Linux Audio

Check our new training course

Buildroot integration, development and maintenance

Need a Buildroot system for your embedded project?
Loading...
v3.15
 
   1/*
   2 *  linux/kernel/time/tick-sched.c
   3 *
   4 *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
   5 *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
   6 *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
   7 *
   8 *  No idle tick implementation for low and high resolution timers
   9 *
  10 *  Started by: Thomas Gleixner and Ingo Molnar
  11 *
  12 *  Distribute under GPLv2.
  13 */
  14#include <linux/cpu.h>
  15#include <linux/err.h>
  16#include <linux/hrtimer.h>
  17#include <linux/interrupt.h>
  18#include <linux/kernel_stat.h>
  19#include <linux/percpu.h>
 
  20#include <linux/profile.h>
  21#include <linux/sched.h>
 
 
 
 
  22#include <linux/module.h>
  23#include <linux/irq_work.h>
  24#include <linux/posix-timers.h>
  25#include <linux/perf_event.h>
  26#include <linux/context_tracking.h>
 
  27
  28#include <asm/irq_regs.h>
  29
  30#include "tick-internal.h"
  31
  32#include <trace/events/timer.h>
  33
  34/*
  35 * Per cpu nohz control structure
  36 */
  37DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
  38
  39/*
  40 * The time, when the last jiffy update happened. Protected by jiffies_lock.
  41 */
  42static ktime_t last_jiffies_update;
  43
  44struct tick_sched *tick_get_tick_sched(int cpu)
  45{
  46	return &per_cpu(tick_cpu_sched, cpu);
  47}
  48
 
 
 
 
 
 
 
 
  49/*
  50 * Must be called with interrupts disabled !
  51 */
  52static void tick_do_update_jiffies64(ktime_t now)
  53{
  54	unsigned long ticks = 0;
  55	ktime_t delta;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  56
 
 
  57	/*
  58	 * Do a quick check without holding jiffies_lock:
 
  59	 */
  60	delta = ktime_sub(now, last_jiffies_update);
  61	if (delta.tv64 < tick_period.tv64)
  62		return;
 
  63
  64	/* Reevalute with jiffies_lock held */
  65	write_seqlock(&jiffies_lock);
  66
  67	delta = ktime_sub(now, last_jiffies_update);
  68	if (delta.tv64 >= tick_period.tv64) {
 
 
  69
  70		delta = ktime_sub(delta, tick_period);
  71		last_jiffies_update = ktime_add(last_jiffies_update,
  72						tick_period);
  73
  74		/* Slow path for long timeouts */
  75		if (unlikely(delta.tv64 >= tick_period.tv64)) {
  76			s64 incr = ktime_to_ns(tick_period);
 
 
 
  77
  78			ticks = ktime_divns(delta, incr);
 
  79
  80			last_jiffies_update = ktime_add_ns(last_jiffies_update,
  81							   incr * ticks);
  82		}
  83		do_timer(++ticks);
  84
  85		/* Keep the tick_next_period variable up to date */
  86		tick_next_period = ktime_add(last_jiffies_update, tick_period);
 
 
 
 
 
 
  87	} else {
  88		write_sequnlock(&jiffies_lock);
  89		return;
 
 
 
  90	}
  91	write_sequnlock(&jiffies_lock);
 
 
 
 
 
 
 
 
 
 
  92	update_wall_time();
  93}
  94
  95/*
  96 * Initialize and return retrieve the jiffies update.
  97 */
  98static ktime_t tick_init_jiffy_update(void)
  99{
 100	ktime_t period;
 101
 102	write_seqlock(&jiffies_lock);
 103	/* Did we start the jiffies update yet ? */
 104	if (last_jiffies_update.tv64 == 0)
 
 
 
 
 
 
 
 
 
 
 
 
 105		last_jiffies_update = tick_next_period;
 
 106	period = last_jiffies_update;
 107	write_sequnlock(&jiffies_lock);
 
 
 
 108	return period;
 109}
 110
 
 111
 112static void tick_sched_do_timer(ktime_t now)
 113{
 114	int cpu = smp_processor_id();
 115
 116#ifdef CONFIG_NO_HZ_COMMON
 117	/*
 118	 * Check if the do_timer duty was dropped. We don't care about
 119	 * concurrency: This happens only when the cpu in charge went
 120	 * into a long sleep. If two cpus happen to assign themself to
 121	 * this duty, then the jiffies update is still serialized by
 122	 * jiffies_lock.
 
 
 
 123	 */
 124	if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)
 125	    && !tick_nohz_full_cpu(cpu))
 
 
 126		tick_do_timer_cpu = cpu;
 
 127#endif
 128
 129	/* Check, if the jiffies need an update */
 130	if (tick_do_timer_cpu == cpu)
 131		tick_do_update_jiffies64(now);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 132}
 133
 134static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
 135{
 136#ifdef CONFIG_NO_HZ_COMMON
 137	/*
 138	 * When we are idle and the tick is stopped, we have to touch
 139	 * the watchdog as we might not schedule for a really long
 140	 * time. This happens on complete idle SMP systems while
 141	 * waiting on the login prompt. We also increment the "start of
 142	 * idle" jiffy stamp so the idle accounting adjustment we do
 143	 * when we go busy again does not account too much ticks.
 144	 */
 145	if (ts->tick_stopped) {
 146		touch_softlockup_watchdog();
 147		if (is_idle_task(current))
 148			ts->idle_jiffies++;
 
 
 
 
 
 
 149	}
 150#endif
 151	update_process_times(user_mode(regs));
 152	profile_tick(CPU_PROFILING);
 153}
 
 154
 155#ifdef CONFIG_NO_HZ_FULL
 156cpumask_var_t tick_nohz_full_mask;
 
 157bool tick_nohz_full_running;
 
 
 158
 159static bool can_stop_full_tick(void)
 160{
 161	WARN_ON_ONCE(!irqs_disabled());
 162
 163	if (!sched_can_stop_tick()) {
 164		trace_tick_stop(0, "more than 1 task in runqueue\n");
 165		return false;
 166	}
 167
 168	if (!posix_cpu_timers_can_stop_tick(current)) {
 169		trace_tick_stop(0, "posix timers running\n");
 170		return false;
 171	}
 172
 173	if (!perf_event_can_stop_tick()) {
 174		trace_tick_stop(0, "perf events running\n");
 175		return false;
 176	}
 177
 178	/* sched_clock_tick() needs us? */
 179#ifdef CONFIG_HAVE_UNSTABLE_SCHED_CLOCK
 180	/*
 181	 * TODO: kick full dynticks CPUs when
 182	 * sched_clock_stable is set.
 183	 */
 184	if (!sched_clock_stable()) {
 185		trace_tick_stop(0, "unstable sched clock\n");
 186		/*
 187		 * Don't allow the user to think they can get
 188		 * full NO_HZ with this machine.
 189		 */
 190		WARN_ONCE(tick_nohz_full_running,
 191			  "NO_HZ FULL will not work with unstable sched clock");
 192		return false;
 193	}
 194#endif
 195
 196	return true;
 197}
 
 
 198
 199static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now);
 
 
 
 200
 201/*
 202 * Re-evaluate the need for the tick on the current CPU
 203 * and restart it if necessary.
 204 */
 205void __tick_nohz_full_check(void)
 206{
 207	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
 208
 209	if (tick_nohz_full_cpu(smp_processor_id())) {
 210		if (ts->tick_stopped && !is_idle_task(current)) {
 211			if (!can_stop_full_tick())
 212				tick_nohz_restart_sched_tick(ts, ktime_get());
 213		}
 214	}
 
 
 
 
 
 
 
 
 
 
 215}
 216
 217static void nohz_full_kick_work_func(struct irq_work *work)
 218{
 219	__tick_nohz_full_check();
 220}
 221
 222static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) = {
 223	.func = nohz_full_kick_work_func,
 224};
 225
 226/*
 227 * Kick the current CPU if it's full dynticks in order to force it to
 228 * re-evaluate its dependency on the tick and restart it if necessary.
 
 
 229 */
 230void tick_nohz_full_kick(void)
 231{
 232	if (tick_nohz_full_cpu(smp_processor_id()))
 233		irq_work_queue(&__get_cpu_var(nohz_full_kick_work));
 
 
 234}
 235
 236static void nohz_full_kick_ipi(void *info)
 
 
 
 
 237{
 238	__tick_nohz_full_check();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 239}
 240
 241/*
 242 * Kick all full dynticks CPUs in order to force these to re-evaluate
 243 * their dependency on the tick and restart it if necessary.
 244 */
 245void tick_nohz_full_kick_all(void)
 246{
 
 
 247	if (!tick_nohz_full_running)
 248		return;
 249
 250	preempt_disable();
 251	smp_call_function_many(tick_nohz_full_mask,
 252			       nohz_full_kick_ipi, NULL, false);
 253	tick_nohz_full_kick();
 254	preempt_enable();
 255}
 256
 
 
 
 
 
 
 
 
 
 
 257/*
 258 * Re-evaluate the need for the tick as we switch the current task.
 259 * It might need the tick due to per task/process properties:
 260 * perf events, posix cpu timers, ...
 261 */
 262void __tick_nohz_task_switch(struct task_struct *tsk)
 263{
 264	unsigned long flags;
 
 265
 266	local_irq_save(flags);
 
 
 
 267
 268	if (!tick_nohz_full_cpu(smp_processor_id()))
 269		goto out;
 
 
 
 
 
 
 270
 271	if (tick_nohz_tick_stopped() && !can_stop_full_tick())
 272		tick_nohz_full_kick();
 273
 274out:
 275	local_irq_restore(flags);
 
 
 
 
 
 
 
 
 
 
 
 276}
 
 277
 278/* Parse the boot-time nohz CPU list from the kernel parameters. */
 279static int __init tick_nohz_full_setup(char *str)
 280{
 281	int cpu;
 282
 283	alloc_bootmem_cpumask_var(&tick_nohz_full_mask);
 284	if (cpulist_parse(str, tick_nohz_full_mask) < 0) {
 285		pr_warning("NOHZ: Incorrect nohz_full cpumask\n");
 286		return 1;
 287	}
 288
 289	cpu = smp_processor_id();
 290	if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) {
 291		pr_warning("NO_HZ: Clearing %d from nohz_full range for timekeeping\n", cpu);
 292		cpumask_clear_cpu(cpu, tick_nohz_full_mask);
 293	}
 294	tick_nohz_full_running = true;
 
 
 
 
 295
 296	return 1;
 
 
 297}
 298__setup("nohz_full=", tick_nohz_full_setup);
 299
 300static int tick_nohz_cpu_down_callback(struct notifier_block *nfb,
 301						 unsigned long action,
 302						 void *hcpu)
 
 
 
 303{
 304	unsigned int cpu = (unsigned long)hcpu;
 
 305
 306	switch (action & ~CPU_TASKS_FROZEN) {
 307	case CPU_DOWN_PREPARE:
 308		/*
 309		 * If we handle the timekeeping duty for full dynticks CPUs,
 310		 * we can't safely shutdown that CPU.
 311		 */
 312		if (tick_nohz_full_running && tick_do_timer_cpu == cpu)
 313			return NOTIFY_BAD;
 314		break;
 315	}
 316	return NOTIFY_OK;
 
 
 
 
 317}
 318
 319/*
 320 * Worst case string length in chunks of CPU range seems 2 steps
 321 * separations: 0,2,4,6,...
 322 * This is NR_CPUS + sizeof('\0')
 323 */
 324static char __initdata nohz_full_buf[NR_CPUS + 1];
 325
 326static int tick_nohz_init_all(void)
 327{
 328	int err = -1;
 
 
 
 
 
 329
 330#ifdef CONFIG_NO_HZ_FULL_ALL
 331	if (!alloc_cpumask_var(&tick_nohz_full_mask, GFP_KERNEL)) {
 332		pr_err("NO_HZ: Can't allocate full dynticks cpumask\n");
 333		return err;
 334	}
 335	err = 0;
 336	cpumask_setall(tick_nohz_full_mask);
 337	cpumask_clear_cpu(smp_processor_id(), tick_nohz_full_mask);
 
 
 
 
 338	tick_nohz_full_running = true;
 339#endif
 340	return err;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 341}
 342
 343void __init tick_nohz_init(void)
 344{
 345	int cpu;
 346
 347	if (!tick_nohz_full_running) {
 348		if (tick_nohz_init_all() < 0)
 349			return;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 350	}
 351
 352	for_each_cpu(cpu, tick_nohz_full_mask)
 353		context_tracking_cpu_set(cpu);
 354
 355	cpu_notifier(tick_nohz_cpu_down_callback, 0);
 356	cpulist_scnprintf(nohz_full_buf, sizeof(nohz_full_buf), tick_nohz_full_mask);
 357	pr_info("NO_HZ: Full dynticks CPUs: %s.\n", nohz_full_buf);
 
 
 
 358}
 359#endif
 360
 361/*
 362 * NOHZ - aka dynamic tick functionality
 363 */
 364#ifdef CONFIG_NO_HZ_COMMON
 365/*
 366 * NO HZ enabled ?
 367 */
 368static int tick_nohz_enabled __read_mostly  = 1;
 369int tick_nohz_active  __read_mostly;
 370/*
 371 * Enable / Disable tickless mode
 372 */
 373static int __init setup_tick_nohz(char *str)
 374{
 375	if (!strcmp(str, "off"))
 376		tick_nohz_enabled = 0;
 377	else if (!strcmp(str, "on"))
 378		tick_nohz_enabled = 1;
 379	else
 380		return 0;
 381	return 1;
 382}
 383
 384__setup("nohz=", setup_tick_nohz);
 385
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 386/**
 387 * tick_nohz_update_jiffies - update jiffies when idle was interrupted
 388 *
 389 * Called from interrupt entry when the CPU was idle
 390 *
 391 * In case the sched_tick was stopped on this CPU, we have to check if jiffies
 392 * must be updated. Otherwise an interrupt handler could use a stale jiffy
 393 * value. We do this unconditionally on any cpu, as we don't know whether the
 394 * cpu, which has the update task assigned is in a long sleep.
 395 */
 396static void tick_nohz_update_jiffies(ktime_t now)
 397{
 398	unsigned long flags;
 399
 400	__this_cpu_write(tick_cpu_sched.idle_waketime, now);
 401
 402	local_irq_save(flags);
 403	tick_do_update_jiffies64(now);
 404	local_irq_restore(flags);
 405
 406	touch_softlockup_watchdog();
 407}
 408
 409/*
 410 * Updates the per cpu time idle statistics counters
 411 */
 412static void
 413update_ts_time_stats(int cpu, struct tick_sched *ts, ktime_t now, u64 *last_update_time)
 414{
 415	ktime_t delta;
 416
 417	if (ts->idle_active) {
 418		delta = ktime_sub(now, ts->idle_entrytime);
 419		if (nr_iowait_cpu(cpu) > 0)
 420			ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
 421		else
 422			ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
 423		ts->idle_entrytime = now;
 424	}
 425
 426	if (last_update_time)
 427		*last_update_time = ktime_to_us(now);
 428
 429}
 
 
 
 
 430
 431static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now)
 432{
 433	update_ts_time_stats(smp_processor_id(), ts, now, NULL);
 434	ts->idle_active = 0;
 
 435
 436	sched_clock_idle_wakeup_event(0);
 437}
 438
 439static ktime_t tick_nohz_start_idle(struct tick_sched *ts)
 440{
 441	ktime_t now = ktime_get();
 442
 443	ts->idle_entrytime = now;
 444	ts->idle_active = 1;
 
 
 445	sched_clock_idle_sleep_event();
 446	return now;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 447}
 448
 449/**
 450 * get_cpu_idle_time_us - get the total idle time of a cpu
 451 * @cpu: CPU number to query
 452 * @last_update_time: variable to store update time in. Do not update
 453 * counters if NULL.
 454 *
 455 * Return the cummulative idle time (since boot) for a given
 456 * CPU, in microseconds.
 
 
 
 457 *
 458 * This time is measured via accounting rather than sampling,
 459 * and is as accurate as ktime_get() is.
 460 *
 461 * This function returns -1 if NOHZ is not enabled.
 462 */
 463u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
 464{
 465	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
 466	ktime_t now, idle;
 467
 468	if (!tick_nohz_active)
 469		return -1;
 470
 471	now = ktime_get();
 472	if (last_update_time) {
 473		update_ts_time_stats(cpu, ts, now, last_update_time);
 474		idle = ts->idle_sleeptime;
 475	} else {
 476		if (ts->idle_active && !nr_iowait_cpu(cpu)) {
 477			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
 478
 479			idle = ktime_add(ts->idle_sleeptime, delta);
 480		} else {
 481			idle = ts->idle_sleeptime;
 482		}
 483	}
 484
 485	return ktime_to_us(idle);
 486
 
 
 487}
 488EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
 489
 490/**
 491 * get_cpu_iowait_time_us - get the total iowait time of a cpu
 492 * @cpu: CPU number to query
 493 * @last_update_time: variable to store update time in. Do not update
 494 * counters if NULL.
 495 *
 496 * Return the cummulative iowait time (since boot) for a given
 497 * CPU, in microseconds.
 
 
 
 498 *
 499 * This time is measured via accounting rather than sampling,
 500 * and is as accurate as ktime_get() is.
 501 *
 502 * This function returns -1 if NOHZ is not enabled.
 503 */
 504u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
 505{
 506	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
 507	ktime_t now, iowait;
 508
 509	if (!tick_nohz_active)
 510		return -1;
 
 
 511
 512	now = ktime_get();
 513	if (last_update_time) {
 514		update_ts_time_stats(cpu, ts, now, last_update_time);
 515		iowait = ts->iowait_sleeptime;
 516	} else {
 517		if (ts->idle_active && nr_iowait_cpu(cpu) > 0) {
 518			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
 519
 520			iowait = ktime_add(ts->iowait_sleeptime, delta);
 521		} else {
 522			iowait = ts->iowait_sleeptime;
 523		}
 
 
 
 
 524	}
 525
 526	return ktime_to_us(iowait);
 
 
 
 
 527}
 528EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
 529
 530static ktime_t tick_nohz_stop_sched_tick(struct tick_sched *ts,
 531					 ktime_t now, int cpu)
 532{
 533	unsigned long seq, last_jiffies, next_jiffies, delta_jiffies;
 534	ktime_t last_update, expires, ret = { .tv64 = 0 };
 535	unsigned long rcu_delta_jiffies;
 536	struct clock_event_device *dev = __get_cpu_var(tick_cpu_device).evtdev;
 537	u64 time_delta;
 538
 539	time_delta = timekeeping_max_deferment();
 
 
 
 
 540
 541	/* Read jiffies and the time when jiffies were updated last */
 542	do {
 543		seq = read_seqbegin(&jiffies_lock);
 544		last_update = last_jiffies_update;
 545		last_jiffies = jiffies;
 546	} while (read_seqretry(&jiffies_lock, seq));
 547
 548	if (rcu_needs_cpu(cpu, &rcu_delta_jiffies) ||
 549	    arch_needs_cpu(cpu) || irq_work_needs_cpu()) {
 550		next_jiffies = last_jiffies + 1;
 551		delta_jiffies = 1;
 552	} else {
 553		/* Get the next timer wheel timer */
 554		next_jiffies = get_next_timer_interrupt(last_jiffies);
 555		delta_jiffies = next_jiffies - last_jiffies;
 556		if (rcu_delta_jiffies < delta_jiffies) {
 557			next_jiffies = last_jiffies + rcu_delta_jiffies;
 558			delta_jiffies = rcu_delta_jiffies;
 559		}
 560	}
 561
 562	/*
 563	 * Do not stop the tick, if we are only one off (or less)
 564	 * or if the cpu is required for RCU:
 
 
 
 
 
 
 565	 */
 566	if (!ts->tick_stopped && delta_jiffies <= 1)
 567		goto out;
 568
 569	/* Schedule the tick, if we are at least one jiffie off */
 570	if ((long)delta_jiffies >= 1) {
 571
 572		/*
 573		 * If this cpu is the one which updates jiffies, then
 574		 * give up the assignment and let it be taken by the
 575		 * cpu which runs the tick timer next, which might be
 576		 * this cpu as well. If we don't drop this here the
 577		 * jiffies might be stale and do_timer() never
 578		 * invoked. Keep track of the fact that it was the one
 579		 * which had the do_timer() duty last. If this cpu is
 580		 * the one which had the do_timer() duty last, we
 581		 * limit the sleep time to the timekeeping
 582		 * max_deferement value which we retrieved
 583		 * above. Otherwise we can sleep as long as we want.
 584		 */
 585		if (cpu == tick_do_timer_cpu) {
 586			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
 587			ts->do_timer_last = 1;
 588		} else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
 589			time_delta = KTIME_MAX;
 590			ts->do_timer_last = 0;
 591		} else if (!ts->do_timer_last) {
 592			time_delta = KTIME_MAX;
 593		}
 594
 595#ifdef CONFIG_NO_HZ_FULL
 596		if (!ts->inidle) {
 597			time_delta = min(time_delta,
 598					 scheduler_tick_max_deferment());
 599		}
 600#endif
 601
 
 
 
 
 
 
 
 
 
 
 
 602		/*
 603		 * calculate the expiry time for the next timer wheel
 604		 * timer. delta_jiffies >= NEXT_TIMER_MAX_DELTA signals
 605		 * that there is no timer pending or at least extremely
 606		 * far into the future (12 days for HZ=1000). In this
 607		 * case we set the expiry to the end of time.
 608		 */
 609		if (likely(delta_jiffies < NEXT_TIMER_MAX_DELTA)) {
 610			/*
 611			 * Calculate the time delta for the next timer event.
 612			 * If the time delta exceeds the maximum time delta
 613			 * permitted by the current clocksource then adjust
 614			 * the time delta accordingly to ensure the
 615			 * clocksource does not wrap.
 616			 */
 617			time_delta = min_t(u64, time_delta,
 618					   tick_period.tv64 * delta_jiffies);
 619		}
 
 620
 621		if (time_delta < KTIME_MAX)
 622			expires = ktime_add_ns(last_update, time_delta);
 623		else
 624			expires.tv64 = KTIME_MAX;
 
 
 
 
 
 
 
 
 
 
 
 625
 626		/* Skip reprogram of event if its not changed */
 627		if (ts->tick_stopped && ktime_equal(expires, dev->next_event))
 628			goto out;
 629
 630		ret = expires;
 
 
 631
 632		/*
 633		 * nohz_stop_sched_tick can be called several times before
 634		 * the nohz_restart_sched_tick is called. This happens when
 635		 * interrupts arrive which do not cause a reschedule. In the
 636		 * first call we save the current tick time, so we can restart
 637		 * the scheduler tick in nohz_restart_sched_tick.
 638		 */
 639		if (!ts->tick_stopped) {
 640			nohz_balance_enter_idle(cpu);
 641			calc_load_enter_idle();
 642
 643			ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
 644			ts->tick_stopped = 1;
 645			trace_tick_stop(1, " ");
 646		}
 647
 648		/*
 649		 * If the expiration time == KTIME_MAX, then
 650		 * in this case we simply stop the tick timer.
 651		 */
 652		 if (unlikely(expires.tv64 == KTIME_MAX)) {
 653			if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
 654				hrtimer_cancel(&ts->sched_timer);
 655			goto out;
 656		}
 
 
 
 
 
 657
 658		if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
 659			hrtimer_start(&ts->sched_timer, expires,
 660				      HRTIMER_MODE_ABS_PINNED);
 661			/* Check, if the timer was already in the past */
 662			if (hrtimer_active(&ts->sched_timer))
 663				goto out;
 664		} else if (!tick_program_event(expires, 0))
 665				goto out;
 666		/*
 667		 * We are past the event already. So we crossed a
 668		 * jiffie boundary. Update jiffies and raise the
 669		 * softirq.
 670		 */
 671		tick_do_update_jiffies64(ktime_get());
 672	}
 673	raise_softirq_irqoff(TIMER_SOFTIRQ);
 674out:
 675	ts->next_jiffies = next_jiffies;
 676	ts->last_jiffies = last_jiffies;
 677	ts->sleep_length = ktime_sub(dev->next_event, now);
 678
 679	return ret;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 680}
 681
 682static void tick_nohz_full_stop_tick(struct tick_sched *ts)
 
 683{
 684#ifdef CONFIG_NO_HZ_FULL
 685	int cpu = smp_processor_id();
 686
 687	if (!tick_nohz_full_cpu(cpu) || is_idle_task(current))
 
 
 
 
 
 
 
 
 
 688		return;
 689
 690	if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE)
 691		return;
 692
 693	if (!can_stop_full_tick())
 694		return;
 695
 696	tick_nohz_stop_sched_tick(ts, ktime_get(), cpu);
 697#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 698}
 699
 700static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
 701{
 702	/*
 703	 * If this cpu is offline and it is the one which updates
 704	 * jiffies, then give up the assignment and let it be taken by
 705	 * the cpu which runs the tick timer next. If we don't drop
 706	 * this here the jiffies might be stale and do_timer() never
 707	 * invoked.
 708	 */
 709	if (unlikely(!cpu_online(cpu))) {
 710		if (cpu == tick_do_timer_cpu)
 711			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
 
 
 
 
 
 712		return false;
 713	}
 714
 715	if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE)) {
 716		ts->sleep_length = (ktime_t) { .tv64 = NSEC_PER_SEC/HZ };
 717		return false;
 718	}
 719
 720	if (need_resched())
 721		return false;
 722
 723	if (unlikely(local_softirq_pending() && cpu_online(cpu))) {
 724		static int ratelimit;
 725
 726		if (ratelimit < 10 &&
 727		    (local_softirq_pending() & SOFTIRQ_STOP_IDLE_MASK)) {
 728			pr_warn("NOHZ: local_softirq_pending %02x\n",
 729				(unsigned int) local_softirq_pending());
 730			ratelimit++;
 731		}
 732		return false;
 733	}
 734
 735	if (tick_nohz_full_enabled()) {
 736		/*
 737		 * Keep the tick alive to guarantee timekeeping progression
 738		 * if there are full dynticks CPUs around
 739		 */
 740		if (tick_do_timer_cpu == cpu)
 741			return false;
 742		/*
 743		 * Boot safety: make sure the timekeeping duty has been
 744		 * assigned before entering dyntick-idle mode,
 745		 */
 746		if (tick_do_timer_cpu == TICK_DO_TIMER_NONE)
 747			return false;
 748	}
 749
 750	return true;
 751}
 752
 753static void __tick_nohz_idle_enter(struct tick_sched *ts)
 
 
 
 
 
 754{
 755	ktime_t now, expires;
 756	int cpu = smp_processor_id();
 
 
 
 
 
 
 
 
 
 
 
 
 757
 758	now = tick_nohz_start_idle(ts);
 759
 760	if (can_stop_idle_tick(cpu, ts)) {
 761		int was_stopped = ts->tick_stopped;
 762
 763		ts->idle_calls++;
 764
 765		expires = tick_nohz_stop_sched_tick(ts, now, cpu);
 766		if (expires.tv64 > 0LL) {
 767			ts->idle_sleeps++;
 768			ts->idle_expires = expires;
 769		}
 770
 771		if (!was_stopped && ts->tick_stopped)
 772			ts->idle_jiffies = ts->last_jiffies;
 
 
 
 
 773	}
 774}
 775
 
 
 
 
 
 
 
 
 
 
 776/**
 777 * tick_nohz_idle_enter - stop the idle tick from the idle task
 778 *
 779 * When the next event is more than a tick into the future, stop the idle tick
 780 * Called when we start the idle loop.
 781 *
 782 * The arch is responsible of calling:
 783 *
 784 * - rcu_idle_enter() after its last use of RCU before the CPU is put
 785 *  to sleep.
 786 * - rcu_idle_exit() before the first use of RCU after the CPU is woken up.
 787 */
 788void tick_nohz_idle_enter(void)
 789{
 790	struct tick_sched *ts;
 791
 792	WARN_ON_ONCE(irqs_disabled());
 793
 794	/*
 795 	 * Update the idle state in the scheduler domain hierarchy
 796 	 * when tick_nohz_stop_sched_tick() is called from the idle loop.
 797 	 * State will be updated to busy during the first busy tick after
 798 	 * exiting idle.
 799 	 */
 800	set_cpu_sd_state_idle();
 801
 802	local_irq_disable();
 803
 804	ts = &__get_cpu_var(tick_cpu_sched);
 
 
 
 805	ts->inidle = 1;
 806	__tick_nohz_idle_enter(ts);
 807
 808	local_irq_enable();
 809}
 810EXPORT_SYMBOL_GPL(tick_nohz_idle_enter);
 811
 812/**
 813 * tick_nohz_irq_exit - update next tick event from interrupt exit
 
 
 
 
 
 
 
 
 
 
 
 814 *
 815 * When an interrupt fires while we are idle and it doesn't cause
 816 * a reschedule, it may still add, modify or delete a timer, enqueue
 817 * an RCU callback, etc...
 818 * So we need to re-calculate and reprogram the next tick event.
 819 */
 820void tick_nohz_irq_exit(void)
 821{
 822	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
 823
 824	if (ts->inidle)
 825		__tick_nohz_idle_enter(ts);
 826	else
 827		tick_nohz_full_stop_tick(ts);
 828}
 829
 830/**
 831 * tick_nohz_get_sleep_length - return the length of the current sleep
 832 *
 833 * Called from power state control code with interrupts disabled
 834 */
 835ktime_t tick_nohz_get_sleep_length(void)
 836{
 837	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
 838
 839	return ts->sleep_length;
 
 
 
 
 840}
 841
 842static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
 
 
 
 
 
 
 
 843{
 844	hrtimer_cancel(&ts->sched_timer);
 845	hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
 846
 847	while (1) {
 848		/* Forward the time to expire in the future */
 849		hrtimer_forward(&ts->sched_timer, now, tick_period);
 850
 851		if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
 852			hrtimer_start_expires(&ts->sched_timer,
 853					      HRTIMER_MODE_ABS_PINNED);
 854			/* Check, if the timer was already in the past */
 855			if (hrtimer_active(&ts->sched_timer))
 856				break;
 857		} else {
 858			if (!tick_program_event(
 859				hrtimer_get_expires(&ts->sched_timer), 0))
 860				break;
 861		}
 862		/* Reread time and update jiffies */
 863		now = ktime_get();
 864		tick_do_update_jiffies64(now);
 865	}
 866}
 867
 868static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
 
 
 
 
 
 
 
 
 
 
 869{
 870	/* Update jiffies first */
 871	tick_do_update_jiffies64(now);
 872	update_cpu_load_nohz();
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 873
 874	calc_load_exit_idle();
 875	touch_softlockup_watchdog();
 876	/*
 877	 * Cancel the scheduled timer and restore the tick
 
 878	 */
 879	ts->tick_stopped  = 0;
 880	ts->idle_exittime = now;
 881
 882	tick_nohz_restart(ts, now);
 883}
 884
 885static void tick_nohz_account_idle_ticks(struct tick_sched *ts)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 886{
 887#ifndef CONFIG_VIRT_CPU_ACCOUNTING_NATIVE
 888	unsigned long ticks;
 889
 890	if (vtime_accounting_enabled())
 
 
 891		return;
 892	/*
 893	 * We stopped the tick in idle. Update process times would miss the
 894	 * time we slept as update_process_times does only a 1 tick
 895	 * accounting. Enforce that this is accounted to idle !
 896	 */
 897	ticks = jiffies - ts->idle_jiffies;
 898	/*
 899	 * We might be one off. Do not randomly account a huge number of ticks!
 900	 */
 901	if (ticks && ticks < LONG_MAX)
 902		account_idle_ticks(ticks);
 903#endif
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 904}
 905
 906/**
 907 * tick_nohz_idle_exit - restart the idle tick from the idle task
 
 
 
 
 
 
 
 
 
 
 
 
 908 *
 909 * Restart the idle tick when the CPU is woken up from idle
 910 * This also exit the RCU extended quiescent state. The CPU
 911 * can use RCU again after this function is called.
 912 */
 913void tick_nohz_idle_exit(void)
 914{
 915	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
 
 916	ktime_t now;
 917
 918	local_irq_disable();
 919
 920	WARN_ON_ONCE(!ts->inidle);
 
 921
 922	ts->inidle = 0;
 
 
 923
 924	if (ts->idle_active || ts->tick_stopped)
 925		now = ktime_get();
 926
 927	if (ts->idle_active)
 928		tick_nohz_stop_idle(ts, now);
 929
 930	if (ts->tick_stopped) {
 931		tick_nohz_restart_sched_tick(ts, now);
 932		tick_nohz_account_idle_ticks(ts);
 933	}
 934
 935	local_irq_enable();
 936}
 937EXPORT_SYMBOL_GPL(tick_nohz_idle_exit);
 938
 939static int tick_nohz_reprogram(struct tick_sched *ts, ktime_t now)
 940{
 941	hrtimer_forward(&ts->sched_timer, now, tick_period);
 942	return tick_program_event(hrtimer_get_expires(&ts->sched_timer), 0);
 943}
 944
 945/*
 946 * The nohz low res interrupt handler
 
 
 
 
 
 
 947 */
 948static void tick_nohz_handler(struct clock_event_device *dev)
 949{
 950	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
 951	struct pt_regs *regs = get_irq_regs();
 952	ktime_t now = ktime_get();
 953
 954	dev->next_event.tv64 = KTIME_MAX;
 955
 956	tick_sched_do_timer(now);
 957	tick_sched_handle(ts, regs);
 958
 959	while (tick_nohz_reprogram(ts, now)) {
 960		now = ktime_get();
 961		tick_do_update_jiffies64(now);
 
 
 
 
 
 962	}
 
 
 
 
 
 
 
 
 
 
 
 963}
 964
 965/**
 966 * tick_nohz_switch_to_nohz - switch to nohz mode
 967 */
 968static void tick_nohz_switch_to_nohz(void)
 969{
 970	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
 971	ktime_t next;
 972
 973	if (!tick_nohz_enabled)
 974		return;
 975
 976	local_irq_disable();
 977	if (tick_switch_to_oneshot(tick_nohz_handler)) {
 978		local_irq_enable();
 979		return;
 980	}
 981	tick_nohz_active = 1;
 982	ts->nohz_mode = NOHZ_MODE_LOWRES;
 983
 984	/*
 985	 * Recycle the hrtimer in ts, so we can share the
 986	 * hrtimer_forward with the highres code.
 987	 */
 988	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
 989	/* Get the next period */
 990	next = tick_init_jiffy_update();
 991
 992	for (;;) {
 993		hrtimer_set_expires(&ts->sched_timer, next);
 994		if (!tick_program_event(next, 0))
 995			break;
 996		next = ktime_add(next, tick_period);
 997	}
 998	local_irq_enable();
 999}
1000
1001/*
1002 * When NOHZ is enabled and the tick is stopped, we need to kick the
1003 * tick timer from irq_enter() so that the jiffies update is kept
1004 * alive during long running softirqs. That's ugly as hell, but
1005 * correctness is key even if we need to fix the offending softirq in
1006 * the first place.
1007 *
1008 * Note, this is different to tick_nohz_restart. We just kick the
1009 * timer and do not touch the other magic bits which need to be done
1010 * when idle is left.
1011 */
1012static void tick_nohz_kick_tick(struct tick_sched *ts, ktime_t now)
1013{
1014#if 0
1015	/* Switch back to 2.6.27 behaviour */
1016	ktime_t delta;
1017
1018	/*
1019	 * Do not touch the tick device, when the next expiry is either
1020	 * already reached or less/equal than the tick period.
1021	 */
1022	delta =	ktime_sub(hrtimer_get_expires(&ts->sched_timer), now);
1023	if (delta.tv64 <= tick_period.tv64)
1024		return;
1025
1026	tick_nohz_restart(ts, now);
1027#endif
1028}
1029
1030static inline void tick_nohz_irq_enter(void)
1031{
1032	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
1033	ktime_t now;
1034
1035	if (!ts->idle_active && !ts->tick_stopped)
1036		return;
1037	now = ktime_get();
1038	if (ts->idle_active)
1039		tick_nohz_stop_idle(ts, now);
1040	if (ts->tick_stopped) {
 
 
 
 
 
 
 
1041		tick_nohz_update_jiffies(now);
1042		tick_nohz_kick_tick(ts, now);
1043	}
1044}
1045
1046#else
1047
1048static inline void tick_nohz_switch_to_nohz(void) { }
1049static inline void tick_nohz_irq_enter(void) { }
 
1050
1051#endif /* CONFIG_NO_HZ_COMMON */
1052
1053/*
1054 * Called from irq_enter to notify about the possible interruption of idle()
1055 */
1056void tick_irq_enter(void)
1057{
1058	tick_check_oneshot_broadcast_this_cpu();
1059	tick_nohz_irq_enter();
1060}
1061
1062/*
1063 * High resolution timer specific code
1064 */
1065#ifdef CONFIG_HIGH_RES_TIMERS
1066/*
1067 * We rearm the timer until we get disabled by the idle code.
1068 * Called with interrupts disabled.
1069 */
1070static enum hrtimer_restart tick_sched_timer(struct hrtimer *timer)
1071{
1072	struct tick_sched *ts =
1073		container_of(timer, struct tick_sched, sched_timer);
1074	struct pt_regs *regs = get_irq_regs();
1075	ktime_t now = ktime_get();
1076
1077	tick_sched_do_timer(now);
1078
1079	/*
1080	 * Do not call, when we are not in irq context and have
1081	 * no valid regs pointer
1082	 */
1083	if (regs)
1084		tick_sched_handle(ts, regs);
 
 
1085
1086	hrtimer_forward(timer, now, tick_period);
 
 
 
 
 
 
 
 
1087
1088	return HRTIMER_RESTART;
1089}
1090
1091static int sched_skew_tick;
1092
1093static int __init skew_tick(char *str)
1094{
1095	get_option(&str, &sched_skew_tick);
1096
1097	return 0;
1098}
1099early_param("skew_tick", skew_tick);
1100
1101/**
1102 * tick_setup_sched_timer - setup the tick emulation timer
1103 */
1104void tick_setup_sched_timer(void)
1105{
1106	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
1107	ktime_t now = ktime_get();
1108
1109	/*
1110	 * Emulate tick processing via per-CPU hrtimers:
1111	 */
1112	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS);
1113	ts->sched_timer.function = tick_sched_timer;
1114
1115	/* Get the next period (per cpu) */
1116	hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
1117
1118	/* Offset the tick to avert jiffies_lock contention. */
1119	if (sched_skew_tick) {
1120		u64 offset = ktime_to_ns(tick_period) >> 1;
1121		do_div(offset, num_possible_cpus());
1122		offset *= smp_processor_id();
1123		hrtimer_add_expires_ns(&ts->sched_timer, offset);
1124	}
1125
1126	for (;;) {
1127		hrtimer_forward(&ts->sched_timer, now, tick_period);
1128		hrtimer_start_expires(&ts->sched_timer,
1129				      HRTIMER_MODE_ABS_PINNED);
1130		/* Check, if the timer was already in the past */
1131		if (hrtimer_active(&ts->sched_timer))
1132			break;
1133		now = ktime_get();
1134	}
1135
1136#ifdef CONFIG_NO_HZ_COMMON
1137	if (tick_nohz_enabled) {
1138		ts->nohz_mode = NOHZ_MODE_HIGHRES;
1139		tick_nohz_active = 1;
1140	}
1141#endif
1142}
1143#endif /* HIGH_RES_TIMERS */
1144
1145#if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS
1146void tick_cancel_sched_timer(int cpu)
1147{
1148	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
 
 
1149
1150# ifdef CONFIG_HIGH_RES_TIMERS
1151	if (ts->sched_timer.base)
1152		hrtimer_cancel(&ts->sched_timer);
1153# endif
1154
 
 
 
 
1155	memset(ts, 0, sizeof(*ts));
 
 
 
 
1156}
1157#endif
1158
1159/**
1160 * Async notification about clocksource changes
1161 */
1162void tick_clock_notify(void)
1163{
1164	int cpu;
1165
1166	for_each_possible_cpu(cpu)
1167		set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
1168}
1169
1170/*
1171 * Async notification about clock event changes
1172 */
1173void tick_oneshot_notify(void)
1174{
1175	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
1176
1177	set_bit(0, &ts->check_clocks);
1178}
1179
1180/**
1181 * Check, if a change happened, which makes oneshot possible.
1182 *
1183 * Called cyclic from the hrtimer softirq (driven by the timer
1184 * softirq) allow_nohz signals, that we can switch into low-res nohz
1185 * mode, because high resolution timers are disabled (either compile
1186 * or runtime).
1187 */
1188int tick_check_oneshot_change(int allow_nohz)
1189{
1190	struct tick_sched *ts = &__get_cpu_var(tick_cpu_sched);
1191
1192	if (!test_and_clear_bit(0, &ts->check_clocks))
1193		return 0;
1194
1195	if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
1196		return 0;
1197
1198	if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
1199		return 0;
1200
1201	if (!allow_nohz)
1202		return 1;
1203
1204	tick_nohz_switch_to_nohz();
1205	return 0;
1206}
v6.8
   1// SPDX-License-Identifier: GPL-2.0
   2/*
 
 
   3 *  Copyright(C) 2005-2006, Thomas Gleixner <tglx@linutronix.de>
   4 *  Copyright(C) 2005-2007, Red Hat, Inc., Ingo Molnar
   5 *  Copyright(C) 2006-2007  Timesys Corp., Thomas Gleixner
   6 *
   7 *  NOHZ implementation for low and high resolution timers
   8 *
   9 *  Started by: Thomas Gleixner and Ingo Molnar
 
 
  10 */
  11#include <linux/cpu.h>
  12#include <linux/err.h>
  13#include <linux/hrtimer.h>
  14#include <linux/interrupt.h>
  15#include <linux/kernel_stat.h>
  16#include <linux/percpu.h>
  17#include <linux/nmi.h>
  18#include <linux/profile.h>
  19#include <linux/sched/signal.h>
  20#include <linux/sched/clock.h>
  21#include <linux/sched/stat.h>
  22#include <linux/sched/nohz.h>
  23#include <linux/sched/loadavg.h>
  24#include <linux/module.h>
  25#include <linux/irq_work.h>
  26#include <linux/posix-timers.h>
 
  27#include <linux/context_tracking.h>
  28#include <linux/mm.h>
  29
  30#include <asm/irq_regs.h>
  31
  32#include "tick-internal.h"
  33
  34#include <trace/events/timer.h>
  35
  36/*
  37 * Per-CPU nohz control structure
  38 */
  39static DEFINE_PER_CPU(struct tick_sched, tick_cpu_sched);
 
 
 
 
 
  40
  41struct tick_sched *tick_get_tick_sched(int cpu)
  42{
  43	return &per_cpu(tick_cpu_sched, cpu);
  44}
  45
  46#if defined(CONFIG_NO_HZ_COMMON) || defined(CONFIG_HIGH_RES_TIMERS)
  47/*
  48 * The time when the last jiffy update happened. Write access must hold
  49 * jiffies_lock and jiffies_seq. tick_nohz_next_event() needs to get a
  50 * consistent view of jiffies and last_jiffies_update.
  51 */
  52static ktime_t last_jiffies_update;
  53
  54/*
  55 * Must be called with interrupts disabled !
  56 */
  57static void tick_do_update_jiffies64(ktime_t now)
  58{
  59	unsigned long ticks = 1;
  60	ktime_t delta, nextp;
  61
  62	/*
  63	 * 64-bit can do a quick check without holding the jiffies lock and
  64	 * without looking at the sequence count. The smp_load_acquire()
  65	 * pairs with the update done later in this function.
  66	 *
  67	 * 32-bit cannot do that because the store of 'tick_next_period'
  68	 * consists of two 32-bit stores, and the first store could be
  69	 * moved by the CPU to a random point in the future.
  70	 */
  71	if (IS_ENABLED(CONFIG_64BIT)) {
  72		if (ktime_before(now, smp_load_acquire(&tick_next_period)))
  73			return;
  74	} else {
  75		unsigned int seq;
  76
  77		/*
  78		 * Avoid contention on 'jiffies_lock' and protect the quick
  79		 * check with the sequence count.
  80		 */
  81		do {
  82			seq = read_seqcount_begin(&jiffies_seq);
  83			nextp = tick_next_period;
  84		} while (read_seqcount_retry(&jiffies_seq, seq));
  85
  86		if (ktime_before(now, nextp))
  87			return;
  88	}
  89
  90	/* Quick check failed, i.e. update is required. */
  91	raw_spin_lock(&jiffies_lock);
  92	/*
  93	 * Re-evaluate with the lock held. Another CPU might have done the
  94	 * update already.
  95	 */
  96	if (ktime_before(now, tick_next_period)) {
  97		raw_spin_unlock(&jiffies_lock);
  98		return;
  99	}
 100
 101	write_seqcount_begin(&jiffies_seq);
 
 102
 103	delta = ktime_sub(now, tick_next_period);
 104	if (unlikely(delta >= TICK_NSEC)) {
 105		/* Slow path for long idle sleep times */
 106		s64 incr = TICK_NSEC;
 107
 108		ticks += ktime_divns(delta, incr);
 
 
 109
 110		last_jiffies_update = ktime_add_ns(last_jiffies_update,
 111						   incr * ticks);
 112	} else {
 113		last_jiffies_update = ktime_add_ns(last_jiffies_update,
 114						   TICK_NSEC);
 115	}
 116
 117	/* Advance jiffies to complete the 'jiffies_seq' protected job */
 118	jiffies_64 += ticks;
 119
 120	/* Keep the tick_next_period variable up to date */
 121	nextp = ktime_add_ns(last_jiffies_update, TICK_NSEC);
 
 
 122
 123	if (IS_ENABLED(CONFIG_64BIT)) {
 124		/*
 125		 * Pairs with smp_load_acquire() in the lockless quick
 126		 * check above, and ensures that the update to 'jiffies_64' is
 127		 * not reordered vs. the store to 'tick_next_period', neither
 128		 * by the compiler nor by the CPU.
 129		 */
 130		smp_store_release(&tick_next_period, nextp);
 131	} else {
 132		/*
 133		 * A plain store is good enough on 32-bit, as the quick check
 134		 * above is protected by the sequence count.
 135		 */
 136		tick_next_period = nextp;
 137	}
 138
 139	/*
 140	 * Release the sequence count. calc_global_load() below is not
 141	 * protected by it, but 'jiffies_lock' needs to be held to prevent
 142	 * concurrent invocations.
 143	 */
 144	write_seqcount_end(&jiffies_seq);
 145
 146	calc_global_load();
 147
 148	raw_spin_unlock(&jiffies_lock);
 149	update_wall_time();
 150}
 151
 152/*
 153 * Initialize and return retrieve the jiffies update.
 154 */
 155static ktime_t tick_init_jiffy_update(void)
 156{
 157	ktime_t period;
 158
 159	raw_spin_lock(&jiffies_lock);
 160	write_seqcount_begin(&jiffies_seq);
 161
 162	/* Have we started the jiffies update yet ? */
 163	if (last_jiffies_update == 0) {
 164		u32 rem;
 165
 166		/*
 167		 * Ensure that the tick is aligned to a multiple of
 168		 * TICK_NSEC.
 169		 */
 170		div_u64_rem(tick_next_period, TICK_NSEC, &rem);
 171		if (rem)
 172			tick_next_period += TICK_NSEC - rem;
 173
 174		last_jiffies_update = tick_next_period;
 175	}
 176	period = last_jiffies_update;
 177
 178	write_seqcount_end(&jiffies_seq);
 179	raw_spin_unlock(&jiffies_lock);
 180
 181	return period;
 182}
 183
 184#define MAX_STALLED_JIFFIES 5
 185
 186static void tick_sched_do_timer(struct tick_sched *ts, ktime_t now)
 187{
 188	int cpu = smp_processor_id();
 189
 190#ifdef CONFIG_NO_HZ_COMMON
 191	/*
 192	 * Check if the do_timer duty was dropped. We don't care about
 193	 * concurrency: This happens only when the CPU in charge went
 194	 * into a long sleep. If two CPUs happen to assign themselves to
 195	 * this duty, then the jiffies update is still serialized by
 196	 * 'jiffies_lock'.
 197	 *
 198	 * If nohz_full is enabled, this should not happen because the
 199	 * 'tick_do_timer_cpu' CPU never relinquishes.
 200	 */
 201	if (unlikely(tick_do_timer_cpu == TICK_DO_TIMER_NONE)) {
 202#ifdef CONFIG_NO_HZ_FULL
 203		WARN_ON_ONCE(tick_nohz_full_running);
 204#endif
 205		tick_do_timer_cpu = cpu;
 206	}
 207#endif
 208
 209	/* Check if jiffies need an update */
 210	if (tick_do_timer_cpu == cpu)
 211		tick_do_update_jiffies64(now);
 212
 213	/*
 214	 * If the jiffies update stalled for too long (timekeeper in stop_machine()
 215	 * or VMEXIT'ed for several msecs), force an update.
 216	 */
 217	if (ts->last_tick_jiffies != jiffies) {
 218		ts->stalled_jiffies = 0;
 219		ts->last_tick_jiffies = READ_ONCE(jiffies);
 220	} else {
 221		if (++ts->stalled_jiffies == MAX_STALLED_JIFFIES) {
 222			tick_do_update_jiffies64(now);
 223			ts->stalled_jiffies = 0;
 224			ts->last_tick_jiffies = READ_ONCE(jiffies);
 225		}
 226	}
 227
 228	if (ts->inidle)
 229		ts->got_idle_tick = 1;
 230}
 231
 232static void tick_sched_handle(struct tick_sched *ts, struct pt_regs *regs)
 233{
 234#ifdef CONFIG_NO_HZ_COMMON
 235	/*
 236	 * When we are idle and the tick is stopped, we have to touch
 237	 * the watchdog as we might not schedule for a really long
 238	 * time. This happens on completely idle SMP systems while
 239	 * waiting on the login prompt. We also increment the "start of
 240	 * idle" jiffy stamp so the idle accounting adjustment we do
 241	 * when we go busy again does not account too many ticks.
 242	 */
 243	if (ts->tick_stopped) {
 244		touch_softlockup_watchdog_sched();
 245		if (is_idle_task(current))
 246			ts->idle_jiffies++;
 247		/*
 248		 * In case the current tick fired too early past its expected
 249		 * expiration, make sure we don't bypass the next clock reprogramming
 250		 * to the same deadline.
 251		 */
 252		ts->next_tick = 0;
 253	}
 254#endif
 255	update_process_times(user_mode(regs));
 256	profile_tick(CPU_PROFILING);
 257}
 258#endif
 259
 260#ifdef CONFIG_NO_HZ_FULL
 261cpumask_var_t tick_nohz_full_mask;
 262EXPORT_SYMBOL_GPL(tick_nohz_full_mask);
 263bool tick_nohz_full_running;
 264EXPORT_SYMBOL_GPL(tick_nohz_full_running);
 265static atomic_t tick_dep_mask;
 266
 267static bool check_tick_dependency(atomic_t *dep)
 268{
 269	int val = atomic_read(dep);
 270
 271	if (val & TICK_DEP_MASK_POSIX_TIMER) {
 272		trace_tick_stop(0, TICK_DEP_MASK_POSIX_TIMER);
 273		return true;
 274	}
 275
 276	if (val & TICK_DEP_MASK_PERF_EVENTS) {
 277		trace_tick_stop(0, TICK_DEP_MASK_PERF_EVENTS);
 278		return true;
 279	}
 280
 281	if (val & TICK_DEP_MASK_SCHED) {
 282		trace_tick_stop(0, TICK_DEP_MASK_SCHED);
 283		return true;
 284	}
 285
 286	if (val & TICK_DEP_MASK_CLOCK_UNSTABLE) {
 287		trace_tick_stop(0, TICK_DEP_MASK_CLOCK_UNSTABLE);
 288		return true;
 
 
 
 
 
 
 
 
 
 
 
 
 289	}
 
 290
 291	if (val & TICK_DEP_MASK_RCU) {
 292		trace_tick_stop(0, TICK_DEP_MASK_RCU);
 293		return true;
 294	}
 295
 296	if (val & TICK_DEP_MASK_RCU_EXP) {
 297		trace_tick_stop(0, TICK_DEP_MASK_RCU_EXP);
 298		return true;
 299	}
 300
 301	return false;
 302}
 303
 304static bool can_stop_full_tick(int cpu, struct tick_sched *ts)
 
 305{
 306	lockdep_assert_irqs_disabled();
 307
 308	if (unlikely(!cpu_online(cpu)))
 309		return false;
 310
 311	if (check_tick_dependency(&tick_dep_mask))
 312		return false;
 313
 314	if (check_tick_dependency(&ts->tick_dep_mask))
 315		return false;
 316
 317	if (check_tick_dependency(&current->tick_dep_mask))
 318		return false;
 319
 320	if (check_tick_dependency(&current->signal->tick_dep_mask))
 321		return false;
 322
 323	return true;
 324}
 325
 326static void nohz_full_kick_func(struct irq_work *work)
 327{
 328	/* Empty, the tick restart happens on tick_nohz_irq_exit() */
 329}
 330
 331static DEFINE_PER_CPU(struct irq_work, nohz_full_kick_work) =
 332	IRQ_WORK_INIT_HARD(nohz_full_kick_func);
 
 333
 334/*
 335 * Kick this CPU if it's full dynticks in order to force it to
 336 * re-evaluate its dependency on the tick and restart it if necessary.
 337 * This kick, unlike tick_nohz_full_kick_cpu() and tick_nohz_full_kick_all(),
 338 * is NMI safe.
 339 */
 340static void tick_nohz_full_kick(void)
 341{
 342	if (!tick_nohz_full_cpu(smp_processor_id()))
 343		return;
 344
 345	irq_work_queue(this_cpu_ptr(&nohz_full_kick_work));
 346}
 347
 348/*
 349 * Kick the CPU if it's full dynticks in order to force it to
 350 * re-evaluate its dependency on the tick and restart it if necessary.
 351 */
 352void tick_nohz_full_kick_cpu(int cpu)
 353{
 354	if (!tick_nohz_full_cpu(cpu))
 355		return;
 356
 357	irq_work_queue_on(&per_cpu(nohz_full_kick_work, cpu), cpu);
 358}
 359
 360static void tick_nohz_kick_task(struct task_struct *tsk)
 361{
 362	int cpu;
 363
 364	/*
 365	 * If the task is not running, run_posix_cpu_timers()
 366	 * has nothing to elapse, and an IPI can then be optimized out.
 367	 *
 368	 * activate_task()                      STORE p->tick_dep_mask
 369	 *   STORE p->on_rq
 370	 * __schedule() (switch to task 'p')    smp_mb() (atomic_fetch_or())
 371	 *   LOCK rq->lock                      LOAD p->on_rq
 372	 *   smp_mb__after_spin_lock()
 373	 *   tick_nohz_task_switch()
 374	 *     LOAD p->tick_dep_mask
 375	 */
 376	if (!sched_task_on_rq(tsk))
 377		return;
 378
 379	/*
 380	 * If the task concurrently migrates to another CPU,
 381	 * we guarantee it sees the new tick dependency upon
 382	 * schedule.
 383	 *
 384	 * set_task_cpu(p, cpu);
 385	 *   STORE p->cpu = @cpu
 386	 * __schedule() (switch to task 'p')
 387	 *   LOCK rq->lock
 388	 *   smp_mb__after_spin_lock()          STORE p->tick_dep_mask
 389	 *   tick_nohz_task_switch()            smp_mb() (atomic_fetch_or())
 390	 *      LOAD p->tick_dep_mask           LOAD p->cpu
 391	 */
 392	cpu = task_cpu(tsk);
 393
 394	preempt_disable();
 395	if (cpu_online(cpu))
 396		tick_nohz_full_kick_cpu(cpu);
 397	preempt_enable();
 398}
 399
 400/*
 401 * Kick all full dynticks CPUs in order to force these to re-evaluate
 402 * their dependency on the tick and restart it if necessary.
 403 */
 404static void tick_nohz_full_kick_all(void)
 405{
 406	int cpu;
 407
 408	if (!tick_nohz_full_running)
 409		return;
 410
 411	preempt_disable();
 412	for_each_cpu_and(cpu, tick_nohz_full_mask, cpu_online_mask)
 413		tick_nohz_full_kick_cpu(cpu);
 
 414	preempt_enable();
 415}
 416
 417static void tick_nohz_dep_set_all(atomic_t *dep,
 418				  enum tick_dep_bits bit)
 419{
 420	int prev;
 421
 422	prev = atomic_fetch_or(BIT(bit), dep);
 423	if (!prev)
 424		tick_nohz_full_kick_all();
 425}
 426
 427/*
 428 * Set a global tick dependency. Used by perf events that rely on freq and
 429 * unstable clocks.
 
 430 */
 431void tick_nohz_dep_set(enum tick_dep_bits bit)
 432{
 433	tick_nohz_dep_set_all(&tick_dep_mask, bit);
 434}
 435
 436void tick_nohz_dep_clear(enum tick_dep_bits bit)
 437{
 438	atomic_andnot(BIT(bit), &tick_dep_mask);
 439}
 440
 441/*
 442 * Set per-CPU tick dependency. Used by scheduler and perf events in order to
 443 * manage event-throttling.
 444 */
 445void tick_nohz_dep_set_cpu(int cpu, enum tick_dep_bits bit)
 446{
 447	int prev;
 448	struct tick_sched *ts;
 449
 450	ts = per_cpu_ptr(&tick_cpu_sched, cpu);
 
 451
 452	prev = atomic_fetch_or(BIT(bit), &ts->tick_dep_mask);
 453	if (!prev) {
 454		preempt_disable();
 455		/* Perf needs local kick that is NMI safe */
 456		if (cpu == smp_processor_id()) {
 457			tick_nohz_full_kick();
 458		} else {
 459			/* Remote IRQ work not NMI-safe */
 460			if (!WARN_ON_ONCE(in_nmi()))
 461				tick_nohz_full_kick_cpu(cpu);
 462		}
 463		preempt_enable();
 464	}
 465}
 466EXPORT_SYMBOL_GPL(tick_nohz_dep_set_cpu);
 467
 468void tick_nohz_dep_clear_cpu(int cpu, enum tick_dep_bits bit)
 
 469{
 470	struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
 471
 472	atomic_andnot(BIT(bit), &ts->tick_dep_mask);
 473}
 474EXPORT_SYMBOL_GPL(tick_nohz_dep_clear_cpu);
 
 
 475
 476/*
 477 * Set a per-task tick dependency. RCU needs this. Also posix CPU timers
 478 * in order to elapse per task timers.
 479 */
 480void tick_nohz_dep_set_task(struct task_struct *tsk, enum tick_dep_bits bit)
 481{
 482	if (!atomic_fetch_or(BIT(bit), &tsk->tick_dep_mask))
 483		tick_nohz_kick_task(tsk);
 484}
 485EXPORT_SYMBOL_GPL(tick_nohz_dep_set_task);
 486
 487void tick_nohz_dep_clear_task(struct task_struct *tsk, enum tick_dep_bits bit)
 488{
 489	atomic_andnot(BIT(bit), &tsk->tick_dep_mask);
 490}
 491EXPORT_SYMBOL_GPL(tick_nohz_dep_clear_task);
 492
 493/*
 494 * Set a per-taskgroup tick dependency. Posix CPU timers need this in order to elapse
 495 * per process timers.
 496 */
 497void tick_nohz_dep_set_signal(struct task_struct *tsk,
 498			      enum tick_dep_bits bit)
 499{
 500	int prev;
 501	struct signal_struct *sig = tsk->signal;
 502
 503	prev = atomic_fetch_or(BIT(bit), &sig->tick_dep_mask);
 504	if (!prev) {
 505		struct task_struct *t;
 506
 507		lockdep_assert_held(&tsk->sighand->siglock);
 508		__for_each_thread(sig, t)
 509			tick_nohz_kick_task(t);
 
 
 510	}
 511}
 512
 513void tick_nohz_dep_clear_signal(struct signal_struct *sig, enum tick_dep_bits bit)
 514{
 515	atomic_andnot(BIT(bit), &sig->tick_dep_mask);
 516}
 517
 518/*
 519 * Re-evaluate the need for the tick as we switch the current task.
 520 * It might need the tick due to per task/process properties:
 521 * perf events, posix CPU timers, ...
 522 */
 523void __tick_nohz_task_switch(void)
 
 
 524{
 525	struct tick_sched *ts;
 526
 527	if (!tick_nohz_full_cpu(smp_processor_id()))
 528		return;
 529
 530	ts = this_cpu_ptr(&tick_cpu_sched);
 531
 532	if (ts->tick_stopped) {
 533		if (atomic_read(&current->tick_dep_mask) ||
 534		    atomic_read(&current->signal->tick_dep_mask))
 535			tick_nohz_full_kick();
 536	}
 537}
 538
 539/* Get the boot-time nohz CPU list from the kernel parameters. */
 540void __init tick_nohz_full_setup(cpumask_var_t cpumask)
 541{
 542	alloc_bootmem_cpumask_var(&tick_nohz_full_mask);
 543	cpumask_copy(tick_nohz_full_mask, cpumask);
 544	tick_nohz_full_running = true;
 545}
 546
 547bool tick_nohz_cpu_hotpluggable(unsigned int cpu)
 548{
 549	/*
 550	 * The 'tick_do_timer_cpu' CPU handles housekeeping duty (unbound
 551	 * timers, workqueues, timekeeping, ...) on behalf of full dynticks
 552	 * CPUs. It must remain online when nohz full is enabled.
 553	 */
 554	if (tick_nohz_full_running && tick_do_timer_cpu == cpu)
 555		return false;
 556	return true;
 557}
 558
 559static int tick_nohz_cpu_down(unsigned int cpu)
 560{
 561	return tick_nohz_cpu_hotpluggable(cpu) ? 0 : -EBUSY;
 562}
 563
 564void __init tick_nohz_init(void)
 565{
 566	int cpu, ret;
 567
 568	if (!tick_nohz_full_running)
 569		return;
 570
 571	/*
 572	 * Full dynticks uses IRQ work to drive the tick rescheduling on safe
 573	 * locking contexts. But then we need IRQ work to raise its own
 574	 * interrupts to avoid circular dependency on the tick.
 575	 */
 576	if (!arch_irq_work_has_interrupt()) {
 577		pr_warn("NO_HZ: Can't run full dynticks because arch doesn't support IRQ work self-IPIs\n");
 578		cpumask_clear(tick_nohz_full_mask);
 579		tick_nohz_full_running = false;
 580		return;
 581	}
 582
 583	if (IS_ENABLED(CONFIG_PM_SLEEP_SMP) &&
 584			!IS_ENABLED(CONFIG_PM_SLEEP_SMP_NONZERO_CPU)) {
 585		cpu = smp_processor_id();
 586
 587		if (cpumask_test_cpu(cpu, tick_nohz_full_mask)) {
 588			pr_warn("NO_HZ: Clearing %d from nohz_full range "
 589				"for timekeeping\n", cpu);
 590			cpumask_clear_cpu(cpu, tick_nohz_full_mask);
 591		}
 592	}
 593
 594	for_each_cpu(cpu, tick_nohz_full_mask)
 595		ct_cpu_track_user(cpu);
 596
 597	ret = cpuhp_setup_state_nocalls(CPUHP_AP_ONLINE_DYN,
 598					"kernel/nohz:predown", NULL,
 599					tick_nohz_cpu_down);
 600	WARN_ON(ret < 0);
 601	pr_info("NO_HZ: Full dynticks CPUs: %*pbl.\n",
 602		cpumask_pr_args(tick_nohz_full_mask));
 603}
 604#endif
 605
 606/*
 607 * NOHZ - aka dynamic tick functionality
 608 */
 609#ifdef CONFIG_NO_HZ_COMMON
 610/*
 611 * NO HZ enabled ?
 612 */
 613bool tick_nohz_enabled __read_mostly  = true;
 614unsigned long tick_nohz_active  __read_mostly;
 615/*
 616 * Enable / Disable tickless mode
 617 */
 618static int __init setup_tick_nohz(char *str)
 619{
 620	return (kstrtobool(str, &tick_nohz_enabled) == 0);
 
 
 
 
 
 
 621}
 622
 623__setup("nohz=", setup_tick_nohz);
 624
 625bool tick_nohz_tick_stopped(void)
 626{
 627	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
 628
 629	return ts->tick_stopped;
 630}
 631
 632bool tick_nohz_tick_stopped_cpu(int cpu)
 633{
 634	struct tick_sched *ts = per_cpu_ptr(&tick_cpu_sched, cpu);
 635
 636	return ts->tick_stopped;
 637}
 638
 639/**
 640 * tick_nohz_update_jiffies - update jiffies when idle was interrupted
 641 *
 642 * Called from interrupt entry when the CPU was idle
 643 *
 644 * In case the sched_tick was stopped on this CPU, we have to check if jiffies
 645 * must be updated. Otherwise an interrupt handler could use a stale jiffy
 646 * value. We do this unconditionally on any CPU, as we don't know whether the
 647 * CPU, which has the update task assigned, is in a long sleep.
 648 */
 649static void tick_nohz_update_jiffies(ktime_t now)
 650{
 651	unsigned long flags;
 652
 653	__this_cpu_write(tick_cpu_sched.idle_waketime, now);
 654
 655	local_irq_save(flags);
 656	tick_do_update_jiffies64(now);
 657	local_irq_restore(flags);
 658
 659	touch_softlockup_watchdog_sched();
 660}
 661
 662static void tick_nohz_stop_idle(struct tick_sched *ts, ktime_t now)
 
 
 
 
 663{
 664	ktime_t delta;
 665
 666	if (WARN_ON_ONCE(!ts->idle_active))
 667		return;
 
 
 
 
 
 
 668
 669	delta = ktime_sub(now, ts->idle_entrytime);
 
 670
 671	write_seqcount_begin(&ts->idle_sleeptime_seq);
 672	if (nr_iowait_cpu(smp_processor_id()) > 0)
 673		ts->iowait_sleeptime = ktime_add(ts->iowait_sleeptime, delta);
 674	else
 675		ts->idle_sleeptime = ktime_add(ts->idle_sleeptime, delta);
 676
 677	ts->idle_entrytime = now;
 
 
 678	ts->idle_active = 0;
 679	write_seqcount_end(&ts->idle_sleeptime_seq);
 680
 681	sched_clock_idle_wakeup_event();
 682}
 683
 684static void tick_nohz_start_idle(struct tick_sched *ts)
 685{
 686	write_seqcount_begin(&ts->idle_sleeptime_seq);
 687	ts->idle_entrytime = ktime_get();
 
 688	ts->idle_active = 1;
 689	write_seqcount_end(&ts->idle_sleeptime_seq);
 690
 691	sched_clock_idle_sleep_event();
 692}
 693
 694static u64 get_cpu_sleep_time_us(struct tick_sched *ts, ktime_t *sleeptime,
 695				 bool compute_delta, u64 *last_update_time)
 696{
 697	ktime_t now, idle;
 698	unsigned int seq;
 699
 700	if (!tick_nohz_active)
 701		return -1;
 702
 703	now = ktime_get();
 704	if (last_update_time)
 705		*last_update_time = ktime_to_us(now);
 706
 707	do {
 708		seq = read_seqcount_begin(&ts->idle_sleeptime_seq);
 709
 710		if (ts->idle_active && compute_delta) {
 711			ktime_t delta = ktime_sub(now, ts->idle_entrytime);
 712
 713			idle = ktime_add(*sleeptime, delta);
 714		} else {
 715			idle = *sleeptime;
 716		}
 717	} while (read_seqcount_retry(&ts->idle_sleeptime_seq, seq));
 718
 719	return ktime_to_us(idle);
 720
 721}
 722
 723/**
 724 * get_cpu_idle_time_us - get the total idle time of a CPU
 725 * @cpu: CPU number to query
 726 * @last_update_time: variable to store update time in. Do not update
 727 * counters if NULL.
 728 *
 729 * Return the cumulative idle time (since boot) for a given
 730 * CPU, in microseconds. Note that this is partially broken due to
 731 * the counter of iowait tasks that can be remotely updated without
 732 * any synchronization. Therefore it is possible to observe backward
 733 * values within two consecutive reads.
 734 *
 735 * This time is measured via accounting rather than sampling,
 736 * and is as accurate as ktime_get() is.
 737 *
 738 * This function returns -1 if NOHZ is not enabled.
 739 */
 740u64 get_cpu_idle_time_us(int cpu, u64 *last_update_time)
 741{
 742	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 743
 744	return get_cpu_sleep_time_us(ts, &ts->idle_sleeptime,
 745				     !nr_iowait_cpu(cpu), last_update_time);
 746}
 747EXPORT_SYMBOL_GPL(get_cpu_idle_time_us);
 748
 749/**
 750 * get_cpu_iowait_time_us - get the total iowait time of a CPU
 751 * @cpu: CPU number to query
 752 * @last_update_time: variable to store update time in. Do not update
 753 * counters if NULL.
 754 *
 755 * Return the cumulative iowait time (since boot) for a given
 756 * CPU, in microseconds. Note this is partially broken due to
 757 * the counter of iowait tasks that can be remotely updated without
 758 * any synchronization. Therefore it is possible to observe backward
 759 * values within two consecutive reads.
 760 *
 761 * This time is measured via accounting rather than sampling,
 762 * and is as accurate as ktime_get() is.
 763 *
 764 * This function returns -1 if NOHZ is not enabled.
 765 */
 766u64 get_cpu_iowait_time_us(int cpu, u64 *last_update_time)
 767{
 768	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
 
 769
 770	return get_cpu_sleep_time_us(ts, &ts->iowait_sleeptime,
 771				     nr_iowait_cpu(cpu), last_update_time);
 772}
 773EXPORT_SYMBOL_GPL(get_cpu_iowait_time_us);
 774
 775static void tick_nohz_restart(struct tick_sched *ts, ktime_t now)
 776{
 777	hrtimer_cancel(&ts->sched_timer);
 778	hrtimer_set_expires(&ts->sched_timer, ts->last_tick);
 
 
 
 779
 780	/* Forward the time to expire in the future */
 781	hrtimer_forward(&ts->sched_timer, now, TICK_NSEC);
 782
 783	if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
 784		hrtimer_start_expires(&ts->sched_timer,
 785				      HRTIMER_MODE_ABS_PINNED_HARD);
 786	} else {
 787		tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
 788	}
 789
 790	/*
 791	 * Reset to make sure the next tick stop doesn't get fooled by past
 792	 * cached clock deadline.
 793	 */
 794	ts->next_tick = 0;
 795}
 
 796
 797static inline bool local_timer_softirq_pending(void)
 
 798{
 799	return local_softirq_pending() & BIT(TIMER_SOFTIRQ);
 800}
 
 
 
 801
 802static ktime_t tick_nohz_next_event(struct tick_sched *ts, int cpu)
 803{
 804	u64 basemono, next_tick, delta, expires;
 805	unsigned long basejiff;
 806	unsigned int seq;
 807
 808	/* Read jiffies and the time when jiffies were updated last */
 809	do {
 810		seq = read_seqcount_begin(&jiffies_seq);
 811		basemono = last_jiffies_update;
 812		basejiff = jiffies;
 813	} while (read_seqcount_retry(&jiffies_seq, seq));
 814	ts->last_jiffies = basejiff;
 815	ts->timer_expires_base = basemono;
 
 
 
 
 
 
 
 
 
 
 
 
 816
 817	/*
 818	 * Keep the periodic tick, when RCU, architecture or irq_work
 819	 * requests it.
 820	 * Aside of that, check whether the local timer softirq is
 821	 * pending. If so, its a bad idea to call get_next_timer_interrupt(),
 822	 * because there is an already expired timer, so it will request
 823	 * immediate expiry, which rearms the hardware timer with a
 824	 * minimal delta, which brings us back to this place
 825	 * immediately. Lather, rinse and repeat...
 826	 */
 827	if (rcu_needs_cpu() || arch_needs_cpu() ||
 828	    irq_work_needs_cpu() || local_timer_softirq_pending()) {
 829		next_tick = basemono + TICK_NSEC;
 830	} else {
 
 
 831		/*
 832		 * Get the next pending timer. If high resolution
 833		 * timers are enabled this only takes the timer wheel
 834		 * timers into account. If high resolution timers are
 835		 * disabled this also looks at the next expiring
 836		 * hrtimer.
 
 
 
 
 
 
 837		 */
 838		next_tick = get_next_timer_interrupt(basejiff, basemono);
 839		ts->next_timer = next_tick;
 840	}
 
 
 
 
 
 
 841
 842	/* Make sure next_tick is never before basemono! */
 843	if (WARN_ON_ONCE(basemono > next_tick))
 844		next_tick = basemono;
 
 
 
 845
 846	/*
 847	 * If the tick is due in the next period, keep it ticking or
 848	 * force prod the timer.
 849	 */
 850	delta = next_tick - basemono;
 851	if (delta <= (u64)TICK_NSEC) {
 852		/*
 853		 * Tell the timer code that the base is not idle, i.e. undo
 854		 * the effect of get_next_timer_interrupt():
 855		 */
 856		timer_clear_idle();
 857		/*
 858		 * We've not stopped the tick yet, and there's a timer in the
 859		 * next period, so no point in stopping it either, bail.
 
 
 
 860		 */
 861		if (!ts->tick_stopped) {
 862			ts->timer_expires = 0;
 863			goto out;
 
 
 
 
 
 
 
 864		}
 865	}
 866
 867	/*
 868	 * If this CPU is the one which had the do_timer() duty last, we limit
 869	 * the sleep time to the timekeeping 'max_deferment' value.
 870	 * Otherwise we can sleep as long as we want.
 871	 */
 872	delta = timekeeping_max_deferment();
 873	if (cpu != tick_do_timer_cpu &&
 874	    (tick_do_timer_cpu != TICK_DO_TIMER_NONE || !ts->do_timer_last))
 875		delta = KTIME_MAX;
 876
 877	/* Calculate the next expiry time */
 878	if (delta < (KTIME_MAX - basemono))
 879		expires = basemono + delta;
 880	else
 881		expires = KTIME_MAX;
 882
 883	ts->timer_expires = min_t(u64, expires, next_tick);
 
 
 884
 885out:
 886	return ts->timer_expires;
 887}
 888
 889static void tick_nohz_stop_tick(struct tick_sched *ts, int cpu)
 890{
 891	struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
 892	u64 basemono = ts->timer_expires_base;
 893	u64 expires = ts->timer_expires;
 
 
 
 
 
 894
 895	/* Make sure we won't be trying to stop it twice in a row. */
 896	ts->timer_expires_base = 0;
 
 
 897
 898	/*
 899	 * If this CPU is the one which updates jiffies, then give up
 900	 * the assignment and let it be taken by the CPU which runs
 901	 * the tick timer next, which might be this CPU as well. If we
 902	 * don't drop this here, the jiffies might be stale and
 903	 * do_timer() never gets invoked. Keep track of the fact that it
 904	 * was the one which had the do_timer() duty last.
 905	 */
 906	if (cpu == tick_do_timer_cpu) {
 907		tick_do_timer_cpu = TICK_DO_TIMER_NONE;
 908		ts->do_timer_last = 1;
 909	} else if (tick_do_timer_cpu != TICK_DO_TIMER_NONE) {
 910		ts->do_timer_last = 0;
 911	}
 912
 913	/* Skip reprogram of event if it's not changed */
 914	if (ts->tick_stopped && (expires == ts->next_tick)) {
 915		/* Sanity check: make sure clockevent is actually programmed */
 916		if (expires == KTIME_MAX || ts->next_tick == hrtimer_get_expires(&ts->sched_timer))
 917			return;
 918
 919		WARN_ON_ONCE(1);
 920		printk_once("basemono: %llu ts->next_tick: %llu dev->next_event: %llu timer->active: %d timer->expires: %llu\n",
 921			    basemono, ts->next_tick, dev->next_event,
 922			    hrtimer_active(&ts->sched_timer), hrtimer_get_expires(&ts->sched_timer));
 
 
 
 
 923	}
 
 
 
 
 
 924
 925	/*
 926	 * tick_nohz_stop_tick() can be called several times before
 927	 * tick_nohz_restart_sched_tick() is called. This happens when
 928	 * interrupts arrive which do not cause a reschedule. In the first
 929	 * call we save the current tick time, so we can restart the
 930	 * scheduler tick in tick_nohz_restart_sched_tick().
 931	 */
 932	if (!ts->tick_stopped) {
 933		calc_load_nohz_start();
 934		quiet_vmstat();
 935
 936		ts->last_tick = hrtimer_get_expires(&ts->sched_timer);
 937		ts->tick_stopped = 1;
 938		trace_tick_stop(1, TICK_DEP_MASK_NONE);
 939	}
 940
 941	ts->next_tick = expires;
 942
 943	/*
 944	 * If the expiration time == KTIME_MAX, then we simply stop
 945	 * the tick timer.
 946	 */
 947	if (unlikely(expires == KTIME_MAX)) {
 948		if (ts->nohz_mode == NOHZ_MODE_HIGHRES)
 949			hrtimer_cancel(&ts->sched_timer);
 950		else
 951			tick_program_event(KTIME_MAX, 1);
 952		return;
 953	}
 954
 955	if (ts->nohz_mode == NOHZ_MODE_HIGHRES) {
 956		hrtimer_start(&ts->sched_timer, expires,
 957			      HRTIMER_MODE_ABS_PINNED_HARD);
 958	} else {
 959		hrtimer_set_expires(&ts->sched_timer, expires);
 960		tick_program_event(expires, 1);
 961	}
 962}
 963
 964static void tick_nohz_retain_tick(struct tick_sched *ts)
 965{
 966	ts->timer_expires_base = 0;
 967}
 968
 969#ifdef CONFIG_NO_HZ_FULL
 970static void tick_nohz_stop_sched_tick(struct tick_sched *ts, int cpu)
 971{
 972	if (tick_nohz_next_event(ts, cpu))
 973		tick_nohz_stop_tick(ts, cpu);
 974	else
 975		tick_nohz_retain_tick(ts);
 976}
 977#endif /* CONFIG_NO_HZ_FULL */
 978
 979static void tick_nohz_restart_sched_tick(struct tick_sched *ts, ktime_t now)
 980{
 981	/* Update jiffies first */
 982	tick_do_update_jiffies64(now);
 983
 984	/*
 985	 * Clear the timer idle flag, so we avoid IPIs on remote queueing and
 986	 * the clock forward checks in the enqueue path:
 987	 */
 988	timer_clear_idle();
 989
 990	calc_load_nohz_stop();
 991	touch_softlockup_watchdog_sched();
 992
 993	/* Cancel the scheduled timer and restore the tick: */
 994	ts->tick_stopped  = 0;
 995	tick_nohz_restart(ts, now);
 996}
 997
 998static void __tick_nohz_full_update_tick(struct tick_sched *ts,
 999					 ktime_t now)
1000{
1001#ifdef CONFIG_NO_HZ_FULL
1002	int cpu = smp_processor_id();
1003
1004	if (can_stop_full_tick(cpu, ts))
1005		tick_nohz_stop_sched_tick(ts, cpu);
1006	else if (ts->tick_stopped)
1007		tick_nohz_restart_sched_tick(ts, now);
1008#endif
1009}
1010
1011static void tick_nohz_full_update_tick(struct tick_sched *ts)
1012{
1013	if (!tick_nohz_full_cpu(smp_processor_id()))
1014		return;
1015
1016	if (!ts->tick_stopped && ts->nohz_mode == NOHZ_MODE_INACTIVE)
1017		return;
1018
1019	__tick_nohz_full_update_tick(ts, ktime_get());
1020}
1021
1022/*
1023 * A pending softirq outside an IRQ (or softirq disabled section) context
1024 * should be waiting for ksoftirqd to handle it. Therefore we shouldn't
1025 * reach this code due to the need_resched() early check in can_stop_idle_tick().
1026 *
1027 * However if we are between CPUHP_AP_SMPBOOT_THREADS and CPU_TEARDOWN_CPU on the
1028 * cpu_down() process, softirqs can still be raised while ksoftirqd is parked,
1029 * triggering the code below, since wakep_softirqd() is ignored.
1030 *
1031 */
1032static bool report_idle_softirq(void)
1033{
1034	static int ratelimit;
1035	unsigned int pending = local_softirq_pending();
1036
1037	if (likely(!pending))
1038		return false;
1039
1040	/* Some softirqs claim to be safe against hotplug and ksoftirqd parking */
1041	if (!cpu_active(smp_processor_id())) {
1042		pending &= ~SOFTIRQ_HOTPLUG_SAFE_MASK;
1043		if (!pending)
1044			return false;
1045	}
1046
1047	if (ratelimit >= 10)
1048		return false;
1049
1050	/* On RT, softirq handling may be waiting on some lock */
1051	if (local_bh_blocked())
1052		return false;
1053
1054	pr_warn("NOHZ tick-stop error: local softirq work is pending, handler #%02x!!!\n",
1055		pending);
1056	ratelimit++;
1057
1058	return true;
1059}
1060
1061static bool can_stop_idle_tick(int cpu, struct tick_sched *ts)
1062{
1063	/*
1064	 * If this CPU is offline and it is the one which updates
1065	 * jiffies, then give up the assignment and let it be taken by
1066	 * the CPU which runs the tick timer next. If we don't drop
1067	 * this here, the jiffies might be stale and do_timer() never
1068	 * gets invoked.
1069	 */
1070	if (unlikely(!cpu_online(cpu))) {
1071		if (cpu == tick_do_timer_cpu)
1072			tick_do_timer_cpu = TICK_DO_TIMER_NONE;
1073		/*
1074		 * Make sure the CPU doesn't get fooled by obsolete tick
1075		 * deadline if it comes back online later.
1076		 */
1077		ts->next_tick = 0;
1078		return false;
1079	}
1080
1081	if (unlikely(ts->nohz_mode == NOHZ_MODE_INACTIVE))
 
1082		return false;
 
1083
1084	if (need_resched())
1085		return false;
1086
1087	if (unlikely(report_idle_softirq()))
 
 
 
 
 
 
 
 
1088		return false;
 
1089
1090	if (tick_nohz_full_enabled()) {
1091		/*
1092		 * Keep the tick alive to guarantee timekeeping progression
1093		 * if there are full dynticks CPUs around
1094		 */
1095		if (tick_do_timer_cpu == cpu)
1096			return false;
1097
1098		/* Should not happen for nohz-full */
1099		if (WARN_ON_ONCE(tick_do_timer_cpu == TICK_DO_TIMER_NONE))
 
 
1100			return false;
1101	}
1102
1103	return true;
1104}
1105
1106/**
1107 * tick_nohz_idle_stop_tick - stop the idle tick from the idle task
1108 *
1109 * When the next event is more than a tick into the future, stop the idle tick
1110 */
1111void tick_nohz_idle_stop_tick(void)
1112{
1113	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1114	int cpu = smp_processor_id();
1115	ktime_t expires;
1116
1117	/*
1118	 * If tick_nohz_get_sleep_length() ran tick_nohz_next_event(), the
1119	 * tick timer expiration time is known already.
1120	 */
1121	if (ts->timer_expires_base)
1122		expires = ts->timer_expires;
1123	else if (can_stop_idle_tick(cpu, ts))
1124		expires = tick_nohz_next_event(ts, cpu);
1125	else
1126		return;
1127
1128	ts->idle_calls++;
1129
1130	if (expires > 0LL) {
1131		int was_stopped = ts->tick_stopped;
1132
1133		tick_nohz_stop_tick(ts, cpu);
1134
1135		ts->idle_sleeps++;
1136		ts->idle_expires = expires;
 
 
 
1137
1138		if (!was_stopped && ts->tick_stopped) {
1139			ts->idle_jiffies = ts->last_jiffies;
1140			nohz_balance_enter_idle(cpu);
1141		}
1142	} else {
1143		tick_nohz_retain_tick(ts);
1144	}
1145}
1146
1147void tick_nohz_idle_retain_tick(void)
1148{
1149	tick_nohz_retain_tick(this_cpu_ptr(&tick_cpu_sched));
1150	/*
1151	 * Undo the effect of get_next_timer_interrupt() called from
1152	 * tick_nohz_next_event().
1153	 */
1154	timer_clear_idle();
1155}
1156
1157/**
1158 * tick_nohz_idle_enter - prepare for entering idle on the current CPU
1159 *
 
1160 * Called when we start the idle loop.
 
 
 
 
 
 
1161 */
1162void tick_nohz_idle_enter(void)
1163{
1164	struct tick_sched *ts;
1165
1166	lockdep_assert_irqs_enabled();
 
 
 
 
 
 
 
 
1167
1168	local_irq_disable();
1169
1170	ts = this_cpu_ptr(&tick_cpu_sched);
1171
1172	WARN_ON_ONCE(ts->timer_expires_base);
1173
1174	ts->inidle = 1;
1175	tick_nohz_start_idle(ts);
1176
1177	local_irq_enable();
1178}
 
1179
1180/**
1181 * tick_nohz_irq_exit - Notify the tick about IRQ exit
1182 *
1183 * A timer may have been added/modified/deleted either by the current IRQ,
1184 * or by another place using this IRQ as a notification. This IRQ may have
1185 * also updated the RCU callback list. These events may require a
1186 * re-evaluation of the next tick. Depending on the context:
1187 *
1188 * 1) If the CPU is idle and no resched is pending, just proceed with idle
1189 *    time accounting. The next tick will be re-evaluated on the next idle
1190 *    loop iteration.
1191 *
1192 * 2) If the CPU is nohz_full:
1193 *
1194 *    2.1) If there is any tick dependency, restart the tick if stopped.
1195 *
1196 *    2.2) If there is no tick dependency, (re-)evaluate the next tick and
1197 *         stop/update it accordingly.
1198 */
1199void tick_nohz_irq_exit(void)
1200{
1201	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1202
1203	if (ts->inidle)
1204		tick_nohz_start_idle(ts);
1205	else
1206		tick_nohz_full_update_tick(ts);
1207}
1208
1209/**
1210 * tick_nohz_idle_got_tick - Check whether or not the tick handler has run
 
 
1211 */
1212bool tick_nohz_idle_got_tick(void)
1213{
1214	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1215
1216	if (ts->got_idle_tick) {
1217		ts->got_idle_tick = 0;
1218		return true;
1219	}
1220	return false;
1221}
1222
1223/**
1224 * tick_nohz_get_next_hrtimer - return the next expiration time for the hrtimer
1225 * or the tick, whichever expires first. Note that, if the tick has been
1226 * stopped, it returns the next hrtimer.
1227 *
1228 * Called from power state control code with interrupts disabled
1229 */
1230ktime_t tick_nohz_get_next_hrtimer(void)
1231{
1232	return __this_cpu_read(tick_cpu_device.evtdev)->next_event;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1233}
1234
1235/**
1236 * tick_nohz_get_sleep_length - return the expected length of the current sleep
1237 * @delta_next: duration until the next event if the tick cannot be stopped
1238 *
1239 * Called from power state control code with interrupts disabled.
1240 *
1241 * The return value of this function and/or the value returned by it through the
1242 * @delta_next pointer can be negative which must be taken into account by its
1243 * callers.
1244 */
1245ktime_t tick_nohz_get_sleep_length(ktime_t *delta_next)
1246{
1247	struct clock_event_device *dev = __this_cpu_read(tick_cpu_device.evtdev);
1248	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1249	int cpu = smp_processor_id();
1250	/*
1251	 * The idle entry time is expected to be a sufficient approximation of
1252	 * the current time at this point.
1253	 */
1254	ktime_t now = ts->idle_entrytime;
1255	ktime_t next_event;
1256
1257	WARN_ON_ONCE(!ts->inidle);
1258
1259	*delta_next = ktime_sub(dev->next_event, now);
1260
1261	if (!can_stop_idle_tick(cpu, ts))
1262		return *delta_next;
1263
1264	next_event = tick_nohz_next_event(ts, cpu);
1265	if (!next_event)
1266		return *delta_next;
1267
 
 
1268	/*
1269	 * If the next highres timer to expire is earlier than 'next_event', the
1270	 * idle governor needs to know that.
1271	 */
1272	next_event = min_t(u64, next_event,
1273			   hrtimer_next_event_without(&ts->sched_timer));
1274
1275	return ktime_sub(next_event, now);
1276}
1277
1278/**
1279 * tick_nohz_get_idle_calls_cpu - return the current idle calls counter value
1280 * for a particular CPU.
1281 *
1282 * Called from the schedutil frequency scaling governor in scheduler context.
1283 */
1284unsigned long tick_nohz_get_idle_calls_cpu(int cpu)
1285{
1286	struct tick_sched *ts = tick_get_tick_sched(cpu);
1287
1288	return ts->idle_calls;
1289}
1290
1291/**
1292 * tick_nohz_get_idle_calls - return the current idle calls counter value
1293 *
1294 * Called from the schedutil frequency scaling governor in scheduler context.
1295 */
1296unsigned long tick_nohz_get_idle_calls(void)
1297{
1298	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1299
1300	return ts->idle_calls;
1301}
1302
1303static void tick_nohz_account_idle_time(struct tick_sched *ts,
1304					ktime_t now)
1305{
 
1306	unsigned long ticks;
1307
1308	ts->idle_exittime = now;
1309
1310	if (vtime_accounting_enabled_this_cpu())
1311		return;
1312	/*
1313	 * We stopped the tick in idle. update_process_times() would miss the
1314	 * time we slept, as it does only a 1 tick accounting.
1315	 * Enforce that this is accounted to idle !
1316	 */
1317	ticks = jiffies - ts->idle_jiffies;
1318	/*
1319	 * We might be one off. Do not randomly account a huge number of ticks!
1320	 */
1321	if (ticks && ticks < LONG_MAX)
1322		account_idle_ticks(ticks);
1323}
1324
1325void tick_nohz_idle_restart_tick(void)
1326{
1327	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1328
1329	if (ts->tick_stopped) {
1330		ktime_t now = ktime_get();
1331		tick_nohz_restart_sched_tick(ts, now);
1332		tick_nohz_account_idle_time(ts, now);
1333	}
1334}
1335
1336static void tick_nohz_idle_update_tick(struct tick_sched *ts, ktime_t now)
1337{
1338	if (tick_nohz_full_cpu(smp_processor_id()))
1339		__tick_nohz_full_update_tick(ts, now);
1340	else
1341		tick_nohz_restart_sched_tick(ts, now);
1342
1343	tick_nohz_account_idle_time(ts, now);
1344}
1345
1346/**
1347 * tick_nohz_idle_exit - Update the tick upon idle task exit
1348 *
1349 * When the idle task exits, update the tick depending on the
1350 * following situations:
1351 *
1352 * 1) If the CPU is not in nohz_full mode (most cases), then
1353 *    restart the tick.
1354 *
1355 * 2) If the CPU is in nohz_full mode (corner case):
1356 *   2.1) If the tick can be kept stopped (no tick dependencies)
1357 *        then re-evaluate the next tick and try to keep it stopped
1358 *        as long as possible.
1359 *   2.2) If the tick has dependencies, restart the tick.
1360 *
 
 
 
1361 */
1362void tick_nohz_idle_exit(void)
1363{
1364	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1365	bool idle_active, tick_stopped;
1366	ktime_t now;
1367
1368	local_irq_disable();
1369
1370	WARN_ON_ONCE(!ts->inidle);
1371	WARN_ON_ONCE(ts->timer_expires_base);
1372
1373	ts->inidle = 0;
1374	idle_active = ts->idle_active;
1375	tick_stopped = ts->tick_stopped;
1376
1377	if (idle_active || tick_stopped)
1378		now = ktime_get();
1379
1380	if (idle_active)
1381		tick_nohz_stop_idle(ts, now);
1382
1383	if (tick_stopped)
1384		tick_nohz_idle_update_tick(ts, now);
 
 
1385
1386	local_irq_enable();
1387}
 
 
 
 
 
 
 
1388
1389/*
1390 * In low-resolution mode, the tick handler must be implemented directly
1391 * at the clockevent level. hrtimer can't be used instead, because its
1392 * infrastructure actually relies on the tick itself as a backend in
1393 * low-resolution mode (see hrtimer_run_queues()).
1394 *
1395 * This low-resolution handler still makes use of some hrtimer APIs meanwhile
1396 * for convenience with expiration calculation and forwarding.
1397 */
1398static void tick_nohz_lowres_handler(struct clock_event_device *dev)
1399{
1400	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1401	struct pt_regs *regs = get_irq_regs();
1402	ktime_t now = ktime_get();
1403
1404	dev->next_event = KTIME_MAX;
1405
1406	tick_sched_do_timer(ts, now);
1407	tick_sched_handle(ts, regs);
1408
1409	/*
1410	 * In dynticks mode, tick reprogram is deferred:
1411	 * - to the idle task if in dynticks-idle
1412	 * - to IRQ exit if in full-dynticks.
1413	 */
1414	if (likely(!ts->tick_stopped)) {
1415		hrtimer_forward(&ts->sched_timer, now, TICK_NSEC);
1416		tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1417	}
1418
1419}
1420
1421static inline void tick_nohz_activate(struct tick_sched *ts, int mode)
1422{
1423	if (!tick_nohz_enabled)
1424		return;
1425	ts->nohz_mode = mode;
1426	/* One update is enough */
1427	if (!test_and_set_bit(0, &tick_nohz_active))
1428		timers_update_nohz();
1429}
1430
1431/**
1432 * tick_nohz_switch_to_nohz - switch to NOHZ mode
1433 */
1434static void tick_nohz_switch_to_nohz(void)
1435{
1436	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1437	ktime_t next;
1438
1439	if (!tick_nohz_enabled)
1440		return;
1441
1442	if (tick_switch_to_oneshot(tick_nohz_lowres_handler))
 
 
1443		return;
 
 
 
1444
1445	/*
1446	 * Recycle the hrtimer in 'ts', so we can share the
1447	 * hrtimer_forward_now() function with the highres code.
1448	 */
1449	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
1450	/* Get the next period */
1451	next = tick_init_jiffy_update();
1452
1453	hrtimer_set_expires(&ts->sched_timer, next);
1454	hrtimer_forward_now(&ts->sched_timer, TICK_NSEC);
1455	tick_program_event(hrtimer_get_expires(&ts->sched_timer), 1);
1456	tick_nohz_activate(ts, NOHZ_MODE_LOWRES);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1457}
1458
1459static inline void tick_nohz_irq_enter(void)
1460{
1461	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1462	ktime_t now;
1463
1464	if (!ts->idle_active && !ts->tick_stopped)
1465		return;
1466	now = ktime_get();
1467	if (ts->idle_active)
1468		tick_nohz_stop_idle(ts, now);
1469	/*
1470	 * If all CPUs are idle we may need to update a stale jiffies value.
1471	 * Note nohz_full is a special case: a timekeeper is guaranteed to stay
1472	 * alive but it might be busy looping with interrupts disabled in some
1473	 * rare case (typically stop machine). So we must make sure we have a
1474	 * last resort.
1475	 */
1476	if (ts->tick_stopped)
1477		tick_nohz_update_jiffies(now);
 
 
1478}
1479
1480#else
1481
1482static inline void tick_nohz_switch_to_nohz(void) { }
1483static inline void tick_nohz_irq_enter(void) { }
1484static inline void tick_nohz_activate(struct tick_sched *ts, int mode) { }
1485
1486#endif /* CONFIG_NO_HZ_COMMON */
1487
1488/*
1489 * Called from irq_enter() to notify about the possible interruption of idle()
1490 */
1491void tick_irq_enter(void)
1492{
1493	tick_check_oneshot_broadcast_this_cpu();
1494	tick_nohz_irq_enter();
1495}
1496
1497/*
1498 * High resolution timer specific code
1499 */
1500#ifdef CONFIG_HIGH_RES_TIMERS
1501/*
1502 * We rearm the timer until we get disabled by the idle code.
1503 * Called with interrupts disabled.
1504 */
1505static enum hrtimer_restart tick_nohz_highres_handler(struct hrtimer *timer)
1506{
1507	struct tick_sched *ts =
1508		container_of(timer, struct tick_sched, sched_timer);
1509	struct pt_regs *regs = get_irq_regs();
1510	ktime_t now = ktime_get();
1511
1512	tick_sched_do_timer(ts, now);
1513
1514	/*
1515	 * Do not call when we are not in IRQ context and have
1516	 * no valid 'regs' pointer
1517	 */
1518	if (regs)
1519		tick_sched_handle(ts, regs);
1520	else
1521		ts->next_tick = 0;
1522
1523	/*
1524	 * In dynticks mode, tick reprogram is deferred:
1525	 * - to the idle task if in dynticks-idle
1526	 * - to IRQ exit if in full-dynticks.
1527	 */
1528	if (unlikely(ts->tick_stopped))
1529		return HRTIMER_NORESTART;
1530
1531	hrtimer_forward(timer, now, TICK_NSEC);
1532
1533	return HRTIMER_RESTART;
1534}
1535
1536static int sched_skew_tick;
1537
1538static int __init skew_tick(char *str)
1539{
1540	get_option(&str, &sched_skew_tick);
1541
1542	return 0;
1543}
1544early_param("skew_tick", skew_tick);
1545
1546/**
1547 * tick_setup_sched_timer - setup the tick emulation timer
1548 */
1549void tick_setup_sched_timer(void)
1550{
1551	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1552	ktime_t now = ktime_get();
1553
1554	/* Emulate tick processing via per-CPU hrtimers: */
1555	hrtimer_init(&ts->sched_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_HARD);
1556	ts->sched_timer.function = tick_nohz_highres_handler;
 
 
1557
1558	/* Get the next period (per-CPU) */
1559	hrtimer_set_expires(&ts->sched_timer, tick_init_jiffy_update());
1560
1561	/* Offset the tick to avert 'jiffies_lock' contention. */
1562	if (sched_skew_tick) {
1563		u64 offset = TICK_NSEC >> 1;
1564		do_div(offset, num_possible_cpus());
1565		offset *= smp_processor_id();
1566		hrtimer_add_expires_ns(&ts->sched_timer, offset);
1567	}
1568
1569	hrtimer_forward(&ts->sched_timer, now, TICK_NSEC);
1570	hrtimer_start_expires(&ts->sched_timer, HRTIMER_MODE_ABS_PINNED_HARD);
1571	tick_nohz_activate(ts, NOHZ_MODE_HIGHRES);
 
 
 
 
 
 
 
 
 
 
 
 
 
1572}
1573#endif /* HIGH_RES_TIMERS */
1574
1575#if defined CONFIG_NO_HZ_COMMON || defined CONFIG_HIGH_RES_TIMERS
1576void tick_cancel_sched_timer(int cpu)
1577{
1578	struct tick_sched *ts = &per_cpu(tick_cpu_sched, cpu);
1579	ktime_t idle_sleeptime, iowait_sleeptime;
1580	unsigned long idle_calls, idle_sleeps;
1581
1582# ifdef CONFIG_HIGH_RES_TIMERS
1583	if (ts->sched_timer.base)
1584		hrtimer_cancel(&ts->sched_timer);
1585# endif
1586
1587	idle_sleeptime = ts->idle_sleeptime;
1588	iowait_sleeptime = ts->iowait_sleeptime;
1589	idle_calls = ts->idle_calls;
1590	idle_sleeps = ts->idle_sleeps;
1591	memset(ts, 0, sizeof(*ts));
1592	ts->idle_sleeptime = idle_sleeptime;
1593	ts->iowait_sleeptime = iowait_sleeptime;
1594	ts->idle_calls = idle_calls;
1595	ts->idle_sleeps = idle_sleeps;
1596}
1597#endif
1598
1599/*
1600 * Async notification about clocksource changes
1601 */
1602void tick_clock_notify(void)
1603{
1604	int cpu;
1605
1606	for_each_possible_cpu(cpu)
1607		set_bit(0, &per_cpu(tick_cpu_sched, cpu).check_clocks);
1608}
1609
1610/*
1611 * Async notification about clock event changes
1612 */
1613void tick_oneshot_notify(void)
1614{
1615	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1616
1617	set_bit(0, &ts->check_clocks);
1618}
1619
1620/*
1621 * Check if a change happened, which makes oneshot possible.
1622 *
1623 * Called cyclically from the hrtimer softirq (driven by the timer
1624 * softirq). 'allow_nohz' signals that we can switch into low-res NOHZ
1625 * mode, because high resolution timers are disabled (either compile
1626 * or runtime). Called with interrupts disabled.
1627 */
1628int tick_check_oneshot_change(int allow_nohz)
1629{
1630	struct tick_sched *ts = this_cpu_ptr(&tick_cpu_sched);
1631
1632	if (!test_and_clear_bit(0, &ts->check_clocks))
1633		return 0;
1634
1635	if (ts->nohz_mode != NOHZ_MODE_INACTIVE)
1636		return 0;
1637
1638	if (!timekeeping_valid_for_hres() || !tick_is_oneshot_available())
1639		return 0;
1640
1641	if (!allow_nohz)
1642		return 1;
1643
1644	tick_nohz_switch_to_nohz();
1645	return 0;
1646}