Linux Audio

Check our new training course

Loading...
v3.15
   1/*
   2 * fs/f2fs/super.c
   3 *
   4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
   5 *             http://www.samsung.com/
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License version 2 as
   9 * published by the Free Software Foundation.
  10 */
  11#include <linux/module.h>
  12#include <linux/init.h>
  13#include <linux/fs.h>
  14#include <linux/statfs.h>
  15#include <linux/buffer_head.h>
  16#include <linux/backing-dev.h>
  17#include <linux/kthread.h>
  18#include <linux/parser.h>
  19#include <linux/mount.h>
  20#include <linux/seq_file.h>
  21#include <linux/proc_fs.h>
  22#include <linux/random.h>
  23#include <linux/exportfs.h>
  24#include <linux/blkdev.h>
  25#include <linux/f2fs_fs.h>
  26#include <linux/sysfs.h>
  27
  28#include "f2fs.h"
  29#include "node.h"
  30#include "segment.h"
  31#include "xattr.h"
  32#include "gc.h"
 
  33
  34#define CREATE_TRACE_POINTS
  35#include <trace/events/f2fs.h>
  36
  37static struct proc_dir_entry *f2fs_proc_root;
  38static struct kmem_cache *f2fs_inode_cachep;
  39static struct kset *f2fs_kset;
  40
 
 
 
 
 
 
 
  41enum {
  42	Opt_gc_background,
  43	Opt_disable_roll_forward,
 
  44	Opt_discard,
  45	Opt_noheap,
  46	Opt_user_xattr,
  47	Opt_nouser_xattr,
  48	Opt_acl,
  49	Opt_noacl,
  50	Opt_active_logs,
  51	Opt_disable_ext_identify,
  52	Opt_inline_xattr,
  53	Opt_inline_data,
 
  54	Opt_flush_merge,
 
 
 
 
 
 
  55	Opt_err,
  56};
  57
  58static match_table_t f2fs_tokens = {
  59	{Opt_gc_background, "background_gc=%s"},
  60	{Opt_disable_roll_forward, "disable_roll_forward"},
 
  61	{Opt_discard, "discard"},
  62	{Opt_noheap, "no_heap"},
  63	{Opt_user_xattr, "user_xattr"},
  64	{Opt_nouser_xattr, "nouser_xattr"},
  65	{Opt_acl, "acl"},
  66	{Opt_noacl, "noacl"},
  67	{Opt_active_logs, "active_logs=%u"},
  68	{Opt_disable_ext_identify, "disable_ext_identify"},
  69	{Opt_inline_xattr, "inline_xattr"},
  70	{Opt_inline_data, "inline_data"},
 
  71	{Opt_flush_merge, "flush_merge"},
 
 
 
 
 
 
  72	{Opt_err, NULL},
  73};
  74
  75/* Sysfs support for f2fs */
  76enum {
  77	GC_THREAD,	/* struct f2fs_gc_thread */
  78	SM_INFO,	/* struct f2fs_sm_info */
  79	NM_INFO,	/* struct f2fs_nm_info */
  80	F2FS_SBI,	/* struct f2fs_sb_info */
  81};
  82
  83struct f2fs_attr {
  84	struct attribute attr;
  85	ssize_t (*show)(struct f2fs_attr *, struct f2fs_sb_info *, char *);
  86	ssize_t (*store)(struct f2fs_attr *, struct f2fs_sb_info *,
  87			 const char *, size_t);
  88	int struct_type;
  89	int offset;
  90};
  91
  92static unsigned char *__struct_ptr(struct f2fs_sb_info *sbi, int struct_type)
  93{
  94	if (struct_type == GC_THREAD)
  95		return (unsigned char *)sbi->gc_thread;
  96	else if (struct_type == SM_INFO)
  97		return (unsigned char *)SM_I(sbi);
  98	else if (struct_type == NM_INFO)
  99		return (unsigned char *)NM_I(sbi);
 100	else if (struct_type == F2FS_SBI)
 101		return (unsigned char *)sbi;
 102	return NULL;
 103}
 104
 
 
 
 
 
 
 
 
 
 
 
 
 
 105static ssize_t f2fs_sbi_show(struct f2fs_attr *a,
 106			struct f2fs_sb_info *sbi, char *buf)
 107{
 108	unsigned char *ptr = NULL;
 109	unsigned int *ui;
 110
 111	ptr = __struct_ptr(sbi, a->struct_type);
 112	if (!ptr)
 113		return -EINVAL;
 114
 115	ui = (unsigned int *)(ptr + a->offset);
 116
 117	return snprintf(buf, PAGE_SIZE, "%u\n", *ui);
 118}
 119
 120static ssize_t f2fs_sbi_store(struct f2fs_attr *a,
 121			struct f2fs_sb_info *sbi,
 122			const char *buf, size_t count)
 123{
 124	unsigned char *ptr;
 125	unsigned long t;
 126	unsigned int *ui;
 127	ssize_t ret;
 128
 129	ptr = __struct_ptr(sbi, a->struct_type);
 130	if (!ptr)
 131		return -EINVAL;
 132
 133	ui = (unsigned int *)(ptr + a->offset);
 134
 135	ret = kstrtoul(skip_spaces(buf), 0, &t);
 136	if (ret < 0)
 137		return ret;
 138	*ui = t;
 139	return count;
 140}
 141
 142static ssize_t f2fs_attr_show(struct kobject *kobj,
 143				struct attribute *attr, char *buf)
 144{
 145	struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
 146								s_kobj);
 147	struct f2fs_attr *a = container_of(attr, struct f2fs_attr, attr);
 148
 149	return a->show ? a->show(a, sbi, buf) : 0;
 150}
 151
 152static ssize_t f2fs_attr_store(struct kobject *kobj, struct attribute *attr,
 153						const char *buf, size_t len)
 154{
 155	struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
 156									s_kobj);
 157	struct f2fs_attr *a = container_of(attr, struct f2fs_attr, attr);
 158
 159	return a->store ? a->store(a, sbi, buf, len) : 0;
 160}
 161
 162static void f2fs_sb_release(struct kobject *kobj)
 163{
 164	struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
 165								s_kobj);
 166	complete(&sbi->s_kobj_unregister);
 167}
 168
 169#define F2FS_ATTR_OFFSET(_struct_type, _name, _mode, _show, _store, _offset) \
 170static struct f2fs_attr f2fs_attr_##_name = {			\
 171	.attr = {.name = __stringify(_name), .mode = _mode },	\
 172	.show	= _show,					\
 173	.store	= _store,					\
 174	.struct_type = _struct_type,				\
 175	.offset = _offset					\
 176}
 177
 178#define F2FS_RW_ATTR(struct_type, struct_name, name, elname)	\
 179	F2FS_ATTR_OFFSET(struct_type, name, 0644,		\
 180		f2fs_sbi_show, f2fs_sbi_store,			\
 181		offsetof(struct struct_name, elname))
 182
 
 
 
 183F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_min_sleep_time, min_sleep_time);
 184F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_max_sleep_time, max_sleep_time);
 185F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_no_gc_sleep_time, no_gc_sleep_time);
 186F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_idle, gc_idle);
 187F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, reclaim_segments, rec_prefree_segments);
 188F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, max_small_discards, max_discards);
 
 189F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, ipu_policy, ipu_policy);
 190F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, min_ipu_util, min_ipu_util);
 
 191F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, ram_thresh, ram_thresh);
 
 
 192F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, max_victim_search, max_victim_search);
 193F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, dir_level, dir_level);
 
 
 
 194
 195#define ATTR_LIST(name) (&f2fs_attr_##name.attr)
 196static struct attribute *f2fs_attrs[] = {
 197	ATTR_LIST(gc_min_sleep_time),
 198	ATTR_LIST(gc_max_sleep_time),
 199	ATTR_LIST(gc_no_gc_sleep_time),
 200	ATTR_LIST(gc_idle),
 201	ATTR_LIST(reclaim_segments),
 202	ATTR_LIST(max_small_discards),
 
 203	ATTR_LIST(ipu_policy),
 204	ATTR_LIST(min_ipu_util),
 
 205	ATTR_LIST(max_victim_search),
 206	ATTR_LIST(dir_level),
 207	ATTR_LIST(ram_thresh),
 
 
 
 
 
 208	NULL,
 209};
 210
 211static const struct sysfs_ops f2fs_attr_ops = {
 212	.show	= f2fs_attr_show,
 213	.store	= f2fs_attr_store,
 214};
 215
 216static struct kobj_type f2fs_ktype = {
 217	.default_attrs	= f2fs_attrs,
 218	.sysfs_ops	= &f2fs_attr_ops,
 219	.release	= f2fs_sb_release,
 220};
 221
 222void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...)
 223{
 224	struct va_format vaf;
 225	va_list args;
 226
 227	va_start(args, fmt);
 228	vaf.fmt = fmt;
 229	vaf.va = &args;
 230	printk("%sF2FS-fs (%s): %pV\n", level, sb->s_id, &vaf);
 231	va_end(args);
 232}
 233
 234static void init_once(void *foo)
 235{
 236	struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo;
 237
 238	inode_init_once(&fi->vfs_inode);
 239}
 240
 241static int parse_options(struct super_block *sb, char *options)
 242{
 243	struct f2fs_sb_info *sbi = F2FS_SB(sb);
 
 244	substring_t args[MAX_OPT_ARGS];
 245	char *p, *name;
 246	int arg = 0;
 247
 248	if (!options)
 249		return 0;
 250
 251	while ((p = strsep(&options, ",")) != NULL) {
 252		int token;
 253		if (!*p)
 254			continue;
 255		/*
 256		 * Initialize args struct so we know whether arg was
 257		 * found; some options take optional arguments.
 258		 */
 259		args[0].to = args[0].from = NULL;
 260		token = match_token(p, f2fs_tokens, args);
 261
 262		switch (token) {
 263		case Opt_gc_background:
 264			name = match_strdup(&args[0]);
 265
 266			if (!name)
 267				return -ENOMEM;
 268			if (strlen(name) == 2 && !strncmp(name, "on", 2))
 269				set_opt(sbi, BG_GC);
 270			else if (strlen(name) == 3 && !strncmp(name, "off", 3))
 
 271				clear_opt(sbi, BG_GC);
 272			else {
 
 
 
 
 273				kfree(name);
 274				return -EINVAL;
 275			}
 276			kfree(name);
 277			break;
 278		case Opt_disable_roll_forward:
 279			set_opt(sbi, DISABLE_ROLL_FORWARD);
 280			break;
 
 
 
 
 
 
 281		case Opt_discard:
 282			set_opt(sbi, DISCARD);
 
 
 
 
 
 
 
 283			break;
 284		case Opt_noheap:
 285			set_opt(sbi, NOHEAP);
 286			break;
 287#ifdef CONFIG_F2FS_FS_XATTR
 288		case Opt_user_xattr:
 289			set_opt(sbi, XATTR_USER);
 290			break;
 291		case Opt_nouser_xattr:
 292			clear_opt(sbi, XATTR_USER);
 293			break;
 294		case Opt_inline_xattr:
 295			set_opt(sbi, INLINE_XATTR);
 296			break;
 297#else
 298		case Opt_user_xattr:
 299			f2fs_msg(sb, KERN_INFO,
 300				"user_xattr options not supported");
 301			break;
 302		case Opt_nouser_xattr:
 303			f2fs_msg(sb, KERN_INFO,
 304				"nouser_xattr options not supported");
 305			break;
 306		case Opt_inline_xattr:
 307			f2fs_msg(sb, KERN_INFO,
 308				"inline_xattr options not supported");
 309			break;
 310#endif
 311#ifdef CONFIG_F2FS_FS_POSIX_ACL
 312		case Opt_acl:
 313			set_opt(sbi, POSIX_ACL);
 314			break;
 315		case Opt_noacl:
 316			clear_opt(sbi, POSIX_ACL);
 317			break;
 318#else
 319		case Opt_acl:
 320			f2fs_msg(sb, KERN_INFO, "acl options not supported");
 321			break;
 322		case Opt_noacl:
 323			f2fs_msg(sb, KERN_INFO, "noacl options not supported");
 324			break;
 325#endif
 326		case Opt_active_logs:
 327			if (args->from && match_int(args, &arg))
 328				return -EINVAL;
 329			if (arg != 2 && arg != 4 && arg != NR_CURSEG_TYPE)
 330				return -EINVAL;
 331			sbi->active_logs = arg;
 332			break;
 333		case Opt_disable_ext_identify:
 334			set_opt(sbi, DISABLE_EXT_IDENTIFY);
 335			break;
 336		case Opt_inline_data:
 337			set_opt(sbi, INLINE_DATA);
 338			break;
 
 
 
 339		case Opt_flush_merge:
 340			set_opt(sbi, FLUSH_MERGE);
 341			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 342		default:
 343			f2fs_msg(sb, KERN_ERR,
 344				"Unrecognized mount option \"%s\" or missing value",
 345				p);
 346			return -EINVAL;
 347		}
 348	}
 349	return 0;
 350}
 351
 352static struct inode *f2fs_alloc_inode(struct super_block *sb)
 353{
 354	struct f2fs_inode_info *fi;
 355
 356	fi = kmem_cache_alloc(f2fs_inode_cachep, GFP_F2FS_ZERO);
 357	if (!fi)
 358		return NULL;
 359
 360	init_once((void *) fi);
 361
 362	/* Initialize f2fs-specific inode info */
 363	fi->vfs_inode.i_version = 1;
 364	atomic_set(&fi->dirty_dents, 0);
 365	fi->i_current_depth = 1;
 366	fi->i_advise = 0;
 367	rwlock_init(&fi->ext.ext_lock);
 368	init_rwsem(&fi->i_sem);
 
 
 
 369
 370	set_inode_flag(fi, FI_NEW_INODE);
 371
 372	if (test_opt(F2FS_SB(sb), INLINE_XATTR))
 373		set_inode_flag(fi, FI_INLINE_XATTR);
 374
 375	/* Will be used by directory only */
 376	fi->i_dir_level = F2FS_SB(sb)->dir_level;
 377
 378	return &fi->vfs_inode;
 379}
 380
 381static int f2fs_drop_inode(struct inode *inode)
 382{
 383	/*
 384	 * This is to avoid a deadlock condition like below.
 385	 * writeback_single_inode(inode)
 386	 *  - f2fs_write_data_page
 387	 *    - f2fs_gc -> iput -> evict
 388	 *       - inode_wait_for_writeback(inode)
 389	 */
 390	if (!inode_unhashed(inode) && inode->i_state & I_SYNC)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 391		return 0;
 
 392	return generic_drop_inode(inode);
 393}
 394
 395/*
 396 * f2fs_dirty_inode() is called from __mark_inode_dirty()
 397 *
 398 * We should call set_dirty_inode to write the dirty inode through write_inode.
 399 */
 400static void f2fs_dirty_inode(struct inode *inode, int flags)
 401{
 402	set_inode_flag(F2FS_I(inode), FI_DIRTY_INODE);
 403}
 404
 405static void f2fs_i_callback(struct rcu_head *head)
 406{
 407	struct inode *inode = container_of(head, struct inode, i_rcu);
 408	kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode));
 409}
 410
 411static void f2fs_destroy_inode(struct inode *inode)
 412{
 413	call_rcu(&inode->i_rcu, f2fs_i_callback);
 414}
 415
 416static void f2fs_put_super(struct super_block *sb)
 417{
 418	struct f2fs_sb_info *sbi = F2FS_SB(sb);
 419
 420	if (sbi->s_proc) {
 421		remove_proc_entry("segment_info", sbi->s_proc);
 422		remove_proc_entry(sb->s_id, f2fs_proc_root);
 423	}
 424	kobject_del(&sbi->s_kobj);
 425
 426	f2fs_destroy_stats(sbi);
 427	stop_gc_thread(sbi);
 428
 429	/* We don't need to do checkpoint when it's clean */
 430	if (sbi->s_dirty && get_pages(sbi, F2FS_DIRTY_NODES))
 431		write_checkpoint(sbi, true);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 432
 433	iput(sbi->node_inode);
 434	iput(sbi->meta_inode);
 435
 436	/* destroy f2fs internal modules */
 437	destroy_node_manager(sbi);
 438	destroy_segment_manager(sbi);
 439
 440	kfree(sbi->ckpt);
 441	kobject_put(&sbi->s_kobj);
 442	wait_for_completion(&sbi->s_kobj_unregister);
 443
 444	sb->s_fs_info = NULL;
 445	brelse(sbi->raw_super_buf);
 
 
 446	kfree(sbi);
 447}
 448
 449int f2fs_sync_fs(struct super_block *sb, int sync)
 450{
 451	struct f2fs_sb_info *sbi = F2FS_SB(sb);
 
 452
 453	trace_f2fs_sync_fs(sb, sync);
 454
 455	if (!sbi->s_dirty && !get_pages(sbi, F2FS_DIRTY_NODES))
 456		return 0;
 457
 458	if (sync) {
 
 
 
 
 459		mutex_lock(&sbi->gc_mutex);
 460		write_checkpoint(sbi, false);
 461		mutex_unlock(&sbi->gc_mutex);
 462	} else {
 463		f2fs_balance_fs(sbi);
 464	}
 
 465
 466	return 0;
 467}
 468
 469static int f2fs_freeze(struct super_block *sb)
 470{
 471	int err;
 472
 473	if (f2fs_readonly(sb))
 474		return 0;
 475
 476	err = f2fs_sync_fs(sb, 1);
 477	return err;
 478}
 479
 480static int f2fs_unfreeze(struct super_block *sb)
 481{
 482	return 0;
 483}
 484
 485static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf)
 486{
 487	struct super_block *sb = dentry->d_sb;
 488	struct f2fs_sb_info *sbi = F2FS_SB(sb);
 489	u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
 490	block_t total_count, user_block_count, start_count, ovp_count;
 491
 492	total_count = le64_to_cpu(sbi->raw_super->block_count);
 493	user_block_count = sbi->user_block_count;
 494	start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr);
 495	ovp_count = SM_I(sbi)->ovp_segments << sbi->log_blocks_per_seg;
 496	buf->f_type = F2FS_SUPER_MAGIC;
 497	buf->f_bsize = sbi->blocksize;
 498
 499	buf->f_blocks = total_count - start_count;
 500	buf->f_bfree = buf->f_blocks - valid_user_blocks(sbi) - ovp_count;
 501	buf->f_bavail = user_block_count - valid_user_blocks(sbi);
 502
 503	buf->f_files = sbi->total_node_count;
 504	buf->f_ffree = sbi->total_node_count - valid_inode_count(sbi);
 505
 506	buf->f_namelen = F2FS_NAME_LEN;
 507	buf->f_fsid.val[0] = (u32)id;
 508	buf->f_fsid.val[1] = (u32)(id >> 32);
 509
 510	return 0;
 511}
 512
 513static int f2fs_show_options(struct seq_file *seq, struct dentry *root)
 514{
 515	struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb);
 516
 517	if (!(root->d_sb->s_flags & MS_RDONLY) && test_opt(sbi, BG_GC))
 518		seq_printf(seq, ",background_gc=%s", "on");
 519	else
 
 
 
 520		seq_printf(seq, ",background_gc=%s", "off");
 
 521	if (test_opt(sbi, DISABLE_ROLL_FORWARD))
 522		seq_puts(seq, ",disable_roll_forward");
 523	if (test_opt(sbi, DISCARD))
 524		seq_puts(seq, ",discard");
 525	if (test_opt(sbi, NOHEAP))
 526		seq_puts(seq, ",no_heap_alloc");
 527#ifdef CONFIG_F2FS_FS_XATTR
 528	if (test_opt(sbi, XATTR_USER))
 529		seq_puts(seq, ",user_xattr");
 530	else
 531		seq_puts(seq, ",nouser_xattr");
 532	if (test_opt(sbi, INLINE_XATTR))
 533		seq_puts(seq, ",inline_xattr");
 534#endif
 535#ifdef CONFIG_F2FS_FS_POSIX_ACL
 536	if (test_opt(sbi, POSIX_ACL))
 537		seq_puts(seq, ",acl");
 538	else
 539		seq_puts(seq, ",noacl");
 540#endif
 541	if (test_opt(sbi, DISABLE_EXT_IDENTIFY))
 542		seq_puts(seq, ",disable_ext_identify");
 543	if (test_opt(sbi, INLINE_DATA))
 544		seq_puts(seq, ",inline_data");
 545	if (test_opt(sbi, FLUSH_MERGE))
 
 
 
 
 546		seq_puts(seq, ",flush_merge");
 
 
 
 
 
 
 
 
 
 
 547	seq_printf(seq, ",active_logs=%u", sbi->active_logs);
 548
 549	return 0;
 550}
 551
 552static int segment_info_seq_show(struct seq_file *seq, void *offset)
 553{
 554	struct super_block *sb = seq->private;
 555	struct f2fs_sb_info *sbi = F2FS_SB(sb);
 556	unsigned int total_segs =
 557			le32_to_cpu(sbi->raw_super->segment_count_main);
 558	int i;
 559
 560	seq_puts(seq, "format: segment_type|valid_blocks\n"
 561		"segment_type(0:HD, 1:WD, 2:CD, 3:HN, 4:WN, 5:CN)\n");
 562
 563	for (i = 0; i < total_segs; i++) {
 564		struct seg_entry *se = get_seg_entry(sbi, i);
 565
 566		if ((i % 10) == 0)
 567			seq_printf(seq, "%-5d", i);
 568		seq_printf(seq, "%d|%-3u", se->type,
 569					get_valid_blocks(sbi, i, 1));
 570		if ((i % 10) == 9 || i == (total_segs - 1))
 571			seq_putc(seq, '\n');
 572		else
 573			seq_putc(seq, ' ');
 574	}
 575
 576	return 0;
 577}
 578
 579static int segment_info_open_fs(struct inode *inode, struct file *file)
 580{
 581	return single_open(file, segment_info_seq_show, PDE_DATA(inode));
 582}
 583
 584static const struct file_operations f2fs_seq_segment_info_fops = {
 585	.owner = THIS_MODULE,
 586	.open = segment_info_open_fs,
 587	.read = seq_read,
 588	.llseek = seq_lseek,
 589	.release = single_release,
 590};
 591
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 592static int f2fs_remount(struct super_block *sb, int *flags, char *data)
 593{
 594	struct f2fs_sb_info *sbi = F2FS_SB(sb);
 595	struct f2fs_mount_info org_mount_opt;
 596	int err, active_logs;
 597
 598	sync_filesystem(sb);
 
 599
 600	/*
 601	 * Save the old mount options in case we
 602	 * need to restore them.
 603	 */
 604	org_mount_opt = sbi->mount_opt;
 605	active_logs = sbi->active_logs;
 606
 
 
 
 
 
 
 
 
 
 
 607	/* parse mount options */
 608	err = parse_options(sb, data);
 609	if (err)
 610		goto restore_opts;
 611
 612	/*
 613	 * Previous and new state of filesystem is RO,
 614	 * so no point in checking GC conditions.
 615	 */
 616	if ((sb->s_flags & MS_RDONLY) && (*flags & MS_RDONLY))
 617		goto skip;
 618
 
 
 
 
 
 
 
 
 619	/*
 620	 * We stop the GC thread if FS is mounted as RO
 621	 * or if background_gc = off is passed in mount
 622	 * option. Also sync the filesystem.
 623	 */
 624	if ((*flags & MS_RDONLY) || !test_opt(sbi, BG_GC)) {
 625		if (sbi->gc_thread) {
 626			stop_gc_thread(sbi);
 627			f2fs_sync_fs(sb, 1);
 
 628		}
 629	} else if (test_opt(sbi, BG_GC) && !sbi->gc_thread) {
 630		err = start_gc_thread(sbi);
 631		if (err)
 632			goto restore_opts;
 
 
 
 
 
 
 
 
 
 
 
 
 
 633	}
 634skip:
 635	/* Update the POSIXACL Flag */
 636	 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
 637		(test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0);
 638	return 0;
 639
 
 
 
 
 
 
 
 640restore_opts:
 641	sbi->mount_opt = org_mount_opt;
 642	sbi->active_logs = active_logs;
 643	return err;
 644}
 645
 646static struct super_operations f2fs_sops = {
 647	.alloc_inode	= f2fs_alloc_inode,
 648	.drop_inode	= f2fs_drop_inode,
 649	.destroy_inode	= f2fs_destroy_inode,
 650	.write_inode	= f2fs_write_inode,
 651	.dirty_inode	= f2fs_dirty_inode,
 652	.show_options	= f2fs_show_options,
 653	.evict_inode	= f2fs_evict_inode,
 654	.put_super	= f2fs_put_super,
 655	.sync_fs	= f2fs_sync_fs,
 656	.freeze_fs	= f2fs_freeze,
 657	.unfreeze_fs	= f2fs_unfreeze,
 658	.statfs		= f2fs_statfs,
 659	.remount_fs	= f2fs_remount,
 660};
 661
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 662static struct inode *f2fs_nfs_get_inode(struct super_block *sb,
 663		u64 ino, u32 generation)
 664{
 665	struct f2fs_sb_info *sbi = F2FS_SB(sb);
 666	struct inode *inode;
 667
 668	if (unlikely(ino < F2FS_ROOT_INO(sbi)))
 669		return ERR_PTR(-ESTALE);
 670	if (unlikely(ino >= NM_I(sbi)->max_nid))
 671		return ERR_PTR(-ESTALE);
 672
 673	/*
 674	 * f2fs_iget isn't quite right if the inode is currently unallocated!
 675	 * However f2fs_iget currently does appropriate checks to handle stale
 676	 * inodes so everything is OK.
 677	 */
 678	inode = f2fs_iget(sb, ino);
 679	if (IS_ERR(inode))
 680		return ERR_CAST(inode);
 681	if (unlikely(generation && inode->i_generation != generation)) {
 682		/* we didn't find the right inode.. */
 683		iput(inode);
 684		return ERR_PTR(-ESTALE);
 685	}
 686	return inode;
 687}
 688
 689static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid,
 690		int fh_len, int fh_type)
 691{
 692	return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
 693				    f2fs_nfs_get_inode);
 694}
 695
 696static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid,
 697		int fh_len, int fh_type)
 698{
 699	return generic_fh_to_parent(sb, fid, fh_len, fh_type,
 700				    f2fs_nfs_get_inode);
 701}
 702
 703static const struct export_operations f2fs_export_ops = {
 704	.fh_to_dentry = f2fs_fh_to_dentry,
 705	.fh_to_parent = f2fs_fh_to_parent,
 706	.get_parent = f2fs_get_parent,
 707};
 708
 709static loff_t max_file_size(unsigned bits)
 710{
 711	loff_t result = (DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS);
 712	loff_t leaf_count = ADDRS_PER_BLOCK;
 713
 714	/* two direct node blocks */
 715	result += (leaf_count * 2);
 716
 717	/* two indirect node blocks */
 718	leaf_count *= NIDS_PER_BLOCK;
 719	result += (leaf_count * 2);
 720
 721	/* one double indirect node block */
 722	leaf_count *= NIDS_PER_BLOCK;
 723	result += leaf_count;
 724
 725	result <<= bits;
 726	return result;
 727}
 728
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 729static int sanity_check_raw_super(struct super_block *sb,
 730			struct f2fs_super_block *raw_super)
 731{
 
 
 732	unsigned int blocksize;
 733
 734	if (F2FS_SUPER_MAGIC != le32_to_cpu(raw_super->magic)) {
 735		f2fs_msg(sb, KERN_INFO,
 736			"Magic Mismatch, valid(0x%x) - read(0x%x)",
 737			F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic));
 738		return 1;
 739	}
 740
 741	/* Currently, support only 4KB page cache size */
 742	if (F2FS_BLKSIZE != PAGE_CACHE_SIZE) {
 743		f2fs_msg(sb, KERN_INFO,
 744			"Invalid page_cache_size (%lu), supports only 4KB\n",
 745			PAGE_CACHE_SIZE);
 746		return 1;
 747	}
 748
 749	/* Currently, support only 4KB block size */
 750	blocksize = 1 << le32_to_cpu(raw_super->log_blocksize);
 751	if (blocksize != F2FS_BLKSIZE) {
 752		f2fs_msg(sb, KERN_INFO,
 753			"Invalid blocksize (%u), supports only 4KB\n",
 754			blocksize);
 755		return 1;
 756	}
 757
 758	if (le32_to_cpu(raw_super->log_sectorsize) !=
 759					F2FS_LOG_SECTOR_SIZE) {
 760		f2fs_msg(sb, KERN_INFO, "Invalid log sectorsize");
 
 
 761		return 1;
 762	}
 763	if (le32_to_cpu(raw_super->log_sectors_per_block) !=
 764					F2FS_LOG_SECTORS_PER_BLOCK) {
 765		f2fs_msg(sb, KERN_INFO, "Invalid log sectors per block");
 
 
 
 
 
 766		return 1;
 767	}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 768	return 0;
 769}
 770
 771static int sanity_check_ckpt(struct f2fs_sb_info *sbi)
 772{
 773	unsigned int total, fsmeta;
 774	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
 775	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
 776
 777	total = le32_to_cpu(raw_super->segment_count);
 778	fsmeta = le32_to_cpu(raw_super->segment_count_ckpt);
 779	fsmeta += le32_to_cpu(raw_super->segment_count_sit);
 780	fsmeta += le32_to_cpu(raw_super->segment_count_nat);
 781	fsmeta += le32_to_cpu(ckpt->rsvd_segment_count);
 782	fsmeta += le32_to_cpu(raw_super->segment_count_ssa);
 783
 784	if (unlikely(fsmeta >= total))
 785		return 1;
 786
 787	if (unlikely(is_set_ckpt_flags(ckpt, CP_ERROR_FLAG))) {
 788		f2fs_msg(sbi->sb, KERN_ERR, "A bug case: need to run fsck");
 789		return 1;
 790	}
 791	return 0;
 792}
 793
 794static void init_sb_info(struct f2fs_sb_info *sbi)
 795{
 796	struct f2fs_super_block *raw_super = sbi->raw_super;
 797	int i;
 798
 799	sbi->log_sectors_per_block =
 800		le32_to_cpu(raw_super->log_sectors_per_block);
 801	sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize);
 802	sbi->blocksize = 1 << sbi->log_blocksize;
 803	sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
 804	sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg;
 805	sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
 806	sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
 807	sbi->total_sections = le32_to_cpu(raw_super->section_count);
 808	sbi->total_node_count =
 809		(le32_to_cpu(raw_super->segment_count_nat) / 2)
 810			* sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK;
 811	sbi->root_ino_num = le32_to_cpu(raw_super->root_ino);
 812	sbi->node_ino_num = le32_to_cpu(raw_super->node_ino);
 813	sbi->meta_ino_num = le32_to_cpu(raw_super->meta_ino);
 814	sbi->cur_victim_sec = NULL_SECNO;
 815	sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH;
 816
 817	for (i = 0; i < NR_COUNT_TYPE; i++)
 818		atomic_set(&sbi->nr_pages[i], 0);
 819
 820	sbi->dir_level = DEF_DIR_LEVEL;
 
 
 
 
 
 
 821}
 822
 823/*
 824 * Read f2fs raw super block.
 825 * Because we have two copies of super block, so read the first one at first,
 826 * if the first one is invalid, move to read the second one.
 
 827 */
 828static int read_raw_super_block(struct super_block *sb,
 829			struct f2fs_super_block **raw_super,
 830			struct buffer_head **raw_super_buf)
 831{
 832	int block = 0;
 
 
 
 
 
 
 
 833
 834retry:
 835	*raw_super_buf = sb_bread(sb, block);
 836	if (!*raw_super_buf) {
 837		f2fs_msg(sb, KERN_ERR, "Unable to read %dth superblock",
 838				block + 1);
 839		if (block == 0) {
 840			block++;
 841			goto retry;
 842		} else {
 843			return -EIO;
 844		}
 845	}
 846
 847	*raw_super = (struct f2fs_super_block *)
 848		((char *)(*raw_super_buf)->b_data + F2FS_SUPER_OFFSET);
 
 
 
 
 
 
 
 849
 850	/* sanity checking of raw super */
 851	if (sanity_check_raw_super(sb, *raw_super)) {
 852		brelse(*raw_super_buf);
 853		f2fs_msg(sb, KERN_ERR,
 854			"Can't find valid F2FS filesystem in %dth superblock",
 855								block + 1);
 856		if (block == 0) {
 857			block++;
 858			goto retry;
 859		} else {
 860			return -EINVAL;
 861		}
 
 862	}
 863
 864	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 865}
 866
 867static int f2fs_fill_super(struct super_block *sb, void *data, int silent)
 868{
 869	struct f2fs_sb_info *sbi;
 870	struct f2fs_super_block *raw_super;
 871	struct buffer_head *raw_super_buf;
 872	struct inode *root;
 873	long err = -EINVAL;
 874	int i;
 
 
 
 
 
 
 
 
 
 875
 876	/* allocate memory for f2fs-specific super block info */
 877	sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL);
 878	if (!sbi)
 879		return -ENOMEM;
 880
 
 
 
 
 
 
 
 
 
 881	/* set a block size */
 882	if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) {
 883		f2fs_msg(sb, KERN_ERR, "unable to set blocksize");
 884		goto free_sbi;
 885	}
 886
 887	err = read_raw_super_block(sb, &raw_super, &raw_super_buf);
 
 888	if (err)
 889		goto free_sbi;
 890
 891	sb->s_fs_info = sbi;
 892	/* init some FS parameters */
 893	sbi->active_logs = NR_CURSEG_TYPE;
 894
 895	set_opt(sbi, BG_GC);
 896
 897#ifdef CONFIG_F2FS_FS_XATTR
 898	set_opt(sbi, XATTR_USER);
 899#endif
 900#ifdef CONFIG_F2FS_FS_POSIX_ACL
 901	set_opt(sbi, POSIX_ACL);
 902#endif
 903	/* parse mount options */
 904	err = parse_options(sb, (char *)data);
 905	if (err)
 
 906		goto free_sb_buf;
 
 907
 908	sb->s_maxbytes = max_file_size(le32_to_cpu(raw_super->log_blocksize));
 
 
 
 
 
 
 909	sb->s_max_links = F2FS_LINK_MAX;
 910	get_random_bytes(&sbi->s_next_generation, sizeof(u32));
 911
 912	sb->s_op = &f2fs_sops;
 
 913	sb->s_xattr = f2fs_xattr_handlers;
 914	sb->s_export_op = &f2fs_export_ops;
 915	sb->s_magic = F2FS_SUPER_MAGIC;
 916	sb->s_time_gran = 1;
 917	sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
 918		(test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0);
 919	memcpy(sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid));
 920
 921	/* init f2fs-specific super block info */
 922	sbi->sb = sb;
 923	sbi->raw_super = raw_super;
 924	sbi->raw_super_buf = raw_super_buf;
 925	mutex_init(&sbi->gc_mutex);
 926	mutex_init(&sbi->writepages);
 927	mutex_init(&sbi->cp_mutex);
 928	mutex_init(&sbi->node_write);
 929	sbi->por_doing = false;
 
 
 930	spin_lock_init(&sbi->stat_lock);
 931
 932	init_rwsem(&sbi->read_io.io_rwsem);
 933	sbi->read_io.sbi = sbi;
 934	sbi->read_io.bio = NULL;
 935	for (i = 0; i < NR_PAGE_TYPE; i++) {
 936		init_rwsem(&sbi->write_io[i].io_rwsem);
 937		sbi->write_io[i].sbi = sbi;
 938		sbi->write_io[i].bio = NULL;
 939	}
 940
 941	init_rwsem(&sbi->cp_rwsem);
 942	init_waitqueue_head(&sbi->cp_wait);
 943	init_sb_info(sbi);
 944
 945	/* get an inode for meta space */
 946	sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi));
 947	if (IS_ERR(sbi->meta_inode)) {
 948		f2fs_msg(sb, KERN_ERR, "Failed to read F2FS meta data inode");
 949		err = PTR_ERR(sbi->meta_inode);
 950		goto free_sb_buf;
 951	}
 952
 953	err = get_valid_checkpoint(sbi);
 954	if (err) {
 955		f2fs_msg(sb, KERN_ERR, "Failed to get valid F2FS checkpoint");
 956		goto free_meta_inode;
 957	}
 958
 959	/* sanity checking of checkpoint */
 960	err = -EINVAL;
 961	if (sanity_check_ckpt(sbi)) {
 962		f2fs_msg(sb, KERN_ERR, "Invalid F2FS checkpoint");
 963		goto free_cp;
 964	}
 965
 966	sbi->total_valid_node_count =
 967				le32_to_cpu(sbi->ckpt->valid_node_count);
 968	sbi->total_valid_inode_count =
 969				le32_to_cpu(sbi->ckpt->valid_inode_count);
 970	sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count);
 971	sbi->total_valid_block_count =
 972				le64_to_cpu(sbi->ckpt->valid_block_count);
 973	sbi->last_valid_block_count = sbi->total_valid_block_count;
 974	sbi->alloc_valid_block_count = 0;
 975	INIT_LIST_HEAD(&sbi->dir_inode_list);
 976	spin_lock_init(&sbi->dir_inode_lock);
 
 
 977
 978	init_orphan_info(sbi);
 
 
 979
 980	/* setup f2fs internal modules */
 981	err = build_segment_manager(sbi);
 982	if (err) {
 983		f2fs_msg(sb, KERN_ERR,
 984			"Failed to initialize F2FS segment manager");
 985		goto free_sm;
 986	}
 987	err = build_node_manager(sbi);
 988	if (err) {
 989		f2fs_msg(sb, KERN_ERR,
 990			"Failed to initialize F2FS node manager");
 991		goto free_nm;
 992	}
 993
 
 
 
 
 
 
 
 
 
 
 
 994	build_gc_manager(sbi);
 995
 996	/* get an inode for node space */
 997	sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi));
 998	if (IS_ERR(sbi->node_inode)) {
 999		f2fs_msg(sb, KERN_ERR, "Failed to read node inode");
1000		err = PTR_ERR(sbi->node_inode);
1001		goto free_nm;
1002	}
1003
 
 
1004	/* if there are nt orphan nodes free them */
1005	recover_orphan_inodes(sbi);
 
 
1006
1007	/* read root inode and dentry */
1008	root = f2fs_iget(sb, F2FS_ROOT_INO(sbi));
1009	if (IS_ERR(root)) {
1010		f2fs_msg(sb, KERN_ERR, "Failed to read root inode");
1011		err = PTR_ERR(root);
1012		goto free_node_inode;
1013	}
1014	if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
 
1015		err = -EINVAL;
1016		goto free_root_inode;
1017	}
1018
1019	sb->s_root = d_make_root(root); /* allocate root dentry */
1020	if (!sb->s_root) {
1021		err = -ENOMEM;
1022		goto free_root_inode;
1023	}
1024
1025	err = f2fs_build_stats(sbi);
1026	if (err)
1027		goto free_root_inode;
1028
1029	if (f2fs_proc_root)
1030		sbi->s_proc = proc_mkdir(sb->s_id, f2fs_proc_root);
1031
1032	if (sbi->s_proc)
1033		proc_create_data("segment_info", S_IRUGO, sbi->s_proc,
1034				 &f2fs_seq_segment_info_fops, sb);
1035
1036	if (test_opt(sbi, DISCARD)) {
1037		struct request_queue *q = bdev_get_queue(sb->s_bdev);
1038		if (!blk_queue_discard(q))
1039			f2fs_msg(sb, KERN_WARNING,
1040					"mounting with \"discard\" option, but "
1041					"the device does not support discard");
1042	}
1043
1044	sbi->s_kobj.kset = f2fs_kset;
1045	init_completion(&sbi->s_kobj_unregister);
1046	err = kobject_init_and_add(&sbi->s_kobj, &f2fs_ktype, NULL,
1047							"%s", sb->s_id);
1048	if (err)
1049		goto free_proc;
1050
1051	/* recover fsynced data */
1052	if (!test_opt(sbi, DISABLE_ROLL_FORWARD)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
1053		err = recover_fsync_data(sbi);
1054		if (err)
 
1055			f2fs_msg(sb, KERN_ERR,
1056				"Cannot recover all fsync data errno=%ld", err);
 
 
1057	}
 
 
1058
1059	/*
1060	 * If filesystem is not mounted as read-only then
1061	 * do start the gc_thread.
1062	 */
1063	if (!(sb->s_flags & MS_RDONLY)) {
1064		/* After POR, we can run background GC thread.*/
1065		err = start_gc_thread(sbi);
1066		if (err)
1067			goto free_kobj;
1068	}
 
 
 
 
 
 
 
 
 
 
 
 
1069	return 0;
1070
1071free_kobj:
1072	kobject_del(&sbi->s_kobj);
 
 
1073free_proc:
1074	if (sbi->s_proc) {
1075		remove_proc_entry("segment_info", sbi->s_proc);
1076		remove_proc_entry(sb->s_id, f2fs_proc_root);
1077	}
1078	f2fs_destroy_stats(sbi);
1079free_root_inode:
1080	dput(sb->s_root);
1081	sb->s_root = NULL;
1082free_node_inode:
 
 
1083	iput(sbi->node_inode);
 
1084free_nm:
1085	destroy_node_manager(sbi);
1086free_sm:
1087	destroy_segment_manager(sbi);
1088free_cp:
1089	kfree(sbi->ckpt);
1090free_meta_inode:
1091	make_bad_inode(sbi->meta_inode);
1092	iput(sbi->meta_inode);
 
 
1093free_sb_buf:
1094	brelse(raw_super_buf);
1095free_sbi:
 
 
1096	kfree(sbi);
 
 
 
 
 
 
 
1097	return err;
1098}
1099
1100static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags,
1101			const char *dev_name, void *data)
1102{
1103	return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super);
1104}
1105
 
 
 
 
 
 
 
1106static struct file_system_type f2fs_fs_type = {
1107	.owner		= THIS_MODULE,
1108	.name		= "f2fs",
1109	.mount		= f2fs_mount,
1110	.kill_sb	= kill_block_super,
1111	.fs_flags	= FS_REQUIRES_DEV,
1112};
1113MODULE_ALIAS_FS("f2fs");
1114
1115static int __init init_inodecache(void)
1116{
1117	f2fs_inode_cachep = f2fs_kmem_cache_create("f2fs_inode_cache",
1118			sizeof(struct f2fs_inode_info));
 
1119	if (!f2fs_inode_cachep)
1120		return -ENOMEM;
1121	return 0;
1122}
1123
1124static void destroy_inodecache(void)
1125{
1126	/*
1127	 * Make sure all delayed rcu free inodes are flushed before we
1128	 * destroy cache.
1129	 */
1130	rcu_barrier();
1131	kmem_cache_destroy(f2fs_inode_cachep);
1132}
1133
1134static int __init init_f2fs_fs(void)
1135{
1136	int err;
1137
 
 
1138	err = init_inodecache();
1139	if (err)
1140		goto fail;
1141	err = create_node_manager_caches();
1142	if (err)
1143		goto free_inodecache;
1144	err = create_segment_manager_caches();
1145	if (err)
1146		goto free_node_manager_caches;
1147	err = create_gc_caches();
1148	if (err)
1149		goto free_segment_manager_caches;
1150	err = create_checkpoint_caches();
1151	if (err)
1152		goto free_gc_caches;
1153	f2fs_kset = kset_create_and_add("f2fs", NULL, fs_kobj);
1154	if (!f2fs_kset) {
1155		err = -ENOMEM;
1156		goto free_checkpoint_caches;
1157	}
1158	err = register_filesystem(&f2fs_fs_type);
1159	if (err)
1160		goto free_kset;
1161	f2fs_create_root_stats();
 
 
 
 
 
 
1162	f2fs_proc_root = proc_mkdir("fs/f2fs", NULL);
1163	return 0;
1164
 
 
 
 
1165free_kset:
1166	kset_unregister(f2fs_kset);
 
 
1167free_checkpoint_caches:
1168	destroy_checkpoint_caches();
1169free_gc_caches:
1170	destroy_gc_caches();
1171free_segment_manager_caches:
1172	destroy_segment_manager_caches();
1173free_node_manager_caches:
1174	destroy_node_manager_caches();
1175free_inodecache:
1176	destroy_inodecache();
1177fail:
1178	return err;
1179}
1180
1181static void __exit exit_f2fs_fs(void)
1182{
1183	remove_proc_entry("fs/f2fs", NULL);
1184	f2fs_destroy_root_stats();
 
1185	unregister_filesystem(&f2fs_fs_type);
 
1186	destroy_checkpoint_caches();
1187	destroy_gc_caches();
1188	destroy_segment_manager_caches();
1189	destroy_node_manager_caches();
1190	destroy_inodecache();
1191	kset_unregister(f2fs_kset);
 
1192}
1193
1194module_init(init_f2fs_fs)
1195module_exit(exit_f2fs_fs)
1196
1197MODULE_AUTHOR("Samsung Electronics's Praesto Team");
1198MODULE_DESCRIPTION("Flash Friendly File System");
1199MODULE_LICENSE("GPL");
v4.6
   1/*
   2 * fs/f2fs/super.c
   3 *
   4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
   5 *             http://www.samsung.com/
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License version 2 as
   9 * published by the Free Software Foundation.
  10 */
  11#include <linux/module.h>
  12#include <linux/init.h>
  13#include <linux/fs.h>
  14#include <linux/statfs.h>
  15#include <linux/buffer_head.h>
  16#include <linux/backing-dev.h>
  17#include <linux/kthread.h>
  18#include <linux/parser.h>
  19#include <linux/mount.h>
  20#include <linux/seq_file.h>
  21#include <linux/proc_fs.h>
  22#include <linux/random.h>
  23#include <linux/exportfs.h>
  24#include <linux/blkdev.h>
  25#include <linux/f2fs_fs.h>
  26#include <linux/sysfs.h>
  27
  28#include "f2fs.h"
  29#include "node.h"
  30#include "segment.h"
  31#include "xattr.h"
  32#include "gc.h"
  33#include "trace.h"
  34
  35#define CREATE_TRACE_POINTS
  36#include <trace/events/f2fs.h>
  37
  38static struct proc_dir_entry *f2fs_proc_root;
  39static struct kmem_cache *f2fs_inode_cachep;
  40static struct kset *f2fs_kset;
  41
  42/* f2fs-wide shrinker description */
  43static struct shrinker f2fs_shrinker_info = {
  44	.scan_objects = f2fs_shrink_scan,
  45	.count_objects = f2fs_shrink_count,
  46	.seeks = DEFAULT_SEEKS,
  47};
  48
  49enum {
  50	Opt_gc_background,
  51	Opt_disable_roll_forward,
  52	Opt_norecovery,
  53	Opt_discard,
  54	Opt_noheap,
  55	Opt_user_xattr,
  56	Opt_nouser_xattr,
  57	Opt_acl,
  58	Opt_noacl,
  59	Opt_active_logs,
  60	Opt_disable_ext_identify,
  61	Opt_inline_xattr,
  62	Opt_inline_data,
  63	Opt_inline_dentry,
  64	Opt_flush_merge,
  65	Opt_nobarrier,
  66	Opt_fastboot,
  67	Opt_extent_cache,
  68	Opt_noextent_cache,
  69	Opt_noinline_data,
  70	Opt_data_flush,
  71	Opt_err,
  72};
  73
  74static match_table_t f2fs_tokens = {
  75	{Opt_gc_background, "background_gc=%s"},
  76	{Opt_disable_roll_forward, "disable_roll_forward"},
  77	{Opt_norecovery, "norecovery"},
  78	{Opt_discard, "discard"},
  79	{Opt_noheap, "no_heap"},
  80	{Opt_user_xattr, "user_xattr"},
  81	{Opt_nouser_xattr, "nouser_xattr"},
  82	{Opt_acl, "acl"},
  83	{Opt_noacl, "noacl"},
  84	{Opt_active_logs, "active_logs=%u"},
  85	{Opt_disable_ext_identify, "disable_ext_identify"},
  86	{Opt_inline_xattr, "inline_xattr"},
  87	{Opt_inline_data, "inline_data"},
  88	{Opt_inline_dentry, "inline_dentry"},
  89	{Opt_flush_merge, "flush_merge"},
  90	{Opt_nobarrier, "nobarrier"},
  91	{Opt_fastboot, "fastboot"},
  92	{Opt_extent_cache, "extent_cache"},
  93	{Opt_noextent_cache, "noextent_cache"},
  94	{Opt_noinline_data, "noinline_data"},
  95	{Opt_data_flush, "data_flush"},
  96	{Opt_err, NULL},
  97};
  98
  99/* Sysfs support for f2fs */
 100enum {
 101	GC_THREAD,	/* struct f2fs_gc_thread */
 102	SM_INFO,	/* struct f2fs_sm_info */
 103	NM_INFO,	/* struct f2fs_nm_info */
 104	F2FS_SBI,	/* struct f2fs_sb_info */
 105};
 106
 107struct f2fs_attr {
 108	struct attribute attr;
 109	ssize_t (*show)(struct f2fs_attr *, struct f2fs_sb_info *, char *);
 110	ssize_t (*store)(struct f2fs_attr *, struct f2fs_sb_info *,
 111			 const char *, size_t);
 112	int struct_type;
 113	int offset;
 114};
 115
 116static unsigned char *__struct_ptr(struct f2fs_sb_info *sbi, int struct_type)
 117{
 118	if (struct_type == GC_THREAD)
 119		return (unsigned char *)sbi->gc_thread;
 120	else if (struct_type == SM_INFO)
 121		return (unsigned char *)SM_I(sbi);
 122	else if (struct_type == NM_INFO)
 123		return (unsigned char *)NM_I(sbi);
 124	else if (struct_type == F2FS_SBI)
 125		return (unsigned char *)sbi;
 126	return NULL;
 127}
 128
 129static ssize_t lifetime_write_kbytes_show(struct f2fs_attr *a,
 130		struct f2fs_sb_info *sbi, char *buf)
 131{
 132	struct super_block *sb = sbi->sb;
 133
 134	if (!sb->s_bdev->bd_part)
 135		return snprintf(buf, PAGE_SIZE, "0\n");
 136
 137	return snprintf(buf, PAGE_SIZE, "%llu\n",
 138		(unsigned long long)(sbi->kbytes_written +
 139			BD_PART_WRITTEN(sbi)));
 140}
 141
 142static ssize_t f2fs_sbi_show(struct f2fs_attr *a,
 143			struct f2fs_sb_info *sbi, char *buf)
 144{
 145	unsigned char *ptr = NULL;
 146	unsigned int *ui;
 147
 148	ptr = __struct_ptr(sbi, a->struct_type);
 149	if (!ptr)
 150		return -EINVAL;
 151
 152	ui = (unsigned int *)(ptr + a->offset);
 153
 154	return snprintf(buf, PAGE_SIZE, "%u\n", *ui);
 155}
 156
 157static ssize_t f2fs_sbi_store(struct f2fs_attr *a,
 158			struct f2fs_sb_info *sbi,
 159			const char *buf, size_t count)
 160{
 161	unsigned char *ptr;
 162	unsigned long t;
 163	unsigned int *ui;
 164	ssize_t ret;
 165
 166	ptr = __struct_ptr(sbi, a->struct_type);
 167	if (!ptr)
 168		return -EINVAL;
 169
 170	ui = (unsigned int *)(ptr + a->offset);
 171
 172	ret = kstrtoul(skip_spaces(buf), 0, &t);
 173	if (ret < 0)
 174		return ret;
 175	*ui = t;
 176	return count;
 177}
 178
 179static ssize_t f2fs_attr_show(struct kobject *kobj,
 180				struct attribute *attr, char *buf)
 181{
 182	struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
 183								s_kobj);
 184	struct f2fs_attr *a = container_of(attr, struct f2fs_attr, attr);
 185
 186	return a->show ? a->show(a, sbi, buf) : 0;
 187}
 188
 189static ssize_t f2fs_attr_store(struct kobject *kobj, struct attribute *attr,
 190						const char *buf, size_t len)
 191{
 192	struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
 193									s_kobj);
 194	struct f2fs_attr *a = container_of(attr, struct f2fs_attr, attr);
 195
 196	return a->store ? a->store(a, sbi, buf, len) : 0;
 197}
 198
 199static void f2fs_sb_release(struct kobject *kobj)
 200{
 201	struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
 202								s_kobj);
 203	complete(&sbi->s_kobj_unregister);
 204}
 205
 206#define F2FS_ATTR_OFFSET(_struct_type, _name, _mode, _show, _store, _offset) \
 207static struct f2fs_attr f2fs_attr_##_name = {			\
 208	.attr = {.name = __stringify(_name), .mode = _mode },	\
 209	.show	= _show,					\
 210	.store	= _store,					\
 211	.struct_type = _struct_type,				\
 212	.offset = _offset					\
 213}
 214
 215#define F2FS_RW_ATTR(struct_type, struct_name, name, elname)	\
 216	F2FS_ATTR_OFFSET(struct_type, name, 0644,		\
 217		f2fs_sbi_show, f2fs_sbi_store,			\
 218		offsetof(struct struct_name, elname))
 219
 220#define F2FS_GENERAL_RO_ATTR(name) \
 221static struct f2fs_attr f2fs_attr_##name = __ATTR(name, 0444, name##_show, NULL)
 222
 223F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_min_sleep_time, min_sleep_time);
 224F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_max_sleep_time, max_sleep_time);
 225F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_no_gc_sleep_time, no_gc_sleep_time);
 226F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_idle, gc_idle);
 227F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, reclaim_segments, rec_prefree_segments);
 228F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, max_small_discards, max_discards);
 229F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, batched_trim_sections, trim_sections);
 230F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, ipu_policy, ipu_policy);
 231F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, min_ipu_util, min_ipu_util);
 232F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, min_fsync_blocks, min_fsync_blocks);
 233F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, ram_thresh, ram_thresh);
 234F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, ra_nid_pages, ra_nid_pages);
 235F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, dirty_nats_ratio, dirty_nats_ratio);
 236F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, max_victim_search, max_victim_search);
 237F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, dir_level, dir_level);
 238F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, cp_interval, interval_time[CP_TIME]);
 239F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, idle_interval, interval_time[REQ_TIME]);
 240F2FS_GENERAL_RO_ATTR(lifetime_write_kbytes);
 241
 242#define ATTR_LIST(name) (&f2fs_attr_##name.attr)
 243static struct attribute *f2fs_attrs[] = {
 244	ATTR_LIST(gc_min_sleep_time),
 245	ATTR_LIST(gc_max_sleep_time),
 246	ATTR_LIST(gc_no_gc_sleep_time),
 247	ATTR_LIST(gc_idle),
 248	ATTR_LIST(reclaim_segments),
 249	ATTR_LIST(max_small_discards),
 250	ATTR_LIST(batched_trim_sections),
 251	ATTR_LIST(ipu_policy),
 252	ATTR_LIST(min_ipu_util),
 253	ATTR_LIST(min_fsync_blocks),
 254	ATTR_LIST(max_victim_search),
 255	ATTR_LIST(dir_level),
 256	ATTR_LIST(ram_thresh),
 257	ATTR_LIST(ra_nid_pages),
 258	ATTR_LIST(dirty_nats_ratio),
 259	ATTR_LIST(cp_interval),
 260	ATTR_LIST(idle_interval),
 261	ATTR_LIST(lifetime_write_kbytes),
 262	NULL,
 263};
 264
 265static const struct sysfs_ops f2fs_attr_ops = {
 266	.show	= f2fs_attr_show,
 267	.store	= f2fs_attr_store,
 268};
 269
 270static struct kobj_type f2fs_ktype = {
 271	.default_attrs	= f2fs_attrs,
 272	.sysfs_ops	= &f2fs_attr_ops,
 273	.release	= f2fs_sb_release,
 274};
 275
 276void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...)
 277{
 278	struct va_format vaf;
 279	va_list args;
 280
 281	va_start(args, fmt);
 282	vaf.fmt = fmt;
 283	vaf.va = &args;
 284	printk("%sF2FS-fs (%s): %pV\n", level, sb->s_id, &vaf);
 285	va_end(args);
 286}
 287
 288static void init_once(void *foo)
 289{
 290	struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo;
 291
 292	inode_init_once(&fi->vfs_inode);
 293}
 294
 295static int parse_options(struct super_block *sb, char *options)
 296{
 297	struct f2fs_sb_info *sbi = F2FS_SB(sb);
 298	struct request_queue *q;
 299	substring_t args[MAX_OPT_ARGS];
 300	char *p, *name;
 301	int arg = 0;
 302
 303	if (!options)
 304		return 0;
 305
 306	while ((p = strsep(&options, ",")) != NULL) {
 307		int token;
 308		if (!*p)
 309			continue;
 310		/*
 311		 * Initialize args struct so we know whether arg was
 312		 * found; some options take optional arguments.
 313		 */
 314		args[0].to = args[0].from = NULL;
 315		token = match_token(p, f2fs_tokens, args);
 316
 317		switch (token) {
 318		case Opt_gc_background:
 319			name = match_strdup(&args[0]);
 320
 321			if (!name)
 322				return -ENOMEM;
 323			if (strlen(name) == 2 && !strncmp(name, "on", 2)) {
 324				set_opt(sbi, BG_GC);
 325				clear_opt(sbi, FORCE_FG_GC);
 326			} else if (strlen(name) == 3 && !strncmp(name, "off", 3)) {
 327				clear_opt(sbi, BG_GC);
 328				clear_opt(sbi, FORCE_FG_GC);
 329			} else if (strlen(name) == 4 && !strncmp(name, "sync", 4)) {
 330				set_opt(sbi, BG_GC);
 331				set_opt(sbi, FORCE_FG_GC);
 332			} else {
 333				kfree(name);
 334				return -EINVAL;
 335			}
 336			kfree(name);
 337			break;
 338		case Opt_disable_roll_forward:
 339			set_opt(sbi, DISABLE_ROLL_FORWARD);
 340			break;
 341		case Opt_norecovery:
 342			/* this option mounts f2fs with ro */
 343			set_opt(sbi, DISABLE_ROLL_FORWARD);
 344			if (!f2fs_readonly(sb))
 345				return -EINVAL;
 346			break;
 347		case Opt_discard:
 348			q = bdev_get_queue(sb->s_bdev);
 349			if (blk_queue_discard(q)) {
 350				set_opt(sbi, DISCARD);
 351			} else {
 352				f2fs_msg(sb, KERN_WARNING,
 353					"mounting with \"discard\" option, but "
 354					"the device does not support discard");
 355			}
 356			break;
 357		case Opt_noheap:
 358			set_opt(sbi, NOHEAP);
 359			break;
 360#ifdef CONFIG_F2FS_FS_XATTR
 361		case Opt_user_xattr:
 362			set_opt(sbi, XATTR_USER);
 363			break;
 364		case Opt_nouser_xattr:
 365			clear_opt(sbi, XATTR_USER);
 366			break;
 367		case Opt_inline_xattr:
 368			set_opt(sbi, INLINE_XATTR);
 369			break;
 370#else
 371		case Opt_user_xattr:
 372			f2fs_msg(sb, KERN_INFO,
 373				"user_xattr options not supported");
 374			break;
 375		case Opt_nouser_xattr:
 376			f2fs_msg(sb, KERN_INFO,
 377				"nouser_xattr options not supported");
 378			break;
 379		case Opt_inline_xattr:
 380			f2fs_msg(sb, KERN_INFO,
 381				"inline_xattr options not supported");
 382			break;
 383#endif
 384#ifdef CONFIG_F2FS_FS_POSIX_ACL
 385		case Opt_acl:
 386			set_opt(sbi, POSIX_ACL);
 387			break;
 388		case Opt_noacl:
 389			clear_opt(sbi, POSIX_ACL);
 390			break;
 391#else
 392		case Opt_acl:
 393			f2fs_msg(sb, KERN_INFO, "acl options not supported");
 394			break;
 395		case Opt_noacl:
 396			f2fs_msg(sb, KERN_INFO, "noacl options not supported");
 397			break;
 398#endif
 399		case Opt_active_logs:
 400			if (args->from && match_int(args, &arg))
 401				return -EINVAL;
 402			if (arg != 2 && arg != 4 && arg != NR_CURSEG_TYPE)
 403				return -EINVAL;
 404			sbi->active_logs = arg;
 405			break;
 406		case Opt_disable_ext_identify:
 407			set_opt(sbi, DISABLE_EXT_IDENTIFY);
 408			break;
 409		case Opt_inline_data:
 410			set_opt(sbi, INLINE_DATA);
 411			break;
 412		case Opt_inline_dentry:
 413			set_opt(sbi, INLINE_DENTRY);
 414			break;
 415		case Opt_flush_merge:
 416			set_opt(sbi, FLUSH_MERGE);
 417			break;
 418		case Opt_nobarrier:
 419			set_opt(sbi, NOBARRIER);
 420			break;
 421		case Opt_fastboot:
 422			set_opt(sbi, FASTBOOT);
 423			break;
 424		case Opt_extent_cache:
 425			set_opt(sbi, EXTENT_CACHE);
 426			break;
 427		case Opt_noextent_cache:
 428			clear_opt(sbi, EXTENT_CACHE);
 429			break;
 430		case Opt_noinline_data:
 431			clear_opt(sbi, INLINE_DATA);
 432			break;
 433		case Opt_data_flush:
 434			set_opt(sbi, DATA_FLUSH);
 435			break;
 436		default:
 437			f2fs_msg(sb, KERN_ERR,
 438				"Unrecognized mount option \"%s\" or missing value",
 439				p);
 440			return -EINVAL;
 441		}
 442	}
 443	return 0;
 444}
 445
 446static struct inode *f2fs_alloc_inode(struct super_block *sb)
 447{
 448	struct f2fs_inode_info *fi;
 449
 450	fi = kmem_cache_alloc(f2fs_inode_cachep, GFP_F2FS_ZERO);
 451	if (!fi)
 452		return NULL;
 453
 454	init_once((void *) fi);
 455
 456	/* Initialize f2fs-specific inode info */
 457	fi->vfs_inode.i_version = 1;
 458	atomic_set(&fi->dirty_pages, 0);
 459	fi->i_current_depth = 1;
 460	fi->i_advise = 0;
 
 461	init_rwsem(&fi->i_sem);
 462	INIT_LIST_HEAD(&fi->dirty_list);
 463	INIT_LIST_HEAD(&fi->inmem_pages);
 464	mutex_init(&fi->inmem_lock);
 465
 466	set_inode_flag(fi, FI_NEW_INODE);
 467
 468	if (test_opt(F2FS_SB(sb), INLINE_XATTR))
 469		set_inode_flag(fi, FI_INLINE_XATTR);
 470
 471	/* Will be used by directory only */
 472	fi->i_dir_level = F2FS_SB(sb)->dir_level;
 
 473	return &fi->vfs_inode;
 474}
 475
 476static int f2fs_drop_inode(struct inode *inode)
 477{
 478	/*
 479	 * This is to avoid a deadlock condition like below.
 480	 * writeback_single_inode(inode)
 481	 *  - f2fs_write_data_page
 482	 *    - f2fs_gc -> iput -> evict
 483	 *       - inode_wait_for_writeback(inode)
 484	 */
 485	if (!inode_unhashed(inode) && inode->i_state & I_SYNC) {
 486		if (!inode->i_nlink && !is_bad_inode(inode)) {
 487			/* to avoid evict_inode call simultaneously */
 488			atomic_inc(&inode->i_count);
 489			spin_unlock(&inode->i_lock);
 490
 491			/* some remained atomic pages should discarded */
 492			if (f2fs_is_atomic_file(inode))
 493				drop_inmem_pages(inode);
 494
 495			/* should remain fi->extent_tree for writepage */
 496			f2fs_destroy_extent_node(inode);
 497
 498			sb_start_intwrite(inode->i_sb);
 499			i_size_write(inode, 0);
 500
 501			if (F2FS_HAS_BLOCKS(inode))
 502				f2fs_truncate(inode, true);
 503
 504			sb_end_intwrite(inode->i_sb);
 505
 506			fscrypt_put_encryption_info(inode, NULL);
 507			spin_lock(&inode->i_lock);
 508			atomic_dec(&inode->i_count);
 509		}
 510		return 0;
 511	}
 512	return generic_drop_inode(inode);
 513}
 514
 515/*
 516 * f2fs_dirty_inode() is called from __mark_inode_dirty()
 517 *
 518 * We should call set_dirty_inode to write the dirty inode through write_inode.
 519 */
 520static void f2fs_dirty_inode(struct inode *inode, int flags)
 521{
 522	set_inode_flag(F2FS_I(inode), FI_DIRTY_INODE);
 523}
 524
 525static void f2fs_i_callback(struct rcu_head *head)
 526{
 527	struct inode *inode = container_of(head, struct inode, i_rcu);
 528	kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode));
 529}
 530
 531static void f2fs_destroy_inode(struct inode *inode)
 532{
 533	call_rcu(&inode->i_rcu, f2fs_i_callback);
 534}
 535
 536static void f2fs_put_super(struct super_block *sb)
 537{
 538	struct f2fs_sb_info *sbi = F2FS_SB(sb);
 539
 540	if (sbi->s_proc) {
 541		remove_proc_entry("segment_info", sbi->s_proc);
 542		remove_proc_entry(sb->s_id, f2fs_proc_root);
 543	}
 544	kobject_del(&sbi->s_kobj);
 545
 
 546	stop_gc_thread(sbi);
 547
 548	/* prevent remaining shrinker jobs */
 549	mutex_lock(&sbi->umount_mutex);
 550
 551	/*
 552	 * We don't need to do checkpoint when superblock is clean.
 553	 * But, the previous checkpoint was not done by umount, it needs to do
 554	 * clean checkpoint again.
 555	 */
 556	if (is_sbi_flag_set(sbi, SBI_IS_DIRTY) ||
 557			!is_set_ckpt_flags(F2FS_CKPT(sbi), CP_UMOUNT_FLAG)) {
 558		struct cp_control cpc = {
 559			.reason = CP_UMOUNT,
 560		};
 561		write_checkpoint(sbi, &cpc);
 562	}
 563
 564	/* write_checkpoint can update stat informaion */
 565	f2fs_destroy_stats(sbi);
 566
 567	/*
 568	 * normally superblock is clean, so we need to release this.
 569	 * In addition, EIO will skip do checkpoint, we need this as well.
 570	 */
 571	release_ino_entry(sbi);
 572	release_discard_addrs(sbi);
 573
 574	f2fs_leave_shrinker(sbi);
 575	mutex_unlock(&sbi->umount_mutex);
 576
 577	/* our cp_error case, we can wait for any writeback page */
 578	if (get_pages(sbi, F2FS_WRITEBACK))
 579		f2fs_flush_merged_bios(sbi);
 580
 581	iput(sbi->node_inode);
 582	iput(sbi->meta_inode);
 583
 584	/* destroy f2fs internal modules */
 585	destroy_node_manager(sbi);
 586	destroy_segment_manager(sbi);
 587
 588	kfree(sbi->ckpt);
 589	kobject_put(&sbi->s_kobj);
 590	wait_for_completion(&sbi->s_kobj_unregister);
 591
 592	sb->s_fs_info = NULL;
 593	if (sbi->s_chksum_driver)
 594		crypto_free_shash(sbi->s_chksum_driver);
 595	kfree(sbi->raw_super);
 596	kfree(sbi);
 597}
 598
 599int f2fs_sync_fs(struct super_block *sb, int sync)
 600{
 601	struct f2fs_sb_info *sbi = F2FS_SB(sb);
 602	int err = 0;
 603
 604	trace_f2fs_sync_fs(sb, sync);
 605
 
 
 
 606	if (sync) {
 607		struct cp_control cpc;
 608
 609		cpc.reason = __get_cp_reason(sbi);
 610
 611		mutex_lock(&sbi->gc_mutex);
 612		err = write_checkpoint(sbi, &cpc);
 613		mutex_unlock(&sbi->gc_mutex);
 
 
 614	}
 615	f2fs_trace_ios(NULL, 1);
 616
 617	return err;
 618}
 619
 620static int f2fs_freeze(struct super_block *sb)
 621{
 622	int err;
 623
 624	if (f2fs_readonly(sb))
 625		return 0;
 626
 627	err = f2fs_sync_fs(sb, 1);
 628	return err;
 629}
 630
 631static int f2fs_unfreeze(struct super_block *sb)
 632{
 633	return 0;
 634}
 635
 636static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf)
 637{
 638	struct super_block *sb = dentry->d_sb;
 639	struct f2fs_sb_info *sbi = F2FS_SB(sb);
 640	u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
 641	block_t total_count, user_block_count, start_count, ovp_count;
 642
 643	total_count = le64_to_cpu(sbi->raw_super->block_count);
 644	user_block_count = sbi->user_block_count;
 645	start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr);
 646	ovp_count = SM_I(sbi)->ovp_segments << sbi->log_blocks_per_seg;
 647	buf->f_type = F2FS_SUPER_MAGIC;
 648	buf->f_bsize = sbi->blocksize;
 649
 650	buf->f_blocks = total_count - start_count;
 651	buf->f_bfree = buf->f_blocks - valid_user_blocks(sbi) - ovp_count;
 652	buf->f_bavail = user_block_count - valid_user_blocks(sbi);
 653
 654	buf->f_files = sbi->total_node_count - F2FS_RESERVED_NODE_NUM;
 655	buf->f_ffree = buf->f_files - valid_inode_count(sbi);
 656
 657	buf->f_namelen = F2FS_NAME_LEN;
 658	buf->f_fsid.val[0] = (u32)id;
 659	buf->f_fsid.val[1] = (u32)(id >> 32);
 660
 661	return 0;
 662}
 663
 664static int f2fs_show_options(struct seq_file *seq, struct dentry *root)
 665{
 666	struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb);
 667
 668	if (!f2fs_readonly(sbi->sb) && test_opt(sbi, BG_GC)) {
 669		if (test_opt(sbi, FORCE_FG_GC))
 670			seq_printf(seq, ",background_gc=%s", "sync");
 671		else
 672			seq_printf(seq, ",background_gc=%s", "on");
 673	} else {
 674		seq_printf(seq, ",background_gc=%s", "off");
 675	}
 676	if (test_opt(sbi, DISABLE_ROLL_FORWARD))
 677		seq_puts(seq, ",disable_roll_forward");
 678	if (test_opt(sbi, DISCARD))
 679		seq_puts(seq, ",discard");
 680	if (test_opt(sbi, NOHEAP))
 681		seq_puts(seq, ",no_heap_alloc");
 682#ifdef CONFIG_F2FS_FS_XATTR
 683	if (test_opt(sbi, XATTR_USER))
 684		seq_puts(seq, ",user_xattr");
 685	else
 686		seq_puts(seq, ",nouser_xattr");
 687	if (test_opt(sbi, INLINE_XATTR))
 688		seq_puts(seq, ",inline_xattr");
 689#endif
 690#ifdef CONFIG_F2FS_FS_POSIX_ACL
 691	if (test_opt(sbi, POSIX_ACL))
 692		seq_puts(seq, ",acl");
 693	else
 694		seq_puts(seq, ",noacl");
 695#endif
 696	if (test_opt(sbi, DISABLE_EXT_IDENTIFY))
 697		seq_puts(seq, ",disable_ext_identify");
 698	if (test_opt(sbi, INLINE_DATA))
 699		seq_puts(seq, ",inline_data");
 700	else
 701		seq_puts(seq, ",noinline_data");
 702	if (test_opt(sbi, INLINE_DENTRY))
 703		seq_puts(seq, ",inline_dentry");
 704	if (!f2fs_readonly(sbi->sb) && test_opt(sbi, FLUSH_MERGE))
 705		seq_puts(seq, ",flush_merge");
 706	if (test_opt(sbi, NOBARRIER))
 707		seq_puts(seq, ",nobarrier");
 708	if (test_opt(sbi, FASTBOOT))
 709		seq_puts(seq, ",fastboot");
 710	if (test_opt(sbi, EXTENT_CACHE))
 711		seq_puts(seq, ",extent_cache");
 712	else
 713		seq_puts(seq, ",noextent_cache");
 714	if (test_opt(sbi, DATA_FLUSH))
 715		seq_puts(seq, ",data_flush");
 716	seq_printf(seq, ",active_logs=%u", sbi->active_logs);
 717
 718	return 0;
 719}
 720
 721static int segment_info_seq_show(struct seq_file *seq, void *offset)
 722{
 723	struct super_block *sb = seq->private;
 724	struct f2fs_sb_info *sbi = F2FS_SB(sb);
 725	unsigned int total_segs =
 726			le32_to_cpu(sbi->raw_super->segment_count_main);
 727	int i;
 728
 729	seq_puts(seq, "format: segment_type|valid_blocks\n"
 730		"segment_type(0:HD, 1:WD, 2:CD, 3:HN, 4:WN, 5:CN)\n");
 731
 732	for (i = 0; i < total_segs; i++) {
 733		struct seg_entry *se = get_seg_entry(sbi, i);
 734
 735		if ((i % 10) == 0)
 736			seq_printf(seq, "%-10d", i);
 737		seq_printf(seq, "%d|%-3u", se->type,
 738					get_valid_blocks(sbi, i, 1));
 739		if ((i % 10) == 9 || i == (total_segs - 1))
 740			seq_putc(seq, '\n');
 741		else
 742			seq_putc(seq, ' ');
 743	}
 744
 745	return 0;
 746}
 747
 748static int segment_info_open_fs(struct inode *inode, struct file *file)
 749{
 750	return single_open(file, segment_info_seq_show, PDE_DATA(inode));
 751}
 752
 753static const struct file_operations f2fs_seq_segment_info_fops = {
 754	.owner = THIS_MODULE,
 755	.open = segment_info_open_fs,
 756	.read = seq_read,
 757	.llseek = seq_lseek,
 758	.release = single_release,
 759};
 760
 761static void default_options(struct f2fs_sb_info *sbi)
 762{
 763	/* init some FS parameters */
 764	sbi->active_logs = NR_CURSEG_TYPE;
 765
 766	set_opt(sbi, BG_GC);
 767	set_opt(sbi, INLINE_DATA);
 768	set_opt(sbi, EXTENT_CACHE);
 769
 770#ifdef CONFIG_F2FS_FS_XATTR
 771	set_opt(sbi, XATTR_USER);
 772#endif
 773#ifdef CONFIG_F2FS_FS_POSIX_ACL
 774	set_opt(sbi, POSIX_ACL);
 775#endif
 776}
 777
 778static int f2fs_remount(struct super_block *sb, int *flags, char *data)
 779{
 780	struct f2fs_sb_info *sbi = F2FS_SB(sb);
 781	struct f2fs_mount_info org_mount_opt;
 782	int err, active_logs;
 783	bool need_restart_gc = false;
 784	bool need_stop_gc = false;
 785	bool no_extent_cache = !test_opt(sbi, EXTENT_CACHE);
 786
 787	/*
 788	 * Save the old mount options in case we
 789	 * need to restore them.
 790	 */
 791	org_mount_opt = sbi->mount_opt;
 792	active_logs = sbi->active_logs;
 793
 794	if (*flags & MS_RDONLY) {
 795		set_opt(sbi, FASTBOOT);
 796		set_sbi_flag(sbi, SBI_IS_DIRTY);
 797	}
 798
 799	sync_filesystem(sb);
 800
 801	sbi->mount_opt.opt = 0;
 802	default_options(sbi);
 803
 804	/* parse mount options */
 805	err = parse_options(sb, data);
 806	if (err)
 807		goto restore_opts;
 808
 809	/*
 810	 * Previous and new state of filesystem is RO,
 811	 * so skip checking GC and FLUSH_MERGE conditions.
 812	 */
 813	if (f2fs_readonly(sb) && (*flags & MS_RDONLY))
 814		goto skip;
 815
 816	/* disallow enable/disable extent_cache dynamically */
 817	if (no_extent_cache == !!test_opt(sbi, EXTENT_CACHE)) {
 818		err = -EINVAL;
 819		f2fs_msg(sbi->sb, KERN_WARNING,
 820				"switch extent_cache option is not allowed");
 821		goto restore_opts;
 822	}
 823
 824	/*
 825	 * We stop the GC thread if FS is mounted as RO
 826	 * or if background_gc = off is passed in mount
 827	 * option. Also sync the filesystem.
 828	 */
 829	if ((*flags & MS_RDONLY) || !test_opt(sbi, BG_GC)) {
 830		if (sbi->gc_thread) {
 831			stop_gc_thread(sbi);
 832			f2fs_sync_fs(sb, 1);
 833			need_restart_gc = true;
 834		}
 835	} else if (!sbi->gc_thread) {
 836		err = start_gc_thread(sbi);
 837		if (err)
 838			goto restore_opts;
 839		need_stop_gc = true;
 840	}
 841
 842	/*
 843	 * We stop issue flush thread if FS is mounted as RO
 844	 * or if flush_merge is not passed in mount option.
 845	 */
 846	if ((*flags & MS_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) {
 847		destroy_flush_cmd_control(sbi);
 848	} else if (!SM_I(sbi)->cmd_control_info) {
 849		err = create_flush_cmd_control(sbi);
 850		if (err)
 851			goto restore_gc;
 852	}
 853skip:
 854	/* Update the POSIXACL Flag */
 855	 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
 856		(test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0);
 857	return 0;
 858restore_gc:
 859	if (need_restart_gc) {
 860		if (start_gc_thread(sbi))
 861			f2fs_msg(sbi->sb, KERN_WARNING,
 862				"background gc thread has stopped");
 863	} else if (need_stop_gc) {
 864		stop_gc_thread(sbi);
 865	}
 866restore_opts:
 867	sbi->mount_opt = org_mount_opt;
 868	sbi->active_logs = active_logs;
 869	return err;
 870}
 871
 872static struct super_operations f2fs_sops = {
 873	.alloc_inode	= f2fs_alloc_inode,
 874	.drop_inode	= f2fs_drop_inode,
 875	.destroy_inode	= f2fs_destroy_inode,
 876	.write_inode	= f2fs_write_inode,
 877	.dirty_inode	= f2fs_dirty_inode,
 878	.show_options	= f2fs_show_options,
 879	.evict_inode	= f2fs_evict_inode,
 880	.put_super	= f2fs_put_super,
 881	.sync_fs	= f2fs_sync_fs,
 882	.freeze_fs	= f2fs_freeze,
 883	.unfreeze_fs	= f2fs_unfreeze,
 884	.statfs		= f2fs_statfs,
 885	.remount_fs	= f2fs_remount,
 886};
 887
 888#ifdef CONFIG_F2FS_FS_ENCRYPTION
 889static int f2fs_get_context(struct inode *inode, void *ctx, size_t len)
 890{
 891	return f2fs_getxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
 892				F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
 893				ctx, len, NULL);
 894}
 895
 896static int f2fs_set_context(struct inode *inode, const void *ctx, size_t len,
 897							void *fs_data)
 898{
 899	return f2fs_setxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
 900				F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
 901				ctx, len, fs_data, XATTR_CREATE);
 902}
 903
 904static unsigned f2fs_max_namelen(struct inode *inode)
 905{
 906	return S_ISLNK(inode->i_mode) ?
 907			inode->i_sb->s_blocksize : F2FS_NAME_LEN;
 908}
 909
 910static struct fscrypt_operations f2fs_cryptops = {
 911	.get_context	= f2fs_get_context,
 912	.set_context	= f2fs_set_context,
 913	.is_encrypted	= f2fs_encrypted_inode,
 914	.empty_dir	= f2fs_empty_dir,
 915	.max_namelen	= f2fs_max_namelen,
 916};
 917#else
 918static struct fscrypt_operations f2fs_cryptops = {
 919	.is_encrypted	= f2fs_encrypted_inode,
 920};
 921#endif
 922
 923static struct inode *f2fs_nfs_get_inode(struct super_block *sb,
 924		u64 ino, u32 generation)
 925{
 926	struct f2fs_sb_info *sbi = F2FS_SB(sb);
 927	struct inode *inode;
 928
 929	if (check_nid_range(sbi, ino))
 
 
 930		return ERR_PTR(-ESTALE);
 931
 932	/*
 933	 * f2fs_iget isn't quite right if the inode is currently unallocated!
 934	 * However f2fs_iget currently does appropriate checks to handle stale
 935	 * inodes so everything is OK.
 936	 */
 937	inode = f2fs_iget(sb, ino);
 938	if (IS_ERR(inode))
 939		return ERR_CAST(inode);
 940	if (unlikely(generation && inode->i_generation != generation)) {
 941		/* we didn't find the right inode.. */
 942		iput(inode);
 943		return ERR_PTR(-ESTALE);
 944	}
 945	return inode;
 946}
 947
 948static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid,
 949		int fh_len, int fh_type)
 950{
 951	return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
 952				    f2fs_nfs_get_inode);
 953}
 954
 955static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid,
 956		int fh_len, int fh_type)
 957{
 958	return generic_fh_to_parent(sb, fid, fh_len, fh_type,
 959				    f2fs_nfs_get_inode);
 960}
 961
 962static const struct export_operations f2fs_export_ops = {
 963	.fh_to_dentry = f2fs_fh_to_dentry,
 964	.fh_to_parent = f2fs_fh_to_parent,
 965	.get_parent = f2fs_get_parent,
 966};
 967
 968static loff_t max_file_blocks(void)
 969{
 970	loff_t result = (DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS);
 971	loff_t leaf_count = ADDRS_PER_BLOCK;
 972
 973	/* two direct node blocks */
 974	result += (leaf_count * 2);
 975
 976	/* two indirect node blocks */
 977	leaf_count *= NIDS_PER_BLOCK;
 978	result += (leaf_count * 2);
 979
 980	/* one double indirect node block */
 981	leaf_count *= NIDS_PER_BLOCK;
 982	result += leaf_count;
 983
 
 984	return result;
 985}
 986
 987static int __f2fs_commit_super(struct buffer_head *bh,
 988			struct f2fs_super_block *super)
 989{
 990	lock_buffer(bh);
 991	if (super)
 992		memcpy(bh->b_data + F2FS_SUPER_OFFSET, super, sizeof(*super));
 993	set_buffer_uptodate(bh);
 994	set_buffer_dirty(bh);
 995	unlock_buffer(bh);
 996
 997	/* it's rare case, we can do fua all the time */
 998	return __sync_dirty_buffer(bh, WRITE_FLUSH_FUA);
 999}
1000
1001static inline bool sanity_check_area_boundary(struct super_block *sb,
1002					struct buffer_head *bh)
1003{
1004	struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
1005					(bh->b_data + F2FS_SUPER_OFFSET);
1006	u32 segment0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
1007	u32 cp_blkaddr = le32_to_cpu(raw_super->cp_blkaddr);
1008	u32 sit_blkaddr = le32_to_cpu(raw_super->sit_blkaddr);
1009	u32 nat_blkaddr = le32_to_cpu(raw_super->nat_blkaddr);
1010	u32 ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
1011	u32 main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
1012	u32 segment_count_ckpt = le32_to_cpu(raw_super->segment_count_ckpt);
1013	u32 segment_count_sit = le32_to_cpu(raw_super->segment_count_sit);
1014	u32 segment_count_nat = le32_to_cpu(raw_super->segment_count_nat);
1015	u32 segment_count_ssa = le32_to_cpu(raw_super->segment_count_ssa);
1016	u32 segment_count_main = le32_to_cpu(raw_super->segment_count_main);
1017	u32 segment_count = le32_to_cpu(raw_super->segment_count);
1018	u32 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
1019	u64 main_end_blkaddr = main_blkaddr +
1020				(segment_count_main << log_blocks_per_seg);
1021	u64 seg_end_blkaddr = segment0_blkaddr +
1022				(segment_count << log_blocks_per_seg);
1023
1024	if (segment0_blkaddr != cp_blkaddr) {
1025		f2fs_msg(sb, KERN_INFO,
1026			"Mismatch start address, segment0(%u) cp_blkaddr(%u)",
1027			segment0_blkaddr, cp_blkaddr);
1028		return true;
1029	}
1030
1031	if (cp_blkaddr + (segment_count_ckpt << log_blocks_per_seg) !=
1032							sit_blkaddr) {
1033		f2fs_msg(sb, KERN_INFO,
1034			"Wrong CP boundary, start(%u) end(%u) blocks(%u)",
1035			cp_blkaddr, sit_blkaddr,
1036			segment_count_ckpt << log_blocks_per_seg);
1037		return true;
1038	}
1039
1040	if (sit_blkaddr + (segment_count_sit << log_blocks_per_seg) !=
1041							nat_blkaddr) {
1042		f2fs_msg(sb, KERN_INFO,
1043			"Wrong SIT boundary, start(%u) end(%u) blocks(%u)",
1044			sit_blkaddr, nat_blkaddr,
1045			segment_count_sit << log_blocks_per_seg);
1046		return true;
1047	}
1048
1049	if (nat_blkaddr + (segment_count_nat << log_blocks_per_seg) !=
1050							ssa_blkaddr) {
1051		f2fs_msg(sb, KERN_INFO,
1052			"Wrong NAT boundary, start(%u) end(%u) blocks(%u)",
1053			nat_blkaddr, ssa_blkaddr,
1054			segment_count_nat << log_blocks_per_seg);
1055		return true;
1056	}
1057
1058	if (ssa_blkaddr + (segment_count_ssa << log_blocks_per_seg) !=
1059							main_blkaddr) {
1060		f2fs_msg(sb, KERN_INFO,
1061			"Wrong SSA boundary, start(%u) end(%u) blocks(%u)",
1062			ssa_blkaddr, main_blkaddr,
1063			segment_count_ssa << log_blocks_per_seg);
1064		return true;
1065	}
1066
1067	if (main_end_blkaddr > seg_end_blkaddr) {
1068		f2fs_msg(sb, KERN_INFO,
1069			"Wrong MAIN_AREA boundary, start(%u) end(%u) block(%u)",
1070			main_blkaddr,
1071			segment0_blkaddr +
1072				(segment_count << log_blocks_per_seg),
1073			segment_count_main << log_blocks_per_seg);
1074		return true;
1075	} else if (main_end_blkaddr < seg_end_blkaddr) {
1076		int err = 0;
1077		char *res;
1078
1079		/* fix in-memory information all the time */
1080		raw_super->segment_count = cpu_to_le32((main_end_blkaddr -
1081				segment0_blkaddr) >> log_blocks_per_seg);
1082
1083		if (f2fs_readonly(sb) || bdev_read_only(sb->s_bdev)) {
1084			res = "internally";
1085		} else {
1086			err = __f2fs_commit_super(bh, NULL);
1087			res = err ? "failed" : "done";
1088		}
1089		f2fs_msg(sb, KERN_INFO,
1090			"Fix alignment : %s, start(%u) end(%u) block(%u)",
1091			res, main_blkaddr,
1092			segment0_blkaddr +
1093				(segment_count << log_blocks_per_seg),
1094			segment_count_main << log_blocks_per_seg);
1095		if (err)
1096			return true;
1097	}
1098	return false;
1099}
1100
1101static int sanity_check_raw_super(struct super_block *sb,
1102				struct buffer_head *bh)
1103{
1104	struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
1105					(bh->b_data + F2FS_SUPER_OFFSET);
1106	unsigned int blocksize;
1107
1108	if (F2FS_SUPER_MAGIC != le32_to_cpu(raw_super->magic)) {
1109		f2fs_msg(sb, KERN_INFO,
1110			"Magic Mismatch, valid(0x%x) - read(0x%x)",
1111			F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic));
1112		return 1;
1113	}
1114
1115	/* Currently, support only 4KB page cache size */
1116	if (F2FS_BLKSIZE != PAGE_SIZE) {
1117		f2fs_msg(sb, KERN_INFO,
1118			"Invalid page_cache_size (%lu), supports only 4KB\n",
1119			PAGE_SIZE);
1120		return 1;
1121	}
1122
1123	/* Currently, support only 4KB block size */
1124	blocksize = 1 << le32_to_cpu(raw_super->log_blocksize);
1125	if (blocksize != F2FS_BLKSIZE) {
1126		f2fs_msg(sb, KERN_INFO,
1127			"Invalid blocksize (%u), supports only 4KB\n",
1128			blocksize);
1129		return 1;
1130	}
1131
1132	/* check log blocks per segment */
1133	if (le32_to_cpu(raw_super->log_blocks_per_seg) != 9) {
1134		f2fs_msg(sb, KERN_INFO,
1135			"Invalid log blocks per segment (%u)\n",
1136			le32_to_cpu(raw_super->log_blocks_per_seg));
1137		return 1;
1138	}
1139
1140	/* Currently, support 512/1024/2048/4096 bytes sector size */
1141	if (le32_to_cpu(raw_super->log_sectorsize) >
1142				F2FS_MAX_LOG_SECTOR_SIZE ||
1143		le32_to_cpu(raw_super->log_sectorsize) <
1144				F2FS_MIN_LOG_SECTOR_SIZE) {
1145		f2fs_msg(sb, KERN_INFO, "Invalid log sectorsize (%u)",
1146			le32_to_cpu(raw_super->log_sectorsize));
1147		return 1;
1148	}
1149	if (le32_to_cpu(raw_super->log_sectors_per_block) +
1150		le32_to_cpu(raw_super->log_sectorsize) !=
1151			F2FS_MAX_LOG_SECTOR_SIZE) {
1152		f2fs_msg(sb, KERN_INFO,
1153			"Invalid log sectors per block(%u) log sectorsize(%u)",
1154			le32_to_cpu(raw_super->log_sectors_per_block),
1155			le32_to_cpu(raw_super->log_sectorsize));
1156		return 1;
1157	}
1158
1159	/* check reserved ino info */
1160	if (le32_to_cpu(raw_super->node_ino) != 1 ||
1161		le32_to_cpu(raw_super->meta_ino) != 2 ||
1162		le32_to_cpu(raw_super->root_ino) != 3) {
1163		f2fs_msg(sb, KERN_INFO,
1164			"Invalid Fs Meta Ino: node(%u) meta(%u) root(%u)",
1165			le32_to_cpu(raw_super->node_ino),
1166			le32_to_cpu(raw_super->meta_ino),
1167			le32_to_cpu(raw_super->root_ino));
1168		return 1;
1169	}
1170
1171	/* check CP/SIT/NAT/SSA/MAIN_AREA area boundary */
1172	if (sanity_check_area_boundary(sb, bh))
1173		return 1;
1174
1175	return 0;
1176}
1177
1178int sanity_check_ckpt(struct f2fs_sb_info *sbi)
1179{
1180	unsigned int total, fsmeta;
1181	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
1182	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1183
1184	total = le32_to_cpu(raw_super->segment_count);
1185	fsmeta = le32_to_cpu(raw_super->segment_count_ckpt);
1186	fsmeta += le32_to_cpu(raw_super->segment_count_sit);
1187	fsmeta += le32_to_cpu(raw_super->segment_count_nat);
1188	fsmeta += le32_to_cpu(ckpt->rsvd_segment_count);
1189	fsmeta += le32_to_cpu(raw_super->segment_count_ssa);
1190
1191	if (unlikely(fsmeta >= total))
1192		return 1;
1193
1194	if (unlikely(f2fs_cp_error(sbi))) {
1195		f2fs_msg(sbi->sb, KERN_ERR, "A bug case: need to run fsck");
1196		return 1;
1197	}
1198	return 0;
1199}
1200
1201static void init_sb_info(struct f2fs_sb_info *sbi)
1202{
1203	struct f2fs_super_block *raw_super = sbi->raw_super;
1204	int i;
1205
1206	sbi->log_sectors_per_block =
1207		le32_to_cpu(raw_super->log_sectors_per_block);
1208	sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize);
1209	sbi->blocksize = 1 << sbi->log_blocksize;
1210	sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
1211	sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg;
1212	sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
1213	sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
1214	sbi->total_sections = le32_to_cpu(raw_super->section_count);
1215	sbi->total_node_count =
1216		(le32_to_cpu(raw_super->segment_count_nat) / 2)
1217			* sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK;
1218	sbi->root_ino_num = le32_to_cpu(raw_super->root_ino);
1219	sbi->node_ino_num = le32_to_cpu(raw_super->node_ino);
1220	sbi->meta_ino_num = le32_to_cpu(raw_super->meta_ino);
1221	sbi->cur_victim_sec = NULL_SECNO;
1222	sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH;
1223
1224	for (i = 0; i < NR_COUNT_TYPE; i++)
1225		atomic_set(&sbi->nr_pages[i], 0);
1226
1227	sbi->dir_level = DEF_DIR_LEVEL;
1228	sbi->interval_time[CP_TIME] = DEF_CP_INTERVAL;
1229	sbi->interval_time[REQ_TIME] = DEF_IDLE_INTERVAL;
1230	clear_sbi_flag(sbi, SBI_NEED_FSCK);
1231
1232	INIT_LIST_HEAD(&sbi->s_list);
1233	mutex_init(&sbi->umount_mutex);
1234}
1235
1236/*
1237 * Read f2fs raw super block.
1238 * Because we have two copies of super block, so read both of them
1239 * to get the first valid one. If any one of them is broken, we pass
1240 * them recovery flag back to the caller.
1241 */
1242static int read_raw_super_block(struct super_block *sb,
1243			struct f2fs_super_block **raw_super,
1244			int *valid_super_block, int *recovery)
1245{
1246	int block;
1247	struct buffer_head *bh;
1248	struct f2fs_super_block *super;
1249	int err = 0;
1250
1251	super = kzalloc(sizeof(struct f2fs_super_block), GFP_KERNEL);
1252	if (!super)
1253		return -ENOMEM;
1254
1255	for (block = 0; block < 2; block++) {
1256		bh = sb_bread(sb, block);
1257		if (!bh) {
1258			f2fs_msg(sb, KERN_ERR, "Unable to read %dth superblock",
1259				block + 1);
1260			err = -EIO;
1261			continue;
 
 
 
1262		}
 
1263
1264		/* sanity checking of raw super */
1265		if (sanity_check_raw_super(sb, bh)) {
1266			f2fs_msg(sb, KERN_ERR,
1267				"Can't find valid F2FS filesystem in %dth superblock",
1268				block + 1);
1269			err = -EINVAL;
1270			brelse(bh);
1271			continue;
1272		}
1273
1274		if (!*raw_super) {
1275			memcpy(super, bh->b_data + F2FS_SUPER_OFFSET,
1276							sizeof(*super));
1277			*valid_super_block = block;
1278			*raw_super = super;
 
 
 
 
 
 
1279		}
1280		brelse(bh);
1281	}
1282
1283	/* Fail to read any one of the superblocks*/
1284	if (err < 0)
1285		*recovery = 1;
1286
1287	/* No valid superblock */
1288	if (!*raw_super)
1289		kfree(super);
1290	else
1291		err = 0;
1292
1293	return err;
1294}
1295
1296int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover)
1297{
1298	struct buffer_head *bh;
1299	int err;
1300
1301	/* write back-up superblock first */
1302	bh = sb_getblk(sbi->sb, sbi->valid_super_block ? 0: 1);
1303	if (!bh)
1304		return -EIO;
1305	err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
1306	brelse(bh);
1307
1308	/* if we are in recovery path, skip writing valid superblock */
1309	if (recover || err)
1310		return err;
1311
1312	/* write current valid superblock */
1313	bh = sb_getblk(sbi->sb, sbi->valid_super_block);
1314	if (!bh)
1315		return -EIO;
1316	err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
1317	brelse(bh);
1318	return err;
1319}
1320
1321static int f2fs_fill_super(struct super_block *sb, void *data, int silent)
1322{
1323	struct f2fs_sb_info *sbi;
1324	struct f2fs_super_block *raw_super;
 
1325	struct inode *root;
1326	long err;
1327	bool retry = true, need_fsck = false;
1328	char *options = NULL;
1329	int recovery, i, valid_super_block;
1330	struct curseg_info *seg_i;
1331
1332try_onemore:
1333	err = -EINVAL;
1334	raw_super = NULL;
1335	valid_super_block = -1;
1336	recovery = 0;
1337
1338	/* allocate memory for f2fs-specific super block info */
1339	sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL);
1340	if (!sbi)
1341		return -ENOMEM;
1342
1343	/* Load the checksum driver */
1344	sbi->s_chksum_driver = crypto_alloc_shash("crc32", 0, 0);
1345	if (IS_ERR(sbi->s_chksum_driver)) {
1346		f2fs_msg(sb, KERN_ERR, "Cannot load crc32 driver.");
1347		err = PTR_ERR(sbi->s_chksum_driver);
1348		sbi->s_chksum_driver = NULL;
1349		goto free_sbi;
1350	}
1351
1352	/* set a block size */
1353	if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) {
1354		f2fs_msg(sb, KERN_ERR, "unable to set blocksize");
1355		goto free_sbi;
1356	}
1357
1358	err = read_raw_super_block(sb, &raw_super, &valid_super_block,
1359								&recovery);
1360	if (err)
1361		goto free_sbi;
1362
1363	sb->s_fs_info = sbi;
1364	default_options(sbi);
 
 
 
 
 
 
 
 
 
 
1365	/* parse mount options */
1366	options = kstrdup((const char *)data, GFP_KERNEL);
1367	if (data && !options) {
1368		err = -ENOMEM;
1369		goto free_sb_buf;
1370	}
1371
1372	err = parse_options(sb, options);
1373	if (err)
1374		goto free_options;
1375
1376	sbi->max_file_blocks = max_file_blocks();
1377	sb->s_maxbytes = sbi->max_file_blocks <<
1378				le32_to_cpu(raw_super->log_blocksize);
1379	sb->s_max_links = F2FS_LINK_MAX;
1380	get_random_bytes(&sbi->s_next_generation, sizeof(u32));
1381
1382	sb->s_op = &f2fs_sops;
1383	sb->s_cop = &f2fs_cryptops;
1384	sb->s_xattr = f2fs_xattr_handlers;
1385	sb->s_export_op = &f2fs_export_ops;
1386	sb->s_magic = F2FS_SUPER_MAGIC;
1387	sb->s_time_gran = 1;
1388	sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
1389		(test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0);
1390	memcpy(sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid));
1391
1392	/* init f2fs-specific super block info */
1393	sbi->sb = sb;
1394	sbi->raw_super = raw_super;
1395	sbi->valid_super_block = valid_super_block;
1396	mutex_init(&sbi->gc_mutex);
1397	mutex_init(&sbi->writepages);
1398	mutex_init(&sbi->cp_mutex);
1399	init_rwsem(&sbi->node_write);
1400
1401	/* disallow all the data/node/meta page writes */
1402	set_sbi_flag(sbi, SBI_POR_DOING);
1403	spin_lock_init(&sbi->stat_lock);
1404
1405	init_rwsem(&sbi->read_io.io_rwsem);
1406	sbi->read_io.sbi = sbi;
1407	sbi->read_io.bio = NULL;
1408	for (i = 0; i < NR_PAGE_TYPE; i++) {
1409		init_rwsem(&sbi->write_io[i].io_rwsem);
1410		sbi->write_io[i].sbi = sbi;
1411		sbi->write_io[i].bio = NULL;
1412	}
1413
1414	init_rwsem(&sbi->cp_rwsem);
1415	init_waitqueue_head(&sbi->cp_wait);
1416	init_sb_info(sbi);
1417
1418	/* get an inode for meta space */
1419	sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi));
1420	if (IS_ERR(sbi->meta_inode)) {
1421		f2fs_msg(sb, KERN_ERR, "Failed to read F2FS meta data inode");
1422		err = PTR_ERR(sbi->meta_inode);
1423		goto free_options;
1424	}
1425
1426	err = get_valid_checkpoint(sbi);
1427	if (err) {
1428		f2fs_msg(sb, KERN_ERR, "Failed to get valid F2FS checkpoint");
1429		goto free_meta_inode;
1430	}
1431
 
 
 
 
 
 
 
1432	sbi->total_valid_node_count =
1433				le32_to_cpu(sbi->ckpt->valid_node_count);
1434	sbi->total_valid_inode_count =
1435				le32_to_cpu(sbi->ckpt->valid_inode_count);
1436	sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count);
1437	sbi->total_valid_block_count =
1438				le64_to_cpu(sbi->ckpt->valid_block_count);
1439	sbi->last_valid_block_count = sbi->total_valid_block_count;
1440	sbi->alloc_valid_block_count = 0;
1441	for (i = 0; i < NR_INODE_TYPE; i++) {
1442		INIT_LIST_HEAD(&sbi->inode_list[i]);
1443		spin_lock_init(&sbi->inode_lock[i]);
1444	}
1445
1446	init_extent_cache_info(sbi);
1447
1448	init_ino_entry_info(sbi);
1449
1450	/* setup f2fs internal modules */
1451	err = build_segment_manager(sbi);
1452	if (err) {
1453		f2fs_msg(sb, KERN_ERR,
1454			"Failed to initialize F2FS segment manager");
1455		goto free_sm;
1456	}
1457	err = build_node_manager(sbi);
1458	if (err) {
1459		f2fs_msg(sb, KERN_ERR,
1460			"Failed to initialize F2FS node manager");
1461		goto free_nm;
1462	}
1463
1464	/* For write statistics */
1465	if (sb->s_bdev->bd_part)
1466		sbi->sectors_written_start =
1467			(u64)part_stat_read(sb->s_bdev->bd_part, sectors[1]);
1468
1469	/* Read accumulated write IO statistics if exists */
1470	seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
1471	if (__exist_node_summaries(sbi))
1472		sbi->kbytes_written =
1473			le64_to_cpu(seg_i->journal->info.kbytes_written);
1474
1475	build_gc_manager(sbi);
1476
1477	/* get an inode for node space */
1478	sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi));
1479	if (IS_ERR(sbi->node_inode)) {
1480		f2fs_msg(sb, KERN_ERR, "Failed to read node inode");
1481		err = PTR_ERR(sbi->node_inode);
1482		goto free_nm;
1483	}
1484
1485	f2fs_join_shrinker(sbi);
1486
1487	/* if there are nt orphan nodes free them */
1488	err = recover_orphan_inodes(sbi);
1489	if (err)
1490		goto free_node_inode;
1491
1492	/* read root inode and dentry */
1493	root = f2fs_iget(sb, F2FS_ROOT_INO(sbi));
1494	if (IS_ERR(root)) {
1495		f2fs_msg(sb, KERN_ERR, "Failed to read root inode");
1496		err = PTR_ERR(root);
1497		goto free_node_inode;
1498	}
1499	if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
1500		iput(root);
1501		err = -EINVAL;
1502		goto free_node_inode;
1503	}
1504
1505	sb->s_root = d_make_root(root); /* allocate root dentry */
1506	if (!sb->s_root) {
1507		err = -ENOMEM;
1508		goto free_root_inode;
1509	}
1510
1511	err = f2fs_build_stats(sbi);
1512	if (err)
1513		goto free_root_inode;
1514
1515	if (f2fs_proc_root)
1516		sbi->s_proc = proc_mkdir(sb->s_id, f2fs_proc_root);
1517
1518	if (sbi->s_proc)
1519		proc_create_data("segment_info", S_IRUGO, sbi->s_proc,
1520				 &f2fs_seq_segment_info_fops, sb);
1521
 
 
 
 
 
 
 
 
1522	sbi->s_kobj.kset = f2fs_kset;
1523	init_completion(&sbi->s_kobj_unregister);
1524	err = kobject_init_and_add(&sbi->s_kobj, &f2fs_ktype, NULL,
1525							"%s", sb->s_id);
1526	if (err)
1527		goto free_proc;
1528
1529	/* recover fsynced data */
1530	if (!test_opt(sbi, DISABLE_ROLL_FORWARD)) {
1531		/*
1532		 * mount should be failed, when device has readonly mode, and
1533		 * previous checkpoint was not done by clean system shutdown.
1534		 */
1535		if (bdev_read_only(sb->s_bdev) &&
1536				!is_set_ckpt_flags(sbi->ckpt, CP_UMOUNT_FLAG)) {
1537			err = -EROFS;
1538			goto free_kobj;
1539		}
1540
1541		if (need_fsck)
1542			set_sbi_flag(sbi, SBI_NEED_FSCK);
1543
1544		err = recover_fsync_data(sbi);
1545		if (err) {
1546			need_fsck = true;
1547			f2fs_msg(sb, KERN_ERR,
1548				"Cannot recover all fsync data errno=%ld", err);
1549			goto free_kobj;
1550		}
1551	}
1552	/* recover_fsync_data() cleared this already */
1553	clear_sbi_flag(sbi, SBI_POR_DOING);
1554
1555	/*
1556	 * If filesystem is not mounted as read-only then
1557	 * do start the gc_thread.
1558	 */
1559	if (test_opt(sbi, BG_GC) && !f2fs_readonly(sb)) {
1560		/* After POR, we can run background GC thread.*/
1561		err = start_gc_thread(sbi);
1562		if (err)
1563			goto free_kobj;
1564	}
1565	kfree(options);
1566
1567	/* recover broken superblock */
1568	if (recovery && !f2fs_readonly(sb) && !bdev_read_only(sb->s_bdev)) {
1569		err = f2fs_commit_super(sbi, true);
1570		f2fs_msg(sb, KERN_INFO,
1571			"Try to recover %dth superblock, ret: %ld",
1572			sbi->valid_super_block ? 1 : 2, err);
1573	}
1574
1575	f2fs_update_time(sbi, CP_TIME);
1576	f2fs_update_time(sbi, REQ_TIME);
1577	return 0;
1578
1579free_kobj:
1580	kobject_del(&sbi->s_kobj);
1581	kobject_put(&sbi->s_kobj);
1582	wait_for_completion(&sbi->s_kobj_unregister);
1583free_proc:
1584	if (sbi->s_proc) {
1585		remove_proc_entry("segment_info", sbi->s_proc);
1586		remove_proc_entry(sb->s_id, f2fs_proc_root);
1587	}
1588	f2fs_destroy_stats(sbi);
1589free_root_inode:
1590	dput(sb->s_root);
1591	sb->s_root = NULL;
1592free_node_inode:
1593	mutex_lock(&sbi->umount_mutex);
1594	f2fs_leave_shrinker(sbi);
1595	iput(sbi->node_inode);
1596	mutex_unlock(&sbi->umount_mutex);
1597free_nm:
1598	destroy_node_manager(sbi);
1599free_sm:
1600	destroy_segment_manager(sbi);
 
1601	kfree(sbi->ckpt);
1602free_meta_inode:
1603	make_bad_inode(sbi->meta_inode);
1604	iput(sbi->meta_inode);
1605free_options:
1606	kfree(options);
1607free_sb_buf:
1608	kfree(raw_super);
1609free_sbi:
1610	if (sbi->s_chksum_driver)
1611		crypto_free_shash(sbi->s_chksum_driver);
1612	kfree(sbi);
1613
1614	/* give only one another chance */
1615	if (retry) {
1616		retry = false;
1617		shrink_dcache_sb(sb);
1618		goto try_onemore;
1619	}
1620	return err;
1621}
1622
1623static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags,
1624			const char *dev_name, void *data)
1625{
1626	return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super);
1627}
1628
1629static void kill_f2fs_super(struct super_block *sb)
1630{
1631	if (sb->s_root)
1632		set_sbi_flag(F2FS_SB(sb), SBI_IS_CLOSE);
1633	kill_block_super(sb);
1634}
1635
1636static struct file_system_type f2fs_fs_type = {
1637	.owner		= THIS_MODULE,
1638	.name		= "f2fs",
1639	.mount		= f2fs_mount,
1640	.kill_sb	= kill_f2fs_super,
1641	.fs_flags	= FS_REQUIRES_DEV,
1642};
1643MODULE_ALIAS_FS("f2fs");
1644
1645static int __init init_inodecache(void)
1646{
1647	f2fs_inode_cachep = kmem_cache_create("f2fs_inode_cache",
1648			sizeof(struct f2fs_inode_info), 0,
1649			SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT, NULL);
1650	if (!f2fs_inode_cachep)
1651		return -ENOMEM;
1652	return 0;
1653}
1654
1655static void destroy_inodecache(void)
1656{
1657	/*
1658	 * Make sure all delayed rcu free inodes are flushed before we
1659	 * destroy cache.
1660	 */
1661	rcu_barrier();
1662	kmem_cache_destroy(f2fs_inode_cachep);
1663}
1664
1665static int __init init_f2fs_fs(void)
1666{
1667	int err;
1668
1669	f2fs_build_trace_ios();
1670
1671	err = init_inodecache();
1672	if (err)
1673		goto fail;
1674	err = create_node_manager_caches();
1675	if (err)
1676		goto free_inodecache;
1677	err = create_segment_manager_caches();
1678	if (err)
1679		goto free_node_manager_caches;
1680	err = create_checkpoint_caches();
1681	if (err)
1682		goto free_segment_manager_caches;
1683	err = create_extent_cache();
1684	if (err)
1685		goto free_checkpoint_caches;
1686	f2fs_kset = kset_create_and_add("f2fs", NULL, fs_kobj);
1687	if (!f2fs_kset) {
1688		err = -ENOMEM;
1689		goto free_extent_cache;
1690	}
1691	err = register_shrinker(&f2fs_shrinker_info);
1692	if (err)
1693		goto free_kset;
1694
1695	err = register_filesystem(&f2fs_fs_type);
1696	if (err)
1697		goto free_shrinker;
1698	err = f2fs_create_root_stats();
1699	if (err)
1700		goto free_filesystem;
1701	f2fs_proc_root = proc_mkdir("fs/f2fs", NULL);
1702	return 0;
1703
1704free_filesystem:
1705	unregister_filesystem(&f2fs_fs_type);
1706free_shrinker:
1707	unregister_shrinker(&f2fs_shrinker_info);
1708free_kset:
1709	kset_unregister(f2fs_kset);
1710free_extent_cache:
1711	destroy_extent_cache();
1712free_checkpoint_caches:
1713	destroy_checkpoint_caches();
 
 
1714free_segment_manager_caches:
1715	destroy_segment_manager_caches();
1716free_node_manager_caches:
1717	destroy_node_manager_caches();
1718free_inodecache:
1719	destroy_inodecache();
1720fail:
1721	return err;
1722}
1723
1724static void __exit exit_f2fs_fs(void)
1725{
1726	remove_proc_entry("fs/f2fs", NULL);
1727	f2fs_destroy_root_stats();
1728	unregister_shrinker(&f2fs_shrinker_info);
1729	unregister_filesystem(&f2fs_fs_type);
1730	destroy_extent_cache();
1731	destroy_checkpoint_caches();
 
1732	destroy_segment_manager_caches();
1733	destroy_node_manager_caches();
1734	destroy_inodecache();
1735	kset_unregister(f2fs_kset);
1736	f2fs_destroy_trace_ios();
1737}
1738
1739module_init(init_f2fs_fs)
1740module_exit(exit_f2fs_fs)
1741
1742MODULE_AUTHOR("Samsung Electronics's Praesto Team");
1743MODULE_DESCRIPTION("Flash Friendly File System");
1744MODULE_LICENSE("GPL");