies_lock, seq));
547
548 if (rcu_needs_cpu(cpu, &rcu_delta_jiffies) ||
549 arch_needs_cpu(cpu) || irq_work_needs_cpu()) {
550 next_jiffies = last_jiffies + 1;
551 delta_jiffies = 1;
552 } else {
553 /* Get the next timer wheel timer */
554 next_jiffies = get_next_timer_interrupt(last_jiffies);
555 delta_jiffies = next_jiffies - last_jiffies;
556 if (rcu_delta_jiffies < delta_jiffies) {
557 next_jiffies = last_jiffies + rcu_delta_jiffies;
558 delta_jiffies = rcu_delta_jiffies;
559 }
560 }
561
562 /*
563 * Do not stop the tick, if we are only one off (or less)
564 * or if the cpu is required for RCU:
565 */
566 if (!ts->tick_stopped && delta_jiffies <= 1)
567 goto out;
568
569 /* Schedule the tick, if we are at least one jiffie off */
570 if ((long)delta_jiffies >= 1) {
571
572 /*
573 * If this cpu is the one which updates jiffies, then
574 * give up the assignment and let it be taken by the
575 * cpu which runs the tick timer next, which might be
576 * this cpu as well. If we don't drop this here the
577 * jiffies might be stale and do_timer() never
578 * invoked. Keep track of the fact that it was the one
579 * which had the do_timer() duty last. If this cpu is
580 * the one which had the do_timer() duty last, we
581 * limit the sleep time to the timekeeping
582 * max_deferement value which we retrieved
583 * above. Otherwise we can sleep as long as we want.
584 */
585 if (cpu == tick_do_timer_cpu) {
586 tick_do_timer_cpu = TICK_DO_TIMER_NONE;
587 ts->do_timer_last = 1;
588 } else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
589 time_delta = KTIME_MAX;
590 ts->do_timer_last = 0;
591 } else if (!ts->do_timer_last) {
592 time_delta = KTIME_MAX;
593 }
594
595#ifdef CONFIG_NO_HZ_FULL
596 if (!ts->inidle) {
597 time_delta = min(time_delta,
598 scheduler_tick_max_deferment());
599 }
600#endif
601
602 /*
603 * calculate the expiry time for the next timer wheel
604 * timer. delta_jiffies >= NEXT_TIMER_MAX_DELTA signals
605 * that there is no timer pending or at least extremely
606 * far into the future (12 days for HZ=1000). In this
607 * case we set the expiry to the end of time.
608 */
609 if (likely(delta_jiffies < NEXT_TIMER_MAX_DELTA)) {
610 /*
611 * Calculate the time delta for the next timer event.
612 * If the time delta exceeds the maximum time delta
613 * permitted by the current clocksource then adjust
614 * the time delta accordingly to ensure the
615 * clocksource does not wrap.
616 */
617 time_delta = min_t(u64, time_delta,
618 tick_period.tv64 * delta_jiffies);
619 }
620
621 if (time_delta < KTIME_MAX)
622 expires = ktime_add_ns(last_update, time_delta);
623 else
624 expires.tv64 = KTIME_MAX;
625
626 /* Skip reprogram of event if its not changed */
627 if (ts->tick_stopped && ktime_equal(expires, dev->next_event))
628 goto out;
629
630 ret = expires;
631
632 /*
633 * nohz_stop_sched_tick can be called several times before
634 * the nohz_restart_sched_tick is called. This happens when
635 * interrupts arrive which do not cause a reschedule. In the
636 * first call we save the current tick time, so we can restart
637 * the scheduler tick in nohz_restart_sched_tick.
638 */
639 if (!ts->tick_stopped) {
640 nohz_balance_enter_idle(cpu);
641 calc_load_enter_idle();
642
643 ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
644 ts->tick_stopped = 1;
645 trace_tick_stop(1, " ");
646 }
647
648 /*
649 * If the expiration time == KTIME_MAX, then
650 * in this case we simply stop the tick timer.
651 */
652 if (unlikely(expires.tv64 == KTIME_MAX)) {
653 if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
654 hrtimer_cancel(&ts->sched_timer);
655 goto out;
656 }
657
658 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
659 hrtimer_start(&ts->sched_timer, expires,
660 HRTIMER_MODE_ABS_PINNED);
661 /* Check, if the timer was already in the past */
662 if (hrtimer_active(&ts->sched_timer))
663 goto out;
664 } else if (!tick_program_event(expires, 0))
665 goto out;
666 /*
667 * We are past the event already. So we crossed a
668 * jiffie boundary. Update jiffies and raise the
669 * softirq.
670 */
671 tick_do_update_jiffies64(ktime_get());
672 }
673 raise_softirq_irqoff(TIMER_SOFTIRQ);
674out:
675 ts->next_jiffies = next_jiffies;
676 ts->last_jiffies = last_jiffies;
677 ts->sleep_length = ktime_sub(dev->next_event, now);
678
679 return ret;
680}
681
682static void tick_nohz_full_stop_tick(struct tick_sched *ts)
683{
684#ifdef CONFIG_NO_HZ_FULL
685 int cpu = smp_processor_id();
686
687 if (!tick_nohz_full_cpu(cpu) || is_idle_task(current))
688 return;
689
690 if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE)
691 return;
692
693 if (!can_stop_full_tick())
694 return;
695
696 tick_nohz_stop_sched_tick(ts, ktime_get(), cpu);
697#endif
698}
699
700static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
701{
702 /*
703 * If this cpu is offline and it is the one which updates
704 * jiffies, then give up the assignment and let it be taken by
705 * the cpu which runs the tick timer next. If we don't drop
706 * this here the jiffies might be stale and do_timer() never
707 * invoked.
708 */
709 if (unlikely(!cpu_online(cpu))) {
710 if (cpu == tick_do_timer_cpu)
711 tick_do_timer_cpu = TICK_DO_TIMER_NONE;
712 return false;
713 }
714
715 if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE)) {
716 ts->sleep_length = (ktime_t) { .tv64 = NSEC_PER_SEC/HZ };
717 return false;
718 }
719
720 if (need_resched())
721 return false;
722
723 if (unlikely(local_softirq_pending() && cpu_online(cpu))) {
724 static int ratelimit;
725
726 if (ratelimit < 10 &&
727 (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) {
728 pr_warn("NOHZ: local_softirq_pending %02x\n",
729 (unsigned int) local_softirq_pending());
730 ratelimit++;
731 }
732 return false;
733 }
734
735 if (tick_nohz_full_enabled()) {
736 /*
737 * Keep the tick alive to guarantee timekeeping progression
738 * if there are full dynticks CPUs around
739 */
740 if (tick_do_timer_cpu == cpu)
741 return false;
742 /*
743 * Boot safety: make sure the timekeeping duty has been
744 * assigned before entering dyntick-idle mode,
745 */
746 if (tick_do_timer_cpu == TICK_DO_TIMER_NONE)
747 return false;
748 }
749
750 return true;
751}
752
753static void __tick_nohz_idle_enter(struct tick_sched *ts)
754{
755 ktime_t now, expires;
756 int cpu = smp_processor_id();
757
758 now = tick_nohz_start_idle(ts);
759
760 if (can_stop_idle_tick(cpu, ts)) {
761 int was_stopped = ts->tick_stopped;
762
763 ts->idle_calls++;
764
765 expires = tick_nohz_stop_sched_tick(ts, now, cpu);
766 if (expires.tv64 > 0LL) {
767 ts->idle_sleeps++;
768 ts->idle_expires = expires;
769 }
770
771 if (!was_stopped && ts->tick_stopped)
772 ts->idle_jiffies = ts->last_jiffies;
773 }
774}
775
776/**
777 * tick_nohz_idle_enter - stop the idle tick from the idle task
778 *
779 * When the next event is more than a tick into the future, stop the idle tick
780 * Called when we start the idle loop.
781 *
782 * The arch is responsible of calling:
783 *
784 * - rcu_idle_enter() after its last use of RCU before the CPU is put
785 * to sleep.
786 * - rcu_idle_exit() before the first use of RCU after the CPU is woken up.
787 */
788void tick_nohz_idle_enter(void)
789{
790 struct tick_sched *ts;
791
792 WARN_ON_ONCE(irqs_disabled());
793
794 /*
795 * Update the idle state in the scheduler domain hierarchy
796 * when tick_nohz_stop_sched_tick() is called from the idle loop.
797 * State will be updated to busy during the first busy tick after
798 * exiting idle.
799 */
800 set_cpu_sd_state_idle();
801
802 local_irq_disable();
803
804 ts = &__get_cpu_var(tick_cpu_sched);
805 ts->inidle = 1;
806 __tick_nohz_idle_enter(ts);
807
808 local_irq_enable();
809}
810EXPORT_SYMBOL_GPL(tick_nohz_idle_enter);
811
812/**
813 * tick_nohz_irq_exit - update next tick event from interrupt exit
814 *
815 * When an interrupt fires while we are idle and it doesn't cause
816 * a reschedule, it may still add, modify or delete a timer, enqueue
817 * an RCU callback, etc...
818 * So we need to re-calculate and reprogram the next tick event.
819 */
820void tick_nohz_irq_exit(void)
821{
822 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
823
824 if (ts->inidle)
825 __tick_nohz_idle_enter(ts);
826 else
827 tick_nohz_full_stop_tick(ts);
828}
829
830/**
831 * tick_nohz_get_sleep_length - return the length of the current sleep
832 *
833 * Called from power state control code with interrupts disabled
834 */
835ktime_t tick_nohz_get_sleep_length(void)
836{
837 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
838
839 return ts->sleep_length;
840}
841
842static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
843{
844 hrtimer_cancel(&ts->sched_timer);
845 hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
846
847 while (1) {
848 /* Forward the time to expire in the future */
849 hrtimer_forward(&ts->sched_timer, now, tick_period);
850
851 if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
852 hrtimer_start_expires(&ts->sched_timer,
853 HRTIMER_MODE_ABS_PINNED);
854 /* Check, if the timer was already in the past */
855 if (hrtimer_active(&ts->sched_timer))
856 break;
857 } else {
858 if (!tick_program_event(
859 hrtimer_get_expires(&ts->sched_timer), 0))
860 break;
861 }
862 /* Reread time and update jiffies */
863 now = ktime_get();
864 tick_do_update_jiffies64(now);
865 }
866}
867
868static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
869{
870 /* Update jiffies first */
871 tick_do_update_jiffies64(now);
872 update_cpu_load_nohz();
873
874 calc_load_exit_idle();
875 touch_softlockup_watchdog();
876 /*
877 * Cancel the scheduled timer and restore the tick
878 */
879 ts->tick_stopped = 0;
880 ts->idle_exittime = now;
881
882 tick_nohz_restart(ts, now);
883}
884
885static void tick_nohz_account_idle_ticks(struct tick_sched *ts)
886{
887#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
888 unsigned long ticks;
889
890 if (vtime_accounting_enabled())
891 return;
892 /*
893 * We stopped the tick in idle. Update process times would miss the
894 * time we slept as update_process_times does only a 1 tick
895 * accounting. Enforce that this is accounted to idle !
896 */
897 ticks = jiffies - ts->idle_jiffies;
898 /*
899 * We might be one off. Do not randomly account a huge number of ticks!
900 */
901 if (ticks && ticks < LONG_MAX)
902 account_idle_ticks(ticks);
903#endif
904}
905
906/**
907 * tick_nohz_idle_exit - restart the idle tick from the idle task
908 *
909 * Restart the idle tick when the CPU is woken up from idle
910 * This also exit the RCU extended quiescent state. The CPU
911 * can use RCU again after this function is called.
912 */
913void tick_nohz_idle_exit(void)
914{
915 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
916 ktime_t now;
917
918 local_irq_disable();
919
920 WARN_ON_ONCE(!ts->inidle);
921
922 ts->inidle = 0;
923
924 if (ts->idle_active || ts->tick_stopped)
925 now = ktime_get();
926
927 if (ts->idle_active)
928 tick_nohz_stop_idle(ts, now);
929
930 if (ts->tick_stopped) {
931 tick_nohz_restart_sched_tick(ts, now);
932 tick_nohz_account_idle_ticks(ts);
933 }
934
935 local_irq_enable();
936}
937EXPORT_SYMBOL_GPL(tick_nohz_idle_exit);
938
939static int tick_nohz_reprogram(struct tick_sched *ts, ktime_t now)
940{
941 hrtimer_forward(&ts->sched_timer, now, tick_period);
942 return tick_program_event(hrtimer_get_expires(&ts->sched_timer), 0);
943}
944
945/*
946 * The nohz low res interrupt handler
947 */
948static void tick_nohz_handler(struct clock_event_device *dev)
949{
950 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
951 struct pt_regs *regs = get_irq_regs();
952 ktime_t now = ktime_get();
953
954 dev->next_event.tv64 = KTIME_MAX;
955
956 tick_sched_do_timer(now);
957 tick_sched_handle(ts, regs);
958
959 while (tick_nohz_reprogram(ts, now)) {
960 now = ktime_get();
961 tick_do_update_jiffies64(now);
962 }
963}
964
965/**
966 * tick_nohz_switch_to_nohz - switch to nohz mode
967 */
968static void tick_nohz_switch_to_nohz(void)
969{
970 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
971 ktime_t next;
972
973 if (!tick_nohz_enabled)
974 return;
975
976 local_irq_disable();
977 if (tick_switch_to_oneshot(tick_nohz_handler)) {
978 local_irq_enable();
979 return;
980 }
981 tick_nohz_active = 1;
982 ts->nohz_mode = NOHZ_MODE_LOWRES;
983
984 /*
985 * Recycle the hrtimer in ts, so we can share the
986 * hrtimer_forward with the highres code.
987 */
988 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
989 /* Get the next period */
990 next = tick_init_jiffy_update();
991
992 for (;;) {
993 hrtimer_set_expires(&ts->sched_timer, next);
994 if (!tick_program_event(next, 0))
995 break;
996 next = ktime_add(next, tick_period);
997 }
998 local_irq_enable();
999}
1000
1001/*
1002 * When NOHZ is enabled and the tick is stopped, we need to kick the
1003 * tick timer from irq_enter() so that the jiffies update is kept
1004 * alive during long running softirqs. That's ugly as hell, but
1005 * correctness is key even if we need to fix the offending softirq in
1006 * the first place.
1007 *
1008 * Note, this is different to tick_nohz_restart. We just kick the
1009 * timer and do not touch the other magic bits which need to be done
1010 * when idle is left.
1011 */
1012static void tick_nohz_kick_tick(struct tick_sched *ts, ktime_t now)
1013{
1014#if 0
1015 /* Switch back to 2.6.27 behaviour */
1016 ktime_t delta;
1017
1018 /*
1019 * Do not touch the tick device, when the next expiry is either
1020 * already reached or less/equal than the tick period.
1021 */
1022 delta = ktime_sub(hrtimer_get_expires(&ts->sched_timer), now);
1023 if (delta.tv64 <= tick_period.tv64)
1024 return;
1025
1026 tick_nohz_restart(ts, now);
1027#endif
1028}
1029
1030static inline void tick_nohz_irq_enter(void)
1031{
1032 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
1033 ktime_t now;
1034
1035 if (!ts->idle_active && !ts->tick_stopped)
1036 return;
1037 now = ktime_get();
1038 if (ts->idle_active)
1039 tick_nohz_stop_idle(ts, now);
1040 if (ts->tick_stopped) {
1041 tick_nohz_update_jiffies(now);
1042 tick_nohz_kick_tick(ts, now);
1043 }
1044}
1045
1046#else
1047
1048static inline void tick_nohz_switch_to_nohz(void) { }
1049static inline void tick_nohz_irq_enter(void) { }
1050
1051#endif /* CONFIG_NO_HZ_COMMON */
1052
1053/*
1054 * Called from irq_enter to notify about the possible interruption of idle()
1055 */
1056void tick_irq_enter(void)
1057{
1058 tick_check_oneshot_broadcast_this_cpu();
1059 tick_nohz_irq_enter();
1060}
1061
1062/*
1063 * High resolution timer specific code
1064 */
1065#ifdef CONFIG_HIGH_RES_TIMERS
1066/*
1067 * We rearm the timer until we get disabled by the idle code.
1068 * Called with interrupts disabled.
1069 */
1070static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
1071{
1072 struct tick_sched *ts =
1073 container_of(timer, struct tick_sched, sched_timer);
1074 struct pt_regs *regs = get_irq_regs();
1075 ktime_t now = ktime_get();
1076
1077 tick_sched_do_timer(now);
1078
1079 /*
1080 * Do not call, when we are not in irq context and have
1081 * no valid regs pointer
1082 */
1083 if (regs)
1084 tick_sched_handle(ts, regs);
1085
1086 hrtimer_forward(timer, now, tick_period);
1087
1088 return HRTIMER_RESTART;
1089}
1090
1091static int sched_skew_tick;
1092
1093static int __init skew_tick(char *str)
1094{
1095 get_option(&str, &sched_skew_tick);
1096
1097 return 0;
1098}
1099early_param("skew_tick", skew_tick);
1100
1101/**
1102 * tick_setup_sched_timer - setup the tick emulation timer
1103 */
1104void tick_setup_sched_timer(void)
1105{
1106 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
1107 ktime_t now = ktime_get();
1108
1109 /*
1110 * Emulate tick processing via per-CPU hrtimers:
1111 */
1112 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1113 ts->sched_timer.function = tick_sched_timer;
1114
1115 /* Get the next period (per cpu) */
1116 hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
1117
1118 /* Offset the tick to avert jiffies_lock contention. */
1119 if (sched_skew_tick) {
1120 u64 offset = ktime_to_ns(tick_period) >> 1;
1121 do_div(offset, num_possible_cpus());
1122 offset *= smp_processor_id();
1123 hrtimer_add_expires_ns(&ts->sched_timer, offset);
1124 }
1125
1126 for (;;) {
1127 hrtimer_forward(&ts->sched_timer, now, tick_period);
1128 hrtimer_start_expires(&ts->sched_timer,
1129 HRTIMER_MODE_ABS_PINNED);
1130 /* Check, if the timer was already in the past */
1131 if (hrtimer_active(&ts->sched_timer))
1132 break;
1133 now = ktime_get();
1134 }
1135
1136#ifdef CONFIG_NO_HZ_COMMON
1137 if (tick_nohz_enabled) {
1138 ts->nohz_mode = NOHZ_MODE_HIGHRES;
1139 tick_nohz_active = 1;
1140 }
1141#endif
1142}
1143#endif /* HIGH_RES_TIMERS */
1144
1145#if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS
1146void tick_cancel_sched_timer(int cpu)
1147{
1148 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
1149
1150# ifdef CONFIG_HIGH_RES_TIMERS
1151 if (ts->sched_timer.base)
1152 hrtimer_cancel(&ts->sched_timer);
1153# endif
1154
1155 memset(ts, 0, sizeof(*ts));
1156}
1157#endif
1158
1159/**
1160 * Async notification about clocksource changes
1161 */
1162void tick_clock_notify(void)
1163{
1164 int cpu;
1165
1166 for_each_possible_cpu(cpu)
1167 set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
1168}
1169
1170/*
1171 * Async notification about clock event changes
1172 */
1173void tick_oneshot_notify(void)
1174{
1175 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
1176
1177 set_bit(0, &ts->check_clocks);
1178}
1179
1180/**
1181 * Check, if a change happened, which makes oneshot possible.
1182 *
1183 * Called cyclic from the hrtimer softirq (driven by the timer
1184 * softirq) allow_nohz signals, that we can switch into low-res nohz
1185 * mode, because high resolution timers are disabled (either compile
1186 * or runtime).
1187 */
1188int tick_check_oneshot_change(int allow_nohz)
1189{
1190 struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
1191
1192 if (!test_and_clear_bit(0, &ts->check_clocks))
1193 return 0;
1194
1195 if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
1196 return 0;
1197
1198 if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
1199 return 0;
1200
1201 if (!allow_nohz)
1202 return 1;
1203
1204 tick_nohz_switch_to_nohz();
1205 return 0;
1206}
1/*
2 * linux/kernel/time/tick-sched.c
3 *
4 * Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
5 * Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
6 * Copyright(C) 2006-2007 Timesys Corp., Thomas Gleixner
7 *
8 * No idle tick implementation for low and high resolution timers
9 *
10 * Started by: Thomas Gleixner and Ingo Molnar
11 *
12 * Distribute under GPLv2.
13 */
14#include <linux/cpu.h>
15#include <linux/err.h>
16#include <linux/hrtimer.h>
17#include <linux/interrupt.h>
18#include <linux/kernel_stat.h>
19#include <linux/percpu.h>
20#include <linux/profile.h>
21#include <linux/sched.h>
22#include <linux/module.h>
23#include <linux/irq_work.h>
24#include <linux/posix-timers.h>
25#include <linux/context_tracking.h>
26
27#include <asm/irq_regs.h>
28
29#include "tick-internal.h"
30
31#include <trace/events/timer.h>
32
33/*
34 * Per cpu nohz control structure
35 */
36static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
37
38struct tick_sched *tick_get_tick_sched(int cpu)
39{
40 return &per_cpu(tick_cpu_sched, cpu);
41}
42
43#if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
44/*
45 * The time, when the last jiffy update happened. Protected by jiffies_lock.
46 */
47static ktime_t last_jiffies_update;
48
49/*
50 * Must be called with interrupts disabled !
51 */
52static void tick_do_update_jiffies64(ktime_t now)
53{
54 unsigned long ticks = 0;
55 ktime_t delta;
56
57 /*
58 * Do a quick check without holding jiffies_lock:
59 */
60 delta = ktime_sub(now, last_jiffies_update);
61 if (delta.tv64 < tick_period.tv64)
62 return;
63
64 /* Reevalute with jiffies_lock held */
65 write_seqlock(&jiffies_lock);
66
67 delta = ktime_sub(now, last_jiffies_update);
68 if (delta.tv64 >= tick_period.tv64) {
69
70 delta = ktime_sub(delta, tick_period);
71 last_jiffies_update = ktime_add(last_jiffies_update,
72 tick_period);
73
74 /* Slow path for long timeouts */
75 if (unlikely(delta.tv64 >= tick_period.tv64)) {
76 s64 incr = ktime_to_ns(tick_period);
77
78 ticks = ktime_divns(delta, incr);
79
80 last_jiffies_update = ktime_add_ns(last_jiffies_update,
81 incr * ticks);
82 }
83 do_timer(++ticks);
84
85 /* Keep the tick_next_period variable up to date */
86 tick_next_period = ktime_add(last_jiffies_update, tick_period);
87 } else {
88 write_sequnlock(&jiffies_lock);
89 return;
90 }
91 write_sequnlock(&jiffies_lock);
92 update_wall_time();
93}
94
95/*
96 * Initialize and return retrieve the jiffies update.
97 */
98static ktime_t tick_init_jiffy_update(void)
99{
100 ktime_t period;
101
102 write_seqlock(&jiffies_lock);
103 /* Did we start the jiffies update yet ? */
104 if (last_jiffies_update.tv64 == 0)
105 last_jiffies_update = tick_next_period;
106 period = last_jiffies_update;
107 write_sequnlock(&jiffies_lock);
108 return period;
109}
110
111
112static void tick_sched_do_timer(ktime_t now)
113{
114 int cpu = smp_processor_id();
115
116#ifdef CONFIG_NO_HZ_COMMON
117 /*
118 * Check if the do_timer duty was dropped. We don't care about
119 * concurrency: This happens only when the cpu in charge went
120 * into a long sleep. If two cpus happen to assign themself to
121 * this duty, then the jiffies update is still serialized by
122 * jiffies_lock.
123 */
124 if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)
125 && !tick_nohz_full_cpu(cpu))
126 tick_do_timer_cpu = cpu;
127#endif
128
129 /* Check, if the jiffies need an update */
130 if (tick_do_timer_cpu == cpu)
131 tick_do_update_jiffies64(now);
132}
133
134static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
135{
136#ifdef CONFIG_NO_HZ_COMMON
137 /*
138 * When we are idle and the tick is stopped, we have to touch
139 * the watchdog as we might not schedule for a really long
140 * time. This happens on complete idle SMP systems while
141 * waiting on the login prompt. We also increment the "start of
142 * idle" jiffy stamp so the idle accounting adjustment we do
143 * when we go busy again does not account too much ticks.
144 */
145 if (ts->tick_stopped) {
146 touch_softlockup_watchdog_sched();
147 if (is_idle_task(current))
148 ts->idle_jiffies++;
149 }
150#endif
151 update_process_times(user_mode(regs));
152 profile_tick(CPU_PROFILING);
153}
154#endif
155
156#ifdef CONFIG_NO_HZ_FULL
157cpumask_var_t tick_nohz_full_mask;
158cpumask_var_t housekeeping_mask;
159bool tick_nohz_full_running;
160static atomic_t tick_dep_mask;
161
162static bool check_tick_dependency(atomic_t *dep)
163{
164 int val = atomic_read(dep);
165
166 if (val & TICK_DEP_MASK_POSIX_TIMER) {
167 trace_tick_stop(0, TICK_DEP_MASK_POSIX_TIMER);
168 return true;
169 }
170
171 if (val & TICK_DEP_MASK_PERF_EVENTS) {
172 trace_tick_stop(0, TICK_DEP_MASK_PERF_EVENTS);
173 return true;
174 }
175
176 if (val & TICK_DEP_MASK_SCHED) {
177 trace_tick_stop(0, TICK_DEP_MASK_SCHED);
178 return true;
179 }
180
181 if (val & TICK_DEP_MASK_CLOCK_UNSTABLE) {
182 trace_tick_stop(0, TICK_DEP_MASK_CLOCK_UNSTABLE);
183 return true;
184 }
185
186 return false;
187}
188
189static bool can_stop_full_tick(struct tick_sched *ts)
190{
191 WARN_ON_ONCE(!irqs_disabled());
192
193 if (check_tick_dependency(&tick_dep_mask))
194 return false;
195
196 if (check_tick_dependency(&ts->tick_dep_mask))
197 return false;
198
199 if (check_tick_dependency(¤t->tick_dep_mask))
200 return false;
201
202 if (check_tick_dependency(¤t->signal->tick_dep_mask))
203 return false;
204
205 return true;
206}
207
208static void nohz_full_kick_func(struct irq_work *work)
209{
210 /* Empty, the tick restart happens on tick_nohz_irq_exit() */
211}
212
213static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) = {
214 .func = nohz_full_kick_func,
215};
216
217/*
218 * Kick this CPU if it's full dynticks in order to force it to
219 * re-evaluate its dependency on the tick and restart it if necessary.
220 * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(),
221 * is NMI safe.
222 */
223static void tick_nohz_full_kick(void)
224{
225 if (!tick_nohz_full_cpu(smp_processor_id()))
226 return;
227
228 irq_work_queue(this_cpu_ptr(&nohz_full_kick_work));
229}
230
231/*
232 * Kick the CPU if it's full dynticks in order to force it to
233 * re-evaluate its dependency on the tick and restart it if necessary.
234 */
235void tick_nohz_full_kick_cpu(int cpu)
236{
237 if (!tick_nohz_full_cpu(cpu))
238 return;
239
240 irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu);
241}
242
243/*
244 * Kick all full dynticks CPUs in order to force these to re-evaluate
245 * their dependency on the tick and restart it if necessary.
246 */
247static void tick_nohz_full_kick_all(void)
248{
249 int cpu;
250
251 if (!tick_nohz_full_running)
252 return;
253
254 preempt_disable();
255 for_each_cpu_and(cpu, tick_nohz_full_mask, cpu_online_mask)
256 tick_nohz_full_kick_cpu(cpu);
257 preempt_enable();
258}
259
260static void tick_nohz_dep_set_all(atomic_t *dep,
261 enum tick_dep_bits bit)
262{
263 int prev;
264
265 prev = atomic_fetch_or(dep, BIT(bit));
266 if (!prev)
267 tick_nohz_full_kick_all();
268}
269
270/*
271 * Set a global tick dependency. Used by perf events that rely on freq and
272 * by unstable clock.
273 */
274void tick_nohz_dep_set(enum tick_dep_bits bit)
275{
276 tick_nohz_dep_set_all(&tick_dep_mask, bit);
277}
278
279void tick_nohz_dep_clear(enum tick_dep_bits bit)
280{
281 atomic_andnot(BIT(bit), &tick_dep_mask);
282}
283
284/*
285 * Set per-CPU tick dependency. Used by scheduler and perf events in order to
286 * manage events throttling.
287 */
288void tick_nohz_dep_set_cpu(int cpu, enum tick_dep_bits bit)
289{
290 int prev;
291 struct tick_sched *ts;
292
293 ts = per_cpu_ptr(&tick_cpu_sched, cpu);
294
295 prev = atomic_fetch_or(&ts->tick_dep_mask, BIT(bit));
296 if (!prev) {
297 preempt_disable();
298 /* Perf needs local kick that is NMI safe */
299 if (cpu == smp_processor_id()) {
300 tick_nohz_full_kick();
301 } else {
302 /* Remote irq work not NMI-safe */
303 if (!WARN_ON_ONCE(in_nmi()))
304 tick_nohz_full_kick_cpu(cpu);
305 }
306 preempt_enable();
307 }
308}
309
310void tick_nohz_dep_clear_cpu(int cpu, enum tick_dep_bits bit)
311{
312 struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
313
314 atomic_andnot(BIT(bit), &ts->tick_dep_mask);
315}
316
317/*
318 * Set a per-task tick dependency. Posix CPU timers need this in order to elapse
319 * per task timers.
320 */
321void tick_nohz_dep_set_task(struct task_struct *tsk, enum tick_dep_bits bit)
322{
323 /*
324 * We could optimize this with just kicking the target running the task
325 * if that noise matters for nohz full users.
326 */
327 tick_nohz_dep_set_all(&tsk->tick_dep_mask, bit);
328}
329
330void tick_nohz_dep_clear_task(struct task_struct *tsk, enum tick_dep_bits bit)
331{
332 atomic_andnot(BIT(bit), &tsk->tick_dep_mask);
333}
334
335/*
336 * Set a per-taskgroup tick dependency. Posix CPU timers need this in order to elapse
337 * per process timers.
338 */
339void tick_nohz_dep_set_signal(struct signal_struct *sig, enum tick_dep_bits bit)
340{
341 tick_nohz_dep_set_all(&sig->tick_dep_mask, bit);
342}
343
344void tick_nohz_dep_clear_signal(struct signal_struct *sig, enum tick_dep_bits bit)
345{
346 atomic_andnot(BIT(bit), &sig->tick_dep_mask);
347}
348
349/*
350 * Re-evaluate the need for the tick as we switch the current task.
351 * It might need the tick due to per task/process properties:
352 * perf events, posix cpu timers, ...
353 */
354void __tick_nohz_task_switch(void)
355{
356 unsigned long flags;
357 struct tick_sched *ts;
358
359 local_irq_save(flags);
360
361 if (!tick_nohz_full_cpu(smp_processor_id()))
362 goto out;
363
364 ts = this_cpu_ptr(&tick_cpu_sched);
365
366 if (ts->tick_stopped) {
367 if (atomic_read(¤t->tick_dep_mask) ||
368 atomic_read(¤t->signal->tick_dep_mask))
369 tick_nohz_full_kick();
370 }
371out:
372 local_irq_restore(flags);
373}
374
375/* Parse the boot-time nohz CPU list from the kernel parameters. */
376static int __init tick_nohz_full_setup(char *str)
377{
378 alloc_bootmem_cpumask_var(&tick_nohz_full_mask);
379 if (cpulist_parse(str, tick_nohz_full_mask) < 0) {
380 pr_warn("NO_HZ: Incorrect nohz_full cpumask\n");
381 free_bootmem_cpumask_var(tick_nohz_full_mask);
382 return 1;
383 }
384 tick_nohz_full_running = true;
385
386 return 1;
387}
388__setup("nohz_full=", tick_nohz_full_setup);
389
390static int tick_nohz_cpu_down_callback(struct notifier_block *nfb,
391 unsigned long action,
392 void *hcpu)
393{
394 unsigned int cpu = (unsigned long)hcpu;
395
396 switch (action & ~CPU_TASKS_FROZEN) {
397 case CPU_DOWN_PREPARE:
398 /*
399 * The boot CPU handles housekeeping duty (unbound timers,
400 * workqueues, timekeeping, ...) on behalf of full dynticks
401 * CPUs. It must remain online when nohz full is enabled.
402 */
403 if (tick_nohz_full_running && tick_do_timer_cpu == cpu)
404 return NOTIFY_BAD;
405 break;
406 }
407 return NOTIFY_OK;
408}
409
410static int tick_nohz_init_all(void)
411{
412 int err = -1;
413
414#ifdef CONFIG_NO_HZ_FULL_ALL
415 if (!alloc_cpumask_var(&tick_nohz_full_mask, GFP_KERNEL)) {
416 WARN(1, "NO_HZ: Can't allocate full dynticks cpumask\n");
417 return err;
418 }
419 err = 0;
420 cpumask_setall(tick_nohz_full_mask);
421 tick_nohz_full_running = true;
422#endif
423 return err;
424}
425
426void __init tick_nohz_init(void)
427{
428 int cpu;
429
430 if (!tick_nohz_full_running) {
431 if (tick_nohz_init_all() < 0)
432 return;
433 }
434
435 if (!alloc_cpumask_var(&housekeeping_mask, GFP_KERNEL)) {
436 WARN(1, "NO_HZ: Can't allocate not-full dynticks cpumask\n");
437 cpumask_clear(tick_nohz_full_mask);
438 tick_nohz_full_running = false;
439 return;
440 }
441
442 /*
443 * Full dynticks uses irq work to drive the tick rescheduling on safe
444 * locking contexts. But then we need irq work to raise its own
445 * interrupts to avoid circular dependency on the tick
446 */
447 if (!arch_irq_work_has_interrupt()) {
448 pr_warn("NO_HZ: Can't run full dynticks because arch doesn't support irq work self-IPIs\n");
449 cpumask_clear(tick_nohz_full_mask);
450 cpumask_copy(housekeeping_mask, cpu_possible_mask);
451 tick_nohz_full_running = false;
452 return;
453 }
454
455 cpu = smp_processor_id();
456
457 if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) {
458 pr_warn("NO_HZ: Clearing %d from nohz_full range for timekeeping\n",
459 cpu);
460 cpumask_clear_cpu(cpu, tick_nohz_full_mask);
461 }
462
463 cpumask_andnot(housekeeping_mask,
464 cpu_possible_mask, tick_nohz_full_mask);
465
466 for_each_cpu(cpu, tick_nohz_full_mask)
467 context_tracking_cpu_set(cpu);
468
469 cpu_notifier(tick_nohz_cpu_down_callback, 0);
470 pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n",
471 cpumask_pr_args(tick_nohz_full_mask));
472
473 /*
474 * We need at least one CPU to handle housekeeping work such
475 * as timekeeping, unbound timers, workqueues, ...
476 */
477 WARN_ON_ONCE(cpumask_empty(housekeeping_mask));
478}
479#endif
480
481/*
482 * NOHZ - aka dynamic tick functionality
483 */
484#ifdef CONFIG_NO_HZ_COMMON
485/*
486 * NO HZ enabled ?
487 */
488bool tick_nohz_enabled __read_mostly = true;
489unsigned long tick_nohz_active __read_mostly;
490/*
491 * Enable / Disable tickless mode
492 */
493static int __init setup_tick_nohz(char *str)
494{
495 return (kstrtobool(str, &tick_nohz_enabled) == 0);
496}
497
498__setup("nohz=", setup_tick_nohz);
499
500int tick_nohz_tick_stopped(void)
501{
502 return __this_cpu_read(tick_cpu_sched.tick_stopped);
503}
504
505/**
506 * tick_nohz_update_jiffies - update jiffies when idle was interrupted
507 *
508 * Called from interrupt entry when the CPU was idle
509 *
510 * In case the sched_tick was stopped on this CPU, we have to check if jiffies
511 * must be updated. Otherwise an interrupt handler could use a stale jiffy
512 * value. We do this unconditionally on any cpu, as we don't know whether the
513 * cpu, which has the update task assigned is in a long sleep.
514 */
515static void tick_nohz_update_jiffies(ktime_t now)
516{
517 unsigned long flags;
518
519 __this_cpu_write(tick_cpu_sched.idle_waketime, now);
520
521 local_irq_save(flags);
522 tick_do_update_jiffies64(now);
523 local_irq_restore(flags);
524
525 touch_softlockup_watchdog_sched();
526}
527
528/*
529 * Updates the per cpu time idle statistics counters
530 */
531static void
532update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
533{
534 ktime_t delta;
535
536 if (ts->idle_active) {
537 delta = ktime_sub(now, ts->idle_entrytime);
538 if (nr_iowait_cpu(cpu) > 0)
539 ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
540 else
541 ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
542 ts->idle_entrytime = now;
543 }
544
545 if (last_update_time)
546 *last_update_time = ktime_to_us(now);
547
548}
549
550static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now)
551{
552 update_ts_time_stats(smp_processor_id(), ts, now, NULL);
553 ts->idle_active = 0;
554
555 sched_clock_idle_wakeup_event(0);
556}
557
558static ktime_t tick_nohz_start_idle(struct tick_sched *ts)
559{
560 ktime_t now = ktime_get();
561
562 ts->idle_entrytime = now;
563 ts->idle_active = 1;
564 sched_clock_idle_sleep_event();
565 return now;
566}
567
568/**
569 * get_cpu_idle_time_us - get the total idle time of a cpu
570 * @cpu: CPU number to query
571 * @last_update_time: variable to store update time in. Do not update
572 * counters if NULL.
573 *
574 * Return the cummulative idle time (since boot) for a given
575 * CPU, in microseconds.
576 *
577 * This time is measured via accounting rather than sampling,
578 * and is as accurate as ktime_get() is.
579 *
580 * This function returns -1 if NOHZ is not enabled.
581 */
582u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
583{
584 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
585 ktime_t now, idle;
586
587 if (!tick_nohz_active)
588 return -1;
589
590 now = ktime_get();
591 if (last_update_time) {
592 update_ts_time_stats(cpu, ts, now, last_update_time);
593 idle = ts->idle_sleeptime;
594 } else {
595 if (ts->idle_active && !nr_iowait_cpu(cpu)) {
596 ktime_t delta = ktime_sub(now, ts->idle_entrytime);
597
598 idle = ktime_add(ts->idle_sleeptime, delta);
599 } else {
600 idle = ts->idle_sleeptime;
601 }
602 }
603
604 return ktime_to_us(idle);
605
606}
607EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
608
609/**
610 * get_cpu_iowait_time_us - get the total iowait time of a cpu
611 * @cpu: CPU number to query
612 * @last_update_time: variable to store update time in. Do not update
613 * counters if NULL.
614 *
615 * Return the cummulative iowait time (since boot) for a given
616 * CPU, in microseconds.
617 *
618 * This time is measured via accounting rather than sampling,
619 * and is as accurate as ktime_get() is.
620 *
621 * This function returns -1 if NOHZ is not enabled.
622 */
623u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
624{
625 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
626 ktime_t now, iowait;
627
628 if (!tick_nohz_active)
629 return -1;
630
631 now = ktime_get();
632 if (last_update_time) {
633 update_ts_time_stats(cpu, ts, now, last_update_time);
634 iowait = ts->iowait_sleeptime;
635 } else {
636 if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
637 ktime_t delta = ktime_sub(now, ts->idle_entrytime);
638
639 iowait = ktime_add(ts->iowait_sleeptime, delta);
640 } else {
641 iowait = ts->iowait_sleeptime;
642 }
643 }
644
645 return ktime_to_us(iowait);
646}
647EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
648
649static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
650{
651 hrtimer_cancel(&ts->sched_timer);
652 hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
653
654 /* Forward the time to expire in the future */
655 hrtimer_forward(&ts->sched_timer, now, tick_period);
656
657 if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
658 hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED);
659 else
660 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
661}
662
663static ktime_t tick_nohz_stop_sched_tick(struct tick_sched *ts,
664 ktime_t now, int cpu)
665{
666 struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
667 u64 basemono, next_tick, next_tmr, next_rcu, delta, expires;
668 unsigned long seq, basejiff;
669 ktime_t tick;
670
671 /* Read jiffies and the time when jiffies were updated last */
672 do {
673 seq = read_seqbegin(&jiffies_lock);
674 basemono = last_jiffies_update.tv64;
675 basejiff = jiffies;
676 } while (read_seqretry(&jiffies_lock, seq));
677 ts->last_jiffies = basejiff;
678
679 if (rcu_needs_cpu(basemono, &next_rcu) ||
680 arch_needs_cpu() || irq_work_needs_cpu()) {
681 next_tick = basemono + TICK_NSEC;
682 } else {
683 /*
684 * Get the next pending timer. If high resolution
685 * timers are enabled this only takes the timer wheel
686 * timers into account. If high resolution timers are
687 * disabled this also looks at the next expiring
688 * hrtimer.
689 */
690 next_tmr = get_next_timer_interrupt(basejiff, basemono);
691 ts->next_timer = next_tmr;
692 /* Take the next rcu event into account */
693 next_tick = next_rcu < next_tmr ? next_rcu : next_tmr;
694 }
695
696 /*
697 * If the tick is due in the next period, keep it ticking or
698 * force prod the timer.
699 */
700 delta = next_tick - basemono;
701 if (delta <= (u64)TICK_NSEC) {
702 tick.tv64 = 0;
703 /*
704 * We've not stopped the tick yet, and there's a timer in the
705 * next period, so no point in stopping it either, bail.
706 */
707 if (!ts->tick_stopped)
708 goto out;
709
710 /*
711 * If, OTOH, we did stop it, but there's a pending (expired)
712 * timer reprogram the timer hardware to fire now.
713 *
714 * We will not restart the tick proper, just prod the timer
715 * hardware into firing an interrupt to process the pending
716 * timers. Just like tick_irq_exit() will not restart the tick
717 * for 'normal' interrupts.
718 *
719 * Only once we exit the idle loop will we re-enable the tick,
720 * see tick_nohz_idle_exit().
721 */
722 if (delta == 0) {
723 tick_nohz_restart(ts, now);
724 goto out;
725 }
726 }
727
728 /*
729 * If this cpu is the one which updates jiffies, then give up
730 * the assignment and let it be taken by the cpu which runs
731 * the tick timer next, which might be this cpu as well. If we
732 * don't drop this here the jiffies might be stale and
733 * do_timer() never invoked. Keep track of the fact that it
734 * was the one which had the do_timer() duty last. If this cpu
735 * is the one which had the do_timer() duty last, we limit the
736 * sleep time to the timekeeping max_deferement value.
737 * Otherwise we can sleep as long as we want.
738 */
739 delta = timekeeping_max_deferment();
740 if (cpu == tick_do_timer_cpu) {
741 tick_do_timer_cpu = TICK_DO_TIMER_NONE;
742 ts->do_timer_last = 1;
743 } else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
744 delta = KTIME_MAX;
745 ts->do_timer_last = 0;
746 } else if (!ts->do_timer_last) {
747 delta = KTIME_MAX;
748 }
749
750#ifdef CONFIG_NO_HZ_FULL
751 /* Limit the tick delta to the maximum scheduler deferment */
752 if (!ts->inidle)
753 delta = min(delta, scheduler_tick_max_deferment());
754#endif
755
756 /* Calculate the next expiry time */
757 if (delta < (KTIME_MAX - basemono))
758 expires = basemono + delta;
759 else
760 expires = KTIME_MAX;
761
762 expires = min_t(u64, expires, next_tick);
763 tick.tv64 = expires;
764
765 /* Skip reprogram of event if its not changed */
766 if (ts->tick_stopped && (expires == dev->next_event.tv64))
767 goto out;
768
769 /*
770 * nohz_stop_sched_tick can be called several times before
771 * the nohz_restart_sched_tick is called. This happens when
772 * interrupts arrive which do not cause a reschedule. In the
773 * first call we save the current tick time, so we can restart
774 * the scheduler tick in nohz_restart_sched_tick.
775 */
776 if (!ts->tick_stopped) {
777 nohz_balance_enter_idle(cpu);
778 calc_load_enter_idle();
779
780 ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
781 ts->tick_stopped = 1;
782 trace_tick_stop(1, TICK_DEP_MASK_NONE);
783 }
784
785 /*
786 * If the expiration time == KTIME_MAX, then we simply stop
787 * the tick timer.
788 */
789 if (unlikely(expires == KTIME_MAX)) {
790 if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
791 hrtimer_cancel(&ts->sched_timer);
792 goto out;
793 }
794
795 if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
796 hrtimer_start(&ts->sched_timer, tick, HRTIMER_MODE_ABS_PINNED);
797 else
798 tick_program_event(tick, 1);
799out:
800 /* Update the estimated sleep length */
801 ts->sleep_length = ktime_sub(dev->next_event, now);
802 return tick;
803}
804
805static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now, int active)
806{
807 /* Update jiffies first */
808 tick_do_update_jiffies64(now);
809 update_cpu_load_nohz(active);
810
811 calc_load_exit_idle();
812 touch_softlockup_watchdog_sched();
813 /*
814 * Cancel the scheduled timer and restore the tick
815 */
816 ts->tick_stopped = 0;
817 ts->idle_exittime = now;
818
819 tick_nohz_restart(ts, now);
820}
821
822static void tick_nohz_full_update_tick(struct tick_sched *ts)
823{
824#ifdef CONFIG_NO_HZ_FULL
825 int cpu = smp_processor_id();
826
827 if (!tick_nohz_full_cpu(cpu))
828 return;
829
830 if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE)
831 return;
832
833 if (can_stop_full_tick(ts))
834 tick_nohz_stop_sched_tick(ts, ktime_get(), cpu);
835 else if (ts->tick_stopped)
836 tick_nohz_restart_sched_tick(ts, ktime_get(), 1);
837#endif
838}
839
840static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
841{
842 /*
843 * If this cpu is offline and it is the one which updates
844 * jiffies, then give up the assignment and let it be taken by
845 * the cpu which runs the tick timer next. If we don't drop
846 * this here the jiffies might be stale and do_timer() never
847 * invoked.
848 */
849 if (unlikely(!cpu_online(cpu))) {
850 if (cpu == tick_do_timer_cpu)
851 tick_do_timer_cpu = TICK_DO_TIMER_NONE;
852 return false;
853 }
854
855 if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE)) {
856 ts->sleep_length = (ktime_t) { .tv64 = NSEC_PER_SEC/HZ };
857 return false;
858 }
859
860 if (need_resched())
861 return false;
862
863 if (unlikely(local_softirq_pending() && cpu_online(cpu))) {
864 static int ratelimit;
865
866 if (ratelimit < 10 &&
867 (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) {
868 pr_warn("NOHZ: local_softirq_pending %02x\n",
869 (unsigned int) local_softirq_pending());
870 ratelimit++;
871 }
872 return false;
873 }
874
875 if (tick_nohz_full_enabled()) {
876 /*
877 * Keep the tick alive to guarantee timekeeping progression
878 * if there are full dynticks CPUs around
879 */
880 if (tick_do_timer_cpu == cpu)
881 return false;
882 /*
883 * Boot safety: make sure the timekeeping duty has been
884 * assigned before entering dyntick-idle mode,
885 */
886 if (tick_do_timer_cpu == TICK_DO_TIMER_NONE)
887 return false;
888 }
889
890 return true;
891}
892
893static void __tick_nohz_idle_enter(struct tick_sched *ts)
894{
895 ktime_t now, expires;
896 int cpu = smp_processor_id();
897
898 now = tick_nohz_start_idle(ts);
899
900 if (can_stop_idle_tick(cpu, ts)) {
901 int was_stopped = ts->tick_stopped;
902
903 ts->idle_calls++;
904
905 expires = tick_nohz_stop_sched_tick(ts, now, cpu);
906 if (expires.tv64 > 0LL) {
907 ts->idle_sleeps++;
908 ts->idle_expires = expires;
909 }
910
911 if (!was_stopped && ts->tick_stopped)
912 ts->idle_jiffies = ts->last_jiffies;
913 }
914}
915
916/**
917 * tick_nohz_idle_enter - stop the idle tick from the idle task
918 *
919 * When the next event is more than a tick into the future, stop the idle tick
920 * Called when we start the idle loop.
921 *
922 * The arch is responsible of calling:
923 *
924 * - rcu_idle_enter() after its last use of RCU before the CPU is put
925 * to sleep.
926 * - rcu_idle_exit() before the first use of RCU after the CPU is woken up.
927 */
928void tick_nohz_idle_enter(void)
929{
930 struct tick_sched *ts;
931
932 WARN_ON_ONCE(irqs_disabled());
933
934 /*
935 * Update the idle state in the scheduler domain hierarchy
936 * when tick_nohz_stop_sched_tick() is called from the idle loop.
937 * State will be updated to busy during the first busy tick after
938 * exiting idle.
939 */
940 set_cpu_sd_state_idle();
941
942 local_irq_disable();
943
944 ts = this_cpu_ptr(&tick_cpu_sched);
945 ts->inidle = 1;
946 __tick_nohz_idle_enter(ts);
947
948 local_irq_enable();
949}
950
951/**
952 * tick_nohz_irq_exit - update next tick event from interrupt exit
953 *
954 * When an interrupt fires while we are idle and it doesn't cause
955 * a reschedule, it may still add, modify or delete a timer, enqueue
956 * an RCU callback, etc...
957 * So we need to re-calculate and reprogram the next tick event.
958 */
959void tick_nohz_irq_exit(void)
960{
961 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
962
963 if (ts->inidle)
964 __tick_nohz_idle_enter(ts);
965 else
966 tick_nohz_full_update_tick(ts);
967}
968
969/**
970 * tick_nohz_get_sleep_length - return the length of the current sleep
971 *
972 * Called from power state control code with interrupts disabled
973 */
974ktime_t tick_nohz_get_sleep_length(void)
975{
976 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
977
978 return ts->sleep_length;
979}
980
981static void tick_nohz_account_idle_ticks(struct tick_sched *ts)
982{
983#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
984 unsigned long ticks;
985
986 if (vtime_accounting_cpu_enabled())
987 return;
988 /*
989 * We stopped the tick in idle. Update process times would miss the
990 * time we slept as update_process_times does only a 1 tick
991 * accounting. Enforce that this is accounted to idle !
992 */
993 ticks = jiffies - ts->idle_jiffies;
994 /*
995 * We might be one off. Do not randomly account a huge number of ticks!
996 */
997 if (ticks && ticks < LONG_MAX)
998 account_idle_ticks(ticks);
999#endif
1000}
1001
1002/**
1003 * tick_nohz_idle_exit - restart the idle tick from the idle task
1004 *
1005 * Restart the idle tick when the CPU is woken up from idle
1006 * This also exit the RCU extended quiescent state. The CPU
1007 * can use RCU again after this function is called.
1008 */
1009void tick_nohz_idle_exit(void)
1010{
1011 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1012 ktime_t now;
1013
1014 local_irq_disable();
1015
1016 WARN_ON_ONCE(!ts->inidle);
1017
1018 ts->inidle = 0;
1019
1020 if (ts->idle_active || ts->tick_stopped)
1021 now = ktime_get();
1022
1023 if (ts->idle_active)
1024 tick_nohz_stop_idle(ts, now);
1025
1026 if (ts->tick_stopped) {
1027 tick_nohz_restart_sched_tick(ts, now, 0);
1028 tick_nohz_account_idle_ticks(ts);
1029 }
1030
1031 local_irq_enable();
1032}
1033
1034/*
1035 * The nohz low res interrupt handler
1036 */
1037static void tick_nohz_handler(struct clock_event_device *dev)
1038{
1039 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1040 struct pt_regs *regs = get_irq_regs();
1041 ktime_t now = ktime_get();
1042
1043 dev->next_event.tv64 = KTIME_MAX;
1044
1045 tick_sched_do_timer(now);
1046 tick_sched_handle(ts, regs);
1047
1048 /* No need to reprogram if we are running tickless */
1049 if (unlikely(ts->tick_stopped))
1050 return;
1051
1052 hrtimer_forward(&ts->sched_timer, now, tick_period);
1053 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1054}
1055
1056static inline void tick_nohz_activate(struct tick_sched *ts, int mode)
1057{
1058 if (!tick_nohz_enabled)
1059 return;
1060 ts->nohz_mode = mode;
1061 /* One update is enough */
1062 if (!test_and_set_bit(0, &tick_nohz_active))
1063 timers_update_migration(true);
1064}
1065
1066/**
1067 * tick_nohz_switch_to_nohz - switch to nohz mode
1068 */
1069static void tick_nohz_switch_to_nohz(void)
1070{
1071 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1072 ktime_t next;
1073
1074 if (!tick_nohz_enabled)
1075 return;
1076
1077 if (tick_switch_to_oneshot(tick_nohz_handler))
1078 return;
1079
1080 /*
1081 * Recycle the hrtimer in ts, so we can share the
1082 * hrtimer_forward with the highres code.
1083 */
1084 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1085 /* Get the next period */
1086 next = tick_init_jiffy_update();
1087
1088 hrtimer_set_expires(&ts->sched_timer, next);
1089 hrtimer_forward_now(&ts->sched_timer, tick_period);
1090 tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1091 tick_nohz_activate(ts, NOHZ_MODE_LOWRES);
1092}
1093
1094/*
1095 * When NOHZ is enabled and the tick is stopped, we need to kick the
1096 * tick timer from irq_enter() so that the jiffies update is kept
1097 * alive during long running softirqs. That's ugly as hell, but
1098 * correctness is key even if we need to fix the offending softirq in
1099 * the first place.
1100 *
1101 * Note, this is different to tick_nohz_restart. We just kick the
1102 * timer and do not touch the other magic bits which need to be done
1103 * when idle is left.
1104 */
1105static void tick_nohz_kick_tick(struct tick_sched *ts, ktime_t now)
1106{
1107#if 0
1108 /* Switch back to 2.6.27 behaviour */
1109 ktime_t delta;
1110
1111 /*
1112 * Do not touch the tick device, when the next expiry is either
1113 * already reached or less/equal than the tick period.
1114 */
1115 delta = ktime_sub(hrtimer_get_expires(&ts->sched_timer), now);
1116 if (delta.tv64 <= tick_period.tv64)
1117 return;
1118
1119 tick_nohz_restart(ts, now);
1120#endif
1121}
1122
1123static inline void tick_nohz_irq_enter(void)
1124{
1125 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1126 ktime_t now;
1127
1128 if (!ts->idle_active && !ts->tick_stopped)
1129 return;
1130 now = ktime_get();
1131 if (ts->idle_active)
1132 tick_nohz_stop_idle(ts, now);
1133 if (ts->tick_stopped) {
1134 tick_nohz_update_jiffies(now);
1135 tick_nohz_kick_tick(ts, now);
1136 }
1137}
1138
1139#else
1140
1141static inline void tick_nohz_switch_to_nohz(void) { }
1142static inline void tick_nohz_irq_enter(void) { }
1143static inline void tick_nohz_activate(struct tick_sched *ts, int mode) { }
1144
1145#endif /* CONFIG_NO_HZ_COMMON */
1146
1147/*
1148 * Called from irq_enter to notify about the possible interruption of idle()
1149 */
1150void tick_irq_enter(void)
1151{
1152 tick_check_oneshot_broadcast_this_cpu();
1153 tick_nohz_irq_enter();
1154}
1155
1156/*
1157 * High resolution timer specific code
1158 */
1159#ifdef CONFIG_HIGH_RES_TIMERS
1160/*
1161 * We rearm the timer until we get disabled by the idle code.
1162 * Called with interrupts disabled.
1163 */
1164static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
1165{
1166 struct tick_sched *ts =
1167 container_of(timer, struct tick_sched, sched_timer);
1168 struct pt_regs *regs = get_irq_regs();
1169 ktime_t now = ktime_get();
1170
1171 tick_sched_do_timer(now);
1172
1173 /*
1174 * Do not call, when we are not in irq context and have
1175 * no valid regs pointer
1176 */
1177 if (regs)
1178 tick_sched_handle(ts, regs);
1179
1180 /* No need to reprogram if we are in idle or full dynticks mode */
1181 if (unlikely(ts->tick_stopped))
1182 return HRTIMER_NORESTART;
1183
1184 hrtimer_forward(timer, now, tick_period);
1185
1186 return HRTIMER_RESTART;
1187}
1188
1189static int sched_skew_tick;
1190
1191static int __init skew_tick(char *str)
1192{
1193 get_option(&str, &sched_skew_tick);
1194
1195 return 0;
1196}
1197early_param("skew_tick", skew_tick);
1198
1199/**
1200 * tick_setup_sched_timer - setup the tick emulation timer
1201 */
1202void tick_setup_sched_timer(void)
1203{
1204 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1205 ktime_t now = ktime_get();
1206
1207 /*
1208 * Emulate tick processing via per-CPU hrtimers:
1209 */
1210 hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1211 ts->sched_timer.function = tick_sched_timer;
1212
1213 /* Get the next period (per cpu) */
1214 hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
1215
1216 /* Offset the tick to avert jiffies_lock contention. */
1217 if (sched_skew_tick) {
1218 u64 offset = ktime_to_ns(tick_period) >> 1;
1219 do_div(offset, num_possible_cpus());
1220 offset *= smp_processor_id();
1221 hrtimer_add_expires_ns(&ts->sched_timer, offset);
1222 }
1223
1224 hrtimer_forward(&ts->sched_timer, now, tick_period);
1225 hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED);
1226 tick_nohz_activate(ts, NOHZ_MODE_HIGHRES);
1227}
1228#endif /* HIGH_RES_TIMERS */
1229
1230#if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS
1231void tick_cancel_sched_timer(int cpu)
1232{
1233 struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
1234
1235# ifdef CONFIG_HIGH_RES_TIMERS
1236 if (ts->sched_timer.base)
1237 hrtimer_cancel(&ts->sched_timer);
1238# endif
1239
1240 memset(ts, 0, sizeof(*ts));
1241}
1242#endif
1243
1244/**
1245 * Async notification about clocksource changes
1246 */
1247void tick_clock_notify(void)
1248{
1249 int cpu;
1250
1251 for_each_possible_cpu(cpu)
1252 set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
1253}
1254
1255/*
1256 * Async notification about clock event changes
1257 */
1258void tick_oneshot_notify(void)
1259{
1260 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1261
1262 set_bit(0, &ts->check_clocks);
1263}
1264
1265/**
1266 * Check, if a change happened, which makes oneshot possible.
1267 *
1268 * Called cyclic from the hrtimer softirq (driven by the timer
1269 * softirq) allow_nohz signals, that we can switch into low-res nohz
1270 * mode, because high resolution timers are disabled (either compile
1271 * or runtime). Called with interrupts disabled.
1272 */
1273int tick_check_oneshot_change(int allow_nohz)
1274{
1275 struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1276
1277 if (!test_and_clear_bit(0, &ts->check_clocks))
1278 return 0;
1279
1280 if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
1281 return 0;
1282
1283 if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
1284 return 0;
1285
1286 if (!allow_nohz)
1287 return 1;
1288
1289 tick_nohz_switch_to_nohz();
1290 return 0;
1291}