Linux Audio

Check our new training course

Loading...
v3.15
   1/*
   2 * This file is subject to the terms and conditions of the GNU General Public
   3 * License.  See the file "COPYING" in the main directory of this archive
   4 * for more details.
   5 *
   6 * Copyright (C) 1996, 1997, 1998, 1999, 2000, 03, 04 by Ralf Baechle
   7 * Copyright (C) 1999, 2000 Silicon Graphics, Inc.
   8 * Copyright (C) 2007  Maciej W. Rozycki
   9 * Copyright (C) 2014, Imagination Technologies Ltd.
  10 */
  11#ifndef _ASM_UACCESS_H
  12#define _ASM_UACCESS_H
  13
  14#include <linux/kernel.h>
  15#include <linux/errno.h>
  16#include <linux/thread_info.h>
 
  17#include <asm/asm-eva.h>
 
  18
  19/*
  20 * The fs value determines whether argument validity checking should be
  21 * performed or not.  If get_fs() == USER_DS, checking is performed, with
  22 * get_fs() == KERNEL_DS, checking is bypassed.
  23 *
  24 * For historical reasons, these macros are grossly misnamed.
  25 */
  26#ifdef CONFIG_32BIT
  27
  28#ifdef CONFIG_KVM_GUEST
  29#define __UA_LIMIT 0x40000000UL
  30#else
  31#define __UA_LIMIT 0x80000000UL
  32#endif
  33
  34#define __UA_ADDR	".word"
  35#define __UA_LA		"la"
  36#define __UA_ADDU	"addu"
  37#define __UA_t0		"$8"
  38#define __UA_t1		"$9"
  39
  40#endif /* CONFIG_32BIT */
  41
  42#ifdef CONFIG_64BIT
  43
  44extern u64 __ua_limit;
  45
  46#define __UA_LIMIT	__ua_limit
  47
  48#define __UA_ADDR	".dword"
  49#define __UA_LA		"dla"
  50#define __UA_ADDU	"daddu"
  51#define __UA_t0		"$12"
  52#define __UA_t1		"$13"
  53
  54#endif /* CONFIG_64BIT */
  55
  56/*
  57 * USER_DS is a bitmask that has the bits set that may not be set in a valid
  58 * userspace address.  Note that we limit 32-bit userspace to 0x7fff8000 but
  59 * the arithmetic we're doing only works if the limit is a power of two, so
  60 * we use 0x80000000 here on 32-bit kernels.  If a process passes an invalid
  61 * address in this range it's the process's problem, not ours :-)
  62 */
  63
  64#ifdef CONFIG_KVM_GUEST
  65#define KERNEL_DS	((mm_segment_t) { 0x80000000UL })
  66#define USER_DS		((mm_segment_t) { 0xC0000000UL })
  67#else
  68#define KERNEL_DS	((mm_segment_t) { 0UL })
  69#define USER_DS		((mm_segment_t) { __UA_LIMIT })
  70#endif
  71
  72#define VERIFY_READ    0
  73#define VERIFY_WRITE   1
  74
  75#define get_ds()	(KERNEL_DS)
  76#define get_fs()	(current_thread_info()->addr_limit)
  77#define set_fs(x)	(current_thread_info()->addr_limit = (x))
  78
  79#define segment_eq(a, b)	((a).seg == (b).seg)
  80
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  81
  82/*
  83 * Is a address valid? This does a straighforward calculation rather
  84 * than tests.
  85 *
  86 * Address valid if:
  87 *  - "addr" doesn't have any high-bits set
  88 *  - AND "size" doesn't have any high-bits set
  89 *  - AND "addr+size" doesn't have any high-bits set
  90 *  - OR we are in kernel mode.
  91 *
  92 * __ua_size() is a trick to avoid runtime checking of positive constant
  93 * sizes; for those we already know at compile time that the size is ok.
  94 */
  95#define __ua_size(size)							\
  96	((__builtin_constant_p(size) && (signed long) (size) > 0) ? 0 : (size))
  97
  98/*
  99 * access_ok: - Checks if a user space pointer is valid
 100 * @type: Type of access: %VERIFY_READ or %VERIFY_WRITE.  Note that
 101 *	  %VERIFY_WRITE is a superset of %VERIFY_READ - if it is safe
 102 *	  to write to a block, it is always safe to read from it.
 103 * @addr: User space pointer to start of block to check
 104 * @size: Size of block to check
 105 *
 106 * Context: User context only.	This function may sleep.
 
 107 *
 108 * Checks if a pointer to a block of memory in user space is valid.
 109 *
 110 * Returns true (nonzero) if the memory block may be valid, false (zero)
 111 * if it is definitely invalid.
 112 *
 113 * Note that, depending on architecture, this function probably just
 114 * checks that the pointer is in the user space range - after calling
 115 * this function, memory access functions may still return -EFAULT.
 116 */
 117
 118#define __access_mask get_fs().seg
 119
 120#define __access_ok(addr, size, mask)					\
 121({									\
 122	unsigned long __addr = (unsigned long) (addr);			\
 123	unsigned long __size = size;					\
 124	unsigned long __mask = mask;					\
 125	unsigned long __ok;						\
 126									\
 127	__chk_user_ptr(addr);						\
 128	__ok = (signed long)(__mask & (__addr | (__addr + __size) |	\
 129		__ua_size(__size)));					\
 130	__ok == 0;							\
 131})
 132
 133#define access_ok(type, addr, size)					\
 134	likely(__access_ok((addr), (size), __access_mask))
 135
 136/*
 137 * put_user: - Write a simple value into user space.
 138 * @x:	 Value to copy to user space.
 139 * @ptr: Destination address, in user space.
 140 *
 141 * Context: User context only.	This function may sleep.
 
 142 *
 143 * This macro copies a single simple value from kernel space to user
 144 * space.  It supports simple types like char and int, but not larger
 145 * data types like structures or arrays.
 146 *
 147 * @ptr must have pointer-to-simple-variable type, and @x must be assignable
 148 * to the result of dereferencing @ptr.
 149 *
 150 * Returns zero on success, or -EFAULT on error.
 151 */
 152#define put_user(x,ptr) \
 153	__put_user_check((x), (ptr), sizeof(*(ptr)))
 154
 155/*
 156 * get_user: - Get a simple variable from user space.
 157 * @x:	 Variable to store result.
 158 * @ptr: Source address, in user space.
 159 *
 160 * Context: User context only.	This function may sleep.
 
 161 *
 162 * This macro copies a single simple variable from user space to kernel
 163 * space.  It supports simple types like char and int, but not larger
 164 * data types like structures or arrays.
 165 *
 166 * @ptr must have pointer-to-simple-variable type, and the result of
 167 * dereferencing @ptr must be assignable to @x without a cast.
 168 *
 169 * Returns zero on success, or -EFAULT on error.
 170 * On error, the variable @x is set to zero.
 171 */
 172#define get_user(x,ptr) \
 173	__get_user_check((x), (ptr), sizeof(*(ptr)))
 174
 175/*
 176 * __put_user: - Write a simple value into user space, with less checking.
 177 * @x:	 Value to copy to user space.
 178 * @ptr: Destination address, in user space.
 179 *
 180 * Context: User context only.	This function may sleep.
 
 181 *
 182 * This macro copies a single simple value from kernel space to user
 183 * space.  It supports simple types like char and int, but not larger
 184 * data types like structures or arrays.
 185 *
 186 * @ptr must have pointer-to-simple-variable type, and @x must be assignable
 187 * to the result of dereferencing @ptr.
 188 *
 189 * Caller must check the pointer with access_ok() before calling this
 190 * function.
 191 *
 192 * Returns zero on success, or -EFAULT on error.
 193 */
 194#define __put_user(x,ptr) \
 195	__put_user_nocheck((x), (ptr), sizeof(*(ptr)))
 196
 197/*
 198 * __get_user: - Get a simple variable from user space, with less checking.
 199 * @x:	 Variable to store result.
 200 * @ptr: Source address, in user space.
 201 *
 202 * Context: User context only.	This function may sleep.
 
 203 *
 204 * This macro copies a single simple variable from user space to kernel
 205 * space.  It supports simple types like char and int, but not larger
 206 * data types like structures or arrays.
 207 *
 208 * @ptr must have pointer-to-simple-variable type, and the result of
 209 * dereferencing @ptr must be assignable to @x without a cast.
 210 *
 211 * Caller must check the pointer with access_ok() before calling this
 212 * function.
 213 *
 214 * Returns zero on success, or -EFAULT on error.
 215 * On error, the variable @x is set to zero.
 216 */
 217#define __get_user(x,ptr) \
 218	__get_user_nocheck((x), (ptr), sizeof(*(ptr)))
 219
 220struct __large_struct { unsigned long buf[100]; };
 221#define __m(x) (*(struct __large_struct __user *)(x))
 222
 223/*
 224 * Yuck.  We need two variants, one for 64bit operation and one
 225 * for 32 bit mode and old iron.
 226 */
 227#ifndef CONFIG_EVA
 228#define __get_kernel_common(val, size, ptr) __get_user_common(val, size, ptr)
 229#else
 230/*
 231 * Kernel specific functions for EVA. We need to use normal load instructions
 232 * to read data from kernel when operating in EVA mode. We use these macros to
 233 * avoid redefining __get_user_asm for EVA.
 234 */
 235#undef _loadd
 236#undef _loadw
 237#undef _loadh
 238#undef _loadb
 239#ifdef CONFIG_32BIT
 240#define _loadd			_loadw
 241#else
 242#define _loadd(reg, addr)	"ld " reg ", " addr
 243#endif
 244#define _loadw(reg, addr)	"lw " reg ", " addr
 245#define _loadh(reg, addr)	"lh " reg ", " addr
 246#define _loadb(reg, addr)	"lb " reg ", " addr
 247
 248#define __get_kernel_common(val, size, ptr)				\
 249do {									\
 250	switch (size) {							\
 251	case 1: __get_data_asm(val, _loadb, ptr); break;		\
 252	case 2: __get_data_asm(val, _loadh, ptr); break;		\
 253	case 4: __get_data_asm(val, _loadw, ptr); break;		\
 254	case 8: __GET_DW(val, _loadd, ptr); break;			\
 255	default: __get_user_unknown(); break;				\
 256	}								\
 257} while (0)
 258#endif
 259
 260#ifdef CONFIG_32BIT
 261#define __GET_DW(val, insn, ptr) __get_data_asm_ll32(val, insn, ptr)
 262#endif
 263#ifdef CONFIG_64BIT
 264#define __GET_DW(val, insn, ptr) __get_data_asm(val, insn, ptr)
 265#endif
 266
 267extern void __get_user_unknown(void);
 268
 269#define __get_user_common(val, size, ptr)				\
 270do {									\
 271	switch (size) {							\
 272	case 1: __get_data_asm(val, user_lb, ptr); break;		\
 273	case 2: __get_data_asm(val, user_lh, ptr); break;		\
 274	case 4: __get_data_asm(val, user_lw, ptr); break;		\
 275	case 8: __GET_DW(val, user_ld, ptr); break;			\
 276	default: __get_user_unknown(); break;				\
 277	}								\
 278} while (0)
 279
 280#define __get_user_nocheck(x, ptr, size)				\
 281({									\
 282	int __gu_err;							\
 283									\
 284	if (segment_eq(get_fs(), get_ds())) {				\
 285		__get_kernel_common((x), size, ptr);			\
 286	} else {							\
 287		__chk_user_ptr(ptr);					\
 288		__get_user_common((x), size, ptr);			\
 289	}								\
 290	__gu_err;							\
 291})
 292
 293#define __get_user_check(x, ptr, size)					\
 294({									\
 295	int __gu_err = -EFAULT;						\
 296	const __typeof__(*(ptr)) __user * __gu_ptr = (ptr);		\
 297									\
 298	might_fault();							\
 299	if (likely(access_ok(VERIFY_READ,  __gu_ptr, size))) {		\
 300		if (segment_eq(get_fs(), get_ds()))			\
 301			__get_kernel_common((x), size, __gu_ptr);	\
 302		else							\
 303			__get_user_common((x), size, __gu_ptr);		\
 304	}								\
 
 305									\
 306	__gu_err;							\
 307})
 308
 309#define __get_data_asm(val, insn, addr)					\
 310{									\
 311	long __gu_tmp;							\
 312									\
 313	__asm__ __volatile__(						\
 314	"1:	"insn("%1", "%3")"				\n"	\
 315	"2:							\n"	\
 316	"	.insn						\n"	\
 317	"	.section .fixup,\"ax\"				\n"	\
 318	"3:	li	%0, %4					\n"	\
 
 319	"	j	2b					\n"	\
 320	"	.previous					\n"	\
 321	"	.section __ex_table,\"a\"			\n"	\
 322	"	"__UA_ADDR "\t1b, 3b				\n"	\
 323	"	.previous					\n"	\
 324	: "=r" (__gu_err), "=r" (__gu_tmp)				\
 325	: "0" (0), "o" (__m(addr)), "i" (-EFAULT));			\
 326									\
 327	(val) = (__typeof__(*(addr))) __gu_tmp;				\
 328}
 329
 330/*
 331 * Get a long long 64 using 32 bit registers.
 332 */
 333#define __get_data_asm_ll32(val, insn, addr)				\
 334{									\
 335	union {								\
 336		unsigned long long	l;				\
 337		__typeof__(*(addr))	t;				\
 338	} __gu_tmp;							\
 339									\
 340	__asm__ __volatile__(						\
 341	"1:	" insn("%1", "(%3)")"				\n"	\
 342	"2:	" insn("%D1", "4(%3)")"				\n"	\
 343	"3:							\n"	\
 344	"	.insn						\n"	\
 345	"	.section	.fixup,\"ax\"			\n"	\
 346	"4:	li	%0, %4					\n"	\
 347	"	move	%1, $0					\n"	\
 348	"	move	%D1, $0					\n"	\
 349	"	j	3b					\n"	\
 350	"	.previous					\n"	\
 351	"	.section	__ex_table,\"a\"		\n"	\
 352	"	" __UA_ADDR "	1b, 4b				\n"	\
 353	"	" __UA_ADDR "	2b, 4b				\n"	\
 354	"	.previous					\n"	\
 355	: "=r" (__gu_err), "=&r" (__gu_tmp.l)				\
 356	: "0" (0), "r" (addr), "i" (-EFAULT));				\
 357									\
 358	(val) = __gu_tmp.t;						\
 359}
 360
 361#ifndef CONFIG_EVA
 362#define __put_kernel_common(ptr, size) __put_user_common(ptr, size)
 363#else
 364/*
 365 * Kernel specific functions for EVA. We need to use normal load instructions
 366 * to read data from kernel when operating in EVA mode. We use these macros to
 367 * avoid redefining __get_data_asm for EVA.
 368 */
 369#undef _stored
 370#undef _storew
 371#undef _storeh
 372#undef _storeb
 373#ifdef CONFIG_32BIT
 374#define _stored			_storew
 375#else
 376#define _stored(reg, addr)	"ld " reg ", " addr
 377#endif
 378
 379#define _storew(reg, addr)	"sw " reg ", " addr
 380#define _storeh(reg, addr)	"sh " reg ", " addr
 381#define _storeb(reg, addr)	"sb " reg ", " addr
 382
 383#define __put_kernel_common(ptr, size)					\
 384do {									\
 385	switch (size) {							\
 386	case 1: __put_data_asm(_storeb, ptr); break;			\
 387	case 2: __put_data_asm(_storeh, ptr); break;			\
 388	case 4: __put_data_asm(_storew, ptr); break;			\
 389	case 8: __PUT_DW(_stored, ptr); break;				\
 390	default: __put_user_unknown(); break;				\
 391	}								\
 392} while(0)
 393#endif
 394
 395/*
 396 * Yuck.  We need two variants, one for 64bit operation and one
 397 * for 32 bit mode and old iron.
 398 */
 399#ifdef CONFIG_32BIT
 400#define __PUT_DW(insn, ptr) __put_data_asm_ll32(insn, ptr)
 401#endif
 402#ifdef CONFIG_64BIT
 403#define __PUT_DW(insn, ptr) __put_data_asm(insn, ptr)
 404#endif
 405
 406#define __put_user_common(ptr, size)					\
 407do {									\
 408	switch (size) {							\
 409	case 1: __put_data_asm(user_sb, ptr); break;			\
 410	case 2: __put_data_asm(user_sh, ptr); break;			\
 411	case 4: __put_data_asm(user_sw, ptr); break;			\
 412	case 8: __PUT_DW(user_sd, ptr); break;				\
 413	default: __put_user_unknown(); break;				\
 414	}								\
 415} while (0)
 416
 417#define __put_user_nocheck(x, ptr, size)				\
 418({									\
 419	__typeof__(*(ptr)) __pu_val;					\
 420	int __pu_err = 0;						\
 421									\
 422	__pu_val = (x);							\
 423	if (segment_eq(get_fs(), get_ds())) {				\
 424		__put_kernel_common(ptr, size);				\
 425	} else {							\
 426		__chk_user_ptr(ptr);					\
 427		__put_user_common(ptr, size);				\
 428	}								\
 429	__pu_err;							\
 430})
 431
 432#define __put_user_check(x, ptr, size)					\
 433({									\
 434	__typeof__(*(ptr)) __user *__pu_addr = (ptr);			\
 435	__typeof__(*(ptr)) __pu_val = (x);				\
 436	int __pu_err = -EFAULT;						\
 437									\
 438	might_fault();							\
 439	if (likely(access_ok(VERIFY_WRITE,  __pu_addr, size))) {	\
 440		if (segment_eq(get_fs(), get_ds()))			\
 441			__put_kernel_common(__pu_addr, size);		\
 442		else							\
 443			__put_user_common(__pu_addr, size);		\
 444	}								\
 445									\
 446	__pu_err;							\
 447})
 448
 449#define __put_data_asm(insn, ptr)					\
 450{									\
 451	__asm__ __volatile__(						\
 452	"1:	"insn("%z2", "%3")"	# __put_data_asm	\n"	\
 453	"2:							\n"	\
 454	"	.insn						\n"	\
 455	"	.section	.fixup,\"ax\"			\n"	\
 456	"3:	li	%0, %4					\n"	\
 457	"	j	2b					\n"	\
 458	"	.previous					\n"	\
 459	"	.section	__ex_table,\"a\"		\n"	\
 460	"	" __UA_ADDR "	1b, 3b				\n"	\
 461	"	.previous					\n"	\
 462	: "=r" (__pu_err)						\
 463	: "0" (0), "Jr" (__pu_val), "o" (__m(ptr)),			\
 464	  "i" (-EFAULT));						\
 465}
 466
 467#define __put_data_asm_ll32(insn, ptr)					\
 468{									\
 469	__asm__ __volatile__(						\
 470	"1:	"insn("%2", "(%3)")"	# __put_data_asm_ll32	\n"	\
 471	"2:	"insn("%D2", "4(%3)")"				\n"	\
 472	"3:							\n"	\
 473	"	.insn						\n"	\
 474	"	.section	.fixup,\"ax\"			\n"	\
 475	"4:	li	%0, %4					\n"	\
 476	"	j	3b					\n"	\
 477	"	.previous					\n"	\
 478	"	.section	__ex_table,\"a\"		\n"	\
 479	"	" __UA_ADDR "	1b, 4b				\n"	\
 480	"	" __UA_ADDR "	2b, 4b				\n"	\
 481	"	.previous"						\
 482	: "=r" (__pu_err)						\
 483	: "0" (0), "r" (__pu_val), "r" (ptr),				\
 484	  "i" (-EFAULT));						\
 485}
 486
 487extern void __put_user_unknown(void);
 488
 489/*
 490 * ul{b,h,w} are macros and there are no equivalent macros for EVA.
 491 * EVA unaligned access is handled in the ADE exception handler.
 492 */
 493#ifndef CONFIG_EVA
 494/*
 495 * put_user_unaligned: - Write a simple value into user space.
 496 * @x:	 Value to copy to user space.
 497 * @ptr: Destination address, in user space.
 498 *
 499 * Context: User context only.	This function may sleep.
 
 500 *
 501 * This macro copies a single simple value from kernel space to user
 502 * space.  It supports simple types like char and int, but not larger
 503 * data types like structures or arrays.
 504 *
 505 * @ptr must have pointer-to-simple-variable type, and @x must be assignable
 506 * to the result of dereferencing @ptr.
 507 *
 508 * Returns zero on success, or -EFAULT on error.
 509 */
 510#define put_user_unaligned(x,ptr)	\
 511	__put_user_unaligned_check((x),(ptr),sizeof(*(ptr)))
 512
 513/*
 514 * get_user_unaligned: - Get a simple variable from user space.
 515 * @x:	 Variable to store result.
 516 * @ptr: Source address, in user space.
 517 *
 518 * Context: User context only.	This function may sleep.
 
 519 *
 520 * This macro copies a single simple variable from user space to kernel
 521 * space.  It supports simple types like char and int, but not larger
 522 * data types like structures or arrays.
 523 *
 524 * @ptr must have pointer-to-simple-variable type, and the result of
 525 * dereferencing @ptr must be assignable to @x without a cast.
 526 *
 527 * Returns zero on success, or -EFAULT on error.
 528 * On error, the variable @x is set to zero.
 529 */
 530#define get_user_unaligned(x,ptr) \
 531	__get_user_unaligned_check((x),(ptr),sizeof(*(ptr)))
 532
 533/*
 534 * __put_user_unaligned: - Write a simple value into user space, with less checking.
 535 * @x:	 Value to copy to user space.
 536 * @ptr: Destination address, in user space.
 537 *
 538 * Context: User context only.	This function may sleep.
 
 539 *
 540 * This macro copies a single simple value from kernel space to user
 541 * space.  It supports simple types like char and int, but not larger
 542 * data types like structures or arrays.
 543 *
 544 * @ptr must have pointer-to-simple-variable type, and @x must be assignable
 545 * to the result of dereferencing @ptr.
 546 *
 547 * Caller must check the pointer with access_ok() before calling this
 548 * function.
 549 *
 550 * Returns zero on success, or -EFAULT on error.
 551 */
 552#define __put_user_unaligned(x,ptr) \
 553	__put_user_unaligned_nocheck((x),(ptr),sizeof(*(ptr)))
 554
 555/*
 556 * __get_user_unaligned: - Get a simple variable from user space, with less checking.
 557 * @x:	 Variable to store result.
 558 * @ptr: Source address, in user space.
 559 *
 560 * Context: User context only.	This function may sleep.
 
 561 *
 562 * This macro copies a single simple variable from user space to kernel
 563 * space.  It supports simple types like char and int, but not larger
 564 * data types like structures or arrays.
 565 *
 566 * @ptr must have pointer-to-simple-variable type, and the result of
 567 * dereferencing @ptr must be assignable to @x without a cast.
 568 *
 569 * Caller must check the pointer with access_ok() before calling this
 570 * function.
 571 *
 572 * Returns zero on success, or -EFAULT on error.
 573 * On error, the variable @x is set to zero.
 574 */
 575#define __get_user_unaligned(x,ptr) \
 576	__get_user__unalignednocheck((x),(ptr),sizeof(*(ptr)))
 577
 578/*
 579 * Yuck.  We need two variants, one for 64bit operation and one
 580 * for 32 bit mode and old iron.
 581 */
 582#ifdef CONFIG_32BIT
 583#define __GET_USER_UNALIGNED_DW(val, ptr)				\
 584	__get_user_unaligned_asm_ll32(val, ptr)
 585#endif
 586#ifdef CONFIG_64BIT
 587#define __GET_USER_UNALIGNED_DW(val, ptr)				\
 588	__get_user_unaligned_asm(val, "uld", ptr)
 589#endif
 590
 591extern void __get_user_unaligned_unknown(void);
 592
 593#define __get_user_unaligned_common(val, size, ptr)			\
 594do {									\
 595	switch (size) {							\
 596	case 1: __get_data_asm(val, "lb", ptr); break;			\
 597	case 2: __get_user_unaligned_asm(val, "ulh", ptr); break;	\
 598	case 4: __get_user_unaligned_asm(val, "ulw", ptr); break;	\
 599	case 8: __GET_USER_UNALIGNED_DW(val, ptr); break;		\
 600	default: __get_user_unaligned_unknown(); break;			\
 601	}								\
 602} while (0)
 603
 604#define __get_user_unaligned_nocheck(x,ptr,size)			\
 605({									\
 606	int __gu_err;							\
 607									\
 608	__get_user_unaligned_common((x), size, ptr);			\
 609	__gu_err;							\
 610})
 611
 612#define __get_user_unaligned_check(x,ptr,size)				\
 613({									\
 614	int __gu_err = -EFAULT;						\
 615	const __typeof__(*(ptr)) __user * __gu_ptr = (ptr);		\
 616									\
 617	if (likely(access_ok(VERIFY_READ,  __gu_ptr, size)))		\
 618		__get_user_unaligned_common((x), size, __gu_ptr);	\
 619									\
 620	__gu_err;							\
 621})
 622
 623#define __get_data_unaligned_asm(val, insn, addr)			\
 624{									\
 625	long __gu_tmp;							\
 626									\
 627	__asm__ __volatile__(						\
 628	"1:	" insn "	%1, %3				\n"	\
 629	"2:							\n"	\
 630	"	.insn						\n"	\
 631	"	.section .fixup,\"ax\"				\n"	\
 632	"3:	li	%0, %4					\n"	\
 
 633	"	j	2b					\n"	\
 634	"	.previous					\n"	\
 635	"	.section __ex_table,\"a\"			\n"	\
 636	"	"__UA_ADDR "\t1b, 3b				\n"	\
 637	"	"__UA_ADDR "\t1b + 4, 3b			\n"	\
 638	"	.previous					\n"	\
 639	: "=r" (__gu_err), "=r" (__gu_tmp)				\
 640	: "0" (0), "o" (__m(addr)), "i" (-EFAULT));			\
 641									\
 642	(val) = (__typeof__(*(addr))) __gu_tmp;				\
 643}
 644
 645/*
 646 * Get a long long 64 using 32 bit registers.
 647 */
 648#define __get_user_unaligned_asm_ll32(val, addr)			\
 649{									\
 650	unsigned long long __gu_tmp;					\
 651									\
 652	__asm__ __volatile__(						\
 653	"1:	ulw	%1, (%3)				\n"	\
 654	"2:	ulw	%D1, 4(%3)				\n"	\
 655	"	move	%0, $0					\n"	\
 656	"3:							\n"	\
 657	"	.insn						\n"	\
 658	"	.section	.fixup,\"ax\"			\n"	\
 659	"4:	li	%0, %4					\n"	\
 660	"	move	%1, $0					\n"	\
 661	"	move	%D1, $0					\n"	\
 662	"	j	3b					\n"	\
 663	"	.previous					\n"	\
 664	"	.section	__ex_table,\"a\"		\n"	\
 665	"	" __UA_ADDR "	1b, 4b				\n"	\
 666	"	" __UA_ADDR "	1b + 4, 4b			\n"	\
 667	"	" __UA_ADDR "	2b, 4b				\n"	\
 668	"	" __UA_ADDR "	2b + 4, 4b			\n"	\
 669	"	.previous					\n"	\
 670	: "=r" (__gu_err), "=&r" (__gu_tmp)				\
 671	: "0" (0), "r" (addr), "i" (-EFAULT));				\
 672	(val) = (__typeof__(*(addr))) __gu_tmp;				\
 673}
 674
 675/*
 676 * Yuck.  We need two variants, one for 64bit operation and one
 677 * for 32 bit mode and old iron.
 678 */
 679#ifdef CONFIG_32BIT
 680#define __PUT_USER_UNALIGNED_DW(ptr) __put_user_unaligned_asm_ll32(ptr)
 681#endif
 682#ifdef CONFIG_64BIT
 683#define __PUT_USER_UNALIGNED_DW(ptr) __put_user_unaligned_asm("usd", ptr)
 684#endif
 685
 686#define __put_user_unaligned_common(ptr, size)				\
 687do {									\
 688	switch (size) {							\
 689	case 1: __put_data_asm("sb", ptr); break;			\
 690	case 2: __put_user_unaligned_asm("ush", ptr); break;		\
 691	case 4: __put_user_unaligned_asm("usw", ptr); break;		\
 692	case 8: __PUT_USER_UNALIGNED_DW(ptr); break;			\
 693	default: __put_user_unaligned_unknown(); break;			\
 694} while (0)
 695
 696#define __put_user_unaligned_nocheck(x,ptr,size)			\
 697({									\
 698	__typeof__(*(ptr)) __pu_val;					\
 699	int __pu_err = 0;						\
 700									\
 701	__pu_val = (x);							\
 702	__put_user_unaligned_common(ptr, size);				\
 703	__pu_err;							\
 704})
 705
 706#define __put_user_unaligned_check(x,ptr,size)				\
 707({									\
 708	__typeof__(*(ptr)) __user *__pu_addr = (ptr);			\
 709	__typeof__(*(ptr)) __pu_val = (x);				\
 710	int __pu_err = -EFAULT;						\
 711									\
 712	if (likely(access_ok(VERIFY_WRITE,  __pu_addr, size)))		\
 713		__put_user_unaligned_common(__pu_addr, size);		\
 714									\
 715	__pu_err;							\
 716})
 717
 718#define __put_user_unaligned_asm(insn, ptr)				\
 719{									\
 720	__asm__ __volatile__(						\
 721	"1:	" insn "	%z2, %3		# __put_user_unaligned_asm\n" \
 722	"2:							\n"	\
 723	"	.insn						\n"	\
 724	"	.section	.fixup,\"ax\"			\n"	\
 725	"3:	li	%0, %4					\n"	\
 726	"	j	2b					\n"	\
 727	"	.previous					\n"	\
 728	"	.section	__ex_table,\"a\"		\n"	\
 729	"	" __UA_ADDR "	1b, 3b				\n"	\
 730	"	.previous					\n"	\
 731	: "=r" (__pu_err)						\
 732	: "0" (0), "Jr" (__pu_val), "o" (__m(ptr)),			\
 733	  "i" (-EFAULT));						\
 734}
 735
 736#define __put_user_unaligned_asm_ll32(ptr)				\
 737{									\
 738	__asm__ __volatile__(						\
 739	"1:	sw	%2, (%3)	# __put_user_unaligned_asm_ll32 \n" \
 740	"2:	sw	%D2, 4(%3)				\n"	\
 741	"3:							\n"	\
 742	"	.insn						\n"	\
 743	"	.section	.fixup,\"ax\"			\n"	\
 744	"4:	li	%0, %4					\n"	\
 745	"	j	3b					\n"	\
 746	"	.previous					\n"	\
 747	"	.section	__ex_table,\"a\"		\n"	\
 748	"	" __UA_ADDR "	1b, 4b				\n"	\
 749	"	" __UA_ADDR "	1b + 4, 4b			\n"	\
 750	"	" __UA_ADDR "	2b, 4b				\n"	\
 751	"	" __UA_ADDR "	2b + 4, 4b			\n"	\
 752	"	.previous"						\
 753	: "=r" (__pu_err)						\
 754	: "0" (0), "r" (__pu_val), "r" (ptr),				\
 755	  "i" (-EFAULT));						\
 756}
 757
 758extern void __put_user_unaligned_unknown(void);
 759#endif
 760
 761/*
 762 * We're generating jump to subroutines which will be outside the range of
 763 * jump instructions
 764 */
 765#ifdef MODULE
 766#define __MODULE_JAL(destination)					\
 767	".set\tnoat\n\t"						\
 768	__UA_LA "\t$1, " #destination "\n\t"				\
 769	"jalr\t$1\n\t"							\
 770	".set\tat\n\t"
 771#else
 772#define __MODULE_JAL(destination)					\
 773	"jal\t" #destination "\n\t"
 774#endif
 775
 776#ifndef CONFIG_CPU_DADDI_WORKAROUNDS
 777#define DADDI_SCRATCH "$0"
 778#else
 779#define DADDI_SCRATCH "$3"
 
 
 780#endif
 781
 782extern size_t __copy_user(void *__to, const void *__from, size_t __n);
 783
 784#ifndef CONFIG_EVA
 785#define __invoke_copy_to_user(to, from, n)				\
 786({									\
 787	register void __user *__cu_to_r __asm__("$4");			\
 788	register const void *__cu_from_r __asm__("$5");			\
 789	register long __cu_len_r __asm__("$6");				\
 790									\
 791	__cu_to_r = (to);						\
 792	__cu_from_r = (from);						\
 793	__cu_len_r = (n);						\
 794	__asm__ __volatile__(						\
 795	__MODULE_JAL(__copy_user)					\
 796	: "+r" (__cu_to_r), "+r" (__cu_from_r), "+r" (__cu_len_r)	\
 797	:								\
 798	: "$8", "$9", "$10", "$11", "$12", "$14", "$15", "$24", "$31",	\
 799	  DADDI_SCRATCH, "memory");					\
 800	__cu_len_r;							\
 801})
 802
 803#define __invoke_copy_to_kernel(to, from, n)				\
 804	__invoke_copy_to_user(to, from, n)
 805
 806#endif
 807
 808/*
 809 * __copy_to_user: - Copy a block of data into user space, with less checking.
 810 * @to:	  Destination address, in user space.
 811 * @from: Source address, in kernel space.
 812 * @n:	  Number of bytes to copy.
 813 *
 814 * Context: User context only.	This function may sleep.
 
 815 *
 816 * Copy data from kernel space to user space.  Caller must check
 817 * the specified block with access_ok() before calling this function.
 818 *
 819 * Returns number of bytes that could not be copied.
 820 * On success, this will be zero.
 821 */
 822#define __copy_to_user(to, from, n)					\
 823({									\
 824	void __user *__cu_to;						\
 825	const void *__cu_from;						\
 826	long __cu_len;							\
 827									\
 828	__cu_to = (to);							\
 829	__cu_from = (from);						\
 830	__cu_len = (n);							\
 
 
 831	might_fault();							\
 832	if (segment_eq(get_fs(), get_ds()))				\
 
 833		__cu_len = __invoke_copy_to_kernel(__cu_to, __cu_from,	\
 834						   __cu_len);		\
 835	else								\
 836		__cu_len = __invoke_copy_to_user(__cu_to, __cu_from,	\
 837						 __cu_len);		\
 838	__cu_len;							\
 839})
 840
 841extern size_t __copy_user_inatomic(void *__to, const void *__from, size_t __n);
 842
 843#define __copy_to_user_inatomic(to, from, n)				\
 844({									\
 845	void __user *__cu_to;						\
 846	const void *__cu_from;						\
 847	long __cu_len;							\
 848									\
 849	__cu_to = (to);							\
 850	__cu_from = (from);						\
 851	__cu_len = (n);							\
 852	if (segment_eq(get_fs(), get_ds()))				\
 
 
 
 853		__cu_len = __invoke_copy_to_kernel(__cu_to, __cu_from,	\
 854						   __cu_len);		\
 855	else								\
 856		__cu_len = __invoke_copy_to_user(__cu_to, __cu_from,	\
 857						 __cu_len);		\
 858	__cu_len;							\
 859})
 860
 861#define __copy_from_user_inatomic(to, from, n)				\
 862({									\
 863	void *__cu_to;							\
 864	const void __user *__cu_from;					\
 865	long __cu_len;							\
 866									\
 867	__cu_to = (to);							\
 868	__cu_from = (from);						\
 869	__cu_len = (n);							\
 870	if (segment_eq(get_fs(), get_ds()))				\
 
 
 
 871		__cu_len = __invoke_copy_from_kernel_inatomic(__cu_to,	\
 872							      __cu_from,\
 873							      __cu_len);\
 874	else								\
 875		__cu_len = __invoke_copy_from_user_inatomic(__cu_to,	\
 876							    __cu_from,	\
 877							    __cu_len);	\
 878	__cu_len;							\
 879})
 880
 881/*
 882 * copy_to_user: - Copy a block of data into user space.
 883 * @to:	  Destination address, in user space.
 884 * @from: Source address, in kernel space.
 885 * @n:	  Number of bytes to copy.
 886 *
 887 * Context: User context only.	This function may sleep.
 
 888 *
 889 * Copy data from kernel space to user space.
 890 *
 891 * Returns number of bytes that could not be copied.
 892 * On success, this will be zero.
 893 */
 894#define copy_to_user(to, from, n)					\
 895({									\
 896	void __user *__cu_to;						\
 897	const void *__cu_from;						\
 898	long __cu_len;							\
 899									\
 900	__cu_to = (to);							\
 901	__cu_from = (from);						\
 902	__cu_len = (n);							\
 903	if (segment_eq(get_fs(), get_ds())) {				\
 
 
 
 904		__cu_len = __invoke_copy_to_kernel(__cu_to,		\
 905						   __cu_from,		\
 906						   __cu_len);		\
 907	} else {							\
 908		if (access_ok(VERIFY_WRITE, __cu_to, __cu_len)) {       \
 909			might_fault();                                  \
 910			__cu_len = __invoke_copy_to_user(__cu_to,	\
 911							 __cu_from,	\
 912							 __cu_len);     \
 913		}							\
 914	}								\
 915	__cu_len;							\
 916})
 917
 918#ifndef CONFIG_EVA
 919
 920#define __invoke_copy_from_user(to, from, n)				\
 921({									\
 922	register void *__cu_to_r __asm__("$4");				\
 923	register const void __user *__cu_from_r __asm__("$5");		\
 924	register long __cu_len_r __asm__("$6");				\
 925									\
 926	__cu_to_r = (to);						\
 927	__cu_from_r = (from);						\
 928	__cu_len_r = (n);						\
 929	__asm__ __volatile__(						\
 930	".set\tnoreorder\n\t"						\
 931	__MODULE_JAL(__copy_user)					\
 932	".set\tnoat\n\t"						\
 933	__UA_ADDU "\t$1, %1, %2\n\t"					\
 934	".set\tat\n\t"							\
 935	".set\treorder"							\
 936	: "+r" (__cu_to_r), "+r" (__cu_from_r), "+r" (__cu_len_r)	\
 937	:								\
 938	: "$8", "$9", "$10", "$11", "$12", "$14", "$15", "$24", "$31",	\
 939	  DADDI_SCRATCH, "memory");					\
 940	__cu_len_r;							\
 941})
 942
 943#define __invoke_copy_from_kernel(to, from, n)				\
 944	__invoke_copy_from_user(to, from, n)
 945
 946/* For userland <-> userland operations */
 947#define ___invoke_copy_in_user(to, from, n)				\
 948	__invoke_copy_from_user(to, from, n)
 949
 950/* For kernel <-> kernel operations */
 951#define ___invoke_copy_in_kernel(to, from, n)				\
 952	__invoke_copy_from_user(to, from, n)
 953
 954#define __invoke_copy_from_user_inatomic(to, from, n)			\
 955({									\
 956	register void *__cu_to_r __asm__("$4");				\
 957	register const void __user *__cu_from_r __asm__("$5");		\
 958	register long __cu_len_r __asm__("$6");				\
 959									\
 960	__cu_to_r = (to);						\
 961	__cu_from_r = (from);						\
 962	__cu_len_r = (n);						\
 963	__asm__ __volatile__(						\
 964	".set\tnoreorder\n\t"						\
 965	__MODULE_JAL(__copy_user_inatomic)				\
 966	".set\tnoat\n\t"						\
 967	__UA_ADDU "\t$1, %1, %2\n\t"					\
 968	".set\tat\n\t"							\
 969	".set\treorder"							\
 970	: "+r" (__cu_to_r), "+r" (__cu_from_r), "+r" (__cu_len_r)	\
 971	:								\
 972	: "$8", "$9", "$10", "$11", "$12", "$14", "$15", "$24", "$31",	\
 973	  DADDI_SCRATCH, "memory");					\
 974	__cu_len_r;							\
 975})
 976
 977#define __invoke_copy_from_kernel_inatomic(to, from, n)			\
 978	__invoke_copy_from_user_inatomic(to, from, n)			\
 979
 980#else
 981
 982/* EVA specific functions */
 983
 984extern size_t __copy_user_inatomic_eva(void *__to, const void *__from,
 985				       size_t __n);
 986extern size_t __copy_from_user_eva(void *__to, const void *__from,
 987				   size_t __n);
 988extern size_t __copy_to_user_eva(void *__to, const void *__from,
 989				 size_t __n);
 990extern size_t __copy_in_user_eva(void *__to, const void *__from, size_t __n);
 991
 992#define __invoke_copy_from_user_eva_generic(to, from, n, func_ptr)	\
 993({									\
 994	register void *__cu_to_r __asm__("$4");				\
 995	register const void __user *__cu_from_r __asm__("$5");		\
 996	register long __cu_len_r __asm__("$6");				\
 997									\
 998	__cu_to_r = (to);						\
 999	__cu_from_r = (from);						\
1000	__cu_len_r = (n);						\
1001	__asm__ __volatile__(						\
1002	".set\tnoreorder\n\t"						\
1003	__MODULE_JAL(func_ptr)						\
1004	".set\tnoat\n\t"						\
1005	__UA_ADDU "\t$1, %1, %2\n\t"					\
1006	".set\tat\n\t"							\
1007	".set\treorder"							\
1008	: "+r" (__cu_to_r), "+r" (__cu_from_r), "+r" (__cu_len_r)	\
1009	:								\
1010	: "$8", "$9", "$10", "$11", "$12", "$14", "$15", "$24", "$31",	\
1011	  DADDI_SCRATCH, "memory");					\
1012	__cu_len_r;							\
1013})
1014
1015#define __invoke_copy_to_user_eva_generic(to, from, n, func_ptr)	\
1016({									\
1017	register void *__cu_to_r __asm__("$4");				\
1018	register const void __user *__cu_from_r __asm__("$5");		\
1019	register long __cu_len_r __asm__("$6");				\
1020									\
1021	__cu_to_r = (to);						\
1022	__cu_from_r = (from);						\
1023	__cu_len_r = (n);						\
1024	__asm__ __volatile__(						\
1025	__MODULE_JAL(func_ptr)						\
1026	: "+r" (__cu_to_r), "+r" (__cu_from_r), "+r" (__cu_len_r)	\
1027	:								\
1028	: "$8", "$9", "$10", "$11", "$12", "$14", "$15", "$24", "$31",	\
1029	  DADDI_SCRATCH, "memory");					\
1030	__cu_len_r;							\
1031})
1032
1033/*
1034 * Source or destination address is in userland. We need to go through
1035 * the TLB
1036 */
1037#define __invoke_copy_from_user(to, from, n)				\
1038	__invoke_copy_from_user_eva_generic(to, from, n, __copy_from_user_eva)
1039
1040#define __invoke_copy_from_user_inatomic(to, from, n)			\
1041	__invoke_copy_from_user_eva_generic(to, from, n,		\
1042					    __copy_user_inatomic_eva)
1043
1044#define __invoke_copy_to_user(to, from, n)				\
1045	__invoke_copy_to_user_eva_generic(to, from, n, __copy_to_user_eva)
1046
1047#define ___invoke_copy_in_user(to, from, n)				\
1048	__invoke_copy_from_user_eva_generic(to, from, n, __copy_in_user_eva)
1049
1050/*
1051 * Source or destination address in the kernel. We are not going through
1052 * the TLB
1053 */
1054#define __invoke_copy_from_kernel(to, from, n)				\
1055	__invoke_copy_from_user_eva_generic(to, from, n, __copy_user)
1056
1057#define __invoke_copy_from_kernel_inatomic(to, from, n)			\
1058	__invoke_copy_from_user_eva_generic(to, from, n, __copy_user_inatomic)
1059
1060#define __invoke_copy_to_kernel(to, from, n)				\
1061	__invoke_copy_to_user_eva_generic(to, from, n, __copy_user)
1062
1063#define ___invoke_copy_in_kernel(to, from, n)				\
1064	__invoke_copy_from_user_eva_generic(to, from, n, __copy_user)
1065
1066#endif /* CONFIG_EVA */
1067
1068/*
1069 * __copy_from_user: - Copy a block of data from user space, with less checking.
1070 * @to:	  Destination address, in kernel space.
1071 * @from: Source address, in user space.
1072 * @n:	  Number of bytes to copy.
1073 *
1074 * Context: User context only.	This function may sleep.
 
1075 *
1076 * Copy data from user space to kernel space.  Caller must check
1077 * the specified block with access_ok() before calling this function.
1078 *
1079 * Returns number of bytes that could not be copied.
1080 * On success, this will be zero.
1081 *
1082 * If some data could not be copied, this function will pad the copied
1083 * data to the requested size using zero bytes.
1084 */
1085#define __copy_from_user(to, from, n)					\
1086({									\
1087	void *__cu_to;							\
1088	const void __user *__cu_from;					\
1089	long __cu_len;							\
1090									\
1091	__cu_to = (to);							\
1092	__cu_from = (from);						\
1093	__cu_len = (n);							\
1094	might_fault();							\
1095	__cu_len = __invoke_copy_from_user(__cu_to, __cu_from,		\
1096					   __cu_len);			\
 
 
 
 
 
 
 
 
 
1097	__cu_len;							\
1098})
1099
1100/*
1101 * copy_from_user: - Copy a block of data from user space.
1102 * @to:	  Destination address, in kernel space.
1103 * @from: Source address, in user space.
1104 * @n:	  Number of bytes to copy.
1105 *
1106 * Context: User context only.	This function may sleep.
 
1107 *
1108 * Copy data from user space to kernel space.
1109 *
1110 * Returns number of bytes that could not be copied.
1111 * On success, this will be zero.
1112 *
1113 * If some data could not be copied, this function will pad the copied
1114 * data to the requested size using zero bytes.
1115 */
1116#define copy_from_user(to, from, n)					\
1117({									\
1118	void *__cu_to;							\
1119	const void __user *__cu_from;					\
1120	long __cu_len;							\
1121									\
1122	__cu_to = (to);							\
1123	__cu_from = (from);						\
1124	__cu_len = (n);							\
1125	if (segment_eq(get_fs(), get_ds())) {				\
 
 
 
1126		__cu_len = __invoke_copy_from_kernel(__cu_to,		\
1127						     __cu_from,		\
1128						     __cu_len);		\
1129	} else {							\
1130		if (access_ok(VERIFY_READ, __cu_from, __cu_len)) {	\
1131			might_fault();                                  \
1132			__cu_len = __invoke_copy_from_user(__cu_to,	\
1133							   __cu_from,	\
1134							   __cu_len);   \
 
 
1135		}							\
1136	}								\
1137	__cu_len;							\
1138})
1139
1140#define __copy_in_user(to, from, n)					\
1141({									\
1142	void __user *__cu_to;						\
1143	const void __user *__cu_from;					\
1144	long __cu_len;							\
1145									\
1146	__cu_to = (to);							\
1147	__cu_from = (from);						\
1148	__cu_len = (n);							\
1149	if (segment_eq(get_fs(), get_ds())) {				\
1150		__cu_len = ___invoke_copy_in_kernel(__cu_to, __cu_from,	\
1151						    __cu_len);		\
1152	} else {							\
1153		might_fault();						\
1154		__cu_len = ___invoke_copy_in_user(__cu_to, __cu_from,	\
1155						  __cu_len);		\
1156	}								\
1157	__cu_len;							\
1158})
1159
1160#define copy_in_user(to, from, n)					\
1161({									\
1162	void __user *__cu_to;						\
1163	const void __user *__cu_from;					\
1164	long __cu_len;							\
1165									\
1166	__cu_to = (to);							\
1167	__cu_from = (from);						\
1168	__cu_len = (n);							\
1169	if (segment_eq(get_fs(), get_ds())) {				\
1170		__cu_len = ___invoke_copy_in_kernel(__cu_to,__cu_from,	\
1171						    __cu_len);		\
1172	} else {							\
1173		if (likely(access_ok(VERIFY_READ, __cu_from, __cu_len) &&\
1174			   access_ok(VERIFY_WRITE, __cu_to, __cu_len))) {\
1175			might_fault();					\
1176			__cu_len = ___invoke_copy_in_user(__cu_to,	\
1177							  __cu_from,	\
1178							  __cu_len);	\
1179		}							\
1180	}								\
1181	__cu_len;							\
1182})
1183
1184/*
1185 * __clear_user: - Zero a block of memory in user space, with less checking.
1186 * @to:	  Destination address, in user space.
1187 * @n:	  Number of bytes to zero.
1188 *
1189 * Zero a block of memory in user space.  Caller must check
1190 * the specified block with access_ok() before calling this function.
1191 *
1192 * Returns number of bytes that could not be cleared.
1193 * On success, this will be zero.
1194 */
1195static inline __kernel_size_t
1196__clear_user(void __user *addr, __kernel_size_t size)
1197{
1198	__kernel_size_t res;
1199
1200	might_fault();
1201	__asm__ __volatile__(
1202		"move\t$4, %1\n\t"
1203		"move\t$5, $0\n\t"
1204		"move\t$6, %2\n\t"
1205		__MODULE_JAL(__bzero)
1206		"move\t%0, $6"
1207		: "=r" (res)
1208		: "r" (addr), "r" (size)
1209		: "$4", "$5", "$6", __UA_t0, __UA_t1, "$31");
 
 
 
 
 
 
 
 
 
 
 
 
1210
1211	return res;
1212}
1213
1214#define clear_user(addr,n)						\
1215({									\
1216	void __user * __cl_addr = (addr);				\
1217	unsigned long __cl_size = (n);					\
1218	if (__cl_size && access_ok(VERIFY_WRITE,			\
1219					__cl_addr, __cl_size))		\
1220		__cl_size = __clear_user(__cl_addr, __cl_size);		\
1221	__cl_size;							\
1222})
1223
1224/*
1225 * __strncpy_from_user: - Copy a NUL terminated string from userspace, with less checking.
1226 * @dst:   Destination address, in kernel space.  This buffer must be at
1227 *	   least @count bytes long.
1228 * @src:   Source address, in user space.
1229 * @count: Maximum number of bytes to copy, including the trailing NUL.
1230 *
1231 * Copies a NUL-terminated string from userspace to kernel space.
1232 * Caller must check the specified block with access_ok() before calling
1233 * this function.
1234 *
1235 * On success, returns the length of the string (not including the trailing
1236 * NUL).
1237 *
1238 * If access to userspace fails, returns -EFAULT (some data may have been
1239 * copied).
1240 *
1241 * If @count is smaller than the length of the string, copies @count bytes
1242 * and returns @count.
1243 */
1244static inline long
1245__strncpy_from_user(char *__to, const char __user *__from, long __len)
1246{
1247	long res;
1248
1249	if (segment_eq(get_fs(), get_ds())) {
1250		__asm__ __volatile__(
1251			"move\t$4, %1\n\t"
1252			"move\t$5, %2\n\t"
1253			"move\t$6, %3\n\t"
1254			__MODULE_JAL(__strncpy_from_kernel_nocheck_asm)
1255			"move\t%0, $2"
1256			: "=r" (res)
1257			: "r" (__to), "r" (__from), "r" (__len)
1258			: "$2", "$3", "$4", "$5", "$6", __UA_t0, "$31", "memory");
1259	} else {
1260		might_fault();
1261		__asm__ __volatile__(
1262			"move\t$4, %1\n\t"
1263			"move\t$5, %2\n\t"
1264			"move\t$6, %3\n\t"
1265			__MODULE_JAL(__strncpy_from_user_nocheck_asm)
1266			"move\t%0, $2"
1267			: "=r" (res)
1268			: "r" (__to), "r" (__from), "r" (__len)
1269			: "$2", "$3", "$4", "$5", "$6", __UA_t0, "$31", "memory");
1270	}
1271
1272	return res;
1273}
1274
1275/*
1276 * strncpy_from_user: - Copy a NUL terminated string from userspace.
1277 * @dst:   Destination address, in kernel space.  This buffer must be at
1278 *	   least @count bytes long.
1279 * @src:   Source address, in user space.
1280 * @count: Maximum number of bytes to copy, including the trailing NUL.
1281 *
1282 * Copies a NUL-terminated string from userspace to kernel space.
1283 *
1284 * On success, returns the length of the string (not including the trailing
1285 * NUL).
1286 *
1287 * If access to userspace fails, returns -EFAULT (some data may have been
1288 * copied).
1289 *
1290 * If @count is smaller than the length of the string, copies @count bytes
1291 * and returns @count.
1292 */
1293static inline long
1294strncpy_from_user(char *__to, const char __user *__from, long __len)
1295{
1296	long res;
1297
1298	if (segment_eq(get_fs(), get_ds())) {
1299		__asm__ __volatile__(
1300			"move\t$4, %1\n\t"
1301			"move\t$5, %2\n\t"
1302			"move\t$6, %3\n\t"
1303			__MODULE_JAL(__strncpy_from_kernel_asm)
1304			"move\t%0, $2"
1305			: "=r" (res)
1306			: "r" (__to), "r" (__from), "r" (__len)
1307			: "$2", "$3", "$4", "$5", "$6", __UA_t0, "$31", "memory");
1308	} else {
1309		might_fault();
1310		__asm__ __volatile__(
1311			"move\t$4, %1\n\t"
1312			"move\t$5, %2\n\t"
1313			"move\t$6, %3\n\t"
1314			__MODULE_JAL(__strncpy_from_user_asm)
1315			"move\t%0, $2"
1316			: "=r" (res)
1317			: "r" (__to), "r" (__from), "r" (__len)
1318			: "$2", "$3", "$4", "$5", "$6", __UA_t0, "$31", "memory");
1319	}
1320
1321	return res;
1322}
1323
1324/* Returns: 0 if bad, string length+1 (memory size) of string if ok */
1325static inline long __strlen_user(const char __user *s)
1326{
1327	long res;
1328
1329	if (segment_eq(get_fs(), get_ds())) {
1330		__asm__ __volatile__(
1331			"move\t$4, %1\n\t"
1332			__MODULE_JAL(__strlen_kernel_nocheck_asm)
1333			"move\t%0, $2"
1334			: "=r" (res)
1335			: "r" (s)
1336			: "$2", "$4", __UA_t0, "$31");
1337	} else {
1338		might_fault();
1339		__asm__ __volatile__(
1340			"move\t$4, %1\n\t"
1341			__MODULE_JAL(__strlen_user_nocheck_asm)
1342			"move\t%0, $2"
1343			: "=r" (res)
1344			: "r" (s)
1345			: "$2", "$4", __UA_t0, "$31");
1346	}
1347
1348	return res;
1349}
1350
1351/*
1352 * strlen_user: - Get the size of a string in user space.
1353 * @str: The string to measure.
1354 *
1355 * Context: User context only.	This function may sleep.
 
1356 *
1357 * Get the size of a NUL-terminated string in user space.
1358 *
1359 * Returns the size of the string INCLUDING the terminating NUL.
1360 * On exception, returns 0.
1361 *
1362 * If there is a limit on the length of a valid string, you may wish to
1363 * consider using strnlen_user() instead.
1364 */
1365static inline long strlen_user(const char __user *s)
1366{
1367	long res;
1368
1369	if (segment_eq(get_fs(), get_ds())) {
1370		__asm__ __volatile__(
1371			"move\t$4, %1\n\t"
1372			__MODULE_JAL(__strlen_kernel_asm)
1373			"move\t%0, $2"
1374			: "=r" (res)
1375			: "r" (s)
1376			: "$2", "$4", __UA_t0, "$31");
1377	} else {
1378		might_fault();
1379		__asm__ __volatile__(
1380			"move\t$4, %1\n\t"
1381			__MODULE_JAL(__strlen_kernel_asm)
1382			"move\t%0, $2"
1383			: "=r" (res)
1384			: "r" (s)
1385			: "$2", "$4", __UA_t0, "$31");
1386	}
1387
1388	return res;
1389}
1390
1391/* Returns: 0 if bad, string length+1 (memory size) of string if ok */
1392static inline long __strnlen_user(const char __user *s, long n)
1393{
1394	long res;
1395
1396	if (segment_eq(get_fs(), get_ds())) {
1397		__asm__ __volatile__(
1398			"move\t$4, %1\n\t"
1399			"move\t$5, %2\n\t"
1400			__MODULE_JAL(__strnlen_kernel_nocheck_asm)
1401			"move\t%0, $2"
1402			: "=r" (res)
1403			: "r" (s), "r" (n)
1404			: "$2", "$4", "$5", __UA_t0, "$31");
1405	} else {
1406		might_fault();
1407		__asm__ __volatile__(
1408			"move\t$4, %1\n\t"
1409			"move\t$5, %2\n\t"
1410			__MODULE_JAL(__strnlen_user_nocheck_asm)
1411			"move\t%0, $2"
1412			: "=r" (res)
1413			: "r" (s), "r" (n)
1414			: "$2", "$4", "$5", __UA_t0, "$31");
1415	}
1416
1417	return res;
1418}
1419
1420/*
1421 * strlen_user: - Get the size of a string in user space.
1422 * @str: The string to measure.
1423 *
1424 * Context: User context only.	This function may sleep.
 
1425 *
1426 * Get the size of a NUL-terminated string in user space.
1427 *
1428 * Returns the size of the string INCLUDING the terminating NUL.
1429 * On exception, returns 0.
1430 *
1431 * If there is a limit on the length of a valid string, you may wish to
1432 * consider using strnlen_user() instead.
1433 */
1434static inline long strnlen_user(const char __user *s, long n)
1435{
1436	long res;
1437
1438	might_fault();
1439	if (segment_eq(get_fs(), get_ds())) {
1440		__asm__ __volatile__(
1441			"move\t$4, %1\n\t"
1442			"move\t$5, %2\n\t"
1443			__MODULE_JAL(__strnlen_kernel_asm)
1444			"move\t%0, $2"
1445			: "=r" (res)
1446			: "r" (s), "r" (n)
1447			: "$2", "$4", "$5", __UA_t0, "$31");
1448	} else {
1449		__asm__ __volatile__(
1450			"move\t$4, %1\n\t"
1451			"move\t$5, %2\n\t"
1452			__MODULE_JAL(__strnlen_user_asm)
1453			"move\t%0, $2"
1454			: "=r" (res)
1455			: "r" (s), "r" (n)
1456			: "$2", "$4", "$5", __UA_t0, "$31");
1457	}
1458
1459	return res;
1460}
1461
1462struct exception_table_entry
1463{
1464	unsigned long insn;
1465	unsigned long nextinsn;
1466};
1467
1468extern int fixup_exception(struct pt_regs *regs);
1469
1470#endif /* _ASM_UACCESS_H */
v4.10.11
   1/*
   2 * This file is subject to the terms and conditions of the GNU General Public
   3 * License.  See the file "COPYING" in the main directory of this archive
   4 * for more details.
   5 *
   6 * Copyright (C) 1996, 1997, 1998, 1999, 2000, 03, 04 by Ralf Baechle
   7 * Copyright (C) 1999, 2000 Silicon Graphics, Inc.
   8 * Copyright (C) 2007  Maciej W. Rozycki
   9 * Copyright (C) 2014, Imagination Technologies Ltd.
  10 */
  11#ifndef _ASM_UACCESS_H
  12#define _ASM_UACCESS_H
  13
  14#include <linux/kernel.h>
  15#include <linux/errno.h>
  16#include <linux/thread_info.h>
  17#include <linux/string.h>
  18#include <asm/asm-eva.h>
  19#include <asm/extable.h>
  20
  21/*
  22 * The fs value determines whether argument validity checking should be
  23 * performed or not.  If get_fs() == USER_DS, checking is performed, with
  24 * get_fs() == KERNEL_DS, checking is bypassed.
  25 *
  26 * For historical reasons, these macros are grossly misnamed.
  27 */
  28#ifdef CONFIG_32BIT
  29
  30#ifdef CONFIG_KVM_GUEST
  31#define __UA_LIMIT 0x40000000UL
  32#else
  33#define __UA_LIMIT 0x80000000UL
  34#endif
  35
  36#define __UA_ADDR	".word"
  37#define __UA_LA		"la"
  38#define __UA_ADDU	"addu"
  39#define __UA_t0		"$8"
  40#define __UA_t1		"$9"
  41
  42#endif /* CONFIG_32BIT */
  43
  44#ifdef CONFIG_64BIT
  45
  46extern u64 __ua_limit;
  47
  48#define __UA_LIMIT	__ua_limit
  49
  50#define __UA_ADDR	".dword"
  51#define __UA_LA		"dla"
  52#define __UA_ADDU	"daddu"
  53#define __UA_t0		"$12"
  54#define __UA_t1		"$13"
  55
  56#endif /* CONFIG_64BIT */
  57
  58/*
  59 * USER_DS is a bitmask that has the bits set that may not be set in a valid
  60 * userspace address.  Note that we limit 32-bit userspace to 0x7fff8000 but
  61 * the arithmetic we're doing only works if the limit is a power of two, so
  62 * we use 0x80000000 here on 32-bit kernels.  If a process passes an invalid
  63 * address in this range it's the process's problem, not ours :-)
  64 */
  65
  66#ifdef CONFIG_KVM_GUEST
  67#define KERNEL_DS	((mm_segment_t) { 0x80000000UL })
  68#define USER_DS		((mm_segment_t) { 0xC0000000UL })
  69#else
  70#define KERNEL_DS	((mm_segment_t) { 0UL })
  71#define USER_DS		((mm_segment_t) { __UA_LIMIT })
  72#endif
  73
  74#define VERIFY_READ    0
  75#define VERIFY_WRITE   1
  76
  77#define get_ds()	(KERNEL_DS)
  78#define get_fs()	(current_thread_info()->addr_limit)
  79#define set_fs(x)	(current_thread_info()->addr_limit = (x))
  80
  81#define segment_eq(a, b)	((a).seg == (b).seg)
  82
  83/*
  84 * eva_kernel_access() - determine whether kernel memory access on an EVA system
  85 *
  86 * Determines whether memory accesses should be performed to kernel memory
  87 * on a system using Extended Virtual Addressing (EVA).
  88 *
  89 * Return: true if a kernel memory access on an EVA system, else false.
  90 */
  91static inline bool eva_kernel_access(void)
  92{
  93	if (!IS_ENABLED(CONFIG_EVA))
  94		return false;
  95
  96	return segment_eq(get_fs(), get_ds());
  97}
  98
  99/*
 100 * Is a address valid? This does a straightforward calculation rather
 101 * than tests.
 102 *
 103 * Address valid if:
 104 *  - "addr" doesn't have any high-bits set
 105 *  - AND "size" doesn't have any high-bits set
 106 *  - AND "addr+size" doesn't have any high-bits set
 107 *  - OR we are in kernel mode.
 108 *
 109 * __ua_size() is a trick to avoid runtime checking of positive constant
 110 * sizes; for those we already know at compile time that the size is ok.
 111 */
 112#define __ua_size(size)							\
 113	((__builtin_constant_p(size) && (signed long) (size) > 0) ? 0 : (size))
 114
 115/*
 116 * access_ok: - Checks if a user space pointer is valid
 117 * @type: Type of access: %VERIFY_READ or %VERIFY_WRITE.  Note that
 118 *	  %VERIFY_WRITE is a superset of %VERIFY_READ - if it is safe
 119 *	  to write to a block, it is always safe to read from it.
 120 * @addr: User space pointer to start of block to check
 121 * @size: Size of block to check
 122 *
 123 * Context: User context only. This function may sleep if pagefaults are
 124 *          enabled.
 125 *
 126 * Checks if a pointer to a block of memory in user space is valid.
 127 *
 128 * Returns true (nonzero) if the memory block may be valid, false (zero)
 129 * if it is definitely invalid.
 130 *
 131 * Note that, depending on architecture, this function probably just
 132 * checks that the pointer is in the user space range - after calling
 133 * this function, memory access functions may still return -EFAULT.
 134 */
 135
 136#define __access_mask get_fs().seg
 137
 138#define __access_ok(addr, size, mask)					\
 139({									\
 140	unsigned long __addr = (unsigned long) (addr);			\
 141	unsigned long __size = size;					\
 142	unsigned long __mask = mask;					\
 143	unsigned long __ok;						\
 144									\
 145	__chk_user_ptr(addr);						\
 146	__ok = (signed long)(__mask & (__addr | (__addr + __size) |	\
 147		__ua_size(__size)));					\
 148	__ok == 0;							\
 149})
 150
 151#define access_ok(type, addr, size)					\
 152	likely(__access_ok((addr), (size), __access_mask))
 153
 154/*
 155 * put_user: - Write a simple value into user space.
 156 * @x:	 Value to copy to user space.
 157 * @ptr: Destination address, in user space.
 158 *
 159 * Context: User context only. This function may sleep if pagefaults are
 160 *          enabled.
 161 *
 162 * This macro copies a single simple value from kernel space to user
 163 * space.  It supports simple types like char and int, but not larger
 164 * data types like structures or arrays.
 165 *
 166 * @ptr must have pointer-to-simple-variable type, and @x must be assignable
 167 * to the result of dereferencing @ptr.
 168 *
 169 * Returns zero on success, or -EFAULT on error.
 170 */
 171#define put_user(x,ptr) \
 172	__put_user_check((x), (ptr), sizeof(*(ptr)))
 173
 174/*
 175 * get_user: - Get a simple variable from user space.
 176 * @x:	 Variable to store result.
 177 * @ptr: Source address, in user space.
 178 *
 179 * Context: User context only. This function may sleep if pagefaults are
 180 *          enabled.
 181 *
 182 * This macro copies a single simple variable from user space to kernel
 183 * space.  It supports simple types like char and int, but not larger
 184 * data types like structures or arrays.
 185 *
 186 * @ptr must have pointer-to-simple-variable type, and the result of
 187 * dereferencing @ptr must be assignable to @x without a cast.
 188 *
 189 * Returns zero on success, or -EFAULT on error.
 190 * On error, the variable @x is set to zero.
 191 */
 192#define get_user(x,ptr) \
 193	__get_user_check((x), (ptr), sizeof(*(ptr)))
 194
 195/*
 196 * __put_user: - Write a simple value into user space, with less checking.
 197 * @x:	 Value to copy to user space.
 198 * @ptr: Destination address, in user space.
 199 *
 200 * Context: User context only. This function may sleep if pagefaults are
 201 *          enabled.
 202 *
 203 * This macro copies a single simple value from kernel space to user
 204 * space.  It supports simple types like char and int, but not larger
 205 * data types like structures or arrays.
 206 *
 207 * @ptr must have pointer-to-simple-variable type, and @x must be assignable
 208 * to the result of dereferencing @ptr.
 209 *
 210 * Caller must check the pointer with access_ok() before calling this
 211 * function.
 212 *
 213 * Returns zero on success, or -EFAULT on error.
 214 */
 215#define __put_user(x,ptr) \
 216	__put_user_nocheck((x), (ptr), sizeof(*(ptr)))
 217
 218/*
 219 * __get_user: - Get a simple variable from user space, with less checking.
 220 * @x:	 Variable to store result.
 221 * @ptr: Source address, in user space.
 222 *
 223 * Context: User context only. This function may sleep if pagefaults are
 224 *          enabled.
 225 *
 226 * This macro copies a single simple variable from user space to kernel
 227 * space.  It supports simple types like char and int, but not larger
 228 * data types like structures or arrays.
 229 *
 230 * @ptr must have pointer-to-simple-variable type, and the result of
 231 * dereferencing @ptr must be assignable to @x without a cast.
 232 *
 233 * Caller must check the pointer with access_ok() before calling this
 234 * function.
 235 *
 236 * Returns zero on success, or -EFAULT on error.
 237 * On error, the variable @x is set to zero.
 238 */
 239#define __get_user(x,ptr) \
 240	__get_user_nocheck((x), (ptr), sizeof(*(ptr)))
 241
 242struct __large_struct { unsigned long buf[100]; };
 243#define __m(x) (*(struct __large_struct __user *)(x))
 244
 245/*
 246 * Yuck.  We need two variants, one for 64bit operation and one
 247 * for 32 bit mode and old iron.
 248 */
 249#ifndef CONFIG_EVA
 250#define __get_kernel_common(val, size, ptr) __get_user_common(val, size, ptr)
 251#else
 252/*
 253 * Kernel specific functions for EVA. We need to use normal load instructions
 254 * to read data from kernel when operating in EVA mode. We use these macros to
 255 * avoid redefining __get_user_asm for EVA.
 256 */
 257#undef _loadd
 258#undef _loadw
 259#undef _loadh
 260#undef _loadb
 261#ifdef CONFIG_32BIT
 262#define _loadd			_loadw
 263#else
 264#define _loadd(reg, addr)	"ld " reg ", " addr
 265#endif
 266#define _loadw(reg, addr)	"lw " reg ", " addr
 267#define _loadh(reg, addr)	"lh " reg ", " addr
 268#define _loadb(reg, addr)	"lb " reg ", " addr
 269
 270#define __get_kernel_common(val, size, ptr)				\
 271do {									\
 272	switch (size) {							\
 273	case 1: __get_data_asm(val, _loadb, ptr); break;		\
 274	case 2: __get_data_asm(val, _loadh, ptr); break;		\
 275	case 4: __get_data_asm(val, _loadw, ptr); break;		\
 276	case 8: __GET_DW(val, _loadd, ptr); break;			\
 277	default: __get_user_unknown(); break;				\
 278	}								\
 279} while (0)
 280#endif
 281
 282#ifdef CONFIG_32BIT
 283#define __GET_DW(val, insn, ptr) __get_data_asm_ll32(val, insn, ptr)
 284#endif
 285#ifdef CONFIG_64BIT
 286#define __GET_DW(val, insn, ptr) __get_data_asm(val, insn, ptr)
 287#endif
 288
 289extern void __get_user_unknown(void);
 290
 291#define __get_user_common(val, size, ptr)				\
 292do {									\
 293	switch (size) {							\
 294	case 1: __get_data_asm(val, user_lb, ptr); break;		\
 295	case 2: __get_data_asm(val, user_lh, ptr); break;		\
 296	case 4: __get_data_asm(val, user_lw, ptr); break;		\
 297	case 8: __GET_DW(val, user_ld, ptr); break;			\
 298	default: __get_user_unknown(); break;				\
 299	}								\
 300} while (0)
 301
 302#define __get_user_nocheck(x, ptr, size)				\
 303({									\
 304	int __gu_err;							\
 305									\
 306	if (eva_kernel_access()) {					\
 307		__get_kernel_common((x), size, ptr);			\
 308	} else {							\
 309		__chk_user_ptr(ptr);					\
 310		__get_user_common((x), size, ptr);			\
 311	}								\
 312	__gu_err;							\
 313})
 314
 315#define __get_user_check(x, ptr, size)					\
 316({									\
 317	int __gu_err = -EFAULT;						\
 318	const __typeof__(*(ptr)) __user * __gu_ptr = (ptr);		\
 319									\
 320	might_fault();							\
 321	if (likely(access_ok(VERIFY_READ,  __gu_ptr, size))) {		\
 322		if (eva_kernel_access())				\
 323			__get_kernel_common((x), size, __gu_ptr);	\
 324		else							\
 325			__get_user_common((x), size, __gu_ptr);		\
 326	} else								\
 327		(x) = 0;						\
 328									\
 329	__gu_err;							\
 330})
 331
 332#define __get_data_asm(val, insn, addr)					\
 333{									\
 334	long __gu_tmp;							\
 335									\
 336	__asm__ __volatile__(						\
 337	"1:	"insn("%1", "%3")"				\n"	\
 338	"2:							\n"	\
 339	"	.insn						\n"	\
 340	"	.section .fixup,\"ax\"				\n"	\
 341	"3:	li	%0, %4					\n"	\
 342	"	move	%1, $0					\n"	\
 343	"	j	2b					\n"	\
 344	"	.previous					\n"	\
 345	"	.section __ex_table,\"a\"			\n"	\
 346	"	"__UA_ADDR "\t1b, 3b				\n"	\
 347	"	.previous					\n"	\
 348	: "=r" (__gu_err), "=r" (__gu_tmp)				\
 349	: "0" (0), "o" (__m(addr)), "i" (-EFAULT));			\
 350									\
 351	(val) = (__typeof__(*(addr))) __gu_tmp;				\
 352}
 353
 354/*
 355 * Get a long long 64 using 32 bit registers.
 356 */
 357#define __get_data_asm_ll32(val, insn, addr)				\
 358{									\
 359	union {								\
 360		unsigned long long	l;				\
 361		__typeof__(*(addr))	t;				\
 362	} __gu_tmp;							\
 363									\
 364	__asm__ __volatile__(						\
 365	"1:	" insn("%1", "(%3)")"				\n"	\
 366	"2:	" insn("%D1", "4(%3)")"				\n"	\
 367	"3:							\n"	\
 368	"	.insn						\n"	\
 369	"	.section	.fixup,\"ax\"			\n"	\
 370	"4:	li	%0, %4					\n"	\
 371	"	move	%1, $0					\n"	\
 372	"	move	%D1, $0					\n"	\
 373	"	j	3b					\n"	\
 374	"	.previous					\n"	\
 375	"	.section	__ex_table,\"a\"		\n"	\
 376	"	" __UA_ADDR "	1b, 4b				\n"	\
 377	"	" __UA_ADDR "	2b, 4b				\n"	\
 378	"	.previous					\n"	\
 379	: "=r" (__gu_err), "=&r" (__gu_tmp.l)				\
 380	: "0" (0), "r" (addr), "i" (-EFAULT));				\
 381									\
 382	(val) = __gu_tmp.t;						\
 383}
 384
 385#ifndef CONFIG_EVA
 386#define __put_kernel_common(ptr, size) __put_user_common(ptr, size)
 387#else
 388/*
 389 * Kernel specific functions for EVA. We need to use normal load instructions
 390 * to read data from kernel when operating in EVA mode. We use these macros to
 391 * avoid redefining __get_data_asm for EVA.
 392 */
 393#undef _stored
 394#undef _storew
 395#undef _storeh
 396#undef _storeb
 397#ifdef CONFIG_32BIT
 398#define _stored			_storew
 399#else
 400#define _stored(reg, addr)	"ld " reg ", " addr
 401#endif
 402
 403#define _storew(reg, addr)	"sw " reg ", " addr
 404#define _storeh(reg, addr)	"sh " reg ", " addr
 405#define _storeb(reg, addr)	"sb " reg ", " addr
 406
 407#define __put_kernel_common(ptr, size)					\
 408do {									\
 409	switch (size) {							\
 410	case 1: __put_data_asm(_storeb, ptr); break;			\
 411	case 2: __put_data_asm(_storeh, ptr); break;			\
 412	case 4: __put_data_asm(_storew, ptr); break;			\
 413	case 8: __PUT_DW(_stored, ptr); break;				\
 414	default: __put_user_unknown(); break;				\
 415	}								\
 416} while(0)
 417#endif
 418
 419/*
 420 * Yuck.  We need two variants, one for 64bit operation and one
 421 * for 32 bit mode and old iron.
 422 */
 423#ifdef CONFIG_32BIT
 424#define __PUT_DW(insn, ptr) __put_data_asm_ll32(insn, ptr)
 425#endif
 426#ifdef CONFIG_64BIT
 427#define __PUT_DW(insn, ptr) __put_data_asm(insn, ptr)
 428#endif
 429
 430#define __put_user_common(ptr, size)					\
 431do {									\
 432	switch (size) {							\
 433	case 1: __put_data_asm(user_sb, ptr); break;			\
 434	case 2: __put_data_asm(user_sh, ptr); break;			\
 435	case 4: __put_data_asm(user_sw, ptr); break;			\
 436	case 8: __PUT_DW(user_sd, ptr); break;				\
 437	default: __put_user_unknown(); break;				\
 438	}								\
 439} while (0)
 440
 441#define __put_user_nocheck(x, ptr, size)				\
 442({									\
 443	__typeof__(*(ptr)) __pu_val;					\
 444	int __pu_err = 0;						\
 445									\
 446	__pu_val = (x);							\
 447	if (eva_kernel_access()) {					\
 448		__put_kernel_common(ptr, size);				\
 449	} else {							\
 450		__chk_user_ptr(ptr);					\
 451		__put_user_common(ptr, size);				\
 452	}								\
 453	__pu_err;							\
 454})
 455
 456#define __put_user_check(x, ptr, size)					\
 457({									\
 458	__typeof__(*(ptr)) __user *__pu_addr = (ptr);			\
 459	__typeof__(*(ptr)) __pu_val = (x);				\
 460	int __pu_err = -EFAULT;						\
 461									\
 462	might_fault();							\
 463	if (likely(access_ok(VERIFY_WRITE,  __pu_addr, size))) {	\
 464		if (eva_kernel_access())				\
 465			__put_kernel_common(__pu_addr, size);		\
 466		else							\
 467			__put_user_common(__pu_addr, size);		\
 468	}								\
 469									\
 470	__pu_err;							\
 471})
 472
 473#define __put_data_asm(insn, ptr)					\
 474{									\
 475	__asm__ __volatile__(						\
 476	"1:	"insn("%z2", "%3")"	# __put_data_asm	\n"	\
 477	"2:							\n"	\
 478	"	.insn						\n"	\
 479	"	.section	.fixup,\"ax\"			\n"	\
 480	"3:	li	%0, %4					\n"	\
 481	"	j	2b					\n"	\
 482	"	.previous					\n"	\
 483	"	.section	__ex_table,\"a\"		\n"	\
 484	"	" __UA_ADDR "	1b, 3b				\n"	\
 485	"	.previous					\n"	\
 486	: "=r" (__pu_err)						\
 487	: "0" (0), "Jr" (__pu_val), "o" (__m(ptr)),			\
 488	  "i" (-EFAULT));						\
 489}
 490
 491#define __put_data_asm_ll32(insn, ptr)					\
 492{									\
 493	__asm__ __volatile__(						\
 494	"1:	"insn("%2", "(%3)")"	# __put_data_asm_ll32	\n"	\
 495	"2:	"insn("%D2", "4(%3)")"				\n"	\
 496	"3:							\n"	\
 497	"	.insn						\n"	\
 498	"	.section	.fixup,\"ax\"			\n"	\
 499	"4:	li	%0, %4					\n"	\
 500	"	j	3b					\n"	\
 501	"	.previous					\n"	\
 502	"	.section	__ex_table,\"a\"		\n"	\
 503	"	" __UA_ADDR "	1b, 4b				\n"	\
 504	"	" __UA_ADDR "	2b, 4b				\n"	\
 505	"	.previous"						\
 506	: "=r" (__pu_err)						\
 507	: "0" (0), "r" (__pu_val), "r" (ptr),				\
 508	  "i" (-EFAULT));						\
 509}
 510
 511extern void __put_user_unknown(void);
 512
 513/*
 514 * ul{b,h,w} are macros and there are no equivalent macros for EVA.
 515 * EVA unaligned access is handled in the ADE exception handler.
 516 */
 517#ifndef CONFIG_EVA
 518/*
 519 * put_user_unaligned: - Write a simple value into user space.
 520 * @x:	 Value to copy to user space.
 521 * @ptr: Destination address, in user space.
 522 *
 523 * Context: User context only. This function may sleep if pagefaults are
 524 *          enabled.
 525 *
 526 * This macro copies a single simple value from kernel space to user
 527 * space.  It supports simple types like char and int, but not larger
 528 * data types like structures or arrays.
 529 *
 530 * @ptr must have pointer-to-simple-variable type, and @x must be assignable
 531 * to the result of dereferencing @ptr.
 532 *
 533 * Returns zero on success, or -EFAULT on error.
 534 */
 535#define put_user_unaligned(x,ptr)	\
 536	__put_user_unaligned_check((x),(ptr),sizeof(*(ptr)))
 537
 538/*
 539 * get_user_unaligned: - Get a simple variable from user space.
 540 * @x:	 Variable to store result.
 541 * @ptr: Source address, in user space.
 542 *
 543 * Context: User context only. This function may sleep if pagefaults are
 544 *          enabled.
 545 *
 546 * This macro copies a single simple variable from user space to kernel
 547 * space.  It supports simple types like char and int, but not larger
 548 * data types like structures or arrays.
 549 *
 550 * @ptr must have pointer-to-simple-variable type, and the result of
 551 * dereferencing @ptr must be assignable to @x without a cast.
 552 *
 553 * Returns zero on success, or -EFAULT on error.
 554 * On error, the variable @x is set to zero.
 555 */
 556#define get_user_unaligned(x,ptr) \
 557	__get_user_unaligned_check((x),(ptr),sizeof(*(ptr)))
 558
 559/*
 560 * __put_user_unaligned: - Write a simple value into user space, with less checking.
 561 * @x:	 Value to copy to user space.
 562 * @ptr: Destination address, in user space.
 563 *
 564 * Context: User context only. This function may sleep if pagefaults are
 565 *          enabled.
 566 *
 567 * This macro copies a single simple value from kernel space to user
 568 * space.  It supports simple types like char and int, but not larger
 569 * data types like structures or arrays.
 570 *
 571 * @ptr must have pointer-to-simple-variable type, and @x must be assignable
 572 * to the result of dereferencing @ptr.
 573 *
 574 * Caller must check the pointer with access_ok() before calling this
 575 * function.
 576 *
 577 * Returns zero on success, or -EFAULT on error.
 578 */
 579#define __put_user_unaligned(x,ptr) \
 580	__put_user_unaligned_nocheck((x),(ptr),sizeof(*(ptr)))
 581
 582/*
 583 * __get_user_unaligned: - Get a simple variable from user space, with less checking.
 584 * @x:	 Variable to store result.
 585 * @ptr: Source address, in user space.
 586 *
 587 * Context: User context only. This function may sleep if pagefaults are
 588 *          enabled.
 589 *
 590 * This macro copies a single simple variable from user space to kernel
 591 * space.  It supports simple types like char and int, but not larger
 592 * data types like structures or arrays.
 593 *
 594 * @ptr must have pointer-to-simple-variable type, and the result of
 595 * dereferencing @ptr must be assignable to @x without a cast.
 596 *
 597 * Caller must check the pointer with access_ok() before calling this
 598 * function.
 599 *
 600 * Returns zero on success, or -EFAULT on error.
 601 * On error, the variable @x is set to zero.
 602 */
 603#define __get_user_unaligned(x,ptr) \
 604	__get_user_unaligned_nocheck((x),(ptr),sizeof(*(ptr)))
 605
 606/*
 607 * Yuck.  We need two variants, one for 64bit operation and one
 608 * for 32 bit mode and old iron.
 609 */
 610#ifdef CONFIG_32BIT
 611#define __GET_USER_UNALIGNED_DW(val, ptr)				\
 612	__get_user_unaligned_asm_ll32(val, ptr)
 613#endif
 614#ifdef CONFIG_64BIT
 615#define __GET_USER_UNALIGNED_DW(val, ptr)				\
 616	__get_user_unaligned_asm(val, "uld", ptr)
 617#endif
 618
 619extern void __get_user_unaligned_unknown(void);
 620
 621#define __get_user_unaligned_common(val, size, ptr)			\
 622do {									\
 623	switch (size) {							\
 624	case 1: __get_data_asm(val, "lb", ptr); break;			\
 625	case 2: __get_data_unaligned_asm(val, "ulh", ptr); break;	\
 626	case 4: __get_data_unaligned_asm(val, "ulw", ptr); break;	\
 627	case 8: __GET_USER_UNALIGNED_DW(val, ptr); break;		\
 628	default: __get_user_unaligned_unknown(); break;			\
 629	}								\
 630} while (0)
 631
 632#define __get_user_unaligned_nocheck(x,ptr,size)			\
 633({									\
 634	int __gu_err;							\
 635									\
 636	__get_user_unaligned_common((x), size, ptr);			\
 637	__gu_err;							\
 638})
 639
 640#define __get_user_unaligned_check(x,ptr,size)				\
 641({									\
 642	int __gu_err = -EFAULT;						\
 643	const __typeof__(*(ptr)) __user * __gu_ptr = (ptr);		\
 644									\
 645	if (likely(access_ok(VERIFY_READ,  __gu_ptr, size)))		\
 646		__get_user_unaligned_common((x), size, __gu_ptr);	\
 647									\
 648	__gu_err;							\
 649})
 650
 651#define __get_data_unaligned_asm(val, insn, addr)			\
 652{									\
 653	long __gu_tmp;							\
 654									\
 655	__asm__ __volatile__(						\
 656	"1:	" insn "	%1, %3				\n"	\
 657	"2:							\n"	\
 658	"	.insn						\n"	\
 659	"	.section .fixup,\"ax\"				\n"	\
 660	"3:	li	%0, %4					\n"	\
 661	"	move	%1, $0					\n"	\
 662	"	j	2b					\n"	\
 663	"	.previous					\n"	\
 664	"	.section __ex_table,\"a\"			\n"	\
 665	"	"__UA_ADDR "\t1b, 3b				\n"	\
 666	"	"__UA_ADDR "\t1b + 4, 3b			\n"	\
 667	"	.previous					\n"	\
 668	: "=r" (__gu_err), "=r" (__gu_tmp)				\
 669	: "0" (0), "o" (__m(addr)), "i" (-EFAULT));			\
 670									\
 671	(val) = (__typeof__(*(addr))) __gu_tmp;				\
 672}
 673
 674/*
 675 * Get a long long 64 using 32 bit registers.
 676 */
 677#define __get_user_unaligned_asm_ll32(val, addr)			\
 678{									\
 679	unsigned long long __gu_tmp;					\
 680									\
 681	__asm__ __volatile__(						\
 682	"1:	ulw	%1, (%3)				\n"	\
 683	"2:	ulw	%D1, 4(%3)				\n"	\
 684	"	move	%0, $0					\n"	\
 685	"3:							\n"	\
 686	"	.insn						\n"	\
 687	"	.section	.fixup,\"ax\"			\n"	\
 688	"4:	li	%0, %4					\n"	\
 689	"	move	%1, $0					\n"	\
 690	"	move	%D1, $0					\n"	\
 691	"	j	3b					\n"	\
 692	"	.previous					\n"	\
 693	"	.section	__ex_table,\"a\"		\n"	\
 694	"	" __UA_ADDR "	1b, 4b				\n"	\
 695	"	" __UA_ADDR "	1b + 4, 4b			\n"	\
 696	"	" __UA_ADDR "	2b, 4b				\n"	\
 697	"	" __UA_ADDR "	2b + 4, 4b			\n"	\
 698	"	.previous					\n"	\
 699	: "=r" (__gu_err), "=&r" (__gu_tmp)				\
 700	: "0" (0), "r" (addr), "i" (-EFAULT));				\
 701	(val) = (__typeof__(*(addr))) __gu_tmp;				\
 702}
 703
 704/*
 705 * Yuck.  We need two variants, one for 64bit operation and one
 706 * for 32 bit mode and old iron.
 707 */
 708#ifdef CONFIG_32BIT
 709#define __PUT_USER_UNALIGNED_DW(ptr) __put_user_unaligned_asm_ll32(ptr)
 710#endif
 711#ifdef CONFIG_64BIT
 712#define __PUT_USER_UNALIGNED_DW(ptr) __put_user_unaligned_asm("usd", ptr)
 713#endif
 714
 715#define __put_user_unaligned_common(ptr, size)				\
 716do {									\
 717	switch (size) {							\
 718	case 1: __put_data_asm("sb", ptr); break;			\
 719	case 2: __put_user_unaligned_asm("ush", ptr); break;		\
 720	case 4: __put_user_unaligned_asm("usw", ptr); break;		\
 721	case 8: __PUT_USER_UNALIGNED_DW(ptr); break;			\
 722	default: __put_user_unaligned_unknown(); break;			\
 723} while (0)
 724
 725#define __put_user_unaligned_nocheck(x,ptr,size)			\
 726({									\
 727	__typeof__(*(ptr)) __pu_val;					\
 728	int __pu_err = 0;						\
 729									\
 730	__pu_val = (x);							\
 731	__put_user_unaligned_common(ptr, size);				\
 732	__pu_err;							\
 733})
 734
 735#define __put_user_unaligned_check(x,ptr,size)				\
 736({									\
 737	__typeof__(*(ptr)) __user *__pu_addr = (ptr);			\
 738	__typeof__(*(ptr)) __pu_val = (x);				\
 739	int __pu_err = -EFAULT;						\
 740									\
 741	if (likely(access_ok(VERIFY_WRITE,  __pu_addr, size)))		\
 742		__put_user_unaligned_common(__pu_addr, size);		\
 743									\
 744	__pu_err;							\
 745})
 746
 747#define __put_user_unaligned_asm(insn, ptr)				\
 748{									\
 749	__asm__ __volatile__(						\
 750	"1:	" insn "	%z2, %3		# __put_user_unaligned_asm\n" \
 751	"2:							\n"	\
 752	"	.insn						\n"	\
 753	"	.section	.fixup,\"ax\"			\n"	\
 754	"3:	li	%0, %4					\n"	\
 755	"	j	2b					\n"	\
 756	"	.previous					\n"	\
 757	"	.section	__ex_table,\"a\"		\n"	\
 758	"	" __UA_ADDR "	1b, 3b				\n"	\
 759	"	.previous					\n"	\
 760	: "=r" (__pu_err)						\
 761	: "0" (0), "Jr" (__pu_val), "o" (__m(ptr)),			\
 762	  "i" (-EFAULT));						\
 763}
 764
 765#define __put_user_unaligned_asm_ll32(ptr)				\
 766{									\
 767	__asm__ __volatile__(						\
 768	"1:	sw	%2, (%3)	# __put_user_unaligned_asm_ll32 \n" \
 769	"2:	sw	%D2, 4(%3)				\n"	\
 770	"3:							\n"	\
 771	"	.insn						\n"	\
 772	"	.section	.fixup,\"ax\"			\n"	\
 773	"4:	li	%0, %4					\n"	\
 774	"	j	3b					\n"	\
 775	"	.previous					\n"	\
 776	"	.section	__ex_table,\"a\"		\n"	\
 777	"	" __UA_ADDR "	1b, 4b				\n"	\
 778	"	" __UA_ADDR "	1b + 4, 4b			\n"	\
 779	"	" __UA_ADDR "	2b, 4b				\n"	\
 780	"	" __UA_ADDR "	2b + 4, 4b			\n"	\
 781	"	.previous"						\
 782	: "=r" (__pu_err)						\
 783	: "0" (0), "r" (__pu_val), "r" (ptr),				\
 784	  "i" (-EFAULT));						\
 785}
 786
 787extern void __put_user_unaligned_unknown(void);
 788#endif
 789
 790/*
 791 * We're generating jump to subroutines which will be outside the range of
 792 * jump instructions
 793 */
 794#ifdef MODULE
 795#define __MODULE_JAL(destination)					\
 796	".set\tnoat\n\t"						\
 797	__UA_LA "\t$1, " #destination "\n\t"				\
 798	"jalr\t$1\n\t"							\
 799	".set\tat\n\t"
 800#else
 801#define __MODULE_JAL(destination)					\
 802	"jal\t" #destination "\n\t"
 803#endif
 804
 805#if defined(CONFIG_CPU_DADDI_WORKAROUNDS) || (defined(CONFIG_EVA) &&	\
 806					      defined(CONFIG_CPU_HAS_PREFETCH))
 
 807#define DADDI_SCRATCH "$3"
 808#else
 809#define DADDI_SCRATCH "$0"
 810#endif
 811
 812extern size_t __copy_user(void *__to, const void *__from, size_t __n);
 813
 814#ifndef CONFIG_EVA
 815#define __invoke_copy_to_user(to, from, n)				\
 816({									\
 817	register void __user *__cu_to_r __asm__("$4");			\
 818	register const void *__cu_from_r __asm__("$5");			\
 819	register long __cu_len_r __asm__("$6");				\
 820									\
 821	__cu_to_r = (to);						\
 822	__cu_from_r = (from);						\
 823	__cu_len_r = (n);						\
 824	__asm__ __volatile__(						\
 825	__MODULE_JAL(__copy_user)					\
 826	: "+r" (__cu_to_r), "+r" (__cu_from_r), "+r" (__cu_len_r)	\
 827	:								\
 828	: "$8", "$9", "$10", "$11", "$12", "$14", "$15", "$24", "$31",	\
 829	  DADDI_SCRATCH, "memory");					\
 830	__cu_len_r;							\
 831})
 832
 833#define __invoke_copy_to_kernel(to, from, n)				\
 834	__invoke_copy_to_user(to, from, n)
 835
 836#endif
 837
 838/*
 839 * __copy_to_user: - Copy a block of data into user space, with less checking.
 840 * @to:	  Destination address, in user space.
 841 * @from: Source address, in kernel space.
 842 * @n:	  Number of bytes to copy.
 843 *
 844 * Context: User context only. This function may sleep if pagefaults are
 845 *          enabled.
 846 *
 847 * Copy data from kernel space to user space.  Caller must check
 848 * the specified block with access_ok() before calling this function.
 849 *
 850 * Returns number of bytes that could not be copied.
 851 * On success, this will be zero.
 852 */
 853#define __copy_to_user(to, from, n)					\
 854({									\
 855	void __user *__cu_to;						\
 856	const void *__cu_from;						\
 857	long __cu_len;							\
 858									\
 859	__cu_to = (to);							\
 860	__cu_from = (from);						\
 861	__cu_len = (n);							\
 862									\
 863	check_object_size(__cu_from, __cu_len, true);			\
 864	might_fault();							\
 865									\
 866	if (eva_kernel_access())					\
 867		__cu_len = __invoke_copy_to_kernel(__cu_to, __cu_from,	\
 868						   __cu_len);		\
 869	else								\
 870		__cu_len = __invoke_copy_to_user(__cu_to, __cu_from,	\
 871						 __cu_len);		\
 872	__cu_len;							\
 873})
 874
 875extern size_t __copy_user_inatomic(void *__to, const void *__from, size_t __n);
 876
 877#define __copy_to_user_inatomic(to, from, n)				\
 878({									\
 879	void __user *__cu_to;						\
 880	const void *__cu_from;						\
 881	long __cu_len;							\
 882									\
 883	__cu_to = (to);							\
 884	__cu_from = (from);						\
 885	__cu_len = (n);							\
 886									\
 887	check_object_size(__cu_from, __cu_len, true);			\
 888									\
 889	if (eva_kernel_access())					\
 890		__cu_len = __invoke_copy_to_kernel(__cu_to, __cu_from,	\
 891						   __cu_len);		\
 892	else								\
 893		__cu_len = __invoke_copy_to_user(__cu_to, __cu_from,	\
 894						 __cu_len);		\
 895	__cu_len;							\
 896})
 897
 898#define __copy_from_user_inatomic(to, from, n)				\
 899({									\
 900	void *__cu_to;							\
 901	const void __user *__cu_from;					\
 902	long __cu_len;							\
 903									\
 904	__cu_to = (to);							\
 905	__cu_from = (from);						\
 906	__cu_len = (n);							\
 907									\
 908	check_object_size(__cu_to, __cu_len, false);			\
 909									\
 910	if (eva_kernel_access())					\
 911		__cu_len = __invoke_copy_from_kernel_inatomic(__cu_to,	\
 912							      __cu_from,\
 913							      __cu_len);\
 914	else								\
 915		__cu_len = __invoke_copy_from_user_inatomic(__cu_to,	\
 916							    __cu_from,	\
 917							    __cu_len);	\
 918	__cu_len;							\
 919})
 920
 921/*
 922 * copy_to_user: - Copy a block of data into user space.
 923 * @to:	  Destination address, in user space.
 924 * @from: Source address, in kernel space.
 925 * @n:	  Number of bytes to copy.
 926 *
 927 * Context: User context only. This function may sleep if pagefaults are
 928 *          enabled.
 929 *
 930 * Copy data from kernel space to user space.
 931 *
 932 * Returns number of bytes that could not be copied.
 933 * On success, this will be zero.
 934 */
 935#define copy_to_user(to, from, n)					\
 936({									\
 937	void __user *__cu_to;						\
 938	const void *__cu_from;						\
 939	long __cu_len;							\
 940									\
 941	__cu_to = (to);							\
 942	__cu_from = (from);						\
 943	__cu_len = (n);							\
 944									\
 945	check_object_size(__cu_from, __cu_len, true);			\
 946									\
 947	if (eva_kernel_access()) {					\
 948		__cu_len = __invoke_copy_to_kernel(__cu_to,		\
 949						   __cu_from,		\
 950						   __cu_len);		\
 951	} else {							\
 952		if (access_ok(VERIFY_WRITE, __cu_to, __cu_len)) {       \
 953			might_fault();                                  \
 954			__cu_len = __invoke_copy_to_user(__cu_to,	\
 955							 __cu_from,	\
 956							 __cu_len);     \
 957		}							\
 958	}								\
 959	__cu_len;							\
 960})
 961
 962#ifndef CONFIG_EVA
 963
 964#define __invoke_copy_from_user(to, from, n)				\
 965({									\
 966	register void *__cu_to_r __asm__("$4");				\
 967	register const void __user *__cu_from_r __asm__("$5");		\
 968	register long __cu_len_r __asm__("$6");				\
 969									\
 970	__cu_to_r = (to);						\
 971	__cu_from_r = (from);						\
 972	__cu_len_r = (n);						\
 973	__asm__ __volatile__(						\
 974	".set\tnoreorder\n\t"						\
 975	__MODULE_JAL(__copy_user)					\
 976	".set\tnoat\n\t"						\
 977	__UA_ADDU "\t$1, %1, %2\n\t"					\
 978	".set\tat\n\t"							\
 979	".set\treorder"							\
 980	: "+r" (__cu_to_r), "+r" (__cu_from_r), "+r" (__cu_len_r)	\
 981	:								\
 982	: "$8", "$9", "$10", "$11", "$12", "$14", "$15", "$24", "$31",	\
 983	  DADDI_SCRATCH, "memory");					\
 984	__cu_len_r;							\
 985})
 986
 987#define __invoke_copy_from_kernel(to, from, n)				\
 988	__invoke_copy_from_user(to, from, n)
 989
 990/* For userland <-> userland operations */
 991#define ___invoke_copy_in_user(to, from, n)				\
 992	__invoke_copy_from_user(to, from, n)
 993
 994/* For kernel <-> kernel operations */
 995#define ___invoke_copy_in_kernel(to, from, n)				\
 996	__invoke_copy_from_user(to, from, n)
 997
 998#define __invoke_copy_from_user_inatomic(to, from, n)			\
 999({									\
1000	register void *__cu_to_r __asm__("$4");				\
1001	register const void __user *__cu_from_r __asm__("$5");		\
1002	register long __cu_len_r __asm__("$6");				\
1003									\
1004	__cu_to_r = (to);						\
1005	__cu_from_r = (from);						\
1006	__cu_len_r = (n);						\
1007	__asm__ __volatile__(						\
1008	".set\tnoreorder\n\t"						\
1009	__MODULE_JAL(__copy_user_inatomic)				\
1010	".set\tnoat\n\t"						\
1011	__UA_ADDU "\t$1, %1, %2\n\t"					\
1012	".set\tat\n\t"							\
1013	".set\treorder"							\
1014	: "+r" (__cu_to_r), "+r" (__cu_from_r), "+r" (__cu_len_r)	\
1015	:								\
1016	: "$8", "$9", "$10", "$11", "$12", "$14", "$15", "$24", "$31",	\
1017	  DADDI_SCRATCH, "memory");					\
1018	__cu_len_r;							\
1019})
1020
1021#define __invoke_copy_from_kernel_inatomic(to, from, n)			\
1022	__invoke_copy_from_user_inatomic(to, from, n)			\
1023
1024#else
1025
1026/* EVA specific functions */
1027
1028extern size_t __copy_user_inatomic_eva(void *__to, const void *__from,
1029				       size_t __n);
1030extern size_t __copy_from_user_eva(void *__to, const void *__from,
1031				   size_t __n);
1032extern size_t __copy_to_user_eva(void *__to, const void *__from,
1033				 size_t __n);
1034extern size_t __copy_in_user_eva(void *__to, const void *__from, size_t __n);
1035
1036#define __invoke_copy_from_user_eva_generic(to, from, n, func_ptr)	\
1037({									\
1038	register void *__cu_to_r __asm__("$4");				\
1039	register const void __user *__cu_from_r __asm__("$5");		\
1040	register long __cu_len_r __asm__("$6");				\
1041									\
1042	__cu_to_r = (to);						\
1043	__cu_from_r = (from);						\
1044	__cu_len_r = (n);						\
1045	__asm__ __volatile__(						\
1046	".set\tnoreorder\n\t"						\
1047	__MODULE_JAL(func_ptr)						\
1048	".set\tnoat\n\t"						\
1049	__UA_ADDU "\t$1, %1, %2\n\t"					\
1050	".set\tat\n\t"							\
1051	".set\treorder"							\
1052	: "+r" (__cu_to_r), "+r" (__cu_from_r), "+r" (__cu_len_r)	\
1053	:								\
1054	: "$8", "$9", "$10", "$11", "$12", "$14", "$15", "$24", "$31",	\
1055	  DADDI_SCRATCH, "memory");					\
1056	__cu_len_r;							\
1057})
1058
1059#define __invoke_copy_to_user_eva_generic(to, from, n, func_ptr)	\
1060({									\
1061	register void *__cu_to_r __asm__("$4");				\
1062	register const void __user *__cu_from_r __asm__("$5");		\
1063	register long __cu_len_r __asm__("$6");				\
1064									\
1065	__cu_to_r = (to);						\
1066	__cu_from_r = (from);						\
1067	__cu_len_r = (n);						\
1068	__asm__ __volatile__(						\
1069	__MODULE_JAL(func_ptr)						\
1070	: "+r" (__cu_to_r), "+r" (__cu_from_r), "+r" (__cu_len_r)	\
1071	:								\
1072	: "$8", "$9", "$10", "$11", "$12", "$14", "$15", "$24", "$31",	\
1073	  DADDI_SCRATCH, "memory");					\
1074	__cu_len_r;							\
1075})
1076
1077/*
1078 * Source or destination address is in userland. We need to go through
1079 * the TLB
1080 */
1081#define __invoke_copy_from_user(to, from, n)				\
1082	__invoke_copy_from_user_eva_generic(to, from, n, __copy_from_user_eva)
1083
1084#define __invoke_copy_from_user_inatomic(to, from, n)			\
1085	__invoke_copy_from_user_eva_generic(to, from, n,		\
1086					    __copy_user_inatomic_eva)
1087
1088#define __invoke_copy_to_user(to, from, n)				\
1089	__invoke_copy_to_user_eva_generic(to, from, n, __copy_to_user_eva)
1090
1091#define ___invoke_copy_in_user(to, from, n)				\
1092	__invoke_copy_from_user_eva_generic(to, from, n, __copy_in_user_eva)
1093
1094/*
1095 * Source or destination address in the kernel. We are not going through
1096 * the TLB
1097 */
1098#define __invoke_copy_from_kernel(to, from, n)				\
1099	__invoke_copy_from_user_eva_generic(to, from, n, __copy_user)
1100
1101#define __invoke_copy_from_kernel_inatomic(to, from, n)			\
1102	__invoke_copy_from_user_eva_generic(to, from, n, __copy_user_inatomic)
1103
1104#define __invoke_copy_to_kernel(to, from, n)				\
1105	__invoke_copy_to_user_eva_generic(to, from, n, __copy_user)
1106
1107#define ___invoke_copy_in_kernel(to, from, n)				\
1108	__invoke_copy_from_user_eva_generic(to, from, n, __copy_user)
1109
1110#endif /* CONFIG_EVA */
1111
1112/*
1113 * __copy_from_user: - Copy a block of data from user space, with less checking.
1114 * @to:	  Destination address, in kernel space.
1115 * @from: Source address, in user space.
1116 * @n:	  Number of bytes to copy.
1117 *
1118 * Context: User context only. This function may sleep if pagefaults are
1119 *          enabled.
1120 *
1121 * Copy data from user space to kernel space.  Caller must check
1122 * the specified block with access_ok() before calling this function.
1123 *
1124 * Returns number of bytes that could not be copied.
1125 * On success, this will be zero.
1126 *
1127 * If some data could not be copied, this function will pad the copied
1128 * data to the requested size using zero bytes.
1129 */
1130#define __copy_from_user(to, from, n)					\
1131({									\
1132	void *__cu_to;							\
1133	const void __user *__cu_from;					\
1134	long __cu_len;							\
1135									\
1136	__cu_to = (to);							\
1137	__cu_from = (from);						\
1138	__cu_len = (n);							\
1139									\
1140	check_object_size(__cu_to, __cu_len, false);			\
1141									\
1142	if (eva_kernel_access()) {					\
1143		__cu_len = __invoke_copy_from_kernel(__cu_to,		\
1144						     __cu_from,		\
1145						     __cu_len);		\
1146	} else {							\
1147		might_fault();						\
1148		__cu_len = __invoke_copy_from_user(__cu_to, __cu_from,	\
1149						   __cu_len);		\
1150	}								\
1151	__cu_len;							\
1152})
1153
1154/*
1155 * copy_from_user: - Copy a block of data from user space.
1156 * @to:	  Destination address, in kernel space.
1157 * @from: Source address, in user space.
1158 * @n:	  Number of bytes to copy.
1159 *
1160 * Context: User context only. This function may sleep if pagefaults are
1161 *          enabled.
1162 *
1163 * Copy data from user space to kernel space.
1164 *
1165 * Returns number of bytes that could not be copied.
1166 * On success, this will be zero.
1167 *
1168 * If some data could not be copied, this function will pad the copied
1169 * data to the requested size using zero bytes.
1170 */
1171#define copy_from_user(to, from, n)					\
1172({									\
1173	void *__cu_to;							\
1174	const void __user *__cu_from;					\
1175	long __cu_len;							\
1176									\
1177	__cu_to = (to);							\
1178	__cu_from = (from);						\
1179	__cu_len = (n);							\
1180									\
1181	check_object_size(__cu_to, __cu_len, false);			\
1182									\
1183	if (eva_kernel_access()) {					\
1184		__cu_len = __invoke_copy_from_kernel(__cu_to,		\
1185						     __cu_from,		\
1186						     __cu_len);		\
1187	} else {							\
1188		if (access_ok(VERIFY_READ, __cu_from, __cu_len)) {	\
1189			might_fault();                                  \
1190			__cu_len = __invoke_copy_from_user(__cu_to,	\
1191							   __cu_from,	\
1192							   __cu_len);   \
1193		} else {						\
1194			memset(__cu_to, 0, __cu_len);			\
1195		}							\
1196	}								\
1197	__cu_len;							\
1198})
1199
1200#define __copy_in_user(to, from, n)					\
1201({									\
1202	void __user *__cu_to;						\
1203	const void __user *__cu_from;					\
1204	long __cu_len;							\
1205									\
1206	__cu_to = (to);							\
1207	__cu_from = (from);						\
1208	__cu_len = (n);							\
1209	if (eva_kernel_access()) {					\
1210		__cu_len = ___invoke_copy_in_kernel(__cu_to, __cu_from,	\
1211						    __cu_len);		\
1212	} else {							\
1213		might_fault();						\
1214		__cu_len = ___invoke_copy_in_user(__cu_to, __cu_from,	\
1215						  __cu_len);		\
1216	}								\
1217	__cu_len;							\
1218})
1219
1220#define copy_in_user(to, from, n)					\
1221({									\
1222	void __user *__cu_to;						\
1223	const void __user *__cu_from;					\
1224	long __cu_len;							\
1225									\
1226	__cu_to = (to);							\
1227	__cu_from = (from);						\
1228	__cu_len = (n);							\
1229	if (eva_kernel_access()) {					\
1230		__cu_len = ___invoke_copy_in_kernel(__cu_to,__cu_from,	\
1231						    __cu_len);		\
1232	} else {							\
1233		if (likely(access_ok(VERIFY_READ, __cu_from, __cu_len) &&\
1234			   access_ok(VERIFY_WRITE, __cu_to, __cu_len))) {\
1235			might_fault();					\
1236			__cu_len = ___invoke_copy_in_user(__cu_to,	\
1237							  __cu_from,	\
1238							  __cu_len);	\
1239		}							\
1240	}								\
1241	__cu_len;							\
1242})
1243
1244/*
1245 * __clear_user: - Zero a block of memory in user space, with less checking.
1246 * @to:	  Destination address, in user space.
1247 * @n:	  Number of bytes to zero.
1248 *
1249 * Zero a block of memory in user space.  Caller must check
1250 * the specified block with access_ok() before calling this function.
1251 *
1252 * Returns number of bytes that could not be cleared.
1253 * On success, this will be zero.
1254 */
1255static inline __kernel_size_t
1256__clear_user(void __user *addr, __kernel_size_t size)
1257{
1258	__kernel_size_t res;
1259
1260	if (eva_kernel_access()) {
1261		__asm__ __volatile__(
1262			"move\t$4, %1\n\t"
1263			"move\t$5, $0\n\t"
1264			"move\t$6, %2\n\t"
1265			__MODULE_JAL(__bzero_kernel)
1266			"move\t%0, $6"
1267			: "=r" (res)
1268			: "r" (addr), "r" (size)
1269			: "$4", "$5", "$6", __UA_t0, __UA_t1, "$31");
1270	} else {
1271		might_fault();
1272		__asm__ __volatile__(
1273			"move\t$4, %1\n\t"
1274			"move\t$5, $0\n\t"
1275			"move\t$6, %2\n\t"
1276			__MODULE_JAL(__bzero)
1277			"move\t%0, $6"
1278			: "=r" (res)
1279			: "r" (addr), "r" (size)
1280			: "$4", "$5", "$6", __UA_t0, __UA_t1, "$31");
1281	}
1282
1283	return res;
1284}
1285
1286#define clear_user(addr,n)						\
1287({									\
1288	void __user * __cl_addr = (addr);				\
1289	unsigned long __cl_size = (n);					\
1290	if (__cl_size && access_ok(VERIFY_WRITE,			\
1291					__cl_addr, __cl_size))		\
1292		__cl_size = __clear_user(__cl_addr, __cl_size);		\
1293	__cl_size;							\
1294})
1295
1296/*
1297 * __strncpy_from_user: - Copy a NUL terminated string from userspace, with less checking.
1298 * @dst:   Destination address, in kernel space.  This buffer must be at
1299 *	   least @count bytes long.
1300 * @src:   Source address, in user space.
1301 * @count: Maximum number of bytes to copy, including the trailing NUL.
1302 *
1303 * Copies a NUL-terminated string from userspace to kernel space.
1304 * Caller must check the specified block with access_ok() before calling
1305 * this function.
1306 *
1307 * On success, returns the length of the string (not including the trailing
1308 * NUL).
1309 *
1310 * If access to userspace fails, returns -EFAULT (some data may have been
1311 * copied).
1312 *
1313 * If @count is smaller than the length of the string, copies @count bytes
1314 * and returns @count.
1315 */
1316static inline long
1317__strncpy_from_user(char *__to, const char __user *__from, long __len)
1318{
1319	long res;
1320
1321	if (eva_kernel_access()) {
1322		__asm__ __volatile__(
1323			"move\t$4, %1\n\t"
1324			"move\t$5, %2\n\t"
1325			"move\t$6, %3\n\t"
1326			__MODULE_JAL(__strncpy_from_kernel_nocheck_asm)
1327			"move\t%0, $2"
1328			: "=r" (res)
1329			: "r" (__to), "r" (__from), "r" (__len)
1330			: "$2", "$3", "$4", "$5", "$6", __UA_t0, "$31", "memory");
1331	} else {
1332		might_fault();
1333		__asm__ __volatile__(
1334			"move\t$4, %1\n\t"
1335			"move\t$5, %2\n\t"
1336			"move\t$6, %3\n\t"
1337			__MODULE_JAL(__strncpy_from_user_nocheck_asm)
1338			"move\t%0, $2"
1339			: "=r" (res)
1340			: "r" (__to), "r" (__from), "r" (__len)
1341			: "$2", "$3", "$4", "$5", "$6", __UA_t0, "$31", "memory");
1342	}
1343
1344	return res;
1345}
1346
1347/*
1348 * strncpy_from_user: - Copy a NUL terminated string from userspace.
1349 * @dst:   Destination address, in kernel space.  This buffer must be at
1350 *	   least @count bytes long.
1351 * @src:   Source address, in user space.
1352 * @count: Maximum number of bytes to copy, including the trailing NUL.
1353 *
1354 * Copies a NUL-terminated string from userspace to kernel space.
1355 *
1356 * On success, returns the length of the string (not including the trailing
1357 * NUL).
1358 *
1359 * If access to userspace fails, returns -EFAULT (some data may have been
1360 * copied).
1361 *
1362 * If @count is smaller than the length of the string, copies @count bytes
1363 * and returns @count.
1364 */
1365static inline long
1366strncpy_from_user(char *__to, const char __user *__from, long __len)
1367{
1368	long res;
1369
1370	if (eva_kernel_access()) {
1371		__asm__ __volatile__(
1372			"move\t$4, %1\n\t"
1373			"move\t$5, %2\n\t"
1374			"move\t$6, %3\n\t"
1375			__MODULE_JAL(__strncpy_from_kernel_asm)
1376			"move\t%0, $2"
1377			: "=r" (res)
1378			: "r" (__to), "r" (__from), "r" (__len)
1379			: "$2", "$3", "$4", "$5", "$6", __UA_t0, "$31", "memory");
1380	} else {
1381		might_fault();
1382		__asm__ __volatile__(
1383			"move\t$4, %1\n\t"
1384			"move\t$5, %2\n\t"
1385			"move\t$6, %3\n\t"
1386			__MODULE_JAL(__strncpy_from_user_asm)
1387			"move\t%0, $2"
1388			: "=r" (res)
1389			: "r" (__to), "r" (__from), "r" (__len)
1390			: "$2", "$3", "$4", "$5", "$6", __UA_t0, "$31", "memory");
1391	}
1392
1393	return res;
1394}
1395
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1396/*
1397 * strlen_user: - Get the size of a string in user space.
1398 * @str: The string to measure.
1399 *
1400 * Context: User context only. This function may sleep if pagefaults are
1401 *          enabled.
1402 *
1403 * Get the size of a NUL-terminated string in user space.
1404 *
1405 * Returns the size of the string INCLUDING the terminating NUL.
1406 * On exception, returns 0.
1407 *
1408 * If there is a limit on the length of a valid string, you may wish to
1409 * consider using strnlen_user() instead.
1410 */
1411static inline long strlen_user(const char __user *s)
1412{
1413	long res;
1414
1415	if (eva_kernel_access()) {
1416		__asm__ __volatile__(
1417			"move\t$4, %1\n\t"
1418			__MODULE_JAL(__strlen_kernel_asm)
1419			"move\t%0, $2"
1420			: "=r" (res)
1421			: "r" (s)
1422			: "$2", "$4", __UA_t0, "$31");
1423	} else {
1424		might_fault();
1425		__asm__ __volatile__(
1426			"move\t$4, %1\n\t"
1427			__MODULE_JAL(__strlen_user_asm)
1428			"move\t%0, $2"
1429			: "=r" (res)
1430			: "r" (s)
1431			: "$2", "$4", __UA_t0, "$31");
1432	}
1433
1434	return res;
1435}
1436
1437/* Returns: 0 if bad, string length+1 (memory size) of string if ok */
1438static inline long __strnlen_user(const char __user *s, long n)
1439{
1440	long res;
1441
1442	if (eva_kernel_access()) {
1443		__asm__ __volatile__(
1444			"move\t$4, %1\n\t"
1445			"move\t$5, %2\n\t"
1446			__MODULE_JAL(__strnlen_kernel_nocheck_asm)
1447			"move\t%0, $2"
1448			: "=r" (res)
1449			: "r" (s), "r" (n)
1450			: "$2", "$4", "$5", __UA_t0, "$31");
1451	} else {
1452		might_fault();
1453		__asm__ __volatile__(
1454			"move\t$4, %1\n\t"
1455			"move\t$5, %2\n\t"
1456			__MODULE_JAL(__strnlen_user_nocheck_asm)
1457			"move\t%0, $2"
1458			: "=r" (res)
1459			: "r" (s), "r" (n)
1460			: "$2", "$4", "$5", __UA_t0, "$31");
1461	}
1462
1463	return res;
1464}
1465
1466/*
1467 * strnlen_user: - Get the size of a string in user space.
1468 * @str: The string to measure.
1469 *
1470 * Context: User context only. This function may sleep if pagefaults are
1471 *          enabled.
1472 *
1473 * Get the size of a NUL-terminated string in user space.
1474 *
1475 * Returns the size of the string INCLUDING the terminating NUL.
1476 * On exception, returns 0.
1477 * If the string is too long, returns a value greater than @n.
 
 
1478 */
1479static inline long strnlen_user(const char __user *s, long n)
1480{
1481	long res;
1482
1483	might_fault();
1484	if (eva_kernel_access()) {
1485		__asm__ __volatile__(
1486			"move\t$4, %1\n\t"
1487			"move\t$5, %2\n\t"
1488			__MODULE_JAL(__strnlen_kernel_asm)
1489			"move\t%0, $2"
1490			: "=r" (res)
1491			: "r" (s), "r" (n)
1492			: "$2", "$4", "$5", __UA_t0, "$31");
1493	} else {
1494		__asm__ __volatile__(
1495			"move\t$4, %1\n\t"
1496			"move\t$5, %2\n\t"
1497			__MODULE_JAL(__strnlen_user_asm)
1498			"move\t%0, $2"
1499			: "=r" (res)
1500			: "r" (s), "r" (n)
1501			: "$2", "$4", "$5", __UA_t0, "$31");
1502	}
1503
1504	return res;
1505}
 
 
 
 
 
 
 
 
1506
1507#endif /* _ASM_UACCESS_H */