Linux Audio

Check our new training course

Loading...
v3.15
   1/*
   2 * fs/f2fs/super.c
   3 *
   4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
   5 *             http://www.samsung.com/
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License version 2 as
   9 * published by the Free Software Foundation.
  10 */
  11#include <linux/module.h>
  12#include <linux/init.h>
  13#include <linux/fs.h>
  14#include <linux/statfs.h>
  15#include <linux/buffer_head.h>
  16#include <linux/backing-dev.h>
  17#include <linux/kthread.h>
  18#include <linux/parser.h>
  19#include <linux/mount.h>
  20#include <linux/seq_file.h>
  21#include <linux/proc_fs.h>
  22#include <linux/random.h>
  23#include <linux/exportfs.h>
  24#include <linux/blkdev.h>
  25#include <linux/f2fs_fs.h>
  26#include <linux/sysfs.h>
  27
  28#include "f2fs.h"
  29#include "node.h"
  30#include "segment.h"
  31#include "xattr.h"
  32#include "gc.h"
 
  33
  34#define CREATE_TRACE_POINTS
  35#include <trace/events/f2fs.h>
  36
  37static struct proc_dir_entry *f2fs_proc_root;
  38static struct kmem_cache *f2fs_inode_cachep;
  39static struct kset *f2fs_kset;
  40
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  41enum {
  42	Opt_gc_background,
  43	Opt_disable_roll_forward,
 
  44	Opt_discard,
 
  45	Opt_noheap,
  46	Opt_user_xattr,
  47	Opt_nouser_xattr,
  48	Opt_acl,
  49	Opt_noacl,
  50	Opt_active_logs,
  51	Opt_disable_ext_identify,
  52	Opt_inline_xattr,
  53	Opt_inline_data,
 
 
  54	Opt_flush_merge,
 
 
 
 
 
 
 
 
 
 
 
  55	Opt_err,
  56};
  57
  58static match_table_t f2fs_tokens = {
  59	{Opt_gc_background, "background_gc=%s"},
  60	{Opt_disable_roll_forward, "disable_roll_forward"},
 
  61	{Opt_discard, "discard"},
 
  62	{Opt_noheap, "no_heap"},
  63	{Opt_user_xattr, "user_xattr"},
  64	{Opt_nouser_xattr, "nouser_xattr"},
  65	{Opt_acl, "acl"},
  66	{Opt_noacl, "noacl"},
  67	{Opt_active_logs, "active_logs=%u"},
  68	{Opt_disable_ext_identify, "disable_ext_identify"},
  69	{Opt_inline_xattr, "inline_xattr"},
  70	{Opt_inline_data, "inline_data"},
 
 
  71	{Opt_flush_merge, "flush_merge"},
 
 
 
 
 
 
 
 
 
 
 
  72	{Opt_err, NULL},
  73};
  74
  75/* Sysfs support for f2fs */
  76enum {
  77	GC_THREAD,	/* struct f2fs_gc_thread */
  78	SM_INFO,	/* struct f2fs_sm_info */
  79	NM_INFO,	/* struct f2fs_nm_info */
  80	F2FS_SBI,	/* struct f2fs_sb_info */
 
 
 
 
  81};
  82
  83struct f2fs_attr {
  84	struct attribute attr;
  85	ssize_t (*show)(struct f2fs_attr *, struct f2fs_sb_info *, char *);
  86	ssize_t (*store)(struct f2fs_attr *, struct f2fs_sb_info *,
  87			 const char *, size_t);
  88	int struct_type;
  89	int offset;
  90};
  91
  92static unsigned char *__struct_ptr(struct f2fs_sb_info *sbi, int struct_type)
  93{
  94	if (struct_type == GC_THREAD)
  95		return (unsigned char *)sbi->gc_thread;
  96	else if (struct_type == SM_INFO)
  97		return (unsigned char *)SM_I(sbi);
  98	else if (struct_type == NM_INFO)
  99		return (unsigned char *)NM_I(sbi);
 100	else if (struct_type == F2FS_SBI)
 101		return (unsigned char *)sbi;
 
 
 
 
 
 102	return NULL;
 103}
 104
 
 
 
 
 
 
 
 
 
 
 
 
 
 105static ssize_t f2fs_sbi_show(struct f2fs_attr *a,
 106			struct f2fs_sb_info *sbi, char *buf)
 107{
 108	unsigned char *ptr = NULL;
 109	unsigned int *ui;
 110
 111	ptr = __struct_ptr(sbi, a->struct_type);
 112	if (!ptr)
 113		return -EINVAL;
 114
 115	ui = (unsigned int *)(ptr + a->offset);
 116
 117	return snprintf(buf, PAGE_SIZE, "%u\n", *ui);
 118}
 119
 120static ssize_t f2fs_sbi_store(struct f2fs_attr *a,
 121			struct f2fs_sb_info *sbi,
 122			const char *buf, size_t count)
 123{
 124	unsigned char *ptr;
 125	unsigned long t;
 126	unsigned int *ui;
 127	ssize_t ret;
 128
 129	ptr = __struct_ptr(sbi, a->struct_type);
 130	if (!ptr)
 131		return -EINVAL;
 132
 133	ui = (unsigned int *)(ptr + a->offset);
 134
 135	ret = kstrtoul(skip_spaces(buf), 0, &t);
 136	if (ret < 0)
 137		return ret;
 
 
 
 
 138	*ui = t;
 139	return count;
 140}
 141
 142static ssize_t f2fs_attr_show(struct kobject *kobj,
 143				struct attribute *attr, char *buf)
 144{
 145	struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
 146								s_kobj);
 147	struct f2fs_attr *a = container_of(attr, struct f2fs_attr, attr);
 148
 149	return a->show ? a->show(a, sbi, buf) : 0;
 150}
 151
 152static ssize_t f2fs_attr_store(struct kobject *kobj, struct attribute *attr,
 153						const char *buf, size_t len)
 154{
 155	struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
 156									s_kobj);
 157	struct f2fs_attr *a = container_of(attr, struct f2fs_attr, attr);
 158
 159	return a->store ? a->store(a, sbi, buf, len) : 0;
 160}
 161
 162static void f2fs_sb_release(struct kobject *kobj)
 163{
 164	struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
 165								s_kobj);
 166	complete(&sbi->s_kobj_unregister);
 167}
 168
 169#define F2FS_ATTR_OFFSET(_struct_type, _name, _mode, _show, _store, _offset) \
 170static struct f2fs_attr f2fs_attr_##_name = {			\
 171	.attr = {.name = __stringify(_name), .mode = _mode },	\
 172	.show	= _show,					\
 173	.store	= _store,					\
 174	.struct_type = _struct_type,				\
 175	.offset = _offset					\
 176}
 177
 178#define F2FS_RW_ATTR(struct_type, struct_name, name, elname)	\
 179	F2FS_ATTR_OFFSET(struct_type, name, 0644,		\
 180		f2fs_sbi_show, f2fs_sbi_store,			\
 181		offsetof(struct struct_name, elname))
 182
 
 
 
 183F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_min_sleep_time, min_sleep_time);
 184F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_max_sleep_time, max_sleep_time);
 185F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_no_gc_sleep_time, no_gc_sleep_time);
 186F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_idle, gc_idle);
 187F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, reclaim_segments, rec_prefree_segments);
 188F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, max_small_discards, max_discards);
 
 189F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, ipu_policy, ipu_policy);
 190F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, min_ipu_util, min_ipu_util);
 
 191F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, ram_thresh, ram_thresh);
 
 
 192F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, max_victim_search, max_victim_search);
 193F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, dir_level, dir_level);
 
 
 
 
 
 
 
 194
 195#define ATTR_LIST(name) (&f2fs_attr_##name.attr)
 196static struct attribute *f2fs_attrs[] = {
 197	ATTR_LIST(gc_min_sleep_time),
 198	ATTR_LIST(gc_max_sleep_time),
 199	ATTR_LIST(gc_no_gc_sleep_time),
 200	ATTR_LIST(gc_idle),
 201	ATTR_LIST(reclaim_segments),
 202	ATTR_LIST(max_small_discards),
 
 203	ATTR_LIST(ipu_policy),
 204	ATTR_LIST(min_ipu_util),
 
 205	ATTR_LIST(max_victim_search),
 206	ATTR_LIST(dir_level),
 207	ATTR_LIST(ram_thresh),
 
 
 
 
 
 
 
 
 
 208	NULL,
 209};
 210
 211static const struct sysfs_ops f2fs_attr_ops = {
 212	.show	= f2fs_attr_show,
 213	.store	= f2fs_attr_store,
 214};
 215
 216static struct kobj_type f2fs_ktype = {
 217	.default_attrs	= f2fs_attrs,
 218	.sysfs_ops	= &f2fs_attr_ops,
 219	.release	= f2fs_sb_release,
 220};
 221
 222void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...)
 223{
 224	struct va_format vaf;
 225	va_list args;
 226
 227	va_start(args, fmt);
 228	vaf.fmt = fmt;
 229	vaf.va = &args;
 230	printk("%sF2FS-fs (%s): %pV\n", level, sb->s_id, &vaf);
 231	va_end(args);
 232}
 233
 234static void init_once(void *foo)
 235{
 236	struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo;
 237
 238	inode_init_once(&fi->vfs_inode);
 239}
 240
 241static int parse_options(struct super_block *sb, char *options)
 242{
 243	struct f2fs_sb_info *sbi = F2FS_SB(sb);
 
 244	substring_t args[MAX_OPT_ARGS];
 245	char *p, *name;
 246	int arg = 0;
 247
 248	if (!options)
 249		return 0;
 250
 251	while ((p = strsep(&options, ",")) != NULL) {
 252		int token;
 253		if (!*p)
 254			continue;
 255		/*
 256		 * Initialize args struct so we know whether arg was
 257		 * found; some options take optional arguments.
 258		 */
 259		args[0].to = args[0].from = NULL;
 260		token = match_token(p, f2fs_tokens, args);
 261
 262		switch (token) {
 263		case Opt_gc_background:
 264			name = match_strdup(&args[0]);
 265
 266			if (!name)
 267				return -ENOMEM;
 268			if (strlen(name) == 2 && !strncmp(name, "on", 2))
 269				set_opt(sbi, BG_GC);
 270			else if (strlen(name) == 3 && !strncmp(name, "off", 3))
 
 271				clear_opt(sbi, BG_GC);
 272			else {
 
 
 
 
 273				kfree(name);
 274				return -EINVAL;
 275			}
 276			kfree(name);
 277			break;
 278		case Opt_disable_roll_forward:
 279			set_opt(sbi, DISABLE_ROLL_FORWARD);
 280			break;
 
 
 
 
 
 
 281		case Opt_discard:
 282			set_opt(sbi, DISCARD);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 283			break;
 284		case Opt_noheap:
 285			set_opt(sbi, NOHEAP);
 286			break;
 287#ifdef CONFIG_F2FS_FS_XATTR
 288		case Opt_user_xattr:
 289			set_opt(sbi, XATTR_USER);
 290			break;
 291		case Opt_nouser_xattr:
 292			clear_opt(sbi, XATTR_USER);
 293			break;
 294		case Opt_inline_xattr:
 295			set_opt(sbi, INLINE_XATTR);
 296			break;
 297#else
 298		case Opt_user_xattr:
 299			f2fs_msg(sb, KERN_INFO,
 300				"user_xattr options not supported");
 301			break;
 302		case Opt_nouser_xattr:
 303			f2fs_msg(sb, KERN_INFO,
 304				"nouser_xattr options not supported");
 305			break;
 306		case Opt_inline_xattr:
 307			f2fs_msg(sb, KERN_INFO,
 308				"inline_xattr options not supported");
 309			break;
 310#endif
 311#ifdef CONFIG_F2FS_FS_POSIX_ACL
 312		case Opt_acl:
 313			set_opt(sbi, POSIX_ACL);
 314			break;
 315		case Opt_noacl:
 316			clear_opt(sbi, POSIX_ACL);
 317			break;
 318#else
 319		case Opt_acl:
 320			f2fs_msg(sb, KERN_INFO, "acl options not supported");
 321			break;
 322		case Opt_noacl:
 323			f2fs_msg(sb, KERN_INFO, "noacl options not supported");
 324			break;
 325#endif
 326		case Opt_active_logs:
 327			if (args->from && match_int(args, &arg))
 328				return -EINVAL;
 329			if (arg != 2 && arg != 4 && arg != NR_CURSEG_TYPE)
 330				return -EINVAL;
 331			sbi->active_logs = arg;
 332			break;
 333		case Opt_disable_ext_identify:
 334			set_opt(sbi, DISABLE_EXT_IDENTIFY);
 335			break;
 336		case Opt_inline_data:
 337			set_opt(sbi, INLINE_DATA);
 338			break;
 
 
 
 
 
 
 339		case Opt_flush_merge:
 340			set_opt(sbi, FLUSH_MERGE);
 341			break;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 342		default:
 343			f2fs_msg(sb, KERN_ERR,
 344				"Unrecognized mount option \"%s\" or missing value",
 345				p);
 346			return -EINVAL;
 347		}
 348	}
 349	return 0;
 350}
 351
 352static struct inode *f2fs_alloc_inode(struct super_block *sb)
 353{
 354	struct f2fs_inode_info *fi;
 355
 356	fi = kmem_cache_alloc(f2fs_inode_cachep, GFP_F2FS_ZERO);
 357	if (!fi)
 358		return NULL;
 359
 360	init_once((void *) fi);
 361
 362	/* Initialize f2fs-specific inode info */
 363	fi->vfs_inode.i_version = 1;
 364	atomic_set(&fi->dirty_dents, 0);
 365	fi->i_current_depth = 1;
 366	fi->i_advise = 0;
 367	rwlock_init(&fi->ext.ext_lock);
 368	init_rwsem(&fi->i_sem);
 369
 370	set_inode_flag(fi, FI_NEW_INODE);
 371
 372	if (test_opt(F2FS_SB(sb), INLINE_XATTR))
 373		set_inode_flag(fi, FI_INLINE_XATTR);
 
 374
 375	/* Will be used by directory only */
 376	fi->i_dir_level = F2FS_SB(sb)->dir_level;
 377
 378	return &fi->vfs_inode;
 379}
 380
 381static int f2fs_drop_inode(struct inode *inode)
 382{
 383	/*
 384	 * This is to avoid a deadlock condition like below.
 385	 * writeback_single_inode(inode)
 386	 *  - f2fs_write_data_page
 387	 *    - f2fs_gc -> iput -> evict
 388	 *       - inode_wait_for_writeback(inode)
 389	 */
 390	if (!inode_unhashed(inode) && inode->i_state & I_SYNC)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 391		return 0;
 
 
 392	return generic_drop_inode(inode);
 393}
 394
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 395/*
 396 * f2fs_dirty_inode() is called from __mark_inode_dirty()
 397 *
 398 * We should call set_dirty_inode to write the dirty inode through write_inode.
 399 */
 400static void f2fs_dirty_inode(struct inode *inode, int flags)
 401{
 402	set_inode_flag(F2FS_I(inode), FI_DIRTY_INODE);
 
 
 
 
 
 
 
 
 
 
 
 
 403}
 404
 405static void f2fs_i_callback(struct rcu_head *head)
 406{
 407	struct inode *inode = container_of(head, struct inode, i_rcu);
 408	kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode));
 409}
 410
 411static void f2fs_destroy_inode(struct inode *inode)
 412{
 413	call_rcu(&inode->i_rcu, f2fs_i_callback);
 414}
 415
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 416static void f2fs_put_super(struct super_block *sb)
 417{
 418	struct f2fs_sb_info *sbi = F2FS_SB(sb);
 419
 420	if (sbi->s_proc) {
 421		remove_proc_entry("segment_info", sbi->s_proc);
 
 422		remove_proc_entry(sb->s_id, f2fs_proc_root);
 423	}
 424	kobject_del(&sbi->s_kobj);
 425
 426	f2fs_destroy_stats(sbi);
 427	stop_gc_thread(sbi);
 428
 429	/* We don't need to do checkpoint when it's clean */
 430	if (sbi->s_dirty && get_pages(sbi, F2FS_DIRTY_NODES))
 431		write_checkpoint(sbi, true);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 432
 433	iput(sbi->node_inode);
 434	iput(sbi->meta_inode);
 435
 436	/* destroy f2fs internal modules */
 437	destroy_node_manager(sbi);
 438	destroy_segment_manager(sbi);
 439
 440	kfree(sbi->ckpt);
 441	kobject_put(&sbi->s_kobj);
 442	wait_for_completion(&sbi->s_kobj_unregister);
 443
 444	sb->s_fs_info = NULL;
 445	brelse(sbi->raw_super_buf);
 
 
 
 
 
 
 446	kfree(sbi);
 447}
 448
 449int f2fs_sync_fs(struct super_block *sb, int sync)
 450{
 451	struct f2fs_sb_info *sbi = F2FS_SB(sb);
 
 452
 453	trace_f2fs_sync_fs(sb, sync);
 454
 455	if (!sbi->s_dirty && !get_pages(sbi, F2FS_DIRTY_NODES))
 456		return 0;
 457
 458	if (sync) {
 
 
 
 
 459		mutex_lock(&sbi->gc_mutex);
 460		write_checkpoint(sbi, false);
 461		mutex_unlock(&sbi->gc_mutex);
 462	} else {
 463		f2fs_balance_fs(sbi);
 464	}
 
 465
 466	return 0;
 467}
 468
 469static int f2fs_freeze(struct super_block *sb)
 470{
 471	int err;
 472
 473	if (f2fs_readonly(sb))
 474		return 0;
 475
 476	err = f2fs_sync_fs(sb, 1);
 477	return err;
 
 
 
 
 
 
 478}
 479
 480static int f2fs_unfreeze(struct super_block *sb)
 481{
 482	return 0;
 483}
 484
 485static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf)
 486{
 487	struct super_block *sb = dentry->d_sb;
 488	struct f2fs_sb_info *sbi = F2FS_SB(sb);
 489	u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
 490	block_t total_count, user_block_count, start_count, ovp_count;
 491
 492	total_count = le64_to_cpu(sbi->raw_super->block_count);
 493	user_block_count = sbi->user_block_count;
 494	start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr);
 495	ovp_count = SM_I(sbi)->ovp_segments << sbi->log_blocks_per_seg;
 496	buf->f_type = F2FS_SUPER_MAGIC;
 497	buf->f_bsize = sbi->blocksize;
 498
 499	buf->f_blocks = total_count - start_count;
 500	buf->f_bfree = buf->f_blocks - valid_user_blocks(sbi) - ovp_count;
 501	buf->f_bavail = user_block_count - valid_user_blocks(sbi);
 502
 503	buf->f_files = sbi->total_node_count;
 504	buf->f_ffree = sbi->total_node_count - valid_inode_count(sbi);
 
 505
 506	buf->f_namelen = F2FS_NAME_LEN;
 507	buf->f_fsid.val[0] = (u32)id;
 508	buf->f_fsid.val[1] = (u32)(id >> 32);
 509
 510	return 0;
 511}
 512
 513static int f2fs_show_options(struct seq_file *seq, struct dentry *root)
 514{
 515	struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb);
 516
 517	if (!(root->d_sb->s_flags & MS_RDONLY) && test_opt(sbi, BG_GC))
 518		seq_printf(seq, ",background_gc=%s", "on");
 519	else
 
 
 
 520		seq_printf(seq, ",background_gc=%s", "off");
 
 521	if (test_opt(sbi, DISABLE_ROLL_FORWARD))
 522		seq_puts(seq, ",disable_roll_forward");
 523	if (test_opt(sbi, DISCARD))
 524		seq_puts(seq, ",discard");
 525	if (test_opt(sbi, NOHEAP))
 526		seq_puts(seq, ",no_heap_alloc");
 527#ifdef CONFIG_F2FS_FS_XATTR
 528	if (test_opt(sbi, XATTR_USER))
 529		seq_puts(seq, ",user_xattr");
 530	else
 531		seq_puts(seq, ",nouser_xattr");
 532	if (test_opt(sbi, INLINE_XATTR))
 533		seq_puts(seq, ",inline_xattr");
 534#endif
 535#ifdef CONFIG_F2FS_FS_POSIX_ACL
 536	if (test_opt(sbi, POSIX_ACL))
 537		seq_puts(seq, ",acl");
 538	else
 539		seq_puts(seq, ",noacl");
 540#endif
 541	if (test_opt(sbi, DISABLE_EXT_IDENTIFY))
 542		seq_puts(seq, ",disable_ext_identify");
 543	if (test_opt(sbi, INLINE_DATA))
 544		seq_puts(seq, ",inline_data");
 545	if (test_opt(sbi, FLUSH_MERGE))
 
 
 
 
 
 
 546		seq_puts(seq, ",flush_merge");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 547	seq_printf(seq, ",active_logs=%u", sbi->active_logs);
 548
 549	return 0;
 550}
 551
 552static int segment_info_seq_show(struct seq_file *seq, void *offset)
 553{
 554	struct super_block *sb = seq->private;
 555	struct f2fs_sb_info *sbi = F2FS_SB(sb);
 556	unsigned int total_segs =
 557			le32_to_cpu(sbi->raw_super->segment_count_main);
 558	int i;
 559
 560	seq_puts(seq, "format: segment_type|valid_blocks\n"
 561		"segment_type(0:HD, 1:WD, 2:CD, 3:HN, 4:WN, 5:CN)\n");
 562
 563	for (i = 0; i < total_segs; i++) {
 564		struct seg_entry *se = get_seg_entry(sbi, i);
 565
 566		if ((i % 10) == 0)
 567			seq_printf(seq, "%-5d", i);
 568		seq_printf(seq, "%d|%-3u", se->type,
 569					get_valid_blocks(sbi, i, 1));
 570		if ((i % 10) == 9 || i == (total_segs - 1))
 571			seq_putc(seq, '\n');
 572		else
 573			seq_putc(seq, ' ');
 574	}
 575
 576	return 0;
 577}
 578
 579static int segment_info_open_fs(struct inode *inode, struct file *file)
 580{
 581	return single_open(file, segment_info_seq_show, PDE_DATA(inode));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 582}
 583
 584static const struct file_operations f2fs_seq_segment_info_fops = {
 585	.owner = THIS_MODULE,
 586	.open = segment_info_open_fs,
 587	.read = seq_read,
 588	.llseek = seq_lseek,
 589	.release = single_release,
 
 
 
 
 
 590};
 591
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 592static int f2fs_remount(struct super_block *sb, int *flags, char *data)
 593{
 594	struct f2fs_sb_info *sbi = F2FS_SB(sb);
 595	struct f2fs_mount_info org_mount_opt;
 596	int err, active_logs;
 597
 598	sync_filesystem(sb);
 
 
 
 
 599
 600	/*
 601	 * Save the old mount options in case we
 602	 * need to restore them.
 603	 */
 604	org_mount_opt = sbi->mount_opt;
 605	active_logs = sbi->active_logs;
 606
 
 
 
 
 
 
 
 
 
 
 
 
 607	/* parse mount options */
 608	err = parse_options(sb, data);
 609	if (err)
 610		goto restore_opts;
 611
 612	/*
 613	 * Previous and new state of filesystem is RO,
 614	 * so no point in checking GC conditions.
 615	 */
 616	if ((sb->s_flags & MS_RDONLY) && (*flags & MS_RDONLY))
 617		goto skip;
 618
 
 
 
 
 
 
 
 
 619	/*
 620	 * We stop the GC thread if FS is mounted as RO
 621	 * or if background_gc = off is passed in mount
 622	 * option. Also sync the filesystem.
 623	 */
 624	if ((*flags & MS_RDONLY) || !test_opt(sbi, BG_GC)) {
 625		if (sbi->gc_thread) {
 626			stop_gc_thread(sbi);
 627			f2fs_sync_fs(sb, 1);
 628		}
 629	} else if (test_opt(sbi, BG_GC) && !sbi->gc_thread) {
 630		err = start_gc_thread(sbi);
 631		if (err)
 632			goto restore_opts;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 633	}
 634skip:
 635	/* Update the POSIXACL Flag */
 636	 sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
 637		(test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0);
 638	return 0;
 639
 
 
 
 
 
 
 
 
 
 640restore_opts:
 641	sbi->mount_opt = org_mount_opt;
 642	sbi->active_logs = active_logs;
 
 
 
 643	return err;
 644}
 645
 646static struct super_operations f2fs_sops = {
 647	.alloc_inode	= f2fs_alloc_inode,
 648	.drop_inode	= f2fs_drop_inode,
 649	.destroy_inode	= f2fs_destroy_inode,
 650	.write_inode	= f2fs_write_inode,
 651	.dirty_inode	= f2fs_dirty_inode,
 652	.show_options	= f2fs_show_options,
 653	.evict_inode	= f2fs_evict_inode,
 654	.put_super	= f2fs_put_super,
 655	.sync_fs	= f2fs_sync_fs,
 656	.freeze_fs	= f2fs_freeze,
 657	.unfreeze_fs	= f2fs_unfreeze,
 658	.statfs		= f2fs_statfs,
 659	.remount_fs	= f2fs_remount,
 660};
 661
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 662static struct inode *f2fs_nfs_get_inode(struct super_block *sb,
 663		u64 ino, u32 generation)
 664{
 665	struct f2fs_sb_info *sbi = F2FS_SB(sb);
 666	struct inode *inode;
 667
 668	if (unlikely(ino < F2FS_ROOT_INO(sbi)))
 669		return ERR_PTR(-ESTALE);
 670	if (unlikely(ino >= NM_I(sbi)->max_nid))
 671		return ERR_PTR(-ESTALE);
 672
 673	/*
 674	 * f2fs_iget isn't quite right if the inode is currently unallocated!
 675	 * However f2fs_iget currently does appropriate checks to handle stale
 676	 * inodes so everything is OK.
 677	 */
 678	inode = f2fs_iget(sb, ino);
 679	if (IS_ERR(inode))
 680		return ERR_CAST(inode);
 681	if (unlikely(generation && inode->i_generation != generation)) {
 682		/* we didn't find the right inode.. */
 683		iput(inode);
 684		return ERR_PTR(-ESTALE);
 685	}
 686	return inode;
 687}
 688
 689static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid,
 690		int fh_len, int fh_type)
 691{
 692	return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
 693				    f2fs_nfs_get_inode);
 694}
 695
 696static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid,
 697		int fh_len, int fh_type)
 698{
 699	return generic_fh_to_parent(sb, fid, fh_len, fh_type,
 700				    f2fs_nfs_get_inode);
 701}
 702
 703static const struct export_operations f2fs_export_ops = {
 704	.fh_to_dentry = f2fs_fh_to_dentry,
 705	.fh_to_parent = f2fs_fh_to_parent,
 706	.get_parent = f2fs_get_parent,
 707};
 708
 709static loff_t max_file_size(unsigned bits)
 710{
 711	loff_t result = (DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS);
 712	loff_t leaf_count = ADDRS_PER_BLOCK;
 713
 714	/* two direct node blocks */
 715	result += (leaf_count * 2);
 716
 717	/* two indirect node blocks */
 718	leaf_count *= NIDS_PER_BLOCK;
 719	result += (leaf_count * 2);
 720
 721	/* one double indirect node block */
 722	leaf_count *= NIDS_PER_BLOCK;
 723	result += leaf_count;
 724
 725	result <<= bits;
 726	return result;
 727}
 728
 729static int sanity_check_raw_super(struct super_block *sb,
 730			struct f2fs_super_block *raw_super)
 731{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 732	unsigned int blocksize;
 733
 734	if (F2FS_SUPER_MAGIC != le32_to_cpu(raw_super->magic)) {
 735		f2fs_msg(sb, KERN_INFO,
 736			"Magic Mismatch, valid(0x%x) - read(0x%x)",
 737			F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic));
 738		return 1;
 739	}
 740
 741	/* Currently, support only 4KB page cache size */
 742	if (F2FS_BLKSIZE != PAGE_CACHE_SIZE) {
 743		f2fs_msg(sb, KERN_INFO,
 744			"Invalid page_cache_size (%lu), supports only 4KB\n",
 745			PAGE_CACHE_SIZE);
 746		return 1;
 747	}
 748
 749	/* Currently, support only 4KB block size */
 750	blocksize = 1 << le32_to_cpu(raw_super->log_blocksize);
 751	if (blocksize != F2FS_BLKSIZE) {
 752		f2fs_msg(sb, KERN_INFO,
 753			"Invalid blocksize (%u), supports only 4KB\n",
 754			blocksize);
 755		return 1;
 756	}
 757
 758	if (le32_to_cpu(raw_super->log_sectorsize) !=
 759					F2FS_LOG_SECTOR_SIZE) {
 760		f2fs_msg(sb, KERN_INFO, "Invalid log sectorsize");
 
 
 761		return 1;
 762	}
 763	if (le32_to_cpu(raw_super->log_sectors_per_block) !=
 764					F2FS_LOG_SECTORS_PER_BLOCK) {
 765		f2fs_msg(sb, KERN_INFO, "Invalid log sectors per block");
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 766		return 1;
 767	}
 
 
 
 
 
 768	return 0;
 769}
 770
 771static int sanity_check_ckpt(struct f2fs_sb_info *sbi)
 772{
 773	unsigned int total, fsmeta;
 774	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
 775	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
 
 776
 777	total = le32_to_cpu(raw_super->segment_count);
 778	fsmeta = le32_to_cpu(raw_super->segment_count_ckpt);
 779	fsmeta += le32_to_cpu(raw_super->segment_count_sit);
 780	fsmeta += le32_to_cpu(raw_super->segment_count_nat);
 781	fsmeta += le32_to_cpu(ckpt->rsvd_segment_count);
 782	fsmeta += le32_to_cpu(raw_super->segment_count_ssa);
 783
 784	if (unlikely(fsmeta >= total))
 785		return 1;
 786
 787	if (unlikely(is_set_ckpt_flags(ckpt, CP_ERROR_FLAG))) {
 
 
 
 
 
 
 
 
 
 
 788		f2fs_msg(sbi->sb, KERN_ERR, "A bug case: need to run fsck");
 789		return 1;
 790	}
 791	return 0;
 792}
 793
 794static void init_sb_info(struct f2fs_sb_info *sbi)
 795{
 796	struct f2fs_super_block *raw_super = sbi->raw_super;
 797	int i;
 798
 799	sbi->log_sectors_per_block =
 800		le32_to_cpu(raw_super->log_sectors_per_block);
 801	sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize);
 802	sbi->blocksize = 1 << sbi->log_blocksize;
 803	sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
 804	sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg;
 805	sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
 806	sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
 807	sbi->total_sections = le32_to_cpu(raw_super->section_count);
 808	sbi->total_node_count =
 809		(le32_to_cpu(raw_super->segment_count_nat) / 2)
 810			* sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK;
 811	sbi->root_ino_num = le32_to_cpu(raw_super->root_ino);
 812	sbi->node_ino_num = le32_to_cpu(raw_super->node_ino);
 813	sbi->meta_ino_num = le32_to_cpu(raw_super->meta_ino);
 814	sbi->cur_victim_sec = NULL_SECNO;
 815	sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH;
 816
 
 
 
 
 
 817	for (i = 0; i < NR_COUNT_TYPE; i++)
 818		atomic_set(&sbi->nr_pages[i], 0);
 819
 820	sbi->dir_level = DEF_DIR_LEVEL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 821}
 
 822
 823/*
 824 * Read f2fs raw super block.
 825 * Because we have two copies of super block, so read the first one at first,
 826 * if the first one is invalid, move to read the second one.
 
 827 */
 828static int read_raw_super_block(struct super_block *sb,
 829			struct f2fs_super_block **raw_super,
 830			struct buffer_head **raw_super_buf)
 831{
 832	int block = 0;
 
 
 
 
 
 
 
 
 833
 834retry:
 835	*raw_super_buf = sb_bread(sb, block);
 836	if (!*raw_super_buf) {
 837		f2fs_msg(sb, KERN_ERR, "Unable to read %dth superblock",
 838				block + 1);
 839		if (block == 0) {
 840			block++;
 841			goto retry;
 842		} else {
 843			return -EIO;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 844		}
 
 845	}
 846
 847	*raw_super = (struct f2fs_super_block *)
 848		((char *)(*raw_super_buf)->b_data + F2FS_SUPER_OFFSET);
 
 849
 850	/* sanity checking of raw super */
 851	if (sanity_check_raw_super(sb, *raw_super)) {
 852		brelse(*raw_super_buf);
 853		f2fs_msg(sb, KERN_ERR,
 854			"Can't find valid F2FS filesystem in %dth superblock",
 855								block + 1);
 856		if (block == 0) {
 857			block++;
 858			goto retry;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 859		} else {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 860			return -EINVAL;
 861		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 862	}
 863
 864	return 0;
 865}
 866
 867static int f2fs_fill_super(struct super_block *sb, void *data, int silent)
 868{
 869	struct f2fs_sb_info *sbi;
 870	struct f2fs_super_block *raw_super;
 871	struct buffer_head *raw_super_buf;
 872	struct inode *root;
 873	long err = -EINVAL;
 874	int i;
 
 
 
 
 
 
 
 
 
 875
 876	/* allocate memory for f2fs-specific super block info */
 877	sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL);
 878	if (!sbi)
 879		return -ENOMEM;
 880
 
 
 
 
 
 
 
 
 
 
 
 881	/* set a block size */
 882	if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) {
 883		f2fs_msg(sb, KERN_ERR, "unable to set blocksize");
 884		goto free_sbi;
 885	}
 886
 887	err = read_raw_super_block(sb, &raw_super, &raw_super_buf);
 
 888	if (err)
 889		goto free_sbi;
 890
 891	sb->s_fs_info = sbi;
 892	/* init some FS parameters */
 893	sbi->active_logs = NR_CURSEG_TYPE;
 894
 895	set_opt(sbi, BG_GC);
 896
 897#ifdef CONFIG_F2FS_FS_XATTR
 898	set_opt(sbi, XATTR_USER);
 899#endif
 900#ifdef CONFIG_F2FS_FS_POSIX_ACL
 901	set_opt(sbi, POSIX_ACL);
 
 
 
 
 
 
 902#endif
 
 903	/* parse mount options */
 904	err = parse_options(sb, (char *)data);
 905	if (err)
 
 906		goto free_sb_buf;
 
 907
 908	sb->s_maxbytes = max_file_size(le32_to_cpu(raw_super->log_blocksize));
 
 
 
 
 
 
 909	sb->s_max_links = F2FS_LINK_MAX;
 910	get_random_bytes(&sbi->s_next_generation, sizeof(u32));
 911
 912	sb->s_op = &f2fs_sops;
 
 913	sb->s_xattr = f2fs_xattr_handlers;
 914	sb->s_export_op = &f2fs_export_ops;
 915	sb->s_magic = F2FS_SUPER_MAGIC;
 916	sb->s_time_gran = 1;
 917	sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
 918		(test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0);
 919	memcpy(sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid));
 920
 921	/* init f2fs-specific super block info */
 922	sbi->sb = sb;
 923	sbi->raw_super = raw_super;
 924	sbi->raw_super_buf = raw_super_buf;
 925	mutex_init(&sbi->gc_mutex);
 926	mutex_init(&sbi->writepages);
 927	mutex_init(&sbi->cp_mutex);
 928	mutex_init(&sbi->node_write);
 929	sbi->por_doing = false;
 
 
 930	spin_lock_init(&sbi->stat_lock);
 931
 932	init_rwsem(&sbi->read_io.io_rwsem);
 933	sbi->read_io.sbi = sbi;
 934	sbi->read_io.bio = NULL;
 935	for (i = 0; i < NR_PAGE_TYPE; i++) {
 936		init_rwsem(&sbi->write_io[i].io_rwsem);
 937		sbi->write_io[i].sbi = sbi;
 938		sbi->write_io[i].bio = NULL;
 939	}
 940
 941	init_rwsem(&sbi->cp_rwsem);
 942	init_waitqueue_head(&sbi->cp_wait);
 943	init_sb_info(sbi);
 944
 
 
 
 
 945	/* get an inode for meta space */
 946	sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi));
 947	if (IS_ERR(sbi->meta_inode)) {
 948		f2fs_msg(sb, KERN_ERR, "Failed to read F2FS meta data inode");
 949		err = PTR_ERR(sbi->meta_inode);
 950		goto free_sb_buf;
 951	}
 952
 953	err = get_valid_checkpoint(sbi);
 954	if (err) {
 955		f2fs_msg(sb, KERN_ERR, "Failed to get valid F2FS checkpoint");
 956		goto free_meta_inode;
 957	}
 958
 959	/* sanity checking of checkpoint */
 960	err = -EINVAL;
 961	if (sanity_check_ckpt(sbi)) {
 962		f2fs_msg(sb, KERN_ERR, "Invalid F2FS checkpoint");
 963		goto free_cp;
 964	}
 965
 966	sbi->total_valid_node_count =
 967				le32_to_cpu(sbi->ckpt->valid_node_count);
 968	sbi->total_valid_inode_count =
 969				le32_to_cpu(sbi->ckpt->valid_inode_count);
 970	sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count);
 971	sbi->total_valid_block_count =
 972				le64_to_cpu(sbi->ckpt->valid_block_count);
 973	sbi->last_valid_block_count = sbi->total_valid_block_count;
 974	sbi->alloc_valid_block_count = 0;
 975	INIT_LIST_HEAD(&sbi->dir_inode_list);
 976	spin_lock_init(&sbi->dir_inode_lock);
 977
 978	init_orphan_info(sbi);
 
 
 
 
 
 
 
 979
 980	/* setup f2fs internal modules */
 981	err = build_segment_manager(sbi);
 982	if (err) {
 983		f2fs_msg(sb, KERN_ERR,
 984			"Failed to initialize F2FS segment manager");
 985		goto free_sm;
 986	}
 987	err = build_node_manager(sbi);
 988	if (err) {
 989		f2fs_msg(sb, KERN_ERR,
 990			"Failed to initialize F2FS node manager");
 991		goto free_nm;
 992	}
 993
 
 
 
 
 
 
 
 
 
 
 
 994	build_gc_manager(sbi);
 995
 996	/* get an inode for node space */
 997	sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi));
 998	if (IS_ERR(sbi->node_inode)) {
 999		f2fs_msg(sb, KERN_ERR, "Failed to read node inode");
1000		err = PTR_ERR(sbi->node_inode);
1001		goto free_nm;
1002	}
1003
 
 
1004	/* if there are nt orphan nodes free them */
1005	recover_orphan_inodes(sbi);
 
 
1006
1007	/* read root inode and dentry */
1008	root = f2fs_iget(sb, F2FS_ROOT_INO(sbi));
1009	if (IS_ERR(root)) {
1010		f2fs_msg(sb, KERN_ERR, "Failed to read root inode");
1011		err = PTR_ERR(root);
1012		goto free_node_inode;
1013	}
1014	if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
 
1015		err = -EINVAL;
1016		goto free_root_inode;
1017	}
1018
1019	sb->s_root = d_make_root(root); /* allocate root dentry */
1020	if (!sb->s_root) {
1021		err = -ENOMEM;
1022		goto free_root_inode;
1023	}
1024
1025	err = f2fs_build_stats(sbi);
1026	if (err)
1027		goto free_root_inode;
1028
1029	if (f2fs_proc_root)
1030		sbi->s_proc = proc_mkdir(sb->s_id, f2fs_proc_root);
1031
1032	if (sbi->s_proc)
1033		proc_create_data("segment_info", S_IRUGO, sbi->s_proc,
1034				 &f2fs_seq_segment_info_fops, sb);
1035
1036	if (test_opt(sbi, DISCARD)) {
1037		struct request_queue *q = bdev_get_queue(sb->s_bdev);
1038		if (!blk_queue_discard(q))
1039			f2fs_msg(sb, KERN_WARNING,
1040					"mounting with \"discard\" option, but "
1041					"the device does not support discard");
1042	}
1043
1044	sbi->s_kobj.kset = f2fs_kset;
1045	init_completion(&sbi->s_kobj_unregister);
1046	err = kobject_init_and_add(&sbi->s_kobj, &f2fs_ktype, NULL,
1047							"%s", sb->s_id);
1048	if (err)
1049		goto free_proc;
1050
1051	/* recover fsynced data */
1052	if (!test_opt(sbi, DISABLE_ROLL_FORWARD)) {
1053		err = recover_fsync_data(sbi);
1054		if (err)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1055			f2fs_msg(sb, KERN_ERR,
1056				"Cannot recover all fsync data errno=%ld", err);
 
 
 
 
 
 
 
 
 
 
 
1057	}
 
 
 
1058
1059	/*
1060	 * If filesystem is not mounted as read-only then
1061	 * do start the gc_thread.
1062	 */
1063	if (!(sb->s_flags & MS_RDONLY)) {
1064		/* After POR, we can run background GC thread.*/
1065		err = start_gc_thread(sbi);
1066		if (err)
1067			goto free_kobj;
1068	}
 
 
 
 
 
 
 
 
 
 
 
 
1069	return 0;
1070
1071free_kobj:
 
1072	kobject_del(&sbi->s_kobj);
 
 
1073free_proc:
1074	if (sbi->s_proc) {
1075		remove_proc_entry("segment_info", sbi->s_proc);
 
1076		remove_proc_entry(sb->s_id, f2fs_proc_root);
1077	}
1078	f2fs_destroy_stats(sbi);
1079free_root_inode:
1080	dput(sb->s_root);
1081	sb->s_root = NULL;
1082free_node_inode:
 
 
 
 
 
 
 
 
 
 
 
1083	iput(sbi->node_inode);
 
1084free_nm:
1085	destroy_node_manager(sbi);
1086free_sm:
1087	destroy_segment_manager(sbi);
1088free_cp:
 
1089	kfree(sbi->ckpt);
1090free_meta_inode:
1091	make_bad_inode(sbi->meta_inode);
1092	iput(sbi->meta_inode);
 
 
 
1093free_sb_buf:
1094	brelse(raw_super_buf);
1095free_sbi:
 
 
1096	kfree(sbi);
 
 
 
 
 
 
 
1097	return err;
1098}
1099
1100static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags,
1101			const char *dev_name, void *data)
1102{
1103	return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super);
1104}
1105
 
 
 
 
 
 
 
1106static struct file_system_type f2fs_fs_type = {
1107	.owner		= THIS_MODULE,
1108	.name		= "f2fs",
1109	.mount		= f2fs_mount,
1110	.kill_sb	= kill_block_super,
1111	.fs_flags	= FS_REQUIRES_DEV,
1112};
1113MODULE_ALIAS_FS("f2fs");
1114
1115static int __init init_inodecache(void)
1116{
1117	f2fs_inode_cachep = f2fs_kmem_cache_create("f2fs_inode_cache",
1118			sizeof(struct f2fs_inode_info));
 
1119	if (!f2fs_inode_cachep)
1120		return -ENOMEM;
1121	return 0;
1122}
1123
1124static void destroy_inodecache(void)
1125{
1126	/*
1127	 * Make sure all delayed rcu free inodes are flushed before we
1128	 * destroy cache.
1129	 */
1130	rcu_barrier();
1131	kmem_cache_destroy(f2fs_inode_cachep);
1132}
1133
1134static int __init init_f2fs_fs(void)
1135{
1136	int err;
1137
 
 
1138	err = init_inodecache();
1139	if (err)
1140		goto fail;
1141	err = create_node_manager_caches();
1142	if (err)
1143		goto free_inodecache;
1144	err = create_segment_manager_caches();
1145	if (err)
1146		goto free_node_manager_caches;
1147	err = create_gc_caches();
1148	if (err)
1149		goto free_segment_manager_caches;
1150	err = create_checkpoint_caches();
1151	if (err)
1152		goto free_gc_caches;
1153	f2fs_kset = kset_create_and_add("f2fs", NULL, fs_kobj);
1154	if (!f2fs_kset) {
1155		err = -ENOMEM;
1156		goto free_checkpoint_caches;
1157	}
1158	err = register_filesystem(&f2fs_fs_type);
1159	if (err)
1160		goto free_kset;
1161	f2fs_create_root_stats();
 
 
 
 
 
 
1162	f2fs_proc_root = proc_mkdir("fs/f2fs", NULL);
1163	return 0;
1164
 
 
 
 
1165free_kset:
1166	kset_unregister(f2fs_kset);
 
 
1167free_checkpoint_caches:
1168	destroy_checkpoint_caches();
1169free_gc_caches:
1170	destroy_gc_caches();
1171free_segment_manager_caches:
1172	destroy_segment_manager_caches();
1173free_node_manager_caches:
1174	destroy_node_manager_caches();
1175free_inodecache:
1176	destroy_inodecache();
1177fail:
1178	return err;
1179}
1180
1181static void __exit exit_f2fs_fs(void)
1182{
1183	remove_proc_entry("fs/f2fs", NULL);
1184	f2fs_destroy_root_stats();
1185	unregister_filesystem(&f2fs_fs_type);
 
 
 
1186	destroy_checkpoint_caches();
1187	destroy_gc_caches();
1188	destroy_segment_manager_caches();
1189	destroy_node_manager_caches();
1190	destroy_inodecache();
1191	kset_unregister(f2fs_kset);
1192}
1193
1194module_init(init_f2fs_fs)
1195module_exit(exit_f2fs_fs)
1196
1197MODULE_AUTHOR("Samsung Electronics's Praesto Team");
1198MODULE_DESCRIPTION("Flash Friendly File System");
1199MODULE_LICENSE("GPL");
v4.10.11
   1/*
   2 * fs/f2fs/super.c
   3 *
   4 * Copyright (c) 2012 Samsung Electronics Co., Ltd.
   5 *             http://www.samsung.com/
   6 *
   7 * This program is free software; you can redistribute it and/or modify
   8 * it under the terms of the GNU General Public License version 2 as
   9 * published by the Free Software Foundation.
  10 */
  11#include <linux/module.h>
  12#include <linux/init.h>
  13#include <linux/fs.h>
  14#include <linux/statfs.h>
  15#include <linux/buffer_head.h>
  16#include <linux/backing-dev.h>
  17#include <linux/kthread.h>
  18#include <linux/parser.h>
  19#include <linux/mount.h>
  20#include <linux/seq_file.h>
  21#include <linux/proc_fs.h>
  22#include <linux/random.h>
  23#include <linux/exportfs.h>
  24#include <linux/blkdev.h>
  25#include <linux/f2fs_fs.h>
  26#include <linux/sysfs.h>
  27
  28#include "f2fs.h"
  29#include "node.h"
  30#include "segment.h"
  31#include "xattr.h"
  32#include "gc.h"
  33#include "trace.h"
  34
  35#define CREATE_TRACE_POINTS
  36#include <trace/events/f2fs.h>
  37
  38static struct proc_dir_entry *f2fs_proc_root;
  39static struct kmem_cache *f2fs_inode_cachep;
  40static struct kset *f2fs_kset;
  41
  42#ifdef CONFIG_F2FS_FAULT_INJECTION
  43
  44char *fault_name[FAULT_MAX] = {
  45	[FAULT_KMALLOC]		= "kmalloc",
  46	[FAULT_PAGE_ALLOC]	= "page alloc",
  47	[FAULT_ALLOC_NID]	= "alloc nid",
  48	[FAULT_ORPHAN]		= "orphan",
  49	[FAULT_BLOCK]		= "no more block",
  50	[FAULT_DIR_DEPTH]	= "too big dir depth",
  51	[FAULT_EVICT_INODE]	= "evict_inode fail",
  52	[FAULT_IO]		= "IO error",
  53	[FAULT_CHECKPOINT]	= "checkpoint error",
  54};
  55
  56static void f2fs_build_fault_attr(struct f2fs_sb_info *sbi,
  57						unsigned int rate)
  58{
  59	struct f2fs_fault_info *ffi = &sbi->fault_info;
  60
  61	if (rate) {
  62		atomic_set(&ffi->inject_ops, 0);
  63		ffi->inject_rate = rate;
  64		ffi->inject_type = (1 << FAULT_MAX) - 1;
  65	} else {
  66		memset(ffi, 0, sizeof(struct f2fs_fault_info));
  67	}
  68}
  69#endif
  70
  71/* f2fs-wide shrinker description */
  72static struct shrinker f2fs_shrinker_info = {
  73	.scan_objects = f2fs_shrink_scan,
  74	.count_objects = f2fs_shrink_count,
  75	.seeks = DEFAULT_SEEKS,
  76};
  77
  78enum {
  79	Opt_gc_background,
  80	Opt_disable_roll_forward,
  81	Opt_norecovery,
  82	Opt_discard,
  83	Opt_nodiscard,
  84	Opt_noheap,
  85	Opt_user_xattr,
  86	Opt_nouser_xattr,
  87	Opt_acl,
  88	Opt_noacl,
  89	Opt_active_logs,
  90	Opt_disable_ext_identify,
  91	Opt_inline_xattr,
  92	Opt_inline_data,
  93	Opt_inline_dentry,
  94	Opt_noinline_dentry,
  95	Opt_flush_merge,
  96	Opt_noflush_merge,
  97	Opt_nobarrier,
  98	Opt_fastboot,
  99	Opt_extent_cache,
 100	Opt_noextent_cache,
 101	Opt_noinline_data,
 102	Opt_data_flush,
 103	Opt_mode,
 104	Opt_fault_injection,
 105	Opt_lazytime,
 106	Opt_nolazytime,
 107	Opt_err,
 108};
 109
 110static match_table_t f2fs_tokens = {
 111	{Opt_gc_background, "background_gc=%s"},
 112	{Opt_disable_roll_forward, "disable_roll_forward"},
 113	{Opt_norecovery, "norecovery"},
 114	{Opt_discard, "discard"},
 115	{Opt_nodiscard, "nodiscard"},
 116	{Opt_noheap, "no_heap"},
 117	{Opt_user_xattr, "user_xattr"},
 118	{Opt_nouser_xattr, "nouser_xattr"},
 119	{Opt_acl, "acl"},
 120	{Opt_noacl, "noacl"},
 121	{Opt_active_logs, "active_logs=%u"},
 122	{Opt_disable_ext_identify, "disable_ext_identify"},
 123	{Opt_inline_xattr, "inline_xattr"},
 124	{Opt_inline_data, "inline_data"},
 125	{Opt_inline_dentry, "inline_dentry"},
 126	{Opt_noinline_dentry, "noinline_dentry"},
 127	{Opt_flush_merge, "flush_merge"},
 128	{Opt_noflush_merge, "noflush_merge"},
 129	{Opt_nobarrier, "nobarrier"},
 130	{Opt_fastboot, "fastboot"},
 131	{Opt_extent_cache, "extent_cache"},
 132	{Opt_noextent_cache, "noextent_cache"},
 133	{Opt_noinline_data, "noinline_data"},
 134	{Opt_data_flush, "data_flush"},
 135	{Opt_mode, "mode=%s"},
 136	{Opt_fault_injection, "fault_injection=%u"},
 137	{Opt_lazytime, "lazytime"},
 138	{Opt_nolazytime, "nolazytime"},
 139	{Opt_err, NULL},
 140};
 141
 142/* Sysfs support for f2fs */
 143enum {
 144	GC_THREAD,	/* struct f2fs_gc_thread */
 145	SM_INFO,	/* struct f2fs_sm_info */
 146	NM_INFO,	/* struct f2fs_nm_info */
 147	F2FS_SBI,	/* struct f2fs_sb_info */
 148#ifdef CONFIG_F2FS_FAULT_INJECTION
 149	FAULT_INFO_RATE,	/* struct f2fs_fault_info */
 150	FAULT_INFO_TYPE,	/* struct f2fs_fault_info */
 151#endif
 152};
 153
 154struct f2fs_attr {
 155	struct attribute attr;
 156	ssize_t (*show)(struct f2fs_attr *, struct f2fs_sb_info *, char *);
 157	ssize_t (*store)(struct f2fs_attr *, struct f2fs_sb_info *,
 158			 const char *, size_t);
 159	int struct_type;
 160	int offset;
 161};
 162
 163static unsigned char *__struct_ptr(struct f2fs_sb_info *sbi, int struct_type)
 164{
 165	if (struct_type == GC_THREAD)
 166		return (unsigned char *)sbi->gc_thread;
 167	else if (struct_type == SM_INFO)
 168		return (unsigned char *)SM_I(sbi);
 169	else if (struct_type == NM_INFO)
 170		return (unsigned char *)NM_I(sbi);
 171	else if (struct_type == F2FS_SBI)
 172		return (unsigned char *)sbi;
 173#ifdef CONFIG_F2FS_FAULT_INJECTION
 174	else if (struct_type == FAULT_INFO_RATE ||
 175					struct_type == FAULT_INFO_TYPE)
 176		return (unsigned char *)&sbi->fault_info;
 177#endif
 178	return NULL;
 179}
 180
 181static ssize_t lifetime_write_kbytes_show(struct f2fs_attr *a,
 182		struct f2fs_sb_info *sbi, char *buf)
 183{
 184	struct super_block *sb = sbi->sb;
 185
 186	if (!sb->s_bdev->bd_part)
 187		return snprintf(buf, PAGE_SIZE, "0\n");
 188
 189	return snprintf(buf, PAGE_SIZE, "%llu\n",
 190		(unsigned long long)(sbi->kbytes_written +
 191			BD_PART_WRITTEN(sbi)));
 192}
 193
 194static ssize_t f2fs_sbi_show(struct f2fs_attr *a,
 195			struct f2fs_sb_info *sbi, char *buf)
 196{
 197	unsigned char *ptr = NULL;
 198	unsigned int *ui;
 199
 200	ptr = __struct_ptr(sbi, a->struct_type);
 201	if (!ptr)
 202		return -EINVAL;
 203
 204	ui = (unsigned int *)(ptr + a->offset);
 205
 206	return snprintf(buf, PAGE_SIZE, "%u\n", *ui);
 207}
 208
 209static ssize_t f2fs_sbi_store(struct f2fs_attr *a,
 210			struct f2fs_sb_info *sbi,
 211			const char *buf, size_t count)
 212{
 213	unsigned char *ptr;
 214	unsigned long t;
 215	unsigned int *ui;
 216	ssize_t ret;
 217
 218	ptr = __struct_ptr(sbi, a->struct_type);
 219	if (!ptr)
 220		return -EINVAL;
 221
 222	ui = (unsigned int *)(ptr + a->offset);
 223
 224	ret = kstrtoul(skip_spaces(buf), 0, &t);
 225	if (ret < 0)
 226		return ret;
 227#ifdef CONFIG_F2FS_FAULT_INJECTION
 228	if (a->struct_type == FAULT_INFO_TYPE && t >= (1 << FAULT_MAX))
 229		return -EINVAL;
 230#endif
 231	*ui = t;
 232	return count;
 233}
 234
 235static ssize_t f2fs_attr_show(struct kobject *kobj,
 236				struct attribute *attr, char *buf)
 237{
 238	struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
 239								s_kobj);
 240	struct f2fs_attr *a = container_of(attr, struct f2fs_attr, attr);
 241
 242	return a->show ? a->show(a, sbi, buf) : 0;
 243}
 244
 245static ssize_t f2fs_attr_store(struct kobject *kobj, struct attribute *attr,
 246						const char *buf, size_t len)
 247{
 248	struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
 249									s_kobj);
 250	struct f2fs_attr *a = container_of(attr, struct f2fs_attr, attr);
 251
 252	return a->store ? a->store(a, sbi, buf, len) : 0;
 253}
 254
 255static void f2fs_sb_release(struct kobject *kobj)
 256{
 257	struct f2fs_sb_info *sbi = container_of(kobj, struct f2fs_sb_info,
 258								s_kobj);
 259	complete(&sbi->s_kobj_unregister);
 260}
 261
 262#define F2FS_ATTR_OFFSET(_struct_type, _name, _mode, _show, _store, _offset) \
 263static struct f2fs_attr f2fs_attr_##_name = {			\
 264	.attr = {.name = __stringify(_name), .mode = _mode },	\
 265	.show	= _show,					\
 266	.store	= _store,					\
 267	.struct_type = _struct_type,				\
 268	.offset = _offset					\
 269}
 270
 271#define F2FS_RW_ATTR(struct_type, struct_name, name, elname)	\
 272	F2FS_ATTR_OFFSET(struct_type, name, 0644,		\
 273		f2fs_sbi_show, f2fs_sbi_store,			\
 274		offsetof(struct struct_name, elname))
 275
 276#define F2FS_GENERAL_RO_ATTR(name) \
 277static struct f2fs_attr f2fs_attr_##name = __ATTR(name, 0444, name##_show, NULL)
 278
 279F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_min_sleep_time, min_sleep_time);
 280F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_max_sleep_time, max_sleep_time);
 281F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_no_gc_sleep_time, no_gc_sleep_time);
 282F2FS_RW_ATTR(GC_THREAD, f2fs_gc_kthread, gc_idle, gc_idle);
 283F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, reclaim_segments, rec_prefree_segments);
 284F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, max_small_discards, max_discards);
 285F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, batched_trim_sections, trim_sections);
 286F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, ipu_policy, ipu_policy);
 287F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, min_ipu_util, min_ipu_util);
 288F2FS_RW_ATTR(SM_INFO, f2fs_sm_info, min_fsync_blocks, min_fsync_blocks);
 289F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, ram_thresh, ram_thresh);
 290F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, ra_nid_pages, ra_nid_pages);
 291F2FS_RW_ATTR(NM_INFO, f2fs_nm_info, dirty_nats_ratio, dirty_nats_ratio);
 292F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, max_victim_search, max_victim_search);
 293F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, dir_level, dir_level);
 294F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, cp_interval, interval_time[CP_TIME]);
 295F2FS_RW_ATTR(F2FS_SBI, f2fs_sb_info, idle_interval, interval_time[REQ_TIME]);
 296#ifdef CONFIG_F2FS_FAULT_INJECTION
 297F2FS_RW_ATTR(FAULT_INFO_RATE, f2fs_fault_info, inject_rate, inject_rate);
 298F2FS_RW_ATTR(FAULT_INFO_TYPE, f2fs_fault_info, inject_type, inject_type);
 299#endif
 300F2FS_GENERAL_RO_ATTR(lifetime_write_kbytes);
 301
 302#define ATTR_LIST(name) (&f2fs_attr_##name.attr)
 303static struct attribute *f2fs_attrs[] = {
 304	ATTR_LIST(gc_min_sleep_time),
 305	ATTR_LIST(gc_max_sleep_time),
 306	ATTR_LIST(gc_no_gc_sleep_time),
 307	ATTR_LIST(gc_idle),
 308	ATTR_LIST(reclaim_segments),
 309	ATTR_LIST(max_small_discards),
 310	ATTR_LIST(batched_trim_sections),
 311	ATTR_LIST(ipu_policy),
 312	ATTR_LIST(min_ipu_util),
 313	ATTR_LIST(min_fsync_blocks),
 314	ATTR_LIST(max_victim_search),
 315	ATTR_LIST(dir_level),
 316	ATTR_LIST(ram_thresh),
 317	ATTR_LIST(ra_nid_pages),
 318	ATTR_LIST(dirty_nats_ratio),
 319	ATTR_LIST(cp_interval),
 320	ATTR_LIST(idle_interval),
 321#ifdef CONFIG_F2FS_FAULT_INJECTION
 322	ATTR_LIST(inject_rate),
 323	ATTR_LIST(inject_type),
 324#endif
 325	ATTR_LIST(lifetime_write_kbytes),
 326	NULL,
 327};
 328
 329static const struct sysfs_ops f2fs_attr_ops = {
 330	.show	= f2fs_attr_show,
 331	.store	= f2fs_attr_store,
 332};
 333
 334static struct kobj_type f2fs_ktype = {
 335	.default_attrs	= f2fs_attrs,
 336	.sysfs_ops	= &f2fs_attr_ops,
 337	.release	= f2fs_sb_release,
 338};
 339
 340void f2fs_msg(struct super_block *sb, const char *level, const char *fmt, ...)
 341{
 342	struct va_format vaf;
 343	va_list args;
 344
 345	va_start(args, fmt);
 346	vaf.fmt = fmt;
 347	vaf.va = &args;
 348	printk("%sF2FS-fs (%s): %pV\n", level, sb->s_id, &vaf);
 349	va_end(args);
 350}
 351
 352static void init_once(void *foo)
 353{
 354	struct f2fs_inode_info *fi = (struct f2fs_inode_info *) foo;
 355
 356	inode_init_once(&fi->vfs_inode);
 357}
 358
 359static int parse_options(struct super_block *sb, char *options)
 360{
 361	struct f2fs_sb_info *sbi = F2FS_SB(sb);
 362	struct request_queue *q;
 363	substring_t args[MAX_OPT_ARGS];
 364	char *p, *name;
 365	int arg = 0;
 366
 367	if (!options)
 368		return 0;
 369
 370	while ((p = strsep(&options, ",")) != NULL) {
 371		int token;
 372		if (!*p)
 373			continue;
 374		/*
 375		 * Initialize args struct so we know whether arg was
 376		 * found; some options take optional arguments.
 377		 */
 378		args[0].to = args[0].from = NULL;
 379		token = match_token(p, f2fs_tokens, args);
 380
 381		switch (token) {
 382		case Opt_gc_background:
 383			name = match_strdup(&args[0]);
 384
 385			if (!name)
 386				return -ENOMEM;
 387			if (strlen(name) == 2 && !strncmp(name, "on", 2)) {
 388				set_opt(sbi, BG_GC);
 389				clear_opt(sbi, FORCE_FG_GC);
 390			} else if (strlen(name) == 3 && !strncmp(name, "off", 3)) {
 391				clear_opt(sbi, BG_GC);
 392				clear_opt(sbi, FORCE_FG_GC);
 393			} else if (strlen(name) == 4 && !strncmp(name, "sync", 4)) {
 394				set_opt(sbi, BG_GC);
 395				set_opt(sbi, FORCE_FG_GC);
 396			} else {
 397				kfree(name);
 398				return -EINVAL;
 399			}
 400			kfree(name);
 401			break;
 402		case Opt_disable_roll_forward:
 403			set_opt(sbi, DISABLE_ROLL_FORWARD);
 404			break;
 405		case Opt_norecovery:
 406			/* this option mounts f2fs with ro */
 407			set_opt(sbi, DISABLE_ROLL_FORWARD);
 408			if (!f2fs_readonly(sb))
 409				return -EINVAL;
 410			break;
 411		case Opt_discard:
 412			q = bdev_get_queue(sb->s_bdev);
 413			if (blk_queue_discard(q)) {
 414				set_opt(sbi, DISCARD);
 415			} else if (!f2fs_sb_mounted_blkzoned(sb)) {
 416				f2fs_msg(sb, KERN_WARNING,
 417					"mounting with \"discard\" option, but "
 418					"the device does not support discard");
 419			}
 420			break;
 421		case Opt_nodiscard:
 422			if (f2fs_sb_mounted_blkzoned(sb)) {
 423				f2fs_msg(sb, KERN_WARNING,
 424					"discard is required for zoned block devices");
 425				return -EINVAL;
 426			}
 427			clear_opt(sbi, DISCARD);
 428			break;
 429		case Opt_noheap:
 430			set_opt(sbi, NOHEAP);
 431			break;
 432#ifdef CONFIG_F2FS_FS_XATTR
 433		case Opt_user_xattr:
 434			set_opt(sbi, XATTR_USER);
 435			break;
 436		case Opt_nouser_xattr:
 437			clear_opt(sbi, XATTR_USER);
 438			break;
 439		case Opt_inline_xattr:
 440			set_opt(sbi, INLINE_XATTR);
 441			break;
 442#else
 443		case Opt_user_xattr:
 444			f2fs_msg(sb, KERN_INFO,
 445				"user_xattr options not supported");
 446			break;
 447		case Opt_nouser_xattr:
 448			f2fs_msg(sb, KERN_INFO,
 449				"nouser_xattr options not supported");
 450			break;
 451		case Opt_inline_xattr:
 452			f2fs_msg(sb, KERN_INFO,
 453				"inline_xattr options not supported");
 454			break;
 455#endif
 456#ifdef CONFIG_F2FS_FS_POSIX_ACL
 457		case Opt_acl:
 458			set_opt(sbi, POSIX_ACL);
 459			break;
 460		case Opt_noacl:
 461			clear_opt(sbi, POSIX_ACL);
 462			break;
 463#else
 464		case Opt_acl:
 465			f2fs_msg(sb, KERN_INFO, "acl options not supported");
 466			break;
 467		case Opt_noacl:
 468			f2fs_msg(sb, KERN_INFO, "noacl options not supported");
 469			break;
 470#endif
 471		case Opt_active_logs:
 472			if (args->from && match_int(args, &arg))
 473				return -EINVAL;
 474			if (arg != 2 && arg != 4 && arg != NR_CURSEG_TYPE)
 475				return -EINVAL;
 476			sbi->active_logs = arg;
 477			break;
 478		case Opt_disable_ext_identify:
 479			set_opt(sbi, DISABLE_EXT_IDENTIFY);
 480			break;
 481		case Opt_inline_data:
 482			set_opt(sbi, INLINE_DATA);
 483			break;
 484		case Opt_inline_dentry:
 485			set_opt(sbi, INLINE_DENTRY);
 486			break;
 487		case Opt_noinline_dentry:
 488			clear_opt(sbi, INLINE_DENTRY);
 489			break;
 490		case Opt_flush_merge:
 491			set_opt(sbi, FLUSH_MERGE);
 492			break;
 493		case Opt_noflush_merge:
 494			clear_opt(sbi, FLUSH_MERGE);
 495			break;
 496		case Opt_nobarrier:
 497			set_opt(sbi, NOBARRIER);
 498			break;
 499		case Opt_fastboot:
 500			set_opt(sbi, FASTBOOT);
 501			break;
 502		case Opt_extent_cache:
 503			set_opt(sbi, EXTENT_CACHE);
 504			break;
 505		case Opt_noextent_cache:
 506			clear_opt(sbi, EXTENT_CACHE);
 507			break;
 508		case Opt_noinline_data:
 509			clear_opt(sbi, INLINE_DATA);
 510			break;
 511		case Opt_data_flush:
 512			set_opt(sbi, DATA_FLUSH);
 513			break;
 514		case Opt_mode:
 515			name = match_strdup(&args[0]);
 516
 517			if (!name)
 518				return -ENOMEM;
 519			if (strlen(name) == 8 &&
 520					!strncmp(name, "adaptive", 8)) {
 521				if (f2fs_sb_mounted_blkzoned(sb)) {
 522					f2fs_msg(sb, KERN_WARNING,
 523						 "adaptive mode is not allowed with "
 524						 "zoned block device feature");
 525					kfree(name);
 526					return -EINVAL;
 527				}
 528				set_opt_mode(sbi, F2FS_MOUNT_ADAPTIVE);
 529			} else if (strlen(name) == 3 &&
 530					!strncmp(name, "lfs", 3)) {
 531				set_opt_mode(sbi, F2FS_MOUNT_LFS);
 532			} else {
 533				kfree(name);
 534				return -EINVAL;
 535			}
 536			kfree(name);
 537			break;
 538		case Opt_fault_injection:
 539			if (args->from && match_int(args, &arg))
 540				return -EINVAL;
 541#ifdef CONFIG_F2FS_FAULT_INJECTION
 542			f2fs_build_fault_attr(sbi, arg);
 543#else
 544			f2fs_msg(sb, KERN_INFO,
 545				"FAULT_INJECTION was not selected");
 546#endif
 547			break;
 548		case Opt_lazytime:
 549			sb->s_flags |= MS_LAZYTIME;
 550			break;
 551		case Opt_nolazytime:
 552			sb->s_flags &= ~MS_LAZYTIME;
 553			break;
 554		default:
 555			f2fs_msg(sb, KERN_ERR,
 556				"Unrecognized mount option \"%s\" or missing value",
 557				p);
 558			return -EINVAL;
 559		}
 560	}
 561	return 0;
 562}
 563
 564static struct inode *f2fs_alloc_inode(struct super_block *sb)
 565{
 566	struct f2fs_inode_info *fi;
 567
 568	fi = kmem_cache_alloc(f2fs_inode_cachep, GFP_F2FS_ZERO);
 569	if (!fi)
 570		return NULL;
 571
 572	init_once((void *) fi);
 573
 574	/* Initialize f2fs-specific inode info */
 575	fi->vfs_inode.i_version = 1;
 576	atomic_set(&fi->dirty_pages, 0);
 577	fi->i_current_depth = 1;
 578	fi->i_advise = 0;
 
 579	init_rwsem(&fi->i_sem);
 580	INIT_LIST_HEAD(&fi->dirty_list);
 581	INIT_LIST_HEAD(&fi->gdirty_list);
 582	INIT_LIST_HEAD(&fi->inmem_pages);
 583	mutex_init(&fi->inmem_lock);
 584	init_rwsem(&fi->dio_rwsem[READ]);
 585	init_rwsem(&fi->dio_rwsem[WRITE]);
 586
 587	/* Will be used by directory only */
 588	fi->i_dir_level = F2FS_SB(sb)->dir_level;
 
 589	return &fi->vfs_inode;
 590}
 591
 592static int f2fs_drop_inode(struct inode *inode)
 593{
 594	/*
 595	 * This is to avoid a deadlock condition like below.
 596	 * writeback_single_inode(inode)
 597	 *  - f2fs_write_data_page
 598	 *    - f2fs_gc -> iput -> evict
 599	 *       - inode_wait_for_writeback(inode)
 600	 */
 601	if ((!inode_unhashed(inode) && inode->i_state & I_SYNC)) {
 602		if (!inode->i_nlink && !is_bad_inode(inode)) {
 603			/* to avoid evict_inode call simultaneously */
 604			atomic_inc(&inode->i_count);
 605			spin_unlock(&inode->i_lock);
 606
 607			/* some remained atomic pages should discarded */
 608			if (f2fs_is_atomic_file(inode))
 609				drop_inmem_pages(inode);
 610
 611			/* should remain fi->extent_tree for writepage */
 612			f2fs_destroy_extent_node(inode);
 613
 614			sb_start_intwrite(inode->i_sb);
 615			f2fs_i_size_write(inode, 0);
 616
 617			if (F2FS_HAS_BLOCKS(inode))
 618				f2fs_truncate(inode);
 619
 620			sb_end_intwrite(inode->i_sb);
 621
 622			fscrypt_put_encryption_info(inode, NULL);
 623			spin_lock(&inode->i_lock);
 624			atomic_dec(&inode->i_count);
 625		}
 626		return 0;
 627	}
 628
 629	return generic_drop_inode(inode);
 630}
 631
 632int f2fs_inode_dirtied(struct inode *inode, bool sync)
 633{
 634	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 635	int ret = 0;
 636
 637	spin_lock(&sbi->inode_lock[DIRTY_META]);
 638	if (is_inode_flag_set(inode, FI_DIRTY_INODE)) {
 639		ret = 1;
 640	} else {
 641		set_inode_flag(inode, FI_DIRTY_INODE);
 642		stat_inc_dirty_inode(sbi, DIRTY_META);
 643	}
 644	if (sync && list_empty(&F2FS_I(inode)->gdirty_list)) {
 645		list_add_tail(&F2FS_I(inode)->gdirty_list,
 646				&sbi->inode_list[DIRTY_META]);
 647		inc_page_count(sbi, F2FS_DIRTY_IMETA);
 648	}
 649	spin_unlock(&sbi->inode_lock[DIRTY_META]);
 650	return ret;
 651}
 652
 653void f2fs_inode_synced(struct inode *inode)
 654{
 655	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 656
 657	spin_lock(&sbi->inode_lock[DIRTY_META]);
 658	if (!is_inode_flag_set(inode, FI_DIRTY_INODE)) {
 659		spin_unlock(&sbi->inode_lock[DIRTY_META]);
 660		return;
 661	}
 662	if (!list_empty(&F2FS_I(inode)->gdirty_list)) {
 663		list_del_init(&F2FS_I(inode)->gdirty_list);
 664		dec_page_count(sbi, F2FS_DIRTY_IMETA);
 665	}
 666	clear_inode_flag(inode, FI_DIRTY_INODE);
 667	clear_inode_flag(inode, FI_AUTO_RECOVER);
 668	stat_dec_dirty_inode(F2FS_I_SB(inode), DIRTY_META);
 669	spin_unlock(&sbi->inode_lock[DIRTY_META]);
 670}
 671
 672/*
 673 * f2fs_dirty_inode() is called from __mark_inode_dirty()
 674 *
 675 * We should call set_dirty_inode to write the dirty inode through write_inode.
 676 */
 677static void f2fs_dirty_inode(struct inode *inode, int flags)
 678{
 679	struct f2fs_sb_info *sbi = F2FS_I_SB(inode);
 680
 681	if (inode->i_ino == F2FS_NODE_INO(sbi) ||
 682			inode->i_ino == F2FS_META_INO(sbi))
 683		return;
 684
 685	if (flags == I_DIRTY_TIME)
 686		return;
 687
 688	if (is_inode_flag_set(inode, FI_AUTO_RECOVER))
 689		clear_inode_flag(inode, FI_AUTO_RECOVER);
 690
 691	f2fs_inode_dirtied(inode, false);
 692}
 693
 694static void f2fs_i_callback(struct rcu_head *head)
 695{
 696	struct inode *inode = container_of(head, struct inode, i_rcu);
 697	kmem_cache_free(f2fs_inode_cachep, F2FS_I(inode));
 698}
 699
 700static void f2fs_destroy_inode(struct inode *inode)
 701{
 702	call_rcu(&inode->i_rcu, f2fs_i_callback);
 703}
 704
 705static void destroy_percpu_info(struct f2fs_sb_info *sbi)
 706{
 707	percpu_counter_destroy(&sbi->alloc_valid_block_count);
 708	percpu_counter_destroy(&sbi->total_valid_inode_count);
 709}
 710
 711static void destroy_device_list(struct f2fs_sb_info *sbi)
 712{
 713	int i;
 714
 715	for (i = 0; i < sbi->s_ndevs; i++) {
 716		blkdev_put(FDEV(i).bdev, FMODE_EXCL);
 717#ifdef CONFIG_BLK_DEV_ZONED
 718		kfree(FDEV(i).blkz_type);
 719#endif
 720	}
 721	kfree(sbi->devs);
 722}
 723
 724static void f2fs_put_super(struct super_block *sb)
 725{
 726	struct f2fs_sb_info *sbi = F2FS_SB(sb);
 727
 728	if (sbi->s_proc) {
 729		remove_proc_entry("segment_info", sbi->s_proc);
 730		remove_proc_entry("segment_bits", sbi->s_proc);
 731		remove_proc_entry(sb->s_id, f2fs_proc_root);
 732	}
 733	kobject_del(&sbi->s_kobj);
 734
 
 735	stop_gc_thread(sbi);
 736
 737	/* prevent remaining shrinker jobs */
 738	mutex_lock(&sbi->umount_mutex);
 739
 740	/*
 741	 * We don't need to do checkpoint when superblock is clean.
 742	 * But, the previous checkpoint was not done by umount, it needs to do
 743	 * clean checkpoint again.
 744	 */
 745	if (is_sbi_flag_set(sbi, SBI_IS_DIRTY) ||
 746			!is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
 747		struct cp_control cpc = {
 748			.reason = CP_UMOUNT,
 749		};
 750		write_checkpoint(sbi, &cpc);
 751	}
 752
 753	/* write_checkpoint can update stat informaion */
 754	f2fs_destroy_stats(sbi);
 755
 756	/*
 757	 * normally superblock is clean, so we need to release this.
 758	 * In addition, EIO will skip do checkpoint, we need this as well.
 759	 */
 760	release_ino_entry(sbi, true);
 761
 762	f2fs_leave_shrinker(sbi);
 763	mutex_unlock(&sbi->umount_mutex);
 764
 765	/* our cp_error case, we can wait for any writeback page */
 766	f2fs_flush_merged_bios(sbi);
 767
 768	iput(sbi->node_inode);
 769	iput(sbi->meta_inode);
 770
 771	/* destroy f2fs internal modules */
 772	destroy_node_manager(sbi);
 773	destroy_segment_manager(sbi);
 774
 775	kfree(sbi->ckpt);
 776	kobject_put(&sbi->s_kobj);
 777	wait_for_completion(&sbi->s_kobj_unregister);
 778
 779	sb->s_fs_info = NULL;
 780	if (sbi->s_chksum_driver)
 781		crypto_free_shash(sbi->s_chksum_driver);
 782	kfree(sbi->raw_super);
 783
 784	destroy_device_list(sbi);
 785
 786	destroy_percpu_info(sbi);
 787	kfree(sbi);
 788}
 789
 790int f2fs_sync_fs(struct super_block *sb, int sync)
 791{
 792	struct f2fs_sb_info *sbi = F2FS_SB(sb);
 793	int err = 0;
 794
 795	trace_f2fs_sync_fs(sb, sync);
 796
 
 
 
 797	if (sync) {
 798		struct cp_control cpc;
 799
 800		cpc.reason = __get_cp_reason(sbi);
 801
 802		mutex_lock(&sbi->gc_mutex);
 803		err = write_checkpoint(sbi, &cpc);
 804		mutex_unlock(&sbi->gc_mutex);
 
 
 805	}
 806	f2fs_trace_ios(NULL, 1);
 807
 808	return err;
 809}
 810
 811static int f2fs_freeze(struct super_block *sb)
 812{
 
 
 813	if (f2fs_readonly(sb))
 814		return 0;
 815
 816	/* IO error happened before */
 817	if (unlikely(f2fs_cp_error(F2FS_SB(sb))))
 818		return -EIO;
 819
 820	/* must be clean, since sync_filesystem() was already called */
 821	if (is_sbi_flag_set(F2FS_SB(sb), SBI_IS_DIRTY))
 822		return -EINVAL;
 823	return 0;
 824}
 825
 826static int f2fs_unfreeze(struct super_block *sb)
 827{
 828	return 0;
 829}
 830
 831static int f2fs_statfs(struct dentry *dentry, struct kstatfs *buf)
 832{
 833	struct super_block *sb = dentry->d_sb;
 834	struct f2fs_sb_info *sbi = F2FS_SB(sb);
 835	u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
 836	block_t total_count, user_block_count, start_count, ovp_count;
 837
 838	total_count = le64_to_cpu(sbi->raw_super->block_count);
 839	user_block_count = sbi->user_block_count;
 840	start_count = le32_to_cpu(sbi->raw_super->segment0_blkaddr);
 841	ovp_count = SM_I(sbi)->ovp_segments << sbi->log_blocks_per_seg;
 842	buf->f_type = F2FS_SUPER_MAGIC;
 843	buf->f_bsize = sbi->blocksize;
 844
 845	buf->f_blocks = total_count - start_count;
 846	buf->f_bfree = user_block_count - valid_user_blocks(sbi) + ovp_count;
 847	buf->f_bavail = user_block_count - valid_user_blocks(sbi);
 848
 849	buf->f_files = sbi->total_node_count - F2FS_RESERVED_NODE_NUM;
 850	buf->f_ffree = min(buf->f_files - valid_node_count(sbi),
 851							buf->f_bavail);
 852
 853	buf->f_namelen = F2FS_NAME_LEN;
 854	buf->f_fsid.val[0] = (u32)id;
 855	buf->f_fsid.val[1] = (u32)(id >> 32);
 856
 857	return 0;
 858}
 859
 860static int f2fs_show_options(struct seq_file *seq, struct dentry *root)
 861{
 862	struct f2fs_sb_info *sbi = F2FS_SB(root->d_sb);
 863
 864	if (!f2fs_readonly(sbi->sb) && test_opt(sbi, BG_GC)) {
 865		if (test_opt(sbi, FORCE_FG_GC))
 866			seq_printf(seq, ",background_gc=%s", "sync");
 867		else
 868			seq_printf(seq, ",background_gc=%s", "on");
 869	} else {
 870		seq_printf(seq, ",background_gc=%s", "off");
 871	}
 872	if (test_opt(sbi, DISABLE_ROLL_FORWARD))
 873		seq_puts(seq, ",disable_roll_forward");
 874	if (test_opt(sbi, DISCARD))
 875		seq_puts(seq, ",discard");
 876	if (test_opt(sbi, NOHEAP))
 877		seq_puts(seq, ",no_heap_alloc");
 878#ifdef CONFIG_F2FS_FS_XATTR
 879	if (test_opt(sbi, XATTR_USER))
 880		seq_puts(seq, ",user_xattr");
 881	else
 882		seq_puts(seq, ",nouser_xattr");
 883	if (test_opt(sbi, INLINE_XATTR))
 884		seq_puts(seq, ",inline_xattr");
 885#endif
 886#ifdef CONFIG_F2FS_FS_POSIX_ACL
 887	if (test_opt(sbi, POSIX_ACL))
 888		seq_puts(seq, ",acl");
 889	else
 890		seq_puts(seq, ",noacl");
 891#endif
 892	if (test_opt(sbi, DISABLE_EXT_IDENTIFY))
 893		seq_puts(seq, ",disable_ext_identify");
 894	if (test_opt(sbi, INLINE_DATA))
 895		seq_puts(seq, ",inline_data");
 896	else
 897		seq_puts(seq, ",noinline_data");
 898	if (test_opt(sbi, INLINE_DENTRY))
 899		seq_puts(seq, ",inline_dentry");
 900	else
 901		seq_puts(seq, ",noinline_dentry");
 902	if (!f2fs_readonly(sbi->sb) && test_opt(sbi, FLUSH_MERGE))
 903		seq_puts(seq, ",flush_merge");
 904	if (test_opt(sbi, NOBARRIER))
 905		seq_puts(seq, ",nobarrier");
 906	if (test_opt(sbi, FASTBOOT))
 907		seq_puts(seq, ",fastboot");
 908	if (test_opt(sbi, EXTENT_CACHE))
 909		seq_puts(seq, ",extent_cache");
 910	else
 911		seq_puts(seq, ",noextent_cache");
 912	if (test_opt(sbi, DATA_FLUSH))
 913		seq_puts(seq, ",data_flush");
 914
 915	seq_puts(seq, ",mode=");
 916	if (test_opt(sbi, ADAPTIVE))
 917		seq_puts(seq, "adaptive");
 918	else if (test_opt(sbi, LFS))
 919		seq_puts(seq, "lfs");
 920	seq_printf(seq, ",active_logs=%u", sbi->active_logs);
 921
 922	return 0;
 923}
 924
 925static int segment_info_seq_show(struct seq_file *seq, void *offset)
 926{
 927	struct super_block *sb = seq->private;
 928	struct f2fs_sb_info *sbi = F2FS_SB(sb);
 929	unsigned int total_segs =
 930			le32_to_cpu(sbi->raw_super->segment_count_main);
 931	int i;
 932
 933	seq_puts(seq, "format: segment_type|valid_blocks\n"
 934		"segment_type(0:HD, 1:WD, 2:CD, 3:HN, 4:WN, 5:CN)\n");
 935
 936	for (i = 0; i < total_segs; i++) {
 937		struct seg_entry *se = get_seg_entry(sbi, i);
 938
 939		if ((i % 10) == 0)
 940			seq_printf(seq, "%-10d", i);
 941		seq_printf(seq, "%d|%-3u", se->type,
 942					get_valid_blocks(sbi, i, 1));
 943		if ((i % 10) == 9 || i == (total_segs - 1))
 944			seq_putc(seq, '\n');
 945		else
 946			seq_putc(seq, ' ');
 947	}
 948
 949	return 0;
 950}
 951
 952static int segment_bits_seq_show(struct seq_file *seq, void *offset)
 953{
 954	struct super_block *sb = seq->private;
 955	struct f2fs_sb_info *sbi = F2FS_SB(sb);
 956	unsigned int total_segs =
 957			le32_to_cpu(sbi->raw_super->segment_count_main);
 958	int i, j;
 959
 960	seq_puts(seq, "format: segment_type|valid_blocks|bitmaps\n"
 961		"segment_type(0:HD, 1:WD, 2:CD, 3:HN, 4:WN, 5:CN)\n");
 962
 963	for (i = 0; i < total_segs; i++) {
 964		struct seg_entry *se = get_seg_entry(sbi, i);
 965
 966		seq_printf(seq, "%-10d", i);
 967		seq_printf(seq, "%d|%-3u|", se->type,
 968					get_valid_blocks(sbi, i, 1));
 969		for (j = 0; j < SIT_VBLOCK_MAP_SIZE; j++)
 970			seq_printf(seq, " %.2x", se->cur_valid_map[j]);
 971		seq_putc(seq, '\n');
 972	}
 973	return 0;
 974}
 975
 976#define F2FS_PROC_FILE_DEF(_name)					\
 977static int _name##_open_fs(struct inode *inode, struct file *file)	\
 978{									\
 979	return single_open(file, _name##_seq_show, PDE_DATA(inode));	\
 980}									\
 981									\
 982static const struct file_operations f2fs_seq_##_name##_fops = {		\
 983	.open = _name##_open_fs,					\
 984	.read = seq_read,						\
 985	.llseek = seq_lseek,						\
 986	.release = single_release,					\
 987};
 988
 989F2FS_PROC_FILE_DEF(segment_info);
 990F2FS_PROC_FILE_DEF(segment_bits);
 991
 992static void default_options(struct f2fs_sb_info *sbi)
 993{
 994	/* init some FS parameters */
 995	sbi->active_logs = NR_CURSEG_TYPE;
 996
 997	set_opt(sbi, BG_GC);
 998	set_opt(sbi, INLINE_DATA);
 999	set_opt(sbi, INLINE_DENTRY);
1000	set_opt(sbi, EXTENT_CACHE);
1001	sbi->sb->s_flags |= MS_LAZYTIME;
1002	set_opt(sbi, FLUSH_MERGE);
1003	if (f2fs_sb_mounted_blkzoned(sbi->sb)) {
1004		set_opt_mode(sbi, F2FS_MOUNT_LFS);
1005		set_opt(sbi, DISCARD);
1006	} else {
1007		set_opt_mode(sbi, F2FS_MOUNT_ADAPTIVE);
1008	}
1009
1010#ifdef CONFIG_F2FS_FS_XATTR
1011	set_opt(sbi, XATTR_USER);
1012#endif
1013#ifdef CONFIG_F2FS_FS_POSIX_ACL
1014	set_opt(sbi, POSIX_ACL);
1015#endif
1016
1017#ifdef CONFIG_F2FS_FAULT_INJECTION
1018	f2fs_build_fault_attr(sbi, 0);
1019#endif
1020}
1021
1022static int f2fs_remount(struct super_block *sb, int *flags, char *data)
1023{
1024	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1025	struct f2fs_mount_info org_mount_opt;
1026	int err, active_logs;
1027	bool need_restart_gc = false;
1028	bool need_stop_gc = false;
1029	bool no_extent_cache = !test_opt(sbi, EXTENT_CACHE);
1030#ifdef CONFIG_F2FS_FAULT_INJECTION
1031	struct f2fs_fault_info ffi = sbi->fault_info;
1032#endif
1033
1034	/*
1035	 * Save the old mount options in case we
1036	 * need to restore them.
1037	 */
1038	org_mount_opt = sbi->mount_opt;
1039	active_logs = sbi->active_logs;
1040
1041	/* recover superblocks we couldn't write due to previous RO mount */
1042	if (!(*flags & MS_RDONLY) && is_sbi_flag_set(sbi, SBI_NEED_SB_WRITE)) {
1043		err = f2fs_commit_super(sbi, false);
1044		f2fs_msg(sb, KERN_INFO,
1045			"Try to recover all the superblocks, ret: %d", err);
1046		if (!err)
1047			clear_sbi_flag(sbi, SBI_NEED_SB_WRITE);
1048	}
1049
1050	sbi->mount_opt.opt = 0;
1051	default_options(sbi);
1052
1053	/* parse mount options */
1054	err = parse_options(sb, data);
1055	if (err)
1056		goto restore_opts;
1057
1058	/*
1059	 * Previous and new state of filesystem is RO,
1060	 * so skip checking GC and FLUSH_MERGE conditions.
1061	 */
1062	if (f2fs_readonly(sb) && (*flags & MS_RDONLY))
1063		goto skip;
1064
1065	/* disallow enable/disable extent_cache dynamically */
1066	if (no_extent_cache == !!test_opt(sbi, EXTENT_CACHE)) {
1067		err = -EINVAL;
1068		f2fs_msg(sbi->sb, KERN_WARNING,
1069				"switch extent_cache option is not allowed");
1070		goto restore_opts;
1071	}
1072
1073	/*
1074	 * We stop the GC thread if FS is mounted as RO
1075	 * or if background_gc = off is passed in mount
1076	 * option. Also sync the filesystem.
1077	 */
1078	if ((*flags & MS_RDONLY) || !test_opt(sbi, BG_GC)) {
1079		if (sbi->gc_thread) {
1080			stop_gc_thread(sbi);
1081			need_restart_gc = true;
1082		}
1083	} else if (!sbi->gc_thread) {
1084		err = start_gc_thread(sbi);
1085		if (err)
1086			goto restore_opts;
1087		need_stop_gc = true;
1088	}
1089
1090	if (*flags & MS_RDONLY) {
1091		writeback_inodes_sb(sb, WB_REASON_SYNC);
1092		sync_inodes_sb(sb);
1093
1094		set_sbi_flag(sbi, SBI_IS_DIRTY);
1095		set_sbi_flag(sbi, SBI_IS_CLOSE);
1096		f2fs_sync_fs(sb, 1);
1097		clear_sbi_flag(sbi, SBI_IS_CLOSE);
1098	}
1099
1100	/*
1101	 * We stop issue flush thread if FS is mounted as RO
1102	 * or if flush_merge is not passed in mount option.
1103	 */
1104	if ((*flags & MS_RDONLY) || !test_opt(sbi, FLUSH_MERGE)) {
1105		clear_opt(sbi, FLUSH_MERGE);
1106		destroy_flush_cmd_control(sbi, false);
1107	} else {
1108		err = create_flush_cmd_control(sbi);
1109		if (err)
1110			goto restore_gc;
1111	}
1112skip:
1113	/* Update the POSIXACL Flag */
1114	sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
1115		(test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0);
 
1116
1117	return 0;
1118restore_gc:
1119	if (need_restart_gc) {
1120		if (start_gc_thread(sbi))
1121			f2fs_msg(sbi->sb, KERN_WARNING,
1122				"background gc thread has stopped");
1123	} else if (need_stop_gc) {
1124		stop_gc_thread(sbi);
1125	}
1126restore_opts:
1127	sbi->mount_opt = org_mount_opt;
1128	sbi->active_logs = active_logs;
1129#ifdef CONFIG_F2FS_FAULT_INJECTION
1130	sbi->fault_info = ffi;
1131#endif
1132	return err;
1133}
1134
1135static struct super_operations f2fs_sops = {
1136	.alloc_inode	= f2fs_alloc_inode,
1137	.drop_inode	= f2fs_drop_inode,
1138	.destroy_inode	= f2fs_destroy_inode,
1139	.write_inode	= f2fs_write_inode,
1140	.dirty_inode	= f2fs_dirty_inode,
1141	.show_options	= f2fs_show_options,
1142	.evict_inode	= f2fs_evict_inode,
1143	.put_super	= f2fs_put_super,
1144	.sync_fs	= f2fs_sync_fs,
1145	.freeze_fs	= f2fs_freeze,
1146	.unfreeze_fs	= f2fs_unfreeze,
1147	.statfs		= f2fs_statfs,
1148	.remount_fs	= f2fs_remount,
1149};
1150
1151#ifdef CONFIG_F2FS_FS_ENCRYPTION
1152static int f2fs_get_context(struct inode *inode, void *ctx, size_t len)
1153{
1154	return f2fs_getxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
1155				F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
1156				ctx, len, NULL);
1157}
1158
1159static int f2fs_key_prefix(struct inode *inode, u8 **key)
1160{
1161	*key = F2FS_I_SB(inode)->key_prefix;
1162	return F2FS_I_SB(inode)->key_prefix_size;
1163}
1164
1165static int f2fs_set_context(struct inode *inode, const void *ctx, size_t len,
1166							void *fs_data)
1167{
1168	return f2fs_setxattr(inode, F2FS_XATTR_INDEX_ENCRYPTION,
1169				F2FS_XATTR_NAME_ENCRYPTION_CONTEXT,
1170				ctx, len, fs_data, XATTR_CREATE);
1171}
1172
1173static unsigned f2fs_max_namelen(struct inode *inode)
1174{
1175	return S_ISLNK(inode->i_mode) ?
1176			inode->i_sb->s_blocksize : F2FS_NAME_LEN;
1177}
1178
1179static struct fscrypt_operations f2fs_cryptops = {
1180	.get_context	= f2fs_get_context,
1181	.key_prefix	= f2fs_key_prefix,
1182	.set_context	= f2fs_set_context,
1183	.is_encrypted	= f2fs_encrypted_inode,
1184	.empty_dir	= f2fs_empty_dir,
1185	.max_namelen	= f2fs_max_namelen,
1186};
1187#else
1188static struct fscrypt_operations f2fs_cryptops = {
1189	.is_encrypted	= f2fs_encrypted_inode,
1190};
1191#endif
1192
1193static struct inode *f2fs_nfs_get_inode(struct super_block *sb,
1194		u64 ino, u32 generation)
1195{
1196	struct f2fs_sb_info *sbi = F2FS_SB(sb);
1197	struct inode *inode;
1198
1199	if (check_nid_range(sbi, ino))
 
 
1200		return ERR_PTR(-ESTALE);
1201
1202	/*
1203	 * f2fs_iget isn't quite right if the inode is currently unallocated!
1204	 * However f2fs_iget currently does appropriate checks to handle stale
1205	 * inodes so everything is OK.
1206	 */
1207	inode = f2fs_iget(sb, ino);
1208	if (IS_ERR(inode))
1209		return ERR_CAST(inode);
1210	if (unlikely(generation && inode->i_generation != generation)) {
1211		/* we didn't find the right inode.. */
1212		iput(inode);
1213		return ERR_PTR(-ESTALE);
1214	}
1215	return inode;
1216}
1217
1218static struct dentry *f2fs_fh_to_dentry(struct super_block *sb, struct fid *fid,
1219		int fh_len, int fh_type)
1220{
1221	return generic_fh_to_dentry(sb, fid, fh_len, fh_type,
1222				    f2fs_nfs_get_inode);
1223}
1224
1225static struct dentry *f2fs_fh_to_parent(struct super_block *sb, struct fid *fid,
1226		int fh_len, int fh_type)
1227{
1228	return generic_fh_to_parent(sb, fid, fh_len, fh_type,
1229				    f2fs_nfs_get_inode);
1230}
1231
1232static const struct export_operations f2fs_export_ops = {
1233	.fh_to_dentry = f2fs_fh_to_dentry,
1234	.fh_to_parent = f2fs_fh_to_parent,
1235	.get_parent = f2fs_get_parent,
1236};
1237
1238static loff_t max_file_blocks(void)
1239{
1240	loff_t result = (DEF_ADDRS_PER_INODE - F2FS_INLINE_XATTR_ADDRS);
1241	loff_t leaf_count = ADDRS_PER_BLOCK;
1242
1243	/* two direct node blocks */
1244	result += (leaf_count * 2);
1245
1246	/* two indirect node blocks */
1247	leaf_count *= NIDS_PER_BLOCK;
1248	result += (leaf_count * 2);
1249
1250	/* one double indirect node block */
1251	leaf_count *= NIDS_PER_BLOCK;
1252	result += leaf_count;
1253
 
1254	return result;
1255}
1256
1257static int __f2fs_commit_super(struct buffer_head *bh,
1258			struct f2fs_super_block *super)
1259{
1260	lock_buffer(bh);
1261	if (super)
1262		memcpy(bh->b_data + F2FS_SUPER_OFFSET, super, sizeof(*super));
1263	set_buffer_uptodate(bh);
1264	set_buffer_dirty(bh);
1265	unlock_buffer(bh);
1266
1267	/* it's rare case, we can do fua all the time */
1268	return __sync_dirty_buffer(bh, REQ_PREFLUSH | REQ_FUA);
1269}
1270
1271static inline bool sanity_check_area_boundary(struct f2fs_sb_info *sbi,
1272					struct buffer_head *bh)
1273{
1274	struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
1275					(bh->b_data + F2FS_SUPER_OFFSET);
1276	struct super_block *sb = sbi->sb;
1277	u32 segment0_blkaddr = le32_to_cpu(raw_super->segment0_blkaddr);
1278	u32 cp_blkaddr = le32_to_cpu(raw_super->cp_blkaddr);
1279	u32 sit_blkaddr = le32_to_cpu(raw_super->sit_blkaddr);
1280	u32 nat_blkaddr = le32_to_cpu(raw_super->nat_blkaddr);
1281	u32 ssa_blkaddr = le32_to_cpu(raw_super->ssa_blkaddr);
1282	u32 main_blkaddr = le32_to_cpu(raw_super->main_blkaddr);
1283	u32 segment_count_ckpt = le32_to_cpu(raw_super->segment_count_ckpt);
1284	u32 segment_count_sit = le32_to_cpu(raw_super->segment_count_sit);
1285	u32 segment_count_nat = le32_to_cpu(raw_super->segment_count_nat);
1286	u32 segment_count_ssa = le32_to_cpu(raw_super->segment_count_ssa);
1287	u32 segment_count_main = le32_to_cpu(raw_super->segment_count_main);
1288	u32 segment_count = le32_to_cpu(raw_super->segment_count);
1289	u32 log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
1290	u64 main_end_blkaddr = main_blkaddr +
1291				(segment_count_main << log_blocks_per_seg);
1292	u64 seg_end_blkaddr = segment0_blkaddr +
1293				(segment_count << log_blocks_per_seg);
1294
1295	if (segment0_blkaddr != cp_blkaddr) {
1296		f2fs_msg(sb, KERN_INFO,
1297			"Mismatch start address, segment0(%u) cp_blkaddr(%u)",
1298			segment0_blkaddr, cp_blkaddr);
1299		return true;
1300	}
1301
1302	if (cp_blkaddr + (segment_count_ckpt << log_blocks_per_seg) !=
1303							sit_blkaddr) {
1304		f2fs_msg(sb, KERN_INFO,
1305			"Wrong CP boundary, start(%u) end(%u) blocks(%u)",
1306			cp_blkaddr, sit_blkaddr,
1307			segment_count_ckpt << log_blocks_per_seg);
1308		return true;
1309	}
1310
1311	if (sit_blkaddr + (segment_count_sit << log_blocks_per_seg) !=
1312							nat_blkaddr) {
1313		f2fs_msg(sb, KERN_INFO,
1314			"Wrong SIT boundary, start(%u) end(%u) blocks(%u)",
1315			sit_blkaddr, nat_blkaddr,
1316			segment_count_sit << log_blocks_per_seg);
1317		return true;
1318	}
1319
1320	if (nat_blkaddr + (segment_count_nat << log_blocks_per_seg) !=
1321							ssa_blkaddr) {
1322		f2fs_msg(sb, KERN_INFO,
1323			"Wrong NAT boundary, start(%u) end(%u) blocks(%u)",
1324			nat_blkaddr, ssa_blkaddr,
1325			segment_count_nat << log_blocks_per_seg);
1326		return true;
1327	}
1328
1329	if (ssa_blkaddr + (segment_count_ssa << log_blocks_per_seg) !=
1330							main_blkaddr) {
1331		f2fs_msg(sb, KERN_INFO,
1332			"Wrong SSA boundary, start(%u) end(%u) blocks(%u)",
1333			ssa_blkaddr, main_blkaddr,
1334			segment_count_ssa << log_blocks_per_seg);
1335		return true;
1336	}
1337
1338	if (main_end_blkaddr > seg_end_blkaddr) {
1339		f2fs_msg(sb, KERN_INFO,
1340			"Wrong MAIN_AREA boundary, start(%u) end(%u) block(%u)",
1341			main_blkaddr,
1342			segment0_blkaddr +
1343				(segment_count << log_blocks_per_seg),
1344			segment_count_main << log_blocks_per_seg);
1345		return true;
1346	} else if (main_end_blkaddr < seg_end_blkaddr) {
1347		int err = 0;
1348		char *res;
1349
1350		/* fix in-memory information all the time */
1351		raw_super->segment_count = cpu_to_le32((main_end_blkaddr -
1352				segment0_blkaddr) >> log_blocks_per_seg);
1353
1354		if (f2fs_readonly(sb) || bdev_read_only(sb->s_bdev)) {
1355			set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
1356			res = "internally";
1357		} else {
1358			err = __f2fs_commit_super(bh, NULL);
1359			res = err ? "failed" : "done";
1360		}
1361		f2fs_msg(sb, KERN_INFO,
1362			"Fix alignment : %s, start(%u) end(%u) block(%u)",
1363			res, main_blkaddr,
1364			segment0_blkaddr +
1365				(segment_count << log_blocks_per_seg),
1366			segment_count_main << log_blocks_per_seg);
1367		if (err)
1368			return true;
1369	}
1370	return false;
1371}
1372
1373static int sanity_check_raw_super(struct f2fs_sb_info *sbi,
1374				struct buffer_head *bh)
1375{
1376	struct f2fs_super_block *raw_super = (struct f2fs_super_block *)
1377					(bh->b_data + F2FS_SUPER_OFFSET);
1378	struct super_block *sb = sbi->sb;
1379	unsigned int blocksize;
1380
1381	if (F2FS_SUPER_MAGIC != le32_to_cpu(raw_super->magic)) {
1382		f2fs_msg(sb, KERN_INFO,
1383			"Magic Mismatch, valid(0x%x) - read(0x%x)",
1384			F2FS_SUPER_MAGIC, le32_to_cpu(raw_super->magic));
1385		return 1;
1386	}
1387
1388	/* Currently, support only 4KB page cache size */
1389	if (F2FS_BLKSIZE != PAGE_SIZE) {
1390		f2fs_msg(sb, KERN_INFO,
1391			"Invalid page_cache_size (%lu), supports only 4KB\n",
1392			PAGE_SIZE);
1393		return 1;
1394	}
1395
1396	/* Currently, support only 4KB block size */
1397	blocksize = 1 << le32_to_cpu(raw_super->log_blocksize);
1398	if (blocksize != F2FS_BLKSIZE) {
1399		f2fs_msg(sb, KERN_INFO,
1400			"Invalid blocksize (%u), supports only 4KB\n",
1401			blocksize);
1402		return 1;
1403	}
1404
1405	/* check log blocks per segment */
1406	if (le32_to_cpu(raw_super->log_blocks_per_seg) != 9) {
1407		f2fs_msg(sb, KERN_INFO,
1408			"Invalid log blocks per segment (%u)\n",
1409			le32_to_cpu(raw_super->log_blocks_per_seg));
1410		return 1;
1411	}
1412
1413	/* Currently, support 512/1024/2048/4096 bytes sector size */
1414	if (le32_to_cpu(raw_super->log_sectorsize) >
1415				F2FS_MAX_LOG_SECTOR_SIZE ||
1416		le32_to_cpu(raw_super->log_sectorsize) <
1417				F2FS_MIN_LOG_SECTOR_SIZE) {
1418		f2fs_msg(sb, KERN_INFO, "Invalid log sectorsize (%u)",
1419			le32_to_cpu(raw_super->log_sectorsize));
1420		return 1;
1421	}
1422	if (le32_to_cpu(raw_super->log_sectors_per_block) +
1423		le32_to_cpu(raw_super->log_sectorsize) !=
1424			F2FS_MAX_LOG_SECTOR_SIZE) {
1425		f2fs_msg(sb, KERN_INFO,
1426			"Invalid log sectors per block(%u) log sectorsize(%u)",
1427			le32_to_cpu(raw_super->log_sectors_per_block),
1428			le32_to_cpu(raw_super->log_sectorsize));
1429		return 1;
1430	}
1431
1432	/* check reserved ino info */
1433	if (le32_to_cpu(raw_super->node_ino) != 1 ||
1434		le32_to_cpu(raw_super->meta_ino) != 2 ||
1435		le32_to_cpu(raw_super->root_ino) != 3) {
1436		f2fs_msg(sb, KERN_INFO,
1437			"Invalid Fs Meta Ino: node(%u) meta(%u) root(%u)",
1438			le32_to_cpu(raw_super->node_ino),
1439			le32_to_cpu(raw_super->meta_ino),
1440			le32_to_cpu(raw_super->root_ino));
1441		return 1;
1442	}
1443
1444	/* check CP/SIT/NAT/SSA/MAIN_AREA area boundary */
1445	if (sanity_check_area_boundary(sbi, bh))
1446		return 1;
1447
1448	return 0;
1449}
1450
1451int sanity_check_ckpt(struct f2fs_sb_info *sbi)
1452{
1453	unsigned int total, fsmeta;
1454	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
1455	struct f2fs_checkpoint *ckpt = F2FS_CKPT(sbi);
1456	unsigned int ovp_segments, reserved_segments;
1457
1458	total = le32_to_cpu(raw_super->segment_count);
1459	fsmeta = le32_to_cpu(raw_super->segment_count_ckpt);
1460	fsmeta += le32_to_cpu(raw_super->segment_count_sit);
1461	fsmeta += le32_to_cpu(raw_super->segment_count_nat);
1462	fsmeta += le32_to_cpu(ckpt->rsvd_segment_count);
1463	fsmeta += le32_to_cpu(raw_super->segment_count_ssa);
1464
1465	if (unlikely(fsmeta >= total))
1466		return 1;
1467
1468	ovp_segments = le32_to_cpu(ckpt->overprov_segment_count);
1469	reserved_segments = le32_to_cpu(ckpt->rsvd_segment_count);
1470
1471	if (unlikely(fsmeta < F2FS_MIN_SEGMENTS ||
1472			ovp_segments == 0 || reserved_segments == 0)) {
1473		f2fs_msg(sbi->sb, KERN_ERR,
1474			"Wrong layout: check mkfs.f2fs version");
1475		return 1;
1476	}
1477
1478	if (unlikely(f2fs_cp_error(sbi))) {
1479		f2fs_msg(sbi->sb, KERN_ERR, "A bug case: need to run fsck");
1480		return 1;
1481	}
1482	return 0;
1483}
1484
1485static void init_sb_info(struct f2fs_sb_info *sbi)
1486{
1487	struct f2fs_super_block *raw_super = sbi->raw_super;
1488	int i;
1489
1490	sbi->log_sectors_per_block =
1491		le32_to_cpu(raw_super->log_sectors_per_block);
1492	sbi->log_blocksize = le32_to_cpu(raw_super->log_blocksize);
1493	sbi->blocksize = 1 << sbi->log_blocksize;
1494	sbi->log_blocks_per_seg = le32_to_cpu(raw_super->log_blocks_per_seg);
1495	sbi->blocks_per_seg = 1 << sbi->log_blocks_per_seg;
1496	sbi->segs_per_sec = le32_to_cpu(raw_super->segs_per_sec);
1497	sbi->secs_per_zone = le32_to_cpu(raw_super->secs_per_zone);
1498	sbi->total_sections = le32_to_cpu(raw_super->section_count);
1499	sbi->total_node_count =
1500		(le32_to_cpu(raw_super->segment_count_nat) / 2)
1501			* sbi->blocks_per_seg * NAT_ENTRY_PER_BLOCK;
1502	sbi->root_ino_num = le32_to_cpu(raw_super->root_ino);
1503	sbi->node_ino_num = le32_to_cpu(raw_super->node_ino);
1504	sbi->meta_ino_num = le32_to_cpu(raw_super->meta_ino);
1505	sbi->cur_victim_sec = NULL_SECNO;
1506	sbi->max_victim_search = DEF_MAX_VICTIM_SEARCH;
1507
1508	sbi->dir_level = DEF_DIR_LEVEL;
1509	sbi->interval_time[CP_TIME] = DEF_CP_INTERVAL;
1510	sbi->interval_time[REQ_TIME] = DEF_IDLE_INTERVAL;
1511	clear_sbi_flag(sbi, SBI_NEED_FSCK);
1512
1513	for (i = 0; i < NR_COUNT_TYPE; i++)
1514		atomic_set(&sbi->nr_pages[i], 0);
1515
1516	INIT_LIST_HEAD(&sbi->s_list);
1517	mutex_init(&sbi->umount_mutex);
1518	mutex_init(&sbi->wio_mutex[NODE]);
1519	mutex_init(&sbi->wio_mutex[DATA]);
1520	spin_lock_init(&sbi->cp_lock);
1521
1522#ifdef CONFIG_F2FS_FS_ENCRYPTION
1523	memcpy(sbi->key_prefix, F2FS_KEY_DESC_PREFIX,
1524				F2FS_KEY_DESC_PREFIX_SIZE);
1525	sbi->key_prefix_size = F2FS_KEY_DESC_PREFIX_SIZE;
1526#endif
1527}
1528
1529static int init_percpu_info(struct f2fs_sb_info *sbi)
1530{
1531	int err;
1532
1533	err = percpu_counter_init(&sbi->alloc_valid_block_count, 0, GFP_KERNEL);
1534	if (err)
1535		return err;
1536
1537	return percpu_counter_init(&sbi->total_valid_inode_count, 0,
1538								GFP_KERNEL);
1539}
1540
1541#ifdef CONFIG_BLK_DEV_ZONED
1542static int init_blkz_info(struct f2fs_sb_info *sbi, int devi)
1543{
1544	struct block_device *bdev = FDEV(devi).bdev;
1545	sector_t nr_sectors = bdev->bd_part->nr_sects;
1546	sector_t sector = 0;
1547	struct blk_zone *zones;
1548	unsigned int i, nr_zones;
1549	unsigned int n = 0;
1550	int err = -EIO;
1551
1552	if (!f2fs_sb_mounted_blkzoned(sbi->sb))
1553		return 0;
1554
1555	if (sbi->blocks_per_blkz && sbi->blocks_per_blkz !=
1556				SECTOR_TO_BLOCK(bdev_zone_sectors(bdev)))
1557		return -EINVAL;
1558	sbi->blocks_per_blkz = SECTOR_TO_BLOCK(bdev_zone_sectors(bdev));
1559	if (sbi->log_blocks_per_blkz && sbi->log_blocks_per_blkz !=
1560				__ilog2_u32(sbi->blocks_per_blkz))
1561		return -EINVAL;
1562	sbi->log_blocks_per_blkz = __ilog2_u32(sbi->blocks_per_blkz);
1563	FDEV(devi).nr_blkz = SECTOR_TO_BLOCK(nr_sectors) >>
1564					sbi->log_blocks_per_blkz;
1565	if (nr_sectors & (bdev_zone_sectors(bdev) - 1))
1566		FDEV(devi).nr_blkz++;
1567
1568	FDEV(devi).blkz_type = kmalloc(FDEV(devi).nr_blkz, GFP_KERNEL);
1569	if (!FDEV(devi).blkz_type)
1570		return -ENOMEM;
1571
1572#define F2FS_REPORT_NR_ZONES   4096
1573
1574	zones = kcalloc(F2FS_REPORT_NR_ZONES, sizeof(struct blk_zone),
1575			GFP_KERNEL);
1576	if (!zones)
1577		return -ENOMEM;
1578
1579	/* Get block zones type */
1580	while (zones && sector < nr_sectors) {
1581
1582		nr_zones = F2FS_REPORT_NR_ZONES;
1583		err = blkdev_report_zones(bdev, sector,
1584					  zones, &nr_zones,
1585					  GFP_KERNEL);
1586		if (err)
1587			break;
1588		if (!nr_zones) {
1589			err = -EIO;
1590			break;
1591		}
1592
1593		for (i = 0; i < nr_zones; i++) {
1594			FDEV(devi).blkz_type[n] = zones[i].type;
1595			sector += zones[i].len;
1596			n++;
1597		}
1598	}
1599
1600	kfree(zones);
1601
1602	return err;
1603}
1604#endif
1605
1606/*
1607 * Read f2fs raw super block.
1608 * Because we have two copies of super block, so read both of them
1609 * to get the first valid one. If any one of them is broken, we pass
1610 * them recovery flag back to the caller.
1611 */
1612static int read_raw_super_block(struct f2fs_sb_info *sbi,
1613			struct f2fs_super_block **raw_super,
1614			int *valid_super_block, int *recovery)
1615{
1616	struct super_block *sb = sbi->sb;
1617	int block;
1618	struct buffer_head *bh;
1619	struct f2fs_super_block *super;
1620	int err = 0;
1621
1622	super = kzalloc(sizeof(struct f2fs_super_block), GFP_KERNEL);
1623	if (!super)
1624		return -ENOMEM;
1625
1626	for (block = 0; block < 2; block++) {
1627		bh = sb_bread(sb, block);
1628		if (!bh) {
1629			f2fs_msg(sb, KERN_ERR, "Unable to read %dth superblock",
1630				block + 1);
1631			err = -EIO;
1632			continue;
1633		}
1634
1635		/* sanity checking of raw super */
1636		if (sanity_check_raw_super(sbi, bh)) {
1637			f2fs_msg(sb, KERN_ERR,
1638				"Can't find valid F2FS filesystem in %dth superblock",
1639				block + 1);
1640			err = -EINVAL;
1641			brelse(bh);
1642			continue;
1643		}
1644
1645		if (!*raw_super) {
1646			memcpy(super, bh->b_data + F2FS_SUPER_OFFSET,
1647							sizeof(*super));
1648			*valid_super_block = block;
1649			*raw_super = super;
1650		}
1651		brelse(bh);
1652	}
1653
1654	/* Fail to read any one of the superblocks*/
1655	if (err < 0)
1656		*recovery = 1;
1657
1658	/* No valid superblock */
1659	if (!*raw_super)
1660		kfree(super);
1661	else
1662		err = 0;
1663
1664	return err;
1665}
1666
1667int f2fs_commit_super(struct f2fs_sb_info *sbi, bool recover)
1668{
1669	struct buffer_head *bh;
1670	int err;
1671
1672	if ((recover && f2fs_readonly(sbi->sb)) ||
1673				bdev_read_only(sbi->sb->s_bdev)) {
1674		set_sbi_flag(sbi, SBI_NEED_SB_WRITE);
1675		return -EROFS;
1676	}
1677
1678	/* write back-up superblock first */
1679	bh = sb_getblk(sbi->sb, sbi->valid_super_block ? 0: 1);
1680	if (!bh)
1681		return -EIO;
1682	err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
1683	brelse(bh);
1684
1685	/* if we are in recovery path, skip writing valid superblock */
1686	if (recover || err)
1687		return err;
1688
1689	/* write current valid superblock */
1690	bh = sb_getblk(sbi->sb, sbi->valid_super_block);
1691	if (!bh)
1692		return -EIO;
1693	err = __f2fs_commit_super(bh, F2FS_RAW_SUPER(sbi));
1694	brelse(bh);
1695	return err;
1696}
1697
1698static int f2fs_scan_devices(struct f2fs_sb_info *sbi)
1699{
1700	struct f2fs_super_block *raw_super = F2FS_RAW_SUPER(sbi);
1701	unsigned int max_devices = MAX_DEVICES;
1702	int i;
1703
1704	/* Initialize single device information */
1705	if (!RDEV(0).path[0]) {
1706		if (!bdev_is_zoned(sbi->sb->s_bdev))
1707			return 0;
1708		max_devices = 1;
1709	}
1710
1711	/*
1712	 * Initialize multiple devices information, or single
1713	 * zoned block device information.
1714	 */
1715	sbi->devs = kcalloc(max_devices, sizeof(struct f2fs_dev_info),
1716				GFP_KERNEL);
1717	if (!sbi->devs)
1718		return -ENOMEM;
1719
1720	for (i = 0; i < max_devices; i++) {
1721
1722		if (i > 0 && !RDEV(i).path[0])
1723			break;
1724
1725		if (max_devices == 1) {
1726			/* Single zoned block device mount */
1727			FDEV(0).bdev =
1728				blkdev_get_by_dev(sbi->sb->s_bdev->bd_dev,
1729					sbi->sb->s_mode, sbi->sb->s_type);
1730		} else {
1731			/* Multi-device mount */
1732			memcpy(FDEV(i).path, RDEV(i).path, MAX_PATH_LEN);
1733			FDEV(i).total_segments =
1734				le32_to_cpu(RDEV(i).total_segments);
1735			if (i == 0) {
1736				FDEV(i).start_blk = 0;
1737				FDEV(i).end_blk = FDEV(i).start_blk +
1738				    (FDEV(i).total_segments <<
1739				    sbi->log_blocks_per_seg) - 1 +
1740				    le32_to_cpu(raw_super->segment0_blkaddr);
1741			} else {
1742				FDEV(i).start_blk = FDEV(i - 1).end_blk + 1;
1743				FDEV(i).end_blk = FDEV(i).start_blk +
1744					(FDEV(i).total_segments <<
1745					sbi->log_blocks_per_seg) - 1;
1746			}
1747			FDEV(i).bdev = blkdev_get_by_path(FDEV(i).path,
1748					sbi->sb->s_mode, sbi->sb->s_type);
1749		}
1750		if (IS_ERR(FDEV(i).bdev))
1751			return PTR_ERR(FDEV(i).bdev);
1752
1753		/* to release errored devices */
1754		sbi->s_ndevs = i + 1;
1755
1756#ifdef CONFIG_BLK_DEV_ZONED
1757		if (bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HM &&
1758				!f2fs_sb_mounted_blkzoned(sbi->sb)) {
1759			f2fs_msg(sbi->sb, KERN_ERR,
1760				"Zoned block device feature not enabled\n");
1761			return -EINVAL;
1762		}
1763		if (bdev_zoned_model(FDEV(i).bdev) != BLK_ZONED_NONE) {
1764			if (init_blkz_info(sbi, i)) {
1765				f2fs_msg(sbi->sb, KERN_ERR,
1766					"Failed to initialize F2FS blkzone information");
1767				return -EINVAL;
1768			}
1769			if (max_devices == 1)
1770				break;
1771			f2fs_msg(sbi->sb, KERN_INFO,
1772				"Mount Device [%2d]: %20s, %8u, %8x - %8x (zone: %s)",
1773				i, FDEV(i).path,
1774				FDEV(i).total_segments,
1775				FDEV(i).start_blk, FDEV(i).end_blk,
1776				bdev_zoned_model(FDEV(i).bdev) == BLK_ZONED_HA ?
1777				"Host-aware" : "Host-managed");
1778			continue;
1779		}
1780#endif
1781		f2fs_msg(sbi->sb, KERN_INFO,
1782			"Mount Device [%2d]: %20s, %8u, %8x - %8x",
1783				i, FDEV(i).path,
1784				FDEV(i).total_segments,
1785				FDEV(i).start_blk, FDEV(i).end_blk);
1786	}
 
1787	return 0;
1788}
1789
1790static int f2fs_fill_super(struct super_block *sb, void *data, int silent)
1791{
1792	struct f2fs_sb_info *sbi;
1793	struct f2fs_super_block *raw_super;
 
1794	struct inode *root;
1795	int err;
1796	bool retry = true, need_fsck = false;
1797	char *options = NULL;
1798	int recovery, i, valid_super_block;
1799	struct curseg_info *seg_i;
1800
1801try_onemore:
1802	err = -EINVAL;
1803	raw_super = NULL;
1804	valid_super_block = -1;
1805	recovery = 0;
1806
1807	/* allocate memory for f2fs-specific super block info */
1808	sbi = kzalloc(sizeof(struct f2fs_sb_info), GFP_KERNEL);
1809	if (!sbi)
1810		return -ENOMEM;
1811
1812	sbi->sb = sb;
1813
1814	/* Load the checksum driver */
1815	sbi->s_chksum_driver = crypto_alloc_shash("crc32", 0, 0);
1816	if (IS_ERR(sbi->s_chksum_driver)) {
1817		f2fs_msg(sb, KERN_ERR, "Cannot load crc32 driver.");
1818		err = PTR_ERR(sbi->s_chksum_driver);
1819		sbi->s_chksum_driver = NULL;
1820		goto free_sbi;
1821	}
1822
1823	/* set a block size */
1824	if (unlikely(!sb_set_blocksize(sb, F2FS_BLKSIZE))) {
1825		f2fs_msg(sb, KERN_ERR, "unable to set blocksize");
1826		goto free_sbi;
1827	}
1828
1829	err = read_raw_super_block(sbi, &raw_super, &valid_super_block,
1830								&recovery);
1831	if (err)
1832		goto free_sbi;
1833
1834	sb->s_fs_info = sbi;
1835	sbi->raw_super = raw_super;
 
 
 
1836
1837	/*
1838	 * The BLKZONED feature indicates that the drive was formatted with
1839	 * zone alignment optimization. This is optional for host-aware
1840	 * devices, but mandatory for host-managed zoned block devices.
1841	 */
1842#ifndef CONFIG_BLK_DEV_ZONED
1843	if (f2fs_sb_mounted_blkzoned(sb)) {
1844		f2fs_msg(sb, KERN_ERR,
1845			 "Zoned block device support is not enabled\n");
1846		goto free_sb_buf;
1847	}
1848#endif
1849	default_options(sbi);
1850	/* parse mount options */
1851	options = kstrdup((const char *)data, GFP_KERNEL);
1852	if (data && !options) {
1853		err = -ENOMEM;
1854		goto free_sb_buf;
1855	}
1856
1857	err = parse_options(sb, options);
1858	if (err)
1859		goto free_options;
1860
1861	sbi->max_file_blocks = max_file_blocks();
1862	sb->s_maxbytes = sbi->max_file_blocks <<
1863				le32_to_cpu(raw_super->log_blocksize);
1864	sb->s_max_links = F2FS_LINK_MAX;
1865	get_random_bytes(&sbi->s_next_generation, sizeof(u32));
1866
1867	sb->s_op = &f2fs_sops;
1868	sb->s_cop = &f2fs_cryptops;
1869	sb->s_xattr = f2fs_xattr_handlers;
1870	sb->s_export_op = &f2fs_export_ops;
1871	sb->s_magic = F2FS_SUPER_MAGIC;
1872	sb->s_time_gran = 1;
1873	sb->s_flags = (sb->s_flags & ~MS_POSIXACL) |
1874		(test_opt(sbi, POSIX_ACL) ? MS_POSIXACL : 0);
1875	memcpy(sb->s_uuid, raw_super->uuid, sizeof(raw_super->uuid));
1876
1877	/* init f2fs-specific super block info */
1878	sbi->valid_super_block = valid_super_block;
 
 
1879	mutex_init(&sbi->gc_mutex);
 
1880	mutex_init(&sbi->cp_mutex);
1881	init_rwsem(&sbi->node_write);
1882
1883	/* disallow all the data/node/meta page writes */
1884	set_sbi_flag(sbi, SBI_POR_DOING);
1885	spin_lock_init(&sbi->stat_lock);
1886
1887	init_rwsem(&sbi->read_io.io_rwsem);
1888	sbi->read_io.sbi = sbi;
1889	sbi->read_io.bio = NULL;
1890	for (i = 0; i < NR_PAGE_TYPE; i++) {
1891		init_rwsem(&sbi->write_io[i].io_rwsem);
1892		sbi->write_io[i].sbi = sbi;
1893		sbi->write_io[i].bio = NULL;
1894	}
1895
1896	init_rwsem(&sbi->cp_rwsem);
1897	init_waitqueue_head(&sbi->cp_wait);
1898	init_sb_info(sbi);
1899
1900	err = init_percpu_info(sbi);
1901	if (err)
1902		goto free_options;
1903
1904	/* get an inode for meta space */
1905	sbi->meta_inode = f2fs_iget(sb, F2FS_META_INO(sbi));
1906	if (IS_ERR(sbi->meta_inode)) {
1907		f2fs_msg(sb, KERN_ERR, "Failed to read F2FS meta data inode");
1908		err = PTR_ERR(sbi->meta_inode);
1909		goto free_options;
1910	}
1911
1912	err = get_valid_checkpoint(sbi);
1913	if (err) {
1914		f2fs_msg(sb, KERN_ERR, "Failed to get valid F2FS checkpoint");
1915		goto free_meta_inode;
1916	}
1917
1918	/* Initialize device list */
1919	err = f2fs_scan_devices(sbi);
1920	if (err) {
1921		f2fs_msg(sb, KERN_ERR, "Failed to find devices");
1922		goto free_devices;
1923	}
1924
1925	sbi->total_valid_node_count =
1926				le32_to_cpu(sbi->ckpt->valid_node_count);
1927	percpu_counter_set(&sbi->total_valid_inode_count,
1928				le32_to_cpu(sbi->ckpt->valid_inode_count));
1929	sbi->user_block_count = le64_to_cpu(sbi->ckpt->user_block_count);
1930	sbi->total_valid_block_count =
1931				le64_to_cpu(sbi->ckpt->valid_block_count);
1932	sbi->last_valid_block_count = sbi->total_valid_block_count;
 
 
 
1933
1934	for (i = 0; i < NR_INODE_TYPE; i++) {
1935		INIT_LIST_HEAD(&sbi->inode_list[i]);
1936		spin_lock_init(&sbi->inode_lock[i]);
1937	}
1938
1939	init_extent_cache_info(sbi);
1940
1941	init_ino_entry_info(sbi);
1942
1943	/* setup f2fs internal modules */
1944	err = build_segment_manager(sbi);
1945	if (err) {
1946		f2fs_msg(sb, KERN_ERR,
1947			"Failed to initialize F2FS segment manager");
1948		goto free_sm;
1949	}
1950	err = build_node_manager(sbi);
1951	if (err) {
1952		f2fs_msg(sb, KERN_ERR,
1953			"Failed to initialize F2FS node manager");
1954		goto free_nm;
1955	}
1956
1957	/* For write statistics */
1958	if (sb->s_bdev->bd_part)
1959		sbi->sectors_written_start =
1960			(u64)part_stat_read(sb->s_bdev->bd_part, sectors[1]);
1961
1962	/* Read accumulated write IO statistics if exists */
1963	seg_i = CURSEG_I(sbi, CURSEG_HOT_NODE);
1964	if (__exist_node_summaries(sbi))
1965		sbi->kbytes_written =
1966			le64_to_cpu(seg_i->journal->info.kbytes_written);
1967
1968	build_gc_manager(sbi);
1969
1970	/* get an inode for node space */
1971	sbi->node_inode = f2fs_iget(sb, F2FS_NODE_INO(sbi));
1972	if (IS_ERR(sbi->node_inode)) {
1973		f2fs_msg(sb, KERN_ERR, "Failed to read node inode");
1974		err = PTR_ERR(sbi->node_inode);
1975		goto free_nm;
1976	}
1977
1978	f2fs_join_shrinker(sbi);
1979
1980	/* if there are nt orphan nodes free them */
1981	err = recover_orphan_inodes(sbi);
1982	if (err)
1983		goto free_node_inode;
1984
1985	/* read root inode and dentry */
1986	root = f2fs_iget(sb, F2FS_ROOT_INO(sbi));
1987	if (IS_ERR(root)) {
1988		f2fs_msg(sb, KERN_ERR, "Failed to read root inode");
1989		err = PTR_ERR(root);
1990		goto free_node_inode;
1991	}
1992	if (!S_ISDIR(root->i_mode) || !root->i_blocks || !root->i_size) {
1993		iput(root);
1994		err = -EINVAL;
1995		goto free_node_inode;
1996	}
1997
1998	sb->s_root = d_make_root(root); /* allocate root dentry */
1999	if (!sb->s_root) {
2000		err = -ENOMEM;
2001		goto free_root_inode;
2002	}
2003
2004	err = f2fs_build_stats(sbi);
2005	if (err)
2006		goto free_root_inode;
2007
2008	if (f2fs_proc_root)
2009		sbi->s_proc = proc_mkdir(sb->s_id, f2fs_proc_root);
2010
2011	if (sbi->s_proc) {
2012		proc_create_data("segment_info", S_IRUGO, sbi->s_proc,
2013				 &f2fs_seq_segment_info_fops, sb);
2014		proc_create_data("segment_bits", S_IRUGO, sbi->s_proc,
2015				 &f2fs_seq_segment_bits_fops, sb);
 
 
 
 
 
2016	}
2017
2018	sbi->s_kobj.kset = f2fs_kset;
2019	init_completion(&sbi->s_kobj_unregister);
2020	err = kobject_init_and_add(&sbi->s_kobj, &f2fs_ktype, NULL,
2021							"%s", sb->s_id);
2022	if (err)
2023		goto free_proc;
2024
2025	/* recover fsynced data */
2026	if (!test_opt(sbi, DISABLE_ROLL_FORWARD)) {
2027		/*
2028		 * mount should be failed, when device has readonly mode, and
2029		 * previous checkpoint was not done by clean system shutdown.
2030		 */
2031		if (bdev_read_only(sb->s_bdev) &&
2032				!is_set_ckpt_flags(sbi, CP_UMOUNT_FLAG)) {
2033			err = -EROFS;
2034			goto free_kobj;
2035		}
2036
2037		if (need_fsck)
2038			set_sbi_flag(sbi, SBI_NEED_FSCK);
2039
2040		if (!retry)
2041			goto skip_recovery;
2042
2043		err = recover_fsync_data(sbi, false);
2044		if (err < 0) {
2045			need_fsck = true;
2046			f2fs_msg(sb, KERN_ERR,
2047				"Cannot recover all fsync data errno=%d", err);
2048			goto free_kobj;
2049		}
2050	} else {
2051		err = recover_fsync_data(sbi, true);
2052
2053		if (!f2fs_readonly(sb) && err > 0) {
2054			err = -EINVAL;
2055			f2fs_msg(sb, KERN_ERR,
2056				"Need to recover fsync data");
2057			goto free_kobj;
2058		}
2059	}
2060skip_recovery:
2061	/* recover_fsync_data() cleared this already */
2062	clear_sbi_flag(sbi, SBI_POR_DOING);
2063
2064	/*
2065	 * If filesystem is not mounted as read-only then
2066	 * do start the gc_thread.
2067	 */
2068	if (test_opt(sbi, BG_GC) && !f2fs_readonly(sb)) {
2069		/* After POR, we can run background GC thread.*/
2070		err = start_gc_thread(sbi);
2071		if (err)
2072			goto free_kobj;
2073	}
2074	kfree(options);
2075
2076	/* recover broken superblock */
2077	if (recovery) {
2078		err = f2fs_commit_super(sbi, true);
2079		f2fs_msg(sb, KERN_INFO,
2080			"Try to recover %dth superblock, ret: %d",
2081			sbi->valid_super_block ? 1 : 2, err);
2082	}
2083
2084	f2fs_update_time(sbi, CP_TIME);
2085	f2fs_update_time(sbi, REQ_TIME);
2086	return 0;
2087
2088free_kobj:
2089	f2fs_sync_inode_meta(sbi);
2090	kobject_del(&sbi->s_kobj);
2091	kobject_put(&sbi->s_kobj);
2092	wait_for_completion(&sbi->s_kobj_unregister);
2093free_proc:
2094	if (sbi->s_proc) {
2095		remove_proc_entry("segment_info", sbi->s_proc);
2096		remove_proc_entry("segment_bits", sbi->s_proc);
2097		remove_proc_entry(sb->s_id, f2fs_proc_root);
2098	}
2099	f2fs_destroy_stats(sbi);
2100free_root_inode:
2101	dput(sb->s_root);
2102	sb->s_root = NULL;
2103free_node_inode:
2104	truncate_inode_pages_final(NODE_MAPPING(sbi));
2105	mutex_lock(&sbi->umount_mutex);
2106	release_ino_entry(sbi, true);
2107	f2fs_leave_shrinker(sbi);
2108	/*
2109	 * Some dirty meta pages can be produced by recover_orphan_inodes()
2110	 * failed by EIO. Then, iput(node_inode) can trigger balance_fs_bg()
2111	 * followed by write_checkpoint() through f2fs_write_node_pages(), which
2112	 * falls into an infinite loop in sync_meta_pages().
2113	 */
2114	truncate_inode_pages_final(META_MAPPING(sbi));
2115	iput(sbi->node_inode);
2116	mutex_unlock(&sbi->umount_mutex);
2117free_nm:
2118	destroy_node_manager(sbi);
2119free_sm:
2120	destroy_segment_manager(sbi);
2121free_devices:
2122	destroy_device_list(sbi);
2123	kfree(sbi->ckpt);
2124free_meta_inode:
2125	make_bad_inode(sbi->meta_inode);
2126	iput(sbi->meta_inode);
2127free_options:
2128	destroy_percpu_info(sbi);
2129	kfree(options);
2130free_sb_buf:
2131	kfree(raw_super);
2132free_sbi:
2133	if (sbi->s_chksum_driver)
2134		crypto_free_shash(sbi->s_chksum_driver);
2135	kfree(sbi);
2136
2137	/* give only one another chance */
2138	if (retry) {
2139		retry = false;
2140		shrink_dcache_sb(sb);
2141		goto try_onemore;
2142	}
2143	return err;
2144}
2145
2146static struct dentry *f2fs_mount(struct file_system_type *fs_type, int flags,
2147			const char *dev_name, void *data)
2148{
2149	return mount_bdev(fs_type, flags, dev_name, data, f2fs_fill_super);
2150}
2151
2152static void kill_f2fs_super(struct super_block *sb)
2153{
2154	if (sb->s_root)
2155		set_sbi_flag(F2FS_SB(sb), SBI_IS_CLOSE);
2156	kill_block_super(sb);
2157}
2158
2159static struct file_system_type f2fs_fs_type = {
2160	.owner		= THIS_MODULE,
2161	.name		= "f2fs",
2162	.mount		= f2fs_mount,
2163	.kill_sb	= kill_f2fs_super,
2164	.fs_flags	= FS_REQUIRES_DEV,
2165};
2166MODULE_ALIAS_FS("f2fs");
2167
2168static int __init init_inodecache(void)
2169{
2170	f2fs_inode_cachep = kmem_cache_create("f2fs_inode_cache",
2171			sizeof(struct f2fs_inode_info), 0,
2172			SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT, NULL);
2173	if (!f2fs_inode_cachep)
2174		return -ENOMEM;
2175	return 0;
2176}
2177
2178static void destroy_inodecache(void)
2179{
2180	/*
2181	 * Make sure all delayed rcu free inodes are flushed before we
2182	 * destroy cache.
2183	 */
2184	rcu_barrier();
2185	kmem_cache_destroy(f2fs_inode_cachep);
2186}
2187
2188static int __init init_f2fs_fs(void)
2189{
2190	int err;
2191
2192	f2fs_build_trace_ios();
2193
2194	err = init_inodecache();
2195	if (err)
2196		goto fail;
2197	err = create_node_manager_caches();
2198	if (err)
2199		goto free_inodecache;
2200	err = create_segment_manager_caches();
2201	if (err)
2202		goto free_node_manager_caches;
2203	err = create_checkpoint_caches();
2204	if (err)
2205		goto free_segment_manager_caches;
2206	err = create_extent_cache();
2207	if (err)
2208		goto free_checkpoint_caches;
2209	f2fs_kset = kset_create_and_add("f2fs", NULL, fs_kobj);
2210	if (!f2fs_kset) {
2211		err = -ENOMEM;
2212		goto free_extent_cache;
2213	}
2214	err = register_shrinker(&f2fs_shrinker_info);
2215	if (err)
2216		goto free_kset;
2217
2218	err = register_filesystem(&f2fs_fs_type);
2219	if (err)
2220		goto free_shrinker;
2221	err = f2fs_create_root_stats();
2222	if (err)
2223		goto free_filesystem;
2224	f2fs_proc_root = proc_mkdir("fs/f2fs", NULL);
2225	return 0;
2226
2227free_filesystem:
2228	unregister_filesystem(&f2fs_fs_type);
2229free_shrinker:
2230	unregister_shrinker(&f2fs_shrinker_info);
2231free_kset:
2232	kset_unregister(f2fs_kset);
2233free_extent_cache:
2234	destroy_extent_cache();
2235free_checkpoint_caches:
2236	destroy_checkpoint_caches();
 
 
2237free_segment_manager_caches:
2238	destroy_segment_manager_caches();
2239free_node_manager_caches:
2240	destroy_node_manager_caches();
2241free_inodecache:
2242	destroy_inodecache();
2243fail:
2244	return err;
2245}
2246
2247static void __exit exit_f2fs_fs(void)
2248{
2249	remove_proc_entry("fs/f2fs", NULL);
2250	f2fs_destroy_root_stats();
2251	unregister_filesystem(&f2fs_fs_type);
2252	unregister_shrinker(&f2fs_shrinker_info);
2253	kset_unregister(f2fs_kset);
2254	destroy_extent_cache();
2255	destroy_checkpoint_caches();
 
2256	destroy_segment_manager_caches();
2257	destroy_node_manager_caches();
2258	destroy_inodecache();
2259	f2fs_destroy_trace_ios();
2260}
2261
2262module_init(init_f2fs_fs)
2263module_exit(exit_f2fs_fs)
2264
2265MODULE_AUTHOR("Samsung Electronics's Praesto Team");
2266MODULE_DESCRIPTION("Flash Friendly File System");
2267MODULE_LICENSE("GPL");
2268