Linux Audio

Check our new training course

Loading...
v3.15
   1/*
   2 *  linux/kernel/signal.c
   3 *
   4 *  Copyright (C) 1991, 1992  Linus Torvalds
   5 *
   6 *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson
   7 *
   8 *  2003-06-02  Jim Houston - Concurrent Computer Corp.
   9 *		Changes to use preallocated sigqueue structures
  10 *		to allow signals to be sent reliably.
  11 */
  12
  13#include <linux/slab.h>
  14#include <linux/export.h>
  15#include <linux/init.h>
  16#include <linux/sched.h>
  17#include <linux/fs.h>
  18#include <linux/tty.h>
  19#include <linux/binfmts.h>
  20#include <linux/coredump.h>
  21#include <linux/security.h>
  22#include <linux/syscalls.h>
  23#include <linux/ptrace.h>
  24#include <linux/signal.h>
  25#include <linux/signalfd.h>
  26#include <linux/ratelimit.h>
  27#include <linux/tracehook.h>
  28#include <linux/capability.h>
  29#include <linux/freezer.h>
  30#include <linux/pid_namespace.h>
  31#include <linux/nsproxy.h>
  32#include <linux/user_namespace.h>
  33#include <linux/uprobes.h>
  34#include <linux/compat.h>
  35#include <linux/cn_proc.h>
  36#include <linux/compiler.h>
  37
  38#define CREATE_TRACE_POINTS
  39#include <trace/events/signal.h>
  40
  41#include <asm/param.h>
  42#include <asm/uaccess.h>
  43#include <asm/unistd.h>
  44#include <asm/siginfo.h>
  45#include <asm/cacheflush.h>
  46#include "audit.h"	/* audit_signal_info() */
  47
  48/*
  49 * SLAB caches for signal bits.
  50 */
  51
  52static struct kmem_cache *sigqueue_cachep;
  53
  54int print_fatal_signals __read_mostly;
  55
  56static void __user *sig_handler(struct task_struct *t, int sig)
  57{
  58	return t->sighand->action[sig - 1].sa.sa_handler;
  59}
  60
  61static int sig_handler_ignored(void __user *handler, int sig)
  62{
  63	/* Is it explicitly or implicitly ignored? */
  64	return handler == SIG_IGN ||
  65		(handler == SIG_DFL && sig_kernel_ignore(sig));
  66}
  67
  68static int sig_task_ignored(struct task_struct *t, int sig, bool force)
  69{
  70	void __user *handler;
  71
  72	handler = sig_handler(t, sig);
  73
  74	if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
  75			handler == SIG_DFL && !force)
  76		return 1;
  77
  78	return sig_handler_ignored(handler, sig);
  79}
  80
  81static int sig_ignored(struct task_struct *t, int sig, bool force)
  82{
  83	/*
  84	 * Blocked signals are never ignored, since the
  85	 * signal handler may change by the time it is
  86	 * unblocked.
  87	 */
  88	if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
  89		return 0;
  90
  91	if (!sig_task_ignored(t, sig, force))
  92		return 0;
  93
  94	/*
  95	 * Tracers may want to know about even ignored signals.
  96	 */
  97	return !t->ptrace;
  98}
  99
 100/*
 101 * Re-calculate pending state from the set of locally pending
 102 * signals, globally pending signals, and blocked signals.
 103 */
 104static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
 105{
 106	unsigned long ready;
 107	long i;
 108
 109	switch (_NSIG_WORDS) {
 110	default:
 111		for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
 112			ready |= signal->sig[i] &~ blocked->sig[i];
 113		break;
 114
 115	case 4: ready  = signal->sig[3] &~ blocked->sig[3];
 116		ready |= signal->sig[2] &~ blocked->sig[2];
 117		ready |= signal->sig[1] &~ blocked->sig[1];
 118		ready |= signal->sig[0] &~ blocked->sig[0];
 119		break;
 120
 121	case 2: ready  = signal->sig[1] &~ blocked->sig[1];
 122		ready |= signal->sig[0] &~ blocked->sig[0];
 123		break;
 124
 125	case 1: ready  = signal->sig[0] &~ blocked->sig[0];
 126	}
 127	return ready !=	0;
 128}
 129
 130#define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
 131
 132static int recalc_sigpending_tsk(struct task_struct *t)
 133{
 134	if ((t->jobctl & JOBCTL_PENDING_MASK) ||
 135	    PENDING(&t->pending, &t->blocked) ||
 136	    PENDING(&t->signal->shared_pending, &t->blocked)) {
 137		set_tsk_thread_flag(t, TIF_SIGPENDING);
 138		return 1;
 139	}
 140	/*
 141	 * We must never clear the flag in another thread, or in current
 142	 * when it's possible the current syscall is returning -ERESTART*.
 143	 * So we don't clear it here, and only callers who know they should do.
 144	 */
 145	return 0;
 146}
 147
 148/*
 149 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
 150 * This is superfluous when called on current, the wakeup is a harmless no-op.
 151 */
 152void recalc_sigpending_and_wake(struct task_struct *t)
 153{
 154	if (recalc_sigpending_tsk(t))
 155		signal_wake_up(t, 0);
 156}
 157
 158void recalc_sigpending(void)
 159{
 160	if (!recalc_sigpending_tsk(current) && !freezing(current))
 161		clear_thread_flag(TIF_SIGPENDING);
 162
 163}
 164
 165/* Given the mask, find the first available signal that should be serviced. */
 166
 167#define SYNCHRONOUS_MASK \
 168	(sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
 169	 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
 170
 171int next_signal(struct sigpending *pending, sigset_t *mask)
 172{
 173	unsigned long i, *s, *m, x;
 174	int sig = 0;
 175
 176	s = pending->signal.sig;
 177	m = mask->sig;
 178
 179	/*
 180	 * Handle the first word specially: it contains the
 181	 * synchronous signals that need to be dequeued first.
 182	 */
 183	x = *s &~ *m;
 184	if (x) {
 185		if (x & SYNCHRONOUS_MASK)
 186			x &= SYNCHRONOUS_MASK;
 187		sig = ffz(~x) + 1;
 188		return sig;
 189	}
 190
 191	switch (_NSIG_WORDS) {
 192	default:
 193		for (i = 1; i < _NSIG_WORDS; ++i) {
 194			x = *++s &~ *++m;
 195			if (!x)
 196				continue;
 197			sig = ffz(~x) + i*_NSIG_BPW + 1;
 198			break;
 199		}
 200		break;
 201
 202	case 2:
 203		x = s[1] &~ m[1];
 204		if (!x)
 205			break;
 206		sig = ffz(~x) + _NSIG_BPW + 1;
 207		break;
 208
 209	case 1:
 210		/* Nothing to do */
 211		break;
 212	}
 213
 214	return sig;
 215}
 216
 217static inline void print_dropped_signal(int sig)
 218{
 219	static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
 220
 221	if (!print_fatal_signals)
 222		return;
 223
 224	if (!__ratelimit(&ratelimit_state))
 225		return;
 226
 227	printk(KERN_INFO "%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
 228				current->comm, current->pid, sig);
 229}
 230
 231/**
 232 * task_set_jobctl_pending - set jobctl pending bits
 233 * @task: target task
 234 * @mask: pending bits to set
 235 *
 236 * Clear @mask from @task->jobctl.  @mask must be subset of
 237 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
 238 * %JOBCTL_TRAPPING.  If stop signo is being set, the existing signo is
 239 * cleared.  If @task is already being killed or exiting, this function
 240 * becomes noop.
 241 *
 242 * CONTEXT:
 243 * Must be called with @task->sighand->siglock held.
 244 *
 245 * RETURNS:
 246 * %true if @mask is set, %false if made noop because @task was dying.
 247 */
 248bool task_set_jobctl_pending(struct task_struct *task, unsigned int mask)
 249{
 250	BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
 251			JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
 252	BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
 253
 254	if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
 255		return false;
 256
 257	if (mask & JOBCTL_STOP_SIGMASK)
 258		task->jobctl &= ~JOBCTL_STOP_SIGMASK;
 259
 260	task->jobctl |= mask;
 261	return true;
 262}
 263
 264/**
 265 * task_clear_jobctl_trapping - clear jobctl trapping bit
 266 * @task: target task
 267 *
 268 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
 269 * Clear it and wake up the ptracer.  Note that we don't need any further
 270 * locking.  @task->siglock guarantees that @task->parent points to the
 271 * ptracer.
 272 *
 273 * CONTEXT:
 274 * Must be called with @task->sighand->siglock held.
 275 */
 276void task_clear_jobctl_trapping(struct task_struct *task)
 277{
 278	if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
 279		task->jobctl &= ~JOBCTL_TRAPPING;
 
 280		wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
 281	}
 282}
 283
 284/**
 285 * task_clear_jobctl_pending - clear jobctl pending bits
 286 * @task: target task
 287 * @mask: pending bits to clear
 288 *
 289 * Clear @mask from @task->jobctl.  @mask must be subset of
 290 * %JOBCTL_PENDING_MASK.  If %JOBCTL_STOP_PENDING is being cleared, other
 291 * STOP bits are cleared together.
 292 *
 293 * If clearing of @mask leaves no stop or trap pending, this function calls
 294 * task_clear_jobctl_trapping().
 295 *
 296 * CONTEXT:
 297 * Must be called with @task->sighand->siglock held.
 298 */
 299void task_clear_jobctl_pending(struct task_struct *task, unsigned int mask)
 300{
 301	BUG_ON(mask & ~JOBCTL_PENDING_MASK);
 302
 303	if (mask & JOBCTL_STOP_PENDING)
 304		mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
 305
 306	task->jobctl &= ~mask;
 307
 308	if (!(task->jobctl & JOBCTL_PENDING_MASK))
 309		task_clear_jobctl_trapping(task);
 310}
 311
 312/**
 313 * task_participate_group_stop - participate in a group stop
 314 * @task: task participating in a group stop
 315 *
 316 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
 317 * Group stop states are cleared and the group stop count is consumed if
 318 * %JOBCTL_STOP_CONSUME was set.  If the consumption completes the group
 319 * stop, the appropriate %SIGNAL_* flags are set.
 320 *
 321 * CONTEXT:
 322 * Must be called with @task->sighand->siglock held.
 323 *
 324 * RETURNS:
 325 * %true if group stop completion should be notified to the parent, %false
 326 * otherwise.
 327 */
 328static bool task_participate_group_stop(struct task_struct *task)
 329{
 330	struct signal_struct *sig = task->signal;
 331	bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
 332
 333	WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
 334
 335	task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
 336
 337	if (!consume)
 338		return false;
 339
 340	if (!WARN_ON_ONCE(sig->group_stop_count == 0))
 341		sig->group_stop_count--;
 342
 343	/*
 344	 * Tell the caller to notify completion iff we are entering into a
 345	 * fresh group stop.  Read comment in do_signal_stop() for details.
 346	 */
 347	if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
 348		sig->flags = SIGNAL_STOP_STOPPED;
 349		return true;
 350	}
 351	return false;
 352}
 353
 354/*
 355 * allocate a new signal queue record
 356 * - this may be called without locks if and only if t == current, otherwise an
 357 *   appropriate lock must be held to stop the target task from exiting
 358 */
 359static struct sigqueue *
 360__sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit)
 361{
 362	struct sigqueue *q = NULL;
 363	struct user_struct *user;
 364
 365	/*
 366	 * Protect access to @t credentials. This can go away when all
 367	 * callers hold rcu read lock.
 368	 */
 369	rcu_read_lock();
 370	user = get_uid(__task_cred(t)->user);
 371	atomic_inc(&user->sigpending);
 372	rcu_read_unlock();
 373
 374	if (override_rlimit ||
 375	    atomic_read(&user->sigpending) <=
 376			task_rlimit(t, RLIMIT_SIGPENDING)) {
 377		q = kmem_cache_alloc(sigqueue_cachep, flags);
 378	} else {
 379		print_dropped_signal(sig);
 380	}
 381
 382	if (unlikely(q == NULL)) {
 383		atomic_dec(&user->sigpending);
 384		free_uid(user);
 385	} else {
 386		INIT_LIST_HEAD(&q->list);
 387		q->flags = 0;
 388		q->user = user;
 389	}
 390
 391	return q;
 392}
 393
 394static void __sigqueue_free(struct sigqueue *q)
 395{
 396	if (q->flags & SIGQUEUE_PREALLOC)
 397		return;
 398	atomic_dec(&q->user->sigpending);
 399	free_uid(q->user);
 400	kmem_cache_free(sigqueue_cachep, q);
 401}
 402
 403void flush_sigqueue(struct sigpending *queue)
 404{
 405	struct sigqueue *q;
 406
 407	sigemptyset(&queue->signal);
 408	while (!list_empty(&queue->list)) {
 409		q = list_entry(queue->list.next, struct sigqueue , list);
 410		list_del_init(&q->list);
 411		__sigqueue_free(q);
 412	}
 413}
 414
 415/*
 416 * Flush all pending signals for a task.
 417 */
 418void __flush_signals(struct task_struct *t)
 419{
 420	clear_tsk_thread_flag(t, TIF_SIGPENDING);
 421	flush_sigqueue(&t->pending);
 422	flush_sigqueue(&t->signal->shared_pending);
 423}
 424
 425void flush_signals(struct task_struct *t)
 426{
 427	unsigned long flags;
 428
 429	spin_lock_irqsave(&t->sighand->siglock, flags);
 430	__flush_signals(t);
 
 
 431	spin_unlock_irqrestore(&t->sighand->siglock, flags);
 432}
 433
 434static void __flush_itimer_signals(struct sigpending *pending)
 435{
 436	sigset_t signal, retain;
 437	struct sigqueue *q, *n;
 438
 439	signal = pending->signal;
 440	sigemptyset(&retain);
 441
 442	list_for_each_entry_safe(q, n, &pending->list, list) {
 443		int sig = q->info.si_signo;
 444
 445		if (likely(q->info.si_code != SI_TIMER)) {
 446			sigaddset(&retain, sig);
 447		} else {
 448			sigdelset(&signal, sig);
 449			list_del_init(&q->list);
 450			__sigqueue_free(q);
 451		}
 452	}
 453
 454	sigorsets(&pending->signal, &signal, &retain);
 455}
 456
 457void flush_itimer_signals(void)
 458{
 459	struct task_struct *tsk = current;
 460	unsigned long flags;
 461
 462	spin_lock_irqsave(&tsk->sighand->siglock, flags);
 463	__flush_itimer_signals(&tsk->pending);
 464	__flush_itimer_signals(&tsk->signal->shared_pending);
 465	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
 466}
 467
 468void ignore_signals(struct task_struct *t)
 469{
 470	int i;
 471
 472	for (i = 0; i < _NSIG; ++i)
 473		t->sighand->action[i].sa.sa_handler = SIG_IGN;
 474
 475	flush_signals(t);
 476}
 477
 478/*
 479 * Flush all handlers for a task.
 480 */
 481
 482void
 483flush_signal_handlers(struct task_struct *t, int force_default)
 484{
 485	int i;
 486	struct k_sigaction *ka = &t->sighand->action[0];
 487	for (i = _NSIG ; i != 0 ; i--) {
 488		if (force_default || ka->sa.sa_handler != SIG_IGN)
 489			ka->sa.sa_handler = SIG_DFL;
 490		ka->sa.sa_flags = 0;
 491#ifdef __ARCH_HAS_SA_RESTORER
 492		ka->sa.sa_restorer = NULL;
 493#endif
 494		sigemptyset(&ka->sa.sa_mask);
 495		ka++;
 496	}
 497}
 498
 499int unhandled_signal(struct task_struct *tsk, int sig)
 500{
 501	void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
 502	if (is_global_init(tsk))
 503		return 1;
 504	if (handler != SIG_IGN && handler != SIG_DFL)
 505		return 0;
 506	/* if ptraced, let the tracer determine */
 507	return !tsk->ptrace;
 508}
 509
 510/*
 511 * Notify the system that a driver wants to block all signals for this
 512 * process, and wants to be notified if any signals at all were to be
 513 * sent/acted upon.  If the notifier routine returns non-zero, then the
 514 * signal will be acted upon after all.  If the notifier routine returns 0,
 515 * then then signal will be blocked.  Only one block per process is
 516 * allowed.  priv is a pointer to private data that the notifier routine
 517 * can use to determine if the signal should be blocked or not.
 518 */
 519void
 520block_all_signals(int (*notifier)(void *priv), void *priv, sigset_t *mask)
 521{
 522	unsigned long flags;
 523
 524	spin_lock_irqsave(&current->sighand->siglock, flags);
 525	current->notifier_mask = mask;
 526	current->notifier_data = priv;
 527	current->notifier = notifier;
 528	spin_unlock_irqrestore(&current->sighand->siglock, flags);
 529}
 530
 531/* Notify the system that blocking has ended. */
 532
 533void
 534unblock_all_signals(void)
 535{
 536	unsigned long flags;
 537
 538	spin_lock_irqsave(&current->sighand->siglock, flags);
 539	current->notifier = NULL;
 540	current->notifier_data = NULL;
 541	recalc_sigpending();
 542	spin_unlock_irqrestore(&current->sighand->siglock, flags);
 543}
 544
 545static void collect_signal(int sig, struct sigpending *list, siginfo_t *info)
 546{
 547	struct sigqueue *q, *first = NULL;
 548
 549	/*
 550	 * Collect the siginfo appropriate to this signal.  Check if
 551	 * there is another siginfo for the same signal.
 552	*/
 553	list_for_each_entry(q, &list->list, list) {
 554		if (q->info.si_signo == sig) {
 555			if (first)
 556				goto still_pending;
 557			first = q;
 558		}
 559	}
 560
 561	sigdelset(&list->signal, sig);
 562
 563	if (first) {
 564still_pending:
 565		list_del_init(&first->list);
 566		copy_siginfo(info, &first->info);
 567		__sigqueue_free(first);
 568	} else {
 569		/*
 570		 * Ok, it wasn't in the queue.  This must be
 571		 * a fast-pathed signal or we must have been
 572		 * out of queue space.  So zero out the info.
 573		 */
 574		info->si_signo = sig;
 575		info->si_errno = 0;
 576		info->si_code = SI_USER;
 577		info->si_pid = 0;
 578		info->si_uid = 0;
 579	}
 580}
 581
 582static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
 583			siginfo_t *info)
 584{
 585	int sig = next_signal(pending, mask);
 586
 587	if (sig) {
 588		if (current->notifier) {
 589			if (sigismember(current->notifier_mask, sig)) {
 590				if (!(current->notifier)(current->notifier_data)) {
 591					clear_thread_flag(TIF_SIGPENDING);
 592					return 0;
 593				}
 594			}
 595		}
 596
 597		collect_signal(sig, pending, info);
 598	}
 599
 600	return sig;
 601}
 602
 603/*
 604 * Dequeue a signal and return the element to the caller, which is
 605 * expected to free it.
 606 *
 607 * All callers have to hold the siglock.
 608 */
 609int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
 610{
 611	int signr;
 612
 613	/* We only dequeue private signals from ourselves, we don't let
 614	 * signalfd steal them
 615	 */
 616	signr = __dequeue_signal(&tsk->pending, mask, info);
 617	if (!signr) {
 618		signr = __dequeue_signal(&tsk->signal->shared_pending,
 619					 mask, info);
 620		/*
 621		 * itimer signal ?
 622		 *
 623		 * itimers are process shared and we restart periodic
 624		 * itimers in the signal delivery path to prevent DoS
 625		 * attacks in the high resolution timer case. This is
 626		 * compliant with the old way of self-restarting
 627		 * itimers, as the SIGALRM is a legacy signal and only
 628		 * queued once. Changing the restart behaviour to
 629		 * restart the timer in the signal dequeue path is
 630		 * reducing the timer noise on heavy loaded !highres
 631		 * systems too.
 632		 */
 633		if (unlikely(signr == SIGALRM)) {
 634			struct hrtimer *tmr = &tsk->signal->real_timer;
 635
 636			if (!hrtimer_is_queued(tmr) &&
 637			    tsk->signal->it_real_incr.tv64 != 0) {
 638				hrtimer_forward(tmr, tmr->base->get_time(),
 639						tsk->signal->it_real_incr);
 640				hrtimer_restart(tmr);
 641			}
 642		}
 643	}
 644
 645	recalc_sigpending();
 646	if (!signr)
 647		return 0;
 648
 649	if (unlikely(sig_kernel_stop(signr))) {
 650		/*
 651		 * Set a marker that we have dequeued a stop signal.  Our
 652		 * caller might release the siglock and then the pending
 653		 * stop signal it is about to process is no longer in the
 654		 * pending bitmasks, but must still be cleared by a SIGCONT
 655		 * (and overruled by a SIGKILL).  So those cases clear this
 656		 * shared flag after we've set it.  Note that this flag may
 657		 * remain set after the signal we return is ignored or
 658		 * handled.  That doesn't matter because its only purpose
 659		 * is to alert stop-signal processing code when another
 660		 * processor has come along and cleared the flag.
 661		 */
 662		current->jobctl |= JOBCTL_STOP_DEQUEUED;
 663	}
 664	if ((info->si_code & __SI_MASK) == __SI_TIMER && info->si_sys_private) {
 665		/*
 666		 * Release the siglock to ensure proper locking order
 667		 * of timer locks outside of siglocks.  Note, we leave
 668		 * irqs disabled here, since the posix-timers code is
 669		 * about to disable them again anyway.
 670		 */
 671		spin_unlock(&tsk->sighand->siglock);
 672		do_schedule_next_timer(info);
 673		spin_lock(&tsk->sighand->siglock);
 674	}
 675	return signr;
 676}
 677
 678/*
 679 * Tell a process that it has a new active signal..
 680 *
 681 * NOTE! we rely on the previous spin_lock to
 682 * lock interrupts for us! We can only be called with
 683 * "siglock" held, and the local interrupt must
 684 * have been disabled when that got acquired!
 685 *
 686 * No need to set need_resched since signal event passing
 687 * goes through ->blocked
 688 */
 689void signal_wake_up_state(struct task_struct *t, unsigned int state)
 690{
 691	set_tsk_thread_flag(t, TIF_SIGPENDING);
 692	/*
 693	 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
 694	 * case. We don't check t->state here because there is a race with it
 695	 * executing another processor and just now entering stopped state.
 696	 * By using wake_up_state, we ensure the process will wake up and
 697	 * handle its death signal.
 698	 */
 699	if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
 700		kick_process(t);
 701}
 702
 703/*
 704 * Remove signals in mask from the pending set and queue.
 705 * Returns 1 if any signals were found.
 706 *
 707 * All callers must be holding the siglock.
 708 *
 709 * This version takes a sigset mask and looks at all signals,
 710 * not just those in the first mask word.
 711 */
 712static int rm_from_queue_full(sigset_t *mask, struct sigpending *s)
 713{
 714	struct sigqueue *q, *n;
 715	sigset_t m;
 716
 717	sigandsets(&m, mask, &s->signal);
 718	if (sigisemptyset(&m))
 719		return 0;
 720
 721	sigandnsets(&s->signal, &s->signal, mask);
 722	list_for_each_entry_safe(q, n, &s->list, list) {
 723		if (sigismember(mask, q->info.si_signo)) {
 724			list_del_init(&q->list);
 725			__sigqueue_free(q);
 726		}
 727	}
 728	return 1;
 729}
 730/*
 731 * Remove signals in mask from the pending set and queue.
 732 * Returns 1 if any signals were found.
 733 *
 734 * All callers must be holding the siglock.
 735 */
 736static int rm_from_queue(unsigned long mask, struct sigpending *s)
 737{
 738	struct sigqueue *q, *n;
 739
 740	if (!sigtestsetmask(&s->signal, mask))
 741		return 0;
 742
 743	sigdelsetmask(&s->signal, mask);
 744	list_for_each_entry_safe(q, n, &s->list, list) {
 745		if (q->info.si_signo < SIGRTMIN &&
 746		    (mask & sigmask(q->info.si_signo))) {
 747			list_del_init(&q->list);
 748			__sigqueue_free(q);
 749		}
 750	}
 751	return 1;
 752}
 753
 754static inline int is_si_special(const struct siginfo *info)
 755{
 756	return info <= SEND_SIG_FORCED;
 757}
 758
 759static inline bool si_fromuser(const struct siginfo *info)
 760{
 761	return info == SEND_SIG_NOINFO ||
 762		(!is_si_special(info) && SI_FROMUSER(info));
 763}
 764
 765/*
 766 * called with RCU read lock from check_kill_permission()
 767 */
 768static int kill_ok_by_cred(struct task_struct *t)
 769{
 770	const struct cred *cred = current_cred();
 771	const struct cred *tcred = __task_cred(t);
 772
 773	if (uid_eq(cred->euid, tcred->suid) ||
 774	    uid_eq(cred->euid, tcred->uid)  ||
 775	    uid_eq(cred->uid,  tcred->suid) ||
 776	    uid_eq(cred->uid,  tcred->uid))
 777		return 1;
 778
 779	if (ns_capable(tcred->user_ns, CAP_KILL))
 780		return 1;
 781
 782	return 0;
 783}
 784
 785/*
 786 * Bad permissions for sending the signal
 787 * - the caller must hold the RCU read lock
 788 */
 789static int check_kill_permission(int sig, struct siginfo *info,
 790				 struct task_struct *t)
 791{
 792	struct pid *sid;
 793	int error;
 794
 795	if (!valid_signal(sig))
 796		return -EINVAL;
 797
 798	if (!si_fromuser(info))
 799		return 0;
 800
 801	error = audit_signal_info(sig, t); /* Let audit system see the signal */
 802	if (error)
 803		return error;
 804
 805	if (!same_thread_group(current, t) &&
 806	    !kill_ok_by_cred(t)) {
 807		switch (sig) {
 808		case SIGCONT:
 809			sid = task_session(t);
 810			/*
 811			 * We don't return the error if sid == NULL. The
 812			 * task was unhashed, the caller must notice this.
 813			 */
 814			if (!sid || sid == task_session(current))
 815				break;
 816		default:
 817			return -EPERM;
 818		}
 819	}
 820
 821	return security_task_kill(t, info, sig, 0);
 822}
 823
 824/**
 825 * ptrace_trap_notify - schedule trap to notify ptracer
 826 * @t: tracee wanting to notify tracer
 827 *
 828 * This function schedules sticky ptrace trap which is cleared on the next
 829 * TRAP_STOP to notify ptracer of an event.  @t must have been seized by
 830 * ptracer.
 831 *
 832 * If @t is running, STOP trap will be taken.  If trapped for STOP and
 833 * ptracer is listening for events, tracee is woken up so that it can
 834 * re-trap for the new event.  If trapped otherwise, STOP trap will be
 835 * eventually taken without returning to userland after the existing traps
 836 * are finished by PTRACE_CONT.
 837 *
 838 * CONTEXT:
 839 * Must be called with @task->sighand->siglock held.
 840 */
 841static void ptrace_trap_notify(struct task_struct *t)
 842{
 843	WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
 844	assert_spin_locked(&t->sighand->siglock);
 845
 846	task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
 847	ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
 848}
 849
 850/*
 851 * Handle magic process-wide effects of stop/continue signals. Unlike
 852 * the signal actions, these happen immediately at signal-generation
 853 * time regardless of blocking, ignoring, or handling.  This does the
 854 * actual continuing for SIGCONT, but not the actual stopping for stop
 855 * signals. The process stop is done as a signal action for SIG_DFL.
 856 *
 857 * Returns true if the signal should be actually delivered, otherwise
 858 * it should be dropped.
 859 */
 860static bool prepare_signal(int sig, struct task_struct *p, bool force)
 861{
 862	struct signal_struct *signal = p->signal;
 863	struct task_struct *t;
 
 864
 865	if (signal->flags & (SIGNAL_GROUP_EXIT | SIGNAL_GROUP_COREDUMP)) {
 866		if (signal->flags & SIGNAL_GROUP_COREDUMP)
 867			return sig == SIGKILL;
 868		/*
 869		 * The process is in the middle of dying, nothing to do.
 870		 */
 871	} else if (sig_kernel_stop(sig)) {
 872		/*
 873		 * This is a stop signal.  Remove SIGCONT from all queues.
 874		 */
 875		rm_from_queue(sigmask(SIGCONT), &signal->shared_pending);
 876		t = p;
 877		do {
 878			rm_from_queue(sigmask(SIGCONT), &t->pending);
 879		} while_each_thread(p, t);
 880	} else if (sig == SIGCONT) {
 881		unsigned int why;
 882		/*
 883		 * Remove all stop signals from all queues, wake all threads.
 884		 */
 885		rm_from_queue(SIG_KERNEL_STOP_MASK, &signal->shared_pending);
 886		t = p;
 887		do {
 
 888			task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
 889			rm_from_queue(SIG_KERNEL_STOP_MASK, &t->pending);
 890			if (likely(!(t->ptrace & PT_SEIZED)))
 891				wake_up_state(t, __TASK_STOPPED);
 892			else
 893				ptrace_trap_notify(t);
 894		} while_each_thread(p, t);
 895
 896		/*
 897		 * Notify the parent with CLD_CONTINUED if we were stopped.
 898		 *
 899		 * If we were in the middle of a group stop, we pretend it
 900		 * was already finished, and then continued. Since SIGCHLD
 901		 * doesn't queue we report only CLD_STOPPED, as if the next
 902		 * CLD_CONTINUED was dropped.
 903		 */
 904		why = 0;
 905		if (signal->flags & SIGNAL_STOP_STOPPED)
 906			why |= SIGNAL_CLD_CONTINUED;
 907		else if (signal->group_stop_count)
 908			why |= SIGNAL_CLD_STOPPED;
 909
 910		if (why) {
 911			/*
 912			 * The first thread which returns from do_signal_stop()
 913			 * will take ->siglock, notice SIGNAL_CLD_MASK, and
 914			 * notify its parent. See get_signal_to_deliver().
 915			 */
 916			signal->flags = why | SIGNAL_STOP_CONTINUED;
 917			signal->group_stop_count = 0;
 918			signal->group_exit_code = 0;
 919		}
 920	}
 921
 922	return !sig_ignored(p, sig, force);
 923}
 924
 925/*
 926 * Test if P wants to take SIG.  After we've checked all threads with this,
 927 * it's equivalent to finding no threads not blocking SIG.  Any threads not
 928 * blocking SIG were ruled out because they are not running and already
 929 * have pending signals.  Such threads will dequeue from the shared queue
 930 * as soon as they're available, so putting the signal on the shared queue
 931 * will be equivalent to sending it to one such thread.
 932 */
 933static inline int wants_signal(int sig, struct task_struct *p)
 934{
 935	if (sigismember(&p->blocked, sig))
 936		return 0;
 937	if (p->flags & PF_EXITING)
 938		return 0;
 939	if (sig == SIGKILL)
 940		return 1;
 941	if (task_is_stopped_or_traced(p))
 942		return 0;
 943	return task_curr(p) || !signal_pending(p);
 944}
 945
 946static void complete_signal(int sig, struct task_struct *p, int group)
 947{
 948	struct signal_struct *signal = p->signal;
 949	struct task_struct *t;
 950
 951	/*
 952	 * Now find a thread we can wake up to take the signal off the queue.
 953	 *
 954	 * If the main thread wants the signal, it gets first crack.
 955	 * Probably the least surprising to the average bear.
 956	 */
 957	if (wants_signal(sig, p))
 958		t = p;
 959	else if (!group || thread_group_empty(p))
 960		/*
 961		 * There is just one thread and it does not need to be woken.
 962		 * It will dequeue unblocked signals before it runs again.
 963		 */
 964		return;
 965	else {
 966		/*
 967		 * Otherwise try to find a suitable thread.
 968		 */
 969		t = signal->curr_target;
 970		while (!wants_signal(sig, t)) {
 971			t = next_thread(t);
 972			if (t == signal->curr_target)
 973				/*
 974				 * No thread needs to be woken.
 975				 * Any eligible threads will see
 976				 * the signal in the queue soon.
 977				 */
 978				return;
 979		}
 980		signal->curr_target = t;
 981	}
 982
 983	/*
 984	 * Found a killable thread.  If the signal will be fatal,
 985	 * then start taking the whole group down immediately.
 986	 */
 987	if (sig_fatal(p, sig) &&
 988	    !(signal->flags & (SIGNAL_UNKILLABLE | SIGNAL_GROUP_EXIT)) &&
 989	    !sigismember(&t->real_blocked, sig) &&
 990	    (sig == SIGKILL || !t->ptrace)) {
 991		/*
 992		 * This signal will be fatal to the whole group.
 993		 */
 994		if (!sig_kernel_coredump(sig)) {
 995			/*
 996			 * Start a group exit and wake everybody up.
 997			 * This way we don't have other threads
 998			 * running and doing things after a slower
 999			 * thread has the fatal signal pending.
1000			 */
1001			signal->flags = SIGNAL_GROUP_EXIT;
1002			signal->group_exit_code = sig;
1003			signal->group_stop_count = 0;
1004			t = p;
1005			do {
1006				task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1007				sigaddset(&t->pending.signal, SIGKILL);
1008				signal_wake_up(t, 1);
1009			} while_each_thread(p, t);
1010			return;
1011		}
1012	}
1013
1014	/*
1015	 * The signal is already in the shared-pending queue.
1016	 * Tell the chosen thread to wake up and dequeue it.
1017	 */
1018	signal_wake_up(t, sig == SIGKILL);
1019	return;
1020}
1021
1022static inline int legacy_queue(struct sigpending *signals, int sig)
1023{
1024	return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
1025}
1026
1027#ifdef CONFIG_USER_NS
1028static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
1029{
1030	if (current_user_ns() == task_cred_xxx(t, user_ns))
1031		return;
1032
1033	if (SI_FROMKERNEL(info))
1034		return;
1035
1036	rcu_read_lock();
1037	info->si_uid = from_kuid_munged(task_cred_xxx(t, user_ns),
1038					make_kuid(current_user_ns(), info->si_uid));
1039	rcu_read_unlock();
1040}
1041#else
1042static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
1043{
1044	return;
1045}
1046#endif
1047
1048static int __send_signal(int sig, struct siginfo *info, struct task_struct *t,
1049			int group, int from_ancestor_ns)
1050{
1051	struct sigpending *pending;
1052	struct sigqueue *q;
1053	int override_rlimit;
1054	int ret = 0, result;
1055
1056	assert_spin_locked(&t->sighand->siglock);
1057
1058	result = TRACE_SIGNAL_IGNORED;
1059	if (!prepare_signal(sig, t,
1060			from_ancestor_ns || (info == SEND_SIG_FORCED)))
1061		goto ret;
1062
1063	pending = group ? &t->signal->shared_pending : &t->pending;
1064	/*
1065	 * Short-circuit ignored signals and support queuing
1066	 * exactly one non-rt signal, so that we can get more
1067	 * detailed information about the cause of the signal.
1068	 */
1069	result = TRACE_SIGNAL_ALREADY_PENDING;
1070	if (legacy_queue(pending, sig))
1071		goto ret;
1072
1073	result = TRACE_SIGNAL_DELIVERED;
1074	/*
1075	 * fast-pathed signals for kernel-internal things like SIGSTOP
1076	 * or SIGKILL.
1077	 */
1078	if (info == SEND_SIG_FORCED)
1079		goto out_set;
1080
1081	/*
1082	 * Real-time signals must be queued if sent by sigqueue, or
1083	 * some other real-time mechanism.  It is implementation
1084	 * defined whether kill() does so.  We attempt to do so, on
1085	 * the principle of least surprise, but since kill is not
1086	 * allowed to fail with EAGAIN when low on memory we just
1087	 * make sure at least one signal gets delivered and don't
1088	 * pass on the info struct.
1089	 */
1090	if (sig < SIGRTMIN)
1091		override_rlimit = (is_si_special(info) || info->si_code >= 0);
1092	else
1093		override_rlimit = 0;
1094
1095	q = __sigqueue_alloc(sig, t, GFP_ATOMIC | __GFP_NOTRACK_FALSE_POSITIVE,
1096		override_rlimit);
1097	if (q) {
1098		list_add_tail(&q->list, &pending->list);
1099		switch ((unsigned long) info) {
1100		case (unsigned long) SEND_SIG_NOINFO:
1101			q->info.si_signo = sig;
1102			q->info.si_errno = 0;
1103			q->info.si_code = SI_USER;
1104			q->info.si_pid = task_tgid_nr_ns(current,
1105							task_active_pid_ns(t));
1106			q->info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
1107			break;
1108		case (unsigned long) SEND_SIG_PRIV:
1109			q->info.si_signo = sig;
1110			q->info.si_errno = 0;
1111			q->info.si_code = SI_KERNEL;
1112			q->info.si_pid = 0;
1113			q->info.si_uid = 0;
1114			break;
1115		default:
1116			copy_siginfo(&q->info, info);
1117			if (from_ancestor_ns)
1118				q->info.si_pid = 0;
1119			break;
1120		}
1121
1122		userns_fixup_signal_uid(&q->info, t);
1123
1124	} else if (!is_si_special(info)) {
1125		if (sig >= SIGRTMIN && info->si_code != SI_USER) {
1126			/*
1127			 * Queue overflow, abort.  We may abort if the
1128			 * signal was rt and sent by user using something
1129			 * other than kill().
1130			 */
1131			result = TRACE_SIGNAL_OVERFLOW_FAIL;
1132			ret = -EAGAIN;
1133			goto ret;
1134		} else {
1135			/*
1136			 * This is a silent loss of information.  We still
1137			 * send the signal, but the *info bits are lost.
1138			 */
1139			result = TRACE_SIGNAL_LOSE_INFO;
1140		}
1141	}
1142
1143out_set:
1144	signalfd_notify(t, sig);
1145	sigaddset(&pending->signal, sig);
1146	complete_signal(sig, t, group);
1147ret:
1148	trace_signal_generate(sig, info, t, group, result);
1149	return ret;
1150}
1151
1152static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
1153			int group)
1154{
1155	int from_ancestor_ns = 0;
1156
1157#ifdef CONFIG_PID_NS
1158	from_ancestor_ns = si_fromuser(info) &&
1159			   !task_pid_nr_ns(current, task_active_pid_ns(t));
1160#endif
1161
1162	return __send_signal(sig, info, t, group, from_ancestor_ns);
1163}
1164
1165static void print_fatal_signal(int signr)
1166{
1167	struct pt_regs *regs = signal_pt_regs();
1168	printk(KERN_INFO "potentially unexpected fatal signal %d.\n", signr);
1169
1170#if defined(__i386__) && !defined(__arch_um__)
1171	printk(KERN_INFO "code at %08lx: ", regs->ip);
1172	{
1173		int i;
1174		for (i = 0; i < 16; i++) {
1175			unsigned char insn;
1176
1177			if (get_user(insn, (unsigned char *)(regs->ip + i)))
1178				break;
1179			printk(KERN_CONT "%02x ", insn);
1180		}
1181	}
1182	printk(KERN_CONT "\n");
1183#endif
1184	preempt_disable();
1185	show_regs(regs);
1186	preempt_enable();
1187}
1188
1189static int __init setup_print_fatal_signals(char *str)
1190{
1191	get_option (&str, &print_fatal_signals);
1192
1193	return 1;
1194}
1195
1196__setup("print-fatal-signals=", setup_print_fatal_signals);
1197
1198int
1199__group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1200{
1201	return send_signal(sig, info, p, 1);
1202}
1203
1204static int
1205specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1206{
1207	return send_signal(sig, info, t, 0);
1208}
1209
1210int do_send_sig_info(int sig, struct siginfo *info, struct task_struct *p,
1211			bool group)
1212{
1213	unsigned long flags;
1214	int ret = -ESRCH;
1215
1216	if (lock_task_sighand(p, &flags)) {
1217		ret = send_signal(sig, info, p, group);
1218		unlock_task_sighand(p, &flags);
1219	}
1220
1221	return ret;
1222}
1223
1224/*
1225 * Force a signal that the process can't ignore: if necessary
1226 * we unblock the signal and change any SIG_IGN to SIG_DFL.
1227 *
1228 * Note: If we unblock the signal, we always reset it to SIG_DFL,
1229 * since we do not want to have a signal handler that was blocked
1230 * be invoked when user space had explicitly blocked it.
1231 *
1232 * We don't want to have recursive SIGSEGV's etc, for example,
1233 * that is why we also clear SIGNAL_UNKILLABLE.
1234 */
1235int
1236force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1237{
1238	unsigned long int flags;
1239	int ret, blocked, ignored;
1240	struct k_sigaction *action;
1241
1242	spin_lock_irqsave(&t->sighand->siglock, flags);
1243	action = &t->sighand->action[sig-1];
1244	ignored = action->sa.sa_handler == SIG_IGN;
1245	blocked = sigismember(&t->blocked, sig);
1246	if (blocked || ignored) {
1247		action->sa.sa_handler = SIG_DFL;
1248		if (blocked) {
1249			sigdelset(&t->blocked, sig);
1250			recalc_sigpending_and_wake(t);
1251		}
1252	}
1253	if (action->sa.sa_handler == SIG_DFL)
1254		t->signal->flags &= ~SIGNAL_UNKILLABLE;
1255	ret = specific_send_sig_info(sig, info, t);
1256	spin_unlock_irqrestore(&t->sighand->siglock, flags);
1257
1258	return ret;
1259}
1260
1261/*
1262 * Nuke all other threads in the group.
1263 */
1264int zap_other_threads(struct task_struct *p)
1265{
1266	struct task_struct *t = p;
1267	int count = 0;
1268
1269	p->signal->group_stop_count = 0;
1270
1271	while_each_thread(p, t) {
1272		task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1273		count++;
1274
1275		/* Don't bother with already dead threads */
1276		if (t->exit_state)
1277			continue;
1278		sigaddset(&t->pending.signal, SIGKILL);
1279		signal_wake_up(t, 1);
1280	}
1281
1282	return count;
1283}
1284
1285struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1286					   unsigned long *flags)
1287{
1288	struct sighand_struct *sighand;
1289
1290	for (;;) {
 
 
 
 
1291		local_irq_save(*flags);
1292		rcu_read_lock();
1293		sighand = rcu_dereference(tsk->sighand);
1294		if (unlikely(sighand == NULL)) {
1295			rcu_read_unlock();
1296			local_irq_restore(*flags);
1297			break;
1298		}
1299
 
 
 
 
 
 
 
 
 
 
1300		spin_lock(&sighand->siglock);
1301		if (likely(sighand == tsk->sighand)) {
1302			rcu_read_unlock();
1303			break;
1304		}
1305		spin_unlock(&sighand->siglock);
1306		rcu_read_unlock();
1307		local_irq_restore(*flags);
1308	}
1309
1310	return sighand;
1311}
1312
1313/*
1314 * send signal info to all the members of a group
1315 */
1316int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1317{
1318	int ret;
1319
1320	rcu_read_lock();
1321	ret = check_kill_permission(sig, info, p);
1322	rcu_read_unlock();
1323
1324	if (!ret && sig)
1325		ret = do_send_sig_info(sig, info, p, true);
1326
1327	return ret;
1328}
1329
1330/*
1331 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1332 * control characters do (^C, ^Z etc)
1333 * - the caller must hold at least a readlock on tasklist_lock
1334 */
1335int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1336{
1337	struct task_struct *p = NULL;
1338	int retval, success;
1339
1340	success = 0;
1341	retval = -ESRCH;
1342	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1343		int err = group_send_sig_info(sig, info, p);
1344		success |= !err;
1345		retval = err;
1346	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1347	return success ? 0 : retval;
1348}
1349
1350int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
1351{
1352	int error = -ESRCH;
1353	struct task_struct *p;
1354
1355	rcu_read_lock();
1356retry:
1357	p = pid_task(pid, PIDTYPE_PID);
1358	if (p) {
1359		error = group_send_sig_info(sig, info, p);
1360		if (unlikely(error == -ESRCH))
1361			/*
1362			 * The task was unhashed in between, try again.
1363			 * If it is dead, pid_task() will return NULL,
1364			 * if we race with de_thread() it will find the
1365			 * new leader.
1366			 */
1367			goto retry;
1368	}
1369	rcu_read_unlock();
1370
1371	return error;
 
 
 
 
 
1372}
1373
1374int kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1375{
1376	int error;
1377	rcu_read_lock();
1378	error = kill_pid_info(sig, info, find_vpid(pid));
1379	rcu_read_unlock();
1380	return error;
1381}
1382
1383static int kill_as_cred_perm(const struct cred *cred,
1384			     struct task_struct *target)
1385{
1386	const struct cred *pcred = __task_cred(target);
1387	if (!uid_eq(cred->euid, pcred->suid) && !uid_eq(cred->euid, pcred->uid) &&
1388	    !uid_eq(cred->uid,  pcred->suid) && !uid_eq(cred->uid,  pcred->uid))
1389		return 0;
1390	return 1;
1391}
1392
1393/* like kill_pid_info(), but doesn't use uid/euid of "current" */
1394int kill_pid_info_as_cred(int sig, struct siginfo *info, struct pid *pid,
1395			 const struct cred *cred, u32 secid)
1396{
1397	int ret = -EINVAL;
1398	struct task_struct *p;
1399	unsigned long flags;
1400
1401	if (!valid_signal(sig))
1402		return ret;
1403
1404	rcu_read_lock();
1405	p = pid_task(pid, PIDTYPE_PID);
1406	if (!p) {
1407		ret = -ESRCH;
1408		goto out_unlock;
1409	}
1410	if (si_fromuser(info) && !kill_as_cred_perm(cred, p)) {
1411		ret = -EPERM;
1412		goto out_unlock;
1413	}
1414	ret = security_task_kill(p, info, sig, secid);
1415	if (ret)
1416		goto out_unlock;
1417
1418	if (sig) {
1419		if (lock_task_sighand(p, &flags)) {
1420			ret = __send_signal(sig, info, p, 1, 0);
1421			unlock_task_sighand(p, &flags);
1422		} else
1423			ret = -ESRCH;
1424	}
1425out_unlock:
1426	rcu_read_unlock();
1427	return ret;
1428}
1429EXPORT_SYMBOL_GPL(kill_pid_info_as_cred);
1430
1431/*
1432 * kill_something_info() interprets pid in interesting ways just like kill(2).
1433 *
1434 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1435 * is probably wrong.  Should make it like BSD or SYSV.
1436 */
1437
1438static int kill_something_info(int sig, struct siginfo *info, pid_t pid)
1439{
1440	int ret;
1441
1442	if (pid > 0) {
1443		rcu_read_lock();
1444		ret = kill_pid_info(sig, info, find_vpid(pid));
1445		rcu_read_unlock();
1446		return ret;
1447	}
1448
1449	read_lock(&tasklist_lock);
1450	if (pid != -1) {
1451		ret = __kill_pgrp_info(sig, info,
1452				pid ? find_vpid(-pid) : task_pgrp(current));
1453	} else {
1454		int retval = 0, count = 0;
1455		struct task_struct * p;
1456
1457		for_each_process(p) {
1458			if (task_pid_vnr(p) > 1 &&
1459					!same_thread_group(p, current)) {
1460				int err = group_send_sig_info(sig, info, p);
1461				++count;
1462				if (err != -EPERM)
1463					retval = err;
1464			}
1465		}
1466		ret = count ? retval : -ESRCH;
1467	}
1468	read_unlock(&tasklist_lock);
1469
1470	return ret;
1471}
1472
1473/*
1474 * These are for backward compatibility with the rest of the kernel source.
1475 */
1476
1477int send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1478{
1479	/*
1480	 * Make sure legacy kernel users don't send in bad values
1481	 * (normal paths check this in check_kill_permission).
1482	 */
1483	if (!valid_signal(sig))
1484		return -EINVAL;
1485
1486	return do_send_sig_info(sig, info, p, false);
1487}
1488
1489#define __si_special(priv) \
1490	((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1491
1492int
1493send_sig(int sig, struct task_struct *p, int priv)
1494{
1495	return send_sig_info(sig, __si_special(priv), p);
1496}
1497
1498void
1499force_sig(int sig, struct task_struct *p)
1500{
1501	force_sig_info(sig, SEND_SIG_PRIV, p);
1502}
1503
1504/*
1505 * When things go south during signal handling, we
1506 * will force a SIGSEGV. And if the signal that caused
1507 * the problem was already a SIGSEGV, we'll want to
1508 * make sure we don't even try to deliver the signal..
1509 */
1510int
1511force_sigsegv(int sig, struct task_struct *p)
1512{
1513	if (sig == SIGSEGV) {
1514		unsigned long flags;
1515		spin_lock_irqsave(&p->sighand->siglock, flags);
1516		p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1517		spin_unlock_irqrestore(&p->sighand->siglock, flags);
1518	}
1519	force_sig(SIGSEGV, p);
1520	return 0;
1521}
1522
1523int kill_pgrp(struct pid *pid, int sig, int priv)
1524{
1525	int ret;
1526
1527	read_lock(&tasklist_lock);
1528	ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1529	read_unlock(&tasklist_lock);
1530
1531	return ret;
1532}
1533EXPORT_SYMBOL(kill_pgrp);
1534
1535int kill_pid(struct pid *pid, int sig, int priv)
1536{
1537	return kill_pid_info(sig, __si_special(priv), pid);
1538}
1539EXPORT_SYMBOL(kill_pid);
1540
1541/*
1542 * These functions support sending signals using preallocated sigqueue
1543 * structures.  This is needed "because realtime applications cannot
1544 * afford to lose notifications of asynchronous events, like timer
1545 * expirations or I/O completions".  In the case of POSIX Timers
1546 * we allocate the sigqueue structure from the timer_create.  If this
1547 * allocation fails we are able to report the failure to the application
1548 * with an EAGAIN error.
1549 */
1550struct sigqueue *sigqueue_alloc(void)
1551{
1552	struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0);
1553
1554	if (q)
1555		q->flags |= SIGQUEUE_PREALLOC;
1556
1557	return q;
1558}
1559
1560void sigqueue_free(struct sigqueue *q)
1561{
1562	unsigned long flags;
1563	spinlock_t *lock = &current->sighand->siglock;
1564
1565	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1566	/*
1567	 * We must hold ->siglock while testing q->list
1568	 * to serialize with collect_signal() or with
1569	 * __exit_signal()->flush_sigqueue().
1570	 */
1571	spin_lock_irqsave(lock, flags);
1572	q->flags &= ~SIGQUEUE_PREALLOC;
1573	/*
1574	 * If it is queued it will be freed when dequeued,
1575	 * like the "regular" sigqueue.
1576	 */
1577	if (!list_empty(&q->list))
1578		q = NULL;
1579	spin_unlock_irqrestore(lock, flags);
1580
1581	if (q)
1582		__sigqueue_free(q);
1583}
1584
1585int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group)
1586{
1587	int sig = q->info.si_signo;
1588	struct sigpending *pending;
1589	unsigned long flags;
1590	int ret, result;
1591
1592	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1593
1594	ret = -1;
1595	if (!likely(lock_task_sighand(t, &flags)))
1596		goto ret;
1597
1598	ret = 1; /* the signal is ignored */
1599	result = TRACE_SIGNAL_IGNORED;
1600	if (!prepare_signal(sig, t, false))
1601		goto out;
1602
1603	ret = 0;
1604	if (unlikely(!list_empty(&q->list))) {
1605		/*
1606		 * If an SI_TIMER entry is already queue just increment
1607		 * the overrun count.
1608		 */
1609		BUG_ON(q->info.si_code != SI_TIMER);
1610		q->info.si_overrun++;
1611		result = TRACE_SIGNAL_ALREADY_PENDING;
1612		goto out;
1613	}
1614	q->info.si_overrun = 0;
1615
1616	signalfd_notify(t, sig);
1617	pending = group ? &t->signal->shared_pending : &t->pending;
1618	list_add_tail(&q->list, &pending->list);
1619	sigaddset(&pending->signal, sig);
1620	complete_signal(sig, t, group);
1621	result = TRACE_SIGNAL_DELIVERED;
1622out:
1623	trace_signal_generate(sig, &q->info, t, group, result);
1624	unlock_task_sighand(t, &flags);
1625ret:
1626	return ret;
1627}
1628
1629/*
1630 * Let a parent know about the death of a child.
1631 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1632 *
1633 * Returns true if our parent ignored us and so we've switched to
1634 * self-reaping.
1635 */
1636bool do_notify_parent(struct task_struct *tsk, int sig)
1637{
1638	struct siginfo info;
1639	unsigned long flags;
1640	struct sighand_struct *psig;
1641	bool autoreap = false;
1642	cputime_t utime, stime;
1643
1644	BUG_ON(sig == -1);
1645
1646 	/* do_notify_parent_cldstop should have been called instead.  */
1647 	BUG_ON(task_is_stopped_or_traced(tsk));
1648
1649	BUG_ON(!tsk->ptrace &&
1650	       (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1651
1652	if (sig != SIGCHLD) {
1653		/*
1654		 * This is only possible if parent == real_parent.
1655		 * Check if it has changed security domain.
1656		 */
1657		if (tsk->parent_exec_id != tsk->parent->self_exec_id)
1658			sig = SIGCHLD;
1659	}
1660
1661	info.si_signo = sig;
1662	info.si_errno = 0;
1663	/*
1664	 * We are under tasklist_lock here so our parent is tied to
1665	 * us and cannot change.
1666	 *
1667	 * task_active_pid_ns will always return the same pid namespace
1668	 * until a task passes through release_task.
1669	 *
1670	 * write_lock() currently calls preempt_disable() which is the
1671	 * same as rcu_read_lock(), but according to Oleg, this is not
1672	 * correct to rely on this
1673	 */
1674	rcu_read_lock();
1675	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
1676	info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
1677				       task_uid(tsk));
1678	rcu_read_unlock();
1679
1680	task_cputime(tsk, &utime, &stime);
1681	info.si_utime = cputime_to_clock_t(utime + tsk->signal->utime);
1682	info.si_stime = cputime_to_clock_t(stime + tsk->signal->stime);
1683
1684	info.si_status = tsk->exit_code & 0x7f;
1685	if (tsk->exit_code & 0x80)
1686		info.si_code = CLD_DUMPED;
1687	else if (tsk->exit_code & 0x7f)
1688		info.si_code = CLD_KILLED;
1689	else {
1690		info.si_code = CLD_EXITED;
1691		info.si_status = tsk->exit_code >> 8;
1692	}
1693
1694	psig = tsk->parent->sighand;
1695	spin_lock_irqsave(&psig->siglock, flags);
1696	if (!tsk->ptrace && sig == SIGCHLD &&
1697	    (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1698	     (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1699		/*
1700		 * We are exiting and our parent doesn't care.  POSIX.1
1701		 * defines special semantics for setting SIGCHLD to SIG_IGN
1702		 * or setting the SA_NOCLDWAIT flag: we should be reaped
1703		 * automatically and not left for our parent's wait4 call.
1704		 * Rather than having the parent do it as a magic kind of
1705		 * signal handler, we just set this to tell do_exit that we
1706		 * can be cleaned up without becoming a zombie.  Note that
1707		 * we still call __wake_up_parent in this case, because a
1708		 * blocked sys_wait4 might now return -ECHILD.
1709		 *
1710		 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1711		 * is implementation-defined: we do (if you don't want
1712		 * it, just use SIG_IGN instead).
1713		 */
1714		autoreap = true;
1715		if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1716			sig = 0;
1717	}
1718	if (valid_signal(sig) && sig)
1719		__group_send_sig_info(sig, &info, tsk->parent);
1720	__wake_up_parent(tsk, tsk->parent);
1721	spin_unlock_irqrestore(&psig->siglock, flags);
1722
1723	return autoreap;
1724}
1725
1726/**
1727 * do_notify_parent_cldstop - notify parent of stopped/continued state change
1728 * @tsk: task reporting the state change
1729 * @for_ptracer: the notification is for ptracer
1730 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
1731 *
1732 * Notify @tsk's parent that the stopped/continued state has changed.  If
1733 * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
1734 * If %true, @tsk reports to @tsk->parent which should be the ptracer.
1735 *
1736 * CONTEXT:
1737 * Must be called with tasklist_lock at least read locked.
1738 */
1739static void do_notify_parent_cldstop(struct task_struct *tsk,
1740				     bool for_ptracer, int why)
1741{
1742	struct siginfo info;
1743	unsigned long flags;
1744	struct task_struct *parent;
1745	struct sighand_struct *sighand;
1746	cputime_t utime, stime;
1747
1748	if (for_ptracer) {
1749		parent = tsk->parent;
1750	} else {
1751		tsk = tsk->group_leader;
1752		parent = tsk->real_parent;
1753	}
1754
1755	info.si_signo = SIGCHLD;
1756	info.si_errno = 0;
1757	/*
1758	 * see comment in do_notify_parent() about the following 4 lines
1759	 */
1760	rcu_read_lock();
1761	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
1762	info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
1763	rcu_read_unlock();
1764
1765	task_cputime(tsk, &utime, &stime);
1766	info.si_utime = cputime_to_clock_t(utime);
1767	info.si_stime = cputime_to_clock_t(stime);
1768
1769 	info.si_code = why;
1770 	switch (why) {
1771 	case CLD_CONTINUED:
1772 		info.si_status = SIGCONT;
1773 		break;
1774 	case CLD_STOPPED:
1775 		info.si_status = tsk->signal->group_exit_code & 0x7f;
1776 		break;
1777 	case CLD_TRAPPED:
1778 		info.si_status = tsk->exit_code & 0x7f;
1779 		break;
1780 	default:
1781 		BUG();
1782 	}
1783
1784	sighand = parent->sighand;
1785	spin_lock_irqsave(&sighand->siglock, flags);
1786	if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1787	    !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1788		__group_send_sig_info(SIGCHLD, &info, parent);
1789	/*
1790	 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1791	 */
1792	__wake_up_parent(tsk, parent);
1793	spin_unlock_irqrestore(&sighand->siglock, flags);
1794}
1795
1796static inline int may_ptrace_stop(void)
1797{
1798	if (!likely(current->ptrace))
1799		return 0;
1800	/*
1801	 * Are we in the middle of do_coredump?
1802	 * If so and our tracer is also part of the coredump stopping
1803	 * is a deadlock situation, and pointless because our tracer
1804	 * is dead so don't allow us to stop.
1805	 * If SIGKILL was already sent before the caller unlocked
1806	 * ->siglock we must see ->core_state != NULL. Otherwise it
1807	 * is safe to enter schedule().
1808	 *
1809	 * This is almost outdated, a task with the pending SIGKILL can't
1810	 * block in TASK_TRACED. But PTRACE_EVENT_EXIT can be reported
1811	 * after SIGKILL was already dequeued.
1812	 */
1813	if (unlikely(current->mm->core_state) &&
1814	    unlikely(current->mm == current->parent->mm))
1815		return 0;
1816
1817	return 1;
1818}
1819
1820/*
1821 * Return non-zero if there is a SIGKILL that should be waking us up.
1822 * Called with the siglock held.
1823 */
1824static int sigkill_pending(struct task_struct *tsk)
1825{
1826	return	sigismember(&tsk->pending.signal, SIGKILL) ||
1827		sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
1828}
1829
1830/*
1831 * This must be called with current->sighand->siglock held.
1832 *
1833 * This should be the path for all ptrace stops.
1834 * We always set current->last_siginfo while stopped here.
1835 * That makes it a way to test a stopped process for
1836 * being ptrace-stopped vs being job-control-stopped.
1837 *
1838 * If we actually decide not to stop at all because the tracer
1839 * is gone, we keep current->exit_code unless clear_code.
1840 */
1841static void ptrace_stop(int exit_code, int why, int clear_code, siginfo_t *info)
1842	__releases(&current->sighand->siglock)
1843	__acquires(&current->sighand->siglock)
1844{
1845	bool gstop_done = false;
1846
1847	if (arch_ptrace_stop_needed(exit_code, info)) {
1848		/*
1849		 * The arch code has something special to do before a
1850		 * ptrace stop.  This is allowed to block, e.g. for faults
1851		 * on user stack pages.  We can't keep the siglock while
1852		 * calling arch_ptrace_stop, so we must release it now.
1853		 * To preserve proper semantics, we must do this before
1854		 * any signal bookkeeping like checking group_stop_count.
1855		 * Meanwhile, a SIGKILL could come in before we retake the
1856		 * siglock.  That must prevent us from sleeping in TASK_TRACED.
1857		 * So after regaining the lock, we must check for SIGKILL.
1858		 */
1859		spin_unlock_irq(&current->sighand->siglock);
1860		arch_ptrace_stop(exit_code, info);
1861		spin_lock_irq(&current->sighand->siglock);
1862		if (sigkill_pending(current))
1863			return;
1864	}
1865
1866	/*
1867	 * We're committing to trapping.  TRACED should be visible before
1868	 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
1869	 * Also, transition to TRACED and updates to ->jobctl should be
1870	 * atomic with respect to siglock and should be done after the arch
1871	 * hook as siglock is released and regrabbed across it.
1872	 */
1873	set_current_state(TASK_TRACED);
1874
1875	current->last_siginfo = info;
1876	current->exit_code = exit_code;
1877
1878	/*
1879	 * If @why is CLD_STOPPED, we're trapping to participate in a group
1880	 * stop.  Do the bookkeeping.  Note that if SIGCONT was delievered
1881	 * across siglock relocks since INTERRUPT was scheduled, PENDING
1882	 * could be clear now.  We act as if SIGCONT is received after
1883	 * TASK_TRACED is entered - ignore it.
1884	 */
1885	if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
1886		gstop_done = task_participate_group_stop(current);
1887
1888	/* any trap clears pending STOP trap, STOP trap clears NOTIFY */
1889	task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
1890	if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
1891		task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
1892
1893	/* entering a trap, clear TRAPPING */
1894	task_clear_jobctl_trapping(current);
1895
1896	spin_unlock_irq(&current->sighand->siglock);
1897	read_lock(&tasklist_lock);
1898	if (may_ptrace_stop()) {
1899		/*
1900		 * Notify parents of the stop.
1901		 *
1902		 * While ptraced, there are two parents - the ptracer and
1903		 * the real_parent of the group_leader.  The ptracer should
1904		 * know about every stop while the real parent is only
1905		 * interested in the completion of group stop.  The states
1906		 * for the two don't interact with each other.  Notify
1907		 * separately unless they're gonna be duplicates.
1908		 */
1909		do_notify_parent_cldstop(current, true, why);
1910		if (gstop_done && ptrace_reparented(current))
1911			do_notify_parent_cldstop(current, false, why);
1912
1913		/*
1914		 * Don't want to allow preemption here, because
1915		 * sys_ptrace() needs this task to be inactive.
1916		 *
1917		 * XXX: implement read_unlock_no_resched().
1918		 */
1919		preempt_disable();
1920		read_unlock(&tasklist_lock);
1921		preempt_enable_no_resched();
1922		freezable_schedule();
1923	} else {
1924		/*
1925		 * By the time we got the lock, our tracer went away.
1926		 * Don't drop the lock yet, another tracer may come.
1927		 *
1928		 * If @gstop_done, the ptracer went away between group stop
1929		 * completion and here.  During detach, it would have set
1930		 * JOBCTL_STOP_PENDING on us and we'll re-enter
1931		 * TASK_STOPPED in do_signal_stop() on return, so notifying
1932		 * the real parent of the group stop completion is enough.
1933		 */
1934		if (gstop_done)
1935			do_notify_parent_cldstop(current, false, why);
1936
1937		/* tasklist protects us from ptrace_freeze_traced() */
1938		__set_current_state(TASK_RUNNING);
1939		if (clear_code)
1940			current->exit_code = 0;
1941		read_unlock(&tasklist_lock);
1942	}
1943
1944	/*
1945	 * We are back.  Now reacquire the siglock before touching
1946	 * last_siginfo, so that we are sure to have synchronized with
1947	 * any signal-sending on another CPU that wants to examine it.
1948	 */
1949	spin_lock_irq(&current->sighand->siglock);
1950	current->last_siginfo = NULL;
1951
1952	/* LISTENING can be set only during STOP traps, clear it */
1953	current->jobctl &= ~JOBCTL_LISTENING;
1954
1955	/*
1956	 * Queued signals ignored us while we were stopped for tracing.
1957	 * So check for any that we should take before resuming user mode.
1958	 * This sets TIF_SIGPENDING, but never clears it.
1959	 */
1960	recalc_sigpending_tsk(current);
1961}
1962
1963static void ptrace_do_notify(int signr, int exit_code, int why)
1964{
1965	siginfo_t info;
1966
1967	memset(&info, 0, sizeof info);
1968	info.si_signo = signr;
1969	info.si_code = exit_code;
1970	info.si_pid = task_pid_vnr(current);
1971	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
1972
1973	/* Let the debugger run.  */
1974	ptrace_stop(exit_code, why, 1, &info);
1975}
1976
1977void ptrace_notify(int exit_code)
1978{
1979	BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1980	if (unlikely(current->task_works))
1981		task_work_run();
1982
1983	spin_lock_irq(&current->sighand->siglock);
1984	ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED);
1985	spin_unlock_irq(&current->sighand->siglock);
1986}
1987
1988/**
1989 * do_signal_stop - handle group stop for SIGSTOP and other stop signals
1990 * @signr: signr causing group stop if initiating
1991 *
1992 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
1993 * and participate in it.  If already set, participate in the existing
1994 * group stop.  If participated in a group stop (and thus slept), %true is
1995 * returned with siglock released.
1996 *
1997 * If ptraced, this function doesn't handle stop itself.  Instead,
1998 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
1999 * untouched.  The caller must ensure that INTERRUPT trap handling takes
2000 * places afterwards.
2001 *
2002 * CONTEXT:
2003 * Must be called with @current->sighand->siglock held, which is released
2004 * on %true return.
2005 *
2006 * RETURNS:
2007 * %false if group stop is already cancelled or ptrace trap is scheduled.
2008 * %true if participated in group stop.
2009 */
2010static bool do_signal_stop(int signr)
2011	__releases(&current->sighand->siglock)
2012{
2013	struct signal_struct *sig = current->signal;
2014
2015	if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
2016		unsigned int gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
2017		struct task_struct *t;
2018
2019		/* signr will be recorded in task->jobctl for retries */
2020		WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
2021
2022		if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
2023		    unlikely(signal_group_exit(sig)))
2024			return false;
2025		/*
2026		 * There is no group stop already in progress.  We must
2027		 * initiate one now.
2028		 *
2029		 * While ptraced, a task may be resumed while group stop is
2030		 * still in effect and then receive a stop signal and
2031		 * initiate another group stop.  This deviates from the
2032		 * usual behavior as two consecutive stop signals can't
2033		 * cause two group stops when !ptraced.  That is why we
2034		 * also check !task_is_stopped(t) below.
2035		 *
2036		 * The condition can be distinguished by testing whether
2037		 * SIGNAL_STOP_STOPPED is already set.  Don't generate
2038		 * group_exit_code in such case.
2039		 *
2040		 * This is not necessary for SIGNAL_STOP_CONTINUED because
2041		 * an intervening stop signal is required to cause two
2042		 * continued events regardless of ptrace.
2043		 */
2044		if (!(sig->flags & SIGNAL_STOP_STOPPED))
2045			sig->group_exit_code = signr;
2046
2047		sig->group_stop_count = 0;
2048
2049		if (task_set_jobctl_pending(current, signr | gstop))
2050			sig->group_stop_count++;
2051
2052		t = current;
2053		while_each_thread(current, t) {
2054			/*
2055			 * Setting state to TASK_STOPPED for a group
2056			 * stop is always done with the siglock held,
2057			 * so this check has no races.
2058			 */
2059			if (!task_is_stopped(t) &&
2060			    task_set_jobctl_pending(t, signr | gstop)) {
2061				sig->group_stop_count++;
2062				if (likely(!(t->ptrace & PT_SEIZED)))
2063					signal_wake_up(t, 0);
2064				else
2065					ptrace_trap_notify(t);
2066			}
2067		}
2068	}
2069
2070	if (likely(!current->ptrace)) {
2071		int notify = 0;
2072
2073		/*
2074		 * If there are no other threads in the group, or if there
2075		 * is a group stop in progress and we are the last to stop,
2076		 * report to the parent.
2077		 */
2078		if (task_participate_group_stop(current))
2079			notify = CLD_STOPPED;
2080
2081		__set_current_state(TASK_STOPPED);
2082		spin_unlock_irq(&current->sighand->siglock);
2083
2084		/*
2085		 * Notify the parent of the group stop completion.  Because
2086		 * we're not holding either the siglock or tasklist_lock
2087		 * here, ptracer may attach inbetween; however, this is for
2088		 * group stop and should always be delivered to the real
2089		 * parent of the group leader.  The new ptracer will get
2090		 * its notification when this task transitions into
2091		 * TASK_TRACED.
2092		 */
2093		if (notify) {
2094			read_lock(&tasklist_lock);
2095			do_notify_parent_cldstop(current, false, notify);
2096			read_unlock(&tasklist_lock);
2097		}
2098
2099		/* Now we don't run again until woken by SIGCONT or SIGKILL */
2100		freezable_schedule();
2101		return true;
2102	} else {
2103		/*
2104		 * While ptraced, group stop is handled by STOP trap.
2105		 * Schedule it and let the caller deal with it.
2106		 */
2107		task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2108		return false;
2109	}
2110}
2111
2112/**
2113 * do_jobctl_trap - take care of ptrace jobctl traps
2114 *
2115 * When PT_SEIZED, it's used for both group stop and explicit
2116 * SEIZE/INTERRUPT traps.  Both generate PTRACE_EVENT_STOP trap with
2117 * accompanying siginfo.  If stopped, lower eight bits of exit_code contain
2118 * the stop signal; otherwise, %SIGTRAP.
2119 *
2120 * When !PT_SEIZED, it's used only for group stop trap with stop signal
2121 * number as exit_code and no siginfo.
2122 *
2123 * CONTEXT:
2124 * Must be called with @current->sighand->siglock held, which may be
2125 * released and re-acquired before returning with intervening sleep.
2126 */
2127static void do_jobctl_trap(void)
2128{
2129	struct signal_struct *signal = current->signal;
2130	int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2131
2132	if (current->ptrace & PT_SEIZED) {
2133		if (!signal->group_stop_count &&
2134		    !(signal->flags & SIGNAL_STOP_STOPPED))
2135			signr = SIGTRAP;
2136		WARN_ON_ONCE(!signr);
2137		ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2138				 CLD_STOPPED);
2139	} else {
2140		WARN_ON_ONCE(!signr);
2141		ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2142		current->exit_code = 0;
2143	}
2144}
2145
2146static int ptrace_signal(int signr, siginfo_t *info)
2147{
2148	ptrace_signal_deliver();
2149	/*
2150	 * We do not check sig_kernel_stop(signr) but set this marker
2151	 * unconditionally because we do not know whether debugger will
2152	 * change signr. This flag has no meaning unless we are going
2153	 * to stop after return from ptrace_stop(). In this case it will
2154	 * be checked in do_signal_stop(), we should only stop if it was
2155	 * not cleared by SIGCONT while we were sleeping. See also the
2156	 * comment in dequeue_signal().
2157	 */
2158	current->jobctl |= JOBCTL_STOP_DEQUEUED;
2159	ptrace_stop(signr, CLD_TRAPPED, 0, info);
2160
2161	/* We're back.  Did the debugger cancel the sig?  */
2162	signr = current->exit_code;
2163	if (signr == 0)
2164		return signr;
2165
2166	current->exit_code = 0;
2167
2168	/*
2169	 * Update the siginfo structure if the signal has
2170	 * changed.  If the debugger wanted something
2171	 * specific in the siginfo structure then it should
2172	 * have updated *info via PTRACE_SETSIGINFO.
2173	 */
2174	if (signr != info->si_signo) {
2175		info->si_signo = signr;
2176		info->si_errno = 0;
2177		info->si_code = SI_USER;
2178		rcu_read_lock();
2179		info->si_pid = task_pid_vnr(current->parent);
2180		info->si_uid = from_kuid_munged(current_user_ns(),
2181						task_uid(current->parent));
2182		rcu_read_unlock();
2183	}
2184
2185	/* If the (new) signal is now blocked, requeue it.  */
2186	if (sigismember(&current->blocked, signr)) {
2187		specific_send_sig_info(signr, info, current);
2188		signr = 0;
2189	}
2190
2191	return signr;
2192}
2193
2194int get_signal_to_deliver(siginfo_t *info, struct k_sigaction *return_ka,
2195			  struct pt_regs *regs, void *cookie)
2196{
2197	struct sighand_struct *sighand = current->sighand;
2198	struct signal_struct *signal = current->signal;
2199	int signr;
2200
2201	if (unlikely(current->task_works))
2202		task_work_run();
2203
2204	if (unlikely(uprobe_deny_signal()))
2205		return 0;
2206
2207	/*
2208	 * Do this once, we can't return to user-mode if freezing() == T.
2209	 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2210	 * thus do not need another check after return.
2211	 */
2212	try_to_freeze();
2213
2214relock:
2215	spin_lock_irq(&sighand->siglock);
2216	/*
2217	 * Every stopped thread goes here after wakeup. Check to see if
2218	 * we should notify the parent, prepare_signal(SIGCONT) encodes
2219	 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2220	 */
2221	if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2222		int why;
2223
2224		if (signal->flags & SIGNAL_CLD_CONTINUED)
2225			why = CLD_CONTINUED;
2226		else
2227			why = CLD_STOPPED;
2228
2229		signal->flags &= ~SIGNAL_CLD_MASK;
2230
2231		spin_unlock_irq(&sighand->siglock);
2232
2233		/*
2234		 * Notify the parent that we're continuing.  This event is
2235		 * always per-process and doesn't make whole lot of sense
2236		 * for ptracers, who shouldn't consume the state via
2237		 * wait(2) either, but, for backward compatibility, notify
2238		 * the ptracer of the group leader too unless it's gonna be
2239		 * a duplicate.
2240		 */
2241		read_lock(&tasklist_lock);
2242		do_notify_parent_cldstop(current, false, why);
2243
2244		if (ptrace_reparented(current->group_leader))
2245			do_notify_parent_cldstop(current->group_leader,
2246						true, why);
2247		read_unlock(&tasklist_lock);
2248
2249		goto relock;
2250	}
2251
2252	for (;;) {
2253		struct k_sigaction *ka;
2254
2255		if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2256		    do_signal_stop(0))
2257			goto relock;
2258
2259		if (unlikely(current->jobctl & JOBCTL_TRAP_MASK)) {
2260			do_jobctl_trap();
2261			spin_unlock_irq(&sighand->siglock);
2262			goto relock;
2263		}
2264
2265		signr = dequeue_signal(current, &current->blocked, info);
2266
2267		if (!signr)
2268			break; /* will return 0 */
2269
2270		if (unlikely(current->ptrace) && signr != SIGKILL) {
2271			signr = ptrace_signal(signr, info);
2272			if (!signr)
2273				continue;
2274		}
2275
2276		ka = &sighand->action[signr-1];
2277
2278		/* Trace actually delivered signals. */
2279		trace_signal_deliver(signr, info, ka);
2280
2281		if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */
2282			continue;
2283		if (ka->sa.sa_handler != SIG_DFL) {
2284			/* Run the handler.  */
2285			*return_ka = *ka;
2286
2287			if (ka->sa.sa_flags & SA_ONESHOT)
2288				ka->sa.sa_handler = SIG_DFL;
2289
2290			break; /* will return non-zero "signr" value */
2291		}
2292
2293		/*
2294		 * Now we are doing the default action for this signal.
2295		 */
2296		if (sig_kernel_ignore(signr)) /* Default is nothing. */
2297			continue;
2298
2299		/*
2300		 * Global init gets no signals it doesn't want.
2301		 * Container-init gets no signals it doesn't want from same
2302		 * container.
2303		 *
2304		 * Note that if global/container-init sees a sig_kernel_only()
2305		 * signal here, the signal must have been generated internally
2306		 * or must have come from an ancestor namespace. In either
2307		 * case, the signal cannot be dropped.
2308		 */
2309		if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2310				!sig_kernel_only(signr))
2311			continue;
2312
2313		if (sig_kernel_stop(signr)) {
2314			/*
2315			 * The default action is to stop all threads in
2316			 * the thread group.  The job control signals
2317			 * do nothing in an orphaned pgrp, but SIGSTOP
2318			 * always works.  Note that siglock needs to be
2319			 * dropped during the call to is_orphaned_pgrp()
2320			 * because of lock ordering with tasklist_lock.
2321			 * This allows an intervening SIGCONT to be posted.
2322			 * We need to check for that and bail out if necessary.
2323			 */
2324			if (signr != SIGSTOP) {
2325				spin_unlock_irq(&sighand->siglock);
2326
2327				/* signals can be posted during this window */
2328
2329				if (is_current_pgrp_orphaned())
2330					goto relock;
2331
2332				spin_lock_irq(&sighand->siglock);
2333			}
2334
2335			if (likely(do_signal_stop(info->si_signo))) {
2336				/* It released the siglock.  */
2337				goto relock;
2338			}
2339
2340			/*
2341			 * We didn't actually stop, due to a race
2342			 * with SIGCONT or something like that.
2343			 */
2344			continue;
2345		}
2346
2347		spin_unlock_irq(&sighand->siglock);
2348
2349		/*
2350		 * Anything else is fatal, maybe with a core dump.
2351		 */
2352		current->flags |= PF_SIGNALED;
2353
2354		if (sig_kernel_coredump(signr)) {
2355			if (print_fatal_signals)
2356				print_fatal_signal(info->si_signo);
2357			proc_coredump_connector(current);
2358			/*
2359			 * If it was able to dump core, this kills all
2360			 * other threads in the group and synchronizes with
2361			 * their demise.  If we lost the race with another
2362			 * thread getting here, it set group_exit_code
2363			 * first and our do_group_exit call below will use
2364			 * that value and ignore the one we pass it.
2365			 */
2366			do_coredump(info);
2367		}
2368
2369		/*
2370		 * Death signals, no core dump.
2371		 */
2372		do_group_exit(info->si_signo);
2373		/* NOTREACHED */
2374	}
2375	spin_unlock_irq(&sighand->siglock);
2376	return signr;
 
 
2377}
2378
2379/**
2380 * signal_delivered - 
2381 * @sig:		number of signal being delivered
2382 * @info:		siginfo_t of signal being delivered
2383 * @ka:			sigaction setting that chose the handler
2384 * @regs:		user register state
2385 * @stepping:		nonzero if debugger single-step or block-step in use
2386 *
2387 * This function should be called when a signal has successfully been
2388 * delivered. It updates the blocked signals accordingly (@ka->sa.sa_mask
2389 * is always blocked, and the signal itself is blocked unless %SA_NODEFER
2390 * is set in @ka->sa.sa_flags.  Tracing is notified.
2391 */
2392void signal_delivered(int sig, siginfo_t *info, struct k_sigaction *ka,
2393			struct pt_regs *regs, int stepping)
2394{
2395	sigset_t blocked;
2396
2397	/* A signal was successfully delivered, and the
2398	   saved sigmask was stored on the signal frame,
2399	   and will be restored by sigreturn.  So we can
2400	   simply clear the restore sigmask flag.  */
2401	clear_restore_sigmask();
2402
2403	sigorsets(&blocked, &current->blocked, &ka->sa.sa_mask);
2404	if (!(ka->sa.sa_flags & SA_NODEFER))
2405		sigaddset(&blocked, sig);
2406	set_current_blocked(&blocked);
2407	tracehook_signal_handler(sig, info, ka, regs, stepping);
2408}
2409
2410void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
2411{
2412	if (failed)
2413		force_sigsegv(ksig->sig, current);
2414	else
2415		signal_delivered(ksig->sig, &ksig->info, &ksig->ka,
2416			signal_pt_regs(), stepping);
2417}
2418
2419/*
2420 * It could be that complete_signal() picked us to notify about the
2421 * group-wide signal. Other threads should be notified now to take
2422 * the shared signals in @which since we will not.
2423 */
2424static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2425{
2426	sigset_t retarget;
2427	struct task_struct *t;
2428
2429	sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2430	if (sigisemptyset(&retarget))
2431		return;
2432
2433	t = tsk;
2434	while_each_thread(tsk, t) {
2435		if (t->flags & PF_EXITING)
2436			continue;
2437
2438		if (!has_pending_signals(&retarget, &t->blocked))
2439			continue;
2440		/* Remove the signals this thread can handle. */
2441		sigandsets(&retarget, &retarget, &t->blocked);
2442
2443		if (!signal_pending(t))
2444			signal_wake_up(t, 0);
2445
2446		if (sigisemptyset(&retarget))
2447			break;
2448	}
2449}
2450
2451void exit_signals(struct task_struct *tsk)
2452{
2453	int group_stop = 0;
2454	sigset_t unblocked;
2455
2456	/*
2457	 * @tsk is about to have PF_EXITING set - lock out users which
2458	 * expect stable threadgroup.
2459	 */
2460	threadgroup_change_begin(tsk);
2461
2462	if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
2463		tsk->flags |= PF_EXITING;
2464		threadgroup_change_end(tsk);
2465		return;
2466	}
2467
2468	spin_lock_irq(&tsk->sighand->siglock);
2469	/*
2470	 * From now this task is not visible for group-wide signals,
2471	 * see wants_signal(), do_signal_stop().
2472	 */
2473	tsk->flags |= PF_EXITING;
2474
2475	threadgroup_change_end(tsk);
2476
2477	if (!signal_pending(tsk))
2478		goto out;
2479
2480	unblocked = tsk->blocked;
2481	signotset(&unblocked);
2482	retarget_shared_pending(tsk, &unblocked);
2483
2484	if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2485	    task_participate_group_stop(tsk))
2486		group_stop = CLD_STOPPED;
2487out:
2488	spin_unlock_irq(&tsk->sighand->siglock);
2489
2490	/*
2491	 * If group stop has completed, deliver the notification.  This
2492	 * should always go to the real parent of the group leader.
2493	 */
2494	if (unlikely(group_stop)) {
2495		read_lock(&tasklist_lock);
2496		do_notify_parent_cldstop(tsk, false, group_stop);
2497		read_unlock(&tasklist_lock);
2498	}
2499}
2500
2501EXPORT_SYMBOL(recalc_sigpending);
2502EXPORT_SYMBOL_GPL(dequeue_signal);
2503EXPORT_SYMBOL(flush_signals);
2504EXPORT_SYMBOL(force_sig);
2505EXPORT_SYMBOL(send_sig);
2506EXPORT_SYMBOL(send_sig_info);
2507EXPORT_SYMBOL(sigprocmask);
2508EXPORT_SYMBOL(block_all_signals);
2509EXPORT_SYMBOL(unblock_all_signals);
2510
2511
2512/*
2513 * System call entry points.
2514 */
2515
2516/**
2517 *  sys_restart_syscall - restart a system call
2518 */
2519SYSCALL_DEFINE0(restart_syscall)
2520{
2521	struct restart_block *restart = &current_thread_info()->restart_block;
2522	return restart->fn(restart);
2523}
2524
2525long do_no_restart_syscall(struct restart_block *param)
2526{
2527	return -EINTR;
2528}
2529
2530static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
2531{
2532	if (signal_pending(tsk) && !thread_group_empty(tsk)) {
2533		sigset_t newblocked;
2534		/* A set of now blocked but previously unblocked signals. */
2535		sigandnsets(&newblocked, newset, &current->blocked);
2536		retarget_shared_pending(tsk, &newblocked);
2537	}
2538	tsk->blocked = *newset;
2539	recalc_sigpending();
2540}
2541
2542/**
2543 * set_current_blocked - change current->blocked mask
2544 * @newset: new mask
2545 *
2546 * It is wrong to change ->blocked directly, this helper should be used
2547 * to ensure the process can't miss a shared signal we are going to block.
2548 */
2549void set_current_blocked(sigset_t *newset)
2550{
2551	sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
2552	__set_current_blocked(newset);
2553}
2554
2555void __set_current_blocked(const sigset_t *newset)
2556{
2557	struct task_struct *tsk = current;
2558
2559	spin_lock_irq(&tsk->sighand->siglock);
2560	__set_task_blocked(tsk, newset);
2561	spin_unlock_irq(&tsk->sighand->siglock);
2562}
2563
2564/*
2565 * This is also useful for kernel threads that want to temporarily
2566 * (or permanently) block certain signals.
2567 *
2568 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2569 * interface happily blocks "unblockable" signals like SIGKILL
2570 * and friends.
2571 */
2572int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2573{
2574	struct task_struct *tsk = current;
2575	sigset_t newset;
2576
2577	/* Lockless, only current can change ->blocked, never from irq */
2578	if (oldset)
2579		*oldset = tsk->blocked;
2580
2581	switch (how) {
2582	case SIG_BLOCK:
2583		sigorsets(&newset, &tsk->blocked, set);
2584		break;
2585	case SIG_UNBLOCK:
2586		sigandnsets(&newset, &tsk->blocked, set);
2587		break;
2588	case SIG_SETMASK:
2589		newset = *set;
2590		break;
2591	default:
2592		return -EINVAL;
2593	}
2594
2595	__set_current_blocked(&newset);
2596	return 0;
2597}
2598
2599/**
2600 *  sys_rt_sigprocmask - change the list of currently blocked signals
2601 *  @how: whether to add, remove, or set signals
2602 *  @nset: stores pending signals
2603 *  @oset: previous value of signal mask if non-null
2604 *  @sigsetsize: size of sigset_t type
2605 */
2606SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
2607		sigset_t __user *, oset, size_t, sigsetsize)
2608{
2609	sigset_t old_set, new_set;
2610	int error;
2611
2612	/* XXX: Don't preclude handling different sized sigset_t's.  */
2613	if (sigsetsize != sizeof(sigset_t))
2614		return -EINVAL;
2615
2616	old_set = current->blocked;
2617
2618	if (nset) {
2619		if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
2620			return -EFAULT;
2621		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2622
2623		error = sigprocmask(how, &new_set, NULL);
2624		if (error)
2625			return error;
2626	}
2627
2628	if (oset) {
2629		if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
2630			return -EFAULT;
2631	}
2632
2633	return 0;
2634}
2635
2636#ifdef CONFIG_COMPAT
2637COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
2638		compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
2639{
2640#ifdef __BIG_ENDIAN
2641	sigset_t old_set = current->blocked;
2642
2643	/* XXX: Don't preclude handling different sized sigset_t's.  */
2644	if (sigsetsize != sizeof(sigset_t))
2645		return -EINVAL;
2646
2647	if (nset) {
2648		compat_sigset_t new32;
2649		sigset_t new_set;
2650		int error;
2651		if (copy_from_user(&new32, nset, sizeof(compat_sigset_t)))
2652			return -EFAULT;
2653
2654		sigset_from_compat(&new_set, &new32);
2655		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2656
2657		error = sigprocmask(how, &new_set, NULL);
2658		if (error)
2659			return error;
2660	}
2661	if (oset) {
2662		compat_sigset_t old32;
2663		sigset_to_compat(&old32, &old_set);
2664		if (copy_to_user(oset, &old32, sizeof(compat_sigset_t)))
2665			return -EFAULT;
2666	}
2667	return 0;
2668#else
2669	return sys_rt_sigprocmask(how, (sigset_t __user *)nset,
2670				  (sigset_t __user *)oset, sigsetsize);
2671#endif
2672}
2673#endif
2674
2675static int do_sigpending(void *set, unsigned long sigsetsize)
2676{
2677	if (sigsetsize > sizeof(sigset_t))
2678		return -EINVAL;
2679
2680	spin_lock_irq(&current->sighand->siglock);
2681	sigorsets(set, &current->pending.signal,
2682		  &current->signal->shared_pending.signal);
2683	spin_unlock_irq(&current->sighand->siglock);
2684
2685	/* Outside the lock because only this thread touches it.  */
2686	sigandsets(set, &current->blocked, set);
2687	return 0;
2688}
2689
2690/**
2691 *  sys_rt_sigpending - examine a pending signal that has been raised
2692 *			while blocked
2693 *  @uset: stores pending signals
2694 *  @sigsetsize: size of sigset_t type or larger
2695 */
2696SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
2697{
2698	sigset_t set;
2699	int err = do_sigpending(&set, sigsetsize);
2700	if (!err && copy_to_user(uset, &set, sigsetsize))
2701		err = -EFAULT;
2702	return err;
2703}
2704
2705#ifdef CONFIG_COMPAT
2706COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
2707		compat_size_t, sigsetsize)
2708{
2709#ifdef __BIG_ENDIAN
2710	sigset_t set;
2711	int err = do_sigpending(&set, sigsetsize);
2712	if (!err) {
2713		compat_sigset_t set32;
2714		sigset_to_compat(&set32, &set);
2715		/* we can get here only if sigsetsize <= sizeof(set) */
2716		if (copy_to_user(uset, &set32, sigsetsize))
2717			err = -EFAULT;
2718	}
2719	return err;
2720#else
2721	return sys_rt_sigpending((sigset_t __user *)uset, sigsetsize);
2722#endif
2723}
2724#endif
2725
2726#ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2727
2728int copy_siginfo_to_user(siginfo_t __user *to, const siginfo_t *from)
2729{
2730	int err;
2731
2732	if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2733		return -EFAULT;
2734	if (from->si_code < 0)
2735		return __copy_to_user(to, from, sizeof(siginfo_t))
2736			? -EFAULT : 0;
2737	/*
2738	 * If you change siginfo_t structure, please be sure
2739	 * this code is fixed accordingly.
2740	 * Please remember to update the signalfd_copyinfo() function
2741	 * inside fs/signalfd.c too, in case siginfo_t changes.
2742	 * It should never copy any pad contained in the structure
2743	 * to avoid security leaks, but must copy the generic
2744	 * 3 ints plus the relevant union member.
2745	 */
2746	err = __put_user(from->si_signo, &to->si_signo);
2747	err |= __put_user(from->si_errno, &to->si_errno);
2748	err |= __put_user((short)from->si_code, &to->si_code);
2749	switch (from->si_code & __SI_MASK) {
2750	case __SI_KILL:
2751		err |= __put_user(from->si_pid, &to->si_pid);
2752		err |= __put_user(from->si_uid, &to->si_uid);
2753		break;
2754	case __SI_TIMER:
2755		 err |= __put_user(from->si_tid, &to->si_tid);
2756		 err |= __put_user(from->si_overrun, &to->si_overrun);
2757		 err |= __put_user(from->si_ptr, &to->si_ptr);
2758		break;
2759	case __SI_POLL:
2760		err |= __put_user(from->si_band, &to->si_band);
2761		err |= __put_user(from->si_fd, &to->si_fd);
2762		break;
2763	case __SI_FAULT:
2764		err |= __put_user(from->si_addr, &to->si_addr);
2765#ifdef __ARCH_SI_TRAPNO
2766		err |= __put_user(from->si_trapno, &to->si_trapno);
2767#endif
2768#ifdef BUS_MCEERR_AO
2769		/*
2770		 * Other callers might not initialize the si_lsb field,
2771		 * so check explicitly for the right codes here.
2772		 */
2773		if (from->si_code == BUS_MCEERR_AR || from->si_code == BUS_MCEERR_AO)
 
2774			err |= __put_user(from->si_addr_lsb, &to->si_addr_lsb);
2775#endif
 
 
 
 
 
 
 
 
 
 
2776		break;
2777	case __SI_CHLD:
2778		err |= __put_user(from->si_pid, &to->si_pid);
2779		err |= __put_user(from->si_uid, &to->si_uid);
2780		err |= __put_user(from->si_status, &to->si_status);
2781		err |= __put_user(from->si_utime, &to->si_utime);
2782		err |= __put_user(from->si_stime, &to->si_stime);
2783		break;
2784	case __SI_RT: /* This is not generated by the kernel as of now. */
2785	case __SI_MESGQ: /* But this is */
2786		err |= __put_user(from->si_pid, &to->si_pid);
2787		err |= __put_user(from->si_uid, &to->si_uid);
2788		err |= __put_user(from->si_ptr, &to->si_ptr);
2789		break;
2790#ifdef __ARCH_SIGSYS
2791	case __SI_SYS:
2792		err |= __put_user(from->si_call_addr, &to->si_call_addr);
2793		err |= __put_user(from->si_syscall, &to->si_syscall);
2794		err |= __put_user(from->si_arch, &to->si_arch);
2795		break;
2796#endif
2797	default: /* this is just in case for now ... */
2798		err |= __put_user(from->si_pid, &to->si_pid);
2799		err |= __put_user(from->si_uid, &to->si_uid);
2800		break;
2801	}
2802	return err;
2803}
2804
2805#endif
2806
2807/**
2808 *  do_sigtimedwait - wait for queued signals specified in @which
2809 *  @which: queued signals to wait for
2810 *  @info: if non-null, the signal's siginfo is returned here
2811 *  @ts: upper bound on process time suspension
2812 */
2813int do_sigtimedwait(const sigset_t *which, siginfo_t *info,
2814			const struct timespec *ts)
2815{
2816	struct task_struct *tsk = current;
2817	long timeout = MAX_SCHEDULE_TIMEOUT;
2818	sigset_t mask = *which;
2819	int sig;
2820
2821	if (ts) {
2822		if (!timespec_valid(ts))
2823			return -EINVAL;
2824		timeout = timespec_to_jiffies(ts);
2825		/*
2826		 * We can be close to the next tick, add another one
2827		 * to ensure we will wait at least the time asked for.
2828		 */
2829		if (ts->tv_sec || ts->tv_nsec)
2830			timeout++;
2831	}
2832
2833	/*
2834	 * Invert the set of allowed signals to get those we want to block.
2835	 */
2836	sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
2837	signotset(&mask);
2838
2839	spin_lock_irq(&tsk->sighand->siglock);
2840	sig = dequeue_signal(tsk, &mask, info);
2841	if (!sig && timeout) {
2842		/*
2843		 * None ready, temporarily unblock those we're interested
2844		 * while we are sleeping in so that we'll be awakened when
2845		 * they arrive. Unblocking is always fine, we can avoid
2846		 * set_current_blocked().
2847		 */
2848		tsk->real_blocked = tsk->blocked;
2849		sigandsets(&tsk->blocked, &tsk->blocked, &mask);
2850		recalc_sigpending();
2851		spin_unlock_irq(&tsk->sighand->siglock);
2852
2853		timeout = freezable_schedule_timeout_interruptible(timeout);
2854
2855		spin_lock_irq(&tsk->sighand->siglock);
2856		__set_task_blocked(tsk, &tsk->real_blocked);
2857		siginitset(&tsk->real_blocked, 0);
2858		sig = dequeue_signal(tsk, &mask, info);
2859	}
2860	spin_unlock_irq(&tsk->sighand->siglock);
2861
2862	if (sig)
2863		return sig;
2864	return timeout ? -EINTR : -EAGAIN;
2865}
2866
2867/**
2868 *  sys_rt_sigtimedwait - synchronously wait for queued signals specified
2869 *			in @uthese
2870 *  @uthese: queued signals to wait for
2871 *  @uinfo: if non-null, the signal's siginfo is returned here
2872 *  @uts: upper bound on process time suspension
2873 *  @sigsetsize: size of sigset_t type
2874 */
2875SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
2876		siginfo_t __user *, uinfo, const struct timespec __user *, uts,
2877		size_t, sigsetsize)
2878{
2879	sigset_t these;
2880	struct timespec ts;
2881	siginfo_t info;
2882	int ret;
2883
2884	/* XXX: Don't preclude handling different sized sigset_t's.  */
2885	if (sigsetsize != sizeof(sigset_t))
2886		return -EINVAL;
2887
2888	if (copy_from_user(&these, uthese, sizeof(these)))
2889		return -EFAULT;
2890
2891	if (uts) {
2892		if (copy_from_user(&ts, uts, sizeof(ts)))
2893			return -EFAULT;
2894	}
2895
2896	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
2897
2898	if (ret > 0 && uinfo) {
2899		if (copy_siginfo_to_user(uinfo, &info))
2900			ret = -EFAULT;
2901	}
2902
2903	return ret;
2904}
2905
2906/**
2907 *  sys_kill - send a signal to a process
2908 *  @pid: the PID of the process
2909 *  @sig: signal to be sent
2910 */
2911SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
2912{
2913	struct siginfo info;
2914
2915	info.si_signo = sig;
2916	info.si_errno = 0;
2917	info.si_code = SI_USER;
2918	info.si_pid = task_tgid_vnr(current);
2919	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2920
2921	return kill_something_info(sig, &info, pid);
2922}
2923
2924static int
2925do_send_specific(pid_t tgid, pid_t pid, int sig, struct siginfo *info)
2926{
2927	struct task_struct *p;
2928	int error = -ESRCH;
2929
2930	rcu_read_lock();
2931	p = find_task_by_vpid(pid);
2932	if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
2933		error = check_kill_permission(sig, info, p);
2934		/*
2935		 * The null signal is a permissions and process existence
2936		 * probe.  No signal is actually delivered.
2937		 */
2938		if (!error && sig) {
2939			error = do_send_sig_info(sig, info, p, false);
2940			/*
2941			 * If lock_task_sighand() failed we pretend the task
2942			 * dies after receiving the signal. The window is tiny,
2943			 * and the signal is private anyway.
2944			 */
2945			if (unlikely(error == -ESRCH))
2946				error = 0;
2947		}
2948	}
2949	rcu_read_unlock();
2950
2951	return error;
2952}
2953
2954static int do_tkill(pid_t tgid, pid_t pid, int sig)
2955{
2956	struct siginfo info = {};
2957
2958	info.si_signo = sig;
2959	info.si_errno = 0;
2960	info.si_code = SI_TKILL;
2961	info.si_pid = task_tgid_vnr(current);
2962	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2963
2964	return do_send_specific(tgid, pid, sig, &info);
2965}
2966
2967/**
2968 *  sys_tgkill - send signal to one specific thread
2969 *  @tgid: the thread group ID of the thread
2970 *  @pid: the PID of the thread
2971 *  @sig: signal to be sent
2972 *
2973 *  This syscall also checks the @tgid and returns -ESRCH even if the PID
2974 *  exists but it's not belonging to the target process anymore. This
2975 *  method solves the problem of threads exiting and PIDs getting reused.
2976 */
2977SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
2978{
2979	/* This is only valid for single tasks */
2980	if (pid <= 0 || tgid <= 0)
2981		return -EINVAL;
2982
2983	return do_tkill(tgid, pid, sig);
2984}
2985
2986/**
2987 *  sys_tkill - send signal to one specific task
2988 *  @pid: the PID of the task
2989 *  @sig: signal to be sent
2990 *
2991 *  Send a signal to only one task, even if it's a CLONE_THREAD task.
2992 */
2993SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
2994{
2995	/* This is only valid for single tasks */
2996	if (pid <= 0)
2997		return -EINVAL;
2998
2999	return do_tkill(0, pid, sig);
3000}
3001
3002static int do_rt_sigqueueinfo(pid_t pid, int sig, siginfo_t *info)
3003{
3004	/* Not even root can pretend to send signals from the kernel.
3005	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3006	 */
3007	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
3008	    (task_pid_vnr(current) != pid)) {
3009		/* We used to allow any < 0 si_code */
3010		WARN_ON_ONCE(info->si_code < 0);
3011		return -EPERM;
3012	}
3013	info->si_signo = sig;
3014
3015	/* POSIX.1b doesn't mention process groups.  */
3016	return kill_proc_info(sig, info, pid);
3017}
3018
3019/**
3020 *  sys_rt_sigqueueinfo - send signal information to a signal
3021 *  @pid: the PID of the thread
3022 *  @sig: signal to be sent
3023 *  @uinfo: signal info to be sent
3024 */
3025SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
3026		siginfo_t __user *, uinfo)
3027{
3028	siginfo_t info;
3029	if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
3030		return -EFAULT;
3031	return do_rt_sigqueueinfo(pid, sig, &info);
3032}
3033
3034#ifdef CONFIG_COMPAT
3035COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
3036			compat_pid_t, pid,
3037			int, sig,
3038			struct compat_siginfo __user *, uinfo)
3039{
3040	siginfo_t info;
3041	int ret = copy_siginfo_from_user32(&info, uinfo);
3042	if (unlikely(ret))
3043		return ret;
3044	return do_rt_sigqueueinfo(pid, sig, &info);
3045}
3046#endif
3047
3048static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, siginfo_t *info)
3049{
3050	/* This is only valid for single tasks */
3051	if (pid <= 0 || tgid <= 0)
3052		return -EINVAL;
3053
3054	/* Not even root can pretend to send signals from the kernel.
3055	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
3056	 */
3057	if (((info->si_code >= 0 || info->si_code == SI_TKILL)) &&
3058	    (task_pid_vnr(current) != pid)) {
3059		/* We used to allow any < 0 si_code */
3060		WARN_ON_ONCE(info->si_code < 0);
3061		return -EPERM;
3062	}
3063	info->si_signo = sig;
3064
3065	return do_send_specific(tgid, pid, sig, info);
3066}
3067
3068SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
3069		siginfo_t __user *, uinfo)
3070{
3071	siginfo_t info;
3072
3073	if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
3074		return -EFAULT;
3075
3076	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3077}
3078
3079#ifdef CONFIG_COMPAT
3080COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
3081			compat_pid_t, tgid,
3082			compat_pid_t, pid,
3083			int, sig,
3084			struct compat_siginfo __user *, uinfo)
3085{
3086	siginfo_t info;
3087
3088	if (copy_siginfo_from_user32(&info, uinfo))
3089		return -EFAULT;
3090	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3091}
3092#endif
3093
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3094int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
3095{
3096	struct task_struct *t = current;
3097	struct k_sigaction *k;
3098	sigset_t mask;
3099
3100	if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
3101		return -EINVAL;
3102
3103	k = &t->sighand->action[sig-1];
3104
3105	spin_lock_irq(&current->sighand->siglock);
3106	if (oact)
3107		*oact = *k;
3108
3109	if (act) {
3110		sigdelsetmask(&act->sa.sa_mask,
3111			      sigmask(SIGKILL) | sigmask(SIGSTOP));
3112		*k = *act;
3113		/*
3114		 * POSIX 3.3.1.3:
3115		 *  "Setting a signal action to SIG_IGN for a signal that is
3116		 *   pending shall cause the pending signal to be discarded,
3117		 *   whether or not it is blocked."
3118		 *
3119		 *  "Setting a signal action to SIG_DFL for a signal that is
3120		 *   pending and whose default action is to ignore the signal
3121		 *   (for example, SIGCHLD), shall cause the pending signal to
3122		 *   be discarded, whether or not it is blocked"
3123		 */
3124		if (sig_handler_ignored(sig_handler(t, sig), sig)) {
3125			sigemptyset(&mask);
3126			sigaddset(&mask, sig);
3127			rm_from_queue_full(&mask, &t->signal->shared_pending);
3128			do {
3129				rm_from_queue_full(&mask, &t->pending);
3130			} while_each_thread(current, t);
3131		}
3132	}
3133
3134	spin_unlock_irq(&current->sighand->siglock);
3135	return 0;
3136}
3137
3138static int 
3139do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
3140{
3141	stack_t oss;
3142	int error;
3143
3144	oss.ss_sp = (void __user *) current->sas_ss_sp;
3145	oss.ss_size = current->sas_ss_size;
3146	oss.ss_flags = sas_ss_flags(sp);
3147
3148	if (uss) {
3149		void __user *ss_sp;
3150		size_t ss_size;
3151		int ss_flags;
3152
3153		error = -EFAULT;
3154		if (!access_ok(VERIFY_READ, uss, sizeof(*uss)))
3155			goto out;
3156		error = __get_user(ss_sp, &uss->ss_sp) |
3157			__get_user(ss_flags, &uss->ss_flags) |
3158			__get_user(ss_size, &uss->ss_size);
3159		if (error)
3160			goto out;
3161
3162		error = -EPERM;
3163		if (on_sig_stack(sp))
3164			goto out;
3165
3166		error = -EINVAL;
3167		/*
3168		 * Note - this code used to test ss_flags incorrectly:
3169		 *  	  old code may have been written using ss_flags==0
3170		 *	  to mean ss_flags==SS_ONSTACK (as this was the only
3171		 *	  way that worked) - this fix preserves that older
3172		 *	  mechanism.
3173		 */
3174		if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
3175			goto out;
3176
3177		if (ss_flags == SS_DISABLE) {
3178			ss_size = 0;
3179			ss_sp = NULL;
3180		} else {
3181			error = -ENOMEM;
3182			if (ss_size < MINSIGSTKSZ)
3183				goto out;
3184		}
3185
3186		current->sas_ss_sp = (unsigned long) ss_sp;
3187		current->sas_ss_size = ss_size;
3188	}
3189
3190	error = 0;
3191	if (uoss) {
3192		error = -EFAULT;
3193		if (!access_ok(VERIFY_WRITE, uoss, sizeof(*uoss)))
3194			goto out;
3195		error = __put_user(oss.ss_sp, &uoss->ss_sp) |
3196			__put_user(oss.ss_size, &uoss->ss_size) |
3197			__put_user(oss.ss_flags, &uoss->ss_flags);
3198	}
3199
3200out:
3201	return error;
3202}
3203SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
3204{
3205	return do_sigaltstack(uss, uoss, current_user_stack_pointer());
3206}
3207
3208int restore_altstack(const stack_t __user *uss)
3209{
3210	int err = do_sigaltstack(uss, NULL, current_user_stack_pointer());
3211	/* squash all but EFAULT for now */
3212	return err == -EFAULT ? err : 0;
3213}
3214
3215int __save_altstack(stack_t __user *uss, unsigned long sp)
3216{
3217	struct task_struct *t = current;
3218	return  __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
3219		__put_user(sas_ss_flags(sp), &uss->ss_flags) |
3220		__put_user(t->sas_ss_size, &uss->ss_size);
3221}
3222
3223#ifdef CONFIG_COMPAT
3224COMPAT_SYSCALL_DEFINE2(sigaltstack,
3225			const compat_stack_t __user *, uss_ptr,
3226			compat_stack_t __user *, uoss_ptr)
3227{
3228	stack_t uss, uoss;
3229	int ret;
3230	mm_segment_t seg;
3231
3232	if (uss_ptr) {
3233		compat_stack_t uss32;
3234
3235		memset(&uss, 0, sizeof(stack_t));
3236		if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
3237			return -EFAULT;
3238		uss.ss_sp = compat_ptr(uss32.ss_sp);
3239		uss.ss_flags = uss32.ss_flags;
3240		uss.ss_size = uss32.ss_size;
3241	}
3242	seg = get_fs();
3243	set_fs(KERNEL_DS);
3244	ret = do_sigaltstack((stack_t __force __user *) (uss_ptr ? &uss : NULL),
3245			     (stack_t __force __user *) &uoss,
3246			     compat_user_stack_pointer());
3247	set_fs(seg);
3248	if (ret >= 0 && uoss_ptr)  {
3249		if (!access_ok(VERIFY_WRITE, uoss_ptr, sizeof(compat_stack_t)) ||
3250		    __put_user(ptr_to_compat(uoss.ss_sp), &uoss_ptr->ss_sp) ||
3251		    __put_user(uoss.ss_flags, &uoss_ptr->ss_flags) ||
3252		    __put_user(uoss.ss_size, &uoss_ptr->ss_size))
3253			ret = -EFAULT;
3254	}
3255	return ret;
3256}
3257
3258int compat_restore_altstack(const compat_stack_t __user *uss)
3259{
3260	int err = compat_sys_sigaltstack(uss, NULL);
3261	/* squash all but -EFAULT for now */
3262	return err == -EFAULT ? err : 0;
3263}
3264
3265int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
3266{
3267	struct task_struct *t = current;
3268	return  __put_user(ptr_to_compat((void __user *)t->sas_ss_sp), &uss->ss_sp) |
3269		__put_user(sas_ss_flags(sp), &uss->ss_flags) |
3270		__put_user(t->sas_ss_size, &uss->ss_size);
3271}
3272#endif
3273
3274#ifdef __ARCH_WANT_SYS_SIGPENDING
3275
3276/**
3277 *  sys_sigpending - examine pending signals
3278 *  @set: where mask of pending signal is returned
3279 */
3280SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, set)
3281{
3282	return sys_rt_sigpending((sigset_t __user *)set, sizeof(old_sigset_t)); 
3283}
3284
3285#endif
3286
3287#ifdef __ARCH_WANT_SYS_SIGPROCMASK
3288/**
3289 *  sys_sigprocmask - examine and change blocked signals
3290 *  @how: whether to add, remove, or set signals
3291 *  @nset: signals to add or remove (if non-null)
3292 *  @oset: previous value of signal mask if non-null
3293 *
3294 * Some platforms have their own version with special arguments;
3295 * others support only sys_rt_sigprocmask.
3296 */
3297
3298SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
3299		old_sigset_t __user *, oset)
3300{
3301	old_sigset_t old_set, new_set;
3302	sigset_t new_blocked;
3303
3304	old_set = current->blocked.sig[0];
3305
3306	if (nset) {
3307		if (copy_from_user(&new_set, nset, sizeof(*nset)))
3308			return -EFAULT;
3309
3310		new_blocked = current->blocked;
3311
3312		switch (how) {
3313		case SIG_BLOCK:
3314			sigaddsetmask(&new_blocked, new_set);
3315			break;
3316		case SIG_UNBLOCK:
3317			sigdelsetmask(&new_blocked, new_set);
3318			break;
3319		case SIG_SETMASK:
3320			new_blocked.sig[0] = new_set;
3321			break;
3322		default:
3323			return -EINVAL;
3324		}
3325
3326		set_current_blocked(&new_blocked);
3327	}
3328
3329	if (oset) {
3330		if (copy_to_user(oset, &old_set, sizeof(*oset)))
3331			return -EFAULT;
3332	}
3333
3334	return 0;
3335}
3336#endif /* __ARCH_WANT_SYS_SIGPROCMASK */
3337
3338#ifndef CONFIG_ODD_RT_SIGACTION
3339/**
3340 *  sys_rt_sigaction - alter an action taken by a process
3341 *  @sig: signal to be sent
3342 *  @act: new sigaction
3343 *  @oact: used to save the previous sigaction
3344 *  @sigsetsize: size of sigset_t type
3345 */
3346SYSCALL_DEFINE4(rt_sigaction, int, sig,
3347		const struct sigaction __user *, act,
3348		struct sigaction __user *, oact,
3349		size_t, sigsetsize)
3350{
3351	struct k_sigaction new_sa, old_sa;
3352	int ret = -EINVAL;
3353
3354	/* XXX: Don't preclude handling different sized sigset_t's.  */
3355	if (sigsetsize != sizeof(sigset_t))
3356		goto out;
3357
3358	if (act) {
3359		if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
3360			return -EFAULT;
3361	}
3362
3363	ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
3364
3365	if (!ret && oact) {
3366		if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
3367			return -EFAULT;
3368	}
3369out:
3370	return ret;
3371}
3372#ifdef CONFIG_COMPAT
3373COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
3374		const struct compat_sigaction __user *, act,
3375		struct compat_sigaction __user *, oact,
3376		compat_size_t, sigsetsize)
3377{
3378	struct k_sigaction new_ka, old_ka;
3379	compat_sigset_t mask;
3380#ifdef __ARCH_HAS_SA_RESTORER
3381	compat_uptr_t restorer;
3382#endif
3383	int ret;
3384
3385	/* XXX: Don't preclude handling different sized sigset_t's.  */
3386	if (sigsetsize != sizeof(compat_sigset_t))
3387		return -EINVAL;
3388
3389	if (act) {
3390		compat_uptr_t handler;
3391		ret = get_user(handler, &act->sa_handler);
3392		new_ka.sa.sa_handler = compat_ptr(handler);
3393#ifdef __ARCH_HAS_SA_RESTORER
3394		ret |= get_user(restorer, &act->sa_restorer);
3395		new_ka.sa.sa_restorer = compat_ptr(restorer);
3396#endif
3397		ret |= copy_from_user(&mask, &act->sa_mask, sizeof(mask));
3398		ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
3399		if (ret)
3400			return -EFAULT;
3401		sigset_from_compat(&new_ka.sa.sa_mask, &mask);
3402	}
3403
3404	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3405	if (!ret && oact) {
3406		sigset_to_compat(&mask, &old_ka.sa.sa_mask);
3407		ret = put_user(ptr_to_compat(old_ka.sa.sa_handler), 
3408			       &oact->sa_handler);
3409		ret |= copy_to_user(&oact->sa_mask, &mask, sizeof(mask));
3410		ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
3411#ifdef __ARCH_HAS_SA_RESTORER
3412		ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
3413				&oact->sa_restorer);
3414#endif
3415	}
3416	return ret;
3417}
3418#endif
3419#endif /* !CONFIG_ODD_RT_SIGACTION */
3420
3421#ifdef CONFIG_OLD_SIGACTION
3422SYSCALL_DEFINE3(sigaction, int, sig,
3423		const struct old_sigaction __user *, act,
3424	        struct old_sigaction __user *, oact)
3425{
3426	struct k_sigaction new_ka, old_ka;
3427	int ret;
3428
3429	if (act) {
3430		old_sigset_t mask;
3431		if (!access_ok(VERIFY_READ, act, sizeof(*act)) ||
3432		    __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
3433		    __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
3434		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
3435		    __get_user(mask, &act->sa_mask))
3436			return -EFAULT;
3437#ifdef __ARCH_HAS_KA_RESTORER
3438		new_ka.ka_restorer = NULL;
3439#endif
3440		siginitset(&new_ka.sa.sa_mask, mask);
3441	}
3442
3443	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3444
3445	if (!ret && oact) {
3446		if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact)) ||
3447		    __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
3448		    __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
3449		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
3450		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
3451			return -EFAULT;
3452	}
3453
3454	return ret;
3455}
3456#endif
3457#ifdef CONFIG_COMPAT_OLD_SIGACTION
3458COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
3459		const struct compat_old_sigaction __user *, act,
3460	        struct compat_old_sigaction __user *, oact)
3461{
3462	struct k_sigaction new_ka, old_ka;
3463	int ret;
3464	compat_old_sigset_t mask;
3465	compat_uptr_t handler, restorer;
3466
3467	if (act) {
3468		if (!access_ok(VERIFY_READ, act, sizeof(*act)) ||
3469		    __get_user(handler, &act->sa_handler) ||
3470		    __get_user(restorer, &act->sa_restorer) ||
3471		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
3472		    __get_user(mask, &act->sa_mask))
3473			return -EFAULT;
3474
3475#ifdef __ARCH_HAS_KA_RESTORER
3476		new_ka.ka_restorer = NULL;
3477#endif
3478		new_ka.sa.sa_handler = compat_ptr(handler);
3479		new_ka.sa.sa_restorer = compat_ptr(restorer);
3480		siginitset(&new_ka.sa.sa_mask, mask);
3481	}
3482
3483	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3484
3485	if (!ret && oact) {
3486		if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact)) ||
3487		    __put_user(ptr_to_compat(old_ka.sa.sa_handler),
3488			       &oact->sa_handler) ||
3489		    __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
3490			       &oact->sa_restorer) ||
3491		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
3492		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
3493			return -EFAULT;
3494	}
3495	return ret;
3496}
3497#endif
3498
3499#ifdef __ARCH_WANT_SYS_SGETMASK
3500
3501/*
3502 * For backwards compatibility.  Functionality superseded by sigprocmask.
3503 */
3504SYSCALL_DEFINE0(sgetmask)
3505{
3506	/* SMP safe */
3507	return current->blocked.sig[0];
3508}
3509
3510SYSCALL_DEFINE1(ssetmask, int, newmask)
3511{
3512	int old = current->blocked.sig[0];
3513	sigset_t newset;
3514
3515	siginitset(&newset, newmask);
3516	set_current_blocked(&newset);
3517
3518	return old;
3519}
3520#endif /* __ARCH_WANT_SGETMASK */
3521
3522#ifdef __ARCH_WANT_SYS_SIGNAL
3523/*
3524 * For backwards compatibility.  Functionality superseded by sigaction.
3525 */
3526SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
3527{
3528	struct k_sigaction new_sa, old_sa;
3529	int ret;
3530
3531	new_sa.sa.sa_handler = handler;
3532	new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
3533	sigemptyset(&new_sa.sa.sa_mask);
3534
3535	ret = do_sigaction(sig, &new_sa, &old_sa);
3536
3537	return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
3538}
3539#endif /* __ARCH_WANT_SYS_SIGNAL */
3540
3541#ifdef __ARCH_WANT_SYS_PAUSE
3542
3543SYSCALL_DEFINE0(pause)
3544{
3545	while (!signal_pending(current)) {
3546		current->state = TASK_INTERRUPTIBLE;
3547		schedule();
3548	}
3549	return -ERESTARTNOHAND;
3550}
3551
3552#endif
3553
3554int sigsuspend(sigset_t *set)
3555{
3556	current->saved_sigmask = current->blocked;
3557	set_current_blocked(set);
3558
3559	current->state = TASK_INTERRUPTIBLE;
3560	schedule();
 
 
3561	set_restore_sigmask();
3562	return -ERESTARTNOHAND;
3563}
3564
3565/**
3566 *  sys_rt_sigsuspend - replace the signal mask for a value with the
3567 *	@unewset value until a signal is received
3568 *  @unewset: new signal mask value
3569 *  @sigsetsize: size of sigset_t type
3570 */
3571SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
3572{
3573	sigset_t newset;
3574
3575	/* XXX: Don't preclude handling different sized sigset_t's.  */
3576	if (sigsetsize != sizeof(sigset_t))
3577		return -EINVAL;
3578
3579	if (copy_from_user(&newset, unewset, sizeof(newset)))
3580		return -EFAULT;
3581	return sigsuspend(&newset);
3582}
3583 
3584#ifdef CONFIG_COMPAT
3585COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
3586{
3587#ifdef __BIG_ENDIAN
3588	sigset_t newset;
3589	compat_sigset_t newset32;
3590
3591	/* XXX: Don't preclude handling different sized sigset_t's.  */
3592	if (sigsetsize != sizeof(sigset_t))
3593		return -EINVAL;
3594
3595	if (copy_from_user(&newset32, unewset, sizeof(compat_sigset_t)))
3596		return -EFAULT;
3597	sigset_from_compat(&newset, &newset32);
3598	return sigsuspend(&newset);
3599#else
3600	/* on little-endian bitmaps don't care about granularity */
3601	return sys_rt_sigsuspend((sigset_t __user *)unewset, sigsetsize);
3602#endif
3603}
3604#endif
3605
3606#ifdef CONFIG_OLD_SIGSUSPEND
3607SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
3608{
3609	sigset_t blocked;
3610	siginitset(&blocked, mask);
3611	return sigsuspend(&blocked);
3612}
3613#endif
3614#ifdef CONFIG_OLD_SIGSUSPEND3
3615SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
3616{
3617	sigset_t blocked;
3618	siginitset(&blocked, mask);
3619	return sigsuspend(&blocked);
3620}
3621#endif
3622
3623__weak const char *arch_vma_name(struct vm_area_struct *vma)
3624{
3625	return NULL;
3626}
3627
3628void __init signals_init(void)
3629{
 
 
 
 
3630	sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
3631}
3632
3633#ifdef CONFIG_KGDB_KDB
3634#include <linux/kdb.h>
3635/*
3636 * kdb_send_sig_info - Allows kdb to send signals without exposing
3637 * signal internals.  This function checks if the required locks are
3638 * available before calling the main signal code, to avoid kdb
3639 * deadlocks.
3640 */
3641void
3642kdb_send_sig_info(struct task_struct *t, struct siginfo *info)
3643{
3644	static struct task_struct *kdb_prev_t;
3645	int sig, new_t;
3646	if (!spin_trylock(&t->sighand->siglock)) {
3647		kdb_printf("Can't do kill command now.\n"
3648			   "The sigmask lock is held somewhere else in "
3649			   "kernel, try again later\n");
3650		return;
3651	}
3652	spin_unlock(&t->sighand->siglock);
3653	new_t = kdb_prev_t != t;
3654	kdb_prev_t = t;
3655	if (t->state != TASK_RUNNING && new_t) {
3656		kdb_printf("Process is not RUNNING, sending a signal from "
3657			   "kdb risks deadlock\n"
3658			   "on the run queue locks. "
3659			   "The signal has _not_ been sent.\n"
3660			   "Reissue the kill command if you want to risk "
3661			   "the deadlock.\n");
3662		return;
3663	}
3664	sig = info->si_signo;
3665	if (send_sig_info(sig, info, t))
3666		kdb_printf("Fail to deliver Signal %d to process %d.\n",
3667			   sig, t->pid);
3668	else
3669		kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
3670}
3671#endif	/* CONFIG_KGDB_KDB */
v4.6
   1/*
   2 *  linux/kernel/signal.c
   3 *
   4 *  Copyright (C) 1991, 1992  Linus Torvalds
   5 *
   6 *  1997-11-02  Modified for POSIX.1b signals by Richard Henderson
   7 *
   8 *  2003-06-02  Jim Houston - Concurrent Computer Corp.
   9 *		Changes to use preallocated sigqueue structures
  10 *		to allow signals to be sent reliably.
  11 */
  12
  13#include <linux/slab.h>
  14#include <linux/export.h>
  15#include <linux/init.h>
  16#include <linux/sched.h>
  17#include <linux/fs.h>
  18#include <linux/tty.h>
  19#include <linux/binfmts.h>
  20#include <linux/coredump.h>
  21#include <linux/security.h>
  22#include <linux/syscalls.h>
  23#include <linux/ptrace.h>
  24#include <linux/signal.h>
  25#include <linux/signalfd.h>
  26#include <linux/ratelimit.h>
  27#include <linux/tracehook.h>
  28#include <linux/capability.h>
  29#include <linux/freezer.h>
  30#include <linux/pid_namespace.h>
  31#include <linux/nsproxy.h>
  32#include <linux/user_namespace.h>
  33#include <linux/uprobes.h>
  34#include <linux/compat.h>
  35#include <linux/cn_proc.h>
  36#include <linux/compiler.h>
  37
  38#define CREATE_TRACE_POINTS
  39#include <trace/events/signal.h>
  40
  41#include <asm/param.h>
  42#include <asm/uaccess.h>
  43#include <asm/unistd.h>
  44#include <asm/siginfo.h>
  45#include <asm/cacheflush.h>
  46#include "audit.h"	/* audit_signal_info() */
  47
  48/*
  49 * SLAB caches for signal bits.
  50 */
  51
  52static struct kmem_cache *sigqueue_cachep;
  53
  54int print_fatal_signals __read_mostly;
  55
  56static void __user *sig_handler(struct task_struct *t, int sig)
  57{
  58	return t->sighand->action[sig - 1].sa.sa_handler;
  59}
  60
  61static int sig_handler_ignored(void __user *handler, int sig)
  62{
  63	/* Is it explicitly or implicitly ignored? */
  64	return handler == SIG_IGN ||
  65		(handler == SIG_DFL && sig_kernel_ignore(sig));
  66}
  67
  68static int sig_task_ignored(struct task_struct *t, int sig, bool force)
  69{
  70	void __user *handler;
  71
  72	handler = sig_handler(t, sig);
  73
  74	if (unlikely(t->signal->flags & SIGNAL_UNKILLABLE) &&
  75			handler == SIG_DFL && !force)
  76		return 1;
  77
  78	return sig_handler_ignored(handler, sig);
  79}
  80
  81static int sig_ignored(struct task_struct *t, int sig, bool force)
  82{
  83	/*
  84	 * Blocked signals are never ignored, since the
  85	 * signal handler may change by the time it is
  86	 * unblocked.
  87	 */
  88	if (sigismember(&t->blocked, sig) || sigismember(&t->real_blocked, sig))
  89		return 0;
  90
  91	if (!sig_task_ignored(t, sig, force))
  92		return 0;
  93
  94	/*
  95	 * Tracers may want to know about even ignored signals.
  96	 */
  97	return !t->ptrace;
  98}
  99
 100/*
 101 * Re-calculate pending state from the set of locally pending
 102 * signals, globally pending signals, and blocked signals.
 103 */
 104static inline int has_pending_signals(sigset_t *signal, sigset_t *blocked)
 105{
 106	unsigned long ready;
 107	long i;
 108
 109	switch (_NSIG_WORDS) {
 110	default:
 111		for (i = _NSIG_WORDS, ready = 0; --i >= 0 ;)
 112			ready |= signal->sig[i] &~ blocked->sig[i];
 113		break;
 114
 115	case 4: ready  = signal->sig[3] &~ blocked->sig[3];
 116		ready |= signal->sig[2] &~ blocked->sig[2];
 117		ready |= signal->sig[1] &~ blocked->sig[1];
 118		ready |= signal->sig[0] &~ blocked->sig[0];
 119		break;
 120
 121	case 2: ready  = signal->sig[1] &~ blocked->sig[1];
 122		ready |= signal->sig[0] &~ blocked->sig[0];
 123		break;
 124
 125	case 1: ready  = signal->sig[0] &~ blocked->sig[0];
 126	}
 127	return ready !=	0;
 128}
 129
 130#define PENDING(p,b) has_pending_signals(&(p)->signal, (b))
 131
 132static int recalc_sigpending_tsk(struct task_struct *t)
 133{
 134	if ((t->jobctl & JOBCTL_PENDING_MASK) ||
 135	    PENDING(&t->pending, &t->blocked) ||
 136	    PENDING(&t->signal->shared_pending, &t->blocked)) {
 137		set_tsk_thread_flag(t, TIF_SIGPENDING);
 138		return 1;
 139	}
 140	/*
 141	 * We must never clear the flag in another thread, or in current
 142	 * when it's possible the current syscall is returning -ERESTART*.
 143	 * So we don't clear it here, and only callers who know they should do.
 144	 */
 145	return 0;
 146}
 147
 148/*
 149 * After recalculating TIF_SIGPENDING, we need to make sure the task wakes up.
 150 * This is superfluous when called on current, the wakeup is a harmless no-op.
 151 */
 152void recalc_sigpending_and_wake(struct task_struct *t)
 153{
 154	if (recalc_sigpending_tsk(t))
 155		signal_wake_up(t, 0);
 156}
 157
 158void recalc_sigpending(void)
 159{
 160	if (!recalc_sigpending_tsk(current) && !freezing(current))
 161		clear_thread_flag(TIF_SIGPENDING);
 162
 163}
 164
 165/* Given the mask, find the first available signal that should be serviced. */
 166
 167#define SYNCHRONOUS_MASK \
 168	(sigmask(SIGSEGV) | sigmask(SIGBUS) | sigmask(SIGILL) | \
 169	 sigmask(SIGTRAP) | sigmask(SIGFPE) | sigmask(SIGSYS))
 170
 171int next_signal(struct sigpending *pending, sigset_t *mask)
 172{
 173	unsigned long i, *s, *m, x;
 174	int sig = 0;
 175
 176	s = pending->signal.sig;
 177	m = mask->sig;
 178
 179	/*
 180	 * Handle the first word specially: it contains the
 181	 * synchronous signals that need to be dequeued first.
 182	 */
 183	x = *s &~ *m;
 184	if (x) {
 185		if (x & SYNCHRONOUS_MASK)
 186			x &= SYNCHRONOUS_MASK;
 187		sig = ffz(~x) + 1;
 188		return sig;
 189	}
 190
 191	switch (_NSIG_WORDS) {
 192	default:
 193		for (i = 1; i < _NSIG_WORDS; ++i) {
 194			x = *++s &~ *++m;
 195			if (!x)
 196				continue;
 197			sig = ffz(~x) + i*_NSIG_BPW + 1;
 198			break;
 199		}
 200		break;
 201
 202	case 2:
 203		x = s[1] &~ m[1];
 204		if (!x)
 205			break;
 206		sig = ffz(~x) + _NSIG_BPW + 1;
 207		break;
 208
 209	case 1:
 210		/* Nothing to do */
 211		break;
 212	}
 213
 214	return sig;
 215}
 216
 217static inline void print_dropped_signal(int sig)
 218{
 219	static DEFINE_RATELIMIT_STATE(ratelimit_state, 5 * HZ, 10);
 220
 221	if (!print_fatal_signals)
 222		return;
 223
 224	if (!__ratelimit(&ratelimit_state))
 225		return;
 226
 227	printk(KERN_INFO "%s/%d: reached RLIMIT_SIGPENDING, dropped signal %d\n",
 228				current->comm, current->pid, sig);
 229}
 230
 231/**
 232 * task_set_jobctl_pending - set jobctl pending bits
 233 * @task: target task
 234 * @mask: pending bits to set
 235 *
 236 * Clear @mask from @task->jobctl.  @mask must be subset of
 237 * %JOBCTL_PENDING_MASK | %JOBCTL_STOP_CONSUME | %JOBCTL_STOP_SIGMASK |
 238 * %JOBCTL_TRAPPING.  If stop signo is being set, the existing signo is
 239 * cleared.  If @task is already being killed or exiting, this function
 240 * becomes noop.
 241 *
 242 * CONTEXT:
 243 * Must be called with @task->sighand->siglock held.
 244 *
 245 * RETURNS:
 246 * %true if @mask is set, %false if made noop because @task was dying.
 247 */
 248bool task_set_jobctl_pending(struct task_struct *task, unsigned long mask)
 249{
 250	BUG_ON(mask & ~(JOBCTL_PENDING_MASK | JOBCTL_STOP_CONSUME |
 251			JOBCTL_STOP_SIGMASK | JOBCTL_TRAPPING));
 252	BUG_ON((mask & JOBCTL_TRAPPING) && !(mask & JOBCTL_PENDING_MASK));
 253
 254	if (unlikely(fatal_signal_pending(task) || (task->flags & PF_EXITING)))
 255		return false;
 256
 257	if (mask & JOBCTL_STOP_SIGMASK)
 258		task->jobctl &= ~JOBCTL_STOP_SIGMASK;
 259
 260	task->jobctl |= mask;
 261	return true;
 262}
 263
 264/**
 265 * task_clear_jobctl_trapping - clear jobctl trapping bit
 266 * @task: target task
 267 *
 268 * If JOBCTL_TRAPPING is set, a ptracer is waiting for us to enter TRACED.
 269 * Clear it and wake up the ptracer.  Note that we don't need any further
 270 * locking.  @task->siglock guarantees that @task->parent points to the
 271 * ptracer.
 272 *
 273 * CONTEXT:
 274 * Must be called with @task->sighand->siglock held.
 275 */
 276void task_clear_jobctl_trapping(struct task_struct *task)
 277{
 278	if (unlikely(task->jobctl & JOBCTL_TRAPPING)) {
 279		task->jobctl &= ~JOBCTL_TRAPPING;
 280		smp_mb();	/* advised by wake_up_bit() */
 281		wake_up_bit(&task->jobctl, JOBCTL_TRAPPING_BIT);
 282	}
 283}
 284
 285/**
 286 * task_clear_jobctl_pending - clear jobctl pending bits
 287 * @task: target task
 288 * @mask: pending bits to clear
 289 *
 290 * Clear @mask from @task->jobctl.  @mask must be subset of
 291 * %JOBCTL_PENDING_MASK.  If %JOBCTL_STOP_PENDING is being cleared, other
 292 * STOP bits are cleared together.
 293 *
 294 * If clearing of @mask leaves no stop or trap pending, this function calls
 295 * task_clear_jobctl_trapping().
 296 *
 297 * CONTEXT:
 298 * Must be called with @task->sighand->siglock held.
 299 */
 300void task_clear_jobctl_pending(struct task_struct *task, unsigned long mask)
 301{
 302	BUG_ON(mask & ~JOBCTL_PENDING_MASK);
 303
 304	if (mask & JOBCTL_STOP_PENDING)
 305		mask |= JOBCTL_STOP_CONSUME | JOBCTL_STOP_DEQUEUED;
 306
 307	task->jobctl &= ~mask;
 308
 309	if (!(task->jobctl & JOBCTL_PENDING_MASK))
 310		task_clear_jobctl_trapping(task);
 311}
 312
 313/**
 314 * task_participate_group_stop - participate in a group stop
 315 * @task: task participating in a group stop
 316 *
 317 * @task has %JOBCTL_STOP_PENDING set and is participating in a group stop.
 318 * Group stop states are cleared and the group stop count is consumed if
 319 * %JOBCTL_STOP_CONSUME was set.  If the consumption completes the group
 320 * stop, the appropriate %SIGNAL_* flags are set.
 321 *
 322 * CONTEXT:
 323 * Must be called with @task->sighand->siglock held.
 324 *
 325 * RETURNS:
 326 * %true if group stop completion should be notified to the parent, %false
 327 * otherwise.
 328 */
 329static bool task_participate_group_stop(struct task_struct *task)
 330{
 331	struct signal_struct *sig = task->signal;
 332	bool consume = task->jobctl & JOBCTL_STOP_CONSUME;
 333
 334	WARN_ON_ONCE(!(task->jobctl & JOBCTL_STOP_PENDING));
 335
 336	task_clear_jobctl_pending(task, JOBCTL_STOP_PENDING);
 337
 338	if (!consume)
 339		return false;
 340
 341	if (!WARN_ON_ONCE(sig->group_stop_count == 0))
 342		sig->group_stop_count--;
 343
 344	/*
 345	 * Tell the caller to notify completion iff we are entering into a
 346	 * fresh group stop.  Read comment in do_signal_stop() for details.
 347	 */
 348	if (!sig->group_stop_count && !(sig->flags & SIGNAL_STOP_STOPPED)) {
 349		sig->flags = SIGNAL_STOP_STOPPED;
 350		return true;
 351	}
 352	return false;
 353}
 354
 355/*
 356 * allocate a new signal queue record
 357 * - this may be called without locks if and only if t == current, otherwise an
 358 *   appropriate lock must be held to stop the target task from exiting
 359 */
 360static struct sigqueue *
 361__sigqueue_alloc(int sig, struct task_struct *t, gfp_t flags, int override_rlimit)
 362{
 363	struct sigqueue *q = NULL;
 364	struct user_struct *user;
 365
 366	/*
 367	 * Protect access to @t credentials. This can go away when all
 368	 * callers hold rcu read lock.
 369	 */
 370	rcu_read_lock();
 371	user = get_uid(__task_cred(t)->user);
 372	atomic_inc(&user->sigpending);
 373	rcu_read_unlock();
 374
 375	if (override_rlimit ||
 376	    atomic_read(&user->sigpending) <=
 377			task_rlimit(t, RLIMIT_SIGPENDING)) {
 378		q = kmem_cache_alloc(sigqueue_cachep, flags);
 379	} else {
 380		print_dropped_signal(sig);
 381	}
 382
 383	if (unlikely(q == NULL)) {
 384		atomic_dec(&user->sigpending);
 385		free_uid(user);
 386	} else {
 387		INIT_LIST_HEAD(&q->list);
 388		q->flags = 0;
 389		q->user = user;
 390	}
 391
 392	return q;
 393}
 394
 395static void __sigqueue_free(struct sigqueue *q)
 396{
 397	if (q->flags & SIGQUEUE_PREALLOC)
 398		return;
 399	atomic_dec(&q->user->sigpending);
 400	free_uid(q->user);
 401	kmem_cache_free(sigqueue_cachep, q);
 402}
 403
 404void flush_sigqueue(struct sigpending *queue)
 405{
 406	struct sigqueue *q;
 407
 408	sigemptyset(&queue->signal);
 409	while (!list_empty(&queue->list)) {
 410		q = list_entry(queue->list.next, struct sigqueue , list);
 411		list_del_init(&q->list);
 412		__sigqueue_free(q);
 413	}
 414}
 415
 416/*
 417 * Flush all pending signals for this kthread.
 418 */
 
 
 
 
 
 
 
 419void flush_signals(struct task_struct *t)
 420{
 421	unsigned long flags;
 422
 423	spin_lock_irqsave(&t->sighand->siglock, flags);
 424	clear_tsk_thread_flag(t, TIF_SIGPENDING);
 425	flush_sigqueue(&t->pending);
 426	flush_sigqueue(&t->signal->shared_pending);
 427	spin_unlock_irqrestore(&t->sighand->siglock, flags);
 428}
 429
 430static void __flush_itimer_signals(struct sigpending *pending)
 431{
 432	sigset_t signal, retain;
 433	struct sigqueue *q, *n;
 434
 435	signal = pending->signal;
 436	sigemptyset(&retain);
 437
 438	list_for_each_entry_safe(q, n, &pending->list, list) {
 439		int sig = q->info.si_signo;
 440
 441		if (likely(q->info.si_code != SI_TIMER)) {
 442			sigaddset(&retain, sig);
 443		} else {
 444			sigdelset(&signal, sig);
 445			list_del_init(&q->list);
 446			__sigqueue_free(q);
 447		}
 448	}
 449
 450	sigorsets(&pending->signal, &signal, &retain);
 451}
 452
 453void flush_itimer_signals(void)
 454{
 455	struct task_struct *tsk = current;
 456	unsigned long flags;
 457
 458	spin_lock_irqsave(&tsk->sighand->siglock, flags);
 459	__flush_itimer_signals(&tsk->pending);
 460	__flush_itimer_signals(&tsk->signal->shared_pending);
 461	spin_unlock_irqrestore(&tsk->sighand->siglock, flags);
 462}
 463
 464void ignore_signals(struct task_struct *t)
 465{
 466	int i;
 467
 468	for (i = 0; i < _NSIG; ++i)
 469		t->sighand->action[i].sa.sa_handler = SIG_IGN;
 470
 471	flush_signals(t);
 472}
 473
 474/*
 475 * Flush all handlers for a task.
 476 */
 477
 478void
 479flush_signal_handlers(struct task_struct *t, int force_default)
 480{
 481	int i;
 482	struct k_sigaction *ka = &t->sighand->action[0];
 483	for (i = _NSIG ; i != 0 ; i--) {
 484		if (force_default || ka->sa.sa_handler != SIG_IGN)
 485			ka->sa.sa_handler = SIG_DFL;
 486		ka->sa.sa_flags = 0;
 487#ifdef __ARCH_HAS_SA_RESTORER
 488		ka->sa.sa_restorer = NULL;
 489#endif
 490		sigemptyset(&ka->sa.sa_mask);
 491		ka++;
 492	}
 493}
 494
 495int unhandled_signal(struct task_struct *tsk, int sig)
 496{
 497	void __user *handler = tsk->sighand->action[sig-1].sa.sa_handler;
 498	if (is_global_init(tsk))
 499		return 1;
 500	if (handler != SIG_IGN && handler != SIG_DFL)
 501		return 0;
 502	/* if ptraced, let the tracer determine */
 503	return !tsk->ptrace;
 504}
 505
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 506static void collect_signal(int sig, struct sigpending *list, siginfo_t *info)
 507{
 508	struct sigqueue *q, *first = NULL;
 509
 510	/*
 511	 * Collect the siginfo appropriate to this signal.  Check if
 512	 * there is another siginfo for the same signal.
 513	*/
 514	list_for_each_entry(q, &list->list, list) {
 515		if (q->info.si_signo == sig) {
 516			if (first)
 517				goto still_pending;
 518			first = q;
 519		}
 520	}
 521
 522	sigdelset(&list->signal, sig);
 523
 524	if (first) {
 525still_pending:
 526		list_del_init(&first->list);
 527		copy_siginfo(info, &first->info);
 528		__sigqueue_free(first);
 529	} else {
 530		/*
 531		 * Ok, it wasn't in the queue.  This must be
 532		 * a fast-pathed signal or we must have been
 533		 * out of queue space.  So zero out the info.
 534		 */
 535		info->si_signo = sig;
 536		info->si_errno = 0;
 537		info->si_code = SI_USER;
 538		info->si_pid = 0;
 539		info->si_uid = 0;
 540	}
 541}
 542
 543static int __dequeue_signal(struct sigpending *pending, sigset_t *mask,
 544			siginfo_t *info)
 545{
 546	int sig = next_signal(pending, mask);
 547
 548	if (sig)
 
 
 
 
 
 
 
 
 
 549		collect_signal(sig, pending, info);
 
 
 550	return sig;
 551}
 552
 553/*
 554 * Dequeue a signal and return the element to the caller, which is
 555 * expected to free it.
 556 *
 557 * All callers have to hold the siglock.
 558 */
 559int dequeue_signal(struct task_struct *tsk, sigset_t *mask, siginfo_t *info)
 560{
 561	int signr;
 562
 563	/* We only dequeue private signals from ourselves, we don't let
 564	 * signalfd steal them
 565	 */
 566	signr = __dequeue_signal(&tsk->pending, mask, info);
 567	if (!signr) {
 568		signr = __dequeue_signal(&tsk->signal->shared_pending,
 569					 mask, info);
 570		/*
 571		 * itimer signal ?
 572		 *
 573		 * itimers are process shared and we restart periodic
 574		 * itimers in the signal delivery path to prevent DoS
 575		 * attacks in the high resolution timer case. This is
 576		 * compliant with the old way of self-restarting
 577		 * itimers, as the SIGALRM is a legacy signal and only
 578		 * queued once. Changing the restart behaviour to
 579		 * restart the timer in the signal dequeue path is
 580		 * reducing the timer noise on heavy loaded !highres
 581		 * systems too.
 582		 */
 583		if (unlikely(signr == SIGALRM)) {
 584			struct hrtimer *tmr = &tsk->signal->real_timer;
 585
 586			if (!hrtimer_is_queued(tmr) &&
 587			    tsk->signal->it_real_incr.tv64 != 0) {
 588				hrtimer_forward(tmr, tmr->base->get_time(),
 589						tsk->signal->it_real_incr);
 590				hrtimer_restart(tmr);
 591			}
 592		}
 593	}
 594
 595	recalc_sigpending();
 596	if (!signr)
 597		return 0;
 598
 599	if (unlikely(sig_kernel_stop(signr))) {
 600		/*
 601		 * Set a marker that we have dequeued a stop signal.  Our
 602		 * caller might release the siglock and then the pending
 603		 * stop signal it is about to process is no longer in the
 604		 * pending bitmasks, but must still be cleared by a SIGCONT
 605		 * (and overruled by a SIGKILL).  So those cases clear this
 606		 * shared flag after we've set it.  Note that this flag may
 607		 * remain set after the signal we return is ignored or
 608		 * handled.  That doesn't matter because its only purpose
 609		 * is to alert stop-signal processing code when another
 610		 * processor has come along and cleared the flag.
 611		 */
 612		current->jobctl |= JOBCTL_STOP_DEQUEUED;
 613	}
 614	if ((info->si_code & __SI_MASK) == __SI_TIMER && info->si_sys_private) {
 615		/*
 616		 * Release the siglock to ensure proper locking order
 617		 * of timer locks outside of siglocks.  Note, we leave
 618		 * irqs disabled here, since the posix-timers code is
 619		 * about to disable them again anyway.
 620		 */
 621		spin_unlock(&tsk->sighand->siglock);
 622		do_schedule_next_timer(info);
 623		spin_lock(&tsk->sighand->siglock);
 624	}
 625	return signr;
 626}
 627
 628/*
 629 * Tell a process that it has a new active signal..
 630 *
 631 * NOTE! we rely on the previous spin_lock to
 632 * lock interrupts for us! We can only be called with
 633 * "siglock" held, and the local interrupt must
 634 * have been disabled when that got acquired!
 635 *
 636 * No need to set need_resched since signal event passing
 637 * goes through ->blocked
 638 */
 639void signal_wake_up_state(struct task_struct *t, unsigned int state)
 640{
 641	set_tsk_thread_flag(t, TIF_SIGPENDING);
 642	/*
 643	 * TASK_WAKEKILL also means wake it up in the stopped/traced/killable
 644	 * case. We don't check t->state here because there is a race with it
 645	 * executing another processor and just now entering stopped state.
 646	 * By using wake_up_state, we ensure the process will wake up and
 647	 * handle its death signal.
 648	 */
 649	if (!wake_up_state(t, state | TASK_INTERRUPTIBLE))
 650		kick_process(t);
 651}
 652
 653/*
 654 * Remove signals in mask from the pending set and queue.
 655 * Returns 1 if any signals were found.
 656 *
 657 * All callers must be holding the siglock.
 
 
 
 658 */
 659static int flush_sigqueue_mask(sigset_t *mask, struct sigpending *s)
 660{
 661	struct sigqueue *q, *n;
 662	sigset_t m;
 663
 664	sigandsets(&m, mask, &s->signal);
 665	if (sigisemptyset(&m))
 666		return 0;
 667
 668	sigandnsets(&s->signal, &s->signal, mask);
 669	list_for_each_entry_safe(q, n, &s->list, list) {
 670		if (sigismember(mask, q->info.si_signo)) {
 671			list_del_init(&q->list);
 672			__sigqueue_free(q);
 673		}
 674	}
 675	return 1;
 676}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 677
 678static inline int is_si_special(const struct siginfo *info)
 679{
 680	return info <= SEND_SIG_FORCED;
 681}
 682
 683static inline bool si_fromuser(const struct siginfo *info)
 684{
 685	return info == SEND_SIG_NOINFO ||
 686		(!is_si_special(info) && SI_FROMUSER(info));
 687}
 688
 689/*
 690 * called with RCU read lock from check_kill_permission()
 691 */
 692static int kill_ok_by_cred(struct task_struct *t)
 693{
 694	const struct cred *cred = current_cred();
 695	const struct cred *tcred = __task_cred(t);
 696
 697	if (uid_eq(cred->euid, tcred->suid) ||
 698	    uid_eq(cred->euid, tcred->uid)  ||
 699	    uid_eq(cred->uid,  tcred->suid) ||
 700	    uid_eq(cred->uid,  tcred->uid))
 701		return 1;
 702
 703	if (ns_capable(tcred->user_ns, CAP_KILL))
 704		return 1;
 705
 706	return 0;
 707}
 708
 709/*
 710 * Bad permissions for sending the signal
 711 * - the caller must hold the RCU read lock
 712 */
 713static int check_kill_permission(int sig, struct siginfo *info,
 714				 struct task_struct *t)
 715{
 716	struct pid *sid;
 717	int error;
 718
 719	if (!valid_signal(sig))
 720		return -EINVAL;
 721
 722	if (!si_fromuser(info))
 723		return 0;
 724
 725	error = audit_signal_info(sig, t); /* Let audit system see the signal */
 726	if (error)
 727		return error;
 728
 729	if (!same_thread_group(current, t) &&
 730	    !kill_ok_by_cred(t)) {
 731		switch (sig) {
 732		case SIGCONT:
 733			sid = task_session(t);
 734			/*
 735			 * We don't return the error if sid == NULL. The
 736			 * task was unhashed, the caller must notice this.
 737			 */
 738			if (!sid || sid == task_session(current))
 739				break;
 740		default:
 741			return -EPERM;
 742		}
 743	}
 744
 745	return security_task_kill(t, info, sig, 0);
 746}
 747
 748/**
 749 * ptrace_trap_notify - schedule trap to notify ptracer
 750 * @t: tracee wanting to notify tracer
 751 *
 752 * This function schedules sticky ptrace trap which is cleared on the next
 753 * TRAP_STOP to notify ptracer of an event.  @t must have been seized by
 754 * ptracer.
 755 *
 756 * If @t is running, STOP trap will be taken.  If trapped for STOP and
 757 * ptracer is listening for events, tracee is woken up so that it can
 758 * re-trap for the new event.  If trapped otherwise, STOP trap will be
 759 * eventually taken without returning to userland after the existing traps
 760 * are finished by PTRACE_CONT.
 761 *
 762 * CONTEXT:
 763 * Must be called with @task->sighand->siglock held.
 764 */
 765static void ptrace_trap_notify(struct task_struct *t)
 766{
 767	WARN_ON_ONCE(!(t->ptrace & PT_SEIZED));
 768	assert_spin_locked(&t->sighand->siglock);
 769
 770	task_set_jobctl_pending(t, JOBCTL_TRAP_NOTIFY);
 771	ptrace_signal_wake_up(t, t->jobctl & JOBCTL_LISTENING);
 772}
 773
 774/*
 775 * Handle magic process-wide effects of stop/continue signals. Unlike
 776 * the signal actions, these happen immediately at signal-generation
 777 * time regardless of blocking, ignoring, or handling.  This does the
 778 * actual continuing for SIGCONT, but not the actual stopping for stop
 779 * signals. The process stop is done as a signal action for SIG_DFL.
 780 *
 781 * Returns true if the signal should be actually delivered, otherwise
 782 * it should be dropped.
 783 */
 784static bool prepare_signal(int sig, struct task_struct *p, bool force)
 785{
 786	struct signal_struct *signal = p->signal;
 787	struct task_struct *t;
 788	sigset_t flush;
 789
 790	if (signal->flags & (SIGNAL_GROUP_EXIT | SIGNAL_GROUP_COREDUMP)) {
 791		if (!(signal->flags & SIGNAL_GROUP_EXIT))
 792			return sig == SIGKILL;
 793		/*
 794		 * The process is in the middle of dying, nothing to do.
 795		 */
 796	} else if (sig_kernel_stop(sig)) {
 797		/*
 798		 * This is a stop signal.  Remove SIGCONT from all queues.
 799		 */
 800		siginitset(&flush, sigmask(SIGCONT));
 801		flush_sigqueue_mask(&flush, &signal->shared_pending);
 802		for_each_thread(p, t)
 803			flush_sigqueue_mask(&flush, &t->pending);
 
 804	} else if (sig == SIGCONT) {
 805		unsigned int why;
 806		/*
 807		 * Remove all stop signals from all queues, wake all threads.
 808		 */
 809		siginitset(&flush, SIG_KERNEL_STOP_MASK);
 810		flush_sigqueue_mask(&flush, &signal->shared_pending);
 811		for_each_thread(p, t) {
 812			flush_sigqueue_mask(&flush, &t->pending);
 813			task_clear_jobctl_pending(t, JOBCTL_STOP_PENDING);
 
 814			if (likely(!(t->ptrace & PT_SEIZED)))
 815				wake_up_state(t, __TASK_STOPPED);
 816			else
 817				ptrace_trap_notify(t);
 818		}
 819
 820		/*
 821		 * Notify the parent with CLD_CONTINUED if we were stopped.
 822		 *
 823		 * If we were in the middle of a group stop, we pretend it
 824		 * was already finished, and then continued. Since SIGCHLD
 825		 * doesn't queue we report only CLD_STOPPED, as if the next
 826		 * CLD_CONTINUED was dropped.
 827		 */
 828		why = 0;
 829		if (signal->flags & SIGNAL_STOP_STOPPED)
 830			why |= SIGNAL_CLD_CONTINUED;
 831		else if (signal->group_stop_count)
 832			why |= SIGNAL_CLD_STOPPED;
 833
 834		if (why) {
 835			/*
 836			 * The first thread which returns from do_signal_stop()
 837			 * will take ->siglock, notice SIGNAL_CLD_MASK, and
 838			 * notify its parent. See get_signal_to_deliver().
 839			 */
 840			signal->flags = why | SIGNAL_STOP_CONTINUED;
 841			signal->group_stop_count = 0;
 842			signal->group_exit_code = 0;
 843		}
 844	}
 845
 846	return !sig_ignored(p, sig, force);
 847}
 848
 849/*
 850 * Test if P wants to take SIG.  After we've checked all threads with this,
 851 * it's equivalent to finding no threads not blocking SIG.  Any threads not
 852 * blocking SIG were ruled out because they are not running and already
 853 * have pending signals.  Such threads will dequeue from the shared queue
 854 * as soon as they're available, so putting the signal on the shared queue
 855 * will be equivalent to sending it to one such thread.
 856 */
 857static inline int wants_signal(int sig, struct task_struct *p)
 858{
 859	if (sigismember(&p->blocked, sig))
 860		return 0;
 861	if (p->flags & PF_EXITING)
 862		return 0;
 863	if (sig == SIGKILL)
 864		return 1;
 865	if (task_is_stopped_or_traced(p))
 866		return 0;
 867	return task_curr(p) || !signal_pending(p);
 868}
 869
 870static void complete_signal(int sig, struct task_struct *p, int group)
 871{
 872	struct signal_struct *signal = p->signal;
 873	struct task_struct *t;
 874
 875	/*
 876	 * Now find a thread we can wake up to take the signal off the queue.
 877	 *
 878	 * If the main thread wants the signal, it gets first crack.
 879	 * Probably the least surprising to the average bear.
 880	 */
 881	if (wants_signal(sig, p))
 882		t = p;
 883	else if (!group || thread_group_empty(p))
 884		/*
 885		 * There is just one thread and it does not need to be woken.
 886		 * It will dequeue unblocked signals before it runs again.
 887		 */
 888		return;
 889	else {
 890		/*
 891		 * Otherwise try to find a suitable thread.
 892		 */
 893		t = signal->curr_target;
 894		while (!wants_signal(sig, t)) {
 895			t = next_thread(t);
 896			if (t == signal->curr_target)
 897				/*
 898				 * No thread needs to be woken.
 899				 * Any eligible threads will see
 900				 * the signal in the queue soon.
 901				 */
 902				return;
 903		}
 904		signal->curr_target = t;
 905	}
 906
 907	/*
 908	 * Found a killable thread.  If the signal will be fatal,
 909	 * then start taking the whole group down immediately.
 910	 */
 911	if (sig_fatal(p, sig) &&
 912	    !(signal->flags & (SIGNAL_UNKILLABLE | SIGNAL_GROUP_EXIT)) &&
 913	    !sigismember(&t->real_blocked, sig) &&
 914	    (sig == SIGKILL || !t->ptrace)) {
 915		/*
 916		 * This signal will be fatal to the whole group.
 917		 */
 918		if (!sig_kernel_coredump(sig)) {
 919			/*
 920			 * Start a group exit and wake everybody up.
 921			 * This way we don't have other threads
 922			 * running and doing things after a slower
 923			 * thread has the fatal signal pending.
 924			 */
 925			signal->flags = SIGNAL_GROUP_EXIT;
 926			signal->group_exit_code = sig;
 927			signal->group_stop_count = 0;
 928			t = p;
 929			do {
 930				task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
 931				sigaddset(&t->pending.signal, SIGKILL);
 932				signal_wake_up(t, 1);
 933			} while_each_thread(p, t);
 934			return;
 935		}
 936	}
 937
 938	/*
 939	 * The signal is already in the shared-pending queue.
 940	 * Tell the chosen thread to wake up and dequeue it.
 941	 */
 942	signal_wake_up(t, sig == SIGKILL);
 943	return;
 944}
 945
 946static inline int legacy_queue(struct sigpending *signals, int sig)
 947{
 948	return (sig < SIGRTMIN) && sigismember(&signals->signal, sig);
 949}
 950
 951#ifdef CONFIG_USER_NS
 952static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
 953{
 954	if (current_user_ns() == task_cred_xxx(t, user_ns))
 955		return;
 956
 957	if (SI_FROMKERNEL(info))
 958		return;
 959
 960	rcu_read_lock();
 961	info->si_uid = from_kuid_munged(task_cred_xxx(t, user_ns),
 962					make_kuid(current_user_ns(), info->si_uid));
 963	rcu_read_unlock();
 964}
 965#else
 966static inline void userns_fixup_signal_uid(struct siginfo *info, struct task_struct *t)
 967{
 968	return;
 969}
 970#endif
 971
 972static int __send_signal(int sig, struct siginfo *info, struct task_struct *t,
 973			int group, int from_ancestor_ns)
 974{
 975	struct sigpending *pending;
 976	struct sigqueue *q;
 977	int override_rlimit;
 978	int ret = 0, result;
 979
 980	assert_spin_locked(&t->sighand->siglock);
 981
 982	result = TRACE_SIGNAL_IGNORED;
 983	if (!prepare_signal(sig, t,
 984			from_ancestor_ns || (info == SEND_SIG_FORCED)))
 985		goto ret;
 986
 987	pending = group ? &t->signal->shared_pending : &t->pending;
 988	/*
 989	 * Short-circuit ignored signals and support queuing
 990	 * exactly one non-rt signal, so that we can get more
 991	 * detailed information about the cause of the signal.
 992	 */
 993	result = TRACE_SIGNAL_ALREADY_PENDING;
 994	if (legacy_queue(pending, sig))
 995		goto ret;
 996
 997	result = TRACE_SIGNAL_DELIVERED;
 998	/*
 999	 * fast-pathed signals for kernel-internal things like SIGSTOP
1000	 * or SIGKILL.
1001	 */
1002	if (info == SEND_SIG_FORCED)
1003		goto out_set;
1004
1005	/*
1006	 * Real-time signals must be queued if sent by sigqueue, or
1007	 * some other real-time mechanism.  It is implementation
1008	 * defined whether kill() does so.  We attempt to do so, on
1009	 * the principle of least surprise, but since kill is not
1010	 * allowed to fail with EAGAIN when low on memory we just
1011	 * make sure at least one signal gets delivered and don't
1012	 * pass on the info struct.
1013	 */
1014	if (sig < SIGRTMIN)
1015		override_rlimit = (is_si_special(info) || info->si_code >= 0);
1016	else
1017		override_rlimit = 0;
1018
1019	q = __sigqueue_alloc(sig, t, GFP_ATOMIC | __GFP_NOTRACK_FALSE_POSITIVE,
1020		override_rlimit);
1021	if (q) {
1022		list_add_tail(&q->list, &pending->list);
1023		switch ((unsigned long) info) {
1024		case (unsigned long) SEND_SIG_NOINFO:
1025			q->info.si_signo = sig;
1026			q->info.si_errno = 0;
1027			q->info.si_code = SI_USER;
1028			q->info.si_pid = task_tgid_nr_ns(current,
1029							task_active_pid_ns(t));
1030			q->info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
1031			break;
1032		case (unsigned long) SEND_SIG_PRIV:
1033			q->info.si_signo = sig;
1034			q->info.si_errno = 0;
1035			q->info.si_code = SI_KERNEL;
1036			q->info.si_pid = 0;
1037			q->info.si_uid = 0;
1038			break;
1039		default:
1040			copy_siginfo(&q->info, info);
1041			if (from_ancestor_ns)
1042				q->info.si_pid = 0;
1043			break;
1044		}
1045
1046		userns_fixup_signal_uid(&q->info, t);
1047
1048	} else if (!is_si_special(info)) {
1049		if (sig >= SIGRTMIN && info->si_code != SI_USER) {
1050			/*
1051			 * Queue overflow, abort.  We may abort if the
1052			 * signal was rt and sent by user using something
1053			 * other than kill().
1054			 */
1055			result = TRACE_SIGNAL_OVERFLOW_FAIL;
1056			ret = -EAGAIN;
1057			goto ret;
1058		} else {
1059			/*
1060			 * This is a silent loss of information.  We still
1061			 * send the signal, but the *info bits are lost.
1062			 */
1063			result = TRACE_SIGNAL_LOSE_INFO;
1064		}
1065	}
1066
1067out_set:
1068	signalfd_notify(t, sig);
1069	sigaddset(&pending->signal, sig);
1070	complete_signal(sig, t, group);
1071ret:
1072	trace_signal_generate(sig, info, t, group, result);
1073	return ret;
1074}
1075
1076static int send_signal(int sig, struct siginfo *info, struct task_struct *t,
1077			int group)
1078{
1079	int from_ancestor_ns = 0;
1080
1081#ifdef CONFIG_PID_NS
1082	from_ancestor_ns = si_fromuser(info) &&
1083			   !task_pid_nr_ns(current, task_active_pid_ns(t));
1084#endif
1085
1086	return __send_signal(sig, info, t, group, from_ancestor_ns);
1087}
1088
1089static void print_fatal_signal(int signr)
1090{
1091	struct pt_regs *regs = signal_pt_regs();
1092	printk(KERN_INFO "potentially unexpected fatal signal %d.\n", signr);
1093
1094#if defined(__i386__) && !defined(__arch_um__)
1095	printk(KERN_INFO "code at %08lx: ", regs->ip);
1096	{
1097		int i;
1098		for (i = 0; i < 16; i++) {
1099			unsigned char insn;
1100
1101			if (get_user(insn, (unsigned char *)(regs->ip + i)))
1102				break;
1103			printk(KERN_CONT "%02x ", insn);
1104		}
1105	}
1106	printk(KERN_CONT "\n");
1107#endif
1108	preempt_disable();
1109	show_regs(regs);
1110	preempt_enable();
1111}
1112
1113static int __init setup_print_fatal_signals(char *str)
1114{
1115	get_option (&str, &print_fatal_signals);
1116
1117	return 1;
1118}
1119
1120__setup("print-fatal-signals=", setup_print_fatal_signals);
1121
1122int
1123__group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1124{
1125	return send_signal(sig, info, p, 1);
1126}
1127
1128static int
1129specific_send_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1130{
1131	return send_signal(sig, info, t, 0);
1132}
1133
1134int do_send_sig_info(int sig, struct siginfo *info, struct task_struct *p,
1135			bool group)
1136{
1137	unsigned long flags;
1138	int ret = -ESRCH;
1139
1140	if (lock_task_sighand(p, &flags)) {
1141		ret = send_signal(sig, info, p, group);
1142		unlock_task_sighand(p, &flags);
1143	}
1144
1145	return ret;
1146}
1147
1148/*
1149 * Force a signal that the process can't ignore: if necessary
1150 * we unblock the signal and change any SIG_IGN to SIG_DFL.
1151 *
1152 * Note: If we unblock the signal, we always reset it to SIG_DFL,
1153 * since we do not want to have a signal handler that was blocked
1154 * be invoked when user space had explicitly blocked it.
1155 *
1156 * We don't want to have recursive SIGSEGV's etc, for example,
1157 * that is why we also clear SIGNAL_UNKILLABLE.
1158 */
1159int
1160force_sig_info(int sig, struct siginfo *info, struct task_struct *t)
1161{
1162	unsigned long int flags;
1163	int ret, blocked, ignored;
1164	struct k_sigaction *action;
1165
1166	spin_lock_irqsave(&t->sighand->siglock, flags);
1167	action = &t->sighand->action[sig-1];
1168	ignored = action->sa.sa_handler == SIG_IGN;
1169	blocked = sigismember(&t->blocked, sig);
1170	if (blocked || ignored) {
1171		action->sa.sa_handler = SIG_DFL;
1172		if (blocked) {
1173			sigdelset(&t->blocked, sig);
1174			recalc_sigpending_and_wake(t);
1175		}
1176	}
1177	if (action->sa.sa_handler == SIG_DFL)
1178		t->signal->flags &= ~SIGNAL_UNKILLABLE;
1179	ret = specific_send_sig_info(sig, info, t);
1180	spin_unlock_irqrestore(&t->sighand->siglock, flags);
1181
1182	return ret;
1183}
1184
1185/*
1186 * Nuke all other threads in the group.
1187 */
1188int zap_other_threads(struct task_struct *p)
1189{
1190	struct task_struct *t = p;
1191	int count = 0;
1192
1193	p->signal->group_stop_count = 0;
1194
1195	while_each_thread(p, t) {
1196		task_clear_jobctl_pending(t, JOBCTL_PENDING_MASK);
1197		count++;
1198
1199		/* Don't bother with already dead threads */
1200		if (t->exit_state)
1201			continue;
1202		sigaddset(&t->pending.signal, SIGKILL);
1203		signal_wake_up(t, 1);
1204	}
1205
1206	return count;
1207}
1208
1209struct sighand_struct *__lock_task_sighand(struct task_struct *tsk,
1210					   unsigned long *flags)
1211{
1212	struct sighand_struct *sighand;
1213
1214	for (;;) {
1215		/*
1216		 * Disable interrupts early to avoid deadlocks.
1217		 * See rcu_read_unlock() comment header for details.
1218		 */
1219		local_irq_save(*flags);
1220		rcu_read_lock();
1221		sighand = rcu_dereference(tsk->sighand);
1222		if (unlikely(sighand == NULL)) {
1223			rcu_read_unlock();
1224			local_irq_restore(*flags);
1225			break;
1226		}
1227		/*
1228		 * This sighand can be already freed and even reused, but
1229		 * we rely on SLAB_DESTROY_BY_RCU and sighand_ctor() which
1230		 * initializes ->siglock: this slab can't go away, it has
1231		 * the same object type, ->siglock can't be reinitialized.
1232		 *
1233		 * We need to ensure that tsk->sighand is still the same
1234		 * after we take the lock, we can race with de_thread() or
1235		 * __exit_signal(). In the latter case the next iteration
1236		 * must see ->sighand == NULL.
1237		 */
1238		spin_lock(&sighand->siglock);
1239		if (likely(sighand == tsk->sighand)) {
1240			rcu_read_unlock();
1241			break;
1242		}
1243		spin_unlock(&sighand->siglock);
1244		rcu_read_unlock();
1245		local_irq_restore(*flags);
1246	}
1247
1248	return sighand;
1249}
1250
1251/*
1252 * send signal info to all the members of a group
1253 */
1254int group_send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1255{
1256	int ret;
1257
1258	rcu_read_lock();
1259	ret = check_kill_permission(sig, info, p);
1260	rcu_read_unlock();
1261
1262	if (!ret && sig)
1263		ret = do_send_sig_info(sig, info, p, true);
1264
1265	return ret;
1266}
1267
1268/*
1269 * __kill_pgrp_info() sends a signal to a process group: this is what the tty
1270 * control characters do (^C, ^Z etc)
1271 * - the caller must hold at least a readlock on tasklist_lock
1272 */
1273int __kill_pgrp_info(int sig, struct siginfo *info, struct pid *pgrp)
1274{
1275	struct task_struct *p = NULL;
1276	int retval, success;
1277
1278	success = 0;
1279	retval = -ESRCH;
1280	do_each_pid_task(pgrp, PIDTYPE_PGID, p) {
1281		int err = group_send_sig_info(sig, info, p);
1282		success |= !err;
1283		retval = err;
1284	} while_each_pid_task(pgrp, PIDTYPE_PGID, p);
1285	return success ? 0 : retval;
1286}
1287
1288int kill_pid_info(int sig, struct siginfo *info, struct pid *pid)
1289{
1290	int error = -ESRCH;
1291	struct task_struct *p;
1292
1293	for (;;) {
1294		rcu_read_lock();
1295		p = pid_task(pid, PIDTYPE_PID);
1296		if (p)
1297			error = group_send_sig_info(sig, info, p);
1298		rcu_read_unlock();
1299		if (likely(!p || error != -ESRCH))
1300			return error;
 
 
 
 
 
 
 
1301
1302		/*
1303		 * The task was unhashed in between, try again.  If it
1304		 * is dead, pid_task() will return NULL, if we race with
1305		 * de_thread() it will find the new leader.
1306		 */
1307	}
1308}
1309
1310int kill_proc_info(int sig, struct siginfo *info, pid_t pid)
1311{
1312	int error;
1313	rcu_read_lock();
1314	error = kill_pid_info(sig, info, find_vpid(pid));
1315	rcu_read_unlock();
1316	return error;
1317}
1318
1319static int kill_as_cred_perm(const struct cred *cred,
1320			     struct task_struct *target)
1321{
1322	const struct cred *pcred = __task_cred(target);
1323	if (!uid_eq(cred->euid, pcred->suid) && !uid_eq(cred->euid, pcred->uid) &&
1324	    !uid_eq(cred->uid,  pcred->suid) && !uid_eq(cred->uid,  pcred->uid))
1325		return 0;
1326	return 1;
1327}
1328
1329/* like kill_pid_info(), but doesn't use uid/euid of "current" */
1330int kill_pid_info_as_cred(int sig, struct siginfo *info, struct pid *pid,
1331			 const struct cred *cred, u32 secid)
1332{
1333	int ret = -EINVAL;
1334	struct task_struct *p;
1335	unsigned long flags;
1336
1337	if (!valid_signal(sig))
1338		return ret;
1339
1340	rcu_read_lock();
1341	p = pid_task(pid, PIDTYPE_PID);
1342	if (!p) {
1343		ret = -ESRCH;
1344		goto out_unlock;
1345	}
1346	if (si_fromuser(info) && !kill_as_cred_perm(cred, p)) {
1347		ret = -EPERM;
1348		goto out_unlock;
1349	}
1350	ret = security_task_kill(p, info, sig, secid);
1351	if (ret)
1352		goto out_unlock;
1353
1354	if (sig) {
1355		if (lock_task_sighand(p, &flags)) {
1356			ret = __send_signal(sig, info, p, 1, 0);
1357			unlock_task_sighand(p, &flags);
1358		} else
1359			ret = -ESRCH;
1360	}
1361out_unlock:
1362	rcu_read_unlock();
1363	return ret;
1364}
1365EXPORT_SYMBOL_GPL(kill_pid_info_as_cred);
1366
1367/*
1368 * kill_something_info() interprets pid in interesting ways just like kill(2).
1369 *
1370 * POSIX specifies that kill(-1,sig) is unspecified, but what we have
1371 * is probably wrong.  Should make it like BSD or SYSV.
1372 */
1373
1374static int kill_something_info(int sig, struct siginfo *info, pid_t pid)
1375{
1376	int ret;
1377
1378	if (pid > 0) {
1379		rcu_read_lock();
1380		ret = kill_pid_info(sig, info, find_vpid(pid));
1381		rcu_read_unlock();
1382		return ret;
1383	}
1384
1385	read_lock(&tasklist_lock);
1386	if (pid != -1) {
1387		ret = __kill_pgrp_info(sig, info,
1388				pid ? find_vpid(-pid) : task_pgrp(current));
1389	} else {
1390		int retval = 0, count = 0;
1391		struct task_struct * p;
1392
1393		for_each_process(p) {
1394			if (task_pid_vnr(p) > 1 &&
1395					!same_thread_group(p, current)) {
1396				int err = group_send_sig_info(sig, info, p);
1397				++count;
1398				if (err != -EPERM)
1399					retval = err;
1400			}
1401		}
1402		ret = count ? retval : -ESRCH;
1403	}
1404	read_unlock(&tasklist_lock);
1405
1406	return ret;
1407}
1408
1409/*
1410 * These are for backward compatibility with the rest of the kernel source.
1411 */
1412
1413int send_sig_info(int sig, struct siginfo *info, struct task_struct *p)
1414{
1415	/*
1416	 * Make sure legacy kernel users don't send in bad values
1417	 * (normal paths check this in check_kill_permission).
1418	 */
1419	if (!valid_signal(sig))
1420		return -EINVAL;
1421
1422	return do_send_sig_info(sig, info, p, false);
1423}
1424
1425#define __si_special(priv) \
1426	((priv) ? SEND_SIG_PRIV : SEND_SIG_NOINFO)
1427
1428int
1429send_sig(int sig, struct task_struct *p, int priv)
1430{
1431	return send_sig_info(sig, __si_special(priv), p);
1432}
1433
1434void
1435force_sig(int sig, struct task_struct *p)
1436{
1437	force_sig_info(sig, SEND_SIG_PRIV, p);
1438}
1439
1440/*
1441 * When things go south during signal handling, we
1442 * will force a SIGSEGV. And if the signal that caused
1443 * the problem was already a SIGSEGV, we'll want to
1444 * make sure we don't even try to deliver the signal..
1445 */
1446int
1447force_sigsegv(int sig, struct task_struct *p)
1448{
1449	if (sig == SIGSEGV) {
1450		unsigned long flags;
1451		spin_lock_irqsave(&p->sighand->siglock, flags);
1452		p->sighand->action[sig - 1].sa.sa_handler = SIG_DFL;
1453		spin_unlock_irqrestore(&p->sighand->siglock, flags);
1454	}
1455	force_sig(SIGSEGV, p);
1456	return 0;
1457}
1458
1459int kill_pgrp(struct pid *pid, int sig, int priv)
1460{
1461	int ret;
1462
1463	read_lock(&tasklist_lock);
1464	ret = __kill_pgrp_info(sig, __si_special(priv), pid);
1465	read_unlock(&tasklist_lock);
1466
1467	return ret;
1468}
1469EXPORT_SYMBOL(kill_pgrp);
1470
1471int kill_pid(struct pid *pid, int sig, int priv)
1472{
1473	return kill_pid_info(sig, __si_special(priv), pid);
1474}
1475EXPORT_SYMBOL(kill_pid);
1476
1477/*
1478 * These functions support sending signals using preallocated sigqueue
1479 * structures.  This is needed "because realtime applications cannot
1480 * afford to lose notifications of asynchronous events, like timer
1481 * expirations or I/O completions".  In the case of POSIX Timers
1482 * we allocate the sigqueue structure from the timer_create.  If this
1483 * allocation fails we are able to report the failure to the application
1484 * with an EAGAIN error.
1485 */
1486struct sigqueue *sigqueue_alloc(void)
1487{
1488	struct sigqueue *q = __sigqueue_alloc(-1, current, GFP_KERNEL, 0);
1489
1490	if (q)
1491		q->flags |= SIGQUEUE_PREALLOC;
1492
1493	return q;
1494}
1495
1496void sigqueue_free(struct sigqueue *q)
1497{
1498	unsigned long flags;
1499	spinlock_t *lock = &current->sighand->siglock;
1500
1501	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1502	/*
1503	 * We must hold ->siglock while testing q->list
1504	 * to serialize with collect_signal() or with
1505	 * __exit_signal()->flush_sigqueue().
1506	 */
1507	spin_lock_irqsave(lock, flags);
1508	q->flags &= ~SIGQUEUE_PREALLOC;
1509	/*
1510	 * If it is queued it will be freed when dequeued,
1511	 * like the "regular" sigqueue.
1512	 */
1513	if (!list_empty(&q->list))
1514		q = NULL;
1515	spin_unlock_irqrestore(lock, flags);
1516
1517	if (q)
1518		__sigqueue_free(q);
1519}
1520
1521int send_sigqueue(struct sigqueue *q, struct task_struct *t, int group)
1522{
1523	int sig = q->info.si_signo;
1524	struct sigpending *pending;
1525	unsigned long flags;
1526	int ret, result;
1527
1528	BUG_ON(!(q->flags & SIGQUEUE_PREALLOC));
1529
1530	ret = -1;
1531	if (!likely(lock_task_sighand(t, &flags)))
1532		goto ret;
1533
1534	ret = 1; /* the signal is ignored */
1535	result = TRACE_SIGNAL_IGNORED;
1536	if (!prepare_signal(sig, t, false))
1537		goto out;
1538
1539	ret = 0;
1540	if (unlikely(!list_empty(&q->list))) {
1541		/*
1542		 * If an SI_TIMER entry is already queue just increment
1543		 * the overrun count.
1544		 */
1545		BUG_ON(q->info.si_code != SI_TIMER);
1546		q->info.si_overrun++;
1547		result = TRACE_SIGNAL_ALREADY_PENDING;
1548		goto out;
1549	}
1550	q->info.si_overrun = 0;
1551
1552	signalfd_notify(t, sig);
1553	pending = group ? &t->signal->shared_pending : &t->pending;
1554	list_add_tail(&q->list, &pending->list);
1555	sigaddset(&pending->signal, sig);
1556	complete_signal(sig, t, group);
1557	result = TRACE_SIGNAL_DELIVERED;
1558out:
1559	trace_signal_generate(sig, &q->info, t, group, result);
1560	unlock_task_sighand(t, &flags);
1561ret:
1562	return ret;
1563}
1564
1565/*
1566 * Let a parent know about the death of a child.
1567 * For a stopped/continued status change, use do_notify_parent_cldstop instead.
1568 *
1569 * Returns true if our parent ignored us and so we've switched to
1570 * self-reaping.
1571 */
1572bool do_notify_parent(struct task_struct *tsk, int sig)
1573{
1574	struct siginfo info;
1575	unsigned long flags;
1576	struct sighand_struct *psig;
1577	bool autoreap = false;
1578	cputime_t utime, stime;
1579
1580	BUG_ON(sig == -1);
1581
1582 	/* do_notify_parent_cldstop should have been called instead.  */
1583 	BUG_ON(task_is_stopped_or_traced(tsk));
1584
1585	BUG_ON(!tsk->ptrace &&
1586	       (tsk->group_leader != tsk || !thread_group_empty(tsk)));
1587
1588	if (sig != SIGCHLD) {
1589		/*
1590		 * This is only possible if parent == real_parent.
1591		 * Check if it has changed security domain.
1592		 */
1593		if (tsk->parent_exec_id != tsk->parent->self_exec_id)
1594			sig = SIGCHLD;
1595	}
1596
1597	info.si_signo = sig;
1598	info.si_errno = 0;
1599	/*
1600	 * We are under tasklist_lock here so our parent is tied to
1601	 * us and cannot change.
1602	 *
1603	 * task_active_pid_ns will always return the same pid namespace
1604	 * until a task passes through release_task.
1605	 *
1606	 * write_lock() currently calls preempt_disable() which is the
1607	 * same as rcu_read_lock(), but according to Oleg, this is not
1608	 * correct to rely on this
1609	 */
1610	rcu_read_lock();
1611	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(tsk->parent));
1612	info.si_uid = from_kuid_munged(task_cred_xxx(tsk->parent, user_ns),
1613				       task_uid(tsk));
1614	rcu_read_unlock();
1615
1616	task_cputime(tsk, &utime, &stime);
1617	info.si_utime = cputime_to_clock_t(utime + tsk->signal->utime);
1618	info.si_stime = cputime_to_clock_t(stime + tsk->signal->stime);
1619
1620	info.si_status = tsk->exit_code & 0x7f;
1621	if (tsk->exit_code & 0x80)
1622		info.si_code = CLD_DUMPED;
1623	else if (tsk->exit_code & 0x7f)
1624		info.si_code = CLD_KILLED;
1625	else {
1626		info.si_code = CLD_EXITED;
1627		info.si_status = tsk->exit_code >> 8;
1628	}
1629
1630	psig = tsk->parent->sighand;
1631	spin_lock_irqsave(&psig->siglock, flags);
1632	if (!tsk->ptrace && sig == SIGCHLD &&
1633	    (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN ||
1634	     (psig->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDWAIT))) {
1635		/*
1636		 * We are exiting and our parent doesn't care.  POSIX.1
1637		 * defines special semantics for setting SIGCHLD to SIG_IGN
1638		 * or setting the SA_NOCLDWAIT flag: we should be reaped
1639		 * automatically and not left for our parent's wait4 call.
1640		 * Rather than having the parent do it as a magic kind of
1641		 * signal handler, we just set this to tell do_exit that we
1642		 * can be cleaned up without becoming a zombie.  Note that
1643		 * we still call __wake_up_parent in this case, because a
1644		 * blocked sys_wait4 might now return -ECHILD.
1645		 *
1646		 * Whether we send SIGCHLD or not for SA_NOCLDWAIT
1647		 * is implementation-defined: we do (if you don't want
1648		 * it, just use SIG_IGN instead).
1649		 */
1650		autoreap = true;
1651		if (psig->action[SIGCHLD-1].sa.sa_handler == SIG_IGN)
1652			sig = 0;
1653	}
1654	if (valid_signal(sig) && sig)
1655		__group_send_sig_info(sig, &info, tsk->parent);
1656	__wake_up_parent(tsk, tsk->parent);
1657	spin_unlock_irqrestore(&psig->siglock, flags);
1658
1659	return autoreap;
1660}
1661
1662/**
1663 * do_notify_parent_cldstop - notify parent of stopped/continued state change
1664 * @tsk: task reporting the state change
1665 * @for_ptracer: the notification is for ptracer
1666 * @why: CLD_{CONTINUED|STOPPED|TRAPPED} to report
1667 *
1668 * Notify @tsk's parent that the stopped/continued state has changed.  If
1669 * @for_ptracer is %false, @tsk's group leader notifies to its real parent.
1670 * If %true, @tsk reports to @tsk->parent which should be the ptracer.
1671 *
1672 * CONTEXT:
1673 * Must be called with tasklist_lock at least read locked.
1674 */
1675static void do_notify_parent_cldstop(struct task_struct *tsk,
1676				     bool for_ptracer, int why)
1677{
1678	struct siginfo info;
1679	unsigned long flags;
1680	struct task_struct *parent;
1681	struct sighand_struct *sighand;
1682	cputime_t utime, stime;
1683
1684	if (for_ptracer) {
1685		parent = tsk->parent;
1686	} else {
1687		tsk = tsk->group_leader;
1688		parent = tsk->real_parent;
1689	}
1690
1691	info.si_signo = SIGCHLD;
1692	info.si_errno = 0;
1693	/*
1694	 * see comment in do_notify_parent() about the following 4 lines
1695	 */
1696	rcu_read_lock();
1697	info.si_pid = task_pid_nr_ns(tsk, task_active_pid_ns(parent));
1698	info.si_uid = from_kuid_munged(task_cred_xxx(parent, user_ns), task_uid(tsk));
1699	rcu_read_unlock();
1700
1701	task_cputime(tsk, &utime, &stime);
1702	info.si_utime = cputime_to_clock_t(utime);
1703	info.si_stime = cputime_to_clock_t(stime);
1704
1705 	info.si_code = why;
1706 	switch (why) {
1707 	case CLD_CONTINUED:
1708 		info.si_status = SIGCONT;
1709 		break;
1710 	case CLD_STOPPED:
1711 		info.si_status = tsk->signal->group_exit_code & 0x7f;
1712 		break;
1713 	case CLD_TRAPPED:
1714 		info.si_status = tsk->exit_code & 0x7f;
1715 		break;
1716 	default:
1717 		BUG();
1718 	}
1719
1720	sighand = parent->sighand;
1721	spin_lock_irqsave(&sighand->siglock, flags);
1722	if (sighand->action[SIGCHLD-1].sa.sa_handler != SIG_IGN &&
1723	    !(sighand->action[SIGCHLD-1].sa.sa_flags & SA_NOCLDSTOP))
1724		__group_send_sig_info(SIGCHLD, &info, parent);
1725	/*
1726	 * Even if SIGCHLD is not generated, we must wake up wait4 calls.
1727	 */
1728	__wake_up_parent(tsk, parent);
1729	spin_unlock_irqrestore(&sighand->siglock, flags);
1730}
1731
1732static inline int may_ptrace_stop(void)
1733{
1734	if (!likely(current->ptrace))
1735		return 0;
1736	/*
1737	 * Are we in the middle of do_coredump?
1738	 * If so and our tracer is also part of the coredump stopping
1739	 * is a deadlock situation, and pointless because our tracer
1740	 * is dead so don't allow us to stop.
1741	 * If SIGKILL was already sent before the caller unlocked
1742	 * ->siglock we must see ->core_state != NULL. Otherwise it
1743	 * is safe to enter schedule().
1744	 *
1745	 * This is almost outdated, a task with the pending SIGKILL can't
1746	 * block in TASK_TRACED. But PTRACE_EVENT_EXIT can be reported
1747	 * after SIGKILL was already dequeued.
1748	 */
1749	if (unlikely(current->mm->core_state) &&
1750	    unlikely(current->mm == current->parent->mm))
1751		return 0;
1752
1753	return 1;
1754}
1755
1756/*
1757 * Return non-zero if there is a SIGKILL that should be waking us up.
1758 * Called with the siglock held.
1759 */
1760static int sigkill_pending(struct task_struct *tsk)
1761{
1762	return	sigismember(&tsk->pending.signal, SIGKILL) ||
1763		sigismember(&tsk->signal->shared_pending.signal, SIGKILL);
1764}
1765
1766/*
1767 * This must be called with current->sighand->siglock held.
1768 *
1769 * This should be the path for all ptrace stops.
1770 * We always set current->last_siginfo while stopped here.
1771 * That makes it a way to test a stopped process for
1772 * being ptrace-stopped vs being job-control-stopped.
1773 *
1774 * If we actually decide not to stop at all because the tracer
1775 * is gone, we keep current->exit_code unless clear_code.
1776 */
1777static void ptrace_stop(int exit_code, int why, int clear_code, siginfo_t *info)
1778	__releases(&current->sighand->siglock)
1779	__acquires(&current->sighand->siglock)
1780{
1781	bool gstop_done = false;
1782
1783	if (arch_ptrace_stop_needed(exit_code, info)) {
1784		/*
1785		 * The arch code has something special to do before a
1786		 * ptrace stop.  This is allowed to block, e.g. for faults
1787		 * on user stack pages.  We can't keep the siglock while
1788		 * calling arch_ptrace_stop, so we must release it now.
1789		 * To preserve proper semantics, we must do this before
1790		 * any signal bookkeeping like checking group_stop_count.
1791		 * Meanwhile, a SIGKILL could come in before we retake the
1792		 * siglock.  That must prevent us from sleeping in TASK_TRACED.
1793		 * So after regaining the lock, we must check for SIGKILL.
1794		 */
1795		spin_unlock_irq(&current->sighand->siglock);
1796		arch_ptrace_stop(exit_code, info);
1797		spin_lock_irq(&current->sighand->siglock);
1798		if (sigkill_pending(current))
1799			return;
1800	}
1801
1802	/*
1803	 * We're committing to trapping.  TRACED should be visible before
1804	 * TRAPPING is cleared; otherwise, the tracer might fail do_wait().
1805	 * Also, transition to TRACED and updates to ->jobctl should be
1806	 * atomic with respect to siglock and should be done after the arch
1807	 * hook as siglock is released and regrabbed across it.
1808	 */
1809	set_current_state(TASK_TRACED);
1810
1811	current->last_siginfo = info;
1812	current->exit_code = exit_code;
1813
1814	/*
1815	 * If @why is CLD_STOPPED, we're trapping to participate in a group
1816	 * stop.  Do the bookkeeping.  Note that if SIGCONT was delievered
1817	 * across siglock relocks since INTERRUPT was scheduled, PENDING
1818	 * could be clear now.  We act as if SIGCONT is received after
1819	 * TASK_TRACED is entered - ignore it.
1820	 */
1821	if (why == CLD_STOPPED && (current->jobctl & JOBCTL_STOP_PENDING))
1822		gstop_done = task_participate_group_stop(current);
1823
1824	/* any trap clears pending STOP trap, STOP trap clears NOTIFY */
1825	task_clear_jobctl_pending(current, JOBCTL_TRAP_STOP);
1826	if (info && info->si_code >> 8 == PTRACE_EVENT_STOP)
1827		task_clear_jobctl_pending(current, JOBCTL_TRAP_NOTIFY);
1828
1829	/* entering a trap, clear TRAPPING */
1830	task_clear_jobctl_trapping(current);
1831
1832	spin_unlock_irq(&current->sighand->siglock);
1833	read_lock(&tasklist_lock);
1834	if (may_ptrace_stop()) {
1835		/*
1836		 * Notify parents of the stop.
1837		 *
1838		 * While ptraced, there are two parents - the ptracer and
1839		 * the real_parent of the group_leader.  The ptracer should
1840		 * know about every stop while the real parent is only
1841		 * interested in the completion of group stop.  The states
1842		 * for the two don't interact with each other.  Notify
1843		 * separately unless they're gonna be duplicates.
1844		 */
1845		do_notify_parent_cldstop(current, true, why);
1846		if (gstop_done && ptrace_reparented(current))
1847			do_notify_parent_cldstop(current, false, why);
1848
1849		/*
1850		 * Don't want to allow preemption here, because
1851		 * sys_ptrace() needs this task to be inactive.
1852		 *
1853		 * XXX: implement read_unlock_no_resched().
1854		 */
1855		preempt_disable();
1856		read_unlock(&tasklist_lock);
1857		preempt_enable_no_resched();
1858		freezable_schedule();
1859	} else {
1860		/*
1861		 * By the time we got the lock, our tracer went away.
1862		 * Don't drop the lock yet, another tracer may come.
1863		 *
1864		 * If @gstop_done, the ptracer went away between group stop
1865		 * completion and here.  During detach, it would have set
1866		 * JOBCTL_STOP_PENDING on us and we'll re-enter
1867		 * TASK_STOPPED in do_signal_stop() on return, so notifying
1868		 * the real parent of the group stop completion is enough.
1869		 */
1870		if (gstop_done)
1871			do_notify_parent_cldstop(current, false, why);
1872
1873		/* tasklist protects us from ptrace_freeze_traced() */
1874		__set_current_state(TASK_RUNNING);
1875		if (clear_code)
1876			current->exit_code = 0;
1877		read_unlock(&tasklist_lock);
1878	}
1879
1880	/*
1881	 * We are back.  Now reacquire the siglock before touching
1882	 * last_siginfo, so that we are sure to have synchronized with
1883	 * any signal-sending on another CPU that wants to examine it.
1884	 */
1885	spin_lock_irq(&current->sighand->siglock);
1886	current->last_siginfo = NULL;
1887
1888	/* LISTENING can be set only during STOP traps, clear it */
1889	current->jobctl &= ~JOBCTL_LISTENING;
1890
1891	/*
1892	 * Queued signals ignored us while we were stopped for tracing.
1893	 * So check for any that we should take before resuming user mode.
1894	 * This sets TIF_SIGPENDING, but never clears it.
1895	 */
1896	recalc_sigpending_tsk(current);
1897}
1898
1899static void ptrace_do_notify(int signr, int exit_code, int why)
1900{
1901	siginfo_t info;
1902
1903	memset(&info, 0, sizeof info);
1904	info.si_signo = signr;
1905	info.si_code = exit_code;
1906	info.si_pid = task_pid_vnr(current);
1907	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
1908
1909	/* Let the debugger run.  */
1910	ptrace_stop(exit_code, why, 1, &info);
1911}
1912
1913void ptrace_notify(int exit_code)
1914{
1915	BUG_ON((exit_code & (0x7f | ~0xffff)) != SIGTRAP);
1916	if (unlikely(current->task_works))
1917		task_work_run();
1918
1919	spin_lock_irq(&current->sighand->siglock);
1920	ptrace_do_notify(SIGTRAP, exit_code, CLD_TRAPPED);
1921	spin_unlock_irq(&current->sighand->siglock);
1922}
1923
1924/**
1925 * do_signal_stop - handle group stop for SIGSTOP and other stop signals
1926 * @signr: signr causing group stop if initiating
1927 *
1928 * If %JOBCTL_STOP_PENDING is not set yet, initiate group stop with @signr
1929 * and participate in it.  If already set, participate in the existing
1930 * group stop.  If participated in a group stop (and thus slept), %true is
1931 * returned with siglock released.
1932 *
1933 * If ptraced, this function doesn't handle stop itself.  Instead,
1934 * %JOBCTL_TRAP_STOP is scheduled and %false is returned with siglock
1935 * untouched.  The caller must ensure that INTERRUPT trap handling takes
1936 * places afterwards.
1937 *
1938 * CONTEXT:
1939 * Must be called with @current->sighand->siglock held, which is released
1940 * on %true return.
1941 *
1942 * RETURNS:
1943 * %false if group stop is already cancelled or ptrace trap is scheduled.
1944 * %true if participated in group stop.
1945 */
1946static bool do_signal_stop(int signr)
1947	__releases(&current->sighand->siglock)
1948{
1949	struct signal_struct *sig = current->signal;
1950
1951	if (!(current->jobctl & JOBCTL_STOP_PENDING)) {
1952		unsigned long gstop = JOBCTL_STOP_PENDING | JOBCTL_STOP_CONSUME;
1953		struct task_struct *t;
1954
1955		/* signr will be recorded in task->jobctl for retries */
1956		WARN_ON_ONCE(signr & ~JOBCTL_STOP_SIGMASK);
1957
1958		if (!likely(current->jobctl & JOBCTL_STOP_DEQUEUED) ||
1959		    unlikely(signal_group_exit(sig)))
1960			return false;
1961		/*
1962		 * There is no group stop already in progress.  We must
1963		 * initiate one now.
1964		 *
1965		 * While ptraced, a task may be resumed while group stop is
1966		 * still in effect and then receive a stop signal and
1967		 * initiate another group stop.  This deviates from the
1968		 * usual behavior as two consecutive stop signals can't
1969		 * cause two group stops when !ptraced.  That is why we
1970		 * also check !task_is_stopped(t) below.
1971		 *
1972		 * The condition can be distinguished by testing whether
1973		 * SIGNAL_STOP_STOPPED is already set.  Don't generate
1974		 * group_exit_code in such case.
1975		 *
1976		 * This is not necessary for SIGNAL_STOP_CONTINUED because
1977		 * an intervening stop signal is required to cause two
1978		 * continued events regardless of ptrace.
1979		 */
1980		if (!(sig->flags & SIGNAL_STOP_STOPPED))
1981			sig->group_exit_code = signr;
1982
1983		sig->group_stop_count = 0;
1984
1985		if (task_set_jobctl_pending(current, signr | gstop))
1986			sig->group_stop_count++;
1987
1988		t = current;
1989		while_each_thread(current, t) {
1990			/*
1991			 * Setting state to TASK_STOPPED for a group
1992			 * stop is always done with the siglock held,
1993			 * so this check has no races.
1994			 */
1995			if (!task_is_stopped(t) &&
1996			    task_set_jobctl_pending(t, signr | gstop)) {
1997				sig->group_stop_count++;
1998				if (likely(!(t->ptrace & PT_SEIZED)))
1999					signal_wake_up(t, 0);
2000				else
2001					ptrace_trap_notify(t);
2002			}
2003		}
2004	}
2005
2006	if (likely(!current->ptrace)) {
2007		int notify = 0;
2008
2009		/*
2010		 * If there are no other threads in the group, or if there
2011		 * is a group stop in progress and we are the last to stop,
2012		 * report to the parent.
2013		 */
2014		if (task_participate_group_stop(current))
2015			notify = CLD_STOPPED;
2016
2017		__set_current_state(TASK_STOPPED);
2018		spin_unlock_irq(&current->sighand->siglock);
2019
2020		/*
2021		 * Notify the parent of the group stop completion.  Because
2022		 * we're not holding either the siglock or tasklist_lock
2023		 * here, ptracer may attach inbetween; however, this is for
2024		 * group stop and should always be delivered to the real
2025		 * parent of the group leader.  The new ptracer will get
2026		 * its notification when this task transitions into
2027		 * TASK_TRACED.
2028		 */
2029		if (notify) {
2030			read_lock(&tasklist_lock);
2031			do_notify_parent_cldstop(current, false, notify);
2032			read_unlock(&tasklist_lock);
2033		}
2034
2035		/* Now we don't run again until woken by SIGCONT or SIGKILL */
2036		freezable_schedule();
2037		return true;
2038	} else {
2039		/*
2040		 * While ptraced, group stop is handled by STOP trap.
2041		 * Schedule it and let the caller deal with it.
2042		 */
2043		task_set_jobctl_pending(current, JOBCTL_TRAP_STOP);
2044		return false;
2045	}
2046}
2047
2048/**
2049 * do_jobctl_trap - take care of ptrace jobctl traps
2050 *
2051 * When PT_SEIZED, it's used for both group stop and explicit
2052 * SEIZE/INTERRUPT traps.  Both generate PTRACE_EVENT_STOP trap with
2053 * accompanying siginfo.  If stopped, lower eight bits of exit_code contain
2054 * the stop signal; otherwise, %SIGTRAP.
2055 *
2056 * When !PT_SEIZED, it's used only for group stop trap with stop signal
2057 * number as exit_code and no siginfo.
2058 *
2059 * CONTEXT:
2060 * Must be called with @current->sighand->siglock held, which may be
2061 * released and re-acquired before returning with intervening sleep.
2062 */
2063static void do_jobctl_trap(void)
2064{
2065	struct signal_struct *signal = current->signal;
2066	int signr = current->jobctl & JOBCTL_STOP_SIGMASK;
2067
2068	if (current->ptrace & PT_SEIZED) {
2069		if (!signal->group_stop_count &&
2070		    !(signal->flags & SIGNAL_STOP_STOPPED))
2071			signr = SIGTRAP;
2072		WARN_ON_ONCE(!signr);
2073		ptrace_do_notify(signr, signr | (PTRACE_EVENT_STOP << 8),
2074				 CLD_STOPPED);
2075	} else {
2076		WARN_ON_ONCE(!signr);
2077		ptrace_stop(signr, CLD_STOPPED, 0, NULL);
2078		current->exit_code = 0;
2079	}
2080}
2081
2082static int ptrace_signal(int signr, siginfo_t *info)
2083{
2084	ptrace_signal_deliver();
2085	/*
2086	 * We do not check sig_kernel_stop(signr) but set this marker
2087	 * unconditionally because we do not know whether debugger will
2088	 * change signr. This flag has no meaning unless we are going
2089	 * to stop after return from ptrace_stop(). In this case it will
2090	 * be checked in do_signal_stop(), we should only stop if it was
2091	 * not cleared by SIGCONT while we were sleeping. See also the
2092	 * comment in dequeue_signal().
2093	 */
2094	current->jobctl |= JOBCTL_STOP_DEQUEUED;
2095	ptrace_stop(signr, CLD_TRAPPED, 0, info);
2096
2097	/* We're back.  Did the debugger cancel the sig?  */
2098	signr = current->exit_code;
2099	if (signr == 0)
2100		return signr;
2101
2102	current->exit_code = 0;
2103
2104	/*
2105	 * Update the siginfo structure if the signal has
2106	 * changed.  If the debugger wanted something
2107	 * specific in the siginfo structure then it should
2108	 * have updated *info via PTRACE_SETSIGINFO.
2109	 */
2110	if (signr != info->si_signo) {
2111		info->si_signo = signr;
2112		info->si_errno = 0;
2113		info->si_code = SI_USER;
2114		rcu_read_lock();
2115		info->si_pid = task_pid_vnr(current->parent);
2116		info->si_uid = from_kuid_munged(current_user_ns(),
2117						task_uid(current->parent));
2118		rcu_read_unlock();
2119	}
2120
2121	/* If the (new) signal is now blocked, requeue it.  */
2122	if (sigismember(&current->blocked, signr)) {
2123		specific_send_sig_info(signr, info, current);
2124		signr = 0;
2125	}
2126
2127	return signr;
2128}
2129
2130int get_signal(struct ksignal *ksig)
 
2131{
2132	struct sighand_struct *sighand = current->sighand;
2133	struct signal_struct *signal = current->signal;
2134	int signr;
2135
2136	if (unlikely(current->task_works))
2137		task_work_run();
2138
2139	if (unlikely(uprobe_deny_signal()))
2140		return 0;
2141
2142	/*
2143	 * Do this once, we can't return to user-mode if freezing() == T.
2144	 * do_signal_stop() and ptrace_stop() do freezable_schedule() and
2145	 * thus do not need another check after return.
2146	 */
2147	try_to_freeze();
2148
2149relock:
2150	spin_lock_irq(&sighand->siglock);
2151	/*
2152	 * Every stopped thread goes here after wakeup. Check to see if
2153	 * we should notify the parent, prepare_signal(SIGCONT) encodes
2154	 * the CLD_ si_code into SIGNAL_CLD_MASK bits.
2155	 */
2156	if (unlikely(signal->flags & SIGNAL_CLD_MASK)) {
2157		int why;
2158
2159		if (signal->flags & SIGNAL_CLD_CONTINUED)
2160			why = CLD_CONTINUED;
2161		else
2162			why = CLD_STOPPED;
2163
2164		signal->flags &= ~SIGNAL_CLD_MASK;
2165
2166		spin_unlock_irq(&sighand->siglock);
2167
2168		/*
2169		 * Notify the parent that we're continuing.  This event is
2170		 * always per-process and doesn't make whole lot of sense
2171		 * for ptracers, who shouldn't consume the state via
2172		 * wait(2) either, but, for backward compatibility, notify
2173		 * the ptracer of the group leader too unless it's gonna be
2174		 * a duplicate.
2175		 */
2176		read_lock(&tasklist_lock);
2177		do_notify_parent_cldstop(current, false, why);
2178
2179		if (ptrace_reparented(current->group_leader))
2180			do_notify_parent_cldstop(current->group_leader,
2181						true, why);
2182		read_unlock(&tasklist_lock);
2183
2184		goto relock;
2185	}
2186
2187	for (;;) {
2188		struct k_sigaction *ka;
2189
2190		if (unlikely(current->jobctl & JOBCTL_STOP_PENDING) &&
2191		    do_signal_stop(0))
2192			goto relock;
2193
2194		if (unlikely(current->jobctl & JOBCTL_TRAP_MASK)) {
2195			do_jobctl_trap();
2196			spin_unlock_irq(&sighand->siglock);
2197			goto relock;
2198		}
2199
2200		signr = dequeue_signal(current, &current->blocked, &ksig->info);
2201
2202		if (!signr)
2203			break; /* will return 0 */
2204
2205		if (unlikely(current->ptrace) && signr != SIGKILL) {
2206			signr = ptrace_signal(signr, &ksig->info);
2207			if (!signr)
2208				continue;
2209		}
2210
2211		ka = &sighand->action[signr-1];
2212
2213		/* Trace actually delivered signals. */
2214		trace_signal_deliver(signr, &ksig->info, ka);
2215
2216		if (ka->sa.sa_handler == SIG_IGN) /* Do nothing.  */
2217			continue;
2218		if (ka->sa.sa_handler != SIG_DFL) {
2219			/* Run the handler.  */
2220			ksig->ka = *ka;
2221
2222			if (ka->sa.sa_flags & SA_ONESHOT)
2223				ka->sa.sa_handler = SIG_DFL;
2224
2225			break; /* will return non-zero "signr" value */
2226		}
2227
2228		/*
2229		 * Now we are doing the default action for this signal.
2230		 */
2231		if (sig_kernel_ignore(signr)) /* Default is nothing. */
2232			continue;
2233
2234		/*
2235		 * Global init gets no signals it doesn't want.
2236		 * Container-init gets no signals it doesn't want from same
2237		 * container.
2238		 *
2239		 * Note that if global/container-init sees a sig_kernel_only()
2240		 * signal here, the signal must have been generated internally
2241		 * or must have come from an ancestor namespace. In either
2242		 * case, the signal cannot be dropped.
2243		 */
2244		if (unlikely(signal->flags & SIGNAL_UNKILLABLE) &&
2245				!sig_kernel_only(signr))
2246			continue;
2247
2248		if (sig_kernel_stop(signr)) {
2249			/*
2250			 * The default action is to stop all threads in
2251			 * the thread group.  The job control signals
2252			 * do nothing in an orphaned pgrp, but SIGSTOP
2253			 * always works.  Note that siglock needs to be
2254			 * dropped during the call to is_orphaned_pgrp()
2255			 * because of lock ordering with tasklist_lock.
2256			 * This allows an intervening SIGCONT to be posted.
2257			 * We need to check for that and bail out if necessary.
2258			 */
2259			if (signr != SIGSTOP) {
2260				spin_unlock_irq(&sighand->siglock);
2261
2262				/* signals can be posted during this window */
2263
2264				if (is_current_pgrp_orphaned())
2265					goto relock;
2266
2267				spin_lock_irq(&sighand->siglock);
2268			}
2269
2270			if (likely(do_signal_stop(ksig->info.si_signo))) {
2271				/* It released the siglock.  */
2272				goto relock;
2273			}
2274
2275			/*
2276			 * We didn't actually stop, due to a race
2277			 * with SIGCONT or something like that.
2278			 */
2279			continue;
2280		}
2281
2282		spin_unlock_irq(&sighand->siglock);
2283
2284		/*
2285		 * Anything else is fatal, maybe with a core dump.
2286		 */
2287		current->flags |= PF_SIGNALED;
2288
2289		if (sig_kernel_coredump(signr)) {
2290			if (print_fatal_signals)
2291				print_fatal_signal(ksig->info.si_signo);
2292			proc_coredump_connector(current);
2293			/*
2294			 * If it was able to dump core, this kills all
2295			 * other threads in the group and synchronizes with
2296			 * their demise.  If we lost the race with another
2297			 * thread getting here, it set group_exit_code
2298			 * first and our do_group_exit call below will use
2299			 * that value and ignore the one we pass it.
2300			 */
2301			do_coredump(&ksig->info);
2302		}
2303
2304		/*
2305		 * Death signals, no core dump.
2306		 */
2307		do_group_exit(ksig->info.si_signo);
2308		/* NOTREACHED */
2309	}
2310	spin_unlock_irq(&sighand->siglock);
2311
2312	ksig->sig = signr;
2313	return ksig->sig > 0;
2314}
2315
2316/**
2317 * signal_delivered - 
2318 * @ksig:		kernel signal struct
 
 
 
2319 * @stepping:		nonzero if debugger single-step or block-step in use
2320 *
2321 * This function should be called when a signal has successfully been
2322 * delivered. It updates the blocked signals accordingly (@ksig->ka.sa.sa_mask
2323 * is always blocked, and the signal itself is blocked unless %SA_NODEFER
2324 * is set in @ksig->ka.sa.sa_flags.  Tracing is notified.
2325 */
2326static void signal_delivered(struct ksignal *ksig, int stepping)
 
2327{
2328	sigset_t blocked;
2329
2330	/* A signal was successfully delivered, and the
2331	   saved sigmask was stored on the signal frame,
2332	   and will be restored by sigreturn.  So we can
2333	   simply clear the restore sigmask flag.  */
2334	clear_restore_sigmask();
2335
2336	sigorsets(&blocked, &current->blocked, &ksig->ka.sa.sa_mask);
2337	if (!(ksig->ka.sa.sa_flags & SA_NODEFER))
2338		sigaddset(&blocked, ksig->sig);
2339	set_current_blocked(&blocked);
2340	tracehook_signal_handler(stepping);
2341}
2342
2343void signal_setup_done(int failed, struct ksignal *ksig, int stepping)
2344{
2345	if (failed)
2346		force_sigsegv(ksig->sig, current);
2347	else
2348		signal_delivered(ksig, stepping);
 
2349}
2350
2351/*
2352 * It could be that complete_signal() picked us to notify about the
2353 * group-wide signal. Other threads should be notified now to take
2354 * the shared signals in @which since we will not.
2355 */
2356static void retarget_shared_pending(struct task_struct *tsk, sigset_t *which)
2357{
2358	sigset_t retarget;
2359	struct task_struct *t;
2360
2361	sigandsets(&retarget, &tsk->signal->shared_pending.signal, which);
2362	if (sigisemptyset(&retarget))
2363		return;
2364
2365	t = tsk;
2366	while_each_thread(tsk, t) {
2367		if (t->flags & PF_EXITING)
2368			continue;
2369
2370		if (!has_pending_signals(&retarget, &t->blocked))
2371			continue;
2372		/* Remove the signals this thread can handle. */
2373		sigandsets(&retarget, &retarget, &t->blocked);
2374
2375		if (!signal_pending(t))
2376			signal_wake_up(t, 0);
2377
2378		if (sigisemptyset(&retarget))
2379			break;
2380	}
2381}
2382
2383void exit_signals(struct task_struct *tsk)
2384{
2385	int group_stop = 0;
2386	sigset_t unblocked;
2387
2388	/*
2389	 * @tsk is about to have PF_EXITING set - lock out users which
2390	 * expect stable threadgroup.
2391	 */
2392	threadgroup_change_begin(tsk);
2393
2394	if (thread_group_empty(tsk) || signal_group_exit(tsk->signal)) {
2395		tsk->flags |= PF_EXITING;
2396		threadgroup_change_end(tsk);
2397		return;
2398	}
2399
2400	spin_lock_irq(&tsk->sighand->siglock);
2401	/*
2402	 * From now this task is not visible for group-wide signals,
2403	 * see wants_signal(), do_signal_stop().
2404	 */
2405	tsk->flags |= PF_EXITING;
2406
2407	threadgroup_change_end(tsk);
2408
2409	if (!signal_pending(tsk))
2410		goto out;
2411
2412	unblocked = tsk->blocked;
2413	signotset(&unblocked);
2414	retarget_shared_pending(tsk, &unblocked);
2415
2416	if (unlikely(tsk->jobctl & JOBCTL_STOP_PENDING) &&
2417	    task_participate_group_stop(tsk))
2418		group_stop = CLD_STOPPED;
2419out:
2420	spin_unlock_irq(&tsk->sighand->siglock);
2421
2422	/*
2423	 * If group stop has completed, deliver the notification.  This
2424	 * should always go to the real parent of the group leader.
2425	 */
2426	if (unlikely(group_stop)) {
2427		read_lock(&tasklist_lock);
2428		do_notify_parent_cldstop(tsk, false, group_stop);
2429		read_unlock(&tasklist_lock);
2430	}
2431}
2432
2433EXPORT_SYMBOL(recalc_sigpending);
2434EXPORT_SYMBOL_GPL(dequeue_signal);
2435EXPORT_SYMBOL(flush_signals);
2436EXPORT_SYMBOL(force_sig);
2437EXPORT_SYMBOL(send_sig);
2438EXPORT_SYMBOL(send_sig_info);
2439EXPORT_SYMBOL(sigprocmask);
 
 
 
2440
2441/*
2442 * System call entry points.
2443 */
2444
2445/**
2446 *  sys_restart_syscall - restart a system call
2447 */
2448SYSCALL_DEFINE0(restart_syscall)
2449{
2450	struct restart_block *restart = &current->restart_block;
2451	return restart->fn(restart);
2452}
2453
2454long do_no_restart_syscall(struct restart_block *param)
2455{
2456	return -EINTR;
2457}
2458
2459static void __set_task_blocked(struct task_struct *tsk, const sigset_t *newset)
2460{
2461	if (signal_pending(tsk) && !thread_group_empty(tsk)) {
2462		sigset_t newblocked;
2463		/* A set of now blocked but previously unblocked signals. */
2464		sigandnsets(&newblocked, newset, &current->blocked);
2465		retarget_shared_pending(tsk, &newblocked);
2466	}
2467	tsk->blocked = *newset;
2468	recalc_sigpending();
2469}
2470
2471/**
2472 * set_current_blocked - change current->blocked mask
2473 * @newset: new mask
2474 *
2475 * It is wrong to change ->blocked directly, this helper should be used
2476 * to ensure the process can't miss a shared signal we are going to block.
2477 */
2478void set_current_blocked(sigset_t *newset)
2479{
2480	sigdelsetmask(newset, sigmask(SIGKILL) | sigmask(SIGSTOP));
2481	__set_current_blocked(newset);
2482}
2483
2484void __set_current_blocked(const sigset_t *newset)
2485{
2486	struct task_struct *tsk = current;
2487
2488	spin_lock_irq(&tsk->sighand->siglock);
2489	__set_task_blocked(tsk, newset);
2490	spin_unlock_irq(&tsk->sighand->siglock);
2491}
2492
2493/*
2494 * This is also useful for kernel threads that want to temporarily
2495 * (or permanently) block certain signals.
2496 *
2497 * NOTE! Unlike the user-mode sys_sigprocmask(), the kernel
2498 * interface happily blocks "unblockable" signals like SIGKILL
2499 * and friends.
2500 */
2501int sigprocmask(int how, sigset_t *set, sigset_t *oldset)
2502{
2503	struct task_struct *tsk = current;
2504	sigset_t newset;
2505
2506	/* Lockless, only current can change ->blocked, never from irq */
2507	if (oldset)
2508		*oldset = tsk->blocked;
2509
2510	switch (how) {
2511	case SIG_BLOCK:
2512		sigorsets(&newset, &tsk->blocked, set);
2513		break;
2514	case SIG_UNBLOCK:
2515		sigandnsets(&newset, &tsk->blocked, set);
2516		break;
2517	case SIG_SETMASK:
2518		newset = *set;
2519		break;
2520	default:
2521		return -EINVAL;
2522	}
2523
2524	__set_current_blocked(&newset);
2525	return 0;
2526}
2527
2528/**
2529 *  sys_rt_sigprocmask - change the list of currently blocked signals
2530 *  @how: whether to add, remove, or set signals
2531 *  @nset: stores pending signals
2532 *  @oset: previous value of signal mask if non-null
2533 *  @sigsetsize: size of sigset_t type
2534 */
2535SYSCALL_DEFINE4(rt_sigprocmask, int, how, sigset_t __user *, nset,
2536		sigset_t __user *, oset, size_t, sigsetsize)
2537{
2538	sigset_t old_set, new_set;
2539	int error;
2540
2541	/* XXX: Don't preclude handling different sized sigset_t's.  */
2542	if (sigsetsize != sizeof(sigset_t))
2543		return -EINVAL;
2544
2545	old_set = current->blocked;
2546
2547	if (nset) {
2548		if (copy_from_user(&new_set, nset, sizeof(sigset_t)))
2549			return -EFAULT;
2550		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2551
2552		error = sigprocmask(how, &new_set, NULL);
2553		if (error)
2554			return error;
2555	}
2556
2557	if (oset) {
2558		if (copy_to_user(oset, &old_set, sizeof(sigset_t)))
2559			return -EFAULT;
2560	}
2561
2562	return 0;
2563}
2564
2565#ifdef CONFIG_COMPAT
2566COMPAT_SYSCALL_DEFINE4(rt_sigprocmask, int, how, compat_sigset_t __user *, nset,
2567		compat_sigset_t __user *, oset, compat_size_t, sigsetsize)
2568{
2569#ifdef __BIG_ENDIAN
2570	sigset_t old_set = current->blocked;
2571
2572	/* XXX: Don't preclude handling different sized sigset_t's.  */
2573	if (sigsetsize != sizeof(sigset_t))
2574		return -EINVAL;
2575
2576	if (nset) {
2577		compat_sigset_t new32;
2578		sigset_t new_set;
2579		int error;
2580		if (copy_from_user(&new32, nset, sizeof(compat_sigset_t)))
2581			return -EFAULT;
2582
2583		sigset_from_compat(&new_set, &new32);
2584		sigdelsetmask(&new_set, sigmask(SIGKILL)|sigmask(SIGSTOP));
2585
2586		error = sigprocmask(how, &new_set, NULL);
2587		if (error)
2588			return error;
2589	}
2590	if (oset) {
2591		compat_sigset_t old32;
2592		sigset_to_compat(&old32, &old_set);
2593		if (copy_to_user(oset, &old32, sizeof(compat_sigset_t)))
2594			return -EFAULT;
2595	}
2596	return 0;
2597#else
2598	return sys_rt_sigprocmask(how, (sigset_t __user *)nset,
2599				  (sigset_t __user *)oset, sigsetsize);
2600#endif
2601}
2602#endif
2603
2604static int do_sigpending(void *set, unsigned long sigsetsize)
2605{
2606	if (sigsetsize > sizeof(sigset_t))
2607		return -EINVAL;
2608
2609	spin_lock_irq(&current->sighand->siglock);
2610	sigorsets(set, &current->pending.signal,
2611		  &current->signal->shared_pending.signal);
2612	spin_unlock_irq(&current->sighand->siglock);
2613
2614	/* Outside the lock because only this thread touches it.  */
2615	sigandsets(set, &current->blocked, set);
2616	return 0;
2617}
2618
2619/**
2620 *  sys_rt_sigpending - examine a pending signal that has been raised
2621 *			while blocked
2622 *  @uset: stores pending signals
2623 *  @sigsetsize: size of sigset_t type or larger
2624 */
2625SYSCALL_DEFINE2(rt_sigpending, sigset_t __user *, uset, size_t, sigsetsize)
2626{
2627	sigset_t set;
2628	int err = do_sigpending(&set, sigsetsize);
2629	if (!err && copy_to_user(uset, &set, sigsetsize))
2630		err = -EFAULT;
2631	return err;
2632}
2633
2634#ifdef CONFIG_COMPAT
2635COMPAT_SYSCALL_DEFINE2(rt_sigpending, compat_sigset_t __user *, uset,
2636		compat_size_t, sigsetsize)
2637{
2638#ifdef __BIG_ENDIAN
2639	sigset_t set;
2640	int err = do_sigpending(&set, sigsetsize);
2641	if (!err) {
2642		compat_sigset_t set32;
2643		sigset_to_compat(&set32, &set);
2644		/* we can get here only if sigsetsize <= sizeof(set) */
2645		if (copy_to_user(uset, &set32, sigsetsize))
2646			err = -EFAULT;
2647	}
2648	return err;
2649#else
2650	return sys_rt_sigpending((sigset_t __user *)uset, sigsetsize);
2651#endif
2652}
2653#endif
2654
2655#ifndef HAVE_ARCH_COPY_SIGINFO_TO_USER
2656
2657int copy_siginfo_to_user(siginfo_t __user *to, const siginfo_t *from)
2658{
2659	int err;
2660
2661	if (!access_ok (VERIFY_WRITE, to, sizeof(siginfo_t)))
2662		return -EFAULT;
2663	if (from->si_code < 0)
2664		return __copy_to_user(to, from, sizeof(siginfo_t))
2665			? -EFAULT : 0;
2666	/*
2667	 * If you change siginfo_t structure, please be sure
2668	 * this code is fixed accordingly.
2669	 * Please remember to update the signalfd_copyinfo() function
2670	 * inside fs/signalfd.c too, in case siginfo_t changes.
2671	 * It should never copy any pad contained in the structure
2672	 * to avoid security leaks, but must copy the generic
2673	 * 3 ints plus the relevant union member.
2674	 */
2675	err = __put_user(from->si_signo, &to->si_signo);
2676	err |= __put_user(from->si_errno, &to->si_errno);
2677	err |= __put_user((short)from->si_code, &to->si_code);
2678	switch (from->si_code & __SI_MASK) {
2679	case __SI_KILL:
2680		err |= __put_user(from->si_pid, &to->si_pid);
2681		err |= __put_user(from->si_uid, &to->si_uid);
2682		break;
2683	case __SI_TIMER:
2684		 err |= __put_user(from->si_tid, &to->si_tid);
2685		 err |= __put_user(from->si_overrun, &to->si_overrun);
2686		 err |= __put_user(from->si_ptr, &to->si_ptr);
2687		break;
2688	case __SI_POLL:
2689		err |= __put_user(from->si_band, &to->si_band);
2690		err |= __put_user(from->si_fd, &to->si_fd);
2691		break;
2692	case __SI_FAULT:
2693		err |= __put_user(from->si_addr, &to->si_addr);
2694#ifdef __ARCH_SI_TRAPNO
2695		err |= __put_user(from->si_trapno, &to->si_trapno);
2696#endif
2697#ifdef BUS_MCEERR_AO
2698		/*
2699		 * Other callers might not initialize the si_lsb field,
2700		 * so check explicitly for the right codes here.
2701		 */
2702		if (from->si_signo == SIGBUS &&
2703		    (from->si_code == BUS_MCEERR_AR || from->si_code == BUS_MCEERR_AO))
2704			err |= __put_user(from->si_addr_lsb, &to->si_addr_lsb);
2705#endif
2706#ifdef SEGV_BNDERR
2707		if (from->si_signo == SIGSEGV && from->si_code == SEGV_BNDERR) {
2708			err |= __put_user(from->si_lower, &to->si_lower);
2709			err |= __put_user(from->si_upper, &to->si_upper);
2710		}
2711#endif
2712#ifdef SEGV_PKUERR
2713		if (from->si_signo == SIGSEGV && from->si_code == SEGV_PKUERR)
2714			err |= __put_user(from->si_pkey, &to->si_pkey);
2715#endif
2716		break;
2717	case __SI_CHLD:
2718		err |= __put_user(from->si_pid, &to->si_pid);
2719		err |= __put_user(from->si_uid, &to->si_uid);
2720		err |= __put_user(from->si_status, &to->si_status);
2721		err |= __put_user(from->si_utime, &to->si_utime);
2722		err |= __put_user(from->si_stime, &to->si_stime);
2723		break;
2724	case __SI_RT: /* This is not generated by the kernel as of now. */
2725	case __SI_MESGQ: /* But this is */
2726		err |= __put_user(from->si_pid, &to->si_pid);
2727		err |= __put_user(from->si_uid, &to->si_uid);
2728		err |= __put_user(from->si_ptr, &to->si_ptr);
2729		break;
2730#ifdef __ARCH_SIGSYS
2731	case __SI_SYS:
2732		err |= __put_user(from->si_call_addr, &to->si_call_addr);
2733		err |= __put_user(from->si_syscall, &to->si_syscall);
2734		err |= __put_user(from->si_arch, &to->si_arch);
2735		break;
2736#endif
2737	default: /* this is just in case for now ... */
2738		err |= __put_user(from->si_pid, &to->si_pid);
2739		err |= __put_user(from->si_uid, &to->si_uid);
2740		break;
2741	}
2742	return err;
2743}
2744
2745#endif
2746
2747/**
2748 *  do_sigtimedwait - wait for queued signals specified in @which
2749 *  @which: queued signals to wait for
2750 *  @info: if non-null, the signal's siginfo is returned here
2751 *  @ts: upper bound on process time suspension
2752 */
2753int do_sigtimedwait(const sigset_t *which, siginfo_t *info,
2754			const struct timespec *ts)
2755{
2756	struct task_struct *tsk = current;
2757	long timeout = MAX_SCHEDULE_TIMEOUT;
2758	sigset_t mask = *which;
2759	int sig;
2760
2761	if (ts) {
2762		if (!timespec_valid(ts))
2763			return -EINVAL;
2764		timeout = timespec_to_jiffies(ts);
2765		/*
2766		 * We can be close to the next tick, add another one
2767		 * to ensure we will wait at least the time asked for.
2768		 */
2769		if (ts->tv_sec || ts->tv_nsec)
2770			timeout++;
2771	}
2772
2773	/*
2774	 * Invert the set of allowed signals to get those we want to block.
2775	 */
2776	sigdelsetmask(&mask, sigmask(SIGKILL) | sigmask(SIGSTOP));
2777	signotset(&mask);
2778
2779	spin_lock_irq(&tsk->sighand->siglock);
2780	sig = dequeue_signal(tsk, &mask, info);
2781	if (!sig && timeout) {
2782		/*
2783		 * None ready, temporarily unblock those we're interested
2784		 * while we are sleeping in so that we'll be awakened when
2785		 * they arrive. Unblocking is always fine, we can avoid
2786		 * set_current_blocked().
2787		 */
2788		tsk->real_blocked = tsk->blocked;
2789		sigandsets(&tsk->blocked, &tsk->blocked, &mask);
2790		recalc_sigpending();
2791		spin_unlock_irq(&tsk->sighand->siglock);
2792
2793		timeout = freezable_schedule_timeout_interruptible(timeout);
2794
2795		spin_lock_irq(&tsk->sighand->siglock);
2796		__set_task_blocked(tsk, &tsk->real_blocked);
2797		sigemptyset(&tsk->real_blocked);
2798		sig = dequeue_signal(tsk, &mask, info);
2799	}
2800	spin_unlock_irq(&tsk->sighand->siglock);
2801
2802	if (sig)
2803		return sig;
2804	return timeout ? -EINTR : -EAGAIN;
2805}
2806
2807/**
2808 *  sys_rt_sigtimedwait - synchronously wait for queued signals specified
2809 *			in @uthese
2810 *  @uthese: queued signals to wait for
2811 *  @uinfo: if non-null, the signal's siginfo is returned here
2812 *  @uts: upper bound on process time suspension
2813 *  @sigsetsize: size of sigset_t type
2814 */
2815SYSCALL_DEFINE4(rt_sigtimedwait, const sigset_t __user *, uthese,
2816		siginfo_t __user *, uinfo, const struct timespec __user *, uts,
2817		size_t, sigsetsize)
2818{
2819	sigset_t these;
2820	struct timespec ts;
2821	siginfo_t info;
2822	int ret;
2823
2824	/* XXX: Don't preclude handling different sized sigset_t's.  */
2825	if (sigsetsize != sizeof(sigset_t))
2826		return -EINVAL;
2827
2828	if (copy_from_user(&these, uthese, sizeof(these)))
2829		return -EFAULT;
2830
2831	if (uts) {
2832		if (copy_from_user(&ts, uts, sizeof(ts)))
2833			return -EFAULT;
2834	}
2835
2836	ret = do_sigtimedwait(&these, &info, uts ? &ts : NULL);
2837
2838	if (ret > 0 && uinfo) {
2839		if (copy_siginfo_to_user(uinfo, &info))
2840			ret = -EFAULT;
2841	}
2842
2843	return ret;
2844}
2845
2846/**
2847 *  sys_kill - send a signal to a process
2848 *  @pid: the PID of the process
2849 *  @sig: signal to be sent
2850 */
2851SYSCALL_DEFINE2(kill, pid_t, pid, int, sig)
2852{
2853	struct siginfo info;
2854
2855	info.si_signo = sig;
2856	info.si_errno = 0;
2857	info.si_code = SI_USER;
2858	info.si_pid = task_tgid_vnr(current);
2859	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2860
2861	return kill_something_info(sig, &info, pid);
2862}
2863
2864static int
2865do_send_specific(pid_t tgid, pid_t pid, int sig, struct siginfo *info)
2866{
2867	struct task_struct *p;
2868	int error = -ESRCH;
2869
2870	rcu_read_lock();
2871	p = find_task_by_vpid(pid);
2872	if (p && (tgid <= 0 || task_tgid_vnr(p) == tgid)) {
2873		error = check_kill_permission(sig, info, p);
2874		/*
2875		 * The null signal is a permissions and process existence
2876		 * probe.  No signal is actually delivered.
2877		 */
2878		if (!error && sig) {
2879			error = do_send_sig_info(sig, info, p, false);
2880			/*
2881			 * If lock_task_sighand() failed we pretend the task
2882			 * dies after receiving the signal. The window is tiny,
2883			 * and the signal is private anyway.
2884			 */
2885			if (unlikely(error == -ESRCH))
2886				error = 0;
2887		}
2888	}
2889	rcu_read_unlock();
2890
2891	return error;
2892}
2893
2894static int do_tkill(pid_t tgid, pid_t pid, int sig)
2895{
2896	struct siginfo info = {};
2897
2898	info.si_signo = sig;
2899	info.si_errno = 0;
2900	info.si_code = SI_TKILL;
2901	info.si_pid = task_tgid_vnr(current);
2902	info.si_uid = from_kuid_munged(current_user_ns(), current_uid());
2903
2904	return do_send_specific(tgid, pid, sig, &info);
2905}
2906
2907/**
2908 *  sys_tgkill - send signal to one specific thread
2909 *  @tgid: the thread group ID of the thread
2910 *  @pid: the PID of the thread
2911 *  @sig: signal to be sent
2912 *
2913 *  This syscall also checks the @tgid and returns -ESRCH even if the PID
2914 *  exists but it's not belonging to the target process anymore. This
2915 *  method solves the problem of threads exiting and PIDs getting reused.
2916 */
2917SYSCALL_DEFINE3(tgkill, pid_t, tgid, pid_t, pid, int, sig)
2918{
2919	/* This is only valid for single tasks */
2920	if (pid <= 0 || tgid <= 0)
2921		return -EINVAL;
2922
2923	return do_tkill(tgid, pid, sig);
2924}
2925
2926/**
2927 *  sys_tkill - send signal to one specific task
2928 *  @pid: the PID of the task
2929 *  @sig: signal to be sent
2930 *
2931 *  Send a signal to only one task, even if it's a CLONE_THREAD task.
2932 */
2933SYSCALL_DEFINE2(tkill, pid_t, pid, int, sig)
2934{
2935	/* This is only valid for single tasks */
2936	if (pid <= 0)
2937		return -EINVAL;
2938
2939	return do_tkill(0, pid, sig);
2940}
2941
2942static int do_rt_sigqueueinfo(pid_t pid, int sig, siginfo_t *info)
2943{
2944	/* Not even root can pretend to send signals from the kernel.
2945	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
2946	 */
2947	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
2948	    (task_pid_vnr(current) != pid))
 
 
2949		return -EPERM;
2950
2951	info->si_signo = sig;
2952
2953	/* POSIX.1b doesn't mention process groups.  */
2954	return kill_proc_info(sig, info, pid);
2955}
2956
2957/**
2958 *  sys_rt_sigqueueinfo - send signal information to a signal
2959 *  @pid: the PID of the thread
2960 *  @sig: signal to be sent
2961 *  @uinfo: signal info to be sent
2962 */
2963SYSCALL_DEFINE3(rt_sigqueueinfo, pid_t, pid, int, sig,
2964		siginfo_t __user *, uinfo)
2965{
2966	siginfo_t info;
2967	if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
2968		return -EFAULT;
2969	return do_rt_sigqueueinfo(pid, sig, &info);
2970}
2971
2972#ifdef CONFIG_COMPAT
2973COMPAT_SYSCALL_DEFINE3(rt_sigqueueinfo,
2974			compat_pid_t, pid,
2975			int, sig,
2976			struct compat_siginfo __user *, uinfo)
2977{
2978	siginfo_t info = {};
2979	int ret = copy_siginfo_from_user32(&info, uinfo);
2980	if (unlikely(ret))
2981		return ret;
2982	return do_rt_sigqueueinfo(pid, sig, &info);
2983}
2984#endif
2985
2986static int do_rt_tgsigqueueinfo(pid_t tgid, pid_t pid, int sig, siginfo_t *info)
2987{
2988	/* This is only valid for single tasks */
2989	if (pid <= 0 || tgid <= 0)
2990		return -EINVAL;
2991
2992	/* Not even root can pretend to send signals from the kernel.
2993	 * Nor can they impersonate a kill()/tgkill(), which adds source info.
2994	 */
2995	if ((info->si_code >= 0 || info->si_code == SI_TKILL) &&
2996	    (task_pid_vnr(current) != pid))
 
 
2997		return -EPERM;
2998
2999	info->si_signo = sig;
3000
3001	return do_send_specific(tgid, pid, sig, info);
3002}
3003
3004SYSCALL_DEFINE4(rt_tgsigqueueinfo, pid_t, tgid, pid_t, pid, int, sig,
3005		siginfo_t __user *, uinfo)
3006{
3007	siginfo_t info;
3008
3009	if (copy_from_user(&info, uinfo, sizeof(siginfo_t)))
3010		return -EFAULT;
3011
3012	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3013}
3014
3015#ifdef CONFIG_COMPAT
3016COMPAT_SYSCALL_DEFINE4(rt_tgsigqueueinfo,
3017			compat_pid_t, tgid,
3018			compat_pid_t, pid,
3019			int, sig,
3020			struct compat_siginfo __user *, uinfo)
3021{
3022	siginfo_t info = {};
3023
3024	if (copy_siginfo_from_user32(&info, uinfo))
3025		return -EFAULT;
3026	return do_rt_tgsigqueueinfo(tgid, pid, sig, &info);
3027}
3028#endif
3029
3030/*
3031 * For kthreads only, must not be used if cloned with CLONE_SIGHAND
3032 */
3033void kernel_sigaction(int sig, __sighandler_t action)
3034{
3035	spin_lock_irq(&current->sighand->siglock);
3036	current->sighand->action[sig - 1].sa.sa_handler = action;
3037	if (action == SIG_IGN) {
3038		sigset_t mask;
3039
3040		sigemptyset(&mask);
3041		sigaddset(&mask, sig);
3042
3043		flush_sigqueue_mask(&mask, &current->signal->shared_pending);
3044		flush_sigqueue_mask(&mask, &current->pending);
3045		recalc_sigpending();
3046	}
3047	spin_unlock_irq(&current->sighand->siglock);
3048}
3049EXPORT_SYMBOL(kernel_sigaction);
3050
3051int do_sigaction(int sig, struct k_sigaction *act, struct k_sigaction *oact)
3052{
3053	struct task_struct *p = current, *t;
3054	struct k_sigaction *k;
3055	sigset_t mask;
3056
3057	if (!valid_signal(sig) || sig < 1 || (act && sig_kernel_only(sig)))
3058		return -EINVAL;
3059
3060	k = &p->sighand->action[sig-1];
3061
3062	spin_lock_irq(&p->sighand->siglock);
3063	if (oact)
3064		*oact = *k;
3065
3066	if (act) {
3067		sigdelsetmask(&act->sa.sa_mask,
3068			      sigmask(SIGKILL) | sigmask(SIGSTOP));
3069		*k = *act;
3070		/*
3071		 * POSIX 3.3.1.3:
3072		 *  "Setting a signal action to SIG_IGN for a signal that is
3073		 *   pending shall cause the pending signal to be discarded,
3074		 *   whether or not it is blocked."
3075		 *
3076		 *  "Setting a signal action to SIG_DFL for a signal that is
3077		 *   pending and whose default action is to ignore the signal
3078		 *   (for example, SIGCHLD), shall cause the pending signal to
3079		 *   be discarded, whether or not it is blocked"
3080		 */
3081		if (sig_handler_ignored(sig_handler(p, sig), sig)) {
3082			sigemptyset(&mask);
3083			sigaddset(&mask, sig);
3084			flush_sigqueue_mask(&mask, &p->signal->shared_pending);
3085			for_each_thread(p, t)
3086				flush_sigqueue_mask(&mask, &t->pending);
 
3087		}
3088	}
3089
3090	spin_unlock_irq(&p->sighand->siglock);
3091	return 0;
3092}
3093
3094static int
3095do_sigaltstack (const stack_t __user *uss, stack_t __user *uoss, unsigned long sp)
3096{
3097	stack_t oss;
3098	int error;
3099
3100	oss.ss_sp = (void __user *) current->sas_ss_sp;
3101	oss.ss_size = current->sas_ss_size;
3102	oss.ss_flags = sas_ss_flags(sp);
3103
3104	if (uss) {
3105		void __user *ss_sp;
3106		size_t ss_size;
3107		int ss_flags;
3108
3109		error = -EFAULT;
3110		if (!access_ok(VERIFY_READ, uss, sizeof(*uss)))
3111			goto out;
3112		error = __get_user(ss_sp, &uss->ss_sp) |
3113			__get_user(ss_flags, &uss->ss_flags) |
3114			__get_user(ss_size, &uss->ss_size);
3115		if (error)
3116			goto out;
3117
3118		error = -EPERM;
3119		if (on_sig_stack(sp))
3120			goto out;
3121
3122		error = -EINVAL;
3123		/*
3124		 * Note - this code used to test ss_flags incorrectly:
3125		 *  	  old code may have been written using ss_flags==0
3126		 *	  to mean ss_flags==SS_ONSTACK (as this was the only
3127		 *	  way that worked) - this fix preserves that older
3128		 *	  mechanism.
3129		 */
3130		if (ss_flags != SS_DISABLE && ss_flags != SS_ONSTACK && ss_flags != 0)
3131			goto out;
3132
3133		if (ss_flags == SS_DISABLE) {
3134			ss_size = 0;
3135			ss_sp = NULL;
3136		} else {
3137			error = -ENOMEM;
3138			if (ss_size < MINSIGSTKSZ)
3139				goto out;
3140		}
3141
3142		current->sas_ss_sp = (unsigned long) ss_sp;
3143		current->sas_ss_size = ss_size;
3144	}
3145
3146	error = 0;
3147	if (uoss) {
3148		error = -EFAULT;
3149		if (!access_ok(VERIFY_WRITE, uoss, sizeof(*uoss)))
3150			goto out;
3151		error = __put_user(oss.ss_sp, &uoss->ss_sp) |
3152			__put_user(oss.ss_size, &uoss->ss_size) |
3153			__put_user(oss.ss_flags, &uoss->ss_flags);
3154	}
3155
3156out:
3157	return error;
3158}
3159SYSCALL_DEFINE2(sigaltstack,const stack_t __user *,uss, stack_t __user *,uoss)
3160{
3161	return do_sigaltstack(uss, uoss, current_user_stack_pointer());
3162}
3163
3164int restore_altstack(const stack_t __user *uss)
3165{
3166	int err = do_sigaltstack(uss, NULL, current_user_stack_pointer());
3167	/* squash all but EFAULT for now */
3168	return err == -EFAULT ? err : 0;
3169}
3170
3171int __save_altstack(stack_t __user *uss, unsigned long sp)
3172{
3173	struct task_struct *t = current;
3174	return  __put_user((void __user *)t->sas_ss_sp, &uss->ss_sp) |
3175		__put_user(sas_ss_flags(sp), &uss->ss_flags) |
3176		__put_user(t->sas_ss_size, &uss->ss_size);
3177}
3178
3179#ifdef CONFIG_COMPAT
3180COMPAT_SYSCALL_DEFINE2(sigaltstack,
3181			const compat_stack_t __user *, uss_ptr,
3182			compat_stack_t __user *, uoss_ptr)
3183{
3184	stack_t uss, uoss;
3185	int ret;
3186	mm_segment_t seg;
3187
3188	if (uss_ptr) {
3189		compat_stack_t uss32;
3190
3191		memset(&uss, 0, sizeof(stack_t));
3192		if (copy_from_user(&uss32, uss_ptr, sizeof(compat_stack_t)))
3193			return -EFAULT;
3194		uss.ss_sp = compat_ptr(uss32.ss_sp);
3195		uss.ss_flags = uss32.ss_flags;
3196		uss.ss_size = uss32.ss_size;
3197	}
3198	seg = get_fs();
3199	set_fs(KERNEL_DS);
3200	ret = do_sigaltstack((stack_t __force __user *) (uss_ptr ? &uss : NULL),
3201			     (stack_t __force __user *) &uoss,
3202			     compat_user_stack_pointer());
3203	set_fs(seg);
3204	if (ret >= 0 && uoss_ptr)  {
3205		if (!access_ok(VERIFY_WRITE, uoss_ptr, sizeof(compat_stack_t)) ||
3206		    __put_user(ptr_to_compat(uoss.ss_sp), &uoss_ptr->ss_sp) ||
3207		    __put_user(uoss.ss_flags, &uoss_ptr->ss_flags) ||
3208		    __put_user(uoss.ss_size, &uoss_ptr->ss_size))
3209			ret = -EFAULT;
3210	}
3211	return ret;
3212}
3213
3214int compat_restore_altstack(const compat_stack_t __user *uss)
3215{
3216	int err = compat_sys_sigaltstack(uss, NULL);
3217	/* squash all but -EFAULT for now */
3218	return err == -EFAULT ? err : 0;
3219}
3220
3221int __compat_save_altstack(compat_stack_t __user *uss, unsigned long sp)
3222{
3223	struct task_struct *t = current;
3224	return  __put_user(ptr_to_compat((void __user *)t->sas_ss_sp), &uss->ss_sp) |
3225		__put_user(sas_ss_flags(sp), &uss->ss_flags) |
3226		__put_user(t->sas_ss_size, &uss->ss_size);
3227}
3228#endif
3229
3230#ifdef __ARCH_WANT_SYS_SIGPENDING
3231
3232/**
3233 *  sys_sigpending - examine pending signals
3234 *  @set: where mask of pending signal is returned
3235 */
3236SYSCALL_DEFINE1(sigpending, old_sigset_t __user *, set)
3237{
3238	return sys_rt_sigpending((sigset_t __user *)set, sizeof(old_sigset_t)); 
3239}
3240
3241#endif
3242
3243#ifdef __ARCH_WANT_SYS_SIGPROCMASK
3244/**
3245 *  sys_sigprocmask - examine and change blocked signals
3246 *  @how: whether to add, remove, or set signals
3247 *  @nset: signals to add or remove (if non-null)
3248 *  @oset: previous value of signal mask if non-null
3249 *
3250 * Some platforms have their own version with special arguments;
3251 * others support only sys_rt_sigprocmask.
3252 */
3253
3254SYSCALL_DEFINE3(sigprocmask, int, how, old_sigset_t __user *, nset,
3255		old_sigset_t __user *, oset)
3256{
3257	old_sigset_t old_set, new_set;
3258	sigset_t new_blocked;
3259
3260	old_set = current->blocked.sig[0];
3261
3262	if (nset) {
3263		if (copy_from_user(&new_set, nset, sizeof(*nset)))
3264			return -EFAULT;
3265
3266		new_blocked = current->blocked;
3267
3268		switch (how) {
3269		case SIG_BLOCK:
3270			sigaddsetmask(&new_blocked, new_set);
3271			break;
3272		case SIG_UNBLOCK:
3273			sigdelsetmask(&new_blocked, new_set);
3274			break;
3275		case SIG_SETMASK:
3276			new_blocked.sig[0] = new_set;
3277			break;
3278		default:
3279			return -EINVAL;
3280		}
3281
3282		set_current_blocked(&new_blocked);
3283	}
3284
3285	if (oset) {
3286		if (copy_to_user(oset, &old_set, sizeof(*oset)))
3287			return -EFAULT;
3288	}
3289
3290	return 0;
3291}
3292#endif /* __ARCH_WANT_SYS_SIGPROCMASK */
3293
3294#ifndef CONFIG_ODD_RT_SIGACTION
3295/**
3296 *  sys_rt_sigaction - alter an action taken by a process
3297 *  @sig: signal to be sent
3298 *  @act: new sigaction
3299 *  @oact: used to save the previous sigaction
3300 *  @sigsetsize: size of sigset_t type
3301 */
3302SYSCALL_DEFINE4(rt_sigaction, int, sig,
3303		const struct sigaction __user *, act,
3304		struct sigaction __user *, oact,
3305		size_t, sigsetsize)
3306{
3307	struct k_sigaction new_sa, old_sa;
3308	int ret = -EINVAL;
3309
3310	/* XXX: Don't preclude handling different sized sigset_t's.  */
3311	if (sigsetsize != sizeof(sigset_t))
3312		goto out;
3313
3314	if (act) {
3315		if (copy_from_user(&new_sa.sa, act, sizeof(new_sa.sa)))
3316			return -EFAULT;
3317	}
3318
3319	ret = do_sigaction(sig, act ? &new_sa : NULL, oact ? &old_sa : NULL);
3320
3321	if (!ret && oact) {
3322		if (copy_to_user(oact, &old_sa.sa, sizeof(old_sa.sa)))
3323			return -EFAULT;
3324	}
3325out:
3326	return ret;
3327}
3328#ifdef CONFIG_COMPAT
3329COMPAT_SYSCALL_DEFINE4(rt_sigaction, int, sig,
3330		const struct compat_sigaction __user *, act,
3331		struct compat_sigaction __user *, oact,
3332		compat_size_t, sigsetsize)
3333{
3334	struct k_sigaction new_ka, old_ka;
3335	compat_sigset_t mask;
3336#ifdef __ARCH_HAS_SA_RESTORER
3337	compat_uptr_t restorer;
3338#endif
3339	int ret;
3340
3341	/* XXX: Don't preclude handling different sized sigset_t's.  */
3342	if (sigsetsize != sizeof(compat_sigset_t))
3343		return -EINVAL;
3344
3345	if (act) {
3346		compat_uptr_t handler;
3347		ret = get_user(handler, &act->sa_handler);
3348		new_ka.sa.sa_handler = compat_ptr(handler);
3349#ifdef __ARCH_HAS_SA_RESTORER
3350		ret |= get_user(restorer, &act->sa_restorer);
3351		new_ka.sa.sa_restorer = compat_ptr(restorer);
3352#endif
3353		ret |= copy_from_user(&mask, &act->sa_mask, sizeof(mask));
3354		ret |= get_user(new_ka.sa.sa_flags, &act->sa_flags);
3355		if (ret)
3356			return -EFAULT;
3357		sigset_from_compat(&new_ka.sa.sa_mask, &mask);
3358	}
3359
3360	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3361	if (!ret && oact) {
3362		sigset_to_compat(&mask, &old_ka.sa.sa_mask);
3363		ret = put_user(ptr_to_compat(old_ka.sa.sa_handler), 
3364			       &oact->sa_handler);
3365		ret |= copy_to_user(&oact->sa_mask, &mask, sizeof(mask));
3366		ret |= put_user(old_ka.sa.sa_flags, &oact->sa_flags);
3367#ifdef __ARCH_HAS_SA_RESTORER
3368		ret |= put_user(ptr_to_compat(old_ka.sa.sa_restorer),
3369				&oact->sa_restorer);
3370#endif
3371	}
3372	return ret;
3373}
3374#endif
3375#endif /* !CONFIG_ODD_RT_SIGACTION */
3376
3377#ifdef CONFIG_OLD_SIGACTION
3378SYSCALL_DEFINE3(sigaction, int, sig,
3379		const struct old_sigaction __user *, act,
3380	        struct old_sigaction __user *, oact)
3381{
3382	struct k_sigaction new_ka, old_ka;
3383	int ret;
3384
3385	if (act) {
3386		old_sigset_t mask;
3387		if (!access_ok(VERIFY_READ, act, sizeof(*act)) ||
3388		    __get_user(new_ka.sa.sa_handler, &act->sa_handler) ||
3389		    __get_user(new_ka.sa.sa_restorer, &act->sa_restorer) ||
3390		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
3391		    __get_user(mask, &act->sa_mask))
3392			return -EFAULT;
3393#ifdef __ARCH_HAS_KA_RESTORER
3394		new_ka.ka_restorer = NULL;
3395#endif
3396		siginitset(&new_ka.sa.sa_mask, mask);
3397	}
3398
3399	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3400
3401	if (!ret && oact) {
3402		if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact)) ||
3403		    __put_user(old_ka.sa.sa_handler, &oact->sa_handler) ||
3404		    __put_user(old_ka.sa.sa_restorer, &oact->sa_restorer) ||
3405		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
3406		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
3407			return -EFAULT;
3408	}
3409
3410	return ret;
3411}
3412#endif
3413#ifdef CONFIG_COMPAT_OLD_SIGACTION
3414COMPAT_SYSCALL_DEFINE3(sigaction, int, sig,
3415		const struct compat_old_sigaction __user *, act,
3416	        struct compat_old_sigaction __user *, oact)
3417{
3418	struct k_sigaction new_ka, old_ka;
3419	int ret;
3420	compat_old_sigset_t mask;
3421	compat_uptr_t handler, restorer;
3422
3423	if (act) {
3424		if (!access_ok(VERIFY_READ, act, sizeof(*act)) ||
3425		    __get_user(handler, &act->sa_handler) ||
3426		    __get_user(restorer, &act->sa_restorer) ||
3427		    __get_user(new_ka.sa.sa_flags, &act->sa_flags) ||
3428		    __get_user(mask, &act->sa_mask))
3429			return -EFAULT;
3430
3431#ifdef __ARCH_HAS_KA_RESTORER
3432		new_ka.ka_restorer = NULL;
3433#endif
3434		new_ka.sa.sa_handler = compat_ptr(handler);
3435		new_ka.sa.sa_restorer = compat_ptr(restorer);
3436		siginitset(&new_ka.sa.sa_mask, mask);
3437	}
3438
3439	ret = do_sigaction(sig, act ? &new_ka : NULL, oact ? &old_ka : NULL);
3440
3441	if (!ret && oact) {
3442		if (!access_ok(VERIFY_WRITE, oact, sizeof(*oact)) ||
3443		    __put_user(ptr_to_compat(old_ka.sa.sa_handler),
3444			       &oact->sa_handler) ||
3445		    __put_user(ptr_to_compat(old_ka.sa.sa_restorer),
3446			       &oact->sa_restorer) ||
3447		    __put_user(old_ka.sa.sa_flags, &oact->sa_flags) ||
3448		    __put_user(old_ka.sa.sa_mask.sig[0], &oact->sa_mask))
3449			return -EFAULT;
3450	}
3451	return ret;
3452}
3453#endif
3454
3455#ifdef CONFIG_SGETMASK_SYSCALL
3456
3457/*
3458 * For backwards compatibility.  Functionality superseded by sigprocmask.
3459 */
3460SYSCALL_DEFINE0(sgetmask)
3461{
3462	/* SMP safe */
3463	return current->blocked.sig[0];
3464}
3465
3466SYSCALL_DEFINE1(ssetmask, int, newmask)
3467{
3468	int old = current->blocked.sig[0];
3469	sigset_t newset;
3470
3471	siginitset(&newset, newmask);
3472	set_current_blocked(&newset);
3473
3474	return old;
3475}
3476#endif /* CONFIG_SGETMASK_SYSCALL */
3477
3478#ifdef __ARCH_WANT_SYS_SIGNAL
3479/*
3480 * For backwards compatibility.  Functionality superseded by sigaction.
3481 */
3482SYSCALL_DEFINE2(signal, int, sig, __sighandler_t, handler)
3483{
3484	struct k_sigaction new_sa, old_sa;
3485	int ret;
3486
3487	new_sa.sa.sa_handler = handler;
3488	new_sa.sa.sa_flags = SA_ONESHOT | SA_NOMASK;
3489	sigemptyset(&new_sa.sa.sa_mask);
3490
3491	ret = do_sigaction(sig, &new_sa, &old_sa);
3492
3493	return ret ? ret : (unsigned long)old_sa.sa.sa_handler;
3494}
3495#endif /* __ARCH_WANT_SYS_SIGNAL */
3496
3497#ifdef __ARCH_WANT_SYS_PAUSE
3498
3499SYSCALL_DEFINE0(pause)
3500{
3501	while (!signal_pending(current)) {
3502		__set_current_state(TASK_INTERRUPTIBLE);
3503		schedule();
3504	}
3505	return -ERESTARTNOHAND;
3506}
3507
3508#endif
3509
3510static int sigsuspend(sigset_t *set)
3511{
3512	current->saved_sigmask = current->blocked;
3513	set_current_blocked(set);
3514
3515	while (!signal_pending(current)) {
3516		__set_current_state(TASK_INTERRUPTIBLE);
3517		schedule();
3518	}
3519	set_restore_sigmask();
3520	return -ERESTARTNOHAND;
3521}
3522
3523/**
3524 *  sys_rt_sigsuspend - replace the signal mask for a value with the
3525 *	@unewset value until a signal is received
3526 *  @unewset: new signal mask value
3527 *  @sigsetsize: size of sigset_t type
3528 */
3529SYSCALL_DEFINE2(rt_sigsuspend, sigset_t __user *, unewset, size_t, sigsetsize)
3530{
3531	sigset_t newset;
3532
3533	/* XXX: Don't preclude handling different sized sigset_t's.  */
3534	if (sigsetsize != sizeof(sigset_t))
3535		return -EINVAL;
3536
3537	if (copy_from_user(&newset, unewset, sizeof(newset)))
3538		return -EFAULT;
3539	return sigsuspend(&newset);
3540}
3541 
3542#ifdef CONFIG_COMPAT
3543COMPAT_SYSCALL_DEFINE2(rt_sigsuspend, compat_sigset_t __user *, unewset, compat_size_t, sigsetsize)
3544{
3545#ifdef __BIG_ENDIAN
3546	sigset_t newset;
3547	compat_sigset_t newset32;
3548
3549	/* XXX: Don't preclude handling different sized sigset_t's.  */
3550	if (sigsetsize != sizeof(sigset_t))
3551		return -EINVAL;
3552
3553	if (copy_from_user(&newset32, unewset, sizeof(compat_sigset_t)))
3554		return -EFAULT;
3555	sigset_from_compat(&newset, &newset32);
3556	return sigsuspend(&newset);
3557#else
3558	/* on little-endian bitmaps don't care about granularity */
3559	return sys_rt_sigsuspend((sigset_t __user *)unewset, sigsetsize);
3560#endif
3561}
3562#endif
3563
3564#ifdef CONFIG_OLD_SIGSUSPEND
3565SYSCALL_DEFINE1(sigsuspend, old_sigset_t, mask)
3566{
3567	sigset_t blocked;
3568	siginitset(&blocked, mask);
3569	return sigsuspend(&blocked);
3570}
3571#endif
3572#ifdef CONFIG_OLD_SIGSUSPEND3
3573SYSCALL_DEFINE3(sigsuspend, int, unused1, int, unused2, old_sigset_t, mask)
3574{
3575	sigset_t blocked;
3576	siginitset(&blocked, mask);
3577	return sigsuspend(&blocked);
3578}
3579#endif
3580
3581__weak const char *arch_vma_name(struct vm_area_struct *vma)
3582{
3583	return NULL;
3584}
3585
3586void __init signals_init(void)
3587{
3588	/* If this check fails, the __ARCH_SI_PREAMBLE_SIZE value is wrong! */
3589	BUILD_BUG_ON(__ARCH_SI_PREAMBLE_SIZE
3590		!= offsetof(struct siginfo, _sifields._pad));
3591
3592	sigqueue_cachep = KMEM_CACHE(sigqueue, SLAB_PANIC);
3593}
3594
3595#ifdef CONFIG_KGDB_KDB
3596#include <linux/kdb.h>
3597/*
3598 * kdb_send_sig_info - Allows kdb to send signals without exposing
3599 * signal internals.  This function checks if the required locks are
3600 * available before calling the main signal code, to avoid kdb
3601 * deadlocks.
3602 */
3603void
3604kdb_send_sig_info(struct task_struct *t, struct siginfo *info)
3605{
3606	static struct task_struct *kdb_prev_t;
3607	int sig, new_t;
3608	if (!spin_trylock(&t->sighand->siglock)) {
3609		kdb_printf("Can't do kill command now.\n"
3610			   "The sigmask lock is held somewhere else in "
3611			   "kernel, try again later\n");
3612		return;
3613	}
3614	spin_unlock(&t->sighand->siglock);
3615	new_t = kdb_prev_t != t;
3616	kdb_prev_t = t;
3617	if (t->state != TASK_RUNNING && new_t) {
3618		kdb_printf("Process is not RUNNING, sending a signal from "
3619			   "kdb risks deadlock\n"
3620			   "on the run queue locks. "
3621			   "The signal has _not_ been sent.\n"
3622			   "Reissue the kill command if you want to risk "
3623			   "the deadlock.\n");
3624		return;
3625	}
3626	sig = info->si_signo;
3627	if (send_sig_info(sig, info, t))
3628		kdb_printf("Fail to deliver Signal %d to process %d.\n",
3629			   sig, t->pid);
3630	else
3631		kdb_printf("Signal %d is sent to process %d.\n", sig, t->pid);
3632}
3633#endif	/* CONFIG_KGDB_KDB */