Linux Audio

Check our new training course

Loading...
v3.15
   1/*
   2 * This file is subject to the terms and conditions of the GNU General Public
   3 * License.  See the file "COPYING" in the main directory of this archive
   4 * for more details.
   5 *
   6 * Copyright (C) 1996, 1997, 1998, 1999, 2000, 03, 04 by Ralf Baechle
   7 * Copyright (C) 1999, 2000 Silicon Graphics, Inc.
   8 * Copyright (C) 2007  Maciej W. Rozycki
   9 * Copyright (C) 2014, Imagination Technologies Ltd.
  10 */
  11#ifndef _ASM_UACCESS_H
  12#define _ASM_UACCESS_H
  13
  14#include <linux/kernel.h>
  15#include <linux/errno.h>
  16#include <linux/thread_info.h>
  17#include <asm/asm-eva.h>
  18
  19/*
  20 * The fs value determines whether argument validity checking should be
  21 * performed or not.  If get_fs() == USER_DS, checking is performed, with
  22 * get_fs() == KERNEL_DS, checking is bypassed.
  23 *
  24 * For historical reasons, these macros are grossly misnamed.
  25 */
  26#ifdef CONFIG_32BIT
  27
  28#ifdef CONFIG_KVM_GUEST
  29#define __UA_LIMIT 0x40000000UL
  30#else
  31#define __UA_LIMIT 0x80000000UL
  32#endif
  33
  34#define __UA_ADDR	".word"
  35#define __UA_LA		"la"
  36#define __UA_ADDU	"addu"
  37#define __UA_t0		"$8"
  38#define __UA_t1		"$9"
  39
  40#endif /* CONFIG_32BIT */
  41
  42#ifdef CONFIG_64BIT
  43
  44extern u64 __ua_limit;
  45
  46#define __UA_LIMIT	__ua_limit
  47
  48#define __UA_ADDR	".dword"
  49#define __UA_LA		"dla"
  50#define __UA_ADDU	"daddu"
  51#define __UA_t0		"$12"
  52#define __UA_t1		"$13"
  53
  54#endif /* CONFIG_64BIT */
  55
  56/*
  57 * USER_DS is a bitmask that has the bits set that may not be set in a valid
  58 * userspace address.  Note that we limit 32-bit userspace to 0x7fff8000 but
  59 * the arithmetic we're doing only works if the limit is a power of two, so
  60 * we use 0x80000000 here on 32-bit kernels.  If a process passes an invalid
  61 * address in this range it's the process's problem, not ours :-)
  62 */
  63
  64#ifdef CONFIG_KVM_GUEST
  65#define KERNEL_DS	((mm_segment_t) { 0x80000000UL })
  66#define USER_DS		((mm_segment_t) { 0xC0000000UL })
  67#else
  68#define KERNEL_DS	((mm_segment_t) { 0UL })
  69#define USER_DS		((mm_segment_t) { __UA_LIMIT })
  70#endif
  71
  72#define VERIFY_READ    0
  73#define VERIFY_WRITE   1
  74
  75#define get_ds()	(KERNEL_DS)
  76#define get_fs()	(current_thread_info()->addr_limit)
  77#define set_fs(x)	(current_thread_info()->addr_limit = (x))
  78
  79#define segment_eq(a, b)	((a).seg == (b).seg)
  80
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  81
  82/*
  83 * Is a address valid? This does a straighforward calculation rather
  84 * than tests.
  85 *
  86 * Address valid if:
  87 *  - "addr" doesn't have any high-bits set
  88 *  - AND "size" doesn't have any high-bits set
  89 *  - AND "addr+size" doesn't have any high-bits set
  90 *  - OR we are in kernel mode.
  91 *
  92 * __ua_size() is a trick to avoid runtime checking of positive constant
  93 * sizes; for those we already know at compile time that the size is ok.
  94 */
  95#define __ua_size(size)							\
  96	((__builtin_constant_p(size) && (signed long) (size) > 0) ? 0 : (size))
  97
  98/*
  99 * access_ok: - Checks if a user space pointer is valid
 100 * @type: Type of access: %VERIFY_READ or %VERIFY_WRITE.  Note that
 101 *	  %VERIFY_WRITE is a superset of %VERIFY_READ - if it is safe
 102 *	  to write to a block, it is always safe to read from it.
 103 * @addr: User space pointer to start of block to check
 104 * @size: Size of block to check
 105 *
 106 * Context: User context only.	This function may sleep.
 
 107 *
 108 * Checks if a pointer to a block of memory in user space is valid.
 109 *
 110 * Returns true (nonzero) if the memory block may be valid, false (zero)
 111 * if it is definitely invalid.
 112 *
 113 * Note that, depending on architecture, this function probably just
 114 * checks that the pointer is in the user space range - after calling
 115 * this function, memory access functions may still return -EFAULT.
 116 */
 117
 118#define __access_mask get_fs().seg
 119
 120#define __access_ok(addr, size, mask)					\
 121({									\
 122	unsigned long __addr = (unsigned long) (addr);			\
 123	unsigned long __size = size;					\
 124	unsigned long __mask = mask;					\
 125	unsigned long __ok;						\
 126									\
 127	__chk_user_ptr(addr);						\
 128	__ok = (signed long)(__mask & (__addr | (__addr + __size) |	\
 129		__ua_size(__size)));					\
 130	__ok == 0;							\
 131})
 132
 133#define access_ok(type, addr, size)					\
 134	likely(__access_ok((addr), (size), __access_mask))
 135
 136/*
 137 * put_user: - Write a simple value into user space.
 138 * @x:	 Value to copy to user space.
 139 * @ptr: Destination address, in user space.
 140 *
 141 * Context: User context only.	This function may sleep.
 
 142 *
 143 * This macro copies a single simple value from kernel space to user
 144 * space.  It supports simple types like char and int, but not larger
 145 * data types like structures or arrays.
 146 *
 147 * @ptr must have pointer-to-simple-variable type, and @x must be assignable
 148 * to the result of dereferencing @ptr.
 149 *
 150 * Returns zero on success, or -EFAULT on error.
 151 */
 152#define put_user(x,ptr) \
 153	__put_user_check((x), (ptr), sizeof(*(ptr)))
 154
 155/*
 156 * get_user: - Get a simple variable from user space.
 157 * @x:	 Variable to store result.
 158 * @ptr: Source address, in user space.
 159 *
 160 * Context: User context only.	This function may sleep.
 
 161 *
 162 * This macro copies a single simple variable from user space to kernel
 163 * space.  It supports simple types like char and int, but not larger
 164 * data types like structures or arrays.
 165 *
 166 * @ptr must have pointer-to-simple-variable type, and the result of
 167 * dereferencing @ptr must be assignable to @x without a cast.
 168 *
 169 * Returns zero on success, or -EFAULT on error.
 170 * On error, the variable @x is set to zero.
 171 */
 172#define get_user(x,ptr) \
 173	__get_user_check((x), (ptr), sizeof(*(ptr)))
 174
 175/*
 176 * __put_user: - Write a simple value into user space, with less checking.
 177 * @x:	 Value to copy to user space.
 178 * @ptr: Destination address, in user space.
 179 *
 180 * Context: User context only.	This function may sleep.
 
 181 *
 182 * This macro copies a single simple value from kernel space to user
 183 * space.  It supports simple types like char and int, but not larger
 184 * data types like structures or arrays.
 185 *
 186 * @ptr must have pointer-to-simple-variable type, and @x must be assignable
 187 * to the result of dereferencing @ptr.
 188 *
 189 * Caller must check the pointer with access_ok() before calling this
 190 * function.
 191 *
 192 * Returns zero on success, or -EFAULT on error.
 193 */
 194#define __put_user(x,ptr) \
 195	__put_user_nocheck((x), (ptr), sizeof(*(ptr)))
 196
 197/*
 198 * __get_user: - Get a simple variable from user space, with less checking.
 199 * @x:	 Variable to store result.
 200 * @ptr: Source address, in user space.
 201 *
 202 * Context: User context only.	This function may sleep.
 
 203 *
 204 * This macro copies a single simple variable from user space to kernel
 205 * space.  It supports simple types like char and int, but not larger
 206 * data types like structures or arrays.
 207 *
 208 * @ptr must have pointer-to-simple-variable type, and the result of
 209 * dereferencing @ptr must be assignable to @x without a cast.
 210 *
 211 * Caller must check the pointer with access_ok() before calling this
 212 * function.
 213 *
 214 * Returns zero on success, or -EFAULT on error.
 215 * On error, the variable @x is set to zero.
 216 */
 217#define __get_user(x,ptr) \
 218	__get_user_nocheck((x), (ptr), sizeof(*(ptr)))
 219
 220struct __large_struct { unsigned long buf[100]; };
 221#define __m(x) (*(struct __large_struct __user *)(x))
 222
 223/*
 224 * Yuck.  We need two variants, one for 64bit operation and one
 225 * for 32 bit mode and old iron.
 226 */
 227#ifndef CONFIG_EVA
 228#define __get_kernel_common(val, size, ptr) __get_user_common(val, size, ptr)
 229#else
 230/*
 231 * Kernel specific functions for EVA. We need to use normal load instructions
 232 * to read data from kernel when operating in EVA mode. We use these macros to
 233 * avoid redefining __get_user_asm for EVA.
 234 */
 235#undef _loadd
 236#undef _loadw
 237#undef _loadh
 238#undef _loadb
 239#ifdef CONFIG_32BIT
 240#define _loadd			_loadw
 241#else
 242#define _loadd(reg, addr)	"ld " reg ", " addr
 243#endif
 244#define _loadw(reg, addr)	"lw " reg ", " addr
 245#define _loadh(reg, addr)	"lh " reg ", " addr
 246#define _loadb(reg, addr)	"lb " reg ", " addr
 247
 248#define __get_kernel_common(val, size, ptr)				\
 249do {									\
 250	switch (size) {							\
 251	case 1: __get_data_asm(val, _loadb, ptr); break;		\
 252	case 2: __get_data_asm(val, _loadh, ptr); break;		\
 253	case 4: __get_data_asm(val, _loadw, ptr); break;		\
 254	case 8: __GET_DW(val, _loadd, ptr); break;			\
 255	default: __get_user_unknown(); break;				\
 256	}								\
 257} while (0)
 258#endif
 259
 260#ifdef CONFIG_32BIT
 261#define __GET_DW(val, insn, ptr) __get_data_asm_ll32(val, insn, ptr)
 262#endif
 263#ifdef CONFIG_64BIT
 264#define __GET_DW(val, insn, ptr) __get_data_asm(val, insn, ptr)
 265#endif
 266
 267extern void __get_user_unknown(void);
 268
 269#define __get_user_common(val, size, ptr)				\
 270do {									\
 271	switch (size) {							\
 272	case 1: __get_data_asm(val, user_lb, ptr); break;		\
 273	case 2: __get_data_asm(val, user_lh, ptr); break;		\
 274	case 4: __get_data_asm(val, user_lw, ptr); break;		\
 275	case 8: __GET_DW(val, user_ld, ptr); break;			\
 276	default: __get_user_unknown(); break;				\
 277	}								\
 278} while (0)
 279
 280#define __get_user_nocheck(x, ptr, size)				\
 281({									\
 282	int __gu_err;							\
 283									\
 284	if (segment_eq(get_fs(), get_ds())) {				\
 285		__get_kernel_common((x), size, ptr);			\
 286	} else {							\
 287		__chk_user_ptr(ptr);					\
 288		__get_user_common((x), size, ptr);			\
 289	}								\
 290	__gu_err;							\
 291})
 292
 293#define __get_user_check(x, ptr, size)					\
 294({									\
 295	int __gu_err = -EFAULT;						\
 296	const __typeof__(*(ptr)) __user * __gu_ptr = (ptr);		\
 297									\
 298	might_fault();							\
 299	if (likely(access_ok(VERIFY_READ,  __gu_ptr, size))) {		\
 300		if (segment_eq(get_fs(), get_ds()))			\
 301			__get_kernel_common((x), size, __gu_ptr);	\
 302		else							\
 303			__get_user_common((x), size, __gu_ptr);		\
 304	}								\
 
 305									\
 306	__gu_err;							\
 307})
 308
 309#define __get_data_asm(val, insn, addr)					\
 310{									\
 311	long __gu_tmp;							\
 312									\
 313	__asm__ __volatile__(						\
 314	"1:	"insn("%1", "%3")"				\n"	\
 315	"2:							\n"	\
 316	"	.insn						\n"	\
 317	"	.section .fixup,\"ax\"				\n"	\
 318	"3:	li	%0, %4					\n"	\
 
 319	"	j	2b					\n"	\
 320	"	.previous					\n"	\
 321	"	.section __ex_table,\"a\"			\n"	\
 322	"	"__UA_ADDR "\t1b, 3b				\n"	\
 323	"	.previous					\n"	\
 324	: "=r" (__gu_err), "=r" (__gu_tmp)				\
 325	: "0" (0), "o" (__m(addr)), "i" (-EFAULT));			\
 326									\
 327	(val) = (__typeof__(*(addr))) __gu_tmp;				\
 328}
 329
 330/*
 331 * Get a long long 64 using 32 bit registers.
 332 */
 333#define __get_data_asm_ll32(val, insn, addr)				\
 334{									\
 335	union {								\
 336		unsigned long long	l;				\
 337		__typeof__(*(addr))	t;				\
 338	} __gu_tmp;							\
 339									\
 340	__asm__ __volatile__(						\
 341	"1:	" insn("%1", "(%3)")"				\n"	\
 342	"2:	" insn("%D1", "4(%3)")"				\n"	\
 343	"3:							\n"	\
 344	"	.insn						\n"	\
 345	"	.section	.fixup,\"ax\"			\n"	\
 346	"4:	li	%0, %4					\n"	\
 347	"	move	%1, $0					\n"	\
 348	"	move	%D1, $0					\n"	\
 349	"	j	3b					\n"	\
 350	"	.previous					\n"	\
 351	"	.section	__ex_table,\"a\"		\n"	\
 352	"	" __UA_ADDR "	1b, 4b				\n"	\
 353	"	" __UA_ADDR "	2b, 4b				\n"	\
 354	"	.previous					\n"	\
 355	: "=r" (__gu_err), "=&r" (__gu_tmp.l)				\
 356	: "0" (0), "r" (addr), "i" (-EFAULT));				\
 357									\
 358	(val) = __gu_tmp.t;						\
 359}
 360
 361#ifndef CONFIG_EVA
 362#define __put_kernel_common(ptr, size) __put_user_common(ptr, size)
 363#else
 364/*
 365 * Kernel specific functions for EVA. We need to use normal load instructions
 366 * to read data from kernel when operating in EVA mode. We use these macros to
 367 * avoid redefining __get_data_asm for EVA.
 368 */
 369#undef _stored
 370#undef _storew
 371#undef _storeh
 372#undef _storeb
 373#ifdef CONFIG_32BIT
 374#define _stored			_storew
 375#else
 376#define _stored(reg, addr)	"ld " reg ", " addr
 377#endif
 378
 379#define _storew(reg, addr)	"sw " reg ", " addr
 380#define _storeh(reg, addr)	"sh " reg ", " addr
 381#define _storeb(reg, addr)	"sb " reg ", " addr
 382
 383#define __put_kernel_common(ptr, size)					\
 384do {									\
 385	switch (size) {							\
 386	case 1: __put_data_asm(_storeb, ptr); break;			\
 387	case 2: __put_data_asm(_storeh, ptr); break;			\
 388	case 4: __put_data_asm(_storew, ptr); break;			\
 389	case 8: __PUT_DW(_stored, ptr); break;				\
 390	default: __put_user_unknown(); break;				\
 391	}								\
 392} while(0)
 393#endif
 394
 395/*
 396 * Yuck.  We need two variants, one for 64bit operation and one
 397 * for 32 bit mode and old iron.
 398 */
 399#ifdef CONFIG_32BIT
 400#define __PUT_DW(insn, ptr) __put_data_asm_ll32(insn, ptr)
 401#endif
 402#ifdef CONFIG_64BIT
 403#define __PUT_DW(insn, ptr) __put_data_asm(insn, ptr)
 404#endif
 405
 406#define __put_user_common(ptr, size)					\
 407do {									\
 408	switch (size) {							\
 409	case 1: __put_data_asm(user_sb, ptr); break;			\
 410	case 2: __put_data_asm(user_sh, ptr); break;			\
 411	case 4: __put_data_asm(user_sw, ptr); break;			\
 412	case 8: __PUT_DW(user_sd, ptr); break;				\
 413	default: __put_user_unknown(); break;				\
 414	}								\
 415} while (0)
 416
 417#define __put_user_nocheck(x, ptr, size)				\
 418({									\
 419	__typeof__(*(ptr)) __pu_val;					\
 420	int __pu_err = 0;						\
 421									\
 422	__pu_val = (x);							\
 423	if (segment_eq(get_fs(), get_ds())) {				\
 424		__put_kernel_common(ptr, size);				\
 425	} else {							\
 426		__chk_user_ptr(ptr);					\
 427		__put_user_common(ptr, size);				\
 428	}								\
 429	__pu_err;							\
 430})
 431
 432#define __put_user_check(x, ptr, size)					\
 433({									\
 434	__typeof__(*(ptr)) __user *__pu_addr = (ptr);			\
 435	__typeof__(*(ptr)) __pu_val = (x);				\
 436	int __pu_err = -EFAULT;						\
 437									\
 438	might_fault();							\
 439	if (likely(access_ok(VERIFY_WRITE,  __pu_addr, size))) {	\
 440		if (segment_eq(get_fs(), get_ds()))			\
 441			__put_kernel_common(__pu_addr, size);		\
 442		else							\
 443			__put_user_common(__pu_addr, size);		\
 444	}								\
 445									\
 446	__pu_err;							\
 447})
 448
 449#define __put_data_asm(insn, ptr)					\
 450{									\
 451	__asm__ __volatile__(						\
 452	"1:	"insn("%z2", "%3")"	# __put_data_asm	\n"	\
 453	"2:							\n"	\
 454	"	.insn						\n"	\
 455	"	.section	.fixup,\"ax\"			\n"	\
 456	"3:	li	%0, %4					\n"	\
 457	"	j	2b					\n"	\
 458	"	.previous					\n"	\
 459	"	.section	__ex_table,\"a\"		\n"	\
 460	"	" __UA_ADDR "	1b, 3b				\n"	\
 461	"	.previous					\n"	\
 462	: "=r" (__pu_err)						\
 463	: "0" (0), "Jr" (__pu_val), "o" (__m(ptr)),			\
 464	  "i" (-EFAULT));						\
 465}
 466
 467#define __put_data_asm_ll32(insn, ptr)					\
 468{									\
 469	__asm__ __volatile__(						\
 470	"1:	"insn("%2", "(%3)")"	# __put_data_asm_ll32	\n"	\
 471	"2:	"insn("%D2", "4(%3)")"				\n"	\
 472	"3:							\n"	\
 473	"	.insn						\n"	\
 474	"	.section	.fixup,\"ax\"			\n"	\
 475	"4:	li	%0, %4					\n"	\
 476	"	j	3b					\n"	\
 477	"	.previous					\n"	\
 478	"	.section	__ex_table,\"a\"		\n"	\
 479	"	" __UA_ADDR "	1b, 4b				\n"	\
 480	"	" __UA_ADDR "	2b, 4b				\n"	\
 481	"	.previous"						\
 482	: "=r" (__pu_err)						\
 483	: "0" (0), "r" (__pu_val), "r" (ptr),				\
 484	  "i" (-EFAULT));						\
 485}
 486
 487extern void __put_user_unknown(void);
 488
 489/*
 490 * ul{b,h,w} are macros and there are no equivalent macros for EVA.
 491 * EVA unaligned access is handled in the ADE exception handler.
 492 */
 493#ifndef CONFIG_EVA
 494/*
 495 * put_user_unaligned: - Write a simple value into user space.
 496 * @x:	 Value to copy to user space.
 497 * @ptr: Destination address, in user space.
 498 *
 499 * Context: User context only.	This function may sleep.
 
 500 *
 501 * This macro copies a single simple value from kernel space to user
 502 * space.  It supports simple types like char and int, but not larger
 503 * data types like structures or arrays.
 504 *
 505 * @ptr must have pointer-to-simple-variable type, and @x must be assignable
 506 * to the result of dereferencing @ptr.
 507 *
 508 * Returns zero on success, or -EFAULT on error.
 509 */
 510#define put_user_unaligned(x,ptr)	\
 511	__put_user_unaligned_check((x),(ptr),sizeof(*(ptr)))
 512
 513/*
 514 * get_user_unaligned: - Get a simple variable from user space.
 515 * @x:	 Variable to store result.
 516 * @ptr: Source address, in user space.
 517 *
 518 * Context: User context only.	This function may sleep.
 
 519 *
 520 * This macro copies a single simple variable from user space to kernel
 521 * space.  It supports simple types like char and int, but not larger
 522 * data types like structures or arrays.
 523 *
 524 * @ptr must have pointer-to-simple-variable type, and the result of
 525 * dereferencing @ptr must be assignable to @x without a cast.
 526 *
 527 * Returns zero on success, or -EFAULT on error.
 528 * On error, the variable @x is set to zero.
 529 */
 530#define get_user_unaligned(x,ptr) \
 531	__get_user_unaligned_check((x),(ptr),sizeof(*(ptr)))
 532
 533/*
 534 * __put_user_unaligned: - Write a simple value into user space, with less checking.
 535 * @x:	 Value to copy to user space.
 536 * @ptr: Destination address, in user space.
 537 *
 538 * Context: User context only.	This function may sleep.
 
 539 *
 540 * This macro copies a single simple value from kernel space to user
 541 * space.  It supports simple types like char and int, but not larger
 542 * data types like structures or arrays.
 543 *
 544 * @ptr must have pointer-to-simple-variable type, and @x must be assignable
 545 * to the result of dereferencing @ptr.
 546 *
 547 * Caller must check the pointer with access_ok() before calling this
 548 * function.
 549 *
 550 * Returns zero on success, or -EFAULT on error.
 551 */
 552#define __put_user_unaligned(x,ptr) \
 553	__put_user_unaligned_nocheck((x),(ptr),sizeof(*(ptr)))
 554
 555/*
 556 * __get_user_unaligned: - Get a simple variable from user space, with less checking.
 557 * @x:	 Variable to store result.
 558 * @ptr: Source address, in user space.
 559 *
 560 * Context: User context only.	This function may sleep.
 
 561 *
 562 * This macro copies a single simple variable from user space to kernel
 563 * space.  It supports simple types like char and int, but not larger
 564 * data types like structures or arrays.
 565 *
 566 * @ptr must have pointer-to-simple-variable type, and the result of
 567 * dereferencing @ptr must be assignable to @x without a cast.
 568 *
 569 * Caller must check the pointer with access_ok() before calling this
 570 * function.
 571 *
 572 * Returns zero on success, or -EFAULT on error.
 573 * On error, the variable @x is set to zero.
 574 */
 575#define __get_user_unaligned(x,ptr) \
 576	__get_user__unalignednocheck((x),(ptr),sizeof(*(ptr)))
 577
 578/*
 579 * Yuck.  We need two variants, one for 64bit operation and one
 580 * for 32 bit mode and old iron.
 581 */
 582#ifdef CONFIG_32BIT
 583#define __GET_USER_UNALIGNED_DW(val, ptr)				\
 584	__get_user_unaligned_asm_ll32(val, ptr)
 585#endif
 586#ifdef CONFIG_64BIT
 587#define __GET_USER_UNALIGNED_DW(val, ptr)				\
 588	__get_user_unaligned_asm(val, "uld", ptr)
 589#endif
 590
 591extern void __get_user_unaligned_unknown(void);
 592
 593#define __get_user_unaligned_common(val, size, ptr)			\
 594do {									\
 595	switch (size) {							\
 596	case 1: __get_data_asm(val, "lb", ptr); break;			\
 597	case 2: __get_user_unaligned_asm(val, "ulh", ptr); break;	\
 598	case 4: __get_user_unaligned_asm(val, "ulw", ptr); break;	\
 599	case 8: __GET_USER_UNALIGNED_DW(val, ptr); break;		\
 600	default: __get_user_unaligned_unknown(); break;			\
 601	}								\
 602} while (0)
 603
 604#define __get_user_unaligned_nocheck(x,ptr,size)			\
 605({									\
 606	int __gu_err;							\
 607									\
 608	__get_user_unaligned_common((x), size, ptr);			\
 609	__gu_err;							\
 610})
 611
 612#define __get_user_unaligned_check(x,ptr,size)				\
 613({									\
 614	int __gu_err = -EFAULT;						\
 615	const __typeof__(*(ptr)) __user * __gu_ptr = (ptr);		\
 616									\
 617	if (likely(access_ok(VERIFY_READ,  __gu_ptr, size)))		\
 618		__get_user_unaligned_common((x), size, __gu_ptr);	\
 619									\
 620	__gu_err;							\
 621})
 622
 623#define __get_data_unaligned_asm(val, insn, addr)			\
 624{									\
 625	long __gu_tmp;							\
 626									\
 627	__asm__ __volatile__(						\
 628	"1:	" insn "	%1, %3				\n"	\
 629	"2:							\n"	\
 630	"	.insn						\n"	\
 631	"	.section .fixup,\"ax\"				\n"	\
 632	"3:	li	%0, %4					\n"	\
 
 633	"	j	2b					\n"	\
 634	"	.previous					\n"	\
 635	"	.section __ex_table,\"a\"			\n"	\
 636	"	"__UA_ADDR "\t1b, 3b				\n"	\
 637	"	"__UA_ADDR "\t1b + 4, 3b			\n"	\
 638	"	.previous					\n"	\
 639	: "=r" (__gu_err), "=r" (__gu_tmp)				\
 640	: "0" (0), "o" (__m(addr)), "i" (-EFAULT));			\
 641									\
 642	(val) = (__typeof__(*(addr))) __gu_tmp;				\
 643}
 644
 645/*
 646 * Get a long long 64 using 32 bit registers.
 647 */
 648#define __get_user_unaligned_asm_ll32(val, addr)			\
 649{									\
 650	unsigned long long __gu_tmp;					\
 651									\
 652	__asm__ __volatile__(						\
 653	"1:	ulw	%1, (%3)				\n"	\
 654	"2:	ulw	%D1, 4(%3)				\n"	\
 655	"	move	%0, $0					\n"	\
 656	"3:							\n"	\
 657	"	.insn						\n"	\
 658	"	.section	.fixup,\"ax\"			\n"	\
 659	"4:	li	%0, %4					\n"	\
 660	"	move	%1, $0					\n"	\
 661	"	move	%D1, $0					\n"	\
 662	"	j	3b					\n"	\
 663	"	.previous					\n"	\
 664	"	.section	__ex_table,\"a\"		\n"	\
 665	"	" __UA_ADDR "	1b, 4b				\n"	\
 666	"	" __UA_ADDR "	1b + 4, 4b			\n"	\
 667	"	" __UA_ADDR "	2b, 4b				\n"	\
 668	"	" __UA_ADDR "	2b + 4, 4b			\n"	\
 669	"	.previous					\n"	\
 670	: "=r" (__gu_err), "=&r" (__gu_tmp)				\
 671	: "0" (0), "r" (addr), "i" (-EFAULT));				\
 672	(val) = (__typeof__(*(addr))) __gu_tmp;				\
 673}
 674
 675/*
 676 * Yuck.  We need two variants, one for 64bit operation and one
 677 * for 32 bit mode and old iron.
 678 */
 679#ifdef CONFIG_32BIT
 680#define __PUT_USER_UNALIGNED_DW(ptr) __put_user_unaligned_asm_ll32(ptr)
 681#endif
 682#ifdef CONFIG_64BIT
 683#define __PUT_USER_UNALIGNED_DW(ptr) __put_user_unaligned_asm("usd", ptr)
 684#endif
 685
 686#define __put_user_unaligned_common(ptr, size)				\
 687do {									\
 688	switch (size) {							\
 689	case 1: __put_data_asm("sb", ptr); break;			\
 690	case 2: __put_user_unaligned_asm("ush", ptr); break;		\
 691	case 4: __put_user_unaligned_asm("usw", ptr); break;		\
 692	case 8: __PUT_USER_UNALIGNED_DW(ptr); break;			\
 693	default: __put_user_unaligned_unknown(); break;			\
 694} while (0)
 695
 696#define __put_user_unaligned_nocheck(x,ptr,size)			\
 697({									\
 698	__typeof__(*(ptr)) __pu_val;					\
 699	int __pu_err = 0;						\
 700									\
 701	__pu_val = (x);							\
 702	__put_user_unaligned_common(ptr, size);				\
 703	__pu_err;							\
 704})
 705
 706#define __put_user_unaligned_check(x,ptr,size)				\
 707({									\
 708	__typeof__(*(ptr)) __user *__pu_addr = (ptr);			\
 709	__typeof__(*(ptr)) __pu_val = (x);				\
 710	int __pu_err = -EFAULT;						\
 711									\
 712	if (likely(access_ok(VERIFY_WRITE,  __pu_addr, size)))		\
 713		__put_user_unaligned_common(__pu_addr, size);		\
 714									\
 715	__pu_err;							\
 716})
 717
 718#define __put_user_unaligned_asm(insn, ptr)				\
 719{									\
 720	__asm__ __volatile__(						\
 721	"1:	" insn "	%z2, %3		# __put_user_unaligned_asm\n" \
 722	"2:							\n"	\
 723	"	.insn						\n"	\
 724	"	.section	.fixup,\"ax\"			\n"	\
 725	"3:	li	%0, %4					\n"	\
 726	"	j	2b					\n"	\
 727	"	.previous					\n"	\
 728	"	.section	__ex_table,\"a\"		\n"	\
 729	"	" __UA_ADDR "	1b, 3b				\n"	\
 730	"	.previous					\n"	\
 731	: "=r" (__pu_err)						\
 732	: "0" (0), "Jr" (__pu_val), "o" (__m(ptr)),			\
 733	  "i" (-EFAULT));						\
 734}
 735
 736#define __put_user_unaligned_asm_ll32(ptr)				\
 737{									\
 738	__asm__ __volatile__(						\
 739	"1:	sw	%2, (%3)	# __put_user_unaligned_asm_ll32 \n" \
 740	"2:	sw	%D2, 4(%3)				\n"	\
 741	"3:							\n"	\
 742	"	.insn						\n"	\
 743	"	.section	.fixup,\"ax\"			\n"	\
 744	"4:	li	%0, %4					\n"	\
 745	"	j	3b					\n"	\
 746	"	.previous					\n"	\
 747	"	.section	__ex_table,\"a\"		\n"	\
 748	"	" __UA_ADDR "	1b, 4b				\n"	\
 749	"	" __UA_ADDR "	1b + 4, 4b			\n"	\
 750	"	" __UA_ADDR "	2b, 4b				\n"	\
 751	"	" __UA_ADDR "	2b + 4, 4b			\n"	\
 752	"	.previous"						\
 753	: "=r" (__pu_err)						\
 754	: "0" (0), "r" (__pu_val), "r" (ptr),				\
 755	  "i" (-EFAULT));						\
 756}
 757
 758extern void __put_user_unaligned_unknown(void);
 759#endif
 760
 761/*
 762 * We're generating jump to subroutines which will be outside the range of
 763 * jump instructions
 764 */
 765#ifdef MODULE
 766#define __MODULE_JAL(destination)					\
 767	".set\tnoat\n\t"						\
 768	__UA_LA "\t$1, " #destination "\n\t"				\
 769	"jalr\t$1\n\t"							\
 770	".set\tat\n\t"
 771#else
 772#define __MODULE_JAL(destination)					\
 773	"jal\t" #destination "\n\t"
 774#endif
 775
 776#ifndef CONFIG_CPU_DADDI_WORKAROUNDS
 777#define DADDI_SCRATCH "$0"
 778#else
 779#define DADDI_SCRATCH "$3"
 
 
 780#endif
 781
 782extern size_t __copy_user(void *__to, const void *__from, size_t __n);
 783
 784#ifndef CONFIG_EVA
 785#define __invoke_copy_to_user(to, from, n)				\
 786({									\
 787	register void __user *__cu_to_r __asm__("$4");			\
 788	register const void *__cu_from_r __asm__("$5");			\
 789	register long __cu_len_r __asm__("$6");				\
 790									\
 791	__cu_to_r = (to);						\
 792	__cu_from_r = (from);						\
 793	__cu_len_r = (n);						\
 794	__asm__ __volatile__(						\
 795	__MODULE_JAL(__copy_user)					\
 796	: "+r" (__cu_to_r), "+r" (__cu_from_r), "+r" (__cu_len_r)	\
 797	:								\
 798	: "$8", "$9", "$10", "$11", "$12", "$14", "$15", "$24", "$31",	\
 799	  DADDI_SCRATCH, "memory");					\
 800	__cu_len_r;							\
 801})
 802
 803#define __invoke_copy_to_kernel(to, from, n)				\
 804	__invoke_copy_to_user(to, from, n)
 805
 806#endif
 807
 808/*
 809 * __copy_to_user: - Copy a block of data into user space, with less checking.
 810 * @to:	  Destination address, in user space.
 811 * @from: Source address, in kernel space.
 812 * @n:	  Number of bytes to copy.
 813 *
 814 * Context: User context only.	This function may sleep.
 
 815 *
 816 * Copy data from kernel space to user space.  Caller must check
 817 * the specified block with access_ok() before calling this function.
 818 *
 819 * Returns number of bytes that could not be copied.
 820 * On success, this will be zero.
 821 */
 822#define __copy_to_user(to, from, n)					\
 823({									\
 824	void __user *__cu_to;						\
 825	const void *__cu_from;						\
 826	long __cu_len;							\
 827									\
 828	__cu_to = (to);							\
 829	__cu_from = (from);						\
 830	__cu_len = (n);							\
 831	might_fault();							\
 832	if (segment_eq(get_fs(), get_ds()))				\
 833		__cu_len = __invoke_copy_to_kernel(__cu_to, __cu_from,	\
 834						   __cu_len);		\
 835	else								\
 836		__cu_len = __invoke_copy_to_user(__cu_to, __cu_from,	\
 837						 __cu_len);		\
 838	__cu_len;							\
 839})
 840
 841extern size_t __copy_user_inatomic(void *__to, const void *__from, size_t __n);
 842
 843#define __copy_to_user_inatomic(to, from, n)				\
 844({									\
 845	void __user *__cu_to;						\
 846	const void *__cu_from;						\
 847	long __cu_len;							\
 848									\
 849	__cu_to = (to);							\
 850	__cu_from = (from);						\
 851	__cu_len = (n);							\
 852	if (segment_eq(get_fs(), get_ds()))				\
 853		__cu_len = __invoke_copy_to_kernel(__cu_to, __cu_from,	\
 854						   __cu_len);		\
 855	else								\
 856		__cu_len = __invoke_copy_to_user(__cu_to, __cu_from,	\
 857						 __cu_len);		\
 858	__cu_len;							\
 859})
 860
 861#define __copy_from_user_inatomic(to, from, n)				\
 862({									\
 863	void *__cu_to;							\
 864	const void __user *__cu_from;					\
 865	long __cu_len;							\
 866									\
 867	__cu_to = (to);							\
 868	__cu_from = (from);						\
 869	__cu_len = (n);							\
 870	if (segment_eq(get_fs(), get_ds()))				\
 871		__cu_len = __invoke_copy_from_kernel_inatomic(__cu_to,	\
 872							      __cu_from,\
 873							      __cu_len);\
 874	else								\
 875		__cu_len = __invoke_copy_from_user_inatomic(__cu_to,	\
 876							    __cu_from,	\
 877							    __cu_len);	\
 878	__cu_len;							\
 879})
 880
 881/*
 882 * copy_to_user: - Copy a block of data into user space.
 883 * @to:	  Destination address, in user space.
 884 * @from: Source address, in kernel space.
 885 * @n:	  Number of bytes to copy.
 886 *
 887 * Context: User context only.	This function may sleep.
 
 888 *
 889 * Copy data from kernel space to user space.
 890 *
 891 * Returns number of bytes that could not be copied.
 892 * On success, this will be zero.
 893 */
 894#define copy_to_user(to, from, n)					\
 895({									\
 896	void __user *__cu_to;						\
 897	const void *__cu_from;						\
 898	long __cu_len;							\
 899									\
 900	__cu_to = (to);							\
 901	__cu_from = (from);						\
 902	__cu_len = (n);							\
 903	if (segment_eq(get_fs(), get_ds())) {				\
 904		__cu_len = __invoke_copy_to_kernel(__cu_to,		\
 905						   __cu_from,		\
 906						   __cu_len);		\
 907	} else {							\
 908		if (access_ok(VERIFY_WRITE, __cu_to, __cu_len)) {       \
 909			might_fault();                                  \
 910			__cu_len = __invoke_copy_to_user(__cu_to,	\
 911							 __cu_from,	\
 912							 __cu_len);     \
 913		}							\
 914	}								\
 915	__cu_len;							\
 916})
 917
 918#ifndef CONFIG_EVA
 919
 920#define __invoke_copy_from_user(to, from, n)				\
 921({									\
 922	register void *__cu_to_r __asm__("$4");				\
 923	register const void __user *__cu_from_r __asm__("$5");		\
 924	register long __cu_len_r __asm__("$6");				\
 925									\
 926	__cu_to_r = (to);						\
 927	__cu_from_r = (from);						\
 928	__cu_len_r = (n);						\
 929	__asm__ __volatile__(						\
 930	".set\tnoreorder\n\t"						\
 931	__MODULE_JAL(__copy_user)					\
 932	".set\tnoat\n\t"						\
 933	__UA_ADDU "\t$1, %1, %2\n\t"					\
 934	".set\tat\n\t"							\
 935	".set\treorder"							\
 936	: "+r" (__cu_to_r), "+r" (__cu_from_r), "+r" (__cu_len_r)	\
 937	:								\
 938	: "$8", "$9", "$10", "$11", "$12", "$14", "$15", "$24", "$31",	\
 939	  DADDI_SCRATCH, "memory");					\
 940	__cu_len_r;							\
 941})
 942
 943#define __invoke_copy_from_kernel(to, from, n)				\
 944	__invoke_copy_from_user(to, from, n)
 945
 946/* For userland <-> userland operations */
 947#define ___invoke_copy_in_user(to, from, n)				\
 948	__invoke_copy_from_user(to, from, n)
 949
 950/* For kernel <-> kernel operations */
 951#define ___invoke_copy_in_kernel(to, from, n)				\
 952	__invoke_copy_from_user(to, from, n)
 953
 954#define __invoke_copy_from_user_inatomic(to, from, n)			\
 955({									\
 956	register void *__cu_to_r __asm__("$4");				\
 957	register const void __user *__cu_from_r __asm__("$5");		\
 958	register long __cu_len_r __asm__("$6");				\
 959									\
 960	__cu_to_r = (to);						\
 961	__cu_from_r = (from);						\
 962	__cu_len_r = (n);						\
 963	__asm__ __volatile__(						\
 964	".set\tnoreorder\n\t"						\
 965	__MODULE_JAL(__copy_user_inatomic)				\
 966	".set\tnoat\n\t"						\
 967	__UA_ADDU "\t$1, %1, %2\n\t"					\
 968	".set\tat\n\t"							\
 969	".set\treorder"							\
 970	: "+r" (__cu_to_r), "+r" (__cu_from_r), "+r" (__cu_len_r)	\
 971	:								\
 972	: "$8", "$9", "$10", "$11", "$12", "$14", "$15", "$24", "$31",	\
 973	  DADDI_SCRATCH, "memory");					\
 974	__cu_len_r;							\
 975})
 976
 977#define __invoke_copy_from_kernel_inatomic(to, from, n)			\
 978	__invoke_copy_from_user_inatomic(to, from, n)			\
 979
 980#else
 981
 982/* EVA specific functions */
 983
 984extern size_t __copy_user_inatomic_eva(void *__to, const void *__from,
 985				       size_t __n);
 986extern size_t __copy_from_user_eva(void *__to, const void *__from,
 987				   size_t __n);
 988extern size_t __copy_to_user_eva(void *__to, const void *__from,
 989				 size_t __n);
 990extern size_t __copy_in_user_eva(void *__to, const void *__from, size_t __n);
 991
 992#define __invoke_copy_from_user_eva_generic(to, from, n, func_ptr)	\
 993({									\
 994	register void *__cu_to_r __asm__("$4");				\
 995	register const void __user *__cu_from_r __asm__("$5");		\
 996	register long __cu_len_r __asm__("$6");				\
 997									\
 998	__cu_to_r = (to);						\
 999	__cu_from_r = (from);						\
1000	__cu_len_r = (n);						\
1001	__asm__ __volatile__(						\
1002	".set\tnoreorder\n\t"						\
1003	__MODULE_JAL(func_ptr)						\
1004	".set\tnoat\n\t"						\
1005	__UA_ADDU "\t$1, %1, %2\n\t"					\
1006	".set\tat\n\t"							\
1007	".set\treorder"							\
1008	: "+r" (__cu_to_r), "+r" (__cu_from_r), "+r" (__cu_len_r)	\
1009	:								\
1010	: "$8", "$9", "$10", "$11", "$12", "$14", "$15", "$24", "$31",	\
1011	  DADDI_SCRATCH, "memory");					\
1012	__cu_len_r;							\
1013})
1014
1015#define __invoke_copy_to_user_eva_generic(to, from, n, func_ptr)	\
1016({									\
1017	register void *__cu_to_r __asm__("$4");				\
1018	register const void __user *__cu_from_r __asm__("$5");		\
1019	register long __cu_len_r __asm__("$6");				\
1020									\
1021	__cu_to_r = (to);						\
1022	__cu_from_r = (from);						\
1023	__cu_len_r = (n);						\
1024	__asm__ __volatile__(						\
1025	__MODULE_JAL(func_ptr)						\
1026	: "+r" (__cu_to_r), "+r" (__cu_from_r), "+r" (__cu_len_r)	\
1027	:								\
1028	: "$8", "$9", "$10", "$11", "$12", "$14", "$15", "$24", "$31",	\
1029	  DADDI_SCRATCH, "memory");					\
1030	__cu_len_r;							\
1031})
1032
1033/*
1034 * Source or destination address is in userland. We need to go through
1035 * the TLB
1036 */
1037#define __invoke_copy_from_user(to, from, n)				\
1038	__invoke_copy_from_user_eva_generic(to, from, n, __copy_from_user_eva)
1039
1040#define __invoke_copy_from_user_inatomic(to, from, n)			\
1041	__invoke_copy_from_user_eva_generic(to, from, n,		\
1042					    __copy_user_inatomic_eva)
1043
1044#define __invoke_copy_to_user(to, from, n)				\
1045	__invoke_copy_to_user_eva_generic(to, from, n, __copy_to_user_eva)
1046
1047#define ___invoke_copy_in_user(to, from, n)				\
1048	__invoke_copy_from_user_eva_generic(to, from, n, __copy_in_user_eva)
1049
1050/*
1051 * Source or destination address in the kernel. We are not going through
1052 * the TLB
1053 */
1054#define __invoke_copy_from_kernel(to, from, n)				\
1055	__invoke_copy_from_user_eva_generic(to, from, n, __copy_user)
1056
1057#define __invoke_copy_from_kernel_inatomic(to, from, n)			\
1058	__invoke_copy_from_user_eva_generic(to, from, n, __copy_user_inatomic)
1059
1060#define __invoke_copy_to_kernel(to, from, n)				\
1061	__invoke_copy_to_user_eva_generic(to, from, n, __copy_user)
1062
1063#define ___invoke_copy_in_kernel(to, from, n)				\
1064	__invoke_copy_from_user_eva_generic(to, from, n, __copy_user)
1065
1066#endif /* CONFIG_EVA */
1067
1068/*
1069 * __copy_from_user: - Copy a block of data from user space, with less checking.
1070 * @to:	  Destination address, in kernel space.
1071 * @from: Source address, in user space.
1072 * @n:	  Number of bytes to copy.
1073 *
1074 * Context: User context only.	This function may sleep.
 
1075 *
1076 * Copy data from user space to kernel space.  Caller must check
1077 * the specified block with access_ok() before calling this function.
1078 *
1079 * Returns number of bytes that could not be copied.
1080 * On success, this will be zero.
1081 *
1082 * If some data could not be copied, this function will pad the copied
1083 * data to the requested size using zero bytes.
1084 */
1085#define __copy_from_user(to, from, n)					\
1086({									\
1087	void *__cu_to;							\
1088	const void __user *__cu_from;					\
1089	long __cu_len;							\
1090									\
1091	__cu_to = (to);							\
1092	__cu_from = (from);						\
1093	__cu_len = (n);							\
1094	might_fault();							\
1095	__cu_len = __invoke_copy_from_user(__cu_to, __cu_from,		\
1096					   __cu_len);			\
 
 
 
 
 
 
1097	__cu_len;							\
1098})
1099
1100/*
1101 * copy_from_user: - Copy a block of data from user space.
1102 * @to:	  Destination address, in kernel space.
1103 * @from: Source address, in user space.
1104 * @n:	  Number of bytes to copy.
1105 *
1106 * Context: User context only.	This function may sleep.
 
1107 *
1108 * Copy data from user space to kernel space.
1109 *
1110 * Returns number of bytes that could not be copied.
1111 * On success, this will be zero.
1112 *
1113 * If some data could not be copied, this function will pad the copied
1114 * data to the requested size using zero bytes.
1115 */
1116#define copy_from_user(to, from, n)					\
1117({									\
1118	void *__cu_to;							\
1119	const void __user *__cu_from;					\
1120	long __cu_len;							\
1121									\
1122	__cu_to = (to);							\
1123	__cu_from = (from);						\
1124	__cu_len = (n);							\
1125	if (segment_eq(get_fs(), get_ds())) {				\
1126		__cu_len = __invoke_copy_from_kernel(__cu_to,		\
1127						     __cu_from,		\
1128						     __cu_len);		\
1129	} else {							\
1130		if (access_ok(VERIFY_READ, __cu_from, __cu_len)) {	\
1131			might_fault();                                  \
1132			__cu_len = __invoke_copy_from_user(__cu_to,	\
1133							   __cu_from,	\
1134							   __cu_len);   \
1135		}							\
1136	}								\
1137	__cu_len;							\
1138})
1139
1140#define __copy_in_user(to, from, n)					\
1141({									\
1142	void __user *__cu_to;						\
1143	const void __user *__cu_from;					\
1144	long __cu_len;							\
1145									\
1146	__cu_to = (to);							\
1147	__cu_from = (from);						\
1148	__cu_len = (n);							\
1149	if (segment_eq(get_fs(), get_ds())) {				\
1150		__cu_len = ___invoke_copy_in_kernel(__cu_to, __cu_from,	\
1151						    __cu_len);		\
1152	} else {							\
1153		might_fault();						\
1154		__cu_len = ___invoke_copy_in_user(__cu_to, __cu_from,	\
1155						  __cu_len);		\
1156	}								\
1157	__cu_len;							\
1158})
1159
1160#define copy_in_user(to, from, n)					\
1161({									\
1162	void __user *__cu_to;						\
1163	const void __user *__cu_from;					\
1164	long __cu_len;							\
1165									\
1166	__cu_to = (to);							\
1167	__cu_from = (from);						\
1168	__cu_len = (n);							\
1169	if (segment_eq(get_fs(), get_ds())) {				\
1170		__cu_len = ___invoke_copy_in_kernel(__cu_to,__cu_from,	\
1171						    __cu_len);		\
1172	} else {							\
1173		if (likely(access_ok(VERIFY_READ, __cu_from, __cu_len) &&\
1174			   access_ok(VERIFY_WRITE, __cu_to, __cu_len))) {\
1175			might_fault();					\
1176			__cu_len = ___invoke_copy_in_user(__cu_to,	\
1177							  __cu_from,	\
1178							  __cu_len);	\
1179		}							\
1180	}								\
1181	__cu_len;							\
1182})
1183
1184/*
1185 * __clear_user: - Zero a block of memory in user space, with less checking.
1186 * @to:	  Destination address, in user space.
1187 * @n:	  Number of bytes to zero.
1188 *
1189 * Zero a block of memory in user space.  Caller must check
1190 * the specified block with access_ok() before calling this function.
1191 *
1192 * Returns number of bytes that could not be cleared.
1193 * On success, this will be zero.
1194 */
1195static inline __kernel_size_t
1196__clear_user(void __user *addr, __kernel_size_t size)
1197{
1198	__kernel_size_t res;
1199
1200	might_fault();
1201	__asm__ __volatile__(
1202		"move\t$4, %1\n\t"
1203		"move\t$5, $0\n\t"
1204		"move\t$6, %2\n\t"
1205		__MODULE_JAL(__bzero)
1206		"move\t%0, $6"
1207		: "=r" (res)
1208		: "r" (addr), "r" (size)
1209		: "$4", "$5", "$6", __UA_t0, __UA_t1, "$31");
 
 
 
 
 
 
 
 
 
 
 
 
1210
1211	return res;
1212}
1213
1214#define clear_user(addr,n)						\
1215({									\
1216	void __user * __cl_addr = (addr);				\
1217	unsigned long __cl_size = (n);					\
1218	if (__cl_size && access_ok(VERIFY_WRITE,			\
1219					__cl_addr, __cl_size))		\
1220		__cl_size = __clear_user(__cl_addr, __cl_size);		\
1221	__cl_size;							\
1222})
1223
1224/*
1225 * __strncpy_from_user: - Copy a NUL terminated string from userspace, with less checking.
1226 * @dst:   Destination address, in kernel space.  This buffer must be at
1227 *	   least @count bytes long.
1228 * @src:   Source address, in user space.
1229 * @count: Maximum number of bytes to copy, including the trailing NUL.
1230 *
1231 * Copies a NUL-terminated string from userspace to kernel space.
1232 * Caller must check the specified block with access_ok() before calling
1233 * this function.
1234 *
1235 * On success, returns the length of the string (not including the trailing
1236 * NUL).
1237 *
1238 * If access to userspace fails, returns -EFAULT (some data may have been
1239 * copied).
1240 *
1241 * If @count is smaller than the length of the string, copies @count bytes
1242 * and returns @count.
1243 */
1244static inline long
1245__strncpy_from_user(char *__to, const char __user *__from, long __len)
1246{
1247	long res;
1248
1249	if (segment_eq(get_fs(), get_ds())) {
1250		__asm__ __volatile__(
1251			"move\t$4, %1\n\t"
1252			"move\t$5, %2\n\t"
1253			"move\t$6, %3\n\t"
1254			__MODULE_JAL(__strncpy_from_kernel_nocheck_asm)
1255			"move\t%0, $2"
1256			: "=r" (res)
1257			: "r" (__to), "r" (__from), "r" (__len)
1258			: "$2", "$3", "$4", "$5", "$6", __UA_t0, "$31", "memory");
1259	} else {
1260		might_fault();
1261		__asm__ __volatile__(
1262			"move\t$4, %1\n\t"
1263			"move\t$5, %2\n\t"
1264			"move\t$6, %3\n\t"
1265			__MODULE_JAL(__strncpy_from_user_nocheck_asm)
1266			"move\t%0, $2"
1267			: "=r" (res)
1268			: "r" (__to), "r" (__from), "r" (__len)
1269			: "$2", "$3", "$4", "$5", "$6", __UA_t0, "$31", "memory");
1270	}
1271
1272	return res;
1273}
1274
1275/*
1276 * strncpy_from_user: - Copy a NUL terminated string from userspace.
1277 * @dst:   Destination address, in kernel space.  This buffer must be at
1278 *	   least @count bytes long.
1279 * @src:   Source address, in user space.
1280 * @count: Maximum number of bytes to copy, including the trailing NUL.
1281 *
1282 * Copies a NUL-terminated string from userspace to kernel space.
1283 *
1284 * On success, returns the length of the string (not including the trailing
1285 * NUL).
1286 *
1287 * If access to userspace fails, returns -EFAULT (some data may have been
1288 * copied).
1289 *
1290 * If @count is smaller than the length of the string, copies @count bytes
1291 * and returns @count.
1292 */
1293static inline long
1294strncpy_from_user(char *__to, const char __user *__from, long __len)
1295{
1296	long res;
1297
1298	if (segment_eq(get_fs(), get_ds())) {
1299		__asm__ __volatile__(
1300			"move\t$4, %1\n\t"
1301			"move\t$5, %2\n\t"
1302			"move\t$6, %3\n\t"
1303			__MODULE_JAL(__strncpy_from_kernel_asm)
1304			"move\t%0, $2"
1305			: "=r" (res)
1306			: "r" (__to), "r" (__from), "r" (__len)
1307			: "$2", "$3", "$4", "$5", "$6", __UA_t0, "$31", "memory");
1308	} else {
1309		might_fault();
1310		__asm__ __volatile__(
1311			"move\t$4, %1\n\t"
1312			"move\t$5, %2\n\t"
1313			"move\t$6, %3\n\t"
1314			__MODULE_JAL(__strncpy_from_user_asm)
1315			"move\t%0, $2"
1316			: "=r" (res)
1317			: "r" (__to), "r" (__from), "r" (__len)
1318			: "$2", "$3", "$4", "$5", "$6", __UA_t0, "$31", "memory");
1319	}
1320
1321	return res;
1322}
1323
1324/* Returns: 0 if bad, string length+1 (memory size) of string if ok */
1325static inline long __strlen_user(const char __user *s)
1326{
1327	long res;
1328
1329	if (segment_eq(get_fs(), get_ds())) {
1330		__asm__ __volatile__(
1331			"move\t$4, %1\n\t"
1332			__MODULE_JAL(__strlen_kernel_nocheck_asm)
1333			"move\t%0, $2"
1334			: "=r" (res)
1335			: "r" (s)
1336			: "$2", "$4", __UA_t0, "$31");
1337	} else {
1338		might_fault();
1339		__asm__ __volatile__(
1340			"move\t$4, %1\n\t"
1341			__MODULE_JAL(__strlen_user_nocheck_asm)
1342			"move\t%0, $2"
1343			: "=r" (res)
1344			: "r" (s)
1345			: "$2", "$4", __UA_t0, "$31");
1346	}
1347
1348	return res;
1349}
1350
1351/*
1352 * strlen_user: - Get the size of a string in user space.
1353 * @str: The string to measure.
1354 *
1355 * Context: User context only.	This function may sleep.
 
1356 *
1357 * Get the size of a NUL-terminated string in user space.
1358 *
1359 * Returns the size of the string INCLUDING the terminating NUL.
1360 * On exception, returns 0.
1361 *
1362 * If there is a limit on the length of a valid string, you may wish to
1363 * consider using strnlen_user() instead.
1364 */
1365static inline long strlen_user(const char __user *s)
1366{
1367	long res;
1368
1369	if (segment_eq(get_fs(), get_ds())) {
1370		__asm__ __volatile__(
1371			"move\t$4, %1\n\t"
1372			__MODULE_JAL(__strlen_kernel_asm)
1373			"move\t%0, $2"
1374			: "=r" (res)
1375			: "r" (s)
1376			: "$2", "$4", __UA_t0, "$31");
1377	} else {
1378		might_fault();
1379		__asm__ __volatile__(
1380			"move\t$4, %1\n\t"
1381			__MODULE_JAL(__strlen_kernel_asm)
1382			"move\t%0, $2"
1383			: "=r" (res)
1384			: "r" (s)
1385			: "$2", "$4", __UA_t0, "$31");
1386	}
1387
1388	return res;
1389}
1390
1391/* Returns: 0 if bad, string length+1 (memory size) of string if ok */
1392static inline long __strnlen_user(const char __user *s, long n)
1393{
1394	long res;
1395
1396	if (segment_eq(get_fs(), get_ds())) {
1397		__asm__ __volatile__(
1398			"move\t$4, %1\n\t"
1399			"move\t$5, %2\n\t"
1400			__MODULE_JAL(__strnlen_kernel_nocheck_asm)
1401			"move\t%0, $2"
1402			: "=r" (res)
1403			: "r" (s), "r" (n)
1404			: "$2", "$4", "$5", __UA_t0, "$31");
1405	} else {
1406		might_fault();
1407		__asm__ __volatile__(
1408			"move\t$4, %1\n\t"
1409			"move\t$5, %2\n\t"
1410			__MODULE_JAL(__strnlen_user_nocheck_asm)
1411			"move\t%0, $2"
1412			: "=r" (res)
1413			: "r" (s), "r" (n)
1414			: "$2", "$4", "$5", __UA_t0, "$31");
1415	}
1416
1417	return res;
1418}
1419
1420/*
1421 * strlen_user: - Get the size of a string in user space.
1422 * @str: The string to measure.
1423 *
1424 * Context: User context only.	This function may sleep.
 
1425 *
1426 * Get the size of a NUL-terminated string in user space.
1427 *
1428 * Returns the size of the string INCLUDING the terminating NUL.
1429 * On exception, returns 0.
1430 *
1431 * If there is a limit on the length of a valid string, you may wish to
1432 * consider using strnlen_user() instead.
1433 */
1434static inline long strnlen_user(const char __user *s, long n)
1435{
1436	long res;
1437
1438	might_fault();
1439	if (segment_eq(get_fs(), get_ds())) {
1440		__asm__ __volatile__(
1441			"move\t$4, %1\n\t"
1442			"move\t$5, %2\n\t"
1443			__MODULE_JAL(__strnlen_kernel_asm)
1444			"move\t%0, $2"
1445			: "=r" (res)
1446			: "r" (s), "r" (n)
1447			: "$2", "$4", "$5", __UA_t0, "$31");
1448	} else {
1449		__asm__ __volatile__(
1450			"move\t$4, %1\n\t"
1451			"move\t$5, %2\n\t"
1452			__MODULE_JAL(__strnlen_user_asm)
1453			"move\t%0, $2"
1454			: "=r" (res)
1455			: "r" (s), "r" (n)
1456			: "$2", "$4", "$5", __UA_t0, "$31");
1457	}
1458
1459	return res;
1460}
1461
1462struct exception_table_entry
1463{
1464	unsigned long insn;
1465	unsigned long nextinsn;
1466};
1467
1468extern int fixup_exception(struct pt_regs *regs);
1469
1470#endif /* _ASM_UACCESS_H */
v4.6
   1/*
   2 * This file is subject to the terms and conditions of the GNU General Public
   3 * License.  See the file "COPYING" in the main directory of this archive
   4 * for more details.
   5 *
   6 * Copyright (C) 1996, 1997, 1998, 1999, 2000, 03, 04 by Ralf Baechle
   7 * Copyright (C) 1999, 2000 Silicon Graphics, Inc.
   8 * Copyright (C) 2007  Maciej W. Rozycki
   9 * Copyright (C) 2014, Imagination Technologies Ltd.
  10 */
  11#ifndef _ASM_UACCESS_H
  12#define _ASM_UACCESS_H
  13
  14#include <linux/kernel.h>
  15#include <linux/errno.h>
  16#include <linux/thread_info.h>
  17#include <asm/asm-eva.h>
  18
  19/*
  20 * The fs value determines whether argument validity checking should be
  21 * performed or not.  If get_fs() == USER_DS, checking is performed, with
  22 * get_fs() == KERNEL_DS, checking is bypassed.
  23 *
  24 * For historical reasons, these macros are grossly misnamed.
  25 */
  26#ifdef CONFIG_32BIT
  27
  28#ifdef CONFIG_KVM_GUEST
  29#define __UA_LIMIT 0x40000000UL
  30#else
  31#define __UA_LIMIT 0x80000000UL
  32#endif
  33
  34#define __UA_ADDR	".word"
  35#define __UA_LA		"la"
  36#define __UA_ADDU	"addu"
  37#define __UA_t0		"$8"
  38#define __UA_t1		"$9"
  39
  40#endif /* CONFIG_32BIT */
  41
  42#ifdef CONFIG_64BIT
  43
  44extern u64 __ua_limit;
  45
  46#define __UA_LIMIT	__ua_limit
  47
  48#define __UA_ADDR	".dword"
  49#define __UA_LA		"dla"
  50#define __UA_ADDU	"daddu"
  51#define __UA_t0		"$12"
  52#define __UA_t1		"$13"
  53
  54#endif /* CONFIG_64BIT */
  55
  56/*
  57 * USER_DS is a bitmask that has the bits set that may not be set in a valid
  58 * userspace address.  Note that we limit 32-bit userspace to 0x7fff8000 but
  59 * the arithmetic we're doing only works if the limit is a power of two, so
  60 * we use 0x80000000 here on 32-bit kernels.  If a process passes an invalid
  61 * address in this range it's the process's problem, not ours :-)
  62 */
  63
  64#ifdef CONFIG_KVM_GUEST
  65#define KERNEL_DS	((mm_segment_t) { 0x80000000UL })
  66#define USER_DS		((mm_segment_t) { 0xC0000000UL })
  67#else
  68#define KERNEL_DS	((mm_segment_t) { 0UL })
  69#define USER_DS		((mm_segment_t) { __UA_LIMIT })
  70#endif
  71
  72#define VERIFY_READ    0
  73#define VERIFY_WRITE   1
  74
  75#define get_ds()	(KERNEL_DS)
  76#define get_fs()	(current_thread_info()->addr_limit)
  77#define set_fs(x)	(current_thread_info()->addr_limit = (x))
  78
  79#define segment_eq(a, b)	((a).seg == (b).seg)
  80
  81/*
  82 * eva_kernel_access() - determine whether kernel memory access on an EVA system
  83 *
  84 * Determines whether memory accesses should be performed to kernel memory
  85 * on a system using Extended Virtual Addressing (EVA).
  86 *
  87 * Return: true if a kernel memory access on an EVA system, else false.
  88 */
  89static inline bool eva_kernel_access(void)
  90{
  91	if (!config_enabled(CONFIG_EVA))
  92		return false;
  93
  94	return segment_eq(get_fs(), get_ds());
  95}
  96
  97/*
  98 * Is a address valid? This does a straightforward calculation rather
  99 * than tests.
 100 *
 101 * Address valid if:
 102 *  - "addr" doesn't have any high-bits set
 103 *  - AND "size" doesn't have any high-bits set
 104 *  - AND "addr+size" doesn't have any high-bits set
 105 *  - OR we are in kernel mode.
 106 *
 107 * __ua_size() is a trick to avoid runtime checking of positive constant
 108 * sizes; for those we already know at compile time that the size is ok.
 109 */
 110#define __ua_size(size)							\
 111	((__builtin_constant_p(size) && (signed long) (size) > 0) ? 0 : (size))
 112
 113/*
 114 * access_ok: - Checks if a user space pointer is valid
 115 * @type: Type of access: %VERIFY_READ or %VERIFY_WRITE.  Note that
 116 *	  %VERIFY_WRITE is a superset of %VERIFY_READ - if it is safe
 117 *	  to write to a block, it is always safe to read from it.
 118 * @addr: User space pointer to start of block to check
 119 * @size: Size of block to check
 120 *
 121 * Context: User context only. This function may sleep if pagefaults are
 122 *          enabled.
 123 *
 124 * Checks if a pointer to a block of memory in user space is valid.
 125 *
 126 * Returns true (nonzero) if the memory block may be valid, false (zero)
 127 * if it is definitely invalid.
 128 *
 129 * Note that, depending on architecture, this function probably just
 130 * checks that the pointer is in the user space range - after calling
 131 * this function, memory access functions may still return -EFAULT.
 132 */
 133
 134#define __access_mask get_fs().seg
 135
 136#define __access_ok(addr, size, mask)					\
 137({									\
 138	unsigned long __addr = (unsigned long) (addr);			\
 139	unsigned long __size = size;					\
 140	unsigned long __mask = mask;					\
 141	unsigned long __ok;						\
 142									\
 143	__chk_user_ptr(addr);						\
 144	__ok = (signed long)(__mask & (__addr | (__addr + __size) |	\
 145		__ua_size(__size)));					\
 146	__ok == 0;							\
 147})
 148
 149#define access_ok(type, addr, size)					\
 150	likely(__access_ok((addr), (size), __access_mask))
 151
 152/*
 153 * put_user: - Write a simple value into user space.
 154 * @x:	 Value to copy to user space.
 155 * @ptr: Destination address, in user space.
 156 *
 157 * Context: User context only. This function may sleep if pagefaults are
 158 *          enabled.
 159 *
 160 * This macro copies a single simple value from kernel space to user
 161 * space.  It supports simple types like char and int, but not larger
 162 * data types like structures or arrays.
 163 *
 164 * @ptr must have pointer-to-simple-variable type, and @x must be assignable
 165 * to the result of dereferencing @ptr.
 166 *
 167 * Returns zero on success, or -EFAULT on error.
 168 */
 169#define put_user(x,ptr) \
 170	__put_user_check((x), (ptr), sizeof(*(ptr)))
 171
 172/*
 173 * get_user: - Get a simple variable from user space.
 174 * @x:	 Variable to store result.
 175 * @ptr: Source address, in user space.
 176 *
 177 * Context: User context only. This function may sleep if pagefaults are
 178 *          enabled.
 179 *
 180 * This macro copies a single simple variable from user space to kernel
 181 * space.  It supports simple types like char and int, but not larger
 182 * data types like structures or arrays.
 183 *
 184 * @ptr must have pointer-to-simple-variable type, and the result of
 185 * dereferencing @ptr must be assignable to @x without a cast.
 186 *
 187 * Returns zero on success, or -EFAULT on error.
 188 * On error, the variable @x is set to zero.
 189 */
 190#define get_user(x,ptr) \
 191	__get_user_check((x), (ptr), sizeof(*(ptr)))
 192
 193/*
 194 * __put_user: - Write a simple value into user space, with less checking.
 195 * @x:	 Value to copy to user space.
 196 * @ptr: Destination address, in user space.
 197 *
 198 * Context: User context only. This function may sleep if pagefaults are
 199 *          enabled.
 200 *
 201 * This macro copies a single simple value from kernel space to user
 202 * space.  It supports simple types like char and int, but not larger
 203 * data types like structures or arrays.
 204 *
 205 * @ptr must have pointer-to-simple-variable type, and @x must be assignable
 206 * to the result of dereferencing @ptr.
 207 *
 208 * Caller must check the pointer with access_ok() before calling this
 209 * function.
 210 *
 211 * Returns zero on success, or -EFAULT on error.
 212 */
 213#define __put_user(x,ptr) \
 214	__put_user_nocheck((x), (ptr), sizeof(*(ptr)))
 215
 216/*
 217 * __get_user: - Get a simple variable from user space, with less checking.
 218 * @x:	 Variable to store result.
 219 * @ptr: Source address, in user space.
 220 *
 221 * Context: User context only. This function may sleep if pagefaults are
 222 *          enabled.
 223 *
 224 * This macro copies a single simple variable from user space to kernel
 225 * space.  It supports simple types like char and int, but not larger
 226 * data types like structures or arrays.
 227 *
 228 * @ptr must have pointer-to-simple-variable type, and the result of
 229 * dereferencing @ptr must be assignable to @x without a cast.
 230 *
 231 * Caller must check the pointer with access_ok() before calling this
 232 * function.
 233 *
 234 * Returns zero on success, or -EFAULT on error.
 235 * On error, the variable @x is set to zero.
 236 */
 237#define __get_user(x,ptr) \
 238	__get_user_nocheck((x), (ptr), sizeof(*(ptr)))
 239
 240struct __large_struct { unsigned long buf[100]; };
 241#define __m(x) (*(struct __large_struct __user *)(x))
 242
 243/*
 244 * Yuck.  We need two variants, one for 64bit operation and one
 245 * for 32 bit mode and old iron.
 246 */
 247#ifndef CONFIG_EVA
 248#define __get_kernel_common(val, size, ptr) __get_user_common(val, size, ptr)
 249#else
 250/*
 251 * Kernel specific functions for EVA. We need to use normal load instructions
 252 * to read data from kernel when operating in EVA mode. We use these macros to
 253 * avoid redefining __get_user_asm for EVA.
 254 */
 255#undef _loadd
 256#undef _loadw
 257#undef _loadh
 258#undef _loadb
 259#ifdef CONFIG_32BIT
 260#define _loadd			_loadw
 261#else
 262#define _loadd(reg, addr)	"ld " reg ", " addr
 263#endif
 264#define _loadw(reg, addr)	"lw " reg ", " addr
 265#define _loadh(reg, addr)	"lh " reg ", " addr
 266#define _loadb(reg, addr)	"lb " reg ", " addr
 267
 268#define __get_kernel_common(val, size, ptr)				\
 269do {									\
 270	switch (size) {							\
 271	case 1: __get_data_asm(val, _loadb, ptr); break;		\
 272	case 2: __get_data_asm(val, _loadh, ptr); break;		\
 273	case 4: __get_data_asm(val, _loadw, ptr); break;		\
 274	case 8: __GET_DW(val, _loadd, ptr); break;			\
 275	default: __get_user_unknown(); break;				\
 276	}								\
 277} while (0)
 278#endif
 279
 280#ifdef CONFIG_32BIT
 281#define __GET_DW(val, insn, ptr) __get_data_asm_ll32(val, insn, ptr)
 282#endif
 283#ifdef CONFIG_64BIT
 284#define __GET_DW(val, insn, ptr) __get_data_asm(val, insn, ptr)
 285#endif
 286
 287extern void __get_user_unknown(void);
 288
 289#define __get_user_common(val, size, ptr)				\
 290do {									\
 291	switch (size) {							\
 292	case 1: __get_data_asm(val, user_lb, ptr); break;		\
 293	case 2: __get_data_asm(val, user_lh, ptr); break;		\
 294	case 4: __get_data_asm(val, user_lw, ptr); break;		\
 295	case 8: __GET_DW(val, user_ld, ptr); break;			\
 296	default: __get_user_unknown(); break;				\
 297	}								\
 298} while (0)
 299
 300#define __get_user_nocheck(x, ptr, size)				\
 301({									\
 302	int __gu_err;							\
 303									\
 304	if (eva_kernel_access()) {					\
 305		__get_kernel_common((x), size, ptr);			\
 306	} else {							\
 307		__chk_user_ptr(ptr);					\
 308		__get_user_common((x), size, ptr);			\
 309	}								\
 310	__gu_err;							\
 311})
 312
 313#define __get_user_check(x, ptr, size)					\
 314({									\
 315	int __gu_err = -EFAULT;						\
 316	const __typeof__(*(ptr)) __user * __gu_ptr = (ptr);		\
 317									\
 318	might_fault();							\
 319	if (likely(access_ok(VERIFY_READ,  __gu_ptr, size))) {		\
 320		if (eva_kernel_access())				\
 321			__get_kernel_common((x), size, __gu_ptr);	\
 322		else							\
 323			__get_user_common((x), size, __gu_ptr);		\
 324	} else								\
 325		(x) = 0;						\
 326									\
 327	__gu_err;							\
 328})
 329
 330#define __get_data_asm(val, insn, addr)					\
 331{									\
 332	long __gu_tmp;							\
 333									\
 334	__asm__ __volatile__(						\
 335	"1:	"insn("%1", "%3")"				\n"	\
 336	"2:							\n"	\
 337	"	.insn						\n"	\
 338	"	.section .fixup,\"ax\"				\n"	\
 339	"3:	li	%0, %4					\n"	\
 340	"	move	%1, $0					\n"	\
 341	"	j	2b					\n"	\
 342	"	.previous					\n"	\
 343	"	.section __ex_table,\"a\"			\n"	\
 344	"	"__UA_ADDR "\t1b, 3b				\n"	\
 345	"	.previous					\n"	\
 346	: "=r" (__gu_err), "=r" (__gu_tmp)				\
 347	: "0" (0), "o" (__m(addr)), "i" (-EFAULT));			\
 348									\
 349	(val) = (__typeof__(*(addr))) __gu_tmp;				\
 350}
 351
 352/*
 353 * Get a long long 64 using 32 bit registers.
 354 */
 355#define __get_data_asm_ll32(val, insn, addr)				\
 356{									\
 357	union {								\
 358		unsigned long long	l;				\
 359		__typeof__(*(addr))	t;				\
 360	} __gu_tmp;							\
 361									\
 362	__asm__ __volatile__(						\
 363	"1:	" insn("%1", "(%3)")"				\n"	\
 364	"2:	" insn("%D1", "4(%3)")"				\n"	\
 365	"3:							\n"	\
 366	"	.insn						\n"	\
 367	"	.section	.fixup,\"ax\"			\n"	\
 368	"4:	li	%0, %4					\n"	\
 369	"	move	%1, $0					\n"	\
 370	"	move	%D1, $0					\n"	\
 371	"	j	3b					\n"	\
 372	"	.previous					\n"	\
 373	"	.section	__ex_table,\"a\"		\n"	\
 374	"	" __UA_ADDR "	1b, 4b				\n"	\
 375	"	" __UA_ADDR "	2b, 4b				\n"	\
 376	"	.previous					\n"	\
 377	: "=r" (__gu_err), "=&r" (__gu_tmp.l)				\
 378	: "0" (0), "r" (addr), "i" (-EFAULT));				\
 379									\
 380	(val) = __gu_tmp.t;						\
 381}
 382
 383#ifndef CONFIG_EVA
 384#define __put_kernel_common(ptr, size) __put_user_common(ptr, size)
 385#else
 386/*
 387 * Kernel specific functions for EVA. We need to use normal load instructions
 388 * to read data from kernel when operating in EVA mode. We use these macros to
 389 * avoid redefining __get_data_asm for EVA.
 390 */
 391#undef _stored
 392#undef _storew
 393#undef _storeh
 394#undef _storeb
 395#ifdef CONFIG_32BIT
 396#define _stored			_storew
 397#else
 398#define _stored(reg, addr)	"ld " reg ", " addr
 399#endif
 400
 401#define _storew(reg, addr)	"sw " reg ", " addr
 402#define _storeh(reg, addr)	"sh " reg ", " addr
 403#define _storeb(reg, addr)	"sb " reg ", " addr
 404
 405#define __put_kernel_common(ptr, size)					\
 406do {									\
 407	switch (size) {							\
 408	case 1: __put_data_asm(_storeb, ptr); break;			\
 409	case 2: __put_data_asm(_storeh, ptr); break;			\
 410	case 4: __put_data_asm(_storew, ptr); break;			\
 411	case 8: __PUT_DW(_stored, ptr); break;				\
 412	default: __put_user_unknown(); break;				\
 413	}								\
 414} while(0)
 415#endif
 416
 417/*
 418 * Yuck.  We need two variants, one for 64bit operation and one
 419 * for 32 bit mode and old iron.
 420 */
 421#ifdef CONFIG_32BIT
 422#define __PUT_DW(insn, ptr) __put_data_asm_ll32(insn, ptr)
 423#endif
 424#ifdef CONFIG_64BIT
 425#define __PUT_DW(insn, ptr) __put_data_asm(insn, ptr)
 426#endif
 427
 428#define __put_user_common(ptr, size)					\
 429do {									\
 430	switch (size) {							\
 431	case 1: __put_data_asm(user_sb, ptr); break;			\
 432	case 2: __put_data_asm(user_sh, ptr); break;			\
 433	case 4: __put_data_asm(user_sw, ptr); break;			\
 434	case 8: __PUT_DW(user_sd, ptr); break;				\
 435	default: __put_user_unknown(); break;				\
 436	}								\
 437} while (0)
 438
 439#define __put_user_nocheck(x, ptr, size)				\
 440({									\
 441	__typeof__(*(ptr)) __pu_val;					\
 442	int __pu_err = 0;						\
 443									\
 444	__pu_val = (x);							\
 445	if (eva_kernel_access()) {					\
 446		__put_kernel_common(ptr, size);				\
 447	} else {							\
 448		__chk_user_ptr(ptr);					\
 449		__put_user_common(ptr, size);				\
 450	}								\
 451	__pu_err;							\
 452})
 453
 454#define __put_user_check(x, ptr, size)					\
 455({									\
 456	__typeof__(*(ptr)) __user *__pu_addr = (ptr);			\
 457	__typeof__(*(ptr)) __pu_val = (x);				\
 458	int __pu_err = -EFAULT;						\
 459									\
 460	might_fault();							\
 461	if (likely(access_ok(VERIFY_WRITE,  __pu_addr, size))) {	\
 462		if (eva_kernel_access())				\
 463			__put_kernel_common(__pu_addr, size);		\
 464		else							\
 465			__put_user_common(__pu_addr, size);		\
 466	}								\
 467									\
 468	__pu_err;							\
 469})
 470
 471#define __put_data_asm(insn, ptr)					\
 472{									\
 473	__asm__ __volatile__(						\
 474	"1:	"insn("%z2", "%3")"	# __put_data_asm	\n"	\
 475	"2:							\n"	\
 476	"	.insn						\n"	\
 477	"	.section	.fixup,\"ax\"			\n"	\
 478	"3:	li	%0, %4					\n"	\
 479	"	j	2b					\n"	\
 480	"	.previous					\n"	\
 481	"	.section	__ex_table,\"a\"		\n"	\
 482	"	" __UA_ADDR "	1b, 3b				\n"	\
 483	"	.previous					\n"	\
 484	: "=r" (__pu_err)						\
 485	: "0" (0), "Jr" (__pu_val), "o" (__m(ptr)),			\
 486	  "i" (-EFAULT));						\
 487}
 488
 489#define __put_data_asm_ll32(insn, ptr)					\
 490{									\
 491	__asm__ __volatile__(						\
 492	"1:	"insn("%2", "(%3)")"	# __put_data_asm_ll32	\n"	\
 493	"2:	"insn("%D2", "4(%3)")"				\n"	\
 494	"3:							\n"	\
 495	"	.insn						\n"	\
 496	"	.section	.fixup,\"ax\"			\n"	\
 497	"4:	li	%0, %4					\n"	\
 498	"	j	3b					\n"	\
 499	"	.previous					\n"	\
 500	"	.section	__ex_table,\"a\"		\n"	\
 501	"	" __UA_ADDR "	1b, 4b				\n"	\
 502	"	" __UA_ADDR "	2b, 4b				\n"	\
 503	"	.previous"						\
 504	: "=r" (__pu_err)						\
 505	: "0" (0), "r" (__pu_val), "r" (ptr),				\
 506	  "i" (-EFAULT));						\
 507}
 508
 509extern void __put_user_unknown(void);
 510
 511/*
 512 * ul{b,h,w} are macros and there are no equivalent macros for EVA.
 513 * EVA unaligned access is handled in the ADE exception handler.
 514 */
 515#ifndef CONFIG_EVA
 516/*
 517 * put_user_unaligned: - Write a simple value into user space.
 518 * @x:	 Value to copy to user space.
 519 * @ptr: Destination address, in user space.
 520 *
 521 * Context: User context only. This function may sleep if pagefaults are
 522 *          enabled.
 523 *
 524 * This macro copies a single simple value from kernel space to user
 525 * space.  It supports simple types like char and int, but not larger
 526 * data types like structures or arrays.
 527 *
 528 * @ptr must have pointer-to-simple-variable type, and @x must be assignable
 529 * to the result of dereferencing @ptr.
 530 *
 531 * Returns zero on success, or -EFAULT on error.
 532 */
 533#define put_user_unaligned(x,ptr)	\
 534	__put_user_unaligned_check((x),(ptr),sizeof(*(ptr)))
 535
 536/*
 537 * get_user_unaligned: - Get a simple variable from user space.
 538 * @x:	 Variable to store result.
 539 * @ptr: Source address, in user space.
 540 *
 541 * Context: User context only. This function may sleep if pagefaults are
 542 *          enabled.
 543 *
 544 * This macro copies a single simple variable from user space to kernel
 545 * space.  It supports simple types like char and int, but not larger
 546 * data types like structures or arrays.
 547 *
 548 * @ptr must have pointer-to-simple-variable type, and the result of
 549 * dereferencing @ptr must be assignable to @x without a cast.
 550 *
 551 * Returns zero on success, or -EFAULT on error.
 552 * On error, the variable @x is set to zero.
 553 */
 554#define get_user_unaligned(x,ptr) \
 555	__get_user_unaligned_check((x),(ptr),sizeof(*(ptr)))
 556
 557/*
 558 * __put_user_unaligned: - Write a simple value into user space, with less checking.
 559 * @x:	 Value to copy to user space.
 560 * @ptr: Destination address, in user space.
 561 *
 562 * Context: User context only. This function may sleep if pagefaults are
 563 *          enabled.
 564 *
 565 * This macro copies a single simple value from kernel space to user
 566 * space.  It supports simple types like char and int, but not larger
 567 * data types like structures or arrays.
 568 *
 569 * @ptr must have pointer-to-simple-variable type, and @x must be assignable
 570 * to the result of dereferencing @ptr.
 571 *
 572 * Caller must check the pointer with access_ok() before calling this
 573 * function.
 574 *
 575 * Returns zero on success, or -EFAULT on error.
 576 */
 577#define __put_user_unaligned(x,ptr) \
 578	__put_user_unaligned_nocheck((x),(ptr),sizeof(*(ptr)))
 579
 580/*
 581 * __get_user_unaligned: - Get a simple variable from user space, with less checking.
 582 * @x:	 Variable to store result.
 583 * @ptr: Source address, in user space.
 584 *
 585 * Context: User context only. This function may sleep if pagefaults are
 586 *          enabled.
 587 *
 588 * This macro copies a single simple variable from user space to kernel
 589 * space.  It supports simple types like char and int, but not larger
 590 * data types like structures or arrays.
 591 *
 592 * @ptr must have pointer-to-simple-variable type, and the result of
 593 * dereferencing @ptr must be assignable to @x without a cast.
 594 *
 595 * Caller must check the pointer with access_ok() before calling this
 596 * function.
 597 *
 598 * Returns zero on success, or -EFAULT on error.
 599 * On error, the variable @x is set to zero.
 600 */
 601#define __get_user_unaligned(x,ptr) \
 602	__get_user_unaligned_nocheck((x),(ptr),sizeof(*(ptr)))
 603
 604/*
 605 * Yuck.  We need two variants, one for 64bit operation and one
 606 * for 32 bit mode and old iron.
 607 */
 608#ifdef CONFIG_32BIT
 609#define __GET_USER_UNALIGNED_DW(val, ptr)				\
 610	__get_user_unaligned_asm_ll32(val, ptr)
 611#endif
 612#ifdef CONFIG_64BIT
 613#define __GET_USER_UNALIGNED_DW(val, ptr)				\
 614	__get_user_unaligned_asm(val, "uld", ptr)
 615#endif
 616
 617extern void __get_user_unaligned_unknown(void);
 618
 619#define __get_user_unaligned_common(val, size, ptr)			\
 620do {									\
 621	switch (size) {							\
 622	case 1: __get_data_asm(val, "lb", ptr); break;			\
 623	case 2: __get_data_unaligned_asm(val, "ulh", ptr); break;	\
 624	case 4: __get_data_unaligned_asm(val, "ulw", ptr); break;	\
 625	case 8: __GET_USER_UNALIGNED_DW(val, ptr); break;		\
 626	default: __get_user_unaligned_unknown(); break;			\
 627	}								\
 628} while (0)
 629
 630#define __get_user_unaligned_nocheck(x,ptr,size)			\
 631({									\
 632	int __gu_err;							\
 633									\
 634	__get_user_unaligned_common((x), size, ptr);			\
 635	__gu_err;							\
 636})
 637
 638#define __get_user_unaligned_check(x,ptr,size)				\
 639({									\
 640	int __gu_err = -EFAULT;						\
 641	const __typeof__(*(ptr)) __user * __gu_ptr = (ptr);		\
 642									\
 643	if (likely(access_ok(VERIFY_READ,  __gu_ptr, size)))		\
 644		__get_user_unaligned_common((x), size, __gu_ptr);	\
 645									\
 646	__gu_err;							\
 647})
 648
 649#define __get_data_unaligned_asm(val, insn, addr)			\
 650{									\
 651	long __gu_tmp;							\
 652									\
 653	__asm__ __volatile__(						\
 654	"1:	" insn "	%1, %3				\n"	\
 655	"2:							\n"	\
 656	"	.insn						\n"	\
 657	"	.section .fixup,\"ax\"				\n"	\
 658	"3:	li	%0, %4					\n"	\
 659	"	move	%1, $0					\n"	\
 660	"	j	2b					\n"	\
 661	"	.previous					\n"	\
 662	"	.section __ex_table,\"a\"			\n"	\
 663	"	"__UA_ADDR "\t1b, 3b				\n"	\
 664	"	"__UA_ADDR "\t1b + 4, 3b			\n"	\
 665	"	.previous					\n"	\
 666	: "=r" (__gu_err), "=r" (__gu_tmp)				\
 667	: "0" (0), "o" (__m(addr)), "i" (-EFAULT));			\
 668									\
 669	(val) = (__typeof__(*(addr))) __gu_tmp;				\
 670}
 671
 672/*
 673 * Get a long long 64 using 32 bit registers.
 674 */
 675#define __get_user_unaligned_asm_ll32(val, addr)			\
 676{									\
 677	unsigned long long __gu_tmp;					\
 678									\
 679	__asm__ __volatile__(						\
 680	"1:	ulw	%1, (%3)				\n"	\
 681	"2:	ulw	%D1, 4(%3)				\n"	\
 682	"	move	%0, $0					\n"	\
 683	"3:							\n"	\
 684	"	.insn						\n"	\
 685	"	.section	.fixup,\"ax\"			\n"	\
 686	"4:	li	%0, %4					\n"	\
 687	"	move	%1, $0					\n"	\
 688	"	move	%D1, $0					\n"	\
 689	"	j	3b					\n"	\
 690	"	.previous					\n"	\
 691	"	.section	__ex_table,\"a\"		\n"	\
 692	"	" __UA_ADDR "	1b, 4b				\n"	\
 693	"	" __UA_ADDR "	1b + 4, 4b			\n"	\
 694	"	" __UA_ADDR "	2b, 4b				\n"	\
 695	"	" __UA_ADDR "	2b + 4, 4b			\n"	\
 696	"	.previous					\n"	\
 697	: "=r" (__gu_err), "=&r" (__gu_tmp)				\
 698	: "0" (0), "r" (addr), "i" (-EFAULT));				\
 699	(val) = (__typeof__(*(addr))) __gu_tmp;				\
 700}
 701
 702/*
 703 * Yuck.  We need two variants, one for 64bit operation and one
 704 * for 32 bit mode and old iron.
 705 */
 706#ifdef CONFIG_32BIT
 707#define __PUT_USER_UNALIGNED_DW(ptr) __put_user_unaligned_asm_ll32(ptr)
 708#endif
 709#ifdef CONFIG_64BIT
 710#define __PUT_USER_UNALIGNED_DW(ptr) __put_user_unaligned_asm("usd", ptr)
 711#endif
 712
 713#define __put_user_unaligned_common(ptr, size)				\
 714do {									\
 715	switch (size) {							\
 716	case 1: __put_data_asm("sb", ptr); break;			\
 717	case 2: __put_user_unaligned_asm("ush", ptr); break;		\
 718	case 4: __put_user_unaligned_asm("usw", ptr); break;		\
 719	case 8: __PUT_USER_UNALIGNED_DW(ptr); break;			\
 720	default: __put_user_unaligned_unknown(); break;			\
 721} while (0)
 722
 723#define __put_user_unaligned_nocheck(x,ptr,size)			\
 724({									\
 725	__typeof__(*(ptr)) __pu_val;					\
 726	int __pu_err = 0;						\
 727									\
 728	__pu_val = (x);							\
 729	__put_user_unaligned_common(ptr, size);				\
 730	__pu_err;							\
 731})
 732
 733#define __put_user_unaligned_check(x,ptr,size)				\
 734({									\
 735	__typeof__(*(ptr)) __user *__pu_addr = (ptr);			\
 736	__typeof__(*(ptr)) __pu_val = (x);				\
 737	int __pu_err = -EFAULT;						\
 738									\
 739	if (likely(access_ok(VERIFY_WRITE,  __pu_addr, size)))		\
 740		__put_user_unaligned_common(__pu_addr, size);		\
 741									\
 742	__pu_err;							\
 743})
 744
 745#define __put_user_unaligned_asm(insn, ptr)				\
 746{									\
 747	__asm__ __volatile__(						\
 748	"1:	" insn "	%z2, %3		# __put_user_unaligned_asm\n" \
 749	"2:							\n"	\
 750	"	.insn						\n"	\
 751	"	.section	.fixup,\"ax\"			\n"	\
 752	"3:	li	%0, %4					\n"	\
 753	"	j	2b					\n"	\
 754	"	.previous					\n"	\
 755	"	.section	__ex_table,\"a\"		\n"	\
 756	"	" __UA_ADDR "	1b, 3b				\n"	\
 757	"	.previous					\n"	\
 758	: "=r" (__pu_err)						\
 759	: "0" (0), "Jr" (__pu_val), "o" (__m(ptr)),			\
 760	  "i" (-EFAULT));						\
 761}
 762
 763#define __put_user_unaligned_asm_ll32(ptr)				\
 764{									\
 765	__asm__ __volatile__(						\
 766	"1:	sw	%2, (%3)	# __put_user_unaligned_asm_ll32 \n" \
 767	"2:	sw	%D2, 4(%3)				\n"	\
 768	"3:							\n"	\
 769	"	.insn						\n"	\
 770	"	.section	.fixup,\"ax\"			\n"	\
 771	"4:	li	%0, %4					\n"	\
 772	"	j	3b					\n"	\
 773	"	.previous					\n"	\
 774	"	.section	__ex_table,\"a\"		\n"	\
 775	"	" __UA_ADDR "	1b, 4b				\n"	\
 776	"	" __UA_ADDR "	1b + 4, 4b			\n"	\
 777	"	" __UA_ADDR "	2b, 4b				\n"	\
 778	"	" __UA_ADDR "	2b + 4, 4b			\n"	\
 779	"	.previous"						\
 780	: "=r" (__pu_err)						\
 781	: "0" (0), "r" (__pu_val), "r" (ptr),				\
 782	  "i" (-EFAULT));						\
 783}
 784
 785extern void __put_user_unaligned_unknown(void);
 786#endif
 787
 788/*
 789 * We're generating jump to subroutines which will be outside the range of
 790 * jump instructions
 791 */
 792#ifdef MODULE
 793#define __MODULE_JAL(destination)					\
 794	".set\tnoat\n\t"						\
 795	__UA_LA "\t$1, " #destination "\n\t"				\
 796	"jalr\t$1\n\t"							\
 797	".set\tat\n\t"
 798#else
 799#define __MODULE_JAL(destination)					\
 800	"jal\t" #destination "\n\t"
 801#endif
 802
 803#if defined(CONFIG_CPU_DADDI_WORKAROUNDS) || (defined(CONFIG_EVA) &&	\
 804					      defined(CONFIG_CPU_HAS_PREFETCH))
 
 805#define DADDI_SCRATCH "$3"
 806#else
 807#define DADDI_SCRATCH "$0"
 808#endif
 809
 810extern size_t __copy_user(void *__to, const void *__from, size_t __n);
 811
 812#ifndef CONFIG_EVA
 813#define __invoke_copy_to_user(to, from, n)				\
 814({									\
 815	register void __user *__cu_to_r __asm__("$4");			\
 816	register const void *__cu_from_r __asm__("$5");			\
 817	register long __cu_len_r __asm__("$6");				\
 818									\
 819	__cu_to_r = (to);						\
 820	__cu_from_r = (from);						\
 821	__cu_len_r = (n);						\
 822	__asm__ __volatile__(						\
 823	__MODULE_JAL(__copy_user)					\
 824	: "+r" (__cu_to_r), "+r" (__cu_from_r), "+r" (__cu_len_r)	\
 825	:								\
 826	: "$8", "$9", "$10", "$11", "$12", "$14", "$15", "$24", "$31",	\
 827	  DADDI_SCRATCH, "memory");					\
 828	__cu_len_r;							\
 829})
 830
 831#define __invoke_copy_to_kernel(to, from, n)				\
 832	__invoke_copy_to_user(to, from, n)
 833
 834#endif
 835
 836/*
 837 * __copy_to_user: - Copy a block of data into user space, with less checking.
 838 * @to:	  Destination address, in user space.
 839 * @from: Source address, in kernel space.
 840 * @n:	  Number of bytes to copy.
 841 *
 842 * Context: User context only. This function may sleep if pagefaults are
 843 *          enabled.
 844 *
 845 * Copy data from kernel space to user space.  Caller must check
 846 * the specified block with access_ok() before calling this function.
 847 *
 848 * Returns number of bytes that could not be copied.
 849 * On success, this will be zero.
 850 */
 851#define __copy_to_user(to, from, n)					\
 852({									\
 853	void __user *__cu_to;						\
 854	const void *__cu_from;						\
 855	long __cu_len;							\
 856									\
 857	__cu_to = (to);							\
 858	__cu_from = (from);						\
 859	__cu_len = (n);							\
 860	might_fault();							\
 861	if (eva_kernel_access())					\
 862		__cu_len = __invoke_copy_to_kernel(__cu_to, __cu_from,	\
 863						   __cu_len);		\
 864	else								\
 865		__cu_len = __invoke_copy_to_user(__cu_to, __cu_from,	\
 866						 __cu_len);		\
 867	__cu_len;							\
 868})
 869
 870extern size_t __copy_user_inatomic(void *__to, const void *__from, size_t __n);
 871
 872#define __copy_to_user_inatomic(to, from, n)				\
 873({									\
 874	void __user *__cu_to;						\
 875	const void *__cu_from;						\
 876	long __cu_len;							\
 877									\
 878	__cu_to = (to);							\
 879	__cu_from = (from);						\
 880	__cu_len = (n);							\
 881	if (eva_kernel_access())					\
 882		__cu_len = __invoke_copy_to_kernel(__cu_to, __cu_from,	\
 883						   __cu_len);		\
 884	else								\
 885		__cu_len = __invoke_copy_to_user(__cu_to, __cu_from,	\
 886						 __cu_len);		\
 887	__cu_len;							\
 888})
 889
 890#define __copy_from_user_inatomic(to, from, n)				\
 891({									\
 892	void *__cu_to;							\
 893	const void __user *__cu_from;					\
 894	long __cu_len;							\
 895									\
 896	__cu_to = (to);							\
 897	__cu_from = (from);						\
 898	__cu_len = (n);							\
 899	if (eva_kernel_access())					\
 900		__cu_len = __invoke_copy_from_kernel_inatomic(__cu_to,	\
 901							      __cu_from,\
 902							      __cu_len);\
 903	else								\
 904		__cu_len = __invoke_copy_from_user_inatomic(__cu_to,	\
 905							    __cu_from,	\
 906							    __cu_len);	\
 907	__cu_len;							\
 908})
 909
 910/*
 911 * copy_to_user: - Copy a block of data into user space.
 912 * @to:	  Destination address, in user space.
 913 * @from: Source address, in kernel space.
 914 * @n:	  Number of bytes to copy.
 915 *
 916 * Context: User context only. This function may sleep if pagefaults are
 917 *          enabled.
 918 *
 919 * Copy data from kernel space to user space.
 920 *
 921 * Returns number of bytes that could not be copied.
 922 * On success, this will be zero.
 923 */
 924#define copy_to_user(to, from, n)					\
 925({									\
 926	void __user *__cu_to;						\
 927	const void *__cu_from;						\
 928	long __cu_len;							\
 929									\
 930	__cu_to = (to);							\
 931	__cu_from = (from);						\
 932	__cu_len = (n);							\
 933	if (eva_kernel_access()) {					\
 934		__cu_len = __invoke_copy_to_kernel(__cu_to,		\
 935						   __cu_from,		\
 936						   __cu_len);		\
 937	} else {							\
 938		if (access_ok(VERIFY_WRITE, __cu_to, __cu_len)) {       \
 939			might_fault();                                  \
 940			__cu_len = __invoke_copy_to_user(__cu_to,	\
 941							 __cu_from,	\
 942							 __cu_len);     \
 943		}							\
 944	}								\
 945	__cu_len;							\
 946})
 947
 948#ifndef CONFIG_EVA
 949
 950#define __invoke_copy_from_user(to, from, n)				\
 951({									\
 952	register void *__cu_to_r __asm__("$4");				\
 953	register const void __user *__cu_from_r __asm__("$5");		\
 954	register long __cu_len_r __asm__("$6");				\
 955									\
 956	__cu_to_r = (to);						\
 957	__cu_from_r = (from);						\
 958	__cu_len_r = (n);						\
 959	__asm__ __volatile__(						\
 960	".set\tnoreorder\n\t"						\
 961	__MODULE_JAL(__copy_user)					\
 962	".set\tnoat\n\t"						\
 963	__UA_ADDU "\t$1, %1, %2\n\t"					\
 964	".set\tat\n\t"							\
 965	".set\treorder"							\
 966	: "+r" (__cu_to_r), "+r" (__cu_from_r), "+r" (__cu_len_r)	\
 967	:								\
 968	: "$8", "$9", "$10", "$11", "$12", "$14", "$15", "$24", "$31",	\
 969	  DADDI_SCRATCH, "memory");					\
 970	__cu_len_r;							\
 971})
 972
 973#define __invoke_copy_from_kernel(to, from, n)				\
 974	__invoke_copy_from_user(to, from, n)
 975
 976/* For userland <-> userland operations */
 977#define ___invoke_copy_in_user(to, from, n)				\
 978	__invoke_copy_from_user(to, from, n)
 979
 980/* For kernel <-> kernel operations */
 981#define ___invoke_copy_in_kernel(to, from, n)				\
 982	__invoke_copy_from_user(to, from, n)
 983
 984#define __invoke_copy_from_user_inatomic(to, from, n)			\
 985({									\
 986	register void *__cu_to_r __asm__("$4");				\
 987	register const void __user *__cu_from_r __asm__("$5");		\
 988	register long __cu_len_r __asm__("$6");				\
 989									\
 990	__cu_to_r = (to);						\
 991	__cu_from_r = (from);						\
 992	__cu_len_r = (n);						\
 993	__asm__ __volatile__(						\
 994	".set\tnoreorder\n\t"						\
 995	__MODULE_JAL(__copy_user_inatomic)				\
 996	".set\tnoat\n\t"						\
 997	__UA_ADDU "\t$1, %1, %2\n\t"					\
 998	".set\tat\n\t"							\
 999	".set\treorder"							\
1000	: "+r" (__cu_to_r), "+r" (__cu_from_r), "+r" (__cu_len_r)	\
1001	:								\
1002	: "$8", "$9", "$10", "$11", "$12", "$14", "$15", "$24", "$31",	\
1003	  DADDI_SCRATCH, "memory");					\
1004	__cu_len_r;							\
1005})
1006
1007#define __invoke_copy_from_kernel_inatomic(to, from, n)			\
1008	__invoke_copy_from_user_inatomic(to, from, n)			\
1009
1010#else
1011
1012/* EVA specific functions */
1013
1014extern size_t __copy_user_inatomic_eva(void *__to, const void *__from,
1015				       size_t __n);
1016extern size_t __copy_from_user_eva(void *__to, const void *__from,
1017				   size_t __n);
1018extern size_t __copy_to_user_eva(void *__to, const void *__from,
1019				 size_t __n);
1020extern size_t __copy_in_user_eva(void *__to, const void *__from, size_t __n);
1021
1022#define __invoke_copy_from_user_eva_generic(to, from, n, func_ptr)	\
1023({									\
1024	register void *__cu_to_r __asm__("$4");				\
1025	register const void __user *__cu_from_r __asm__("$5");		\
1026	register long __cu_len_r __asm__("$6");				\
1027									\
1028	__cu_to_r = (to);						\
1029	__cu_from_r = (from);						\
1030	__cu_len_r = (n);						\
1031	__asm__ __volatile__(						\
1032	".set\tnoreorder\n\t"						\
1033	__MODULE_JAL(func_ptr)						\
1034	".set\tnoat\n\t"						\
1035	__UA_ADDU "\t$1, %1, %2\n\t"					\
1036	".set\tat\n\t"							\
1037	".set\treorder"							\
1038	: "+r" (__cu_to_r), "+r" (__cu_from_r), "+r" (__cu_len_r)	\
1039	:								\
1040	: "$8", "$9", "$10", "$11", "$12", "$14", "$15", "$24", "$31",	\
1041	  DADDI_SCRATCH, "memory");					\
1042	__cu_len_r;							\
1043})
1044
1045#define __invoke_copy_to_user_eva_generic(to, from, n, func_ptr)	\
1046({									\
1047	register void *__cu_to_r __asm__("$4");				\
1048	register const void __user *__cu_from_r __asm__("$5");		\
1049	register long __cu_len_r __asm__("$6");				\
1050									\
1051	__cu_to_r = (to);						\
1052	__cu_from_r = (from);						\
1053	__cu_len_r = (n);						\
1054	__asm__ __volatile__(						\
1055	__MODULE_JAL(func_ptr)						\
1056	: "+r" (__cu_to_r), "+r" (__cu_from_r), "+r" (__cu_len_r)	\
1057	:								\
1058	: "$8", "$9", "$10", "$11", "$12", "$14", "$15", "$24", "$31",	\
1059	  DADDI_SCRATCH, "memory");					\
1060	__cu_len_r;							\
1061})
1062
1063/*
1064 * Source or destination address is in userland. We need to go through
1065 * the TLB
1066 */
1067#define __invoke_copy_from_user(to, from, n)				\
1068	__invoke_copy_from_user_eva_generic(to, from, n, __copy_from_user_eva)
1069
1070#define __invoke_copy_from_user_inatomic(to, from, n)			\
1071	__invoke_copy_from_user_eva_generic(to, from, n,		\
1072					    __copy_user_inatomic_eva)
1073
1074#define __invoke_copy_to_user(to, from, n)				\
1075	__invoke_copy_to_user_eva_generic(to, from, n, __copy_to_user_eva)
1076
1077#define ___invoke_copy_in_user(to, from, n)				\
1078	__invoke_copy_from_user_eva_generic(to, from, n, __copy_in_user_eva)
1079
1080/*
1081 * Source or destination address in the kernel. We are not going through
1082 * the TLB
1083 */
1084#define __invoke_copy_from_kernel(to, from, n)				\
1085	__invoke_copy_from_user_eva_generic(to, from, n, __copy_user)
1086
1087#define __invoke_copy_from_kernel_inatomic(to, from, n)			\
1088	__invoke_copy_from_user_eva_generic(to, from, n, __copy_user_inatomic)
1089
1090#define __invoke_copy_to_kernel(to, from, n)				\
1091	__invoke_copy_to_user_eva_generic(to, from, n, __copy_user)
1092
1093#define ___invoke_copy_in_kernel(to, from, n)				\
1094	__invoke_copy_from_user_eva_generic(to, from, n, __copy_user)
1095
1096#endif /* CONFIG_EVA */
1097
1098/*
1099 * __copy_from_user: - Copy a block of data from user space, with less checking.
1100 * @to:	  Destination address, in kernel space.
1101 * @from: Source address, in user space.
1102 * @n:	  Number of bytes to copy.
1103 *
1104 * Context: User context only. This function may sleep if pagefaults are
1105 *          enabled.
1106 *
1107 * Copy data from user space to kernel space.  Caller must check
1108 * the specified block with access_ok() before calling this function.
1109 *
1110 * Returns number of bytes that could not be copied.
1111 * On success, this will be zero.
1112 *
1113 * If some data could not be copied, this function will pad the copied
1114 * data to the requested size using zero bytes.
1115 */
1116#define __copy_from_user(to, from, n)					\
1117({									\
1118	void *__cu_to;							\
1119	const void __user *__cu_from;					\
1120	long __cu_len;							\
1121									\
1122	__cu_to = (to);							\
1123	__cu_from = (from);						\
1124	__cu_len = (n);							\
1125	if (eva_kernel_access()) {					\
1126		__cu_len = __invoke_copy_from_kernel(__cu_to,		\
1127						     __cu_from,		\
1128						     __cu_len);		\
1129	} else {							\
1130		might_fault();						\
1131		__cu_len = __invoke_copy_from_user(__cu_to, __cu_from,	\
1132						   __cu_len);		\
1133	}								\
1134	__cu_len;							\
1135})
1136
1137/*
1138 * copy_from_user: - Copy a block of data from user space.
1139 * @to:	  Destination address, in kernel space.
1140 * @from: Source address, in user space.
1141 * @n:	  Number of bytes to copy.
1142 *
1143 * Context: User context only. This function may sleep if pagefaults are
1144 *          enabled.
1145 *
1146 * Copy data from user space to kernel space.
1147 *
1148 * Returns number of bytes that could not be copied.
1149 * On success, this will be zero.
1150 *
1151 * If some data could not be copied, this function will pad the copied
1152 * data to the requested size using zero bytes.
1153 */
1154#define copy_from_user(to, from, n)					\
1155({									\
1156	void *__cu_to;							\
1157	const void __user *__cu_from;					\
1158	long __cu_len;							\
1159									\
1160	__cu_to = (to);							\
1161	__cu_from = (from);						\
1162	__cu_len = (n);							\
1163	if (eva_kernel_access()) {					\
1164		__cu_len = __invoke_copy_from_kernel(__cu_to,		\
1165						     __cu_from,		\
1166						     __cu_len);		\
1167	} else {							\
1168		if (access_ok(VERIFY_READ, __cu_from, __cu_len)) {	\
1169			might_fault();                                  \
1170			__cu_len = __invoke_copy_from_user(__cu_to,	\
1171							   __cu_from,	\
1172							   __cu_len);   \
1173		}							\
1174	}								\
1175	__cu_len;							\
1176})
1177
1178#define __copy_in_user(to, from, n)					\
1179({									\
1180	void __user *__cu_to;						\
1181	const void __user *__cu_from;					\
1182	long __cu_len;							\
1183									\
1184	__cu_to = (to);							\
1185	__cu_from = (from);						\
1186	__cu_len = (n);							\
1187	if (eva_kernel_access()) {					\
1188		__cu_len = ___invoke_copy_in_kernel(__cu_to, __cu_from,	\
1189						    __cu_len);		\
1190	} else {							\
1191		might_fault();						\
1192		__cu_len = ___invoke_copy_in_user(__cu_to, __cu_from,	\
1193						  __cu_len);		\
1194	}								\
1195	__cu_len;							\
1196})
1197
1198#define copy_in_user(to, from, n)					\
1199({									\
1200	void __user *__cu_to;						\
1201	const void __user *__cu_from;					\
1202	long __cu_len;							\
1203									\
1204	__cu_to = (to);							\
1205	__cu_from = (from);						\
1206	__cu_len = (n);							\
1207	if (eva_kernel_access()) {					\
1208		__cu_len = ___invoke_copy_in_kernel(__cu_to,__cu_from,	\
1209						    __cu_len);		\
1210	} else {							\
1211		if (likely(access_ok(VERIFY_READ, __cu_from, __cu_len) &&\
1212			   access_ok(VERIFY_WRITE, __cu_to, __cu_len))) {\
1213			might_fault();					\
1214			__cu_len = ___invoke_copy_in_user(__cu_to,	\
1215							  __cu_from,	\
1216							  __cu_len);	\
1217		}							\
1218	}								\
1219	__cu_len;							\
1220})
1221
1222/*
1223 * __clear_user: - Zero a block of memory in user space, with less checking.
1224 * @to:	  Destination address, in user space.
1225 * @n:	  Number of bytes to zero.
1226 *
1227 * Zero a block of memory in user space.  Caller must check
1228 * the specified block with access_ok() before calling this function.
1229 *
1230 * Returns number of bytes that could not be cleared.
1231 * On success, this will be zero.
1232 */
1233static inline __kernel_size_t
1234__clear_user(void __user *addr, __kernel_size_t size)
1235{
1236	__kernel_size_t res;
1237
1238	if (eva_kernel_access()) {
1239		__asm__ __volatile__(
1240			"move\t$4, %1\n\t"
1241			"move\t$5, $0\n\t"
1242			"move\t$6, %2\n\t"
1243			__MODULE_JAL(__bzero_kernel)
1244			"move\t%0, $6"
1245			: "=r" (res)
1246			: "r" (addr), "r" (size)
1247			: "$4", "$5", "$6", __UA_t0, __UA_t1, "$31");
1248	} else {
1249		might_fault();
1250		__asm__ __volatile__(
1251			"move\t$4, %1\n\t"
1252			"move\t$5, $0\n\t"
1253			"move\t$6, %2\n\t"
1254			__MODULE_JAL(__bzero)
1255			"move\t%0, $6"
1256			: "=r" (res)
1257			: "r" (addr), "r" (size)
1258			: "$4", "$5", "$6", __UA_t0, __UA_t1, "$31");
1259	}
1260
1261	return res;
1262}
1263
1264#define clear_user(addr,n)						\
1265({									\
1266	void __user * __cl_addr = (addr);				\
1267	unsigned long __cl_size = (n);					\
1268	if (__cl_size && access_ok(VERIFY_WRITE,			\
1269					__cl_addr, __cl_size))		\
1270		__cl_size = __clear_user(__cl_addr, __cl_size);		\
1271	__cl_size;							\
1272})
1273
1274/*
1275 * __strncpy_from_user: - Copy a NUL terminated string from userspace, with less checking.
1276 * @dst:   Destination address, in kernel space.  This buffer must be at
1277 *	   least @count bytes long.
1278 * @src:   Source address, in user space.
1279 * @count: Maximum number of bytes to copy, including the trailing NUL.
1280 *
1281 * Copies a NUL-terminated string from userspace to kernel space.
1282 * Caller must check the specified block with access_ok() before calling
1283 * this function.
1284 *
1285 * On success, returns the length of the string (not including the trailing
1286 * NUL).
1287 *
1288 * If access to userspace fails, returns -EFAULT (some data may have been
1289 * copied).
1290 *
1291 * If @count is smaller than the length of the string, copies @count bytes
1292 * and returns @count.
1293 */
1294static inline long
1295__strncpy_from_user(char *__to, const char __user *__from, long __len)
1296{
1297	long res;
1298
1299	if (eva_kernel_access()) {
1300		__asm__ __volatile__(
1301			"move\t$4, %1\n\t"
1302			"move\t$5, %2\n\t"
1303			"move\t$6, %3\n\t"
1304			__MODULE_JAL(__strncpy_from_kernel_nocheck_asm)
1305			"move\t%0, $2"
1306			: "=r" (res)
1307			: "r" (__to), "r" (__from), "r" (__len)
1308			: "$2", "$3", "$4", "$5", "$6", __UA_t0, "$31", "memory");
1309	} else {
1310		might_fault();
1311		__asm__ __volatile__(
1312			"move\t$4, %1\n\t"
1313			"move\t$5, %2\n\t"
1314			"move\t$6, %3\n\t"
1315			__MODULE_JAL(__strncpy_from_user_nocheck_asm)
1316			"move\t%0, $2"
1317			: "=r" (res)
1318			: "r" (__to), "r" (__from), "r" (__len)
1319			: "$2", "$3", "$4", "$5", "$6", __UA_t0, "$31", "memory");
1320	}
1321
1322	return res;
1323}
1324
1325/*
1326 * strncpy_from_user: - Copy a NUL terminated string from userspace.
1327 * @dst:   Destination address, in kernel space.  This buffer must be at
1328 *	   least @count bytes long.
1329 * @src:   Source address, in user space.
1330 * @count: Maximum number of bytes to copy, including the trailing NUL.
1331 *
1332 * Copies a NUL-terminated string from userspace to kernel space.
1333 *
1334 * On success, returns the length of the string (not including the trailing
1335 * NUL).
1336 *
1337 * If access to userspace fails, returns -EFAULT (some data may have been
1338 * copied).
1339 *
1340 * If @count is smaller than the length of the string, copies @count bytes
1341 * and returns @count.
1342 */
1343static inline long
1344strncpy_from_user(char *__to, const char __user *__from, long __len)
1345{
1346	long res;
1347
1348	if (eva_kernel_access()) {
1349		__asm__ __volatile__(
1350			"move\t$4, %1\n\t"
1351			"move\t$5, %2\n\t"
1352			"move\t$6, %3\n\t"
1353			__MODULE_JAL(__strncpy_from_kernel_asm)
1354			"move\t%0, $2"
1355			: "=r" (res)
1356			: "r" (__to), "r" (__from), "r" (__len)
1357			: "$2", "$3", "$4", "$5", "$6", __UA_t0, "$31", "memory");
1358	} else {
1359		might_fault();
1360		__asm__ __volatile__(
1361			"move\t$4, %1\n\t"
1362			"move\t$5, %2\n\t"
1363			"move\t$6, %3\n\t"
1364			__MODULE_JAL(__strncpy_from_user_asm)
1365			"move\t%0, $2"
1366			: "=r" (res)
1367			: "r" (__to), "r" (__from), "r" (__len)
1368			: "$2", "$3", "$4", "$5", "$6", __UA_t0, "$31", "memory");
1369	}
1370
1371	return res;
1372}
1373
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1374/*
1375 * strlen_user: - Get the size of a string in user space.
1376 * @str: The string to measure.
1377 *
1378 * Context: User context only. This function may sleep if pagefaults are
1379 *          enabled.
1380 *
1381 * Get the size of a NUL-terminated string in user space.
1382 *
1383 * Returns the size of the string INCLUDING the terminating NUL.
1384 * On exception, returns 0.
1385 *
1386 * If there is a limit on the length of a valid string, you may wish to
1387 * consider using strnlen_user() instead.
1388 */
1389static inline long strlen_user(const char __user *s)
1390{
1391	long res;
1392
1393	if (eva_kernel_access()) {
1394		__asm__ __volatile__(
1395			"move\t$4, %1\n\t"
1396			__MODULE_JAL(__strlen_kernel_asm)
1397			"move\t%0, $2"
1398			: "=r" (res)
1399			: "r" (s)
1400			: "$2", "$4", __UA_t0, "$31");
1401	} else {
1402		might_fault();
1403		__asm__ __volatile__(
1404			"move\t$4, %1\n\t"
1405			__MODULE_JAL(__strlen_user_asm)
1406			"move\t%0, $2"
1407			: "=r" (res)
1408			: "r" (s)
1409			: "$2", "$4", __UA_t0, "$31");
1410	}
1411
1412	return res;
1413}
1414
1415/* Returns: 0 if bad, string length+1 (memory size) of string if ok */
1416static inline long __strnlen_user(const char __user *s, long n)
1417{
1418	long res;
1419
1420	if (eva_kernel_access()) {
1421		__asm__ __volatile__(
1422			"move\t$4, %1\n\t"
1423			"move\t$5, %2\n\t"
1424			__MODULE_JAL(__strnlen_kernel_nocheck_asm)
1425			"move\t%0, $2"
1426			: "=r" (res)
1427			: "r" (s), "r" (n)
1428			: "$2", "$4", "$5", __UA_t0, "$31");
1429	} else {
1430		might_fault();
1431		__asm__ __volatile__(
1432			"move\t$4, %1\n\t"
1433			"move\t$5, %2\n\t"
1434			__MODULE_JAL(__strnlen_user_nocheck_asm)
1435			"move\t%0, $2"
1436			: "=r" (res)
1437			: "r" (s), "r" (n)
1438			: "$2", "$4", "$5", __UA_t0, "$31");
1439	}
1440
1441	return res;
1442}
1443
1444/*
1445 * strnlen_user: - Get the size of a string in user space.
1446 * @str: The string to measure.
1447 *
1448 * Context: User context only. This function may sleep if pagefaults are
1449 *          enabled.
1450 *
1451 * Get the size of a NUL-terminated string in user space.
1452 *
1453 * Returns the size of the string INCLUDING the terminating NUL.
1454 * On exception, returns 0.
1455 * If the string is too long, returns a value greater than @n.
 
 
1456 */
1457static inline long strnlen_user(const char __user *s, long n)
1458{
1459	long res;
1460
1461	might_fault();
1462	if (eva_kernel_access()) {
1463		__asm__ __volatile__(
1464			"move\t$4, %1\n\t"
1465			"move\t$5, %2\n\t"
1466			__MODULE_JAL(__strnlen_kernel_asm)
1467			"move\t%0, $2"
1468			: "=r" (res)
1469			: "r" (s), "r" (n)
1470			: "$2", "$4", "$5", __UA_t0, "$31");
1471	} else {
1472		__asm__ __volatile__(
1473			"move\t$4, %1\n\t"
1474			"move\t$5, %2\n\t"
1475			__MODULE_JAL(__strnlen_user_asm)
1476			"move\t%0, $2"
1477			: "=r" (res)
1478			: "r" (s), "r" (n)
1479			: "$2", "$4", "$5", __UA_t0, "$31");
1480	}
1481
1482	return res;
1483}
1484
1485struct exception_table_entry
1486{
1487	unsigned long insn;
1488	unsigned long nextinsn;
1489};
1490
1491extern int fixup_exception(struct pt_regs *regs);
1492
1493#endif /* _ASM_UACCESS_H */