Loading...
1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 1996, 1997, 1998, 1999, 2000, 03, 04 by Ralf Baechle
7 * Copyright (C) 1999, 2000 Silicon Graphics, Inc.
8 * Copyright (C) 2007 Maciej W. Rozycki
9 * Copyright (C) 2014, Imagination Technologies Ltd.
10 */
11#ifndef _ASM_UACCESS_H
12#define _ASM_UACCESS_H
13
14#include <linux/kernel.h>
15#include <linux/errno.h>
16#include <linux/thread_info.h>
17#include <asm/asm-eva.h>
18
19/*
20 * The fs value determines whether argument validity checking should be
21 * performed or not. If get_fs() == USER_DS, checking is performed, with
22 * get_fs() == KERNEL_DS, checking is bypassed.
23 *
24 * For historical reasons, these macros are grossly misnamed.
25 */
26#ifdef CONFIG_32BIT
27
28#ifdef CONFIG_KVM_GUEST
29#define __UA_LIMIT 0x40000000UL
30#else
31#define __UA_LIMIT 0x80000000UL
32#endif
33
34#define __UA_ADDR ".word"
35#define __UA_LA "la"
36#define __UA_ADDU "addu"
37#define __UA_t0 "$8"
38#define __UA_t1 "$9"
39
40#endif /* CONFIG_32BIT */
41
42#ifdef CONFIG_64BIT
43
44extern u64 __ua_limit;
45
46#define __UA_LIMIT __ua_limit
47
48#define __UA_ADDR ".dword"
49#define __UA_LA "dla"
50#define __UA_ADDU "daddu"
51#define __UA_t0 "$12"
52#define __UA_t1 "$13"
53
54#endif /* CONFIG_64BIT */
55
56/*
57 * USER_DS is a bitmask that has the bits set that may not be set in a valid
58 * userspace address. Note that we limit 32-bit userspace to 0x7fff8000 but
59 * the arithmetic we're doing only works if the limit is a power of two, so
60 * we use 0x80000000 here on 32-bit kernels. If a process passes an invalid
61 * address in this range it's the process's problem, not ours :-)
62 */
63
64#ifdef CONFIG_KVM_GUEST
65#define KERNEL_DS ((mm_segment_t) { 0x80000000UL })
66#define USER_DS ((mm_segment_t) { 0xC0000000UL })
67#else
68#define KERNEL_DS ((mm_segment_t) { 0UL })
69#define USER_DS ((mm_segment_t) { __UA_LIMIT })
70#endif
71
72#define VERIFY_READ 0
73#define VERIFY_WRITE 1
74
75#define get_ds() (KERNEL_DS)
76#define get_fs() (current_thread_info()->addr_limit)
77#define set_fs(x) (current_thread_info()->addr_limit = (x))
78
79#define segment_eq(a, b) ((a).seg == (b).seg)
80
81
82/*
83 * Is a address valid? This does a straighforward calculation rather
84 * than tests.
85 *
86 * Address valid if:
87 * - "addr" doesn't have any high-bits set
88 * - AND "size" doesn't have any high-bits set
89 * - AND "addr+size" doesn't have any high-bits set
90 * - OR we are in kernel mode.
91 *
92 * __ua_size() is a trick to avoid runtime checking of positive constant
93 * sizes; for those we already know at compile time that the size is ok.
94 */
95#define __ua_size(size) \
96 ((__builtin_constant_p(size) && (signed long) (size) > 0) ? 0 : (size))
97
98/*
99 * access_ok: - Checks if a user space pointer is valid
100 * @type: Type of access: %VERIFY_READ or %VERIFY_WRITE. Note that
101 * %VERIFY_WRITE is a superset of %VERIFY_READ - if it is safe
102 * to write to a block, it is always safe to read from it.
103 * @addr: User space pointer to start of block to check
104 * @size: Size of block to check
105 *
106 * Context: User context only. This function may sleep.
107 *
108 * Checks if a pointer to a block of memory in user space is valid.
109 *
110 * Returns true (nonzero) if the memory block may be valid, false (zero)
111 * if it is definitely invalid.
112 *
113 * Note that, depending on architecture, this function probably just
114 * checks that the pointer is in the user space range - after calling
115 * this function, memory access functions may still return -EFAULT.
116 */
117
118#define __access_mask get_fs().seg
119
120#define __access_ok(addr, size, mask) \
121({ \
122 unsigned long __addr = (unsigned long) (addr); \
123 unsigned long __size = size; \
124 unsigned long __mask = mask; \
125 unsigned long __ok; \
126 \
127 __chk_user_ptr(addr); \
128 __ok = (signed long)(__mask & (__addr | (__addr + __size) | \
129 __ua_size(__size))); \
130 __ok == 0; \
131})
132
133#define access_ok(type, addr, size) \
134 likely(__access_ok((addr), (size), __access_mask))
135
136/*
137 * put_user: - Write a simple value into user space.
138 * @x: Value to copy to user space.
139 * @ptr: Destination address, in user space.
140 *
141 * Context: User context only. This function may sleep.
142 *
143 * This macro copies a single simple value from kernel space to user
144 * space. It supports simple types like char and int, but not larger
145 * data types like structures or arrays.
146 *
147 * @ptr must have pointer-to-simple-variable type, and @x must be assignable
148 * to the result of dereferencing @ptr.
149 *
150 * Returns zero on success, or -EFAULT on error.
151 */
152#define put_user(x,ptr) \
153 __put_user_check((x), (ptr), sizeof(*(ptr)))
154
155/*
156 * get_user: - Get a simple variable from user space.
157 * @x: Variable to store result.
158 * @ptr: Source address, in user space.
159 *
160 * Context: User context only. This function may sleep.
161 *
162 * This macro copies a single simple variable from user space to kernel
163 * space. It supports simple types like char and int, but not larger
164 * data types like structures or arrays.
165 *
166 * @ptr must have pointer-to-simple-variable type, and the result of
167 * dereferencing @ptr must be assignable to @x without a cast.
168 *
169 * Returns zero on success, or -EFAULT on error.
170 * On error, the variable @x is set to zero.
171 */
172#define get_user(x,ptr) \
173 __get_user_check((x), (ptr), sizeof(*(ptr)))
174
175/*
176 * __put_user: - Write a simple value into user space, with less checking.
177 * @x: Value to copy to user space.
178 * @ptr: Destination address, in user space.
179 *
180 * Context: User context only. This function may sleep.
181 *
182 * This macro copies a single simple value from kernel space to user
183 * space. It supports simple types like char and int, but not larger
184 * data types like structures or arrays.
185 *
186 * @ptr must have pointer-to-simple-variable type, and @x must be assignable
187 * to the result of dereferencing @ptr.
188 *
189 * Caller must check the pointer with access_ok() before calling this
190 * function.
191 *
192 * Returns zero on success, or -EFAULT on error.
193 */
194#define __put_user(x,ptr) \
195 __put_user_nocheck((x), (ptr), sizeof(*(ptr)))
196
197/*
198 * __get_user: - Get a simple variable from user space, with less checking.
199 * @x: Variable to store result.
200 * @ptr: Source address, in user space.
201 *
202 * Context: User context only. This function may sleep.
203 *
204 * This macro copies a single simple variable from user space to kernel
205 * space. It supports simple types like char and int, but not larger
206 * data types like structures or arrays.
207 *
208 * @ptr must have pointer-to-simple-variable type, and the result of
209 * dereferencing @ptr must be assignable to @x without a cast.
210 *
211 * Caller must check the pointer with access_ok() before calling this
212 * function.
213 *
214 * Returns zero on success, or -EFAULT on error.
215 * On error, the variable @x is set to zero.
216 */
217#define __get_user(x,ptr) \
218 __get_user_nocheck((x), (ptr), sizeof(*(ptr)))
219
220struct __large_struct { unsigned long buf[100]; };
221#define __m(x) (*(struct __large_struct __user *)(x))
222
223/*
224 * Yuck. We need two variants, one for 64bit operation and one
225 * for 32 bit mode and old iron.
226 */
227#ifndef CONFIG_EVA
228#define __get_kernel_common(val, size, ptr) __get_user_common(val, size, ptr)
229#else
230/*
231 * Kernel specific functions for EVA. We need to use normal load instructions
232 * to read data from kernel when operating in EVA mode. We use these macros to
233 * avoid redefining __get_user_asm for EVA.
234 */
235#undef _loadd
236#undef _loadw
237#undef _loadh
238#undef _loadb
239#ifdef CONFIG_32BIT
240#define _loadd _loadw
241#else
242#define _loadd(reg, addr) "ld " reg ", " addr
243#endif
244#define _loadw(reg, addr) "lw " reg ", " addr
245#define _loadh(reg, addr) "lh " reg ", " addr
246#define _loadb(reg, addr) "lb " reg ", " addr
247
248#define __get_kernel_common(val, size, ptr) \
249do { \
250 switch (size) { \
251 case 1: __get_data_asm(val, _loadb, ptr); break; \
252 case 2: __get_data_asm(val, _loadh, ptr); break; \
253 case 4: __get_data_asm(val, _loadw, ptr); break; \
254 case 8: __GET_DW(val, _loadd, ptr); break; \
255 default: __get_user_unknown(); break; \
256 } \
257} while (0)
258#endif
259
260#ifdef CONFIG_32BIT
261#define __GET_DW(val, insn, ptr) __get_data_asm_ll32(val, insn, ptr)
262#endif
263#ifdef CONFIG_64BIT
264#define __GET_DW(val, insn, ptr) __get_data_asm(val, insn, ptr)
265#endif
266
267extern void __get_user_unknown(void);
268
269#define __get_user_common(val, size, ptr) \
270do { \
271 switch (size) { \
272 case 1: __get_data_asm(val, user_lb, ptr); break; \
273 case 2: __get_data_asm(val, user_lh, ptr); break; \
274 case 4: __get_data_asm(val, user_lw, ptr); break; \
275 case 8: __GET_DW(val, user_ld, ptr); break; \
276 default: __get_user_unknown(); break; \
277 } \
278} while (0)
279
280#define __get_user_nocheck(x, ptr, size) \
281({ \
282 int __gu_err; \
283 \
284 if (segment_eq(get_fs(), get_ds())) { \
285 __get_kernel_common((x), size, ptr); \
286 } else { \
287 __chk_user_ptr(ptr); \
288 __get_user_common((x), size, ptr); \
289 } \
290 __gu_err; \
291})
292
293#define __get_user_check(x, ptr, size) \
294({ \
295 int __gu_err = -EFAULT; \
296 const __typeof__(*(ptr)) __user * __gu_ptr = (ptr); \
297 \
298 might_fault(); \
299 if (likely(access_ok(VERIFY_READ, __gu_ptr, size))) { \
300 if (segment_eq(get_fs(), get_ds())) \
301 __get_kernel_common((x), size, __gu_ptr); \
302 else \
303 __get_user_common((x), size, __gu_ptr); \
304 } \
305 \
306 __gu_err; \
307})
308
309#define __get_data_asm(val, insn, addr) \
310{ \
311 long __gu_tmp; \
312 \
313 __asm__ __volatile__( \
314 "1: "insn("%1", "%3")" \n" \
315 "2: \n" \
316 " .insn \n" \
317 " .section .fixup,\"ax\" \n" \
318 "3: li %0, %4 \n" \
319 " j 2b \n" \
320 " .previous \n" \
321 " .section __ex_table,\"a\" \n" \
322 " "__UA_ADDR "\t1b, 3b \n" \
323 " .previous \n" \
324 : "=r" (__gu_err), "=r" (__gu_tmp) \
325 : "0" (0), "o" (__m(addr)), "i" (-EFAULT)); \
326 \
327 (val) = (__typeof__(*(addr))) __gu_tmp; \
328}
329
330/*
331 * Get a long long 64 using 32 bit registers.
332 */
333#define __get_data_asm_ll32(val, insn, addr) \
334{ \
335 union { \
336 unsigned long long l; \
337 __typeof__(*(addr)) t; \
338 } __gu_tmp; \
339 \
340 __asm__ __volatile__( \
341 "1: " insn("%1", "(%3)")" \n" \
342 "2: " insn("%D1", "4(%3)")" \n" \
343 "3: \n" \
344 " .insn \n" \
345 " .section .fixup,\"ax\" \n" \
346 "4: li %0, %4 \n" \
347 " move %1, $0 \n" \
348 " move %D1, $0 \n" \
349 " j 3b \n" \
350 " .previous \n" \
351 " .section __ex_table,\"a\" \n" \
352 " " __UA_ADDR " 1b, 4b \n" \
353 " " __UA_ADDR " 2b, 4b \n" \
354 " .previous \n" \
355 : "=r" (__gu_err), "=&r" (__gu_tmp.l) \
356 : "0" (0), "r" (addr), "i" (-EFAULT)); \
357 \
358 (val) = __gu_tmp.t; \
359}
360
361#ifndef CONFIG_EVA
362#define __put_kernel_common(ptr, size) __put_user_common(ptr, size)
363#else
364/*
365 * Kernel specific functions for EVA. We need to use normal load instructions
366 * to read data from kernel when operating in EVA mode. We use these macros to
367 * avoid redefining __get_data_asm for EVA.
368 */
369#undef _stored
370#undef _storew
371#undef _storeh
372#undef _storeb
373#ifdef CONFIG_32BIT
374#define _stored _storew
375#else
376#define _stored(reg, addr) "ld " reg ", " addr
377#endif
378
379#define _storew(reg, addr) "sw " reg ", " addr
380#define _storeh(reg, addr) "sh " reg ", " addr
381#define _storeb(reg, addr) "sb " reg ", " addr
382
383#define __put_kernel_common(ptr, size) \
384do { \
385 switch (size) { \
386 case 1: __put_data_asm(_storeb, ptr); break; \
387 case 2: __put_data_asm(_storeh, ptr); break; \
388 case 4: __put_data_asm(_storew, ptr); break; \
389 case 8: __PUT_DW(_stored, ptr); break; \
390 default: __put_user_unknown(); break; \
391 } \
392} while(0)
393#endif
394
395/*
396 * Yuck. We need two variants, one for 64bit operation and one
397 * for 32 bit mode and old iron.
398 */
399#ifdef CONFIG_32BIT
400#define __PUT_DW(insn, ptr) __put_data_asm_ll32(insn, ptr)
401#endif
402#ifdef CONFIG_64BIT
403#define __PUT_DW(insn, ptr) __put_data_asm(insn, ptr)
404#endif
405
406#define __put_user_common(ptr, size) \
407do { \
408 switch (size) { \
409 case 1: __put_data_asm(user_sb, ptr); break; \
410 case 2: __put_data_asm(user_sh, ptr); break; \
411 case 4: __put_data_asm(user_sw, ptr); break; \
412 case 8: __PUT_DW(user_sd, ptr); break; \
413 default: __put_user_unknown(); break; \
414 } \
415} while (0)
416
417#define __put_user_nocheck(x, ptr, size) \
418({ \
419 __typeof__(*(ptr)) __pu_val; \
420 int __pu_err = 0; \
421 \
422 __pu_val = (x); \
423 if (segment_eq(get_fs(), get_ds())) { \
424 __put_kernel_common(ptr, size); \
425 } else { \
426 __chk_user_ptr(ptr); \
427 __put_user_common(ptr, size); \
428 } \
429 __pu_err; \
430})
431
432#define __put_user_check(x, ptr, size) \
433({ \
434 __typeof__(*(ptr)) __user *__pu_addr = (ptr); \
435 __typeof__(*(ptr)) __pu_val = (x); \
436 int __pu_err = -EFAULT; \
437 \
438 might_fault(); \
439 if (likely(access_ok(VERIFY_WRITE, __pu_addr, size))) { \
440 if (segment_eq(get_fs(), get_ds())) \
441 __put_kernel_common(__pu_addr, size); \
442 else \
443 __put_user_common(__pu_addr, size); \
444 } \
445 \
446 __pu_err; \
447})
448
449#define __put_data_asm(insn, ptr) \
450{ \
451 __asm__ __volatile__( \
452 "1: "insn("%z2", "%3")" # __put_data_asm \n" \
453 "2: \n" \
454 " .insn \n" \
455 " .section .fixup,\"ax\" \n" \
456 "3: li %0, %4 \n" \
457 " j 2b \n" \
458 " .previous \n" \
459 " .section __ex_table,\"a\" \n" \
460 " " __UA_ADDR " 1b, 3b \n" \
461 " .previous \n" \
462 : "=r" (__pu_err) \
463 : "0" (0), "Jr" (__pu_val), "o" (__m(ptr)), \
464 "i" (-EFAULT)); \
465}
466
467#define __put_data_asm_ll32(insn, ptr) \
468{ \
469 __asm__ __volatile__( \
470 "1: "insn("%2", "(%3)")" # __put_data_asm_ll32 \n" \
471 "2: "insn("%D2", "4(%3)")" \n" \
472 "3: \n" \
473 " .insn \n" \
474 " .section .fixup,\"ax\" \n" \
475 "4: li %0, %4 \n" \
476 " j 3b \n" \
477 " .previous \n" \
478 " .section __ex_table,\"a\" \n" \
479 " " __UA_ADDR " 1b, 4b \n" \
480 " " __UA_ADDR " 2b, 4b \n" \
481 " .previous" \
482 : "=r" (__pu_err) \
483 : "0" (0), "r" (__pu_val), "r" (ptr), \
484 "i" (-EFAULT)); \
485}
486
487extern void __put_user_unknown(void);
488
489/*
490 * ul{b,h,w} are macros and there are no equivalent macros for EVA.
491 * EVA unaligned access is handled in the ADE exception handler.
492 */
493#ifndef CONFIG_EVA
494/*
495 * put_user_unaligned: - Write a simple value into user space.
496 * @x: Value to copy to user space.
497 * @ptr: Destination address, in user space.
498 *
499 * Context: User context only. This function may sleep.
500 *
501 * This macro copies a single simple value from kernel space to user
502 * space. It supports simple types like char and int, but not larger
503 * data types like structures or arrays.
504 *
505 * @ptr must have pointer-to-simple-variable type, and @x must be assignable
506 * to the result of dereferencing @ptr.
507 *
508 * Returns zero on success, or -EFAULT on error.
509 */
510#define put_user_unaligned(x,ptr) \
511 __put_user_unaligned_check((x),(ptr),sizeof(*(ptr)))
512
513/*
514 * get_user_unaligned: - Get a simple variable from user space.
515 * @x: Variable to store result.
516 * @ptr: Source address, in user space.
517 *
518 * Context: User context only. This function may sleep.
519 *
520 * This macro copies a single simple variable from user space to kernel
521 * space. It supports simple types like char and int, but not larger
522 * data types like structures or arrays.
523 *
524 * @ptr must have pointer-to-simple-variable type, and the result of
525 * dereferencing @ptr must be assignable to @x without a cast.
526 *
527 * Returns zero on success, or -EFAULT on error.
528 * On error, the variable @x is set to zero.
529 */
530#define get_user_unaligned(x,ptr) \
531 __get_user_unaligned_check((x),(ptr),sizeof(*(ptr)))
532
533/*
534 * __put_user_unaligned: - Write a simple value into user space, with less checking.
535 * @x: Value to copy to user space.
536 * @ptr: Destination address, in user space.
537 *
538 * Context: User context only. This function may sleep.
539 *
540 * This macro copies a single simple value from kernel space to user
541 * space. It supports simple types like char and int, but not larger
542 * data types like structures or arrays.
543 *
544 * @ptr must have pointer-to-simple-variable type, and @x must be assignable
545 * to the result of dereferencing @ptr.
546 *
547 * Caller must check the pointer with access_ok() before calling this
548 * function.
549 *
550 * Returns zero on success, or -EFAULT on error.
551 */
552#define __put_user_unaligned(x,ptr) \
553 __put_user_unaligned_nocheck((x),(ptr),sizeof(*(ptr)))
554
555/*
556 * __get_user_unaligned: - Get a simple variable from user space, with less checking.
557 * @x: Variable to store result.
558 * @ptr: Source address, in user space.
559 *
560 * Context: User context only. This function may sleep.
561 *
562 * This macro copies a single simple variable from user space to kernel
563 * space. It supports simple types like char and int, but not larger
564 * data types like structures or arrays.
565 *
566 * @ptr must have pointer-to-simple-variable type, and the result of
567 * dereferencing @ptr must be assignable to @x without a cast.
568 *
569 * Caller must check the pointer with access_ok() before calling this
570 * function.
571 *
572 * Returns zero on success, or -EFAULT on error.
573 * On error, the variable @x is set to zero.
574 */
575#define __get_user_unaligned(x,ptr) \
576 __get_user__unalignednocheck((x),(ptr),sizeof(*(ptr)))
577
578/*
579 * Yuck. We need two variants, one for 64bit operation and one
580 * for 32 bit mode and old iron.
581 */
582#ifdef CONFIG_32BIT
583#define __GET_USER_UNALIGNED_DW(val, ptr) \
584 __get_user_unaligned_asm_ll32(val, ptr)
585#endif
586#ifdef CONFIG_64BIT
587#define __GET_USER_UNALIGNED_DW(val, ptr) \
588 __get_user_unaligned_asm(val, "uld", ptr)
589#endif
590
591extern void __get_user_unaligned_unknown(void);
592
593#define __get_user_unaligned_common(val, size, ptr) \
594do { \
595 switch (size) { \
596 case 1: __get_data_asm(val, "lb", ptr); break; \
597 case 2: __get_user_unaligned_asm(val, "ulh", ptr); break; \
598 case 4: __get_user_unaligned_asm(val, "ulw", ptr); break; \
599 case 8: __GET_USER_UNALIGNED_DW(val, ptr); break; \
600 default: __get_user_unaligned_unknown(); break; \
601 } \
602} while (0)
603
604#define __get_user_unaligned_nocheck(x,ptr,size) \
605({ \
606 int __gu_err; \
607 \
608 __get_user_unaligned_common((x), size, ptr); \
609 __gu_err; \
610})
611
612#define __get_user_unaligned_check(x,ptr,size) \
613({ \
614 int __gu_err = -EFAULT; \
615 const __typeof__(*(ptr)) __user * __gu_ptr = (ptr); \
616 \
617 if (likely(access_ok(VERIFY_READ, __gu_ptr, size))) \
618 __get_user_unaligned_common((x), size, __gu_ptr); \
619 \
620 __gu_err; \
621})
622
623#define __get_data_unaligned_asm(val, insn, addr) \
624{ \
625 long __gu_tmp; \
626 \
627 __asm__ __volatile__( \
628 "1: " insn " %1, %3 \n" \
629 "2: \n" \
630 " .insn \n" \
631 " .section .fixup,\"ax\" \n" \
632 "3: li %0, %4 \n" \
633 " j 2b \n" \
634 " .previous \n" \
635 " .section __ex_table,\"a\" \n" \
636 " "__UA_ADDR "\t1b, 3b \n" \
637 " "__UA_ADDR "\t1b + 4, 3b \n" \
638 " .previous \n" \
639 : "=r" (__gu_err), "=r" (__gu_tmp) \
640 : "0" (0), "o" (__m(addr)), "i" (-EFAULT)); \
641 \
642 (val) = (__typeof__(*(addr))) __gu_tmp; \
643}
644
645/*
646 * Get a long long 64 using 32 bit registers.
647 */
648#define __get_user_unaligned_asm_ll32(val, addr) \
649{ \
650 unsigned long long __gu_tmp; \
651 \
652 __asm__ __volatile__( \
653 "1: ulw %1, (%3) \n" \
654 "2: ulw %D1, 4(%3) \n" \
655 " move %0, $0 \n" \
656 "3: \n" \
657 " .insn \n" \
658 " .section .fixup,\"ax\" \n" \
659 "4: li %0, %4 \n" \
660 " move %1, $0 \n" \
661 " move %D1, $0 \n" \
662 " j 3b \n" \
663 " .previous \n" \
664 " .section __ex_table,\"a\" \n" \
665 " " __UA_ADDR " 1b, 4b \n" \
666 " " __UA_ADDR " 1b + 4, 4b \n" \
667 " " __UA_ADDR " 2b, 4b \n" \
668 " " __UA_ADDR " 2b + 4, 4b \n" \
669 " .previous \n" \
670 : "=r" (__gu_err), "=&r" (__gu_tmp) \
671 : "0" (0), "r" (addr), "i" (-EFAULT)); \
672 (val) = (__typeof__(*(addr))) __gu_tmp; \
673}
674
675/*
676 * Yuck. We need two variants, one for 64bit operation and one
677 * for 32 bit mode and old iron.
678 */
679#ifdef CONFIG_32BIT
680#define __PUT_USER_UNALIGNED_DW(ptr) __put_user_unaligned_asm_ll32(ptr)
681#endif
682#ifdef CONFIG_64BIT
683#define __PUT_USER_UNALIGNED_DW(ptr) __put_user_unaligned_asm("usd", ptr)
684#endif
685
686#define __put_user_unaligned_common(ptr, size) \
687do { \
688 switch (size) { \
689 case 1: __put_data_asm("sb", ptr); break; \
690 case 2: __put_user_unaligned_asm("ush", ptr); break; \
691 case 4: __put_user_unaligned_asm("usw", ptr); break; \
692 case 8: __PUT_USER_UNALIGNED_DW(ptr); break; \
693 default: __put_user_unaligned_unknown(); break; \
694} while (0)
695
696#define __put_user_unaligned_nocheck(x,ptr,size) \
697({ \
698 __typeof__(*(ptr)) __pu_val; \
699 int __pu_err = 0; \
700 \
701 __pu_val = (x); \
702 __put_user_unaligned_common(ptr, size); \
703 __pu_err; \
704})
705
706#define __put_user_unaligned_check(x,ptr,size) \
707({ \
708 __typeof__(*(ptr)) __user *__pu_addr = (ptr); \
709 __typeof__(*(ptr)) __pu_val = (x); \
710 int __pu_err = -EFAULT; \
711 \
712 if (likely(access_ok(VERIFY_WRITE, __pu_addr, size))) \
713 __put_user_unaligned_common(__pu_addr, size); \
714 \
715 __pu_err; \
716})
717
718#define __put_user_unaligned_asm(insn, ptr) \
719{ \
720 __asm__ __volatile__( \
721 "1: " insn " %z2, %3 # __put_user_unaligned_asm\n" \
722 "2: \n" \
723 " .insn \n" \
724 " .section .fixup,\"ax\" \n" \
725 "3: li %0, %4 \n" \
726 " j 2b \n" \
727 " .previous \n" \
728 " .section __ex_table,\"a\" \n" \
729 " " __UA_ADDR " 1b, 3b \n" \
730 " .previous \n" \
731 : "=r" (__pu_err) \
732 : "0" (0), "Jr" (__pu_val), "o" (__m(ptr)), \
733 "i" (-EFAULT)); \
734}
735
736#define __put_user_unaligned_asm_ll32(ptr) \
737{ \
738 __asm__ __volatile__( \
739 "1: sw %2, (%3) # __put_user_unaligned_asm_ll32 \n" \
740 "2: sw %D2, 4(%3) \n" \
741 "3: \n" \
742 " .insn \n" \
743 " .section .fixup,\"ax\" \n" \
744 "4: li %0, %4 \n" \
745 " j 3b \n" \
746 " .previous \n" \
747 " .section __ex_table,\"a\" \n" \
748 " " __UA_ADDR " 1b, 4b \n" \
749 " " __UA_ADDR " 1b + 4, 4b \n" \
750 " " __UA_ADDR " 2b, 4b \n" \
751 " " __UA_ADDR " 2b + 4, 4b \n" \
752 " .previous" \
753 : "=r" (__pu_err) \
754 : "0" (0), "r" (__pu_val), "r" (ptr), \
755 "i" (-EFAULT)); \
756}
757
758extern void __put_user_unaligned_unknown(void);
759#endif
760
761/*
762 * We're generating jump to subroutines which will be outside the range of
763 * jump instructions
764 */
765#ifdef MODULE
766#define __MODULE_JAL(destination) \
767 ".set\tnoat\n\t" \
768 __UA_LA "\t$1, " #destination "\n\t" \
769 "jalr\t$1\n\t" \
770 ".set\tat\n\t"
771#else
772#define __MODULE_JAL(destination) \
773 "jal\t" #destination "\n\t"
774#endif
775
776#ifndef CONFIG_CPU_DADDI_WORKAROUNDS
777#define DADDI_SCRATCH "$0"
778#else
779#define DADDI_SCRATCH "$3"
780#endif
781
782extern size_t __copy_user(void *__to, const void *__from, size_t __n);
783
784#ifndef CONFIG_EVA
785#define __invoke_copy_to_user(to, from, n) \
786({ \
787 register void __user *__cu_to_r __asm__("$4"); \
788 register const void *__cu_from_r __asm__("$5"); \
789 register long __cu_len_r __asm__("$6"); \
790 \
791 __cu_to_r = (to); \
792 __cu_from_r = (from); \
793 __cu_len_r = (n); \
794 __asm__ __volatile__( \
795 __MODULE_JAL(__copy_user) \
796 : "+r" (__cu_to_r), "+r" (__cu_from_r), "+r" (__cu_len_r) \
797 : \
798 : "$8", "$9", "$10", "$11", "$12", "$14", "$15", "$24", "$31", \
799 DADDI_SCRATCH, "memory"); \
800 __cu_len_r; \
801})
802
803#define __invoke_copy_to_kernel(to, from, n) \
804 __invoke_copy_to_user(to, from, n)
805
806#endif
807
808/*
809 * __copy_to_user: - Copy a block of data into user space, with less checking.
810 * @to: Destination address, in user space.
811 * @from: Source address, in kernel space.
812 * @n: Number of bytes to copy.
813 *
814 * Context: User context only. This function may sleep.
815 *
816 * Copy data from kernel space to user space. Caller must check
817 * the specified block with access_ok() before calling this function.
818 *
819 * Returns number of bytes that could not be copied.
820 * On success, this will be zero.
821 */
822#define __copy_to_user(to, from, n) \
823({ \
824 void __user *__cu_to; \
825 const void *__cu_from; \
826 long __cu_len; \
827 \
828 __cu_to = (to); \
829 __cu_from = (from); \
830 __cu_len = (n); \
831 might_fault(); \
832 if (segment_eq(get_fs(), get_ds())) \
833 __cu_len = __invoke_copy_to_kernel(__cu_to, __cu_from, \
834 __cu_len); \
835 else \
836 __cu_len = __invoke_copy_to_user(__cu_to, __cu_from, \
837 __cu_len); \
838 __cu_len; \
839})
840
841extern size_t __copy_user_inatomic(void *__to, const void *__from, size_t __n);
842
843#define __copy_to_user_inatomic(to, from, n) \
844({ \
845 void __user *__cu_to; \
846 const void *__cu_from; \
847 long __cu_len; \
848 \
849 __cu_to = (to); \
850 __cu_from = (from); \
851 __cu_len = (n); \
852 if (segment_eq(get_fs(), get_ds())) \
853 __cu_len = __invoke_copy_to_kernel(__cu_to, __cu_from, \
854 __cu_len); \
855 else \
856 __cu_len = __invoke_copy_to_user(__cu_to, __cu_from, \
857 __cu_len); \
858 __cu_len; \
859})
860
861#define __copy_from_user_inatomic(to, from, n) \
862({ \
863 void *__cu_to; \
864 const void __user *__cu_from; \
865 long __cu_len; \
866 \
867 __cu_to = (to); \
868 __cu_from = (from); \
869 __cu_len = (n); \
870 if (segment_eq(get_fs(), get_ds())) \
871 __cu_len = __invoke_copy_from_kernel_inatomic(__cu_to, \
872 __cu_from,\
873 __cu_len);\
874 else \
875 __cu_len = __invoke_copy_from_user_inatomic(__cu_to, \
876 __cu_from, \
877 __cu_len); \
878 __cu_len; \
879})
880
881/*
882 * copy_to_user: - Copy a block of data into user space.
883 * @to: Destination address, in user space.
884 * @from: Source address, in kernel space.
885 * @n: Number of bytes to copy.
886 *
887 * Context: User context only. This function may sleep.
888 *
889 * Copy data from kernel space to user space.
890 *
891 * Returns number of bytes that could not be copied.
892 * On success, this will be zero.
893 */
894#define copy_to_user(to, from, n) \
895({ \
896 void __user *__cu_to; \
897 const void *__cu_from; \
898 long __cu_len; \
899 \
900 __cu_to = (to); \
901 __cu_from = (from); \
902 __cu_len = (n); \
903 if (segment_eq(get_fs(), get_ds())) { \
904 __cu_len = __invoke_copy_to_kernel(__cu_to, \
905 __cu_from, \
906 __cu_len); \
907 } else { \
908 if (access_ok(VERIFY_WRITE, __cu_to, __cu_len)) { \
909 might_fault(); \
910 __cu_len = __invoke_copy_to_user(__cu_to, \
911 __cu_from, \
912 __cu_len); \
913 } \
914 } \
915 __cu_len; \
916})
917
918#ifndef CONFIG_EVA
919
920#define __invoke_copy_from_user(to, from, n) \
921({ \
922 register void *__cu_to_r __asm__("$4"); \
923 register const void __user *__cu_from_r __asm__("$5"); \
924 register long __cu_len_r __asm__("$6"); \
925 \
926 __cu_to_r = (to); \
927 __cu_from_r = (from); \
928 __cu_len_r = (n); \
929 __asm__ __volatile__( \
930 ".set\tnoreorder\n\t" \
931 __MODULE_JAL(__copy_user) \
932 ".set\tnoat\n\t" \
933 __UA_ADDU "\t$1, %1, %2\n\t" \
934 ".set\tat\n\t" \
935 ".set\treorder" \
936 : "+r" (__cu_to_r), "+r" (__cu_from_r), "+r" (__cu_len_r) \
937 : \
938 : "$8", "$9", "$10", "$11", "$12", "$14", "$15", "$24", "$31", \
939 DADDI_SCRATCH, "memory"); \
940 __cu_len_r; \
941})
942
943#define __invoke_copy_from_kernel(to, from, n) \
944 __invoke_copy_from_user(to, from, n)
945
946/* For userland <-> userland operations */
947#define ___invoke_copy_in_user(to, from, n) \
948 __invoke_copy_from_user(to, from, n)
949
950/* For kernel <-> kernel operations */
951#define ___invoke_copy_in_kernel(to, from, n) \
952 __invoke_copy_from_user(to, from, n)
953
954#define __invoke_copy_from_user_inatomic(to, from, n) \
955({ \
956 register void *__cu_to_r __asm__("$4"); \
957 register const void __user *__cu_from_r __asm__("$5"); \
958 register long __cu_len_r __asm__("$6"); \
959 \
960 __cu_to_r = (to); \
961 __cu_from_r = (from); \
962 __cu_len_r = (n); \
963 __asm__ __volatile__( \
964 ".set\tnoreorder\n\t" \
965 __MODULE_JAL(__copy_user_inatomic) \
966 ".set\tnoat\n\t" \
967 __UA_ADDU "\t$1, %1, %2\n\t" \
968 ".set\tat\n\t" \
969 ".set\treorder" \
970 : "+r" (__cu_to_r), "+r" (__cu_from_r), "+r" (__cu_len_r) \
971 : \
972 : "$8", "$9", "$10", "$11", "$12", "$14", "$15", "$24", "$31", \
973 DADDI_SCRATCH, "memory"); \
974 __cu_len_r; \
975})
976
977#define __invoke_copy_from_kernel_inatomic(to, from, n) \
978 __invoke_copy_from_user_inatomic(to, from, n) \
979
980#else
981
982/* EVA specific functions */
983
984extern size_t __copy_user_inatomic_eva(void *__to, const void *__from,
985 size_t __n);
986extern size_t __copy_from_user_eva(void *__to, const void *__from,
987 size_t __n);
988extern size_t __copy_to_user_eva(void *__to, const void *__from,
989 size_t __n);
990extern size_t __copy_in_user_eva(void *__to, const void *__from, size_t __n);
991
992#define __invoke_copy_from_user_eva_generic(to, from, n, func_ptr) \
993({ \
994 register void *__cu_to_r __asm__("$4"); \
995 register const void __user *__cu_from_r __asm__("$5"); \
996 register long __cu_len_r __asm__("$6"); \
997 \
998 __cu_to_r = (to); \
999 __cu_from_r = (from); \
1000 __cu_len_r = (n); \
1001 __asm__ __volatile__( \
1002 ".set\tnoreorder\n\t" \
1003 __MODULE_JAL(func_ptr) \
1004 ".set\tnoat\n\t" \
1005 __UA_ADDU "\t$1, %1, %2\n\t" \
1006 ".set\tat\n\t" \
1007 ".set\treorder" \
1008 : "+r" (__cu_to_r), "+r" (__cu_from_r), "+r" (__cu_len_r) \
1009 : \
1010 : "$8", "$9", "$10", "$11", "$12", "$14", "$15", "$24", "$31", \
1011 DADDI_SCRATCH, "memory"); \
1012 __cu_len_r; \
1013})
1014
1015#define __invoke_copy_to_user_eva_generic(to, from, n, func_ptr) \
1016({ \
1017 register void *__cu_to_r __asm__("$4"); \
1018 register const void __user *__cu_from_r __asm__("$5"); \
1019 register long __cu_len_r __asm__("$6"); \
1020 \
1021 __cu_to_r = (to); \
1022 __cu_from_r = (from); \
1023 __cu_len_r = (n); \
1024 __asm__ __volatile__( \
1025 __MODULE_JAL(func_ptr) \
1026 : "+r" (__cu_to_r), "+r" (__cu_from_r), "+r" (__cu_len_r) \
1027 : \
1028 : "$8", "$9", "$10", "$11", "$12", "$14", "$15", "$24", "$31", \
1029 DADDI_SCRATCH, "memory"); \
1030 __cu_len_r; \
1031})
1032
1033/*
1034 * Source or destination address is in userland. We need to go through
1035 * the TLB
1036 */
1037#define __invoke_copy_from_user(to, from, n) \
1038 __invoke_copy_from_user_eva_generic(to, from, n, __copy_from_user_eva)
1039
1040#define __invoke_copy_from_user_inatomic(to, from, n) \
1041 __invoke_copy_from_user_eva_generic(to, from, n, \
1042 __copy_user_inatomic_eva)
1043
1044#define __invoke_copy_to_user(to, from, n) \
1045 __invoke_copy_to_user_eva_generic(to, from, n, __copy_to_user_eva)
1046
1047#define ___invoke_copy_in_user(to, from, n) \
1048 __invoke_copy_from_user_eva_generic(to, from, n, __copy_in_user_eva)
1049
1050/*
1051 * Source or destination address in the kernel. We are not going through
1052 * the TLB
1053 */
1054#define __invoke_copy_from_kernel(to, from, n) \
1055 __invoke_copy_from_user_eva_generic(to, from, n, __copy_user)
1056
1057#define __invoke_copy_from_kernel_inatomic(to, from, n) \
1058 __invoke_copy_from_user_eva_generic(to, from, n, __copy_user_inatomic)
1059
1060#define __invoke_copy_to_kernel(to, from, n) \
1061 __invoke_copy_to_user_eva_generic(to, from, n, __copy_user)
1062
1063#define ___invoke_copy_in_kernel(to, from, n) \
1064 __invoke_copy_from_user_eva_generic(to, from, n, __copy_user)
1065
1066#endif /* CONFIG_EVA */
1067
1068/*
1069 * __copy_from_user: - Copy a block of data from user space, with less checking.
1070 * @to: Destination address, in kernel space.
1071 * @from: Source address, in user space.
1072 * @n: Number of bytes to copy.
1073 *
1074 * Context: User context only. This function may sleep.
1075 *
1076 * Copy data from user space to kernel space. Caller must check
1077 * the specified block with access_ok() before calling this function.
1078 *
1079 * Returns number of bytes that could not be copied.
1080 * On success, this will be zero.
1081 *
1082 * If some data could not be copied, this function will pad the copied
1083 * data to the requested size using zero bytes.
1084 */
1085#define __copy_from_user(to, from, n) \
1086({ \
1087 void *__cu_to; \
1088 const void __user *__cu_from; \
1089 long __cu_len; \
1090 \
1091 __cu_to = (to); \
1092 __cu_from = (from); \
1093 __cu_len = (n); \
1094 might_fault(); \
1095 __cu_len = __invoke_copy_from_user(__cu_to, __cu_from, \
1096 __cu_len); \
1097 __cu_len; \
1098})
1099
1100/*
1101 * copy_from_user: - Copy a block of data from user space.
1102 * @to: Destination address, in kernel space.
1103 * @from: Source address, in user space.
1104 * @n: Number of bytes to copy.
1105 *
1106 * Context: User context only. This function may sleep.
1107 *
1108 * Copy data from user space to kernel space.
1109 *
1110 * Returns number of bytes that could not be copied.
1111 * On success, this will be zero.
1112 *
1113 * If some data could not be copied, this function will pad the copied
1114 * data to the requested size using zero bytes.
1115 */
1116#define copy_from_user(to, from, n) \
1117({ \
1118 void *__cu_to; \
1119 const void __user *__cu_from; \
1120 long __cu_len; \
1121 \
1122 __cu_to = (to); \
1123 __cu_from = (from); \
1124 __cu_len = (n); \
1125 if (segment_eq(get_fs(), get_ds())) { \
1126 __cu_len = __invoke_copy_from_kernel(__cu_to, \
1127 __cu_from, \
1128 __cu_len); \
1129 } else { \
1130 if (access_ok(VERIFY_READ, __cu_from, __cu_len)) { \
1131 might_fault(); \
1132 __cu_len = __invoke_copy_from_user(__cu_to, \
1133 __cu_from, \
1134 __cu_len); \
1135 } \
1136 } \
1137 __cu_len; \
1138})
1139
1140#define __copy_in_user(to, from, n) \
1141({ \
1142 void __user *__cu_to; \
1143 const void __user *__cu_from; \
1144 long __cu_len; \
1145 \
1146 __cu_to = (to); \
1147 __cu_from = (from); \
1148 __cu_len = (n); \
1149 if (segment_eq(get_fs(), get_ds())) { \
1150 __cu_len = ___invoke_copy_in_kernel(__cu_to, __cu_from, \
1151 __cu_len); \
1152 } else { \
1153 might_fault(); \
1154 __cu_len = ___invoke_copy_in_user(__cu_to, __cu_from, \
1155 __cu_len); \
1156 } \
1157 __cu_len; \
1158})
1159
1160#define copy_in_user(to, from, n) \
1161({ \
1162 void __user *__cu_to; \
1163 const void __user *__cu_from; \
1164 long __cu_len; \
1165 \
1166 __cu_to = (to); \
1167 __cu_from = (from); \
1168 __cu_len = (n); \
1169 if (segment_eq(get_fs(), get_ds())) { \
1170 __cu_len = ___invoke_copy_in_kernel(__cu_to,__cu_from, \
1171 __cu_len); \
1172 } else { \
1173 if (likely(access_ok(VERIFY_READ, __cu_from, __cu_len) &&\
1174 access_ok(VERIFY_WRITE, __cu_to, __cu_len))) {\
1175 might_fault(); \
1176 __cu_len = ___invoke_copy_in_user(__cu_to, \
1177 __cu_from, \
1178 __cu_len); \
1179 } \
1180 } \
1181 __cu_len; \
1182})
1183
1184/*
1185 * __clear_user: - Zero a block of memory in user space, with less checking.
1186 * @to: Destination address, in user space.
1187 * @n: Number of bytes to zero.
1188 *
1189 * Zero a block of memory in user space. Caller must check
1190 * the specified block with access_ok() before calling this function.
1191 *
1192 * Returns number of bytes that could not be cleared.
1193 * On success, this will be zero.
1194 */
1195static inline __kernel_size_t
1196__clear_user(void __user *addr, __kernel_size_t size)
1197{
1198 __kernel_size_t res;
1199
1200 might_fault();
1201 __asm__ __volatile__(
1202 "move\t$4, %1\n\t"
1203 "move\t$5, $0\n\t"
1204 "move\t$6, %2\n\t"
1205 __MODULE_JAL(__bzero)
1206 "move\t%0, $6"
1207 : "=r" (res)
1208 : "r" (addr), "r" (size)
1209 : "$4", "$5", "$6", __UA_t0, __UA_t1, "$31");
1210
1211 return res;
1212}
1213
1214#define clear_user(addr,n) \
1215({ \
1216 void __user * __cl_addr = (addr); \
1217 unsigned long __cl_size = (n); \
1218 if (__cl_size && access_ok(VERIFY_WRITE, \
1219 __cl_addr, __cl_size)) \
1220 __cl_size = __clear_user(__cl_addr, __cl_size); \
1221 __cl_size; \
1222})
1223
1224/*
1225 * __strncpy_from_user: - Copy a NUL terminated string from userspace, with less checking.
1226 * @dst: Destination address, in kernel space. This buffer must be at
1227 * least @count bytes long.
1228 * @src: Source address, in user space.
1229 * @count: Maximum number of bytes to copy, including the trailing NUL.
1230 *
1231 * Copies a NUL-terminated string from userspace to kernel space.
1232 * Caller must check the specified block with access_ok() before calling
1233 * this function.
1234 *
1235 * On success, returns the length of the string (not including the trailing
1236 * NUL).
1237 *
1238 * If access to userspace fails, returns -EFAULT (some data may have been
1239 * copied).
1240 *
1241 * If @count is smaller than the length of the string, copies @count bytes
1242 * and returns @count.
1243 */
1244static inline long
1245__strncpy_from_user(char *__to, const char __user *__from, long __len)
1246{
1247 long res;
1248
1249 if (segment_eq(get_fs(), get_ds())) {
1250 __asm__ __volatile__(
1251 "move\t$4, %1\n\t"
1252 "move\t$5, %2\n\t"
1253 "move\t$6, %3\n\t"
1254 __MODULE_JAL(__strncpy_from_kernel_nocheck_asm)
1255 "move\t%0, $2"
1256 : "=r" (res)
1257 : "r" (__to), "r" (__from), "r" (__len)
1258 : "$2", "$3", "$4", "$5", "$6", __UA_t0, "$31", "memory");
1259 } else {
1260 might_fault();
1261 __asm__ __volatile__(
1262 "move\t$4, %1\n\t"
1263 "move\t$5, %2\n\t"
1264 "move\t$6, %3\n\t"
1265 __MODULE_JAL(__strncpy_from_user_nocheck_asm)
1266 "move\t%0, $2"
1267 : "=r" (res)
1268 : "r" (__to), "r" (__from), "r" (__len)
1269 : "$2", "$3", "$4", "$5", "$6", __UA_t0, "$31", "memory");
1270 }
1271
1272 return res;
1273}
1274
1275/*
1276 * strncpy_from_user: - Copy a NUL terminated string from userspace.
1277 * @dst: Destination address, in kernel space. This buffer must be at
1278 * least @count bytes long.
1279 * @src: Source address, in user space.
1280 * @count: Maximum number of bytes to copy, including the trailing NUL.
1281 *
1282 * Copies a NUL-terminated string from userspace to kernel space.
1283 *
1284 * On success, returns the length of the string (not including the trailing
1285 * NUL).
1286 *
1287 * If access to userspace fails, returns -EFAULT (some data may have been
1288 * copied).
1289 *
1290 * If @count is smaller than the length of the string, copies @count bytes
1291 * and returns @count.
1292 */
1293static inline long
1294strncpy_from_user(char *__to, const char __user *__from, long __len)
1295{
1296 long res;
1297
1298 if (segment_eq(get_fs(), get_ds())) {
1299 __asm__ __volatile__(
1300 "move\t$4, %1\n\t"
1301 "move\t$5, %2\n\t"
1302 "move\t$6, %3\n\t"
1303 __MODULE_JAL(__strncpy_from_kernel_asm)
1304 "move\t%0, $2"
1305 : "=r" (res)
1306 : "r" (__to), "r" (__from), "r" (__len)
1307 : "$2", "$3", "$4", "$5", "$6", __UA_t0, "$31", "memory");
1308 } else {
1309 might_fault();
1310 __asm__ __volatile__(
1311 "move\t$4, %1\n\t"
1312 "move\t$5, %2\n\t"
1313 "move\t$6, %3\n\t"
1314 __MODULE_JAL(__strncpy_from_user_asm)
1315 "move\t%0, $2"
1316 : "=r" (res)
1317 : "r" (__to), "r" (__from), "r" (__len)
1318 : "$2", "$3", "$4", "$5", "$6", __UA_t0, "$31", "memory");
1319 }
1320
1321 return res;
1322}
1323
1324/* Returns: 0 if bad, string length+1 (memory size) of string if ok */
1325static inline long __strlen_user(const char __user *s)
1326{
1327 long res;
1328
1329 if (segment_eq(get_fs(), get_ds())) {
1330 __asm__ __volatile__(
1331 "move\t$4, %1\n\t"
1332 __MODULE_JAL(__strlen_kernel_nocheck_asm)
1333 "move\t%0, $2"
1334 : "=r" (res)
1335 : "r" (s)
1336 : "$2", "$4", __UA_t0, "$31");
1337 } else {
1338 might_fault();
1339 __asm__ __volatile__(
1340 "move\t$4, %1\n\t"
1341 __MODULE_JAL(__strlen_user_nocheck_asm)
1342 "move\t%0, $2"
1343 : "=r" (res)
1344 : "r" (s)
1345 : "$2", "$4", __UA_t0, "$31");
1346 }
1347
1348 return res;
1349}
1350
1351/*
1352 * strlen_user: - Get the size of a string in user space.
1353 * @str: The string to measure.
1354 *
1355 * Context: User context only. This function may sleep.
1356 *
1357 * Get the size of a NUL-terminated string in user space.
1358 *
1359 * Returns the size of the string INCLUDING the terminating NUL.
1360 * On exception, returns 0.
1361 *
1362 * If there is a limit on the length of a valid string, you may wish to
1363 * consider using strnlen_user() instead.
1364 */
1365static inline long strlen_user(const char __user *s)
1366{
1367 long res;
1368
1369 if (segment_eq(get_fs(), get_ds())) {
1370 __asm__ __volatile__(
1371 "move\t$4, %1\n\t"
1372 __MODULE_JAL(__strlen_kernel_asm)
1373 "move\t%0, $2"
1374 : "=r" (res)
1375 : "r" (s)
1376 : "$2", "$4", __UA_t0, "$31");
1377 } else {
1378 might_fault();
1379 __asm__ __volatile__(
1380 "move\t$4, %1\n\t"
1381 __MODULE_JAL(__strlen_kernel_asm)
1382 "move\t%0, $2"
1383 : "=r" (res)
1384 : "r" (s)
1385 : "$2", "$4", __UA_t0, "$31");
1386 }
1387
1388 return res;
1389}
1390
1391/* Returns: 0 if bad, string length+1 (memory size) of string if ok */
1392static inline long __strnlen_user(const char __user *s, long n)
1393{
1394 long res;
1395
1396 if (segment_eq(get_fs(), get_ds())) {
1397 __asm__ __volatile__(
1398 "move\t$4, %1\n\t"
1399 "move\t$5, %2\n\t"
1400 __MODULE_JAL(__strnlen_kernel_nocheck_asm)
1401 "move\t%0, $2"
1402 : "=r" (res)
1403 : "r" (s), "r" (n)
1404 : "$2", "$4", "$5", __UA_t0, "$31");
1405 } else {
1406 might_fault();
1407 __asm__ __volatile__(
1408 "move\t$4, %1\n\t"
1409 "move\t$5, %2\n\t"
1410 __MODULE_JAL(__strnlen_user_nocheck_asm)
1411 "move\t%0, $2"
1412 : "=r" (res)
1413 : "r" (s), "r" (n)
1414 : "$2", "$4", "$5", __UA_t0, "$31");
1415 }
1416
1417 return res;
1418}
1419
1420/*
1421 * strlen_user: - Get the size of a string in user space.
1422 * @str: The string to measure.
1423 *
1424 * Context: User context only. This function may sleep.
1425 *
1426 * Get the size of a NUL-terminated string in user space.
1427 *
1428 * Returns the size of the string INCLUDING the terminating NUL.
1429 * On exception, returns 0.
1430 *
1431 * If there is a limit on the length of a valid string, you may wish to
1432 * consider using strnlen_user() instead.
1433 */
1434static inline long strnlen_user(const char __user *s, long n)
1435{
1436 long res;
1437
1438 might_fault();
1439 if (segment_eq(get_fs(), get_ds())) {
1440 __asm__ __volatile__(
1441 "move\t$4, %1\n\t"
1442 "move\t$5, %2\n\t"
1443 __MODULE_JAL(__strnlen_kernel_asm)
1444 "move\t%0, $2"
1445 : "=r" (res)
1446 : "r" (s), "r" (n)
1447 : "$2", "$4", "$5", __UA_t0, "$31");
1448 } else {
1449 __asm__ __volatile__(
1450 "move\t$4, %1\n\t"
1451 "move\t$5, %2\n\t"
1452 __MODULE_JAL(__strnlen_user_asm)
1453 "move\t%0, $2"
1454 : "=r" (res)
1455 : "r" (s), "r" (n)
1456 : "$2", "$4", "$5", __UA_t0, "$31");
1457 }
1458
1459 return res;
1460}
1461
1462struct exception_table_entry
1463{
1464 unsigned long insn;
1465 unsigned long nextinsn;
1466};
1467
1468extern int fixup_exception(struct pt_regs *regs);
1469
1470#endif /* _ASM_UACCESS_H */
1/*
2 * This file is subject to the terms and conditions of the GNU General Public
3 * License. See the file "COPYING" in the main directory of this archive
4 * for more details.
5 *
6 * Copyright (C) 1996, 1997, 1998, 1999, 2000, 03, 04 by Ralf Baechle
7 * Copyright (C) 1999, 2000 Silicon Graphics, Inc.
8 * Copyright (C) 2007 Maciej W. Rozycki
9 * Copyright (C) 2014, Imagination Technologies Ltd.
10 */
11#ifndef _ASM_UACCESS_H
12#define _ASM_UACCESS_H
13
14#include <linux/kernel.h>
15#include <linux/errno.h>
16#include <linux/thread_info.h>
17#include <linux/string.h>
18#include <asm/asm-eva.h>
19#include <asm/extable.h>
20
21/*
22 * The fs value determines whether argument validity checking should be
23 * performed or not. If get_fs() == USER_DS, checking is performed, with
24 * get_fs() == KERNEL_DS, checking is bypassed.
25 *
26 * For historical reasons, these macros are grossly misnamed.
27 */
28#ifdef CONFIG_32BIT
29
30#ifdef CONFIG_KVM_GUEST
31#define __UA_LIMIT 0x40000000UL
32#else
33#define __UA_LIMIT 0x80000000UL
34#endif
35
36#define __UA_ADDR ".word"
37#define __UA_LA "la"
38#define __UA_ADDU "addu"
39#define __UA_t0 "$8"
40#define __UA_t1 "$9"
41
42#endif /* CONFIG_32BIT */
43
44#ifdef CONFIG_64BIT
45
46extern u64 __ua_limit;
47
48#define __UA_LIMIT __ua_limit
49
50#define __UA_ADDR ".dword"
51#define __UA_LA "dla"
52#define __UA_ADDU "daddu"
53#define __UA_t0 "$12"
54#define __UA_t1 "$13"
55
56#endif /* CONFIG_64BIT */
57
58/*
59 * USER_DS is a bitmask that has the bits set that may not be set in a valid
60 * userspace address. Note that we limit 32-bit userspace to 0x7fff8000 but
61 * the arithmetic we're doing only works if the limit is a power of two, so
62 * we use 0x80000000 here on 32-bit kernels. If a process passes an invalid
63 * address in this range it's the process's problem, not ours :-)
64 */
65
66#ifdef CONFIG_KVM_GUEST
67#define KERNEL_DS ((mm_segment_t) { 0x80000000UL })
68#define USER_DS ((mm_segment_t) { 0xC0000000UL })
69#else
70#define KERNEL_DS ((mm_segment_t) { 0UL })
71#define USER_DS ((mm_segment_t) { __UA_LIMIT })
72#endif
73
74#define VERIFY_READ 0
75#define VERIFY_WRITE 1
76
77#define get_ds() (KERNEL_DS)
78#define get_fs() (current_thread_info()->addr_limit)
79#define set_fs(x) (current_thread_info()->addr_limit = (x))
80
81#define segment_eq(a, b) ((a).seg == (b).seg)
82
83/*
84 * eva_kernel_access() - determine whether kernel memory access on an EVA system
85 *
86 * Determines whether memory accesses should be performed to kernel memory
87 * on a system using Extended Virtual Addressing (EVA).
88 *
89 * Return: true if a kernel memory access on an EVA system, else false.
90 */
91static inline bool eva_kernel_access(void)
92{
93 if (!IS_ENABLED(CONFIG_EVA))
94 return false;
95
96 return segment_eq(get_fs(), get_ds());
97}
98
99/*
100 * Is a address valid? This does a straightforward calculation rather
101 * than tests.
102 *
103 * Address valid if:
104 * - "addr" doesn't have any high-bits set
105 * - AND "size" doesn't have any high-bits set
106 * - AND "addr+size" doesn't have any high-bits set
107 * - OR we are in kernel mode.
108 *
109 * __ua_size() is a trick to avoid runtime checking of positive constant
110 * sizes; for those we already know at compile time that the size is ok.
111 */
112#define __ua_size(size) \
113 ((__builtin_constant_p(size) && (signed long) (size) > 0) ? 0 : (size))
114
115/*
116 * access_ok: - Checks if a user space pointer is valid
117 * @type: Type of access: %VERIFY_READ or %VERIFY_WRITE. Note that
118 * %VERIFY_WRITE is a superset of %VERIFY_READ - if it is safe
119 * to write to a block, it is always safe to read from it.
120 * @addr: User space pointer to start of block to check
121 * @size: Size of block to check
122 *
123 * Context: User context only. This function may sleep if pagefaults are
124 * enabled.
125 *
126 * Checks if a pointer to a block of memory in user space is valid.
127 *
128 * Returns true (nonzero) if the memory block may be valid, false (zero)
129 * if it is definitely invalid.
130 *
131 * Note that, depending on architecture, this function probably just
132 * checks that the pointer is in the user space range - after calling
133 * this function, memory access functions may still return -EFAULT.
134 */
135
136#define __access_mask get_fs().seg
137
138#define __access_ok(addr, size, mask) \
139({ \
140 unsigned long __addr = (unsigned long) (addr); \
141 unsigned long __size = size; \
142 unsigned long __mask = mask; \
143 unsigned long __ok; \
144 \
145 __chk_user_ptr(addr); \
146 __ok = (signed long)(__mask & (__addr | (__addr + __size) | \
147 __ua_size(__size))); \
148 __ok == 0; \
149})
150
151#define access_ok(type, addr, size) \
152 likely(__access_ok((addr), (size), __access_mask))
153
154/*
155 * put_user: - Write a simple value into user space.
156 * @x: Value to copy to user space.
157 * @ptr: Destination address, in user space.
158 *
159 * Context: User context only. This function may sleep if pagefaults are
160 * enabled.
161 *
162 * This macro copies a single simple value from kernel space to user
163 * space. It supports simple types like char and int, but not larger
164 * data types like structures or arrays.
165 *
166 * @ptr must have pointer-to-simple-variable type, and @x must be assignable
167 * to the result of dereferencing @ptr.
168 *
169 * Returns zero on success, or -EFAULT on error.
170 */
171#define put_user(x,ptr) \
172 __put_user_check((x), (ptr), sizeof(*(ptr)))
173
174/*
175 * get_user: - Get a simple variable from user space.
176 * @x: Variable to store result.
177 * @ptr: Source address, in user space.
178 *
179 * Context: User context only. This function may sleep if pagefaults are
180 * enabled.
181 *
182 * This macro copies a single simple variable from user space to kernel
183 * space. It supports simple types like char and int, but not larger
184 * data types like structures or arrays.
185 *
186 * @ptr must have pointer-to-simple-variable type, and the result of
187 * dereferencing @ptr must be assignable to @x without a cast.
188 *
189 * Returns zero on success, or -EFAULT on error.
190 * On error, the variable @x is set to zero.
191 */
192#define get_user(x,ptr) \
193 __get_user_check((x), (ptr), sizeof(*(ptr)))
194
195/*
196 * __put_user: - Write a simple value into user space, with less checking.
197 * @x: Value to copy to user space.
198 * @ptr: Destination address, in user space.
199 *
200 * Context: User context only. This function may sleep if pagefaults are
201 * enabled.
202 *
203 * This macro copies a single simple value from kernel space to user
204 * space. It supports simple types like char and int, but not larger
205 * data types like structures or arrays.
206 *
207 * @ptr must have pointer-to-simple-variable type, and @x must be assignable
208 * to the result of dereferencing @ptr.
209 *
210 * Caller must check the pointer with access_ok() before calling this
211 * function.
212 *
213 * Returns zero on success, or -EFAULT on error.
214 */
215#define __put_user(x,ptr) \
216 __put_user_nocheck((x), (ptr), sizeof(*(ptr)))
217
218/*
219 * __get_user: - Get a simple variable from user space, with less checking.
220 * @x: Variable to store result.
221 * @ptr: Source address, in user space.
222 *
223 * Context: User context only. This function may sleep if pagefaults are
224 * enabled.
225 *
226 * This macro copies a single simple variable from user space to kernel
227 * space. It supports simple types like char and int, but not larger
228 * data types like structures or arrays.
229 *
230 * @ptr must have pointer-to-simple-variable type, and the result of
231 * dereferencing @ptr must be assignable to @x without a cast.
232 *
233 * Caller must check the pointer with access_ok() before calling this
234 * function.
235 *
236 * Returns zero on success, or -EFAULT on error.
237 * On error, the variable @x is set to zero.
238 */
239#define __get_user(x,ptr) \
240 __get_user_nocheck((x), (ptr), sizeof(*(ptr)))
241
242struct __large_struct { unsigned long buf[100]; };
243#define __m(x) (*(struct __large_struct __user *)(x))
244
245/*
246 * Yuck. We need two variants, one for 64bit operation and one
247 * for 32 bit mode and old iron.
248 */
249#ifndef CONFIG_EVA
250#define __get_kernel_common(val, size, ptr) __get_user_common(val, size, ptr)
251#else
252/*
253 * Kernel specific functions for EVA. We need to use normal load instructions
254 * to read data from kernel when operating in EVA mode. We use these macros to
255 * avoid redefining __get_user_asm for EVA.
256 */
257#undef _loadd
258#undef _loadw
259#undef _loadh
260#undef _loadb
261#ifdef CONFIG_32BIT
262#define _loadd _loadw
263#else
264#define _loadd(reg, addr) "ld " reg ", " addr
265#endif
266#define _loadw(reg, addr) "lw " reg ", " addr
267#define _loadh(reg, addr) "lh " reg ", " addr
268#define _loadb(reg, addr) "lb " reg ", " addr
269
270#define __get_kernel_common(val, size, ptr) \
271do { \
272 switch (size) { \
273 case 1: __get_data_asm(val, _loadb, ptr); break; \
274 case 2: __get_data_asm(val, _loadh, ptr); break; \
275 case 4: __get_data_asm(val, _loadw, ptr); break; \
276 case 8: __GET_DW(val, _loadd, ptr); break; \
277 default: __get_user_unknown(); break; \
278 } \
279} while (0)
280#endif
281
282#ifdef CONFIG_32BIT
283#define __GET_DW(val, insn, ptr) __get_data_asm_ll32(val, insn, ptr)
284#endif
285#ifdef CONFIG_64BIT
286#define __GET_DW(val, insn, ptr) __get_data_asm(val, insn, ptr)
287#endif
288
289extern void __get_user_unknown(void);
290
291#define __get_user_common(val, size, ptr) \
292do { \
293 switch (size) { \
294 case 1: __get_data_asm(val, user_lb, ptr); break; \
295 case 2: __get_data_asm(val, user_lh, ptr); break; \
296 case 4: __get_data_asm(val, user_lw, ptr); break; \
297 case 8: __GET_DW(val, user_ld, ptr); break; \
298 default: __get_user_unknown(); break; \
299 } \
300} while (0)
301
302#define __get_user_nocheck(x, ptr, size) \
303({ \
304 int __gu_err; \
305 \
306 if (eva_kernel_access()) { \
307 __get_kernel_common((x), size, ptr); \
308 } else { \
309 __chk_user_ptr(ptr); \
310 __get_user_common((x), size, ptr); \
311 } \
312 __gu_err; \
313})
314
315#define __get_user_check(x, ptr, size) \
316({ \
317 int __gu_err = -EFAULT; \
318 const __typeof__(*(ptr)) __user * __gu_ptr = (ptr); \
319 \
320 might_fault(); \
321 if (likely(access_ok(VERIFY_READ, __gu_ptr, size))) { \
322 if (eva_kernel_access()) \
323 __get_kernel_common((x), size, __gu_ptr); \
324 else \
325 __get_user_common((x), size, __gu_ptr); \
326 } else \
327 (x) = 0; \
328 \
329 __gu_err; \
330})
331
332#define __get_data_asm(val, insn, addr) \
333{ \
334 long __gu_tmp; \
335 \
336 __asm__ __volatile__( \
337 "1: "insn("%1", "%3")" \n" \
338 "2: \n" \
339 " .insn \n" \
340 " .section .fixup,\"ax\" \n" \
341 "3: li %0, %4 \n" \
342 " move %1, $0 \n" \
343 " j 2b \n" \
344 " .previous \n" \
345 " .section __ex_table,\"a\" \n" \
346 " "__UA_ADDR "\t1b, 3b \n" \
347 " .previous \n" \
348 : "=r" (__gu_err), "=r" (__gu_tmp) \
349 : "0" (0), "o" (__m(addr)), "i" (-EFAULT)); \
350 \
351 (val) = (__typeof__(*(addr))) __gu_tmp; \
352}
353
354/*
355 * Get a long long 64 using 32 bit registers.
356 */
357#define __get_data_asm_ll32(val, insn, addr) \
358{ \
359 union { \
360 unsigned long long l; \
361 __typeof__(*(addr)) t; \
362 } __gu_tmp; \
363 \
364 __asm__ __volatile__( \
365 "1: " insn("%1", "(%3)")" \n" \
366 "2: " insn("%D1", "4(%3)")" \n" \
367 "3: \n" \
368 " .insn \n" \
369 " .section .fixup,\"ax\" \n" \
370 "4: li %0, %4 \n" \
371 " move %1, $0 \n" \
372 " move %D1, $0 \n" \
373 " j 3b \n" \
374 " .previous \n" \
375 " .section __ex_table,\"a\" \n" \
376 " " __UA_ADDR " 1b, 4b \n" \
377 " " __UA_ADDR " 2b, 4b \n" \
378 " .previous \n" \
379 : "=r" (__gu_err), "=&r" (__gu_tmp.l) \
380 : "0" (0), "r" (addr), "i" (-EFAULT)); \
381 \
382 (val) = __gu_tmp.t; \
383}
384
385#ifndef CONFIG_EVA
386#define __put_kernel_common(ptr, size) __put_user_common(ptr, size)
387#else
388/*
389 * Kernel specific functions for EVA. We need to use normal load instructions
390 * to read data from kernel when operating in EVA mode. We use these macros to
391 * avoid redefining __get_data_asm for EVA.
392 */
393#undef _stored
394#undef _storew
395#undef _storeh
396#undef _storeb
397#ifdef CONFIG_32BIT
398#define _stored _storew
399#else
400#define _stored(reg, addr) "ld " reg ", " addr
401#endif
402
403#define _storew(reg, addr) "sw " reg ", " addr
404#define _storeh(reg, addr) "sh " reg ", " addr
405#define _storeb(reg, addr) "sb " reg ", " addr
406
407#define __put_kernel_common(ptr, size) \
408do { \
409 switch (size) { \
410 case 1: __put_data_asm(_storeb, ptr); break; \
411 case 2: __put_data_asm(_storeh, ptr); break; \
412 case 4: __put_data_asm(_storew, ptr); break; \
413 case 8: __PUT_DW(_stored, ptr); break; \
414 default: __put_user_unknown(); break; \
415 } \
416} while(0)
417#endif
418
419/*
420 * Yuck. We need two variants, one for 64bit operation and one
421 * for 32 bit mode and old iron.
422 */
423#ifdef CONFIG_32BIT
424#define __PUT_DW(insn, ptr) __put_data_asm_ll32(insn, ptr)
425#endif
426#ifdef CONFIG_64BIT
427#define __PUT_DW(insn, ptr) __put_data_asm(insn, ptr)
428#endif
429
430#define __put_user_common(ptr, size) \
431do { \
432 switch (size) { \
433 case 1: __put_data_asm(user_sb, ptr); break; \
434 case 2: __put_data_asm(user_sh, ptr); break; \
435 case 4: __put_data_asm(user_sw, ptr); break; \
436 case 8: __PUT_DW(user_sd, ptr); break; \
437 default: __put_user_unknown(); break; \
438 } \
439} while (0)
440
441#define __put_user_nocheck(x, ptr, size) \
442({ \
443 __typeof__(*(ptr)) __pu_val; \
444 int __pu_err = 0; \
445 \
446 __pu_val = (x); \
447 if (eva_kernel_access()) { \
448 __put_kernel_common(ptr, size); \
449 } else { \
450 __chk_user_ptr(ptr); \
451 __put_user_common(ptr, size); \
452 } \
453 __pu_err; \
454})
455
456#define __put_user_check(x, ptr, size) \
457({ \
458 __typeof__(*(ptr)) __user *__pu_addr = (ptr); \
459 __typeof__(*(ptr)) __pu_val = (x); \
460 int __pu_err = -EFAULT; \
461 \
462 might_fault(); \
463 if (likely(access_ok(VERIFY_WRITE, __pu_addr, size))) { \
464 if (eva_kernel_access()) \
465 __put_kernel_common(__pu_addr, size); \
466 else \
467 __put_user_common(__pu_addr, size); \
468 } \
469 \
470 __pu_err; \
471})
472
473#define __put_data_asm(insn, ptr) \
474{ \
475 __asm__ __volatile__( \
476 "1: "insn("%z2", "%3")" # __put_data_asm \n" \
477 "2: \n" \
478 " .insn \n" \
479 " .section .fixup,\"ax\" \n" \
480 "3: li %0, %4 \n" \
481 " j 2b \n" \
482 " .previous \n" \
483 " .section __ex_table,\"a\" \n" \
484 " " __UA_ADDR " 1b, 3b \n" \
485 " .previous \n" \
486 : "=r" (__pu_err) \
487 : "0" (0), "Jr" (__pu_val), "o" (__m(ptr)), \
488 "i" (-EFAULT)); \
489}
490
491#define __put_data_asm_ll32(insn, ptr) \
492{ \
493 __asm__ __volatile__( \
494 "1: "insn("%2", "(%3)")" # __put_data_asm_ll32 \n" \
495 "2: "insn("%D2", "4(%3)")" \n" \
496 "3: \n" \
497 " .insn \n" \
498 " .section .fixup,\"ax\" \n" \
499 "4: li %0, %4 \n" \
500 " j 3b \n" \
501 " .previous \n" \
502 " .section __ex_table,\"a\" \n" \
503 " " __UA_ADDR " 1b, 4b \n" \
504 " " __UA_ADDR " 2b, 4b \n" \
505 " .previous" \
506 : "=r" (__pu_err) \
507 : "0" (0), "r" (__pu_val), "r" (ptr), \
508 "i" (-EFAULT)); \
509}
510
511extern void __put_user_unknown(void);
512
513/*
514 * ul{b,h,w} are macros and there are no equivalent macros for EVA.
515 * EVA unaligned access is handled in the ADE exception handler.
516 */
517#ifndef CONFIG_EVA
518/*
519 * put_user_unaligned: - Write a simple value into user space.
520 * @x: Value to copy to user space.
521 * @ptr: Destination address, in user space.
522 *
523 * Context: User context only. This function may sleep if pagefaults are
524 * enabled.
525 *
526 * This macro copies a single simple value from kernel space to user
527 * space. It supports simple types like char and int, but not larger
528 * data types like structures or arrays.
529 *
530 * @ptr must have pointer-to-simple-variable type, and @x must be assignable
531 * to the result of dereferencing @ptr.
532 *
533 * Returns zero on success, or -EFAULT on error.
534 */
535#define put_user_unaligned(x,ptr) \
536 __put_user_unaligned_check((x),(ptr),sizeof(*(ptr)))
537
538/*
539 * get_user_unaligned: - Get a simple variable from user space.
540 * @x: Variable to store result.
541 * @ptr: Source address, in user space.
542 *
543 * Context: User context only. This function may sleep if pagefaults are
544 * enabled.
545 *
546 * This macro copies a single simple variable from user space to kernel
547 * space. It supports simple types like char and int, but not larger
548 * data types like structures or arrays.
549 *
550 * @ptr must have pointer-to-simple-variable type, and the result of
551 * dereferencing @ptr must be assignable to @x without a cast.
552 *
553 * Returns zero on success, or -EFAULT on error.
554 * On error, the variable @x is set to zero.
555 */
556#define get_user_unaligned(x,ptr) \
557 __get_user_unaligned_check((x),(ptr),sizeof(*(ptr)))
558
559/*
560 * __put_user_unaligned: - Write a simple value into user space, with less checking.
561 * @x: Value to copy to user space.
562 * @ptr: Destination address, in user space.
563 *
564 * Context: User context only. This function may sleep if pagefaults are
565 * enabled.
566 *
567 * This macro copies a single simple value from kernel space to user
568 * space. It supports simple types like char and int, but not larger
569 * data types like structures or arrays.
570 *
571 * @ptr must have pointer-to-simple-variable type, and @x must be assignable
572 * to the result of dereferencing @ptr.
573 *
574 * Caller must check the pointer with access_ok() before calling this
575 * function.
576 *
577 * Returns zero on success, or -EFAULT on error.
578 */
579#define __put_user_unaligned(x,ptr) \
580 __put_user_unaligned_nocheck((x),(ptr),sizeof(*(ptr)))
581
582/*
583 * __get_user_unaligned: - Get a simple variable from user space, with less checking.
584 * @x: Variable to store result.
585 * @ptr: Source address, in user space.
586 *
587 * Context: User context only. This function may sleep if pagefaults are
588 * enabled.
589 *
590 * This macro copies a single simple variable from user space to kernel
591 * space. It supports simple types like char and int, but not larger
592 * data types like structures or arrays.
593 *
594 * @ptr must have pointer-to-simple-variable type, and the result of
595 * dereferencing @ptr must be assignable to @x without a cast.
596 *
597 * Caller must check the pointer with access_ok() before calling this
598 * function.
599 *
600 * Returns zero on success, or -EFAULT on error.
601 * On error, the variable @x is set to zero.
602 */
603#define __get_user_unaligned(x,ptr) \
604 __get_user_unaligned_nocheck((x),(ptr),sizeof(*(ptr)))
605
606/*
607 * Yuck. We need two variants, one for 64bit operation and one
608 * for 32 bit mode and old iron.
609 */
610#ifdef CONFIG_32BIT
611#define __GET_USER_UNALIGNED_DW(val, ptr) \
612 __get_user_unaligned_asm_ll32(val, ptr)
613#endif
614#ifdef CONFIG_64BIT
615#define __GET_USER_UNALIGNED_DW(val, ptr) \
616 __get_user_unaligned_asm(val, "uld", ptr)
617#endif
618
619extern void __get_user_unaligned_unknown(void);
620
621#define __get_user_unaligned_common(val, size, ptr) \
622do { \
623 switch (size) { \
624 case 1: __get_data_asm(val, "lb", ptr); break; \
625 case 2: __get_data_unaligned_asm(val, "ulh", ptr); break; \
626 case 4: __get_data_unaligned_asm(val, "ulw", ptr); break; \
627 case 8: __GET_USER_UNALIGNED_DW(val, ptr); break; \
628 default: __get_user_unaligned_unknown(); break; \
629 } \
630} while (0)
631
632#define __get_user_unaligned_nocheck(x,ptr,size) \
633({ \
634 int __gu_err; \
635 \
636 __get_user_unaligned_common((x), size, ptr); \
637 __gu_err; \
638})
639
640#define __get_user_unaligned_check(x,ptr,size) \
641({ \
642 int __gu_err = -EFAULT; \
643 const __typeof__(*(ptr)) __user * __gu_ptr = (ptr); \
644 \
645 if (likely(access_ok(VERIFY_READ, __gu_ptr, size))) \
646 __get_user_unaligned_common((x), size, __gu_ptr); \
647 \
648 __gu_err; \
649})
650
651#define __get_data_unaligned_asm(val, insn, addr) \
652{ \
653 long __gu_tmp; \
654 \
655 __asm__ __volatile__( \
656 "1: " insn " %1, %3 \n" \
657 "2: \n" \
658 " .insn \n" \
659 " .section .fixup,\"ax\" \n" \
660 "3: li %0, %4 \n" \
661 " move %1, $0 \n" \
662 " j 2b \n" \
663 " .previous \n" \
664 " .section __ex_table,\"a\" \n" \
665 " "__UA_ADDR "\t1b, 3b \n" \
666 " "__UA_ADDR "\t1b + 4, 3b \n" \
667 " .previous \n" \
668 : "=r" (__gu_err), "=r" (__gu_tmp) \
669 : "0" (0), "o" (__m(addr)), "i" (-EFAULT)); \
670 \
671 (val) = (__typeof__(*(addr))) __gu_tmp; \
672}
673
674/*
675 * Get a long long 64 using 32 bit registers.
676 */
677#define __get_user_unaligned_asm_ll32(val, addr) \
678{ \
679 unsigned long long __gu_tmp; \
680 \
681 __asm__ __volatile__( \
682 "1: ulw %1, (%3) \n" \
683 "2: ulw %D1, 4(%3) \n" \
684 " move %0, $0 \n" \
685 "3: \n" \
686 " .insn \n" \
687 " .section .fixup,\"ax\" \n" \
688 "4: li %0, %4 \n" \
689 " move %1, $0 \n" \
690 " move %D1, $0 \n" \
691 " j 3b \n" \
692 " .previous \n" \
693 " .section __ex_table,\"a\" \n" \
694 " " __UA_ADDR " 1b, 4b \n" \
695 " " __UA_ADDR " 1b + 4, 4b \n" \
696 " " __UA_ADDR " 2b, 4b \n" \
697 " " __UA_ADDR " 2b + 4, 4b \n" \
698 " .previous \n" \
699 : "=r" (__gu_err), "=&r" (__gu_tmp) \
700 : "0" (0), "r" (addr), "i" (-EFAULT)); \
701 (val) = (__typeof__(*(addr))) __gu_tmp; \
702}
703
704/*
705 * Yuck. We need two variants, one for 64bit operation and one
706 * for 32 bit mode and old iron.
707 */
708#ifdef CONFIG_32BIT
709#define __PUT_USER_UNALIGNED_DW(ptr) __put_user_unaligned_asm_ll32(ptr)
710#endif
711#ifdef CONFIG_64BIT
712#define __PUT_USER_UNALIGNED_DW(ptr) __put_user_unaligned_asm("usd", ptr)
713#endif
714
715#define __put_user_unaligned_common(ptr, size) \
716do { \
717 switch (size) { \
718 case 1: __put_data_asm("sb", ptr); break; \
719 case 2: __put_user_unaligned_asm("ush", ptr); break; \
720 case 4: __put_user_unaligned_asm("usw", ptr); break; \
721 case 8: __PUT_USER_UNALIGNED_DW(ptr); break; \
722 default: __put_user_unaligned_unknown(); break; \
723} while (0)
724
725#define __put_user_unaligned_nocheck(x,ptr,size) \
726({ \
727 __typeof__(*(ptr)) __pu_val; \
728 int __pu_err = 0; \
729 \
730 __pu_val = (x); \
731 __put_user_unaligned_common(ptr, size); \
732 __pu_err; \
733})
734
735#define __put_user_unaligned_check(x,ptr,size) \
736({ \
737 __typeof__(*(ptr)) __user *__pu_addr = (ptr); \
738 __typeof__(*(ptr)) __pu_val = (x); \
739 int __pu_err = -EFAULT; \
740 \
741 if (likely(access_ok(VERIFY_WRITE, __pu_addr, size))) \
742 __put_user_unaligned_common(__pu_addr, size); \
743 \
744 __pu_err; \
745})
746
747#define __put_user_unaligned_asm(insn, ptr) \
748{ \
749 __asm__ __volatile__( \
750 "1: " insn " %z2, %3 # __put_user_unaligned_asm\n" \
751 "2: \n" \
752 " .insn \n" \
753 " .section .fixup,\"ax\" \n" \
754 "3: li %0, %4 \n" \
755 " j 2b \n" \
756 " .previous \n" \
757 " .section __ex_table,\"a\" \n" \
758 " " __UA_ADDR " 1b, 3b \n" \
759 " .previous \n" \
760 : "=r" (__pu_err) \
761 : "0" (0), "Jr" (__pu_val), "o" (__m(ptr)), \
762 "i" (-EFAULT)); \
763}
764
765#define __put_user_unaligned_asm_ll32(ptr) \
766{ \
767 __asm__ __volatile__( \
768 "1: sw %2, (%3) # __put_user_unaligned_asm_ll32 \n" \
769 "2: sw %D2, 4(%3) \n" \
770 "3: \n" \
771 " .insn \n" \
772 " .section .fixup,\"ax\" \n" \
773 "4: li %0, %4 \n" \
774 " j 3b \n" \
775 " .previous \n" \
776 " .section __ex_table,\"a\" \n" \
777 " " __UA_ADDR " 1b, 4b \n" \
778 " " __UA_ADDR " 1b + 4, 4b \n" \
779 " " __UA_ADDR " 2b, 4b \n" \
780 " " __UA_ADDR " 2b + 4, 4b \n" \
781 " .previous" \
782 : "=r" (__pu_err) \
783 : "0" (0), "r" (__pu_val), "r" (ptr), \
784 "i" (-EFAULT)); \
785}
786
787extern void __put_user_unaligned_unknown(void);
788#endif
789
790/*
791 * We're generating jump to subroutines which will be outside the range of
792 * jump instructions
793 */
794#ifdef MODULE
795#define __MODULE_JAL(destination) \
796 ".set\tnoat\n\t" \
797 __UA_LA "\t$1, " #destination "\n\t" \
798 "jalr\t$1\n\t" \
799 ".set\tat\n\t"
800#else
801#define __MODULE_JAL(destination) \
802 "jal\t" #destination "\n\t"
803#endif
804
805#if defined(CONFIG_CPU_DADDI_WORKAROUNDS) || (defined(CONFIG_EVA) && \
806 defined(CONFIG_CPU_HAS_PREFETCH))
807#define DADDI_SCRATCH "$3"
808#else
809#define DADDI_SCRATCH "$0"
810#endif
811
812extern size_t __copy_user(void *__to, const void *__from, size_t __n);
813
814#ifndef CONFIG_EVA
815#define __invoke_copy_to_user(to, from, n) \
816({ \
817 register void __user *__cu_to_r __asm__("$4"); \
818 register const void *__cu_from_r __asm__("$5"); \
819 register long __cu_len_r __asm__("$6"); \
820 \
821 __cu_to_r = (to); \
822 __cu_from_r = (from); \
823 __cu_len_r = (n); \
824 __asm__ __volatile__( \
825 __MODULE_JAL(__copy_user) \
826 : "+r" (__cu_to_r), "+r" (__cu_from_r), "+r" (__cu_len_r) \
827 : \
828 : "$8", "$9", "$10", "$11", "$12", "$14", "$15", "$24", "$31", \
829 DADDI_SCRATCH, "memory"); \
830 __cu_len_r; \
831})
832
833#define __invoke_copy_to_kernel(to, from, n) \
834 __invoke_copy_to_user(to, from, n)
835
836#endif
837
838/*
839 * __copy_to_user: - Copy a block of data into user space, with less checking.
840 * @to: Destination address, in user space.
841 * @from: Source address, in kernel space.
842 * @n: Number of bytes to copy.
843 *
844 * Context: User context only. This function may sleep if pagefaults are
845 * enabled.
846 *
847 * Copy data from kernel space to user space. Caller must check
848 * the specified block with access_ok() before calling this function.
849 *
850 * Returns number of bytes that could not be copied.
851 * On success, this will be zero.
852 */
853#define __copy_to_user(to, from, n) \
854({ \
855 void __user *__cu_to; \
856 const void *__cu_from; \
857 long __cu_len; \
858 \
859 __cu_to = (to); \
860 __cu_from = (from); \
861 __cu_len = (n); \
862 \
863 check_object_size(__cu_from, __cu_len, true); \
864 might_fault(); \
865 \
866 if (eva_kernel_access()) \
867 __cu_len = __invoke_copy_to_kernel(__cu_to, __cu_from, \
868 __cu_len); \
869 else \
870 __cu_len = __invoke_copy_to_user(__cu_to, __cu_from, \
871 __cu_len); \
872 __cu_len; \
873})
874
875extern size_t __copy_user_inatomic(void *__to, const void *__from, size_t __n);
876
877#define __copy_to_user_inatomic(to, from, n) \
878({ \
879 void __user *__cu_to; \
880 const void *__cu_from; \
881 long __cu_len; \
882 \
883 __cu_to = (to); \
884 __cu_from = (from); \
885 __cu_len = (n); \
886 \
887 check_object_size(__cu_from, __cu_len, true); \
888 \
889 if (eva_kernel_access()) \
890 __cu_len = __invoke_copy_to_kernel(__cu_to, __cu_from, \
891 __cu_len); \
892 else \
893 __cu_len = __invoke_copy_to_user(__cu_to, __cu_from, \
894 __cu_len); \
895 __cu_len; \
896})
897
898#define __copy_from_user_inatomic(to, from, n) \
899({ \
900 void *__cu_to; \
901 const void __user *__cu_from; \
902 long __cu_len; \
903 \
904 __cu_to = (to); \
905 __cu_from = (from); \
906 __cu_len = (n); \
907 \
908 check_object_size(__cu_to, __cu_len, false); \
909 \
910 if (eva_kernel_access()) \
911 __cu_len = __invoke_copy_from_kernel_inatomic(__cu_to, \
912 __cu_from,\
913 __cu_len);\
914 else \
915 __cu_len = __invoke_copy_from_user_inatomic(__cu_to, \
916 __cu_from, \
917 __cu_len); \
918 __cu_len; \
919})
920
921/*
922 * copy_to_user: - Copy a block of data into user space.
923 * @to: Destination address, in user space.
924 * @from: Source address, in kernel space.
925 * @n: Number of bytes to copy.
926 *
927 * Context: User context only. This function may sleep if pagefaults are
928 * enabled.
929 *
930 * Copy data from kernel space to user space.
931 *
932 * Returns number of bytes that could not be copied.
933 * On success, this will be zero.
934 */
935#define copy_to_user(to, from, n) \
936({ \
937 void __user *__cu_to; \
938 const void *__cu_from; \
939 long __cu_len; \
940 \
941 __cu_to = (to); \
942 __cu_from = (from); \
943 __cu_len = (n); \
944 \
945 check_object_size(__cu_from, __cu_len, true); \
946 \
947 if (eva_kernel_access()) { \
948 __cu_len = __invoke_copy_to_kernel(__cu_to, \
949 __cu_from, \
950 __cu_len); \
951 } else { \
952 if (access_ok(VERIFY_WRITE, __cu_to, __cu_len)) { \
953 might_fault(); \
954 __cu_len = __invoke_copy_to_user(__cu_to, \
955 __cu_from, \
956 __cu_len); \
957 } \
958 } \
959 __cu_len; \
960})
961
962#ifndef CONFIG_EVA
963
964#define __invoke_copy_from_user(to, from, n) \
965({ \
966 register void *__cu_to_r __asm__("$4"); \
967 register const void __user *__cu_from_r __asm__("$5"); \
968 register long __cu_len_r __asm__("$6"); \
969 \
970 __cu_to_r = (to); \
971 __cu_from_r = (from); \
972 __cu_len_r = (n); \
973 __asm__ __volatile__( \
974 ".set\tnoreorder\n\t" \
975 __MODULE_JAL(__copy_user) \
976 ".set\tnoat\n\t" \
977 __UA_ADDU "\t$1, %1, %2\n\t" \
978 ".set\tat\n\t" \
979 ".set\treorder" \
980 : "+r" (__cu_to_r), "+r" (__cu_from_r), "+r" (__cu_len_r) \
981 : \
982 : "$8", "$9", "$10", "$11", "$12", "$14", "$15", "$24", "$31", \
983 DADDI_SCRATCH, "memory"); \
984 __cu_len_r; \
985})
986
987#define __invoke_copy_from_kernel(to, from, n) \
988 __invoke_copy_from_user(to, from, n)
989
990/* For userland <-> userland operations */
991#define ___invoke_copy_in_user(to, from, n) \
992 __invoke_copy_from_user(to, from, n)
993
994/* For kernel <-> kernel operations */
995#define ___invoke_copy_in_kernel(to, from, n) \
996 __invoke_copy_from_user(to, from, n)
997
998#define __invoke_copy_from_user_inatomic(to, from, n) \
999({ \
1000 register void *__cu_to_r __asm__("$4"); \
1001 register const void __user *__cu_from_r __asm__("$5"); \
1002 register long __cu_len_r __asm__("$6"); \
1003 \
1004 __cu_to_r = (to); \
1005 __cu_from_r = (from); \
1006 __cu_len_r = (n); \
1007 __asm__ __volatile__( \
1008 ".set\tnoreorder\n\t" \
1009 __MODULE_JAL(__copy_user_inatomic) \
1010 ".set\tnoat\n\t" \
1011 __UA_ADDU "\t$1, %1, %2\n\t" \
1012 ".set\tat\n\t" \
1013 ".set\treorder" \
1014 : "+r" (__cu_to_r), "+r" (__cu_from_r), "+r" (__cu_len_r) \
1015 : \
1016 : "$8", "$9", "$10", "$11", "$12", "$14", "$15", "$24", "$31", \
1017 DADDI_SCRATCH, "memory"); \
1018 __cu_len_r; \
1019})
1020
1021#define __invoke_copy_from_kernel_inatomic(to, from, n) \
1022 __invoke_copy_from_user_inatomic(to, from, n) \
1023
1024#else
1025
1026/* EVA specific functions */
1027
1028extern size_t __copy_user_inatomic_eva(void *__to, const void *__from,
1029 size_t __n);
1030extern size_t __copy_from_user_eva(void *__to, const void *__from,
1031 size_t __n);
1032extern size_t __copy_to_user_eva(void *__to, const void *__from,
1033 size_t __n);
1034extern size_t __copy_in_user_eva(void *__to, const void *__from, size_t __n);
1035
1036#define __invoke_copy_from_user_eva_generic(to, from, n, func_ptr) \
1037({ \
1038 register void *__cu_to_r __asm__("$4"); \
1039 register const void __user *__cu_from_r __asm__("$5"); \
1040 register long __cu_len_r __asm__("$6"); \
1041 \
1042 __cu_to_r = (to); \
1043 __cu_from_r = (from); \
1044 __cu_len_r = (n); \
1045 __asm__ __volatile__( \
1046 ".set\tnoreorder\n\t" \
1047 __MODULE_JAL(func_ptr) \
1048 ".set\tnoat\n\t" \
1049 __UA_ADDU "\t$1, %1, %2\n\t" \
1050 ".set\tat\n\t" \
1051 ".set\treorder" \
1052 : "+r" (__cu_to_r), "+r" (__cu_from_r), "+r" (__cu_len_r) \
1053 : \
1054 : "$8", "$9", "$10", "$11", "$12", "$14", "$15", "$24", "$31", \
1055 DADDI_SCRATCH, "memory"); \
1056 __cu_len_r; \
1057})
1058
1059#define __invoke_copy_to_user_eva_generic(to, from, n, func_ptr) \
1060({ \
1061 register void *__cu_to_r __asm__("$4"); \
1062 register const void __user *__cu_from_r __asm__("$5"); \
1063 register long __cu_len_r __asm__("$6"); \
1064 \
1065 __cu_to_r = (to); \
1066 __cu_from_r = (from); \
1067 __cu_len_r = (n); \
1068 __asm__ __volatile__( \
1069 __MODULE_JAL(func_ptr) \
1070 : "+r" (__cu_to_r), "+r" (__cu_from_r), "+r" (__cu_len_r) \
1071 : \
1072 : "$8", "$9", "$10", "$11", "$12", "$14", "$15", "$24", "$31", \
1073 DADDI_SCRATCH, "memory"); \
1074 __cu_len_r; \
1075})
1076
1077/*
1078 * Source or destination address is in userland. We need to go through
1079 * the TLB
1080 */
1081#define __invoke_copy_from_user(to, from, n) \
1082 __invoke_copy_from_user_eva_generic(to, from, n, __copy_from_user_eva)
1083
1084#define __invoke_copy_from_user_inatomic(to, from, n) \
1085 __invoke_copy_from_user_eva_generic(to, from, n, \
1086 __copy_user_inatomic_eva)
1087
1088#define __invoke_copy_to_user(to, from, n) \
1089 __invoke_copy_to_user_eva_generic(to, from, n, __copy_to_user_eva)
1090
1091#define ___invoke_copy_in_user(to, from, n) \
1092 __invoke_copy_from_user_eva_generic(to, from, n, __copy_in_user_eva)
1093
1094/*
1095 * Source or destination address in the kernel. We are not going through
1096 * the TLB
1097 */
1098#define __invoke_copy_from_kernel(to, from, n) \
1099 __invoke_copy_from_user_eva_generic(to, from, n, __copy_user)
1100
1101#define __invoke_copy_from_kernel_inatomic(to, from, n) \
1102 __invoke_copy_from_user_eva_generic(to, from, n, __copy_user_inatomic)
1103
1104#define __invoke_copy_to_kernel(to, from, n) \
1105 __invoke_copy_to_user_eva_generic(to, from, n, __copy_user)
1106
1107#define ___invoke_copy_in_kernel(to, from, n) \
1108 __invoke_copy_from_user_eva_generic(to, from, n, __copy_user)
1109
1110#endif /* CONFIG_EVA */
1111
1112/*
1113 * __copy_from_user: - Copy a block of data from user space, with less checking.
1114 * @to: Destination address, in kernel space.
1115 * @from: Source address, in user space.
1116 * @n: Number of bytes to copy.
1117 *
1118 * Context: User context only. This function may sleep if pagefaults are
1119 * enabled.
1120 *
1121 * Copy data from user space to kernel space. Caller must check
1122 * the specified block with access_ok() before calling this function.
1123 *
1124 * Returns number of bytes that could not be copied.
1125 * On success, this will be zero.
1126 *
1127 * If some data could not be copied, this function will pad the copied
1128 * data to the requested size using zero bytes.
1129 */
1130#define __copy_from_user(to, from, n) \
1131({ \
1132 void *__cu_to; \
1133 const void __user *__cu_from; \
1134 long __cu_len; \
1135 \
1136 __cu_to = (to); \
1137 __cu_from = (from); \
1138 __cu_len = (n); \
1139 \
1140 check_object_size(__cu_to, __cu_len, false); \
1141 \
1142 if (eva_kernel_access()) { \
1143 __cu_len = __invoke_copy_from_kernel(__cu_to, \
1144 __cu_from, \
1145 __cu_len); \
1146 } else { \
1147 might_fault(); \
1148 __cu_len = __invoke_copy_from_user(__cu_to, __cu_from, \
1149 __cu_len); \
1150 } \
1151 __cu_len; \
1152})
1153
1154/*
1155 * copy_from_user: - Copy a block of data from user space.
1156 * @to: Destination address, in kernel space.
1157 * @from: Source address, in user space.
1158 * @n: Number of bytes to copy.
1159 *
1160 * Context: User context only. This function may sleep if pagefaults are
1161 * enabled.
1162 *
1163 * Copy data from user space to kernel space.
1164 *
1165 * Returns number of bytes that could not be copied.
1166 * On success, this will be zero.
1167 *
1168 * If some data could not be copied, this function will pad the copied
1169 * data to the requested size using zero bytes.
1170 */
1171#define copy_from_user(to, from, n) \
1172({ \
1173 void *__cu_to; \
1174 const void __user *__cu_from; \
1175 long __cu_len; \
1176 \
1177 __cu_to = (to); \
1178 __cu_from = (from); \
1179 __cu_len = (n); \
1180 \
1181 check_object_size(__cu_to, __cu_len, false); \
1182 \
1183 if (eva_kernel_access()) { \
1184 __cu_len = __invoke_copy_from_kernel(__cu_to, \
1185 __cu_from, \
1186 __cu_len); \
1187 } else { \
1188 if (access_ok(VERIFY_READ, __cu_from, __cu_len)) { \
1189 might_fault(); \
1190 __cu_len = __invoke_copy_from_user(__cu_to, \
1191 __cu_from, \
1192 __cu_len); \
1193 } else { \
1194 memset(__cu_to, 0, __cu_len); \
1195 } \
1196 } \
1197 __cu_len; \
1198})
1199
1200#define __copy_in_user(to, from, n) \
1201({ \
1202 void __user *__cu_to; \
1203 const void __user *__cu_from; \
1204 long __cu_len; \
1205 \
1206 __cu_to = (to); \
1207 __cu_from = (from); \
1208 __cu_len = (n); \
1209 if (eva_kernel_access()) { \
1210 __cu_len = ___invoke_copy_in_kernel(__cu_to, __cu_from, \
1211 __cu_len); \
1212 } else { \
1213 might_fault(); \
1214 __cu_len = ___invoke_copy_in_user(__cu_to, __cu_from, \
1215 __cu_len); \
1216 } \
1217 __cu_len; \
1218})
1219
1220#define copy_in_user(to, from, n) \
1221({ \
1222 void __user *__cu_to; \
1223 const void __user *__cu_from; \
1224 long __cu_len; \
1225 \
1226 __cu_to = (to); \
1227 __cu_from = (from); \
1228 __cu_len = (n); \
1229 if (eva_kernel_access()) { \
1230 __cu_len = ___invoke_copy_in_kernel(__cu_to,__cu_from, \
1231 __cu_len); \
1232 } else { \
1233 if (likely(access_ok(VERIFY_READ, __cu_from, __cu_len) &&\
1234 access_ok(VERIFY_WRITE, __cu_to, __cu_len))) {\
1235 might_fault(); \
1236 __cu_len = ___invoke_copy_in_user(__cu_to, \
1237 __cu_from, \
1238 __cu_len); \
1239 } \
1240 } \
1241 __cu_len; \
1242})
1243
1244/*
1245 * __clear_user: - Zero a block of memory in user space, with less checking.
1246 * @to: Destination address, in user space.
1247 * @n: Number of bytes to zero.
1248 *
1249 * Zero a block of memory in user space. Caller must check
1250 * the specified block with access_ok() before calling this function.
1251 *
1252 * Returns number of bytes that could not be cleared.
1253 * On success, this will be zero.
1254 */
1255static inline __kernel_size_t
1256__clear_user(void __user *addr, __kernel_size_t size)
1257{
1258 __kernel_size_t res;
1259
1260 if (eva_kernel_access()) {
1261 __asm__ __volatile__(
1262 "move\t$4, %1\n\t"
1263 "move\t$5, $0\n\t"
1264 "move\t$6, %2\n\t"
1265 __MODULE_JAL(__bzero_kernel)
1266 "move\t%0, $6"
1267 : "=r" (res)
1268 : "r" (addr), "r" (size)
1269 : "$4", "$5", "$6", __UA_t0, __UA_t1, "$31");
1270 } else {
1271 might_fault();
1272 __asm__ __volatile__(
1273 "move\t$4, %1\n\t"
1274 "move\t$5, $0\n\t"
1275 "move\t$6, %2\n\t"
1276 __MODULE_JAL(__bzero)
1277 "move\t%0, $6"
1278 : "=r" (res)
1279 : "r" (addr), "r" (size)
1280 : "$4", "$5", "$6", __UA_t0, __UA_t1, "$31");
1281 }
1282
1283 return res;
1284}
1285
1286#define clear_user(addr,n) \
1287({ \
1288 void __user * __cl_addr = (addr); \
1289 unsigned long __cl_size = (n); \
1290 if (__cl_size && access_ok(VERIFY_WRITE, \
1291 __cl_addr, __cl_size)) \
1292 __cl_size = __clear_user(__cl_addr, __cl_size); \
1293 __cl_size; \
1294})
1295
1296/*
1297 * __strncpy_from_user: - Copy a NUL terminated string from userspace, with less checking.
1298 * @dst: Destination address, in kernel space. This buffer must be at
1299 * least @count bytes long.
1300 * @src: Source address, in user space.
1301 * @count: Maximum number of bytes to copy, including the trailing NUL.
1302 *
1303 * Copies a NUL-terminated string from userspace to kernel space.
1304 * Caller must check the specified block with access_ok() before calling
1305 * this function.
1306 *
1307 * On success, returns the length of the string (not including the trailing
1308 * NUL).
1309 *
1310 * If access to userspace fails, returns -EFAULT (some data may have been
1311 * copied).
1312 *
1313 * If @count is smaller than the length of the string, copies @count bytes
1314 * and returns @count.
1315 */
1316static inline long
1317__strncpy_from_user(char *__to, const char __user *__from, long __len)
1318{
1319 long res;
1320
1321 if (eva_kernel_access()) {
1322 __asm__ __volatile__(
1323 "move\t$4, %1\n\t"
1324 "move\t$5, %2\n\t"
1325 "move\t$6, %3\n\t"
1326 __MODULE_JAL(__strncpy_from_kernel_nocheck_asm)
1327 "move\t%0, $2"
1328 : "=r" (res)
1329 : "r" (__to), "r" (__from), "r" (__len)
1330 : "$2", "$3", "$4", "$5", "$6", __UA_t0, "$31", "memory");
1331 } else {
1332 might_fault();
1333 __asm__ __volatile__(
1334 "move\t$4, %1\n\t"
1335 "move\t$5, %2\n\t"
1336 "move\t$6, %3\n\t"
1337 __MODULE_JAL(__strncpy_from_user_nocheck_asm)
1338 "move\t%0, $2"
1339 : "=r" (res)
1340 : "r" (__to), "r" (__from), "r" (__len)
1341 : "$2", "$3", "$4", "$5", "$6", __UA_t0, "$31", "memory");
1342 }
1343
1344 return res;
1345}
1346
1347/*
1348 * strncpy_from_user: - Copy a NUL terminated string from userspace.
1349 * @dst: Destination address, in kernel space. This buffer must be at
1350 * least @count bytes long.
1351 * @src: Source address, in user space.
1352 * @count: Maximum number of bytes to copy, including the trailing NUL.
1353 *
1354 * Copies a NUL-terminated string from userspace to kernel space.
1355 *
1356 * On success, returns the length of the string (not including the trailing
1357 * NUL).
1358 *
1359 * If access to userspace fails, returns -EFAULT (some data may have been
1360 * copied).
1361 *
1362 * If @count is smaller than the length of the string, copies @count bytes
1363 * and returns @count.
1364 */
1365static inline long
1366strncpy_from_user(char *__to, const char __user *__from, long __len)
1367{
1368 long res;
1369
1370 if (eva_kernel_access()) {
1371 __asm__ __volatile__(
1372 "move\t$4, %1\n\t"
1373 "move\t$5, %2\n\t"
1374 "move\t$6, %3\n\t"
1375 __MODULE_JAL(__strncpy_from_kernel_asm)
1376 "move\t%0, $2"
1377 : "=r" (res)
1378 : "r" (__to), "r" (__from), "r" (__len)
1379 : "$2", "$3", "$4", "$5", "$6", __UA_t0, "$31", "memory");
1380 } else {
1381 might_fault();
1382 __asm__ __volatile__(
1383 "move\t$4, %1\n\t"
1384 "move\t$5, %2\n\t"
1385 "move\t$6, %3\n\t"
1386 __MODULE_JAL(__strncpy_from_user_asm)
1387 "move\t%0, $2"
1388 : "=r" (res)
1389 : "r" (__to), "r" (__from), "r" (__len)
1390 : "$2", "$3", "$4", "$5", "$6", __UA_t0, "$31", "memory");
1391 }
1392
1393 return res;
1394}
1395
1396/*
1397 * strlen_user: - Get the size of a string in user space.
1398 * @str: The string to measure.
1399 *
1400 * Context: User context only. This function may sleep if pagefaults are
1401 * enabled.
1402 *
1403 * Get the size of a NUL-terminated string in user space.
1404 *
1405 * Returns the size of the string INCLUDING the terminating NUL.
1406 * On exception, returns 0.
1407 *
1408 * If there is a limit on the length of a valid string, you may wish to
1409 * consider using strnlen_user() instead.
1410 */
1411static inline long strlen_user(const char __user *s)
1412{
1413 long res;
1414
1415 if (eva_kernel_access()) {
1416 __asm__ __volatile__(
1417 "move\t$4, %1\n\t"
1418 __MODULE_JAL(__strlen_kernel_asm)
1419 "move\t%0, $2"
1420 : "=r" (res)
1421 : "r" (s)
1422 : "$2", "$4", __UA_t0, "$31");
1423 } else {
1424 might_fault();
1425 __asm__ __volatile__(
1426 "move\t$4, %1\n\t"
1427 __MODULE_JAL(__strlen_user_asm)
1428 "move\t%0, $2"
1429 : "=r" (res)
1430 : "r" (s)
1431 : "$2", "$4", __UA_t0, "$31");
1432 }
1433
1434 return res;
1435}
1436
1437/* Returns: 0 if bad, string length+1 (memory size) of string if ok */
1438static inline long __strnlen_user(const char __user *s, long n)
1439{
1440 long res;
1441
1442 if (eva_kernel_access()) {
1443 __asm__ __volatile__(
1444 "move\t$4, %1\n\t"
1445 "move\t$5, %2\n\t"
1446 __MODULE_JAL(__strnlen_kernel_nocheck_asm)
1447 "move\t%0, $2"
1448 : "=r" (res)
1449 : "r" (s), "r" (n)
1450 : "$2", "$4", "$5", __UA_t0, "$31");
1451 } else {
1452 might_fault();
1453 __asm__ __volatile__(
1454 "move\t$4, %1\n\t"
1455 "move\t$5, %2\n\t"
1456 __MODULE_JAL(__strnlen_user_nocheck_asm)
1457 "move\t%0, $2"
1458 : "=r" (res)
1459 : "r" (s), "r" (n)
1460 : "$2", "$4", "$5", __UA_t0, "$31");
1461 }
1462
1463 return res;
1464}
1465
1466/*
1467 * strnlen_user: - Get the size of a string in user space.
1468 * @str: The string to measure.
1469 *
1470 * Context: User context only. This function may sleep if pagefaults are
1471 * enabled.
1472 *
1473 * Get the size of a NUL-terminated string in user space.
1474 *
1475 * Returns the size of the string INCLUDING the terminating NUL.
1476 * On exception, returns 0.
1477 * If the string is too long, returns a value greater than @n.
1478 */
1479static inline long strnlen_user(const char __user *s, long n)
1480{
1481 long res;
1482
1483 might_fault();
1484 if (eva_kernel_access()) {
1485 __asm__ __volatile__(
1486 "move\t$4, %1\n\t"
1487 "move\t$5, %2\n\t"
1488 __MODULE_JAL(__strnlen_kernel_asm)
1489 "move\t%0, $2"
1490 : "=r" (res)
1491 : "r" (s), "r" (n)
1492 : "$2", "$4", "$5", __UA_t0, "$31");
1493 } else {
1494 __asm__ __volatile__(
1495 "move\t$4, %1\n\t"
1496 "move\t$5, %2\n\t"
1497 __MODULE_JAL(__strnlen_user_asm)
1498 "move\t%0, $2"
1499 : "=r" (res)
1500 : "r" (s), "r" (n)
1501 : "$2", "$4", "$5", __UA_t0, "$31");
1502 }
1503
1504 return res;
1505}
1506
1507#endif /* _ASM_UACCESS_H */