Linux Audio

Check our new training course

Open-source upstreaming

Need help get the support for your hardware in upstream Linux?
Loading...
v3.15
   1/*
   2 *  Fast Userspace Mutexes (which I call "Futexes!").
   3 *  (C) Rusty Russell, IBM 2002
   4 *
   5 *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
   6 *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
   7 *
   8 *  Removed page pinning, fix privately mapped COW pages and other cleanups
   9 *  (C) Copyright 2003, 2004 Jamie Lokier
  10 *
  11 *  Robust futex support started by Ingo Molnar
  12 *  (C) Copyright 2006 Red Hat Inc, All Rights Reserved
  13 *  Thanks to Thomas Gleixner for suggestions, analysis and fixes.
  14 *
  15 *  PI-futex support started by Ingo Molnar and Thomas Gleixner
  16 *  Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
  17 *  Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
  18 *
  19 *  PRIVATE futexes by Eric Dumazet
  20 *  Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
  21 *
  22 *  Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
  23 *  Copyright (C) IBM Corporation, 2009
  24 *  Thanks to Thomas Gleixner for conceptual design and careful reviews.
  25 *
  26 *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
  27 *  enough at me, Linus for the original (flawed) idea, Matthew
  28 *  Kirkwood for proof-of-concept implementation.
  29 *
  30 *  "The futexes are also cursed."
  31 *  "But they come in a choice of three flavours!"
  32 *
  33 *  This program is free software; you can redistribute it and/or modify
  34 *  it under the terms of the GNU General Public License as published by
  35 *  the Free Software Foundation; either version 2 of the License, or
  36 *  (at your option) any later version.
  37 *
  38 *  This program is distributed in the hope that it will be useful,
  39 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
  40 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  41 *  GNU General Public License for more details.
  42 *
  43 *  You should have received a copy of the GNU General Public License
  44 *  along with this program; if not, write to the Free Software
  45 *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  46 */
  47#include <linux/slab.h>
  48#include <linux/poll.h>
  49#include <linux/fs.h>
  50#include <linux/file.h>
  51#include <linux/jhash.h>
  52#include <linux/init.h>
  53#include <linux/futex.h>
  54#include <linux/mount.h>
  55#include <linux/pagemap.h>
  56#include <linux/syscalls.h>
  57#include <linux/signal.h>
  58#include <linux/export.h>
  59#include <linux/magic.h>
  60#include <linux/pid.h>
  61#include <linux/nsproxy.h>
  62#include <linux/ptrace.h>
  63#include <linux/sched/rt.h>
 
 
  64#include <linux/hugetlb.h>
  65#include <linux/freezer.h>
  66#include <linux/bootmem.h>
 
  67
  68#include <asm/futex.h>
  69
  70#include "locking/rtmutex_common.h"
  71
  72/*
  73 * READ this before attempting to hack on futexes!
  74 *
  75 * Basic futex operation and ordering guarantees
  76 * =============================================
  77 *
  78 * The waiter reads the futex value in user space and calls
  79 * futex_wait(). This function computes the hash bucket and acquires
  80 * the hash bucket lock. After that it reads the futex user space value
  81 * again and verifies that the data has not changed. If it has not changed
  82 * it enqueues itself into the hash bucket, releases the hash bucket lock
  83 * and schedules.
  84 *
  85 * The waker side modifies the user space value of the futex and calls
  86 * futex_wake(). This function computes the hash bucket and acquires the
  87 * hash bucket lock. Then it looks for waiters on that futex in the hash
  88 * bucket and wakes them.
  89 *
  90 * In futex wake up scenarios where no tasks are blocked on a futex, taking
  91 * the hb spinlock can be avoided and simply return. In order for this
  92 * optimization to work, ordering guarantees must exist so that the waiter
  93 * being added to the list is acknowledged when the list is concurrently being
  94 * checked by the waker, avoiding scenarios like the following:
  95 *
  96 * CPU 0                               CPU 1
  97 * val = *futex;
  98 * sys_futex(WAIT, futex, val);
  99 *   futex_wait(futex, val);
 100 *   uval = *futex;
 101 *                                     *futex = newval;
 102 *                                     sys_futex(WAKE, futex);
 103 *                                       futex_wake(futex);
 104 *                                       if (queue_empty())
 105 *                                         return;
 106 *   if (uval == val)
 107 *      lock(hash_bucket(futex));
 108 *      queue();
 109 *     unlock(hash_bucket(futex));
 110 *     schedule();
 111 *
 112 * This would cause the waiter on CPU 0 to wait forever because it
 113 * missed the transition of the user space value from val to newval
 114 * and the waker did not find the waiter in the hash bucket queue.
 115 *
 116 * The correct serialization ensures that a waiter either observes
 117 * the changed user space value before blocking or is woken by a
 118 * concurrent waker:
 119 *
 120 * CPU 0                                 CPU 1
 121 * val = *futex;
 122 * sys_futex(WAIT, futex, val);
 123 *   futex_wait(futex, val);
 124 *
 125 *   waiters++; (a)
 126 *   mb(); (A) <-- paired with -.
 127 *                              |
 128 *   lock(hash_bucket(futex));  |
 129 *                              |
 130 *   uval = *futex;             |
 131 *                              |        *futex = newval;
 132 *                              |        sys_futex(WAKE, futex);
 133 *                              |          futex_wake(futex);
 134 *                              |
 135 *                              `------->  mb(); (B)
 136 *   if (uval == val)
 137 *     queue();
 138 *     unlock(hash_bucket(futex));
 139 *     schedule();                         if (waiters)
 140 *                                           lock(hash_bucket(futex));
 141 *   else                                    wake_waiters(futex);
 142 *     waiters--; (b)                        unlock(hash_bucket(futex));
 143 *
 144 * Where (A) orders the waiters increment and the futex value read through
 145 * atomic operations (see hb_waiters_inc) and where (B) orders the write
 146 * to futex and the waiters read -- this is done by the barriers in
 147 * get_futex_key_refs(), through either ihold or atomic_inc, depending on the
 148 * futex type.
 149 *
 150 * This yields the following case (where X:=waiters, Y:=futex):
 151 *
 152 *	X = Y = 0
 153 *
 154 *	w[X]=1		w[Y]=1
 155 *	MB		MB
 156 *	r[Y]=y		r[X]=x
 157 *
 158 * Which guarantees that x==0 && y==0 is impossible; which translates back into
 159 * the guarantee that we cannot both miss the futex variable change and the
 160 * enqueue.
 161 *
 162 * Note that a new waiter is accounted for in (a) even when it is possible that
 163 * the wait call can return error, in which case we backtrack from it in (b).
 164 * Refer to the comment in queue_lock().
 165 *
 166 * Similarly, in order to account for waiters being requeued on another
 167 * address we always increment the waiters for the destination bucket before
 168 * acquiring the lock. It then decrements them again  after releasing it -
 169 * the code that actually moves the futex(es) between hash buckets (requeue_futex)
 170 * will do the additional required waiter count housekeeping. This is done for
 171 * double_lock_hb() and double_unlock_hb(), respectively.
 172 */
 173
 174#ifndef CONFIG_HAVE_FUTEX_CMPXCHG
 175int __read_mostly futex_cmpxchg_enabled;
 176#endif
 177
 178/*
 179 * Futex flags used to encode options to functions and preserve them across
 180 * restarts.
 181 */
 182#define FLAGS_SHARED		0x01
 
 
 
 
 
 
 
 
 183#define FLAGS_CLOCKRT		0x02
 184#define FLAGS_HAS_TIMEOUT	0x04
 185
 186/*
 187 * Priority Inheritance state:
 188 */
 189struct futex_pi_state {
 190	/*
 191	 * list of 'owned' pi_state instances - these have to be
 192	 * cleaned up in do_exit() if the task exits prematurely:
 193	 */
 194	struct list_head list;
 195
 196	/*
 197	 * The PI object:
 198	 */
 199	struct rt_mutex pi_mutex;
 200
 201	struct task_struct *owner;
 202	atomic_t refcount;
 203
 204	union futex_key key;
 205};
 206
 207/**
 208 * struct futex_q - The hashed futex queue entry, one per waiting task
 209 * @list:		priority-sorted list of tasks waiting on this futex
 210 * @task:		the task waiting on the futex
 211 * @lock_ptr:		the hash bucket lock
 212 * @key:		the key the futex is hashed on
 213 * @pi_state:		optional priority inheritance state
 214 * @rt_waiter:		rt_waiter storage for use with requeue_pi
 215 * @requeue_pi_key:	the requeue_pi target futex key
 216 * @bitset:		bitset for the optional bitmasked wakeup
 217 *
 218 * We use this hashed waitqueue, instead of a normal wait_queue_t, so
 219 * we can wake only the relevant ones (hashed queues may be shared).
 220 *
 221 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
 222 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
 223 * The order of wakeup is always to make the first condition true, then
 224 * the second.
 225 *
 226 * PI futexes are typically woken before they are removed from the hash list via
 227 * the rt_mutex code. See unqueue_me_pi().
 228 */
 229struct futex_q {
 230	struct plist_node list;
 231
 232	struct task_struct *task;
 233	spinlock_t *lock_ptr;
 234	union futex_key key;
 235	struct futex_pi_state *pi_state;
 236	struct rt_mutex_waiter *rt_waiter;
 237	union futex_key *requeue_pi_key;
 238	u32 bitset;
 239};
 240
 241static const struct futex_q futex_q_init = {
 242	/* list gets initialized in queue_me()*/
 243	.key = FUTEX_KEY_INIT,
 244	.bitset = FUTEX_BITSET_MATCH_ANY
 245};
 246
 247/*
 248 * Hash buckets are shared by all the futex_keys that hash to the same
 249 * location.  Each key may have multiple futex_q structures, one for each task
 250 * waiting on a futex.
 251 */
 252struct futex_hash_bucket {
 253	atomic_t waiters;
 254	spinlock_t lock;
 255	struct plist_head chain;
 256} ____cacheline_aligned_in_smp;
 257
 258static unsigned long __read_mostly futex_hashsize;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 259
 260static struct futex_hash_bucket *futex_queues;
 
 
 
 
 
 
 
 
 
 261
 262static inline void futex_get_mm(union futex_key *key)
 263{
 264	atomic_inc(&key->private.mm->mm_count);
 265	/*
 266	 * Ensure futex_get_mm() implies a full barrier such that
 267	 * get_futex_key() implies a full barrier. This is relied upon
 268	 * as full barrier (B), see the ordering comment above.
 269	 */
 270	smp_mb__after_atomic_inc();
 271}
 272
 273/*
 274 * Reflects a new waiter being added to the waitqueue.
 275 */
 276static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
 277{
 278#ifdef CONFIG_SMP
 279	atomic_inc(&hb->waiters);
 280	/*
 281	 * Full barrier (A), see the ordering comment above.
 282	 */
 283	smp_mb__after_atomic_inc();
 284#endif
 285}
 286
 287/*
 288 * Reflects a waiter being removed from the waitqueue by wakeup
 289 * paths.
 290 */
 291static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
 292{
 293#ifdef CONFIG_SMP
 294	atomic_dec(&hb->waiters);
 295#endif
 296}
 297
 298static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
 299{
 300#ifdef CONFIG_SMP
 301	return atomic_read(&hb->waiters);
 302#else
 303	return 1;
 304#endif
 305}
 306
 307/*
 308 * We hash on the keys returned from get_futex_key (see below).
 
 
 
 
 309 */
 310static struct futex_hash_bucket *hash_futex(union futex_key *key)
 311{
 312	u32 hash = jhash2((u32*)&key->both.word,
 313			  (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
 314			  key->both.offset);
 315	return &futex_queues[hash & (futex_hashsize - 1)];
 316}
 317
 318/*
 
 
 
 
 
 319 * Return 1 if two futex_keys are equal, 0 otherwise.
 320 */
 321static inline int match_futex(union futex_key *key1, union futex_key *key2)
 322{
 323	return (key1 && key2
 324		&& key1->both.word == key2->both.word
 325		&& key1->both.ptr == key2->both.ptr
 326		&& key1->both.offset == key2->both.offset);
 327}
 328
 329/*
 330 * Take a reference to the resource addressed by a key.
 331 * Can be called while holding spinlocks.
 332 *
 333 */
 334static void get_futex_key_refs(union futex_key *key)
 335{
 336	if (!key->both.ptr)
 337		return;
 338
 
 
 
 
 
 
 
 
 
 
 339	switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
 340	case FUT_OFF_INODE:
 341		ihold(key->shared.inode); /* implies MB (B) */
 342		break;
 343	case FUT_OFF_MMSHARED:
 344		futex_get_mm(key); /* implies MB (B) */
 345		break;
 
 
 
 
 
 
 
 346	}
 347}
 348
 349/*
 350 * Drop a reference to the resource addressed by a key.
 351 * The hash bucket spinlock must not be held.
 
 
 352 */
 353static void drop_futex_key_refs(union futex_key *key)
 354{
 355	if (!key->both.ptr) {
 356		/* If we're here then we tried to put a key we failed to get */
 357		WARN_ON_ONCE(1);
 358		return;
 359	}
 360
 
 
 
 361	switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
 362	case FUT_OFF_INODE:
 363		iput(key->shared.inode);
 364		break;
 365	case FUT_OFF_MMSHARED:
 366		mmdrop(key->private.mm);
 367		break;
 368	}
 369}
 370
 371/**
 372 * get_futex_key() - Get parameters which are the keys for a futex
 373 * @uaddr:	virtual address of the futex
 374 * @fshared:	0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
 375 * @key:	address where result is stored.
 376 * @rw:		mapping needs to be read/write (values: VERIFY_READ,
 377 *              VERIFY_WRITE)
 378 *
 379 * Return: a negative error code or 0
 380 *
 381 * The key words are stored in *key on success.
 382 *
 383 * For shared mappings, it's (page->index, file_inode(vma->vm_file),
 384 * offset_within_page).  For private mappings, it's (uaddr, current->mm).
 385 * We can usually work out the index without swapping in the page.
 386 *
 387 * lock_page() might sleep, the caller should not hold a spinlock.
 388 */
 389static int
 390get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
 391{
 392	unsigned long address = (unsigned long)uaddr;
 393	struct mm_struct *mm = current->mm;
 394	struct page *page, *page_head;
 
 395	int err, ro = 0;
 396
 397	/*
 398	 * The futex address must be "naturally" aligned.
 399	 */
 400	key->both.offset = address % PAGE_SIZE;
 401	if (unlikely((address % sizeof(u32)) != 0))
 402		return -EINVAL;
 403	address -= key->both.offset;
 404
 405	if (unlikely(!access_ok(rw, uaddr, sizeof(u32))))
 406		return -EFAULT;
 407
 
 
 
 408	/*
 409	 * PROCESS_PRIVATE futexes are fast.
 410	 * As the mm cannot disappear under us and the 'key' only needs
 411	 * virtual address, we dont even have to find the underlying vma.
 412	 * Note : We do have to check 'uaddr' is a valid user address,
 413	 *        but access_ok() should be faster than find_vma()
 414	 */
 415	if (!fshared) {
 416		key->private.mm = mm;
 417		key->private.address = address;
 418		get_futex_key_refs(key);  /* implies MB (B) */
 419		return 0;
 420	}
 421
 422again:
 
 
 
 
 423	err = get_user_pages_fast(address, 1, 1, &page);
 424	/*
 425	 * If write access is not required (eg. FUTEX_WAIT), try
 426	 * and get read-only access.
 427	 */
 428	if (err == -EFAULT && rw == VERIFY_READ) {
 429		err = get_user_pages_fast(address, 1, 0, &page);
 430		ro = 1;
 431	}
 432	if (err < 0)
 433		return err;
 434	else
 435		err = 0;
 436
 437#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 438	page_head = page;
 439	if (unlikely(PageTail(page))) {
 440		put_page(page);
 441		/* serialize against __split_huge_page_splitting() */
 442		local_irq_disable();
 443		if (likely(__get_user_pages_fast(address, 1, !ro, &page) == 1)) {
 444			page_head = compound_head(page);
 445			/*
 446			 * page_head is valid pointer but we must pin
 447			 * it before taking the PG_lock and/or
 448			 * PG_compound_lock. The moment we re-enable
 449			 * irqs __split_huge_page_splitting() can
 450			 * return and the head page can be freed from
 451			 * under us. We can't take the PG_lock and/or
 452			 * PG_compound_lock on a page that could be
 453			 * freed from under us.
 454			 */
 455			if (page != page_head) {
 456				get_page(page_head);
 457				put_page(page);
 458			}
 459			local_irq_enable();
 460		} else {
 461			local_irq_enable();
 462			goto again;
 463		}
 464	}
 465#else
 466	page_head = compound_head(page);
 467	if (page != page_head) {
 468		get_page(page_head);
 469		put_page(page);
 470	}
 471#endif
 472
 473	lock_page(page_head);
 474
 475	/*
 476	 * If page_head->mapping is NULL, then it cannot be a PageAnon
 477	 * page; but it might be the ZERO_PAGE or in the gate area or
 478	 * in a special mapping (all cases which we are happy to fail);
 479	 * or it may have been a good file page when get_user_pages_fast
 480	 * found it, but truncated or holepunched or subjected to
 481	 * invalidate_complete_page2 before we got the page lock (also
 482	 * cases which we are happy to fail).  And we hold a reference,
 483	 * so refcount care in invalidate_complete_page's remove_mapping
 484	 * prevents drop_caches from setting mapping to NULL beneath us.
 485	 *
 486	 * The case we do have to guard against is when memory pressure made
 487	 * shmem_writepage move it from filecache to swapcache beneath us:
 488	 * an unlikely race, but we do need to retry for page_head->mapping.
 489	 */
 490	if (!page_head->mapping) {
 491		int shmem_swizzled = PageSwapCache(page_head);
 492		unlock_page(page_head);
 493		put_page(page_head);
 
 
 
 
 
 
 
 
 
 494		if (shmem_swizzled)
 495			goto again;
 
 496		return -EFAULT;
 497	}
 498
 499	/*
 500	 * Private mappings are handled in a simple way.
 501	 *
 
 
 
 502	 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
 503	 * it's a read-only handle, it's expected that futexes attach to
 504	 * the object not the particular process.
 505	 */
 506	if (PageAnon(page_head)) {
 507		/*
 508		 * A RO anonymous page will never change and thus doesn't make
 509		 * sense for futex operations.
 510		 */
 511		if (ro) {
 512			err = -EFAULT;
 513			goto out;
 514		}
 515
 516		key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
 517		key->private.mm = mm;
 518		key->private.address = address;
 
 
 
 519	} else {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 520		key->both.offset |= FUT_OFF_INODE; /* inode-based key */
 521		key->shared.inode = page_head->mapping->host;
 522		key->shared.pgoff = basepage_index(page);
 
 523	}
 524
 525	get_futex_key_refs(key); /* implies MB (B) */
 526
 527out:
 528	unlock_page(page_head);
 529	put_page(page_head);
 530	return err;
 531}
 532
 533static inline void put_futex_key(union futex_key *key)
 534{
 535	drop_futex_key_refs(key);
 536}
 537
 538/**
 539 * fault_in_user_writeable() - Fault in user address and verify RW access
 540 * @uaddr:	pointer to faulting user space address
 541 *
 542 * Slow path to fixup the fault we just took in the atomic write
 543 * access to @uaddr.
 544 *
 545 * We have no generic implementation of a non-destructive write to the
 546 * user address. We know that we faulted in the atomic pagefault
 547 * disabled section so we can as well avoid the #PF overhead by
 548 * calling get_user_pages() right away.
 549 */
 550static int fault_in_user_writeable(u32 __user *uaddr)
 551{
 552	struct mm_struct *mm = current->mm;
 553	int ret;
 554
 555	down_read(&mm->mmap_sem);
 556	ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
 557			       FAULT_FLAG_WRITE);
 558	up_read(&mm->mmap_sem);
 559
 560	return ret < 0 ? ret : 0;
 561}
 562
 563/**
 564 * futex_top_waiter() - Return the highest priority waiter on a futex
 565 * @hb:		the hash bucket the futex_q's reside in
 566 * @key:	the futex key (to distinguish it from other futex futex_q's)
 567 *
 568 * Must be called with the hb lock held.
 569 */
 570static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
 571					union futex_key *key)
 572{
 573	struct futex_q *this;
 574
 575	plist_for_each_entry(this, &hb->chain, list) {
 576		if (match_futex(&this->key, key))
 577			return this;
 578	}
 579	return NULL;
 580}
 581
 582static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
 583				      u32 uval, u32 newval)
 584{
 585	int ret;
 586
 587	pagefault_disable();
 588	ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
 589	pagefault_enable();
 590
 591	return ret;
 592}
 593
 594static int get_futex_value_locked(u32 *dest, u32 __user *from)
 595{
 596	int ret;
 597
 598	pagefault_disable();
 599	ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
 600	pagefault_enable();
 601
 602	return ret ? -EFAULT : 0;
 603}
 604
 605
 606/*
 607 * PI code:
 608 */
 609static int refill_pi_state_cache(void)
 610{
 611	struct futex_pi_state *pi_state;
 612
 613	if (likely(current->pi_state_cache))
 614		return 0;
 615
 616	pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
 617
 618	if (!pi_state)
 619		return -ENOMEM;
 620
 621	INIT_LIST_HEAD(&pi_state->list);
 622	/* pi_mutex gets initialized later */
 623	pi_state->owner = NULL;
 624	atomic_set(&pi_state->refcount, 1);
 625	pi_state->key = FUTEX_KEY_INIT;
 626
 627	current->pi_state_cache = pi_state;
 628
 629	return 0;
 630}
 631
 632static struct futex_pi_state * alloc_pi_state(void)
 633{
 634	struct futex_pi_state *pi_state = current->pi_state_cache;
 635
 636	WARN_ON(!pi_state);
 637	current->pi_state_cache = NULL;
 638
 639	return pi_state;
 640}
 641
 642static void free_pi_state(struct futex_pi_state *pi_state)
 643{
 
 
 
 
 
 
 
 
 
 
 
 
 644	if (!atomic_dec_and_test(&pi_state->refcount))
 645		return;
 646
 647	/*
 648	 * If pi_state->owner is NULL, the owner is most probably dying
 649	 * and has cleaned up the pi_state already
 650	 */
 651	if (pi_state->owner) {
 652		raw_spin_lock_irq(&pi_state->owner->pi_lock);
 653		list_del_init(&pi_state->list);
 654		raw_spin_unlock_irq(&pi_state->owner->pi_lock);
 655
 656		rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
 
 
 
 
 
 
 
 
 657	}
 658
 659	if (current->pi_state_cache)
 660		kfree(pi_state);
 661	else {
 662		/*
 663		 * pi_state->list is already empty.
 664		 * clear pi_state->owner.
 665		 * refcount is at 0 - put it back to 1.
 666		 */
 667		pi_state->owner = NULL;
 668		atomic_set(&pi_state->refcount, 1);
 669		current->pi_state_cache = pi_state;
 670	}
 671}
 672
 673/*
 674 * Look up the task based on what TID userspace gave us.
 675 * We dont trust it.
 676 */
 677static struct task_struct * futex_find_get_task(pid_t pid)
 678{
 679	struct task_struct *p;
 680
 681	rcu_read_lock();
 682	p = find_task_by_vpid(pid);
 683	if (p)
 684		get_task_struct(p);
 685
 686	rcu_read_unlock();
 687
 688	return p;
 689}
 690
 691/*
 692 * This task is holding PI mutexes at exit time => bad.
 693 * Kernel cleans up PI-state, but userspace is likely hosed.
 694 * (Robust-futex cleanup is separate and might save the day for userspace.)
 695 */
 696void exit_pi_state_list(struct task_struct *curr)
 697{
 698	struct list_head *next, *head = &curr->pi_state_list;
 699	struct futex_pi_state *pi_state;
 700	struct futex_hash_bucket *hb;
 701	union futex_key key = FUTEX_KEY_INIT;
 702
 703	if (!futex_cmpxchg_enabled)
 704		return;
 705	/*
 706	 * We are a ZOMBIE and nobody can enqueue itself on
 707	 * pi_state_list anymore, but we have to be careful
 708	 * versus waiters unqueueing themselves:
 709	 */
 710	raw_spin_lock_irq(&curr->pi_lock);
 711	while (!list_empty(head)) {
 712
 713		next = head->next;
 714		pi_state = list_entry(next, struct futex_pi_state, list);
 715		key = pi_state->key;
 716		hb = hash_futex(&key);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 717		raw_spin_unlock_irq(&curr->pi_lock);
 718
 719		spin_lock(&hb->lock);
 720
 721		raw_spin_lock_irq(&curr->pi_lock);
 722		/*
 723		 * We dropped the pi-lock, so re-check whether this
 724		 * task still owns the PI-state:
 725		 */
 726		if (head->next != next) {
 
 
 727			spin_unlock(&hb->lock);
 
 728			continue;
 729		}
 730
 731		WARN_ON(pi_state->owner != curr);
 732		WARN_ON(list_empty(&pi_state->list));
 733		list_del_init(&pi_state->list);
 734		pi_state->owner = NULL;
 735		raw_spin_unlock_irq(&curr->pi_lock);
 736
 737		rt_mutex_unlock(&pi_state->pi_mutex);
 738
 
 
 739		spin_unlock(&hb->lock);
 740
 
 
 
 741		raw_spin_lock_irq(&curr->pi_lock);
 742	}
 743	raw_spin_unlock_irq(&curr->pi_lock);
 744}
 745
 
 
 746/*
 747 * We need to check the following states:
 748 *
 749 *      Waiter | pi_state | pi->owner | uTID      | uODIED | ?
 750 *
 751 * [1]  NULL   | ---      | ---       | 0         | 0/1    | Valid
 752 * [2]  NULL   | ---      | ---       | >0        | 0/1    | Valid
 753 *
 754 * [3]  Found  | NULL     | --        | Any       | 0/1    | Invalid
 755 *
 756 * [4]  Found  | Found    | NULL      | 0         | 1      | Valid
 757 * [5]  Found  | Found    | NULL      | >0        | 1      | Invalid
 758 *
 759 * [6]  Found  | Found    | task      | 0         | 1      | Valid
 760 *
 761 * [7]  Found  | Found    | NULL      | Any       | 0      | Invalid
 762 *
 763 * [8]  Found  | Found    | task      | ==taskTID | 0/1    | Valid
 764 * [9]  Found  | Found    | task      | 0         | 0      | Invalid
 765 * [10] Found  | Found    | task      | !=taskTID | 0/1    | Invalid
 766 *
 767 * [1]	Indicates that the kernel can acquire the futex atomically. We
 768 *	came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
 769 *
 770 * [2]	Valid, if TID does not belong to a kernel thread. If no matching
 771 *      thread is found then it indicates that the owner TID has died.
 772 *
 773 * [3]	Invalid. The waiter is queued on a non PI futex
 774 *
 775 * [4]	Valid state after exit_robust_list(), which sets the user space
 776 *	value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
 777 *
 778 * [5]	The user space value got manipulated between exit_robust_list()
 779 *	and exit_pi_state_list()
 780 *
 781 * [6]	Valid state after exit_pi_state_list() which sets the new owner in
 782 *	the pi_state but cannot access the user space value.
 783 *
 784 * [7]	pi_state->owner can only be NULL when the OWNER_DIED bit is set.
 785 *
 786 * [8]	Owner and user space value match
 787 *
 788 * [9]	There is no transient state which sets the user space TID to 0
 789 *	except exit_robust_list(), but this is indicated by the
 790 *	FUTEX_OWNER_DIED bit. See [4]
 791 *
 792 * [10] There is no transient state which leaves owner and user space
 793 *	TID out of sync.
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 794 */
 795static int
 796lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
 797		union futex_key *key, struct futex_pi_state **ps)
 
 
 
 
 
 
 798{
 799	struct futex_pi_state *pi_state = NULL;
 800	struct futex_q *this, *next;
 801	struct task_struct *p;
 802	pid_t pid = uval & FUTEX_TID_MASK;
 
 
 803
 804	plist_for_each_entry_safe(this, next, &hb->chain, list) {
 805		if (match_futex(&this->key, key)) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 806			/*
 807			 * Sanity check the waiter before increasing
 808			 * the refcount and attaching to it.
 809			 */
 810			pi_state = this->pi_state;
 
 811			/*
 812			 * Userspace might have messed up non-PI and
 813			 * PI futexes [3]
 814			 */
 815			if (unlikely(!pi_state))
 816				return -EINVAL;
 817
 818			WARN_ON(!atomic_read(&pi_state->refcount));
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 819
 820			/*
 821			 * Handle the owner died case:
 822			 */
 823			if (uval & FUTEX_OWNER_DIED) {
 824				/*
 825				 * exit_pi_state_list sets owner to NULL and
 826				 * wakes the topmost waiter. The task which
 827				 * acquires the pi_state->rt_mutex will fixup
 828				 * owner.
 829				 */
 830				if (!pi_state->owner) {
 831					/*
 832					 * No pi state owner, but the user
 833					 * space TID is not 0. Inconsistent
 834					 * state. [5]
 835					 */
 836					if (pid)
 837						return -EINVAL;
 838					/*
 839					 * Take a ref on the state and
 840					 * return. [4]
 841					 */
 842					goto out_state;
 843				}
 844
 845				/*
 846				 * If TID is 0, then either the dying owner
 847				 * has not yet executed exit_pi_state_list()
 848				 * or some waiter acquired the rtmutex in the
 849				 * pi state, but did not yet fixup the TID in
 850				 * user space.
 851				 *
 852				 * Take a ref on the state and return. [6]
 853				 */
 854				if (!pid)
 855					goto out_state;
 856			} else {
 857				/*
 858				 * If the owner died bit is not set,
 859				 * then the pi_state must have an
 860				 * owner. [7]
 861				 */
 862				if (!pi_state->owner)
 863					return -EINVAL;
 864			}
 865
 866			/*
 867			 * Bail out if user space manipulated the
 868			 * futex value. If pi state exists then the
 869			 * owner TID must be the same as the user
 870			 * space TID. [9/10]
 871			 */
 872			if (pid != task_pid_vnr(pi_state->owner))
 873				return -EINVAL;
 
 
 
 874
 875		out_state:
 876			atomic_inc(&pi_state->refcount);
 877			*ps = pi_state;
 878			return 0;
 879		}
 880	}
 
 
 
 
 
 
 
 
 
 881
 882	/*
 883	 * We are the first waiter - try to look up the real owner and attach
 884	 * the new pi_state to it, but bail out when TID = 0 [1]
 885	 */
 886	if (!pid)
 887		return -ESRCH;
 888	p = futex_find_get_task(pid);
 889	if (!p)
 890		return -ESRCH;
 891
 892	if (!p->mm) {
 893		put_task_struct(p);
 894		return -EPERM;
 895	}
 896
 897	/*
 898	 * We need to look at the task state flags to figure out,
 899	 * whether the task is exiting. To protect against the do_exit
 900	 * change of the task flags, we do this protected by
 901	 * p->pi_lock:
 902	 */
 903	raw_spin_lock_irq(&p->pi_lock);
 904	if (unlikely(p->flags & PF_EXITING)) {
 905		/*
 906		 * The task is on the way out. When PF_EXITPIDONE is
 907		 * set, we know that the task has finished the
 908		 * cleanup:
 909		 */
 910		int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
 911
 912		raw_spin_unlock_irq(&p->pi_lock);
 913		put_task_struct(p);
 914		return ret;
 915	}
 916
 917	/*
 918	 * No existing pi state. First waiter. [2]
 
 
 
 919	 */
 920	pi_state = alloc_pi_state();
 921
 922	/*
 923	 * Initialize the pi_mutex in locked state and make 'p'
 924	 * the owner of it:
 925	 */
 926	rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
 927
 928	/* Store the key for possible exit cleanups: */
 929	pi_state->key = *key;
 930
 931	WARN_ON(!list_empty(&pi_state->list));
 932	list_add(&pi_state->list, &p->pi_state_list);
 
 
 
 
 933	pi_state->owner = p;
 934	raw_spin_unlock_irq(&p->pi_lock);
 935
 936	put_task_struct(p);
 937
 938	*ps = pi_state;
 939
 940	return 0;
 941}
 942
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 943/**
 944 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
 945 * @uaddr:		the pi futex user address
 946 * @hb:			the pi futex hash bucket
 947 * @key:		the futex key associated with uaddr and hb
 948 * @ps:			the pi_state pointer where we store the result of the
 949 *			lookup
 950 * @task:		the task to perform the atomic lock work for.  This will
 951 *			be "current" except in the case of requeue pi.
 952 * @set_waiters:	force setting the FUTEX_WAITERS bit (1) or not (0)
 953 *
 954 * Return:
 955 *  0 - ready to wait;
 956 *  1 - acquired the lock;
 957 * <0 - error
 958 *
 959 * The hb->lock and futex_key refs shall be held by the caller.
 960 */
 961static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
 962				union futex_key *key,
 963				struct futex_pi_state **ps,
 964				struct task_struct *task, int set_waiters)
 965{
 966	int lock_taken, ret, force_take = 0;
 967	u32 uval, newval, curval, vpid = task_pid_vnr(task);
 968
 969retry:
 970	ret = lock_taken = 0;
 971
 972	/*
 973	 * To avoid races, we attempt to take the lock here again
 974	 * (by doing a 0 -> TID atomic cmpxchg), while holding all
 975	 * the locks. It will most likely not succeed.
 976	 */
 977	newval = vpid;
 978	if (set_waiters)
 979		newval |= FUTEX_WAITERS;
 980
 981	if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, 0, newval)))
 982		return -EFAULT;
 983
 984	/*
 985	 * Detect deadlocks.
 986	 */
 987	if ((unlikely((curval & FUTEX_TID_MASK) == vpid)))
 988		return -EDEADLK;
 989
 990	/*
 991	 * Surprise - we got the lock, but we do not trust user space at all.
 992	 */
 993	if (unlikely(!curval)) {
 994		/*
 995		 * We verify whether there is kernel state for this
 996		 * futex. If not, we can safely assume, that the 0 ->
 997		 * TID transition is correct. If state exists, we do
 998		 * not bother to fixup the user space state as it was
 999		 * corrupted already.
1000		 */
1001		return futex_top_waiter(hb, key) ? -EINVAL : 1;
1002	}
1003
1004	uval = curval;
1005
1006	/*
1007	 * Set the FUTEX_WAITERS flag, so the owner will know it has someone
1008	 * to wake at the next unlock.
1009	 */
1010	newval = curval | FUTEX_WAITERS;
 
 
1011
1012	/*
1013	 * Should we force take the futex? See below.
 
 
 
1014	 */
1015	if (unlikely(force_take)) {
1016		/*
1017		 * Keep the OWNER_DIED and the WAITERS bit and set the
1018		 * new TID value.
1019		 */
1020		newval = (curval & ~FUTEX_TID_MASK) | vpid;
1021		force_take = 0;
1022		lock_taken = 1;
1023	}
1024
1025	if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
1026		return -EFAULT;
1027	if (unlikely(curval != uval))
1028		goto retry;
 
 
 
 
1029
1030	/*
1031	 * We took the lock due to forced take over.
 
 
1032	 */
1033	if (unlikely(lock_taken))
1034		return 1;
1035
 
1036	/*
1037	 * We dont have the lock. Look up the PI state (or create it if
1038	 * we are the first waiter):
 
1039	 */
1040	ret = lookup_pi_state(uval, hb, key, ps);
1041
1042	if (unlikely(ret)) {
1043		switch (ret) {
1044		case -ESRCH:
1045			/*
1046			 * We failed to find an owner for this
1047			 * futex. So we have no pi_state to block
1048			 * on. This can happen in two cases:
1049			 *
1050			 * 1) The owner died
1051			 * 2) A stale FUTEX_WAITERS bit
1052			 *
1053			 * Re-read the futex value.
1054			 */
1055			if (get_futex_value_locked(&curval, uaddr))
1056				return -EFAULT;
1057
1058			/*
1059			 * If the owner died or we have a stale
1060			 * WAITERS bit the owner TID in the user space
1061			 * futex is 0.
1062			 */
1063			if (!(curval & FUTEX_TID_MASK)) {
1064				force_take = 1;
1065				goto retry;
1066			}
1067		default:
1068			break;
1069		}
1070	}
1071
1072	return ret;
1073}
1074
1075/**
1076 * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
1077 * @q:	The futex_q to unqueue
1078 *
1079 * The q->lock_ptr must not be NULL and must be held by the caller.
1080 */
1081static void __unqueue_futex(struct futex_q *q)
1082{
1083	struct futex_hash_bucket *hb;
1084
1085	if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
1086	    || WARN_ON(plist_node_empty(&q->list)))
1087		return;
1088
1089	hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
1090	plist_del(&q->list, &hb->chain);
1091	hb_waiters_dec(hb);
1092}
1093
1094/*
1095 * The hash bucket lock must be held when this is called.
1096 * Afterwards, the futex_q must not be accessed.
 
 
1097 */
1098static void wake_futex(struct futex_q *q)
1099{
1100	struct task_struct *p = q->task;
1101
1102	if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
1103		return;
1104
1105	/*
1106	 * We set q->lock_ptr = NULL _before_ we wake up the task. If
1107	 * a non-futex wake up happens on another CPU then the task
1108	 * might exit and p would dereference a non-existing task
1109	 * struct. Prevent this by holding a reference on p across the
1110	 * wake up.
1111	 */
1112	get_task_struct(p);
1113
1114	__unqueue_futex(q);
1115	/*
1116	 * The waiting task can free the futex_q as soon as
1117	 * q->lock_ptr = NULL is written, without taking any locks. A
1118	 * memory barrier is required here to prevent the following
1119	 * store to lock_ptr from getting ahead of the plist_del.
 
1120	 */
1121	smp_wmb();
1122	q->lock_ptr = NULL;
1123
1124	wake_up_state(p, TASK_NORMAL);
1125	put_task_struct(p);
1126}
1127
1128static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
 
 
 
1129{
1130	struct task_struct *new_owner;
1131	struct futex_pi_state *pi_state = this->pi_state;
1132	u32 uninitialized_var(curval), newval;
 
 
 
1133	int ret = 0;
1134
1135	if (!pi_state)
1136		return -EINVAL;
1137
1138	/*
1139	 * If current does not own the pi_state then the futex is
1140	 * inconsistent and user space fiddled with the futex value.
1141	 */
1142	if (pi_state->owner != current)
1143		return -EINVAL;
1144
1145	raw_spin_lock(&pi_state->pi_mutex.wait_lock);
1146	new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
 
 
 
 
 
 
 
 
 
 
 
 
1147
1148	/*
1149	 * It is possible that the next waiter (the one that brought
1150	 * this owner to the kernel) timed out and is no longer
1151	 * waiting on the lock.
1152	 */
1153	if (!new_owner)
1154		new_owner = this->task;
1155
1156	/*
1157	 * We pass it to the next owner. The WAITERS bit is always
1158	 * kept enabled while there is PI state around. We cleanup the
1159	 * owner died bit, because we are the owner.
1160	 */
1161	newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
1162
1163	if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
1164		ret = -EFAULT;
1165	else if (curval != uval)
1166		ret = -EINVAL;
1167	if (ret) {
1168		raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
1169		return ret;
 
 
 
 
 
 
 
 
 
 
1170	}
1171
1172	raw_spin_lock_irq(&pi_state->owner->pi_lock);
 
 
 
 
 
 
 
 
1173	WARN_ON(list_empty(&pi_state->list));
1174	list_del_init(&pi_state->list);
1175	raw_spin_unlock_irq(&pi_state->owner->pi_lock);
1176
1177	raw_spin_lock_irq(&new_owner->pi_lock);
1178	WARN_ON(!list_empty(&pi_state->list));
1179	list_add(&pi_state->list, &new_owner->pi_state_list);
1180	pi_state->owner = new_owner;
1181	raw_spin_unlock_irq(&new_owner->pi_lock);
1182
1183	raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
1184	rt_mutex_unlock(&pi_state->pi_mutex);
1185
1186	return 0;
1187}
1188
1189static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
1190{
1191	u32 uninitialized_var(oldval);
1192
1193	/*
1194	 * There is no waiter, so we unlock the futex. The owner died
1195	 * bit has not to be preserved here. We are the owner:
1196	 */
1197	if (cmpxchg_futex_value_locked(&oldval, uaddr, uval, 0))
1198		return -EFAULT;
1199	if (oldval != uval)
1200		return -EAGAIN;
1201
1202	return 0;
1203}
1204
1205/*
1206 * Express the locking dependencies for lockdep:
1207 */
1208static inline void
1209double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1210{
1211	if (hb1 <= hb2) {
1212		spin_lock(&hb1->lock);
1213		if (hb1 < hb2)
1214			spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1215	} else { /* hb1 > hb2 */
1216		spin_lock(&hb2->lock);
1217		spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1218	}
1219}
1220
1221static inline void
1222double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1223{
1224	spin_unlock(&hb1->lock);
1225	if (hb1 != hb2)
1226		spin_unlock(&hb2->lock);
1227}
1228
1229/*
1230 * Wake up waiters matching bitset queued on this futex (uaddr).
1231 */
1232static int
1233futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1234{
1235	struct futex_hash_bucket *hb;
1236	struct futex_q *this, *next;
1237	union futex_key key = FUTEX_KEY_INIT;
1238	int ret;
 
1239
1240	if (!bitset)
1241		return -EINVAL;
1242
1243	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
1244	if (unlikely(ret != 0))
1245		goto out;
1246
1247	hb = hash_futex(&key);
1248
1249	/* Make sure we really have tasks to wakeup */
1250	if (!hb_waiters_pending(hb))
1251		goto out_put_key;
1252
1253	spin_lock(&hb->lock);
1254
1255	plist_for_each_entry_safe(this, next, &hb->chain, list) {
1256		if (match_futex (&this->key, &key)) {
1257			if (this->pi_state || this->rt_waiter) {
1258				ret = -EINVAL;
1259				break;
1260			}
1261
1262			/* Check if one of the bits is set in both bitsets */
1263			if (!(this->bitset & bitset))
1264				continue;
1265
1266			wake_futex(this);
1267			if (++ret >= nr_wake)
1268				break;
1269		}
1270	}
1271
1272	spin_unlock(&hb->lock);
 
1273out_put_key:
1274	put_futex_key(&key);
1275out:
1276	return ret;
1277}
1278
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1279/*
1280 * Wake up all waiters hashed on the physical page that is mapped
1281 * to this virtual address:
1282 */
1283static int
1284futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1285	      int nr_wake, int nr_wake2, int op)
1286{
1287	union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1288	struct futex_hash_bucket *hb1, *hb2;
1289	struct futex_q *this, *next;
1290	int ret, op_ret;
 
1291
1292retry:
1293	ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1294	if (unlikely(ret != 0))
1295		goto out;
1296	ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
1297	if (unlikely(ret != 0))
1298		goto out_put_key1;
1299
1300	hb1 = hash_futex(&key1);
1301	hb2 = hash_futex(&key2);
1302
1303retry_private:
1304	double_lock_hb(hb1, hb2);
1305	op_ret = futex_atomic_op_inuser(op, uaddr2);
1306	if (unlikely(op_ret < 0)) {
1307
1308		double_unlock_hb(hb1, hb2);
1309
1310#ifndef CONFIG_MMU
1311		/*
1312		 * we don't get EFAULT from MMU faults if we don't have an MMU,
1313		 * but we might get them from range checking
1314		 */
1315		ret = op_ret;
1316		goto out_put_keys;
1317#endif
1318
1319		if (unlikely(op_ret != -EFAULT)) {
1320			ret = op_ret;
1321			goto out_put_keys;
1322		}
1323
1324		ret = fault_in_user_writeable(uaddr2);
1325		if (ret)
1326			goto out_put_keys;
1327
1328		if (!(flags & FLAGS_SHARED))
1329			goto retry_private;
1330
1331		put_futex_key(&key2);
1332		put_futex_key(&key1);
1333		goto retry;
1334	}
1335
1336	plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1337		if (match_futex (&this->key, &key1)) {
1338			if (this->pi_state || this->rt_waiter) {
1339				ret = -EINVAL;
1340				goto out_unlock;
1341			}
1342			wake_futex(this);
1343			if (++ret >= nr_wake)
1344				break;
1345		}
1346	}
1347
1348	if (op_ret > 0) {
1349		op_ret = 0;
1350		plist_for_each_entry_safe(this, next, &hb2->chain, list) {
1351			if (match_futex (&this->key, &key2)) {
1352				if (this->pi_state || this->rt_waiter) {
1353					ret = -EINVAL;
1354					goto out_unlock;
1355				}
1356				wake_futex(this);
1357				if (++op_ret >= nr_wake2)
1358					break;
1359			}
1360		}
1361		ret += op_ret;
1362	}
1363
1364out_unlock:
1365	double_unlock_hb(hb1, hb2);
 
1366out_put_keys:
1367	put_futex_key(&key2);
1368out_put_key1:
1369	put_futex_key(&key1);
1370out:
1371	return ret;
1372}
1373
1374/**
1375 * requeue_futex() - Requeue a futex_q from one hb to another
1376 * @q:		the futex_q to requeue
1377 * @hb1:	the source hash_bucket
1378 * @hb2:	the target hash_bucket
1379 * @key2:	the new key for the requeued futex_q
1380 */
1381static inline
1382void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1383		   struct futex_hash_bucket *hb2, union futex_key *key2)
1384{
1385
1386	/*
1387	 * If key1 and key2 hash to the same bucket, no need to
1388	 * requeue.
1389	 */
1390	if (likely(&hb1->chain != &hb2->chain)) {
1391		plist_del(&q->list, &hb1->chain);
1392		hb_waiters_dec(hb1);
1393		plist_add(&q->list, &hb2->chain);
1394		hb_waiters_inc(hb2);
 
1395		q->lock_ptr = &hb2->lock;
1396	}
1397	get_futex_key_refs(key2);
1398	q->key = *key2;
1399}
1400
1401/**
1402 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1403 * @q:		the futex_q
1404 * @key:	the key of the requeue target futex
1405 * @hb:		the hash_bucket of the requeue target futex
1406 *
1407 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1408 * target futex if it is uncontended or via a lock steal.  Set the futex_q key
1409 * to the requeue target futex so the waiter can detect the wakeup on the right
1410 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1411 * atomic lock acquisition.  Set the q->lock_ptr to the requeue target hb->lock
1412 * to protect access to the pi_state to fixup the owner later.  Must be called
1413 * with both q->lock_ptr and hb->lock held.
1414 */
1415static inline
1416void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1417			   struct futex_hash_bucket *hb)
1418{
1419	get_futex_key_refs(key);
1420	q->key = *key;
1421
1422	__unqueue_futex(q);
1423
1424	WARN_ON(!q->rt_waiter);
1425	q->rt_waiter = NULL;
1426
1427	q->lock_ptr = &hb->lock;
1428
1429	wake_up_state(q->task, TASK_NORMAL);
1430}
1431
1432/**
1433 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1434 * @pifutex:		the user address of the to futex
1435 * @hb1:		the from futex hash bucket, must be locked by the caller
1436 * @hb2:		the to futex hash bucket, must be locked by the caller
1437 * @key1:		the from futex key
1438 * @key2:		the to futex key
1439 * @ps:			address to store the pi_state pointer
1440 * @set_waiters:	force setting the FUTEX_WAITERS bit (1) or not (0)
1441 *
1442 * Try and get the lock on behalf of the top waiter if we can do it atomically.
1443 * Wake the top waiter if we succeed.  If the caller specified set_waiters,
1444 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1445 * hb1 and hb2 must be held by the caller.
1446 *
1447 * Return:
1448 *  0 - failed to acquire the lock atomically;
1449 * >0 - acquired the lock, return value is vpid of the top_waiter
1450 * <0 - error
1451 */
1452static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1453				 struct futex_hash_bucket *hb1,
1454				 struct futex_hash_bucket *hb2,
1455				 union futex_key *key1, union futex_key *key2,
1456				 struct futex_pi_state **ps, int set_waiters)
1457{
1458	struct futex_q *top_waiter = NULL;
1459	u32 curval;
1460	int ret, vpid;
1461
1462	if (get_futex_value_locked(&curval, pifutex))
1463		return -EFAULT;
1464
 
 
 
1465	/*
1466	 * Find the top_waiter and determine if there are additional waiters.
1467	 * If the caller intends to requeue more than 1 waiter to pifutex,
1468	 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1469	 * as we have means to handle the possible fault.  If not, don't set
1470	 * the bit unecessarily as it will force the subsequent unlock to enter
1471	 * the kernel.
1472	 */
1473	top_waiter = futex_top_waiter(hb1, key1);
1474
1475	/* There are no waiters, nothing for us to do. */
1476	if (!top_waiter)
1477		return 0;
1478
1479	/* Ensure we requeue to the expected futex. */
1480	if (!match_futex(top_waiter->requeue_pi_key, key2))
1481		return -EINVAL;
1482
1483	/*
1484	 * Try to take the lock for top_waiter.  Set the FUTEX_WAITERS bit in
1485	 * the contended case or if set_waiters is 1.  The pi_state is returned
1486	 * in ps in contended cases.
1487	 */
1488	vpid = task_pid_vnr(top_waiter->task);
1489	ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1490				   set_waiters);
1491	if (ret == 1) {
1492		requeue_pi_wake_futex(top_waiter, key2, hb2);
1493		return vpid;
1494	}
1495	return ret;
1496}
1497
1498/**
1499 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1500 * @uaddr1:	source futex user address
1501 * @flags:	futex flags (FLAGS_SHARED, etc.)
1502 * @uaddr2:	target futex user address
1503 * @nr_wake:	number of waiters to wake (must be 1 for requeue_pi)
1504 * @nr_requeue:	number of waiters to requeue (0-INT_MAX)
1505 * @cmpval:	@uaddr1 expected value (or %NULL)
1506 * @requeue_pi:	if we are attempting to requeue from a non-pi futex to a
1507 *		pi futex (pi to pi requeue is not supported)
1508 *
1509 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1510 * uaddr2 atomically on behalf of the top waiter.
1511 *
1512 * Return:
1513 * >=0 - on success, the number of tasks requeued or woken;
1514 *  <0 - on error
1515 */
1516static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1517			 u32 __user *uaddr2, int nr_wake, int nr_requeue,
1518			 u32 *cmpval, int requeue_pi)
1519{
1520	union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1521	int drop_count = 0, task_count = 0, ret;
1522	struct futex_pi_state *pi_state = NULL;
1523	struct futex_hash_bucket *hb1, *hb2;
1524	struct futex_q *this, *next;
 
 
 
 
 
 
 
 
 
 
 
 
 
1525
1526	if (requeue_pi) {
1527		/*
1528		 * Requeue PI only works on two distinct uaddrs. This
1529		 * check is only valid for private futexes. See below.
1530		 */
1531		if (uaddr1 == uaddr2)
1532			return -EINVAL;
1533
1534		/*
1535		 * requeue_pi requires a pi_state, try to allocate it now
1536		 * without any locks in case it fails.
1537		 */
1538		if (refill_pi_state_cache())
1539			return -ENOMEM;
1540		/*
1541		 * requeue_pi must wake as many tasks as it can, up to nr_wake
1542		 * + nr_requeue, since it acquires the rt_mutex prior to
1543		 * returning to userspace, so as to not leave the rt_mutex with
1544		 * waiters and no owner.  However, second and third wake-ups
1545		 * cannot be predicted as they involve race conditions with the
1546		 * first wake and a fault while looking up the pi_state.  Both
1547		 * pthread_cond_signal() and pthread_cond_broadcast() should
1548		 * use nr_wake=1.
1549		 */
1550		if (nr_wake != 1)
1551			return -EINVAL;
1552	}
1553
1554retry:
1555	if (pi_state != NULL) {
1556		/*
1557		 * We will have to lookup the pi_state again, so free this one
1558		 * to keep the accounting correct.
1559		 */
1560		free_pi_state(pi_state);
1561		pi_state = NULL;
1562	}
1563
1564	ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1565	if (unlikely(ret != 0))
1566		goto out;
1567	ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1568			    requeue_pi ? VERIFY_WRITE : VERIFY_READ);
1569	if (unlikely(ret != 0))
1570		goto out_put_key1;
1571
1572	/*
1573	 * The check above which compares uaddrs is not sufficient for
1574	 * shared futexes. We need to compare the keys:
1575	 */
1576	if (requeue_pi && match_futex(&key1, &key2)) {
1577		ret = -EINVAL;
1578		goto out_put_keys;
1579	}
1580
1581	hb1 = hash_futex(&key1);
1582	hb2 = hash_futex(&key2);
1583
1584retry_private:
1585	hb_waiters_inc(hb2);
1586	double_lock_hb(hb1, hb2);
1587
1588	if (likely(cmpval != NULL)) {
1589		u32 curval;
1590
1591		ret = get_futex_value_locked(&curval, uaddr1);
1592
1593		if (unlikely(ret)) {
1594			double_unlock_hb(hb1, hb2);
1595			hb_waiters_dec(hb2);
1596
1597			ret = get_user(curval, uaddr1);
1598			if (ret)
1599				goto out_put_keys;
1600
1601			if (!(flags & FLAGS_SHARED))
1602				goto retry_private;
1603
1604			put_futex_key(&key2);
1605			put_futex_key(&key1);
1606			goto retry;
1607		}
1608		if (curval != *cmpval) {
1609			ret = -EAGAIN;
1610			goto out_unlock;
1611		}
1612	}
1613
1614	if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
1615		/*
1616		 * Attempt to acquire uaddr2 and wake the top waiter. If we
1617		 * intend to requeue waiters, force setting the FUTEX_WAITERS
1618		 * bit.  We force this here where we are able to easily handle
1619		 * faults rather in the requeue loop below.
1620		 */
1621		ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
1622						 &key2, &pi_state, nr_requeue);
1623
1624		/*
1625		 * At this point the top_waiter has either taken uaddr2 or is
1626		 * waiting on it.  If the former, then the pi_state will not
1627		 * exist yet, look it up one more time to ensure we have a
1628		 * reference to it. If the lock was taken, ret contains the
1629		 * vpid of the top waiter task.
 
 
1630		 */
1631		if (ret > 0) {
1632			WARN_ON(pi_state);
1633			drop_count++;
1634			task_count++;
1635			/*
1636			 * If we acquired the lock, then the user
1637			 * space value of uaddr2 should be vpid. It
1638			 * cannot be changed by the top waiter as it
1639			 * is blocked on hb2 lock if it tries to do
1640			 * so. If something fiddled with it behind our
1641			 * back the pi state lookup might unearth
1642			 * it. So we rather use the known value than
1643			 * rereading and handing potential crap to
1644			 * lookup_pi_state.
 
1645			 */
1646			ret = lookup_pi_state(ret, hb2, &key2, &pi_state);
1647		}
1648
1649		switch (ret) {
1650		case 0:
 
1651			break;
 
 
1652		case -EFAULT:
1653			double_unlock_hb(hb1, hb2);
1654			hb_waiters_dec(hb2);
1655			put_futex_key(&key2);
1656			put_futex_key(&key1);
1657			ret = fault_in_user_writeable(uaddr2);
1658			if (!ret)
1659				goto retry;
1660			goto out;
1661		case -EAGAIN:
1662			/* The owner was exiting, try again. */
 
 
 
 
 
1663			double_unlock_hb(hb1, hb2);
1664			hb_waiters_dec(hb2);
1665			put_futex_key(&key2);
1666			put_futex_key(&key1);
1667			cond_resched();
1668			goto retry;
1669		default:
1670			goto out_unlock;
1671		}
1672	}
1673
1674	plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1675		if (task_count - nr_wake >= nr_requeue)
1676			break;
1677
1678		if (!match_futex(&this->key, &key1))
1679			continue;
1680
1681		/*
1682		 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
1683		 * be paired with each other and no other futex ops.
1684		 *
1685		 * We should never be requeueing a futex_q with a pi_state,
1686		 * which is awaiting a futex_unlock_pi().
1687		 */
1688		if ((requeue_pi && !this->rt_waiter) ||
1689		    (!requeue_pi && this->rt_waiter) ||
1690		    this->pi_state) {
1691			ret = -EINVAL;
1692			break;
1693		}
1694
1695		/*
1696		 * Wake nr_wake waiters.  For requeue_pi, if we acquired the
1697		 * lock, we already woke the top_waiter.  If not, it will be
1698		 * woken by futex_unlock_pi().
1699		 */
1700		if (++task_count <= nr_wake && !requeue_pi) {
1701			wake_futex(this);
1702			continue;
1703		}
1704
1705		/* Ensure we requeue to the expected futex for requeue_pi. */
1706		if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
1707			ret = -EINVAL;
1708			break;
1709		}
1710
1711		/*
1712		 * Requeue nr_requeue waiters and possibly one more in the case
1713		 * of requeue_pi if we couldn't acquire the lock atomically.
1714		 */
1715		if (requeue_pi) {
1716			/* Prepare the waiter to take the rt_mutex. */
1717			atomic_inc(&pi_state->refcount);
 
 
 
 
1718			this->pi_state = pi_state;
1719			ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
1720							this->rt_waiter,
1721							this->task, 1);
1722			if (ret == 1) {
1723				/* We got the lock. */
 
 
 
 
 
 
 
1724				requeue_pi_wake_futex(this, &key2, hb2);
1725				drop_count++;
1726				continue;
1727			} else if (ret) {
1728				/* -EDEADLK */
 
 
 
 
 
 
 
1729				this->pi_state = NULL;
1730				free_pi_state(pi_state);
1731				goto out_unlock;
 
 
 
 
1732			}
1733		}
1734		requeue_futex(this, hb1, hb2, &key2);
1735		drop_count++;
1736	}
1737
 
 
 
 
 
 
 
1738out_unlock:
1739	double_unlock_hb(hb1, hb2);
 
1740	hb_waiters_dec(hb2);
1741
1742	/*
1743	 * drop_futex_key_refs() must be called outside the spinlocks. During
1744	 * the requeue we moved futex_q's from the hash bucket at key1 to the
1745	 * one at key2 and updated their key pointer.  We no longer need to
1746	 * hold the references to key1.
1747	 */
1748	while (--drop_count >= 0)
1749		drop_futex_key_refs(&key1);
1750
1751out_put_keys:
1752	put_futex_key(&key2);
1753out_put_key1:
1754	put_futex_key(&key1);
1755out:
1756	if (pi_state != NULL)
1757		free_pi_state(pi_state);
1758	return ret ? ret : task_count;
1759}
1760
1761/* The key must be already stored in q->key. */
1762static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
1763	__acquires(&hb->lock)
1764{
1765	struct futex_hash_bucket *hb;
1766
1767	hb = hash_futex(&q->key);
1768
1769	/*
1770	 * Increment the counter before taking the lock so that
1771	 * a potential waker won't miss a to-be-slept task that is
1772	 * waiting for the spinlock. This is safe as all queue_lock()
1773	 * users end up calling queue_me(). Similarly, for housekeeping,
1774	 * decrement the counter at queue_unlock() when some error has
1775	 * occurred and we don't end up adding the task to the list.
1776	 */
1777	hb_waiters_inc(hb);
1778
1779	q->lock_ptr = &hb->lock;
1780
1781	spin_lock(&hb->lock); /* implies MB (A) */
1782	return hb;
1783}
1784
1785static inline void
1786queue_unlock(struct futex_hash_bucket *hb)
1787	__releases(&hb->lock)
1788{
1789	spin_unlock(&hb->lock);
1790	hb_waiters_dec(hb);
1791}
1792
1793/**
1794 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
1795 * @q:	The futex_q to enqueue
1796 * @hb:	The destination hash bucket
1797 *
1798 * The hb->lock must be held by the caller, and is released here. A call to
1799 * queue_me() is typically paired with exactly one call to unqueue_me().  The
1800 * exceptions involve the PI related operations, which may use unqueue_me_pi()
1801 * or nothing if the unqueue is done as part of the wake process and the unqueue
1802 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
1803 * an example).
1804 */
1805static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
1806	__releases(&hb->lock)
1807{
1808	int prio;
1809
1810	/*
1811	 * The priority used to register this element is
1812	 * - either the real thread-priority for the real-time threads
1813	 * (i.e. threads with a priority lower than MAX_RT_PRIO)
1814	 * - or MAX_RT_PRIO for non-RT threads.
1815	 * Thus, all RT-threads are woken first in priority order, and
1816	 * the others are woken last, in FIFO order.
1817	 */
1818	prio = min(current->normal_prio, MAX_RT_PRIO);
1819
1820	plist_node_init(&q->list, prio);
1821	plist_add(&q->list, &hb->chain);
1822	q->task = current;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1823	spin_unlock(&hb->lock);
1824}
1825
1826/**
1827 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
1828 * @q:	The futex_q to unqueue
1829 *
1830 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
1831 * be paired with exactly one earlier call to queue_me().
1832 *
1833 * Return:
1834 *   1 - if the futex_q was still queued (and we removed unqueued it);
1835 *   0 - if the futex_q was already removed by the waking thread
1836 */
1837static int unqueue_me(struct futex_q *q)
1838{
1839	spinlock_t *lock_ptr;
1840	int ret = 0;
1841
1842	/* In the common case we don't take the spinlock, which is nice. */
1843retry:
1844	lock_ptr = q->lock_ptr;
1845	barrier();
 
 
 
 
1846	if (lock_ptr != NULL) {
1847		spin_lock(lock_ptr);
1848		/*
1849		 * q->lock_ptr can change between reading it and
1850		 * spin_lock(), causing us to take the wrong lock.  This
1851		 * corrects the race condition.
1852		 *
1853		 * Reasoning goes like this: if we have the wrong lock,
1854		 * q->lock_ptr must have changed (maybe several times)
1855		 * between reading it and the spin_lock().  It can
1856		 * change again after the spin_lock() but only if it was
1857		 * already changed before the spin_lock().  It cannot,
1858		 * however, change back to the original value.  Therefore
1859		 * we can detect whether we acquired the correct lock.
1860		 */
1861		if (unlikely(lock_ptr != q->lock_ptr)) {
1862			spin_unlock(lock_ptr);
1863			goto retry;
1864		}
1865		__unqueue_futex(q);
1866
1867		BUG_ON(q->pi_state);
1868
1869		spin_unlock(lock_ptr);
1870		ret = 1;
1871	}
1872
1873	drop_futex_key_refs(&q->key);
1874	return ret;
1875}
1876
1877/*
1878 * PI futexes can not be requeued and must remove themself from the
1879 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
1880 * and dropped here.
1881 */
1882static void unqueue_me_pi(struct futex_q *q)
1883	__releases(q->lock_ptr)
1884{
1885	__unqueue_futex(q);
1886
1887	BUG_ON(!q->pi_state);
1888	free_pi_state(q->pi_state);
1889	q->pi_state = NULL;
1890
1891	spin_unlock(q->lock_ptr);
1892}
1893
1894/*
1895 * Fixup the pi_state owner with the new owner.
1896 *
1897 * Must be called with hash bucket lock held and mm->sem held for non
1898 * private futexes.
1899 */
1900static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
1901				struct task_struct *newowner)
1902{
1903	u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
1904	struct futex_pi_state *pi_state = q->pi_state;
1905	struct task_struct *oldowner = pi_state->owner;
1906	u32 uval, uninitialized_var(curval), newval;
 
 
1907	int ret;
1908
1909	/* Owner died? */
1910	if (!pi_state->owner)
1911		newtid |= FUTEX_OWNER_DIED;
 
 
1912
1913	/*
1914	 * We are here either because we stole the rtmutex from the
1915	 * previous highest priority waiter or we are the highest priority
1916	 * waiter but failed to get the rtmutex the first time.
1917	 * We have to replace the newowner TID in the user space variable.
 
 
 
 
 
 
 
1918	 * This must be atomic as we have to preserve the owner died bit here.
1919	 *
1920	 * Note: We write the user space value _before_ changing the pi_state
1921	 * because we can fault here. Imagine swapped out pages or a fork
1922	 * that marked all the anonymous memory readonly for cow.
1923	 *
1924	 * Modifying pi_state _before_ the user space value would
1925	 * leave the pi_state in an inconsistent state when we fault
1926	 * here, because we need to drop the hash bucket lock to
1927	 * handle the fault. This might be observed in the PID check
1928	 * in lookup_pi_state.
1929	 */
1930retry:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1931	if (get_futex_value_locked(&uval, uaddr))
1932		goto handle_fault;
1933
1934	while (1) {
1935		newval = (uval & FUTEX_OWNER_DIED) | newtid;
1936
1937		if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
1938			goto handle_fault;
1939		if (curval == uval)
1940			break;
1941		uval = curval;
1942	}
1943
1944	/*
1945	 * We fixed up user space. Now we need to fix the pi_state
1946	 * itself.
1947	 */
1948	if (pi_state->owner != NULL) {
1949		raw_spin_lock_irq(&pi_state->owner->pi_lock);
1950		WARN_ON(list_empty(&pi_state->list));
1951		list_del_init(&pi_state->list);
1952		raw_spin_unlock_irq(&pi_state->owner->pi_lock);
1953	}
1954
1955	pi_state->owner = newowner;
1956
1957	raw_spin_lock_irq(&newowner->pi_lock);
1958	WARN_ON(!list_empty(&pi_state->list));
1959	list_add(&pi_state->list, &newowner->pi_state_list);
1960	raw_spin_unlock_irq(&newowner->pi_lock);
 
 
1961	return 0;
1962
1963	/*
1964	 * To handle the page fault we need to drop the hash bucket
1965	 * lock here. That gives the other task (either the highest priority
1966	 * waiter itself or the task which stole the rtmutex) the
1967	 * chance to try the fixup of the pi_state. So once we are
1968	 * back from handling the fault we need to check the pi_state
1969	 * after reacquiring the hash bucket lock and before trying to
1970	 * do another fixup. When the fixup has been done already we
1971	 * simply return.
 
 
 
1972	 */
1973handle_fault:
 
1974	spin_unlock(q->lock_ptr);
1975
1976	ret = fault_in_user_writeable(uaddr);
1977
1978	spin_lock(q->lock_ptr);
 
1979
1980	/*
1981	 * Check if someone else fixed it for us:
1982	 */
1983	if (pi_state->owner != oldowner)
1984		return 0;
 
 
1985
1986	if (ret)
1987		return ret;
1988
1989	goto retry;
 
 
 
 
1990}
1991
1992static long futex_wait_restart(struct restart_block *restart);
1993
1994/**
1995 * fixup_owner() - Post lock pi_state and corner case management
1996 * @uaddr:	user address of the futex
1997 * @q:		futex_q (contains pi_state and access to the rt_mutex)
1998 * @locked:	if the attempt to take the rt_mutex succeeded (1) or not (0)
1999 *
2000 * After attempting to lock an rt_mutex, this function is called to cleanup
2001 * the pi_state owner as well as handle race conditions that may allow us to
2002 * acquire the lock. Must be called with the hb lock held.
2003 *
2004 * Return:
2005 *  1 - success, lock taken;
2006 *  0 - success, lock not taken;
2007 * <0 - on error (-EFAULT)
2008 */
2009static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
2010{
2011	struct task_struct *owner;
2012	int ret = 0;
2013
2014	if (locked) {
2015		/*
2016		 * Got the lock. We might not be the anticipated owner if we
2017		 * did a lock-steal - fix up the PI-state in that case:
 
 
 
 
2018		 */
2019		if (q->pi_state->owner != current)
2020			ret = fixup_pi_state_owner(uaddr, q, current);
2021		goto out;
2022	}
2023
2024	/*
2025	 * Catch the rare case, where the lock was released when we were on the
2026	 * way back before we locked the hash bucket.
 
 
 
 
2027	 */
2028	if (q->pi_state->owner == current) {
2029		/*
2030		 * Try to get the rt_mutex now. This might fail as some other
2031		 * task acquired the rt_mutex after we removed ourself from the
2032		 * rt_mutex waiters list.
2033		 */
2034		if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
2035			locked = 1;
2036			goto out;
2037		}
2038
2039		/*
2040		 * pi_state is incorrect, some other task did a lock steal and
2041		 * we returned due to timeout or signal without taking the
2042		 * rt_mutex. Too late.
2043		 */
2044		raw_spin_lock(&q->pi_state->pi_mutex.wait_lock);
2045		owner = rt_mutex_owner(&q->pi_state->pi_mutex);
2046		if (!owner)
2047			owner = rt_mutex_next_owner(&q->pi_state->pi_mutex);
2048		raw_spin_unlock(&q->pi_state->pi_mutex.wait_lock);
2049		ret = fixup_pi_state_owner(uaddr, q, owner);
2050		goto out;
2051	}
2052
2053	/*
2054	 * Paranoia check. If we did not take the lock, then we should not be
2055	 * the owner of the rt_mutex.
2056	 */
2057	if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
2058		printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
2059				"pi-state %p\n", ret,
2060				q->pi_state->pi_mutex.owner,
2061				q->pi_state->owner);
 
2062
2063out:
2064	return ret ? ret : locked;
2065}
2066
2067/**
2068 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
2069 * @hb:		the futex hash bucket, must be locked by the caller
2070 * @q:		the futex_q to queue up on
2071 * @timeout:	the prepared hrtimer_sleeper, or null for no timeout
2072 */
2073static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
2074				struct hrtimer_sleeper *timeout)
2075{
2076	/*
2077	 * The task state is guaranteed to be set before another task can
2078	 * wake it. set_current_state() is implemented using set_mb() and
2079	 * queue_me() calls spin_unlock() upon completion, both serializing
2080	 * access to the hash list and forcing another memory barrier.
2081	 */
2082	set_current_state(TASK_INTERRUPTIBLE);
2083	queue_me(q, hb);
2084
2085	/* Arm the timer */
2086	if (timeout) {
2087		hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
2088		if (!hrtimer_active(&timeout->timer))
2089			timeout->task = NULL;
2090	}
2091
2092	/*
2093	 * If we have been removed from the hash list, then another task
2094	 * has tried to wake us, and we can skip the call to schedule().
2095	 */
2096	if (likely(!plist_node_empty(&q->list))) {
2097		/*
2098		 * If the timer has already expired, current will already be
2099		 * flagged for rescheduling. Only call schedule if there
2100		 * is no timeout, or if it has yet to expire.
2101		 */
2102		if (!timeout || timeout->task)
2103			freezable_schedule();
2104	}
2105	__set_current_state(TASK_RUNNING);
2106}
2107
2108/**
2109 * futex_wait_setup() - Prepare to wait on a futex
2110 * @uaddr:	the futex userspace address
2111 * @val:	the expected value
2112 * @flags:	futex flags (FLAGS_SHARED, etc.)
2113 * @q:		the associated futex_q
2114 * @hb:		storage for hash_bucket pointer to be returned to caller
2115 *
2116 * Setup the futex_q and locate the hash_bucket.  Get the futex value and
2117 * compare it with the expected value.  Handle atomic faults internally.
2118 * Return with the hb lock held and a q.key reference on success, and unlocked
2119 * with no q.key reference on failure.
2120 *
2121 * Return:
2122 *  0 - uaddr contains val and hb has been locked;
2123 * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
2124 */
2125static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
2126			   struct futex_q *q, struct futex_hash_bucket **hb)
2127{
2128	u32 uval;
2129	int ret;
2130
2131	/*
2132	 * Access the page AFTER the hash-bucket is locked.
2133	 * Order is important:
2134	 *
2135	 *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
2136	 *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
2137	 *
2138	 * The basic logical guarantee of a futex is that it blocks ONLY
2139	 * if cond(var) is known to be true at the time of blocking, for
2140	 * any cond.  If we locked the hash-bucket after testing *uaddr, that
2141	 * would open a race condition where we could block indefinitely with
2142	 * cond(var) false, which would violate the guarantee.
2143	 *
2144	 * On the other hand, we insert q and release the hash-bucket only
2145	 * after testing *uaddr.  This guarantees that futex_wait() will NOT
2146	 * absorb a wakeup if *uaddr does not match the desired values
2147	 * while the syscall executes.
2148	 */
2149retry:
2150	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
2151	if (unlikely(ret != 0))
2152		return ret;
2153
2154retry_private:
2155	*hb = queue_lock(q);
2156
2157	ret = get_futex_value_locked(&uval, uaddr);
2158
2159	if (ret) {
2160		queue_unlock(*hb);
2161
2162		ret = get_user(uval, uaddr);
2163		if (ret)
2164			goto out;
2165
2166		if (!(flags & FLAGS_SHARED))
2167			goto retry_private;
2168
2169		put_futex_key(&q->key);
2170		goto retry;
2171	}
2172
2173	if (uval != val) {
2174		queue_unlock(*hb);
2175		ret = -EWOULDBLOCK;
2176	}
2177
2178out:
2179	if (ret)
2180		put_futex_key(&q->key);
2181	return ret;
2182}
2183
2184static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2185		      ktime_t *abs_time, u32 bitset)
2186{
2187	struct hrtimer_sleeper timeout, *to = NULL;
2188	struct restart_block *restart;
2189	struct futex_hash_bucket *hb;
2190	struct futex_q q = futex_q_init;
2191	int ret;
2192
2193	if (!bitset)
2194		return -EINVAL;
2195	q.bitset = bitset;
2196
2197	if (abs_time) {
2198		to = &timeout;
2199
2200		hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2201				      CLOCK_REALTIME : CLOCK_MONOTONIC,
2202				      HRTIMER_MODE_ABS);
2203		hrtimer_init_sleeper(to, current);
2204		hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2205					     current->timer_slack_ns);
2206	}
2207
2208retry:
2209	/*
2210	 * Prepare to wait on uaddr. On success, holds hb lock and increments
2211	 * q.key refs.
2212	 */
2213	ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2214	if (ret)
2215		goto out;
2216
2217	/* queue_me and wait for wakeup, timeout, or a signal. */
2218	futex_wait_queue_me(hb, &q, to);
2219
2220	/* If we were woken (and unqueued), we succeeded, whatever. */
2221	ret = 0;
2222	/* unqueue_me() drops q.key ref */
2223	if (!unqueue_me(&q))
2224		goto out;
2225	ret = -ETIMEDOUT;
2226	if (to && !to->task)
2227		goto out;
2228
2229	/*
2230	 * We expect signal_pending(current), but we might be the
2231	 * victim of a spurious wakeup as well.
2232	 */
2233	if (!signal_pending(current))
2234		goto retry;
2235
2236	ret = -ERESTARTSYS;
2237	if (!abs_time)
2238		goto out;
2239
2240	restart = &current_thread_info()->restart_block;
2241	restart->fn = futex_wait_restart;
2242	restart->futex.uaddr = uaddr;
2243	restart->futex.val = val;
2244	restart->futex.time = abs_time->tv64;
2245	restart->futex.bitset = bitset;
2246	restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
2247
2248	ret = -ERESTART_RESTARTBLOCK;
2249
2250out:
2251	if (to) {
2252		hrtimer_cancel(&to->timer);
2253		destroy_hrtimer_on_stack(&to->timer);
2254	}
2255	return ret;
2256}
2257
2258
2259static long futex_wait_restart(struct restart_block *restart)
2260{
2261	u32 __user *uaddr = restart->futex.uaddr;
2262	ktime_t t, *tp = NULL;
2263
2264	if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2265		t.tv64 = restart->futex.time;
2266		tp = &t;
2267	}
2268	restart->fn = do_no_restart_syscall;
2269
2270	return (long)futex_wait(uaddr, restart->futex.flags,
2271				restart->futex.val, tp, restart->futex.bitset);
2272}
2273
2274
2275/*
2276 * Userspace tried a 0 -> TID atomic transition of the futex value
2277 * and failed. The kernel side here does the whole locking operation:
2278 * if there are waiters then it will block, it does PI, etc. (Due to
2279 * races the kernel might see a 0 value of the futex too.)
 
 
 
2280 */
2281static int futex_lock_pi(u32 __user *uaddr, unsigned int flags, int detect,
2282			 ktime_t *time, int trylock)
2283{
2284	struct hrtimer_sleeper timeout, *to = NULL;
 
 
2285	struct futex_hash_bucket *hb;
2286	struct futex_q q = futex_q_init;
2287	int res, ret;
2288
 
 
 
2289	if (refill_pi_state_cache())
2290		return -ENOMEM;
2291
2292	if (time) {
2293		to = &timeout;
2294		hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
2295				      HRTIMER_MODE_ABS);
2296		hrtimer_init_sleeper(to, current);
2297		hrtimer_set_expires(&to->timer, *time);
2298	}
2299
2300retry:
2301	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
2302	if (unlikely(ret != 0))
2303		goto out;
2304
2305retry_private:
2306	hb = queue_lock(&q);
2307
2308	ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
2309	if (unlikely(ret)) {
 
 
 
 
2310		switch (ret) {
2311		case 1:
2312			/* We got the lock. */
2313			ret = 0;
2314			goto out_unlock_put_key;
2315		case -EFAULT:
2316			goto uaddr_faulted;
2317		case -EAGAIN:
2318			/*
2319			 * Task is exiting and we just wait for the
2320			 * exit to complete.
 
 
2321			 */
2322			queue_unlock(hb);
2323			put_futex_key(&q.key);
2324			cond_resched();
2325			goto retry;
2326		default:
2327			goto out_unlock_put_key;
2328		}
2329	}
2330
 
 
2331	/*
2332	 * Only actually queue now that the atomic ops are done:
2333	 */
2334	queue_me(&q, hb);
2335
2336	WARN_ON(!q.pi_state);
2337	/*
2338	 * Block on the PI mutex:
2339	 */
2340	if (!trylock)
2341		ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
2342	else {
2343		ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
2344		/* Fixup the trylock return value: */
2345		ret = ret ? 0 : -EWOULDBLOCK;
 
2346	}
2347
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2348	spin_lock(q.lock_ptr);
2349	/*
 
 
 
 
 
 
 
 
 
 
 
 
 
2350	 * Fixup the pi_state owner and possibly acquire the lock if we
2351	 * haven't already.
2352	 */
2353	res = fixup_owner(uaddr, &q, !ret);
2354	/*
2355	 * If fixup_owner() returned an error, proprogate that.  If it acquired
2356	 * the lock, clear our -ETIMEDOUT or -EINTR.
2357	 */
2358	if (res)
2359		ret = (res < 0) ? res : 0;
2360
2361	/*
2362	 * If fixup_owner() faulted and was unable to handle the fault, unlock
2363	 * it and return the fault to userspace.
2364	 */
2365	if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
2366		rt_mutex_unlock(&q.pi_state->pi_mutex);
 
 
2367
2368	/* Unqueue and drop the lock */
2369	unqueue_me_pi(&q);
2370
 
 
 
 
 
2371	goto out_put_key;
2372
2373out_unlock_put_key:
2374	queue_unlock(hb);
2375
2376out_put_key:
2377	put_futex_key(&q.key);
2378out:
2379	if (to)
 
2380		destroy_hrtimer_on_stack(&to->timer);
 
2381	return ret != -EINTR ? ret : -ERESTARTNOINTR;
2382
2383uaddr_faulted:
2384	queue_unlock(hb);
2385
2386	ret = fault_in_user_writeable(uaddr);
2387	if (ret)
2388		goto out_put_key;
2389
2390	if (!(flags & FLAGS_SHARED))
2391		goto retry_private;
2392
2393	put_futex_key(&q.key);
2394	goto retry;
2395}
2396
2397/*
2398 * Userspace attempted a TID -> 0 atomic transition, and failed.
2399 * This is the in-kernel slowpath: we look up the PI state (if any),
2400 * and do the rt-mutex unlock.
2401 */
2402static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2403{
2404	struct futex_hash_bucket *hb;
2405	struct futex_q *this, *next;
2406	union futex_key key = FUTEX_KEY_INIT;
2407	u32 uval, vpid = task_pid_vnr(current);
 
2408	int ret;
2409
 
 
 
2410retry:
2411	if (get_user(uval, uaddr))
2412		return -EFAULT;
2413	/*
2414	 * We release only a lock we actually own:
2415	 */
2416	if ((uval & FUTEX_TID_MASK) != vpid)
2417		return -EPERM;
2418
2419	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
2420	if (unlikely(ret != 0))
2421		goto out;
2422
2423	hb = hash_futex(&key);
2424	spin_lock(&hb->lock);
2425
2426	/*
2427	 * To avoid races, try to do the TID -> 0 atomic transition
2428	 * again. If it succeeds then we can return without waking
2429	 * anyone else up. We only try this if neither the waiters nor
2430	 * the owner died bit are set.
2431	 */
2432	if (!(uval & ~FUTEX_TID_MASK) &&
2433	    cmpxchg_futex_value_locked(&uval, uaddr, vpid, 0))
2434		goto pi_faulted;
2435	/*
2436	 * Rare case: we managed to release the lock atomically,
2437	 * no need to wake anyone else up:
2438	 */
2439	if (unlikely(uval == vpid))
2440		goto out_unlock;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2441
2442	/*
2443	 * Ok, other tasks may need to be woken up - check waiters
2444	 * and do the wakeup if necessary:
2445	 */
2446	plist_for_each_entry_safe(this, next, &hb->chain, list) {
2447		if (!match_futex (&this->key, &key))
2448			continue;
2449		ret = wake_futex_pi(uaddr, uval, this);
2450		/*
2451		 * The atomic access to the futex value
2452		 * generated a pagefault, so retry the
2453		 * user-access and the wakeup:
 
 
 
 
2454		 */
2455		if (ret == -EFAULT)
2456			goto pi_faulted;
2457		goto out_unlock;
 
 
 
 
 
 
 
 
 
 
 
 
2458	}
 
2459	/*
2460	 * No waiters - kernel unlocks the futex:
 
 
 
 
2461	 */
2462	ret = unlock_futex_pi(uaddr, uval);
2463	if (ret == -EFAULT)
2464		goto pi_faulted;
 
 
 
 
 
 
2465
2466out_unlock:
2467	spin_unlock(&hb->lock);
 
2468	put_futex_key(&key);
2469
2470out:
2471	return ret;
2472
2473pi_faulted:
2474	spin_unlock(&hb->lock);
2475	put_futex_key(&key);
2476
2477	ret = fault_in_user_writeable(uaddr);
2478	if (!ret)
2479		goto retry;
2480
2481	return ret;
2482}
2483
2484/**
2485 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
2486 * @hb:		the hash_bucket futex_q was original enqueued on
2487 * @q:		the futex_q woken while waiting to be requeued
2488 * @key2:	the futex_key of the requeue target futex
2489 * @timeout:	the timeout associated with the wait (NULL if none)
2490 *
2491 * Detect if the task was woken on the initial futex as opposed to the requeue
2492 * target futex.  If so, determine if it was a timeout or a signal that caused
2493 * the wakeup and return the appropriate error code to the caller.  Must be
2494 * called with the hb lock held.
2495 *
2496 * Return:
2497 *  0 = no early wakeup detected;
2498 * <0 = -ETIMEDOUT or -ERESTARTNOINTR
2499 */
2500static inline
2501int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
2502				   struct futex_q *q, union futex_key *key2,
2503				   struct hrtimer_sleeper *timeout)
2504{
2505	int ret = 0;
2506
2507	/*
2508	 * With the hb lock held, we avoid races while we process the wakeup.
2509	 * We only need to hold hb (and not hb2) to ensure atomicity as the
2510	 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
2511	 * It can't be requeued from uaddr2 to something else since we don't
2512	 * support a PI aware source futex for requeue.
2513	 */
2514	if (!match_futex(&q->key, key2)) {
2515		WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
2516		/*
2517		 * We were woken prior to requeue by a timeout or a signal.
2518		 * Unqueue the futex_q and determine which it was.
2519		 */
2520		plist_del(&q->list, &hb->chain);
2521		hb_waiters_dec(hb);
2522
2523		/* Handle spurious wakeups gracefully */
2524		ret = -EWOULDBLOCK;
2525		if (timeout && !timeout->task)
2526			ret = -ETIMEDOUT;
2527		else if (signal_pending(current))
2528			ret = -ERESTARTNOINTR;
2529	}
2530	return ret;
2531}
2532
2533/**
2534 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
2535 * @uaddr:	the futex we initially wait on (non-pi)
2536 * @flags:	futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
2537 * 		the same type, no requeueing from private to shared, etc.
2538 * @val:	the expected value of uaddr
2539 * @abs_time:	absolute timeout
2540 * @bitset:	32 bit wakeup bitset set by userspace, defaults to all
2541 * @uaddr2:	the pi futex we will take prior to returning to user-space
2542 *
2543 * The caller will wait on uaddr and will be requeued by futex_requeue() to
2544 * uaddr2 which must be PI aware and unique from uaddr.  Normal wakeup will wake
2545 * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
2546 * userspace.  This ensures the rt_mutex maintains an owner when it has waiters;
2547 * without one, the pi logic would not know which task to boost/deboost, if
2548 * there was a need to.
2549 *
2550 * We call schedule in futex_wait_queue_me() when we enqueue and return there
2551 * via the following--
2552 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
2553 * 2) wakeup on uaddr2 after a requeue
2554 * 3) signal
2555 * 4) timeout
2556 *
2557 * If 3, cleanup and return -ERESTARTNOINTR.
2558 *
2559 * If 2, we may then block on trying to take the rt_mutex and return via:
2560 * 5) successful lock
2561 * 6) signal
2562 * 7) timeout
2563 * 8) other lock acquisition failure
2564 *
2565 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
2566 *
2567 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
2568 *
2569 * Return:
2570 *  0 - On success;
2571 * <0 - On error
2572 */
2573static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
2574				 u32 val, ktime_t *abs_time, u32 bitset,
2575				 u32 __user *uaddr2)
2576{
2577	struct hrtimer_sleeper timeout, *to = NULL;
 
2578	struct rt_mutex_waiter rt_waiter;
2579	struct rt_mutex *pi_mutex = NULL;
2580	struct futex_hash_bucket *hb;
2581	union futex_key key2 = FUTEX_KEY_INIT;
2582	struct futex_q q = futex_q_init;
2583	int res, ret;
2584
 
 
 
2585	if (uaddr == uaddr2)
2586		return -EINVAL;
2587
2588	if (!bitset)
2589		return -EINVAL;
2590
2591	if (abs_time) {
2592		to = &timeout;
2593		hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2594				      CLOCK_REALTIME : CLOCK_MONOTONIC,
2595				      HRTIMER_MODE_ABS);
2596		hrtimer_init_sleeper(to, current);
2597		hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2598					     current->timer_slack_ns);
2599	}
2600
2601	/*
2602	 * The waiter is allocated on our stack, manipulated by the requeue
2603	 * code while we sleep on uaddr.
2604	 */
2605	debug_rt_mutex_init_waiter(&rt_waiter);
2606	RB_CLEAR_NODE(&rt_waiter.pi_tree_entry);
2607	RB_CLEAR_NODE(&rt_waiter.tree_entry);
2608	rt_waiter.task = NULL;
2609
2610	ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
2611	if (unlikely(ret != 0))
2612		goto out;
2613
2614	q.bitset = bitset;
2615	q.rt_waiter = &rt_waiter;
2616	q.requeue_pi_key = &key2;
2617
2618	/*
2619	 * Prepare to wait on uaddr. On success, increments q.key (key1) ref
2620	 * count.
2621	 */
2622	ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2623	if (ret)
2624		goto out_key2;
2625
2626	/*
2627	 * The check above which compares uaddrs is not sufficient for
2628	 * shared futexes. We need to compare the keys:
2629	 */
2630	if (match_futex(&q.key, &key2)) {
 
2631		ret = -EINVAL;
2632		goto out_put_keys;
2633	}
2634
2635	/* Queue the futex_q, drop the hb lock, wait for wakeup. */
2636	futex_wait_queue_me(hb, &q, to);
2637
2638	spin_lock(&hb->lock);
2639	ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
2640	spin_unlock(&hb->lock);
2641	if (ret)
2642		goto out_put_keys;
2643
2644	/*
2645	 * In order for us to be here, we know our q.key == key2, and since
2646	 * we took the hb->lock above, we also know that futex_requeue() has
2647	 * completed and we no longer have to concern ourselves with a wakeup
2648	 * race with the atomic proxy lock acquisition by the requeue code. The
2649	 * futex_requeue dropped our key1 reference and incremented our key2
2650	 * reference count.
2651	 */
2652
2653	/* Check if the requeue code acquired the second futex for us. */
2654	if (!q.rt_waiter) {
2655		/*
2656		 * Got the lock. We might not be the anticipated owner if we
2657		 * did a lock-steal - fix up the PI-state in that case.
2658		 */
2659		if (q.pi_state && (q.pi_state->owner != current)) {
2660			spin_lock(q.lock_ptr);
2661			ret = fixup_pi_state_owner(uaddr2, &q, current);
 
 
 
 
 
 
 
 
 
2662			spin_unlock(q.lock_ptr);
2663		}
2664	} else {
 
 
2665		/*
2666		 * We have been woken up by futex_unlock_pi(), a timeout, or a
2667		 * signal.  futex_unlock_pi() will not destroy the lock_ptr nor
2668		 * the pi_state.
2669		 */
2670		WARN_ON(!q.pi_state);
2671		pi_mutex = &q.pi_state->pi_mutex;
2672		ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter, 1);
2673		debug_rt_mutex_free_waiter(&rt_waiter);
2674
2675		spin_lock(q.lock_ptr);
 
 
 
 
2676		/*
2677		 * Fixup the pi_state owner and possibly acquire the lock if we
2678		 * haven't already.
2679		 */
2680		res = fixup_owner(uaddr2, &q, !ret);
2681		/*
2682		 * If fixup_owner() returned an error, proprogate that.  If it
2683		 * acquired the lock, clear -ETIMEDOUT or -EINTR.
2684		 */
2685		if (res)
2686			ret = (res < 0) ? res : 0;
2687
 
 
 
 
 
 
 
 
 
 
2688		/* Unqueue and drop the lock. */
2689		unqueue_me_pi(&q);
2690	}
2691
2692	/*
2693	 * If fixup_pi_state_owner() faulted and was unable to handle the
2694	 * fault, unlock the rt_mutex and return the fault to userspace.
2695	 */
2696	if (ret == -EFAULT) {
2697		if (pi_mutex && rt_mutex_owner(pi_mutex) == current)
2698			rt_mutex_unlock(pi_mutex);
2699	} else if (ret == -EINTR) {
2700		/*
2701		 * We've already been requeued, but cannot restart by calling
2702		 * futex_lock_pi() directly. We could restart this syscall, but
2703		 * it would detect that the user space "val" changed and return
2704		 * -EWOULDBLOCK.  Save the overhead of the restart and return
2705		 * -EWOULDBLOCK directly.
2706		 */
2707		ret = -EWOULDBLOCK;
2708	}
2709
2710out_put_keys:
2711	put_futex_key(&q.key);
2712out_key2:
2713	put_futex_key(&key2);
2714
2715out:
2716	if (to) {
2717		hrtimer_cancel(&to->timer);
2718		destroy_hrtimer_on_stack(&to->timer);
2719	}
2720	return ret;
2721}
2722
2723/*
2724 * Support for robust futexes: the kernel cleans up held futexes at
2725 * thread exit time.
2726 *
2727 * Implementation: user-space maintains a per-thread list of locks it
2728 * is holding. Upon do_exit(), the kernel carefully walks this list,
2729 * and marks all locks that are owned by this thread with the
2730 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
2731 * always manipulated with the lock held, so the list is private and
2732 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
2733 * field, to allow the kernel to clean up if the thread dies after
2734 * acquiring the lock, but just before it could have added itself to
2735 * the list. There can only be one such pending lock.
2736 */
2737
2738/**
2739 * sys_set_robust_list() - Set the robust-futex list head of a task
2740 * @head:	pointer to the list-head
2741 * @len:	length of the list-head, as userspace expects
2742 */
2743SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
2744		size_t, len)
2745{
2746	if (!futex_cmpxchg_enabled)
2747		return -ENOSYS;
2748	/*
2749	 * The kernel knows only one size for now:
2750	 */
2751	if (unlikely(len != sizeof(*head)))
2752		return -EINVAL;
2753
2754	current->robust_list = head;
2755
2756	return 0;
2757}
2758
2759/**
2760 * sys_get_robust_list() - Get the robust-futex list head of a task
2761 * @pid:	pid of the process [zero for current task]
2762 * @head_ptr:	pointer to a list-head pointer, the kernel fills it in
2763 * @len_ptr:	pointer to a length field, the kernel fills in the header size
2764 */
2765SYSCALL_DEFINE3(get_robust_list, int, pid,
2766		struct robust_list_head __user * __user *, head_ptr,
2767		size_t __user *, len_ptr)
2768{
2769	struct robust_list_head __user *head;
2770	unsigned long ret;
2771	struct task_struct *p;
2772
2773	if (!futex_cmpxchg_enabled)
2774		return -ENOSYS;
2775
2776	rcu_read_lock();
2777
2778	ret = -ESRCH;
2779	if (!pid)
2780		p = current;
2781	else {
2782		p = find_task_by_vpid(pid);
2783		if (!p)
2784			goto err_unlock;
2785	}
2786
2787	ret = -EPERM;
2788	if (!ptrace_may_access(p, PTRACE_MODE_READ))
2789		goto err_unlock;
2790
2791	head = p->robust_list;
2792	rcu_read_unlock();
2793
2794	if (put_user(sizeof(*head), len_ptr))
2795		return -EFAULT;
2796	return put_user(head, head_ptr);
2797
2798err_unlock:
2799	rcu_read_unlock();
2800
2801	return ret;
2802}
2803
2804/*
2805 * Process a futex-list entry, check whether it's owned by the
2806 * dying task, and do notification if so:
2807 */
2808int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
2809{
2810	u32 uval, uninitialized_var(nval), mval;
2811
2812retry:
2813	if (get_user(uval, uaddr))
2814		return -1;
2815
2816	if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
2817		/*
2818		 * Ok, this dying thread is truly holding a futex
2819		 * of interest. Set the OWNER_DIED bit atomically
2820		 * via cmpxchg, and if the value had FUTEX_WAITERS
2821		 * set, wake up a waiter (if any). (We have to do a
2822		 * futex_wake() even if OWNER_DIED is already set -
2823		 * to handle the rare but possible case of recursive
2824		 * thread-death.) The rest of the cleanup is done in
2825		 * userspace.
2826		 */
2827		mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
2828		/*
2829		 * We are not holding a lock here, but we want to have
2830		 * the pagefault_disable/enable() protection because
2831		 * we want to handle the fault gracefully. If the
2832		 * access fails we try to fault in the futex with R/W
2833		 * verification via get_user_pages. get_user() above
2834		 * does not guarantee R/W access. If that fails we
2835		 * give up and leave the futex locked.
2836		 */
2837		if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
2838			if (fault_in_user_writeable(uaddr))
2839				return -1;
2840			goto retry;
2841		}
2842		if (nval != uval)
2843			goto retry;
2844
2845		/*
2846		 * Wake robust non-PI futexes here. The wakeup of
2847		 * PI futexes happens in exit_pi_state():
2848		 */
2849		if (!pi && (uval & FUTEX_WAITERS))
2850			futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
2851	}
2852	return 0;
2853}
2854
2855/*
2856 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
2857 */
2858static inline int fetch_robust_entry(struct robust_list __user **entry,
2859				     struct robust_list __user * __user *head,
2860				     unsigned int *pi)
2861{
2862	unsigned long uentry;
2863
2864	if (get_user(uentry, (unsigned long __user *)head))
2865		return -EFAULT;
2866
2867	*entry = (void __user *)(uentry & ~1UL);
2868	*pi = uentry & 1;
2869
2870	return 0;
2871}
2872
2873/*
2874 * Walk curr->robust_list (very carefully, it's a userspace list!)
2875 * and mark any locks found there dead, and notify any waiters.
2876 *
2877 * We silently return on any sign of list-walking problem.
2878 */
2879void exit_robust_list(struct task_struct *curr)
2880{
2881	struct robust_list_head __user *head = curr->robust_list;
2882	struct robust_list __user *entry, *next_entry, *pending;
2883	unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
2884	unsigned int uninitialized_var(next_pi);
2885	unsigned long futex_offset;
2886	int rc;
2887
2888	if (!futex_cmpxchg_enabled)
2889		return;
2890
2891	/*
2892	 * Fetch the list head (which was registered earlier, via
2893	 * sys_set_robust_list()):
2894	 */
2895	if (fetch_robust_entry(&entry, &head->list.next, &pi))
2896		return;
2897	/*
2898	 * Fetch the relative futex offset:
2899	 */
2900	if (get_user(futex_offset, &head->futex_offset))
2901		return;
2902	/*
2903	 * Fetch any possibly pending lock-add first, and handle it
2904	 * if it exists:
2905	 */
2906	if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
2907		return;
2908
2909	next_entry = NULL;	/* avoid warning with gcc */
2910	while (entry != &head->list) {
2911		/*
2912		 * Fetch the next entry in the list before calling
2913		 * handle_futex_death:
2914		 */
2915		rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
2916		/*
2917		 * A pending lock might already be on the list, so
2918		 * don't process it twice:
2919		 */
2920		if (entry != pending)
2921			if (handle_futex_death((void __user *)entry + futex_offset,
2922						curr, pi))
2923				return;
2924		if (rc)
2925			return;
2926		entry = next_entry;
2927		pi = next_pi;
2928		/*
2929		 * Avoid excessively long or circular lists:
2930		 */
2931		if (!--limit)
2932			break;
2933
2934		cond_resched();
2935	}
2936
2937	if (pending)
2938		handle_futex_death((void __user *)pending + futex_offset,
2939				   curr, pip);
2940}
2941
2942long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
2943		u32 __user *uaddr2, u32 val2, u32 val3)
2944{
2945	int cmd = op & FUTEX_CMD_MASK;
2946	unsigned int flags = 0;
2947
2948	if (!(op & FUTEX_PRIVATE_FLAG))
2949		flags |= FLAGS_SHARED;
2950
2951	if (op & FUTEX_CLOCK_REALTIME) {
2952		flags |= FLAGS_CLOCKRT;
2953		if (cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
 
2954			return -ENOSYS;
2955	}
2956
2957	switch (cmd) {
2958	case FUTEX_LOCK_PI:
2959	case FUTEX_UNLOCK_PI:
2960	case FUTEX_TRYLOCK_PI:
2961	case FUTEX_WAIT_REQUEUE_PI:
2962	case FUTEX_CMP_REQUEUE_PI:
2963		if (!futex_cmpxchg_enabled)
2964			return -ENOSYS;
2965	}
2966
2967	switch (cmd) {
2968	case FUTEX_WAIT:
2969		val3 = FUTEX_BITSET_MATCH_ANY;
2970	case FUTEX_WAIT_BITSET:
2971		return futex_wait(uaddr, flags, val, timeout, val3);
2972	case FUTEX_WAKE:
2973		val3 = FUTEX_BITSET_MATCH_ANY;
2974	case FUTEX_WAKE_BITSET:
2975		return futex_wake(uaddr, flags, val, val3);
2976	case FUTEX_REQUEUE:
2977		return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
2978	case FUTEX_CMP_REQUEUE:
2979		return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
2980	case FUTEX_WAKE_OP:
2981		return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
2982	case FUTEX_LOCK_PI:
2983		return futex_lock_pi(uaddr, flags, val, timeout, 0);
2984	case FUTEX_UNLOCK_PI:
2985		return futex_unlock_pi(uaddr, flags);
2986	case FUTEX_TRYLOCK_PI:
2987		return futex_lock_pi(uaddr, flags, 0, timeout, 1);
2988	case FUTEX_WAIT_REQUEUE_PI:
2989		val3 = FUTEX_BITSET_MATCH_ANY;
2990		return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
2991					     uaddr2);
2992	case FUTEX_CMP_REQUEUE_PI:
2993		return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
2994	}
2995	return -ENOSYS;
2996}
2997
2998
2999SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
3000		struct timespec __user *, utime, u32 __user *, uaddr2,
3001		u32, val3)
3002{
3003	struct timespec ts;
3004	ktime_t t, *tp = NULL;
3005	u32 val2 = 0;
3006	int cmd = op & FUTEX_CMD_MASK;
3007
3008	if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
3009		      cmd == FUTEX_WAIT_BITSET ||
3010		      cmd == FUTEX_WAIT_REQUEUE_PI)) {
 
 
3011		if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
3012			return -EFAULT;
3013		if (!timespec_valid(&ts))
3014			return -EINVAL;
3015
3016		t = timespec_to_ktime(ts);
3017		if (cmd == FUTEX_WAIT)
3018			t = ktime_add_safe(ktime_get(), t);
3019		tp = &t;
3020	}
3021	/*
3022	 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
3023	 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
3024	 */
3025	if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
3026	    cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
3027		val2 = (u32) (unsigned long) utime;
3028
3029	return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
3030}
3031
3032static void __init futex_detect_cmpxchg(void)
3033{
3034#ifndef CONFIG_HAVE_FUTEX_CMPXCHG
3035	u32 curval;
3036
3037	/*
3038	 * This will fail and we want it. Some arch implementations do
3039	 * runtime detection of the futex_atomic_cmpxchg_inatomic()
3040	 * functionality. We want to know that before we call in any
3041	 * of the complex code paths. Also we want to prevent
3042	 * registration of robust lists in that case. NULL is
3043	 * guaranteed to fault and we get -EFAULT on functional
3044	 * implementation, the non-functional ones will return
3045	 * -ENOSYS.
3046	 */
3047	if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
3048		futex_cmpxchg_enabled = 1;
3049#endif
3050}
3051
3052static int __init futex_init(void)
3053{
3054	unsigned int futex_shift;
3055	unsigned long i;
3056
3057#if CONFIG_BASE_SMALL
3058	futex_hashsize = 16;
3059#else
3060	futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
3061#endif
3062
3063	futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
3064					       futex_hashsize, 0,
3065					       futex_hashsize < 256 ? HASH_SMALL : 0,
3066					       &futex_shift, NULL,
3067					       futex_hashsize, futex_hashsize);
3068	futex_hashsize = 1UL << futex_shift;
3069
3070	futex_detect_cmpxchg();
3071
3072	for (i = 0; i < futex_hashsize; i++) {
3073		atomic_set(&futex_queues[i].waiters, 0);
3074		plist_head_init(&futex_queues[i].chain);
3075		spin_lock_init(&futex_queues[i].lock);
3076	}
3077
3078	return 0;
3079}
3080__initcall(futex_init);
v4.17
   1/*
   2 *  Fast Userspace Mutexes (which I call "Futexes!").
   3 *  (C) Rusty Russell, IBM 2002
   4 *
   5 *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
   6 *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
   7 *
   8 *  Removed page pinning, fix privately mapped COW pages and other cleanups
   9 *  (C) Copyright 2003, 2004 Jamie Lokier
  10 *
  11 *  Robust futex support started by Ingo Molnar
  12 *  (C) Copyright 2006 Red Hat Inc, All Rights Reserved
  13 *  Thanks to Thomas Gleixner for suggestions, analysis and fixes.
  14 *
  15 *  PI-futex support started by Ingo Molnar and Thomas Gleixner
  16 *  Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
  17 *  Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
  18 *
  19 *  PRIVATE futexes by Eric Dumazet
  20 *  Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
  21 *
  22 *  Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
  23 *  Copyright (C) IBM Corporation, 2009
  24 *  Thanks to Thomas Gleixner for conceptual design and careful reviews.
  25 *
  26 *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
  27 *  enough at me, Linus for the original (flawed) idea, Matthew
  28 *  Kirkwood for proof-of-concept implementation.
  29 *
  30 *  "The futexes are also cursed."
  31 *  "But they come in a choice of three flavours!"
  32 *
  33 *  This program is free software; you can redistribute it and/or modify
  34 *  it under the terms of the GNU General Public License as published by
  35 *  the Free Software Foundation; either version 2 of the License, or
  36 *  (at your option) any later version.
  37 *
  38 *  This program is distributed in the hope that it will be useful,
  39 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
  40 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  41 *  GNU General Public License for more details.
  42 *
  43 *  You should have received a copy of the GNU General Public License
  44 *  along with this program; if not, write to the Free Software
  45 *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  46 */
  47#include <linux/slab.h>
  48#include <linux/poll.h>
  49#include <linux/fs.h>
  50#include <linux/file.h>
  51#include <linux/jhash.h>
  52#include <linux/init.h>
  53#include <linux/futex.h>
  54#include <linux/mount.h>
  55#include <linux/pagemap.h>
  56#include <linux/syscalls.h>
  57#include <linux/signal.h>
  58#include <linux/export.h>
  59#include <linux/magic.h>
  60#include <linux/pid.h>
  61#include <linux/nsproxy.h>
  62#include <linux/ptrace.h>
  63#include <linux/sched/rt.h>
  64#include <linux/sched/wake_q.h>
  65#include <linux/sched/mm.h>
  66#include <linux/hugetlb.h>
  67#include <linux/freezer.h>
  68#include <linux/bootmem.h>
  69#include <linux/fault-inject.h>
  70
  71#include <asm/futex.h>
  72
  73#include "locking/rtmutex_common.h"
  74
  75/*
  76 * READ this before attempting to hack on futexes!
  77 *
  78 * Basic futex operation and ordering guarantees
  79 * =============================================
  80 *
  81 * The waiter reads the futex value in user space and calls
  82 * futex_wait(). This function computes the hash bucket and acquires
  83 * the hash bucket lock. After that it reads the futex user space value
  84 * again and verifies that the data has not changed. If it has not changed
  85 * it enqueues itself into the hash bucket, releases the hash bucket lock
  86 * and schedules.
  87 *
  88 * The waker side modifies the user space value of the futex and calls
  89 * futex_wake(). This function computes the hash bucket and acquires the
  90 * hash bucket lock. Then it looks for waiters on that futex in the hash
  91 * bucket and wakes them.
  92 *
  93 * In futex wake up scenarios where no tasks are blocked on a futex, taking
  94 * the hb spinlock can be avoided and simply return. In order for this
  95 * optimization to work, ordering guarantees must exist so that the waiter
  96 * being added to the list is acknowledged when the list is concurrently being
  97 * checked by the waker, avoiding scenarios like the following:
  98 *
  99 * CPU 0                               CPU 1
 100 * val = *futex;
 101 * sys_futex(WAIT, futex, val);
 102 *   futex_wait(futex, val);
 103 *   uval = *futex;
 104 *                                     *futex = newval;
 105 *                                     sys_futex(WAKE, futex);
 106 *                                       futex_wake(futex);
 107 *                                       if (queue_empty())
 108 *                                         return;
 109 *   if (uval == val)
 110 *      lock(hash_bucket(futex));
 111 *      queue();
 112 *     unlock(hash_bucket(futex));
 113 *     schedule();
 114 *
 115 * This would cause the waiter on CPU 0 to wait forever because it
 116 * missed the transition of the user space value from val to newval
 117 * and the waker did not find the waiter in the hash bucket queue.
 118 *
 119 * The correct serialization ensures that a waiter either observes
 120 * the changed user space value before blocking or is woken by a
 121 * concurrent waker:
 122 *
 123 * CPU 0                                 CPU 1
 124 * val = *futex;
 125 * sys_futex(WAIT, futex, val);
 126 *   futex_wait(futex, val);
 127 *
 128 *   waiters++; (a)
 129 *   smp_mb(); (A) <-- paired with -.
 130 *                                  |
 131 *   lock(hash_bucket(futex));      |
 132 *                                  |
 133 *   uval = *futex;                 |
 134 *                                  |        *futex = newval;
 135 *                                  |        sys_futex(WAKE, futex);
 136 *                                  |          futex_wake(futex);
 137 *                                  |
 138 *                                  `--------> smp_mb(); (B)
 139 *   if (uval == val)
 140 *     queue();
 141 *     unlock(hash_bucket(futex));
 142 *     schedule();                         if (waiters)
 143 *                                           lock(hash_bucket(futex));
 144 *   else                                    wake_waiters(futex);
 145 *     waiters--; (b)                        unlock(hash_bucket(futex));
 146 *
 147 * Where (A) orders the waiters increment and the futex value read through
 148 * atomic operations (see hb_waiters_inc) and where (B) orders the write
 149 * to futex and the waiters read -- this is done by the barriers for both
 150 * shared and private futexes in get_futex_key_refs().
 
 151 *
 152 * This yields the following case (where X:=waiters, Y:=futex):
 153 *
 154 *	X = Y = 0
 155 *
 156 *	w[X]=1		w[Y]=1
 157 *	MB		MB
 158 *	r[Y]=y		r[X]=x
 159 *
 160 * Which guarantees that x==0 && y==0 is impossible; which translates back into
 161 * the guarantee that we cannot both miss the futex variable change and the
 162 * enqueue.
 163 *
 164 * Note that a new waiter is accounted for in (a) even when it is possible that
 165 * the wait call can return error, in which case we backtrack from it in (b).
 166 * Refer to the comment in queue_lock().
 167 *
 168 * Similarly, in order to account for waiters being requeued on another
 169 * address we always increment the waiters for the destination bucket before
 170 * acquiring the lock. It then decrements them again  after releasing it -
 171 * the code that actually moves the futex(es) between hash buckets (requeue_futex)
 172 * will do the additional required waiter count housekeeping. This is done for
 173 * double_lock_hb() and double_unlock_hb(), respectively.
 174 */
 175
 176#ifndef CONFIG_HAVE_FUTEX_CMPXCHG
 177int __read_mostly futex_cmpxchg_enabled;
 178#endif
 179
 180/*
 181 * Futex flags used to encode options to functions and preserve them across
 182 * restarts.
 183 */
 184#ifdef CONFIG_MMU
 185# define FLAGS_SHARED		0x01
 186#else
 187/*
 188 * NOMMU does not have per process address space. Let the compiler optimize
 189 * code away.
 190 */
 191# define FLAGS_SHARED		0x00
 192#endif
 193#define FLAGS_CLOCKRT		0x02
 194#define FLAGS_HAS_TIMEOUT	0x04
 195
 196/*
 197 * Priority Inheritance state:
 198 */
 199struct futex_pi_state {
 200	/*
 201	 * list of 'owned' pi_state instances - these have to be
 202	 * cleaned up in do_exit() if the task exits prematurely:
 203	 */
 204	struct list_head list;
 205
 206	/*
 207	 * The PI object:
 208	 */
 209	struct rt_mutex pi_mutex;
 210
 211	struct task_struct *owner;
 212	atomic_t refcount;
 213
 214	union futex_key key;
 215} __randomize_layout;
 216
 217/**
 218 * struct futex_q - The hashed futex queue entry, one per waiting task
 219 * @list:		priority-sorted list of tasks waiting on this futex
 220 * @task:		the task waiting on the futex
 221 * @lock_ptr:		the hash bucket lock
 222 * @key:		the key the futex is hashed on
 223 * @pi_state:		optional priority inheritance state
 224 * @rt_waiter:		rt_waiter storage for use with requeue_pi
 225 * @requeue_pi_key:	the requeue_pi target futex key
 226 * @bitset:		bitset for the optional bitmasked wakeup
 227 *
 228 * We use this hashed waitqueue, instead of a normal wait_queue_entry_t, so
 229 * we can wake only the relevant ones (hashed queues may be shared).
 230 *
 231 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
 232 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
 233 * The order of wakeup is always to make the first condition true, then
 234 * the second.
 235 *
 236 * PI futexes are typically woken before they are removed from the hash list via
 237 * the rt_mutex code. See unqueue_me_pi().
 238 */
 239struct futex_q {
 240	struct plist_node list;
 241
 242	struct task_struct *task;
 243	spinlock_t *lock_ptr;
 244	union futex_key key;
 245	struct futex_pi_state *pi_state;
 246	struct rt_mutex_waiter *rt_waiter;
 247	union futex_key *requeue_pi_key;
 248	u32 bitset;
 249} __randomize_layout;
 250
 251static const struct futex_q futex_q_init = {
 252	/* list gets initialized in queue_me()*/
 253	.key = FUTEX_KEY_INIT,
 254	.bitset = FUTEX_BITSET_MATCH_ANY
 255};
 256
 257/*
 258 * Hash buckets are shared by all the futex_keys that hash to the same
 259 * location.  Each key may have multiple futex_q structures, one for each task
 260 * waiting on a futex.
 261 */
 262struct futex_hash_bucket {
 263	atomic_t waiters;
 264	spinlock_t lock;
 265	struct plist_head chain;
 266} ____cacheline_aligned_in_smp;
 267
 268/*
 269 * The base of the bucket array and its size are always used together
 270 * (after initialization only in hash_futex()), so ensure that they
 271 * reside in the same cacheline.
 272 */
 273static struct {
 274	struct futex_hash_bucket *queues;
 275	unsigned long            hashsize;
 276} __futex_data __read_mostly __aligned(2*sizeof(long));
 277#define futex_queues   (__futex_data.queues)
 278#define futex_hashsize (__futex_data.hashsize)
 279
 280
 281/*
 282 * Fault injections for futexes.
 283 */
 284#ifdef CONFIG_FAIL_FUTEX
 285
 286static struct {
 287	struct fault_attr attr;
 288
 289	bool ignore_private;
 290} fail_futex = {
 291	.attr = FAULT_ATTR_INITIALIZER,
 292	.ignore_private = false,
 293};
 294
 295static int __init setup_fail_futex(char *str)
 296{
 297	return setup_fault_attr(&fail_futex.attr, str);
 298}
 299__setup("fail_futex=", setup_fail_futex);
 300
 301static bool should_fail_futex(bool fshared)
 302{
 303	if (fail_futex.ignore_private && !fshared)
 304		return false;
 305
 306	return should_fail(&fail_futex.attr, 1);
 307}
 308
 309#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
 310
 311static int __init fail_futex_debugfs(void)
 312{
 313	umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
 314	struct dentry *dir;
 315
 316	dir = fault_create_debugfs_attr("fail_futex", NULL,
 317					&fail_futex.attr);
 318	if (IS_ERR(dir))
 319		return PTR_ERR(dir);
 320
 321	if (!debugfs_create_bool("ignore-private", mode, dir,
 322				 &fail_futex.ignore_private)) {
 323		debugfs_remove_recursive(dir);
 324		return -ENOMEM;
 325	}
 326
 327	return 0;
 328}
 329
 330late_initcall(fail_futex_debugfs);
 331
 332#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
 333
 334#else
 335static inline bool should_fail_futex(bool fshared)
 336{
 337	return false;
 338}
 339#endif /* CONFIG_FAIL_FUTEX */
 340
 341static inline void futex_get_mm(union futex_key *key)
 342{
 343	mmgrab(key->private.mm);
 344	/*
 345	 * Ensure futex_get_mm() implies a full barrier such that
 346	 * get_futex_key() implies a full barrier. This is relied upon
 347	 * as smp_mb(); (B), see the ordering comment above.
 348	 */
 349	smp_mb__after_atomic();
 350}
 351
 352/*
 353 * Reflects a new waiter being added to the waitqueue.
 354 */
 355static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
 356{
 357#ifdef CONFIG_SMP
 358	atomic_inc(&hb->waiters);
 359	/*
 360	 * Full barrier (A), see the ordering comment above.
 361	 */
 362	smp_mb__after_atomic();
 363#endif
 364}
 365
 366/*
 367 * Reflects a waiter being removed from the waitqueue by wakeup
 368 * paths.
 369 */
 370static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
 371{
 372#ifdef CONFIG_SMP
 373	atomic_dec(&hb->waiters);
 374#endif
 375}
 376
 377static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
 378{
 379#ifdef CONFIG_SMP
 380	return atomic_read(&hb->waiters);
 381#else
 382	return 1;
 383#endif
 384}
 385
 386/**
 387 * hash_futex - Return the hash bucket in the global hash
 388 * @key:	Pointer to the futex key for which the hash is calculated
 389 *
 390 * We hash on the keys returned from get_futex_key (see below) and return the
 391 * corresponding hash bucket in the global hash.
 392 */
 393static struct futex_hash_bucket *hash_futex(union futex_key *key)
 394{
 395	u32 hash = jhash2((u32*)&key->both.word,
 396			  (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
 397			  key->both.offset);
 398	return &futex_queues[hash & (futex_hashsize - 1)];
 399}
 400
 401
 402/**
 403 * match_futex - Check whether two futex keys are equal
 404 * @key1:	Pointer to key1
 405 * @key2:	Pointer to key2
 406 *
 407 * Return 1 if two futex_keys are equal, 0 otherwise.
 408 */
 409static inline int match_futex(union futex_key *key1, union futex_key *key2)
 410{
 411	return (key1 && key2
 412		&& key1->both.word == key2->both.word
 413		&& key1->both.ptr == key2->both.ptr
 414		&& key1->both.offset == key2->both.offset);
 415}
 416
 417/*
 418 * Take a reference to the resource addressed by a key.
 419 * Can be called while holding spinlocks.
 420 *
 421 */
 422static void get_futex_key_refs(union futex_key *key)
 423{
 424	if (!key->both.ptr)
 425		return;
 426
 427	/*
 428	 * On MMU less systems futexes are always "private" as there is no per
 429	 * process address space. We need the smp wmb nevertheless - yes,
 430	 * arch/blackfin has MMU less SMP ...
 431	 */
 432	if (!IS_ENABLED(CONFIG_MMU)) {
 433		smp_mb(); /* explicit smp_mb(); (B) */
 434		return;
 435	}
 436
 437	switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
 438	case FUT_OFF_INODE:
 439		ihold(key->shared.inode); /* implies smp_mb(); (B) */
 440		break;
 441	case FUT_OFF_MMSHARED:
 442		futex_get_mm(key); /* implies smp_mb(); (B) */
 443		break;
 444	default:
 445		/*
 446		 * Private futexes do not hold reference on an inode or
 447		 * mm, therefore the only purpose of calling get_futex_key_refs
 448		 * is because we need the barrier for the lockless waiter check.
 449		 */
 450		smp_mb(); /* explicit smp_mb(); (B) */
 451	}
 452}
 453
 454/*
 455 * Drop a reference to the resource addressed by a key.
 456 * The hash bucket spinlock must not be held. This is
 457 * a no-op for private futexes, see comment in the get
 458 * counterpart.
 459 */
 460static void drop_futex_key_refs(union futex_key *key)
 461{
 462	if (!key->both.ptr) {
 463		/* If we're here then we tried to put a key we failed to get */
 464		WARN_ON_ONCE(1);
 465		return;
 466	}
 467
 468	if (!IS_ENABLED(CONFIG_MMU))
 469		return;
 470
 471	switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
 472	case FUT_OFF_INODE:
 473		iput(key->shared.inode);
 474		break;
 475	case FUT_OFF_MMSHARED:
 476		mmdrop(key->private.mm);
 477		break;
 478	}
 479}
 480
 481/**
 482 * get_futex_key() - Get parameters which are the keys for a futex
 483 * @uaddr:	virtual address of the futex
 484 * @fshared:	0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
 485 * @key:	address where result is stored.
 486 * @rw:		mapping needs to be read/write (values: VERIFY_READ,
 487 *              VERIFY_WRITE)
 488 *
 489 * Return: a negative error code or 0
 490 *
 491 * The key words are stored in @key on success.
 492 *
 493 * For shared mappings, it's (page->index, file_inode(vma->vm_file),
 494 * offset_within_page).  For private mappings, it's (uaddr, current->mm).
 495 * We can usually work out the index without swapping in the page.
 496 *
 497 * lock_page() might sleep, the caller should not hold a spinlock.
 498 */
 499static int
 500get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
 501{
 502	unsigned long address = (unsigned long)uaddr;
 503	struct mm_struct *mm = current->mm;
 504	struct page *page, *tail;
 505	struct address_space *mapping;
 506	int err, ro = 0;
 507
 508	/*
 509	 * The futex address must be "naturally" aligned.
 510	 */
 511	key->both.offset = address % PAGE_SIZE;
 512	if (unlikely((address % sizeof(u32)) != 0))
 513		return -EINVAL;
 514	address -= key->both.offset;
 515
 516	if (unlikely(!access_ok(rw, uaddr, sizeof(u32))))
 517		return -EFAULT;
 518
 519	if (unlikely(should_fail_futex(fshared)))
 520		return -EFAULT;
 521
 522	/*
 523	 * PROCESS_PRIVATE futexes are fast.
 524	 * As the mm cannot disappear under us and the 'key' only needs
 525	 * virtual address, we dont even have to find the underlying vma.
 526	 * Note : We do have to check 'uaddr' is a valid user address,
 527	 *        but access_ok() should be faster than find_vma()
 528	 */
 529	if (!fshared) {
 530		key->private.mm = mm;
 531		key->private.address = address;
 532		get_futex_key_refs(key);  /* implies smp_mb(); (B) */
 533		return 0;
 534	}
 535
 536again:
 537	/* Ignore any VERIFY_READ mapping (futex common case) */
 538	if (unlikely(should_fail_futex(fshared)))
 539		return -EFAULT;
 540
 541	err = get_user_pages_fast(address, 1, 1, &page);
 542	/*
 543	 * If write access is not required (eg. FUTEX_WAIT), try
 544	 * and get read-only access.
 545	 */
 546	if (err == -EFAULT && rw == VERIFY_READ) {
 547		err = get_user_pages_fast(address, 1, 0, &page);
 548		ro = 1;
 549	}
 550	if (err < 0)
 551		return err;
 552	else
 553		err = 0;
 554
 555	/*
 556	 * The treatment of mapping from this point on is critical. The page
 557	 * lock protects many things but in this context the page lock
 558	 * stabilizes mapping, prevents inode freeing in the shared
 559	 * file-backed region case and guards against movement to swap cache.
 560	 *
 561	 * Strictly speaking the page lock is not needed in all cases being
 562	 * considered here and page lock forces unnecessarily serialization
 563	 * From this point on, mapping will be re-verified if necessary and
 564	 * page lock will be acquired only if it is unavoidable
 565	 *
 566	 * Mapping checks require the head page for any compound page so the
 567	 * head page and mapping is looked up now. For anonymous pages, it
 568	 * does not matter if the page splits in the future as the key is
 569	 * based on the address. For filesystem-backed pages, the tail is
 570	 * required as the index of the page determines the key. For
 571	 * base pages, there is no tail page and tail == page.
 572	 */
 573	tail = page;
 574	page = compound_head(page);
 575	mapping = READ_ONCE(page->mapping);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 576
 577	/*
 578	 * If page->mapping is NULL, then it cannot be a PageAnon
 579	 * page; but it might be the ZERO_PAGE or in the gate area or
 580	 * in a special mapping (all cases which we are happy to fail);
 581	 * or it may have been a good file page when get_user_pages_fast
 582	 * found it, but truncated or holepunched or subjected to
 583	 * invalidate_complete_page2 before we got the page lock (also
 584	 * cases which we are happy to fail).  And we hold a reference,
 585	 * so refcount care in invalidate_complete_page's remove_mapping
 586	 * prevents drop_caches from setting mapping to NULL beneath us.
 587	 *
 588	 * The case we do have to guard against is when memory pressure made
 589	 * shmem_writepage move it from filecache to swapcache beneath us:
 590	 * an unlikely race, but we do need to retry for page->mapping.
 591	 */
 592	if (unlikely(!mapping)) {
 593		int shmem_swizzled;
 594
 595		/*
 596		 * Page lock is required to identify which special case above
 597		 * applies. If this is really a shmem page then the page lock
 598		 * will prevent unexpected transitions.
 599		 */
 600		lock_page(page);
 601		shmem_swizzled = PageSwapCache(page) || page->mapping;
 602		unlock_page(page);
 603		put_page(page);
 604
 605		if (shmem_swizzled)
 606			goto again;
 607
 608		return -EFAULT;
 609	}
 610
 611	/*
 612	 * Private mappings are handled in a simple way.
 613	 *
 614	 * If the futex key is stored on an anonymous page, then the associated
 615	 * object is the mm which is implicitly pinned by the calling process.
 616	 *
 617	 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
 618	 * it's a read-only handle, it's expected that futexes attach to
 619	 * the object not the particular process.
 620	 */
 621	if (PageAnon(page)) {
 622		/*
 623		 * A RO anonymous page will never change and thus doesn't make
 624		 * sense for futex operations.
 625		 */
 626		if (unlikely(should_fail_futex(fshared)) || ro) {
 627			err = -EFAULT;
 628			goto out;
 629		}
 630
 631		key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
 632		key->private.mm = mm;
 633		key->private.address = address;
 634
 635		get_futex_key_refs(key); /* implies smp_mb(); (B) */
 636
 637	} else {
 638		struct inode *inode;
 639
 640		/*
 641		 * The associated futex object in this case is the inode and
 642		 * the page->mapping must be traversed. Ordinarily this should
 643		 * be stabilised under page lock but it's not strictly
 644		 * necessary in this case as we just want to pin the inode, not
 645		 * update the radix tree or anything like that.
 646		 *
 647		 * The RCU read lock is taken as the inode is finally freed
 648		 * under RCU. If the mapping still matches expectations then the
 649		 * mapping->host can be safely accessed as being a valid inode.
 650		 */
 651		rcu_read_lock();
 652
 653		if (READ_ONCE(page->mapping) != mapping) {
 654			rcu_read_unlock();
 655			put_page(page);
 656
 657			goto again;
 658		}
 659
 660		inode = READ_ONCE(mapping->host);
 661		if (!inode) {
 662			rcu_read_unlock();
 663			put_page(page);
 664
 665			goto again;
 666		}
 667
 668		/*
 669		 * Take a reference unless it is about to be freed. Previously
 670		 * this reference was taken by ihold under the page lock
 671		 * pinning the inode in place so i_lock was unnecessary. The
 672		 * only way for this check to fail is if the inode was
 673		 * truncated in parallel which is almost certainly an
 674		 * application bug. In such a case, just retry.
 675		 *
 676		 * We are not calling into get_futex_key_refs() in file-backed
 677		 * cases, therefore a successful atomic_inc return below will
 678		 * guarantee that get_futex_key() will still imply smp_mb(); (B).
 679		 */
 680		if (!atomic_inc_not_zero(&inode->i_count)) {
 681			rcu_read_unlock();
 682			put_page(page);
 683
 684			goto again;
 685		}
 686
 687		/* Should be impossible but lets be paranoid for now */
 688		if (WARN_ON_ONCE(inode->i_mapping != mapping)) {
 689			err = -EFAULT;
 690			rcu_read_unlock();
 691			iput(inode);
 692
 693			goto out;
 694		}
 695
 696		key->both.offset |= FUT_OFF_INODE; /* inode-based key */
 697		key->shared.inode = inode;
 698		key->shared.pgoff = basepage_index(tail);
 699		rcu_read_unlock();
 700	}
 701
 
 
 702out:
 703	put_page(page);
 
 704	return err;
 705}
 706
 707static inline void put_futex_key(union futex_key *key)
 708{
 709	drop_futex_key_refs(key);
 710}
 711
 712/**
 713 * fault_in_user_writeable() - Fault in user address and verify RW access
 714 * @uaddr:	pointer to faulting user space address
 715 *
 716 * Slow path to fixup the fault we just took in the atomic write
 717 * access to @uaddr.
 718 *
 719 * We have no generic implementation of a non-destructive write to the
 720 * user address. We know that we faulted in the atomic pagefault
 721 * disabled section so we can as well avoid the #PF overhead by
 722 * calling get_user_pages() right away.
 723 */
 724static int fault_in_user_writeable(u32 __user *uaddr)
 725{
 726	struct mm_struct *mm = current->mm;
 727	int ret;
 728
 729	down_read(&mm->mmap_sem);
 730	ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
 731			       FAULT_FLAG_WRITE, NULL);
 732	up_read(&mm->mmap_sem);
 733
 734	return ret < 0 ? ret : 0;
 735}
 736
 737/**
 738 * futex_top_waiter() - Return the highest priority waiter on a futex
 739 * @hb:		the hash bucket the futex_q's reside in
 740 * @key:	the futex key (to distinguish it from other futex futex_q's)
 741 *
 742 * Must be called with the hb lock held.
 743 */
 744static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
 745					union futex_key *key)
 746{
 747	struct futex_q *this;
 748
 749	plist_for_each_entry(this, &hb->chain, list) {
 750		if (match_futex(&this->key, key))
 751			return this;
 752	}
 753	return NULL;
 754}
 755
 756static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
 757				      u32 uval, u32 newval)
 758{
 759	int ret;
 760
 761	pagefault_disable();
 762	ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
 763	pagefault_enable();
 764
 765	return ret;
 766}
 767
 768static int get_futex_value_locked(u32 *dest, u32 __user *from)
 769{
 770	int ret;
 771
 772	pagefault_disable();
 773	ret = __get_user(*dest, from);
 774	pagefault_enable();
 775
 776	return ret ? -EFAULT : 0;
 777}
 778
 779
 780/*
 781 * PI code:
 782 */
 783static int refill_pi_state_cache(void)
 784{
 785	struct futex_pi_state *pi_state;
 786
 787	if (likely(current->pi_state_cache))
 788		return 0;
 789
 790	pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
 791
 792	if (!pi_state)
 793		return -ENOMEM;
 794
 795	INIT_LIST_HEAD(&pi_state->list);
 796	/* pi_mutex gets initialized later */
 797	pi_state->owner = NULL;
 798	atomic_set(&pi_state->refcount, 1);
 799	pi_state->key = FUTEX_KEY_INIT;
 800
 801	current->pi_state_cache = pi_state;
 802
 803	return 0;
 804}
 805
 806static struct futex_pi_state *alloc_pi_state(void)
 807{
 808	struct futex_pi_state *pi_state = current->pi_state_cache;
 809
 810	WARN_ON(!pi_state);
 811	current->pi_state_cache = NULL;
 812
 813	return pi_state;
 814}
 815
 816static void get_pi_state(struct futex_pi_state *pi_state)
 817{
 818	WARN_ON_ONCE(!atomic_inc_not_zero(&pi_state->refcount));
 819}
 820
 821/*
 822 * Drops a reference to the pi_state object and frees or caches it
 823 * when the last reference is gone.
 824 */
 825static void put_pi_state(struct futex_pi_state *pi_state)
 826{
 827	if (!pi_state)
 828		return;
 829
 830	if (!atomic_dec_and_test(&pi_state->refcount))
 831		return;
 832
 833	/*
 834	 * If pi_state->owner is NULL, the owner is most probably dying
 835	 * and has cleaned up the pi_state already
 836	 */
 837	if (pi_state->owner) {
 838		struct task_struct *owner;
 
 
 839
 840		raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
 841		owner = pi_state->owner;
 842		if (owner) {
 843			raw_spin_lock(&owner->pi_lock);
 844			list_del_init(&pi_state->list);
 845			raw_spin_unlock(&owner->pi_lock);
 846		}
 847		rt_mutex_proxy_unlock(&pi_state->pi_mutex, owner);
 848		raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
 849	}
 850
 851	if (current->pi_state_cache) {
 852		kfree(pi_state);
 853	} else {
 854		/*
 855		 * pi_state->list is already empty.
 856		 * clear pi_state->owner.
 857		 * refcount is at 0 - put it back to 1.
 858		 */
 859		pi_state->owner = NULL;
 860		atomic_set(&pi_state->refcount, 1);
 861		current->pi_state_cache = pi_state;
 862	}
 863}
 864
 865#ifdef CONFIG_FUTEX_PI
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 866
 867/*
 868 * This task is holding PI mutexes at exit time => bad.
 869 * Kernel cleans up PI-state, but userspace is likely hosed.
 870 * (Robust-futex cleanup is separate and might save the day for userspace.)
 871 */
 872void exit_pi_state_list(struct task_struct *curr)
 873{
 874	struct list_head *next, *head = &curr->pi_state_list;
 875	struct futex_pi_state *pi_state;
 876	struct futex_hash_bucket *hb;
 877	union futex_key key = FUTEX_KEY_INIT;
 878
 879	if (!futex_cmpxchg_enabled)
 880		return;
 881	/*
 882	 * We are a ZOMBIE and nobody can enqueue itself on
 883	 * pi_state_list anymore, but we have to be careful
 884	 * versus waiters unqueueing themselves:
 885	 */
 886	raw_spin_lock_irq(&curr->pi_lock);
 887	while (!list_empty(head)) {
 
 888		next = head->next;
 889		pi_state = list_entry(next, struct futex_pi_state, list);
 890		key = pi_state->key;
 891		hb = hash_futex(&key);
 892
 893		/*
 894		 * We can race against put_pi_state() removing itself from the
 895		 * list (a waiter going away). put_pi_state() will first
 896		 * decrement the reference count and then modify the list, so
 897		 * its possible to see the list entry but fail this reference
 898		 * acquire.
 899		 *
 900		 * In that case; drop the locks to let put_pi_state() make
 901		 * progress and retry the loop.
 902		 */
 903		if (!atomic_inc_not_zero(&pi_state->refcount)) {
 904			raw_spin_unlock_irq(&curr->pi_lock);
 905			cpu_relax();
 906			raw_spin_lock_irq(&curr->pi_lock);
 907			continue;
 908		}
 909		raw_spin_unlock_irq(&curr->pi_lock);
 910
 911		spin_lock(&hb->lock);
 912		raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
 913		raw_spin_lock(&curr->pi_lock);
 914		/*
 915		 * We dropped the pi-lock, so re-check whether this
 916		 * task still owns the PI-state:
 917		 */
 918		if (head->next != next) {
 919			/* retain curr->pi_lock for the loop invariant */
 920			raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
 921			spin_unlock(&hb->lock);
 922			put_pi_state(pi_state);
 923			continue;
 924		}
 925
 926		WARN_ON(pi_state->owner != curr);
 927		WARN_ON(list_empty(&pi_state->list));
 928		list_del_init(&pi_state->list);
 929		pi_state->owner = NULL;
 
 
 
 930
 931		raw_spin_unlock(&curr->pi_lock);
 932		raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
 933		spin_unlock(&hb->lock);
 934
 935		rt_mutex_futex_unlock(&pi_state->pi_mutex);
 936		put_pi_state(pi_state);
 937
 938		raw_spin_lock_irq(&curr->pi_lock);
 939	}
 940	raw_spin_unlock_irq(&curr->pi_lock);
 941}
 942
 943#endif
 944
 945/*
 946 * We need to check the following states:
 947 *
 948 *      Waiter | pi_state | pi->owner | uTID      | uODIED | ?
 949 *
 950 * [1]  NULL   | ---      | ---       | 0         | 0/1    | Valid
 951 * [2]  NULL   | ---      | ---       | >0        | 0/1    | Valid
 952 *
 953 * [3]  Found  | NULL     | --        | Any       | 0/1    | Invalid
 954 *
 955 * [4]  Found  | Found    | NULL      | 0         | 1      | Valid
 956 * [5]  Found  | Found    | NULL      | >0        | 1      | Invalid
 957 *
 958 * [6]  Found  | Found    | task      | 0         | 1      | Valid
 959 *
 960 * [7]  Found  | Found    | NULL      | Any       | 0      | Invalid
 961 *
 962 * [8]  Found  | Found    | task      | ==taskTID | 0/1    | Valid
 963 * [9]  Found  | Found    | task      | 0         | 0      | Invalid
 964 * [10] Found  | Found    | task      | !=taskTID | 0/1    | Invalid
 965 *
 966 * [1]	Indicates that the kernel can acquire the futex atomically. We
 967 *	came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
 968 *
 969 * [2]	Valid, if TID does not belong to a kernel thread. If no matching
 970 *      thread is found then it indicates that the owner TID has died.
 971 *
 972 * [3]	Invalid. The waiter is queued on a non PI futex
 973 *
 974 * [4]	Valid state after exit_robust_list(), which sets the user space
 975 *	value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
 976 *
 977 * [5]	The user space value got manipulated between exit_robust_list()
 978 *	and exit_pi_state_list()
 979 *
 980 * [6]	Valid state after exit_pi_state_list() which sets the new owner in
 981 *	the pi_state but cannot access the user space value.
 982 *
 983 * [7]	pi_state->owner can only be NULL when the OWNER_DIED bit is set.
 984 *
 985 * [8]	Owner and user space value match
 986 *
 987 * [9]	There is no transient state which sets the user space TID to 0
 988 *	except exit_robust_list(), but this is indicated by the
 989 *	FUTEX_OWNER_DIED bit. See [4]
 990 *
 991 * [10] There is no transient state which leaves owner and user space
 992 *	TID out of sync.
 993 *
 994 *
 995 * Serialization and lifetime rules:
 996 *
 997 * hb->lock:
 998 *
 999 *	hb -> futex_q, relation
1000 *	futex_q -> pi_state, relation
1001 *
1002 *	(cannot be raw because hb can contain arbitrary amount
1003 *	 of futex_q's)
1004 *
1005 * pi_mutex->wait_lock:
1006 *
1007 *	{uval, pi_state}
1008 *
1009 *	(and pi_mutex 'obviously')
1010 *
1011 * p->pi_lock:
1012 *
1013 *	p->pi_state_list -> pi_state->list, relation
1014 *
1015 * pi_state->refcount:
1016 *
1017 *	pi_state lifetime
1018 *
1019 *
1020 * Lock order:
1021 *
1022 *   hb->lock
1023 *     pi_mutex->wait_lock
1024 *       p->pi_lock
1025 *
1026 */
1027
1028/*
1029 * Validate that the existing waiter has a pi_state and sanity check
1030 * the pi_state against the user space value. If correct, attach to
1031 * it.
1032 */
1033static int attach_to_pi_state(u32 __user *uaddr, u32 uval,
1034			      struct futex_pi_state *pi_state,
1035			      struct futex_pi_state **ps)
1036{
 
 
 
1037	pid_t pid = uval & FUTEX_TID_MASK;
1038	u32 uval2;
1039	int ret;
1040
1041	/*
1042	 * Userspace might have messed up non-PI and PI futexes [3]
1043	 */
1044	if (unlikely(!pi_state))
1045		return -EINVAL;
1046
1047	/*
1048	 * We get here with hb->lock held, and having found a
1049	 * futex_top_waiter(). This means that futex_lock_pi() of said futex_q
1050	 * has dropped the hb->lock in between queue_me() and unqueue_me_pi(),
1051	 * which in turn means that futex_lock_pi() still has a reference on
1052	 * our pi_state.
1053	 *
1054	 * The waiter holding a reference on @pi_state also protects against
1055	 * the unlocked put_pi_state() in futex_unlock_pi(), futex_lock_pi()
1056	 * and futex_wait_requeue_pi() as it cannot go to 0 and consequently
1057	 * free pi_state before we can take a reference ourselves.
1058	 */
1059	WARN_ON(!atomic_read(&pi_state->refcount));
1060
1061	/*
1062	 * Now that we have a pi_state, we can acquire wait_lock
1063	 * and do the state validation.
1064	 */
1065	raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
1066
1067	/*
1068	 * Since {uval, pi_state} is serialized by wait_lock, and our current
1069	 * uval was read without holding it, it can have changed. Verify it
1070	 * still is what we expect it to be, otherwise retry the entire
1071	 * operation.
1072	 */
1073	if (get_futex_value_locked(&uval2, uaddr))
1074		goto out_efault;
1075
1076	if (uval != uval2)
1077		goto out_eagain;
1078
1079	/*
1080	 * Handle the owner died case:
1081	 */
1082	if (uval & FUTEX_OWNER_DIED) {
1083		/*
1084		 * exit_pi_state_list sets owner to NULL and wakes the
1085		 * topmost waiter. The task which acquires the
1086		 * pi_state->rt_mutex will fixup owner.
1087		 */
1088		if (!pi_state->owner) {
1089			/*
1090			 * No pi state owner, but the user space TID
1091			 * is not 0. Inconsistent state. [5]
1092			 */
1093			if (pid)
1094				goto out_einval;
1095			/*
1096			 * Take a ref on the state and return success. [4]
 
1097			 */
1098			goto out_attach;
1099		}
1100
1101		/*
1102		 * If TID is 0, then either the dying owner has not
1103		 * yet executed exit_pi_state_list() or some waiter
1104		 * acquired the rtmutex in the pi state, but did not
1105		 * yet fixup the TID in user space.
1106		 *
1107		 * Take a ref on the state and return success. [6]
1108		 */
1109		if (!pid)
1110			goto out_attach;
1111	} else {
1112		/*
1113		 * If the owner died bit is not set, then the pi_state
1114		 * must have an owner. [7]
1115		 */
1116		if (!pi_state->owner)
1117			goto out_einval;
1118	}
1119
1120	/*
1121	 * Bail out if user space manipulated the futex value. If pi
1122	 * state exists then the owner TID must be the same as the
1123	 * user space TID. [9/10]
1124	 */
1125	if (pid != task_pid_vnr(pi_state->owner))
1126		goto out_einval;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1127
1128out_attach:
1129	get_pi_state(pi_state);
1130	raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1131	*ps = pi_state;
1132	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1133
1134out_einval:
1135	ret = -EINVAL;
1136	goto out_error;
1137
1138out_eagain:
1139	ret = -EAGAIN;
1140	goto out_error;
1141
1142out_efault:
1143	ret = -EFAULT;
1144	goto out_error;
1145
1146out_error:
1147	raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1148	return ret;
1149}
1150
1151/*
1152 * Lookup the task for the TID provided from user space and attach to
1153 * it after doing proper sanity checks.
1154 */
1155static int attach_to_pi_owner(u32 uval, union futex_key *key,
1156			      struct futex_pi_state **ps)
1157{
1158	pid_t pid = uval & FUTEX_TID_MASK;
1159	struct futex_pi_state *pi_state;
1160	struct task_struct *p;
1161
1162	/*
1163	 * We are the first waiter - try to look up the real owner and attach
1164	 * the new pi_state to it, but bail out when TID = 0 [1]
1165	 */
1166	if (!pid)
1167		return -ESRCH;
1168	p = find_get_task_by_vpid(pid);
1169	if (!p)
1170		return -ESRCH;
1171
1172	if (unlikely(p->flags & PF_KTHREAD)) {
1173		put_task_struct(p);
1174		return -EPERM;
1175	}
1176
1177	/*
1178	 * We need to look at the task state flags to figure out,
1179	 * whether the task is exiting. To protect against the do_exit
1180	 * change of the task flags, we do this protected by
1181	 * p->pi_lock:
1182	 */
1183	raw_spin_lock_irq(&p->pi_lock);
1184	if (unlikely(p->flags & PF_EXITING)) {
1185		/*
1186		 * The task is on the way out. When PF_EXITPIDONE is
1187		 * set, we know that the task has finished the
1188		 * cleanup:
1189		 */
1190		int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
1191
1192		raw_spin_unlock_irq(&p->pi_lock);
1193		put_task_struct(p);
1194		return ret;
1195	}
1196
1197	/*
1198	 * No existing pi state. First waiter. [2]
1199	 *
1200	 * This creates pi_state, we have hb->lock held, this means nothing can
1201	 * observe this state, wait_lock is irrelevant.
1202	 */
1203	pi_state = alloc_pi_state();
1204
1205	/*
1206	 * Initialize the pi_mutex in locked state and make @p
1207	 * the owner of it:
1208	 */
1209	rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
1210
1211	/* Store the key for possible exit cleanups: */
1212	pi_state->key = *key;
1213
1214	WARN_ON(!list_empty(&pi_state->list));
1215	list_add(&pi_state->list, &p->pi_state_list);
1216	/*
1217	 * Assignment without holding pi_state->pi_mutex.wait_lock is safe
1218	 * because there is no concurrency as the object is not published yet.
1219	 */
1220	pi_state->owner = p;
1221	raw_spin_unlock_irq(&p->pi_lock);
1222
1223	put_task_struct(p);
1224
1225	*ps = pi_state;
1226
1227	return 0;
1228}
1229
1230static int lookup_pi_state(u32 __user *uaddr, u32 uval,
1231			   struct futex_hash_bucket *hb,
1232			   union futex_key *key, struct futex_pi_state **ps)
1233{
1234	struct futex_q *top_waiter = futex_top_waiter(hb, key);
1235
1236	/*
1237	 * If there is a waiter on that futex, validate it and
1238	 * attach to the pi_state when the validation succeeds.
1239	 */
1240	if (top_waiter)
1241		return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1242
1243	/*
1244	 * We are the first waiter - try to look up the owner based on
1245	 * @uval and attach to it.
1246	 */
1247	return attach_to_pi_owner(uval, key, ps);
1248}
1249
1250static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
1251{
1252	u32 uninitialized_var(curval);
1253
1254	if (unlikely(should_fail_futex(true)))
1255		return -EFAULT;
1256
1257	if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
1258		return -EFAULT;
1259
1260	/* If user space value changed, let the caller retry */
1261	return curval != uval ? -EAGAIN : 0;
1262}
1263
1264/**
1265 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
1266 * @uaddr:		the pi futex user address
1267 * @hb:			the pi futex hash bucket
1268 * @key:		the futex key associated with uaddr and hb
1269 * @ps:			the pi_state pointer where we store the result of the
1270 *			lookup
1271 * @task:		the task to perform the atomic lock work for.  This will
1272 *			be "current" except in the case of requeue pi.
1273 * @set_waiters:	force setting the FUTEX_WAITERS bit (1) or not (0)
1274 *
1275 * Return:
1276 *  -  0 - ready to wait;
1277 *  -  1 - acquired the lock;
1278 *  - <0 - error
1279 *
1280 * The hb->lock and futex_key refs shall be held by the caller.
1281 */
1282static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
1283				union futex_key *key,
1284				struct futex_pi_state **ps,
1285				struct task_struct *task, int set_waiters)
1286{
1287	u32 uval, newval, vpid = task_pid_vnr(task);
1288	struct futex_q *top_waiter;
1289	int ret;
 
 
1290
1291	/*
1292	 * Read the user space value first so we can validate a few
1293	 * things before proceeding further.
 
1294	 */
1295	if (get_futex_value_locked(&uval, uaddr))
1296		return -EFAULT;
 
1297
1298	if (unlikely(should_fail_futex(true)))
1299		return -EFAULT;
1300
1301	/*
1302	 * Detect deadlocks.
1303	 */
1304	if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
1305		return -EDEADLK;
1306
1307	if ((unlikely(should_fail_futex(true))))
1308		return -EDEADLK;
 
 
 
 
 
 
 
 
 
 
 
 
 
1309
1310	/*
1311	 * Lookup existing state first. If it exists, try to attach to
1312	 * its pi_state.
1313	 */
1314	top_waiter = futex_top_waiter(hb, key);
1315	if (top_waiter)
1316		return attach_to_pi_state(uaddr, uval, top_waiter->pi_state, ps);
1317
1318	/*
1319	 * No waiter and user TID is 0. We are here because the
1320	 * waiters or the owner died bit is set or called from
1321	 * requeue_cmp_pi or for whatever reason something took the
1322	 * syscall.
1323	 */
1324	if (!(uval & FUTEX_TID_MASK)) {
1325		/*
1326		 * We take over the futex. No other waiters and the user space
1327		 * TID is 0. We preserve the owner died bit.
1328		 */
1329		newval = uval & FUTEX_OWNER_DIED;
1330		newval |= vpid;
 
 
1331
1332		/* The futex requeue_pi code can enforce the waiters bit */
1333		if (set_waiters)
1334			newval |= FUTEX_WAITERS;
1335
1336		ret = lock_pi_update_atomic(uaddr, uval, newval);
1337		/* If the take over worked, return 1 */
1338		return ret < 0 ? ret : 1;
1339	}
1340
1341	/*
1342	 * First waiter. Set the waiters bit before attaching ourself to
1343	 * the owner. If owner tries to unlock, it will be forced into
1344	 * the kernel and blocked on hb->lock.
1345	 */
1346	newval = uval | FUTEX_WAITERS;
1347	ret = lock_pi_update_atomic(uaddr, uval, newval);
1348	if (ret)
1349		return ret;
1350	/*
1351	 * If the update of the user space value succeeded, we try to
1352	 * attach to the owner. If that fails, no harm done, we only
1353	 * set the FUTEX_WAITERS bit in the user space variable.
1354	 */
1355	return attach_to_pi_owner(uval, key, ps);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1356}
1357
1358/**
1359 * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
1360 * @q:	The futex_q to unqueue
1361 *
1362 * The q->lock_ptr must not be NULL and must be held by the caller.
1363 */
1364static void __unqueue_futex(struct futex_q *q)
1365{
1366	struct futex_hash_bucket *hb;
1367
1368	if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
1369	    || WARN_ON(plist_node_empty(&q->list)))
1370		return;
1371
1372	hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
1373	plist_del(&q->list, &hb->chain);
1374	hb_waiters_dec(hb);
1375}
1376
1377/*
1378 * The hash bucket lock must be held when this is called.
1379 * Afterwards, the futex_q must not be accessed. Callers
1380 * must ensure to later call wake_up_q() for the actual
1381 * wakeups to occur.
1382 */
1383static void mark_wake_futex(struct wake_q_head *wake_q, struct futex_q *q)
1384{
1385	struct task_struct *p = q->task;
1386
1387	if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
1388		return;
1389
1390	/*
1391	 * Queue the task for later wakeup for after we've released
1392	 * the hb->lock. wake_q_add() grabs reference to p.
 
 
 
1393	 */
1394	wake_q_add(wake_q, p);
 
1395	__unqueue_futex(q);
1396	/*
1397	 * The waiting task can free the futex_q as soon as q->lock_ptr = NULL
1398	 * is written, without taking any locks. This is possible in the event
1399	 * of a spurious wakeup, for example. A memory barrier is required here
1400	 * to prevent the following store to lock_ptr from getting ahead of the
1401	 * plist_del in __unqueue_futex().
1402	 */
1403	smp_store_release(&q->lock_ptr, NULL);
 
 
 
 
1404}
1405
1406/*
1407 * Caller must hold a reference on @pi_state.
1408 */
1409static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_pi_state *pi_state)
1410{
 
 
1411	u32 uninitialized_var(curval), newval;
1412	struct task_struct *new_owner;
1413	bool postunlock = false;
1414	DEFINE_WAKE_Q(wake_q);
1415	int ret = 0;
1416
 
 
 
 
 
 
 
 
 
 
 
1417	new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
1418	if (WARN_ON_ONCE(!new_owner)) {
1419		/*
1420		 * As per the comment in futex_unlock_pi() this should not happen.
1421		 *
1422		 * When this happens, give up our locks and try again, giving
1423		 * the futex_lock_pi() instance time to complete, either by
1424		 * waiting on the rtmutex or removing itself from the futex
1425		 * queue.
1426		 */
1427		ret = -EAGAIN;
1428		goto out_unlock;
1429	}
1430
1431	/*
1432	 * We pass it to the next owner. The WAITERS bit is always kept
1433	 * enabled while there is PI state around. We cleanup the owner
1434	 * died bit, because we are the owner.
 
 
 
 
 
 
 
 
1435	 */
1436	newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
1437
1438	if (unlikely(should_fail_futex(true)))
1439		ret = -EFAULT;
1440
1441	if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)) {
1442		ret = -EFAULT;
1443
1444	} else if (curval != uval) {
1445		/*
1446		 * If a unconditional UNLOCK_PI operation (user space did not
1447		 * try the TID->0 transition) raced with a waiter setting the
1448		 * FUTEX_WAITERS flag between get_user() and locking the hash
1449		 * bucket lock, retry the operation.
1450		 */
1451		if ((FUTEX_TID_MASK & curval) == uval)
1452			ret = -EAGAIN;
1453		else
1454			ret = -EINVAL;
1455	}
1456
1457	if (ret)
1458		goto out_unlock;
1459
1460	/*
1461	 * This is a point of no return; once we modify the uval there is no
1462	 * going back and subsequent operations must not fail.
1463	 */
1464
1465	raw_spin_lock(&pi_state->owner->pi_lock);
1466	WARN_ON(list_empty(&pi_state->list));
1467	list_del_init(&pi_state->list);
1468	raw_spin_unlock(&pi_state->owner->pi_lock);
1469
1470	raw_spin_lock(&new_owner->pi_lock);
1471	WARN_ON(!list_empty(&pi_state->list));
1472	list_add(&pi_state->list, &new_owner->pi_state_list);
1473	pi_state->owner = new_owner;
1474	raw_spin_unlock(&new_owner->pi_lock);
1475
1476	postunlock = __rt_mutex_futex_unlock(&pi_state->pi_mutex, &wake_q);
 
1477
1478out_unlock:
1479	raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
 
 
 
 
1480
1481	if (postunlock)
1482		rt_mutex_postunlock(&wake_q);
 
 
 
 
 
 
1483
1484	return ret;
1485}
1486
1487/*
1488 * Express the locking dependencies for lockdep:
1489 */
1490static inline void
1491double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1492{
1493	if (hb1 <= hb2) {
1494		spin_lock(&hb1->lock);
1495		if (hb1 < hb2)
1496			spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1497	} else { /* hb1 > hb2 */
1498		spin_lock(&hb2->lock);
1499		spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1500	}
1501}
1502
1503static inline void
1504double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1505{
1506	spin_unlock(&hb1->lock);
1507	if (hb1 != hb2)
1508		spin_unlock(&hb2->lock);
1509}
1510
1511/*
1512 * Wake up waiters matching bitset queued on this futex (uaddr).
1513 */
1514static int
1515futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1516{
1517	struct futex_hash_bucket *hb;
1518	struct futex_q *this, *next;
1519	union futex_key key = FUTEX_KEY_INIT;
1520	int ret;
1521	DEFINE_WAKE_Q(wake_q);
1522
1523	if (!bitset)
1524		return -EINVAL;
1525
1526	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
1527	if (unlikely(ret != 0))
1528		goto out;
1529
1530	hb = hash_futex(&key);
1531
1532	/* Make sure we really have tasks to wakeup */
1533	if (!hb_waiters_pending(hb))
1534		goto out_put_key;
1535
1536	spin_lock(&hb->lock);
1537
1538	plist_for_each_entry_safe(this, next, &hb->chain, list) {
1539		if (match_futex (&this->key, &key)) {
1540			if (this->pi_state || this->rt_waiter) {
1541				ret = -EINVAL;
1542				break;
1543			}
1544
1545			/* Check if one of the bits is set in both bitsets */
1546			if (!(this->bitset & bitset))
1547				continue;
1548
1549			mark_wake_futex(&wake_q, this);
1550			if (++ret >= nr_wake)
1551				break;
1552		}
1553	}
1554
1555	spin_unlock(&hb->lock);
1556	wake_up_q(&wake_q);
1557out_put_key:
1558	put_futex_key(&key);
1559out:
1560	return ret;
1561}
1562
1563static int futex_atomic_op_inuser(unsigned int encoded_op, u32 __user *uaddr)
1564{
1565	unsigned int op =	  (encoded_op & 0x70000000) >> 28;
1566	unsigned int cmp =	  (encoded_op & 0x0f000000) >> 24;
1567	int oparg = sign_extend32((encoded_op & 0x00fff000) >> 12, 11);
1568	int cmparg = sign_extend32(encoded_op & 0x00000fff, 11);
1569	int oldval, ret;
1570
1571	if (encoded_op & (FUTEX_OP_OPARG_SHIFT << 28)) {
1572		if (oparg < 0 || oparg > 31) {
1573			char comm[sizeof(current->comm)];
1574			/*
1575			 * kill this print and return -EINVAL when userspace
1576			 * is sane again
1577			 */
1578			pr_info_ratelimited("futex_wake_op: %s tries to shift op by %d; fix this program\n",
1579					get_task_comm(comm, current), oparg);
1580			oparg &= 31;
1581		}
1582		oparg = 1 << oparg;
1583	}
1584
1585	if (!access_ok(VERIFY_WRITE, uaddr, sizeof(u32)))
1586		return -EFAULT;
1587
1588	ret = arch_futex_atomic_op_inuser(op, oparg, &oldval, uaddr);
1589	if (ret)
1590		return ret;
1591
1592	switch (cmp) {
1593	case FUTEX_OP_CMP_EQ:
1594		return oldval == cmparg;
1595	case FUTEX_OP_CMP_NE:
1596		return oldval != cmparg;
1597	case FUTEX_OP_CMP_LT:
1598		return oldval < cmparg;
1599	case FUTEX_OP_CMP_GE:
1600		return oldval >= cmparg;
1601	case FUTEX_OP_CMP_LE:
1602		return oldval <= cmparg;
1603	case FUTEX_OP_CMP_GT:
1604		return oldval > cmparg;
1605	default:
1606		return -ENOSYS;
1607	}
1608}
1609
1610/*
1611 * Wake up all waiters hashed on the physical page that is mapped
1612 * to this virtual address:
1613 */
1614static int
1615futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1616	      int nr_wake, int nr_wake2, int op)
1617{
1618	union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1619	struct futex_hash_bucket *hb1, *hb2;
1620	struct futex_q *this, *next;
1621	int ret, op_ret;
1622	DEFINE_WAKE_Q(wake_q);
1623
1624retry:
1625	ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1626	if (unlikely(ret != 0))
1627		goto out;
1628	ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
1629	if (unlikely(ret != 0))
1630		goto out_put_key1;
1631
1632	hb1 = hash_futex(&key1);
1633	hb2 = hash_futex(&key2);
1634
1635retry_private:
1636	double_lock_hb(hb1, hb2);
1637	op_ret = futex_atomic_op_inuser(op, uaddr2);
1638	if (unlikely(op_ret < 0)) {
1639
1640		double_unlock_hb(hb1, hb2);
1641
1642#ifndef CONFIG_MMU
1643		/*
1644		 * we don't get EFAULT from MMU faults if we don't have an MMU,
1645		 * but we might get them from range checking
1646		 */
1647		ret = op_ret;
1648		goto out_put_keys;
1649#endif
1650
1651		if (unlikely(op_ret != -EFAULT)) {
1652			ret = op_ret;
1653			goto out_put_keys;
1654		}
1655
1656		ret = fault_in_user_writeable(uaddr2);
1657		if (ret)
1658			goto out_put_keys;
1659
1660		if (!(flags & FLAGS_SHARED))
1661			goto retry_private;
1662
1663		put_futex_key(&key2);
1664		put_futex_key(&key1);
1665		goto retry;
1666	}
1667
1668	plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1669		if (match_futex (&this->key, &key1)) {
1670			if (this->pi_state || this->rt_waiter) {
1671				ret = -EINVAL;
1672				goto out_unlock;
1673			}
1674			mark_wake_futex(&wake_q, this);
1675			if (++ret >= nr_wake)
1676				break;
1677		}
1678	}
1679
1680	if (op_ret > 0) {
1681		op_ret = 0;
1682		plist_for_each_entry_safe(this, next, &hb2->chain, list) {
1683			if (match_futex (&this->key, &key2)) {
1684				if (this->pi_state || this->rt_waiter) {
1685					ret = -EINVAL;
1686					goto out_unlock;
1687				}
1688				mark_wake_futex(&wake_q, this);
1689				if (++op_ret >= nr_wake2)
1690					break;
1691			}
1692		}
1693		ret += op_ret;
1694	}
1695
1696out_unlock:
1697	double_unlock_hb(hb1, hb2);
1698	wake_up_q(&wake_q);
1699out_put_keys:
1700	put_futex_key(&key2);
1701out_put_key1:
1702	put_futex_key(&key1);
1703out:
1704	return ret;
1705}
1706
1707/**
1708 * requeue_futex() - Requeue a futex_q from one hb to another
1709 * @q:		the futex_q to requeue
1710 * @hb1:	the source hash_bucket
1711 * @hb2:	the target hash_bucket
1712 * @key2:	the new key for the requeued futex_q
1713 */
1714static inline
1715void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1716		   struct futex_hash_bucket *hb2, union futex_key *key2)
1717{
1718
1719	/*
1720	 * If key1 and key2 hash to the same bucket, no need to
1721	 * requeue.
1722	 */
1723	if (likely(&hb1->chain != &hb2->chain)) {
1724		plist_del(&q->list, &hb1->chain);
1725		hb_waiters_dec(hb1);
 
1726		hb_waiters_inc(hb2);
1727		plist_add(&q->list, &hb2->chain);
1728		q->lock_ptr = &hb2->lock;
1729	}
1730	get_futex_key_refs(key2);
1731	q->key = *key2;
1732}
1733
1734/**
1735 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1736 * @q:		the futex_q
1737 * @key:	the key of the requeue target futex
1738 * @hb:		the hash_bucket of the requeue target futex
1739 *
1740 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1741 * target futex if it is uncontended or via a lock steal.  Set the futex_q key
1742 * to the requeue target futex so the waiter can detect the wakeup on the right
1743 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1744 * atomic lock acquisition.  Set the q->lock_ptr to the requeue target hb->lock
1745 * to protect access to the pi_state to fixup the owner later.  Must be called
1746 * with both q->lock_ptr and hb->lock held.
1747 */
1748static inline
1749void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1750			   struct futex_hash_bucket *hb)
1751{
1752	get_futex_key_refs(key);
1753	q->key = *key;
1754
1755	__unqueue_futex(q);
1756
1757	WARN_ON(!q->rt_waiter);
1758	q->rt_waiter = NULL;
1759
1760	q->lock_ptr = &hb->lock;
1761
1762	wake_up_state(q->task, TASK_NORMAL);
1763}
1764
1765/**
1766 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1767 * @pifutex:		the user address of the to futex
1768 * @hb1:		the from futex hash bucket, must be locked by the caller
1769 * @hb2:		the to futex hash bucket, must be locked by the caller
1770 * @key1:		the from futex key
1771 * @key2:		the to futex key
1772 * @ps:			address to store the pi_state pointer
1773 * @set_waiters:	force setting the FUTEX_WAITERS bit (1) or not (0)
1774 *
1775 * Try and get the lock on behalf of the top waiter if we can do it atomically.
1776 * Wake the top waiter if we succeed.  If the caller specified set_waiters,
1777 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1778 * hb1 and hb2 must be held by the caller.
1779 *
1780 * Return:
1781 *  -  0 - failed to acquire the lock atomically;
1782 *  - >0 - acquired the lock, return value is vpid of the top_waiter
1783 *  - <0 - error
1784 */
1785static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1786				 struct futex_hash_bucket *hb1,
1787				 struct futex_hash_bucket *hb2,
1788				 union futex_key *key1, union futex_key *key2,
1789				 struct futex_pi_state **ps, int set_waiters)
1790{
1791	struct futex_q *top_waiter = NULL;
1792	u32 curval;
1793	int ret, vpid;
1794
1795	if (get_futex_value_locked(&curval, pifutex))
1796		return -EFAULT;
1797
1798	if (unlikely(should_fail_futex(true)))
1799		return -EFAULT;
1800
1801	/*
1802	 * Find the top_waiter and determine if there are additional waiters.
1803	 * If the caller intends to requeue more than 1 waiter to pifutex,
1804	 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1805	 * as we have means to handle the possible fault.  If not, don't set
1806	 * the bit unecessarily as it will force the subsequent unlock to enter
1807	 * the kernel.
1808	 */
1809	top_waiter = futex_top_waiter(hb1, key1);
1810
1811	/* There are no waiters, nothing for us to do. */
1812	if (!top_waiter)
1813		return 0;
1814
1815	/* Ensure we requeue to the expected futex. */
1816	if (!match_futex(top_waiter->requeue_pi_key, key2))
1817		return -EINVAL;
1818
1819	/*
1820	 * Try to take the lock for top_waiter.  Set the FUTEX_WAITERS bit in
1821	 * the contended case or if set_waiters is 1.  The pi_state is returned
1822	 * in ps in contended cases.
1823	 */
1824	vpid = task_pid_vnr(top_waiter->task);
1825	ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1826				   set_waiters);
1827	if (ret == 1) {
1828		requeue_pi_wake_futex(top_waiter, key2, hb2);
1829		return vpid;
1830	}
1831	return ret;
1832}
1833
1834/**
1835 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1836 * @uaddr1:	source futex user address
1837 * @flags:	futex flags (FLAGS_SHARED, etc.)
1838 * @uaddr2:	target futex user address
1839 * @nr_wake:	number of waiters to wake (must be 1 for requeue_pi)
1840 * @nr_requeue:	number of waiters to requeue (0-INT_MAX)
1841 * @cmpval:	@uaddr1 expected value (or %NULL)
1842 * @requeue_pi:	if we are attempting to requeue from a non-pi futex to a
1843 *		pi futex (pi to pi requeue is not supported)
1844 *
1845 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1846 * uaddr2 atomically on behalf of the top waiter.
1847 *
1848 * Return:
1849 *  - >=0 - on success, the number of tasks requeued or woken;
1850 *  -  <0 - on error
1851 */
1852static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1853			 u32 __user *uaddr2, int nr_wake, int nr_requeue,
1854			 u32 *cmpval, int requeue_pi)
1855{
1856	union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1857	int drop_count = 0, task_count = 0, ret;
1858	struct futex_pi_state *pi_state = NULL;
1859	struct futex_hash_bucket *hb1, *hb2;
1860	struct futex_q *this, *next;
1861	DEFINE_WAKE_Q(wake_q);
1862
1863	if (nr_wake < 0 || nr_requeue < 0)
1864		return -EINVAL;
1865
1866	/*
1867	 * When PI not supported: return -ENOSYS if requeue_pi is true,
1868	 * consequently the compiler knows requeue_pi is always false past
1869	 * this point which will optimize away all the conditional code
1870	 * further down.
1871	 */
1872	if (!IS_ENABLED(CONFIG_FUTEX_PI) && requeue_pi)
1873		return -ENOSYS;
1874
1875	if (requeue_pi) {
1876		/*
1877		 * Requeue PI only works on two distinct uaddrs. This
1878		 * check is only valid for private futexes. See below.
1879		 */
1880		if (uaddr1 == uaddr2)
1881			return -EINVAL;
1882
1883		/*
1884		 * requeue_pi requires a pi_state, try to allocate it now
1885		 * without any locks in case it fails.
1886		 */
1887		if (refill_pi_state_cache())
1888			return -ENOMEM;
1889		/*
1890		 * requeue_pi must wake as many tasks as it can, up to nr_wake
1891		 * + nr_requeue, since it acquires the rt_mutex prior to
1892		 * returning to userspace, so as to not leave the rt_mutex with
1893		 * waiters and no owner.  However, second and third wake-ups
1894		 * cannot be predicted as they involve race conditions with the
1895		 * first wake and a fault while looking up the pi_state.  Both
1896		 * pthread_cond_signal() and pthread_cond_broadcast() should
1897		 * use nr_wake=1.
1898		 */
1899		if (nr_wake != 1)
1900			return -EINVAL;
1901	}
1902
1903retry:
 
 
 
 
 
 
 
 
 
1904	ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1905	if (unlikely(ret != 0))
1906		goto out;
1907	ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1908			    requeue_pi ? VERIFY_WRITE : VERIFY_READ);
1909	if (unlikely(ret != 0))
1910		goto out_put_key1;
1911
1912	/*
1913	 * The check above which compares uaddrs is not sufficient for
1914	 * shared futexes. We need to compare the keys:
1915	 */
1916	if (requeue_pi && match_futex(&key1, &key2)) {
1917		ret = -EINVAL;
1918		goto out_put_keys;
1919	}
1920
1921	hb1 = hash_futex(&key1);
1922	hb2 = hash_futex(&key2);
1923
1924retry_private:
1925	hb_waiters_inc(hb2);
1926	double_lock_hb(hb1, hb2);
1927
1928	if (likely(cmpval != NULL)) {
1929		u32 curval;
1930
1931		ret = get_futex_value_locked(&curval, uaddr1);
1932
1933		if (unlikely(ret)) {
1934			double_unlock_hb(hb1, hb2);
1935			hb_waiters_dec(hb2);
1936
1937			ret = get_user(curval, uaddr1);
1938			if (ret)
1939				goto out_put_keys;
1940
1941			if (!(flags & FLAGS_SHARED))
1942				goto retry_private;
1943
1944			put_futex_key(&key2);
1945			put_futex_key(&key1);
1946			goto retry;
1947		}
1948		if (curval != *cmpval) {
1949			ret = -EAGAIN;
1950			goto out_unlock;
1951		}
1952	}
1953
1954	if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
1955		/*
1956		 * Attempt to acquire uaddr2 and wake the top waiter. If we
1957		 * intend to requeue waiters, force setting the FUTEX_WAITERS
1958		 * bit.  We force this here where we are able to easily handle
1959		 * faults rather in the requeue loop below.
1960		 */
1961		ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
1962						 &key2, &pi_state, nr_requeue);
1963
1964		/*
1965		 * At this point the top_waiter has either taken uaddr2 or is
1966		 * waiting on it.  If the former, then the pi_state will not
1967		 * exist yet, look it up one more time to ensure we have a
1968		 * reference to it. If the lock was taken, ret contains the
1969		 * vpid of the top waiter task.
1970		 * If the lock was not taken, we have pi_state and an initial
1971		 * refcount on it. In case of an error we have nothing.
1972		 */
1973		if (ret > 0) {
1974			WARN_ON(pi_state);
1975			drop_count++;
1976			task_count++;
1977			/*
1978			 * If we acquired the lock, then the user space value
1979			 * of uaddr2 should be vpid. It cannot be changed by
1980			 * the top waiter as it is blocked on hb2 lock if it
1981			 * tries to do so. If something fiddled with it behind
1982			 * our back the pi state lookup might unearth it. So
1983			 * we rather use the known value than rereading and
1984			 * handing potential crap to lookup_pi_state.
1985			 *
1986			 * If that call succeeds then we have pi_state and an
1987			 * initial refcount on it.
1988			 */
1989			ret = lookup_pi_state(uaddr2, ret, hb2, &key2, &pi_state);
1990		}
1991
1992		switch (ret) {
1993		case 0:
1994			/* We hold a reference on the pi state. */
1995			break;
1996
1997			/* If the above failed, then pi_state is NULL */
1998		case -EFAULT:
1999			double_unlock_hb(hb1, hb2);
2000			hb_waiters_dec(hb2);
2001			put_futex_key(&key2);
2002			put_futex_key(&key1);
2003			ret = fault_in_user_writeable(uaddr2);
2004			if (!ret)
2005				goto retry;
2006			goto out;
2007		case -EAGAIN:
2008			/*
2009			 * Two reasons for this:
2010			 * - Owner is exiting and we just wait for the
2011			 *   exit to complete.
2012			 * - The user space value changed.
2013			 */
2014			double_unlock_hb(hb1, hb2);
2015			hb_waiters_dec(hb2);
2016			put_futex_key(&key2);
2017			put_futex_key(&key1);
2018			cond_resched();
2019			goto retry;
2020		default:
2021			goto out_unlock;
2022		}
2023	}
2024
2025	plist_for_each_entry_safe(this, next, &hb1->chain, list) {
2026		if (task_count - nr_wake >= nr_requeue)
2027			break;
2028
2029		if (!match_futex(&this->key, &key1))
2030			continue;
2031
2032		/*
2033		 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
2034		 * be paired with each other and no other futex ops.
2035		 *
2036		 * We should never be requeueing a futex_q with a pi_state,
2037		 * which is awaiting a futex_unlock_pi().
2038		 */
2039		if ((requeue_pi && !this->rt_waiter) ||
2040		    (!requeue_pi && this->rt_waiter) ||
2041		    this->pi_state) {
2042			ret = -EINVAL;
2043			break;
2044		}
2045
2046		/*
2047		 * Wake nr_wake waiters.  For requeue_pi, if we acquired the
2048		 * lock, we already woke the top_waiter.  If not, it will be
2049		 * woken by futex_unlock_pi().
2050		 */
2051		if (++task_count <= nr_wake && !requeue_pi) {
2052			mark_wake_futex(&wake_q, this);
2053			continue;
2054		}
2055
2056		/* Ensure we requeue to the expected futex for requeue_pi. */
2057		if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
2058			ret = -EINVAL;
2059			break;
2060		}
2061
2062		/*
2063		 * Requeue nr_requeue waiters and possibly one more in the case
2064		 * of requeue_pi if we couldn't acquire the lock atomically.
2065		 */
2066		if (requeue_pi) {
2067			/*
2068			 * Prepare the waiter to take the rt_mutex. Take a
2069			 * refcount on the pi_state and store the pointer in
2070			 * the futex_q object of the waiter.
2071			 */
2072			get_pi_state(pi_state);
2073			this->pi_state = pi_state;
2074			ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
2075							this->rt_waiter,
2076							this->task);
2077			if (ret == 1) {
2078				/*
2079				 * We got the lock. We do neither drop the
2080				 * refcount on pi_state nor clear
2081				 * this->pi_state because the waiter needs the
2082				 * pi_state for cleaning up the user space
2083				 * value. It will drop the refcount after
2084				 * doing so.
2085				 */
2086				requeue_pi_wake_futex(this, &key2, hb2);
2087				drop_count++;
2088				continue;
2089			} else if (ret) {
2090				/*
2091				 * rt_mutex_start_proxy_lock() detected a
2092				 * potential deadlock when we tried to queue
2093				 * that waiter. Drop the pi_state reference
2094				 * which we took above and remove the pointer
2095				 * to the state from the waiters futex_q
2096				 * object.
2097				 */
2098				this->pi_state = NULL;
2099				put_pi_state(pi_state);
2100				/*
2101				 * We stop queueing more waiters and let user
2102				 * space deal with the mess.
2103				 */
2104				break;
2105			}
2106		}
2107		requeue_futex(this, hb1, hb2, &key2);
2108		drop_count++;
2109	}
2110
2111	/*
2112	 * We took an extra initial reference to the pi_state either
2113	 * in futex_proxy_trylock_atomic() or in lookup_pi_state(). We
2114	 * need to drop it here again.
2115	 */
2116	put_pi_state(pi_state);
2117
2118out_unlock:
2119	double_unlock_hb(hb1, hb2);
2120	wake_up_q(&wake_q);
2121	hb_waiters_dec(hb2);
2122
2123	/*
2124	 * drop_futex_key_refs() must be called outside the spinlocks. During
2125	 * the requeue we moved futex_q's from the hash bucket at key1 to the
2126	 * one at key2 and updated their key pointer.  We no longer need to
2127	 * hold the references to key1.
2128	 */
2129	while (--drop_count >= 0)
2130		drop_futex_key_refs(&key1);
2131
2132out_put_keys:
2133	put_futex_key(&key2);
2134out_put_key1:
2135	put_futex_key(&key1);
2136out:
 
 
2137	return ret ? ret : task_count;
2138}
2139
2140/* The key must be already stored in q->key. */
2141static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
2142	__acquires(&hb->lock)
2143{
2144	struct futex_hash_bucket *hb;
2145
2146	hb = hash_futex(&q->key);
2147
2148	/*
2149	 * Increment the counter before taking the lock so that
2150	 * a potential waker won't miss a to-be-slept task that is
2151	 * waiting for the spinlock. This is safe as all queue_lock()
2152	 * users end up calling queue_me(). Similarly, for housekeeping,
2153	 * decrement the counter at queue_unlock() when some error has
2154	 * occurred and we don't end up adding the task to the list.
2155	 */
2156	hb_waiters_inc(hb);
2157
2158	q->lock_ptr = &hb->lock;
2159
2160	spin_lock(&hb->lock); /* implies smp_mb(); (A) */
2161	return hb;
2162}
2163
2164static inline void
2165queue_unlock(struct futex_hash_bucket *hb)
2166	__releases(&hb->lock)
2167{
2168	spin_unlock(&hb->lock);
2169	hb_waiters_dec(hb);
2170}
2171
2172static inline void __queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
 
 
 
 
 
 
 
 
 
 
 
 
 
2173{
2174	int prio;
2175
2176	/*
2177	 * The priority used to register this element is
2178	 * - either the real thread-priority for the real-time threads
2179	 * (i.e. threads with a priority lower than MAX_RT_PRIO)
2180	 * - or MAX_RT_PRIO for non-RT threads.
2181	 * Thus, all RT-threads are woken first in priority order, and
2182	 * the others are woken last, in FIFO order.
2183	 */
2184	prio = min(current->normal_prio, MAX_RT_PRIO);
2185
2186	plist_node_init(&q->list, prio);
2187	plist_add(&q->list, &hb->chain);
2188	q->task = current;
2189}
2190
2191/**
2192 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
2193 * @q:	The futex_q to enqueue
2194 * @hb:	The destination hash bucket
2195 *
2196 * The hb->lock must be held by the caller, and is released here. A call to
2197 * queue_me() is typically paired with exactly one call to unqueue_me().  The
2198 * exceptions involve the PI related operations, which may use unqueue_me_pi()
2199 * or nothing if the unqueue is done as part of the wake process and the unqueue
2200 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
2201 * an example).
2202 */
2203static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2204	__releases(&hb->lock)
2205{
2206	__queue_me(q, hb);
2207	spin_unlock(&hb->lock);
2208}
2209
2210/**
2211 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
2212 * @q:	The futex_q to unqueue
2213 *
2214 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
2215 * be paired with exactly one earlier call to queue_me().
2216 *
2217 * Return:
2218 *  - 1 - if the futex_q was still queued (and we removed unqueued it);
2219 *  - 0 - if the futex_q was already removed by the waking thread
2220 */
2221static int unqueue_me(struct futex_q *q)
2222{
2223	spinlock_t *lock_ptr;
2224	int ret = 0;
2225
2226	/* In the common case we don't take the spinlock, which is nice. */
2227retry:
2228	/*
2229	 * q->lock_ptr can change between this read and the following spin_lock.
2230	 * Use READ_ONCE to forbid the compiler from reloading q->lock_ptr and
2231	 * optimizing lock_ptr out of the logic below.
2232	 */
2233	lock_ptr = READ_ONCE(q->lock_ptr);
2234	if (lock_ptr != NULL) {
2235		spin_lock(lock_ptr);
2236		/*
2237		 * q->lock_ptr can change between reading it and
2238		 * spin_lock(), causing us to take the wrong lock.  This
2239		 * corrects the race condition.
2240		 *
2241		 * Reasoning goes like this: if we have the wrong lock,
2242		 * q->lock_ptr must have changed (maybe several times)
2243		 * between reading it and the spin_lock().  It can
2244		 * change again after the spin_lock() but only if it was
2245		 * already changed before the spin_lock().  It cannot,
2246		 * however, change back to the original value.  Therefore
2247		 * we can detect whether we acquired the correct lock.
2248		 */
2249		if (unlikely(lock_ptr != q->lock_ptr)) {
2250			spin_unlock(lock_ptr);
2251			goto retry;
2252		}
2253		__unqueue_futex(q);
2254
2255		BUG_ON(q->pi_state);
2256
2257		spin_unlock(lock_ptr);
2258		ret = 1;
2259	}
2260
2261	drop_futex_key_refs(&q->key);
2262	return ret;
2263}
2264
2265/*
2266 * PI futexes can not be requeued and must remove themself from the
2267 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
2268 * and dropped here.
2269 */
2270static void unqueue_me_pi(struct futex_q *q)
2271	__releases(q->lock_ptr)
2272{
2273	__unqueue_futex(q);
2274
2275	BUG_ON(!q->pi_state);
2276	put_pi_state(q->pi_state);
2277	q->pi_state = NULL;
2278
2279	spin_unlock(q->lock_ptr);
2280}
2281
 
 
 
 
 
 
2282static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
2283				struct task_struct *argowner)
2284{
 
2285	struct futex_pi_state *pi_state = q->pi_state;
 
2286	u32 uval, uninitialized_var(curval), newval;
2287	struct task_struct *oldowner, *newowner;
2288	u32 newtid;
2289	int ret;
2290
2291	lockdep_assert_held(q->lock_ptr);
2292
2293	raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2294
2295	oldowner = pi_state->owner;
2296
2297	/*
2298	 * We are here because either:
2299	 *
2300	 *  - we stole the lock and pi_state->owner needs updating to reflect
2301	 *    that (@argowner == current),
2302	 *
2303	 * or:
2304	 *
2305	 *  - someone stole our lock and we need to fix things to point to the
2306	 *    new owner (@argowner == NULL).
2307	 *
2308	 * Either way, we have to replace the TID in the user space variable.
2309	 * This must be atomic as we have to preserve the owner died bit here.
2310	 *
2311	 * Note: We write the user space value _before_ changing the pi_state
2312	 * because we can fault here. Imagine swapped out pages or a fork
2313	 * that marked all the anonymous memory readonly for cow.
2314	 *
2315	 * Modifying pi_state _before_ the user space value would leave the
2316	 * pi_state in an inconsistent state when we fault here, because we
2317	 * need to drop the locks to handle the fault. This might be observed
2318	 * in the PID check in lookup_pi_state.
 
2319	 */
2320retry:
2321	if (!argowner) {
2322		if (oldowner != current) {
2323			/*
2324			 * We raced against a concurrent self; things are
2325			 * already fixed up. Nothing to do.
2326			 */
2327			ret = 0;
2328			goto out_unlock;
2329		}
2330
2331		if (__rt_mutex_futex_trylock(&pi_state->pi_mutex)) {
2332			/* We got the lock after all, nothing to fix. */
2333			ret = 0;
2334			goto out_unlock;
2335		}
2336
2337		/*
2338		 * Since we just failed the trylock; there must be an owner.
2339		 */
2340		newowner = rt_mutex_owner(&pi_state->pi_mutex);
2341		BUG_ON(!newowner);
2342	} else {
2343		WARN_ON_ONCE(argowner != current);
2344		if (oldowner == current) {
2345			/*
2346			 * We raced against a concurrent self; things are
2347			 * already fixed up. Nothing to do.
2348			 */
2349			ret = 0;
2350			goto out_unlock;
2351		}
2352		newowner = argowner;
2353	}
2354
2355	newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
2356	/* Owner died? */
2357	if (!pi_state->owner)
2358		newtid |= FUTEX_OWNER_DIED;
2359
2360	if (get_futex_value_locked(&uval, uaddr))
2361		goto handle_fault;
2362
2363	for (;;) {
2364		newval = (uval & FUTEX_OWNER_DIED) | newtid;
2365
2366		if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
2367			goto handle_fault;
2368		if (curval == uval)
2369			break;
2370		uval = curval;
2371	}
2372
2373	/*
2374	 * We fixed up user space. Now we need to fix the pi_state
2375	 * itself.
2376	 */
2377	if (pi_state->owner != NULL) {
2378		raw_spin_lock(&pi_state->owner->pi_lock);
2379		WARN_ON(list_empty(&pi_state->list));
2380		list_del_init(&pi_state->list);
2381		raw_spin_unlock(&pi_state->owner->pi_lock);
2382	}
2383
2384	pi_state->owner = newowner;
2385
2386	raw_spin_lock(&newowner->pi_lock);
2387	WARN_ON(!list_empty(&pi_state->list));
2388	list_add(&pi_state->list, &newowner->pi_state_list);
2389	raw_spin_unlock(&newowner->pi_lock);
2390	raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2391
2392	return 0;
2393
2394	/*
2395	 * To handle the page fault we need to drop the locks here. That gives
2396	 * the other task (either the highest priority waiter itself or the
2397	 * task which stole the rtmutex) the chance to try the fixup of the
2398	 * pi_state. So once we are back from handling the fault we need to
2399	 * check the pi_state after reacquiring the locks and before trying to
2400	 * do another fixup. When the fixup has been done already we simply
2401	 * return.
2402	 *
2403	 * Note: we hold both hb->lock and pi_mutex->wait_lock. We can safely
2404	 * drop hb->lock since the caller owns the hb -> futex_q relation.
2405	 * Dropping the pi_mutex->wait_lock requires the state revalidate.
2406	 */
2407handle_fault:
2408	raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2409	spin_unlock(q->lock_ptr);
2410
2411	ret = fault_in_user_writeable(uaddr);
2412
2413	spin_lock(q->lock_ptr);
2414	raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2415
2416	/*
2417	 * Check if someone else fixed it for us:
2418	 */
2419	if (pi_state->owner != oldowner) {
2420		ret = 0;
2421		goto out_unlock;
2422	}
2423
2424	if (ret)
2425		goto out_unlock;
2426
2427	goto retry;
2428
2429out_unlock:
2430	raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
2431	return ret;
2432}
2433
2434static long futex_wait_restart(struct restart_block *restart);
2435
2436/**
2437 * fixup_owner() - Post lock pi_state and corner case management
2438 * @uaddr:	user address of the futex
2439 * @q:		futex_q (contains pi_state and access to the rt_mutex)
2440 * @locked:	if the attempt to take the rt_mutex succeeded (1) or not (0)
2441 *
2442 * After attempting to lock an rt_mutex, this function is called to cleanup
2443 * the pi_state owner as well as handle race conditions that may allow us to
2444 * acquire the lock. Must be called with the hb lock held.
2445 *
2446 * Return:
2447 *  -  1 - success, lock taken;
2448 *  -  0 - success, lock not taken;
2449 *  - <0 - on error (-EFAULT)
2450 */
2451static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
2452{
 
2453	int ret = 0;
2454
2455	if (locked) {
2456		/*
2457		 * Got the lock. We might not be the anticipated owner if we
2458		 * did a lock-steal - fix up the PI-state in that case:
2459		 *
2460		 * Speculative pi_state->owner read (we don't hold wait_lock);
2461		 * since we own the lock pi_state->owner == current is the
2462		 * stable state, anything else needs more attention.
2463		 */
2464		if (q->pi_state->owner != current)
2465			ret = fixup_pi_state_owner(uaddr, q, current);
2466		goto out;
2467	}
2468
2469	/*
2470	 * If we didn't get the lock; check if anybody stole it from us. In
2471	 * that case, we need to fix up the uval to point to them instead of
2472	 * us, otherwise bad things happen. [10]
2473	 *
2474	 * Another speculative read; pi_state->owner == current is unstable
2475	 * but needs our attention.
2476	 */
2477	if (q->pi_state->owner == current) {
2478		ret = fixup_pi_state_owner(uaddr, q, NULL);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2479		goto out;
2480	}
2481
2482	/*
2483	 * Paranoia check. If we did not take the lock, then we should not be
2484	 * the owner of the rt_mutex.
2485	 */
2486	if (rt_mutex_owner(&q->pi_state->pi_mutex) == current) {
2487		printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
2488				"pi-state %p\n", ret,
2489				q->pi_state->pi_mutex.owner,
2490				q->pi_state->owner);
2491	}
2492
2493out:
2494	return ret ? ret : locked;
2495}
2496
2497/**
2498 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
2499 * @hb:		the futex hash bucket, must be locked by the caller
2500 * @q:		the futex_q to queue up on
2501 * @timeout:	the prepared hrtimer_sleeper, or null for no timeout
2502 */
2503static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
2504				struct hrtimer_sleeper *timeout)
2505{
2506	/*
2507	 * The task state is guaranteed to be set before another task can
2508	 * wake it. set_current_state() is implemented using smp_store_mb() and
2509	 * queue_me() calls spin_unlock() upon completion, both serializing
2510	 * access to the hash list and forcing another memory barrier.
2511	 */
2512	set_current_state(TASK_INTERRUPTIBLE);
2513	queue_me(q, hb);
2514
2515	/* Arm the timer */
2516	if (timeout)
2517		hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
 
 
 
2518
2519	/*
2520	 * If we have been removed from the hash list, then another task
2521	 * has tried to wake us, and we can skip the call to schedule().
2522	 */
2523	if (likely(!plist_node_empty(&q->list))) {
2524		/*
2525		 * If the timer has already expired, current will already be
2526		 * flagged for rescheduling. Only call schedule if there
2527		 * is no timeout, or if it has yet to expire.
2528		 */
2529		if (!timeout || timeout->task)
2530			freezable_schedule();
2531	}
2532	__set_current_state(TASK_RUNNING);
2533}
2534
2535/**
2536 * futex_wait_setup() - Prepare to wait on a futex
2537 * @uaddr:	the futex userspace address
2538 * @val:	the expected value
2539 * @flags:	futex flags (FLAGS_SHARED, etc.)
2540 * @q:		the associated futex_q
2541 * @hb:		storage for hash_bucket pointer to be returned to caller
2542 *
2543 * Setup the futex_q and locate the hash_bucket.  Get the futex value and
2544 * compare it with the expected value.  Handle atomic faults internally.
2545 * Return with the hb lock held and a q.key reference on success, and unlocked
2546 * with no q.key reference on failure.
2547 *
2548 * Return:
2549 *  -  0 - uaddr contains val and hb has been locked;
2550 *  - <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
2551 */
2552static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
2553			   struct futex_q *q, struct futex_hash_bucket **hb)
2554{
2555	u32 uval;
2556	int ret;
2557
2558	/*
2559	 * Access the page AFTER the hash-bucket is locked.
2560	 * Order is important:
2561	 *
2562	 *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
2563	 *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
2564	 *
2565	 * The basic logical guarantee of a futex is that it blocks ONLY
2566	 * if cond(var) is known to be true at the time of blocking, for
2567	 * any cond.  If we locked the hash-bucket after testing *uaddr, that
2568	 * would open a race condition where we could block indefinitely with
2569	 * cond(var) false, which would violate the guarantee.
2570	 *
2571	 * On the other hand, we insert q and release the hash-bucket only
2572	 * after testing *uaddr.  This guarantees that futex_wait() will NOT
2573	 * absorb a wakeup if *uaddr does not match the desired values
2574	 * while the syscall executes.
2575	 */
2576retry:
2577	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
2578	if (unlikely(ret != 0))
2579		return ret;
2580
2581retry_private:
2582	*hb = queue_lock(q);
2583
2584	ret = get_futex_value_locked(&uval, uaddr);
2585
2586	if (ret) {
2587		queue_unlock(*hb);
2588
2589		ret = get_user(uval, uaddr);
2590		if (ret)
2591			goto out;
2592
2593		if (!(flags & FLAGS_SHARED))
2594			goto retry_private;
2595
2596		put_futex_key(&q->key);
2597		goto retry;
2598	}
2599
2600	if (uval != val) {
2601		queue_unlock(*hb);
2602		ret = -EWOULDBLOCK;
2603	}
2604
2605out:
2606	if (ret)
2607		put_futex_key(&q->key);
2608	return ret;
2609}
2610
2611static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2612		      ktime_t *abs_time, u32 bitset)
2613{
2614	struct hrtimer_sleeper timeout, *to = NULL;
2615	struct restart_block *restart;
2616	struct futex_hash_bucket *hb;
2617	struct futex_q q = futex_q_init;
2618	int ret;
2619
2620	if (!bitset)
2621		return -EINVAL;
2622	q.bitset = bitset;
2623
2624	if (abs_time) {
2625		to = &timeout;
2626
2627		hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2628				      CLOCK_REALTIME : CLOCK_MONOTONIC,
2629				      HRTIMER_MODE_ABS);
2630		hrtimer_init_sleeper(to, current);
2631		hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2632					     current->timer_slack_ns);
2633	}
2634
2635retry:
2636	/*
2637	 * Prepare to wait on uaddr. On success, holds hb lock and increments
2638	 * q.key refs.
2639	 */
2640	ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2641	if (ret)
2642		goto out;
2643
2644	/* queue_me and wait for wakeup, timeout, or a signal. */
2645	futex_wait_queue_me(hb, &q, to);
2646
2647	/* If we were woken (and unqueued), we succeeded, whatever. */
2648	ret = 0;
2649	/* unqueue_me() drops q.key ref */
2650	if (!unqueue_me(&q))
2651		goto out;
2652	ret = -ETIMEDOUT;
2653	if (to && !to->task)
2654		goto out;
2655
2656	/*
2657	 * We expect signal_pending(current), but we might be the
2658	 * victim of a spurious wakeup as well.
2659	 */
2660	if (!signal_pending(current))
2661		goto retry;
2662
2663	ret = -ERESTARTSYS;
2664	if (!abs_time)
2665		goto out;
2666
2667	restart = &current->restart_block;
2668	restart->fn = futex_wait_restart;
2669	restart->futex.uaddr = uaddr;
2670	restart->futex.val = val;
2671	restart->futex.time = *abs_time;
2672	restart->futex.bitset = bitset;
2673	restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
2674
2675	ret = -ERESTART_RESTARTBLOCK;
2676
2677out:
2678	if (to) {
2679		hrtimer_cancel(&to->timer);
2680		destroy_hrtimer_on_stack(&to->timer);
2681	}
2682	return ret;
2683}
2684
2685
2686static long futex_wait_restart(struct restart_block *restart)
2687{
2688	u32 __user *uaddr = restart->futex.uaddr;
2689	ktime_t t, *tp = NULL;
2690
2691	if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2692		t = restart->futex.time;
2693		tp = &t;
2694	}
2695	restart->fn = do_no_restart_syscall;
2696
2697	return (long)futex_wait(uaddr, restart->futex.flags,
2698				restart->futex.val, tp, restart->futex.bitset);
2699}
2700
2701
2702/*
2703 * Userspace tried a 0 -> TID atomic transition of the futex value
2704 * and failed. The kernel side here does the whole locking operation:
2705 * if there are waiters then it will block as a consequence of relying
2706 * on rt-mutexes, it does PI, etc. (Due to races the kernel might see
2707 * a 0 value of the futex too.).
2708 *
2709 * Also serves as futex trylock_pi()'ing, and due semantics.
2710 */
2711static int futex_lock_pi(u32 __user *uaddr, unsigned int flags,
2712			 ktime_t *time, int trylock)
2713{
2714	struct hrtimer_sleeper timeout, *to = NULL;
2715	struct futex_pi_state *pi_state = NULL;
2716	struct rt_mutex_waiter rt_waiter;
2717	struct futex_hash_bucket *hb;
2718	struct futex_q q = futex_q_init;
2719	int res, ret;
2720
2721	if (!IS_ENABLED(CONFIG_FUTEX_PI))
2722		return -ENOSYS;
2723
2724	if (refill_pi_state_cache())
2725		return -ENOMEM;
2726
2727	if (time) {
2728		to = &timeout;
2729		hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
2730				      HRTIMER_MODE_ABS);
2731		hrtimer_init_sleeper(to, current);
2732		hrtimer_set_expires(&to->timer, *time);
2733	}
2734
2735retry:
2736	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
2737	if (unlikely(ret != 0))
2738		goto out;
2739
2740retry_private:
2741	hb = queue_lock(&q);
2742
2743	ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
2744	if (unlikely(ret)) {
2745		/*
2746		 * Atomic work succeeded and we got the lock,
2747		 * or failed. Either way, we do _not_ block.
2748		 */
2749		switch (ret) {
2750		case 1:
2751			/* We got the lock. */
2752			ret = 0;
2753			goto out_unlock_put_key;
2754		case -EFAULT:
2755			goto uaddr_faulted;
2756		case -EAGAIN:
2757			/*
2758			 * Two reasons for this:
2759			 * - Task is exiting and we just wait for the
2760			 *   exit to complete.
2761			 * - The user space value changed.
2762			 */
2763			queue_unlock(hb);
2764			put_futex_key(&q.key);
2765			cond_resched();
2766			goto retry;
2767		default:
2768			goto out_unlock_put_key;
2769		}
2770	}
2771
2772	WARN_ON(!q.pi_state);
2773
2774	/*
2775	 * Only actually queue now that the atomic ops are done:
2776	 */
2777	__queue_me(&q, hb);
2778
2779	if (trylock) {
2780		ret = rt_mutex_futex_trylock(&q.pi_state->pi_mutex);
 
 
 
 
 
 
2781		/* Fixup the trylock return value: */
2782		ret = ret ? 0 : -EWOULDBLOCK;
2783		goto no_block;
2784	}
2785
2786	rt_mutex_init_waiter(&rt_waiter);
2787
2788	/*
2789	 * On PREEMPT_RT_FULL, when hb->lock becomes an rt_mutex, we must not
2790	 * hold it while doing rt_mutex_start_proxy(), because then it will
2791	 * include hb->lock in the blocking chain, even through we'll not in
2792	 * fact hold it while blocking. This will lead it to report -EDEADLK
2793	 * and BUG when futex_unlock_pi() interleaves with this.
2794	 *
2795	 * Therefore acquire wait_lock while holding hb->lock, but drop the
2796	 * latter before calling rt_mutex_start_proxy_lock(). This still fully
2797	 * serializes against futex_unlock_pi() as that does the exact same
2798	 * lock handoff sequence.
2799	 */
2800	raw_spin_lock_irq(&q.pi_state->pi_mutex.wait_lock);
2801	spin_unlock(q.lock_ptr);
2802	ret = __rt_mutex_start_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter, current);
2803	raw_spin_unlock_irq(&q.pi_state->pi_mutex.wait_lock);
2804
2805	if (ret) {
2806		if (ret == 1)
2807			ret = 0;
2808
2809		spin_lock(q.lock_ptr);
2810		goto no_block;
2811	}
2812
2813
2814	if (unlikely(to))
2815		hrtimer_start_expires(&to->timer, HRTIMER_MODE_ABS);
2816
2817	ret = rt_mutex_wait_proxy_lock(&q.pi_state->pi_mutex, to, &rt_waiter);
2818
2819	spin_lock(q.lock_ptr);
2820	/*
2821	 * If we failed to acquire the lock (signal/timeout), we must
2822	 * first acquire the hb->lock before removing the lock from the
2823	 * rt_mutex waitqueue, such that we can keep the hb and rt_mutex
2824	 * wait lists consistent.
2825	 *
2826	 * In particular; it is important that futex_unlock_pi() can not
2827	 * observe this inconsistency.
2828	 */
2829	if (ret && !rt_mutex_cleanup_proxy_lock(&q.pi_state->pi_mutex, &rt_waiter))
2830		ret = 0;
2831
2832no_block:
2833	/*
2834	 * Fixup the pi_state owner and possibly acquire the lock if we
2835	 * haven't already.
2836	 */
2837	res = fixup_owner(uaddr, &q, !ret);
2838	/*
2839	 * If fixup_owner() returned an error, proprogate that.  If it acquired
2840	 * the lock, clear our -ETIMEDOUT or -EINTR.
2841	 */
2842	if (res)
2843		ret = (res < 0) ? res : 0;
2844
2845	/*
2846	 * If fixup_owner() faulted and was unable to handle the fault, unlock
2847	 * it and return the fault to userspace.
2848	 */
2849	if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current)) {
2850		pi_state = q.pi_state;
2851		get_pi_state(pi_state);
2852	}
2853
2854	/* Unqueue and drop the lock */
2855	unqueue_me_pi(&q);
2856
2857	if (pi_state) {
2858		rt_mutex_futex_unlock(&pi_state->pi_mutex);
2859		put_pi_state(pi_state);
2860	}
2861
2862	goto out_put_key;
2863
2864out_unlock_put_key:
2865	queue_unlock(hb);
2866
2867out_put_key:
2868	put_futex_key(&q.key);
2869out:
2870	if (to) {
2871		hrtimer_cancel(&to->timer);
2872		destroy_hrtimer_on_stack(&to->timer);
2873	}
2874	return ret != -EINTR ? ret : -ERESTARTNOINTR;
2875
2876uaddr_faulted:
2877	queue_unlock(hb);
2878
2879	ret = fault_in_user_writeable(uaddr);
2880	if (ret)
2881		goto out_put_key;
2882
2883	if (!(flags & FLAGS_SHARED))
2884		goto retry_private;
2885
2886	put_futex_key(&q.key);
2887	goto retry;
2888}
2889
2890/*
2891 * Userspace attempted a TID -> 0 atomic transition, and failed.
2892 * This is the in-kernel slowpath: we look up the PI state (if any),
2893 * and do the rt-mutex unlock.
2894 */
2895static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2896{
2897	u32 uninitialized_var(curval), uval, vpid = task_pid_vnr(current);
 
2898	union futex_key key = FUTEX_KEY_INIT;
2899	struct futex_hash_bucket *hb;
2900	struct futex_q *top_waiter;
2901	int ret;
2902
2903	if (!IS_ENABLED(CONFIG_FUTEX_PI))
2904		return -ENOSYS;
2905
2906retry:
2907	if (get_user(uval, uaddr))
2908		return -EFAULT;
2909	/*
2910	 * We release only a lock we actually own:
2911	 */
2912	if ((uval & FUTEX_TID_MASK) != vpid)
2913		return -EPERM;
2914
2915	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
2916	if (ret)
2917		return ret;
2918
2919	hb = hash_futex(&key);
2920	spin_lock(&hb->lock);
2921
2922	/*
2923	 * Check waiters first. We do not trust user space values at
2924	 * all and we at least want to know if user space fiddled
2925	 * with the futex value instead of blindly unlocking.
2926	 */
2927	top_waiter = futex_top_waiter(hb, &key);
2928	if (top_waiter) {
2929		struct futex_pi_state *pi_state = top_waiter->pi_state;
2930
2931		ret = -EINVAL;
2932		if (!pi_state)
2933			goto out_unlock;
2934
2935		/*
2936		 * If current does not own the pi_state then the futex is
2937		 * inconsistent and user space fiddled with the futex value.
2938		 */
2939		if (pi_state->owner != current)
2940			goto out_unlock;
2941
2942		get_pi_state(pi_state);
2943		/*
2944		 * By taking wait_lock while still holding hb->lock, we ensure
2945		 * there is no point where we hold neither; and therefore
2946		 * wake_futex_pi() must observe a state consistent with what we
2947		 * observed.
2948		 */
2949		raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
2950		spin_unlock(&hb->lock);
2951
2952		/* drops pi_state->pi_mutex.wait_lock */
2953		ret = wake_futex_pi(uaddr, uval, pi_state);
2954
2955		put_pi_state(pi_state);
2956
 
 
 
 
 
 
 
 
2957		/*
2958		 * Success, we're done! No tricky corner cases.
2959		 */
2960		if (!ret)
2961			goto out_putkey;
2962		/*
2963		 * The atomic access to the futex value generated a
2964		 * pagefault, so retry the user-access and the wakeup:
2965		 */
2966		if (ret == -EFAULT)
2967			goto pi_faulted;
2968		/*
2969		 * A unconditional UNLOCK_PI op raced against a waiter
2970		 * setting the FUTEX_WAITERS bit. Try again.
2971		 */
2972		if (ret == -EAGAIN) {
2973			put_futex_key(&key);
2974			goto retry;
2975		}
2976		/*
2977		 * wake_futex_pi has detected invalid state. Tell user
2978		 * space.
2979		 */
2980		goto out_putkey;
2981	}
2982
2983	/*
2984	 * We have no kernel internal state, i.e. no waiters in the
2985	 * kernel. Waiters which are about to queue themselves are stuck
2986	 * on hb->lock. So we can safely ignore them. We do neither
2987	 * preserve the WAITERS bit not the OWNER_DIED one. We are the
2988	 * owner.
2989	 */
2990	if (cmpxchg_futex_value_locked(&curval, uaddr, uval, 0)) {
2991		spin_unlock(&hb->lock);
2992		goto pi_faulted;
2993	}
2994
2995	/*
2996	 * If uval has changed, let user space handle it.
2997	 */
2998	ret = (curval == uval) ? 0 : -EAGAIN;
2999
3000out_unlock:
3001	spin_unlock(&hb->lock);
3002out_putkey:
3003	put_futex_key(&key);
 
 
3004	return ret;
3005
3006pi_faulted:
 
3007	put_futex_key(&key);
3008
3009	ret = fault_in_user_writeable(uaddr);
3010	if (!ret)
3011		goto retry;
3012
3013	return ret;
3014}
3015
3016/**
3017 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
3018 * @hb:		the hash_bucket futex_q was original enqueued on
3019 * @q:		the futex_q woken while waiting to be requeued
3020 * @key2:	the futex_key of the requeue target futex
3021 * @timeout:	the timeout associated with the wait (NULL if none)
3022 *
3023 * Detect if the task was woken on the initial futex as opposed to the requeue
3024 * target futex.  If so, determine if it was a timeout or a signal that caused
3025 * the wakeup and return the appropriate error code to the caller.  Must be
3026 * called with the hb lock held.
3027 *
3028 * Return:
3029 *  -  0 = no early wakeup detected;
3030 *  - <0 = -ETIMEDOUT or -ERESTARTNOINTR
3031 */
3032static inline
3033int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
3034				   struct futex_q *q, union futex_key *key2,
3035				   struct hrtimer_sleeper *timeout)
3036{
3037	int ret = 0;
3038
3039	/*
3040	 * With the hb lock held, we avoid races while we process the wakeup.
3041	 * We only need to hold hb (and not hb2) to ensure atomicity as the
3042	 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
3043	 * It can't be requeued from uaddr2 to something else since we don't
3044	 * support a PI aware source futex for requeue.
3045	 */
3046	if (!match_futex(&q->key, key2)) {
3047		WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
3048		/*
3049		 * We were woken prior to requeue by a timeout or a signal.
3050		 * Unqueue the futex_q and determine which it was.
3051		 */
3052		plist_del(&q->list, &hb->chain);
3053		hb_waiters_dec(hb);
3054
3055		/* Handle spurious wakeups gracefully */
3056		ret = -EWOULDBLOCK;
3057		if (timeout && !timeout->task)
3058			ret = -ETIMEDOUT;
3059		else if (signal_pending(current))
3060			ret = -ERESTARTNOINTR;
3061	}
3062	return ret;
3063}
3064
3065/**
3066 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
3067 * @uaddr:	the futex we initially wait on (non-pi)
3068 * @flags:	futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
3069 *		the same type, no requeueing from private to shared, etc.
3070 * @val:	the expected value of uaddr
3071 * @abs_time:	absolute timeout
3072 * @bitset:	32 bit wakeup bitset set by userspace, defaults to all
3073 * @uaddr2:	the pi futex we will take prior to returning to user-space
3074 *
3075 * The caller will wait on uaddr and will be requeued by futex_requeue() to
3076 * uaddr2 which must be PI aware and unique from uaddr.  Normal wakeup will wake
3077 * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
3078 * userspace.  This ensures the rt_mutex maintains an owner when it has waiters;
3079 * without one, the pi logic would not know which task to boost/deboost, if
3080 * there was a need to.
3081 *
3082 * We call schedule in futex_wait_queue_me() when we enqueue and return there
3083 * via the following--
3084 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
3085 * 2) wakeup on uaddr2 after a requeue
3086 * 3) signal
3087 * 4) timeout
3088 *
3089 * If 3, cleanup and return -ERESTARTNOINTR.
3090 *
3091 * If 2, we may then block on trying to take the rt_mutex and return via:
3092 * 5) successful lock
3093 * 6) signal
3094 * 7) timeout
3095 * 8) other lock acquisition failure
3096 *
3097 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
3098 *
3099 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
3100 *
3101 * Return:
3102 *  -  0 - On success;
3103 *  - <0 - On error
3104 */
3105static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
3106				 u32 val, ktime_t *abs_time, u32 bitset,
3107				 u32 __user *uaddr2)
3108{
3109	struct hrtimer_sleeper timeout, *to = NULL;
3110	struct futex_pi_state *pi_state = NULL;
3111	struct rt_mutex_waiter rt_waiter;
 
3112	struct futex_hash_bucket *hb;
3113	union futex_key key2 = FUTEX_KEY_INIT;
3114	struct futex_q q = futex_q_init;
3115	int res, ret;
3116
3117	if (!IS_ENABLED(CONFIG_FUTEX_PI))
3118		return -ENOSYS;
3119
3120	if (uaddr == uaddr2)
3121		return -EINVAL;
3122
3123	if (!bitset)
3124		return -EINVAL;
3125
3126	if (abs_time) {
3127		to = &timeout;
3128		hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
3129				      CLOCK_REALTIME : CLOCK_MONOTONIC,
3130				      HRTIMER_MODE_ABS);
3131		hrtimer_init_sleeper(to, current);
3132		hrtimer_set_expires_range_ns(&to->timer, *abs_time,
3133					     current->timer_slack_ns);
3134	}
3135
3136	/*
3137	 * The waiter is allocated on our stack, manipulated by the requeue
3138	 * code while we sleep on uaddr.
3139	 */
3140	rt_mutex_init_waiter(&rt_waiter);
 
 
 
3141
3142	ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
3143	if (unlikely(ret != 0))
3144		goto out;
3145
3146	q.bitset = bitset;
3147	q.rt_waiter = &rt_waiter;
3148	q.requeue_pi_key = &key2;
3149
3150	/*
3151	 * Prepare to wait on uaddr. On success, increments q.key (key1) ref
3152	 * count.
3153	 */
3154	ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
3155	if (ret)
3156		goto out_key2;
3157
3158	/*
3159	 * The check above which compares uaddrs is not sufficient for
3160	 * shared futexes. We need to compare the keys:
3161	 */
3162	if (match_futex(&q.key, &key2)) {
3163		queue_unlock(hb);
3164		ret = -EINVAL;
3165		goto out_put_keys;
3166	}
3167
3168	/* Queue the futex_q, drop the hb lock, wait for wakeup. */
3169	futex_wait_queue_me(hb, &q, to);
3170
3171	spin_lock(&hb->lock);
3172	ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
3173	spin_unlock(&hb->lock);
3174	if (ret)
3175		goto out_put_keys;
3176
3177	/*
3178	 * In order for us to be here, we know our q.key == key2, and since
3179	 * we took the hb->lock above, we also know that futex_requeue() has
3180	 * completed and we no longer have to concern ourselves with a wakeup
3181	 * race with the atomic proxy lock acquisition by the requeue code. The
3182	 * futex_requeue dropped our key1 reference and incremented our key2
3183	 * reference count.
3184	 */
3185
3186	/* Check if the requeue code acquired the second futex for us. */
3187	if (!q.rt_waiter) {
3188		/*
3189		 * Got the lock. We might not be the anticipated owner if we
3190		 * did a lock-steal - fix up the PI-state in that case.
3191		 */
3192		if (q.pi_state && (q.pi_state->owner != current)) {
3193			spin_lock(q.lock_ptr);
3194			ret = fixup_pi_state_owner(uaddr2, &q, current);
3195			if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
3196				pi_state = q.pi_state;
3197				get_pi_state(pi_state);
3198			}
3199			/*
3200			 * Drop the reference to the pi state which
3201			 * the requeue_pi() code acquired for us.
3202			 */
3203			put_pi_state(q.pi_state);
3204			spin_unlock(q.lock_ptr);
3205		}
3206	} else {
3207		struct rt_mutex *pi_mutex;
3208
3209		/*
3210		 * We have been woken up by futex_unlock_pi(), a timeout, or a
3211		 * signal.  futex_unlock_pi() will not destroy the lock_ptr nor
3212		 * the pi_state.
3213		 */
3214		WARN_ON(!q.pi_state);
3215		pi_mutex = &q.pi_state->pi_mutex;
3216		ret = rt_mutex_wait_proxy_lock(pi_mutex, to, &rt_waiter);
 
3217
3218		spin_lock(q.lock_ptr);
3219		if (ret && !rt_mutex_cleanup_proxy_lock(pi_mutex, &rt_waiter))
3220			ret = 0;
3221
3222		debug_rt_mutex_free_waiter(&rt_waiter);
3223		/*
3224		 * Fixup the pi_state owner and possibly acquire the lock if we
3225		 * haven't already.
3226		 */
3227		res = fixup_owner(uaddr2, &q, !ret);
3228		/*
3229		 * If fixup_owner() returned an error, proprogate that.  If it
3230		 * acquired the lock, clear -ETIMEDOUT or -EINTR.
3231		 */
3232		if (res)
3233			ret = (res < 0) ? res : 0;
3234
3235		/*
3236		 * If fixup_pi_state_owner() faulted and was unable to handle
3237		 * the fault, unlock the rt_mutex and return the fault to
3238		 * userspace.
3239		 */
3240		if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current) {
3241			pi_state = q.pi_state;
3242			get_pi_state(pi_state);
3243		}
3244
3245		/* Unqueue and drop the lock. */
3246		unqueue_me_pi(&q);
3247	}
3248
3249	if (pi_state) {
3250		rt_mutex_futex_unlock(&pi_state->pi_mutex);
3251		put_pi_state(pi_state);
3252	}
3253
3254	if (ret == -EINTR) {
 
 
3255		/*
3256		 * We've already been requeued, but cannot restart by calling
3257		 * futex_lock_pi() directly. We could restart this syscall, but
3258		 * it would detect that the user space "val" changed and return
3259		 * -EWOULDBLOCK.  Save the overhead of the restart and return
3260		 * -EWOULDBLOCK directly.
3261		 */
3262		ret = -EWOULDBLOCK;
3263	}
3264
3265out_put_keys:
3266	put_futex_key(&q.key);
3267out_key2:
3268	put_futex_key(&key2);
3269
3270out:
3271	if (to) {
3272		hrtimer_cancel(&to->timer);
3273		destroy_hrtimer_on_stack(&to->timer);
3274	}
3275	return ret;
3276}
3277
3278/*
3279 * Support for robust futexes: the kernel cleans up held futexes at
3280 * thread exit time.
3281 *
3282 * Implementation: user-space maintains a per-thread list of locks it
3283 * is holding. Upon do_exit(), the kernel carefully walks this list,
3284 * and marks all locks that are owned by this thread with the
3285 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
3286 * always manipulated with the lock held, so the list is private and
3287 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
3288 * field, to allow the kernel to clean up if the thread dies after
3289 * acquiring the lock, but just before it could have added itself to
3290 * the list. There can only be one such pending lock.
3291 */
3292
3293/**
3294 * sys_set_robust_list() - Set the robust-futex list head of a task
3295 * @head:	pointer to the list-head
3296 * @len:	length of the list-head, as userspace expects
3297 */
3298SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
3299		size_t, len)
3300{
3301	if (!futex_cmpxchg_enabled)
3302		return -ENOSYS;
3303	/*
3304	 * The kernel knows only one size for now:
3305	 */
3306	if (unlikely(len != sizeof(*head)))
3307		return -EINVAL;
3308
3309	current->robust_list = head;
3310
3311	return 0;
3312}
3313
3314/**
3315 * sys_get_robust_list() - Get the robust-futex list head of a task
3316 * @pid:	pid of the process [zero for current task]
3317 * @head_ptr:	pointer to a list-head pointer, the kernel fills it in
3318 * @len_ptr:	pointer to a length field, the kernel fills in the header size
3319 */
3320SYSCALL_DEFINE3(get_robust_list, int, pid,
3321		struct robust_list_head __user * __user *, head_ptr,
3322		size_t __user *, len_ptr)
3323{
3324	struct robust_list_head __user *head;
3325	unsigned long ret;
3326	struct task_struct *p;
3327
3328	if (!futex_cmpxchg_enabled)
3329		return -ENOSYS;
3330
3331	rcu_read_lock();
3332
3333	ret = -ESRCH;
3334	if (!pid)
3335		p = current;
3336	else {
3337		p = find_task_by_vpid(pid);
3338		if (!p)
3339			goto err_unlock;
3340	}
3341
3342	ret = -EPERM;
3343	if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
3344		goto err_unlock;
3345
3346	head = p->robust_list;
3347	rcu_read_unlock();
3348
3349	if (put_user(sizeof(*head), len_ptr))
3350		return -EFAULT;
3351	return put_user(head, head_ptr);
3352
3353err_unlock:
3354	rcu_read_unlock();
3355
3356	return ret;
3357}
3358
3359/*
3360 * Process a futex-list entry, check whether it's owned by the
3361 * dying task, and do notification if so:
3362 */
3363int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
3364{
3365	u32 uval, uninitialized_var(nval), mval;
3366
3367retry:
3368	if (get_user(uval, uaddr))
3369		return -1;
3370
3371	if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
3372		/*
3373		 * Ok, this dying thread is truly holding a futex
3374		 * of interest. Set the OWNER_DIED bit atomically
3375		 * via cmpxchg, and if the value had FUTEX_WAITERS
3376		 * set, wake up a waiter (if any). (We have to do a
3377		 * futex_wake() even if OWNER_DIED is already set -
3378		 * to handle the rare but possible case of recursive
3379		 * thread-death.) The rest of the cleanup is done in
3380		 * userspace.
3381		 */
3382		mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
3383		/*
3384		 * We are not holding a lock here, but we want to have
3385		 * the pagefault_disable/enable() protection because
3386		 * we want to handle the fault gracefully. If the
3387		 * access fails we try to fault in the futex with R/W
3388		 * verification via get_user_pages. get_user() above
3389		 * does not guarantee R/W access. If that fails we
3390		 * give up and leave the futex locked.
3391		 */
3392		if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
3393			if (fault_in_user_writeable(uaddr))
3394				return -1;
3395			goto retry;
3396		}
3397		if (nval != uval)
3398			goto retry;
3399
3400		/*
3401		 * Wake robust non-PI futexes here. The wakeup of
3402		 * PI futexes happens in exit_pi_state():
3403		 */
3404		if (!pi && (uval & FUTEX_WAITERS))
3405			futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
3406	}
3407	return 0;
3408}
3409
3410/*
3411 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3412 */
3413static inline int fetch_robust_entry(struct robust_list __user **entry,
3414				     struct robust_list __user * __user *head,
3415				     unsigned int *pi)
3416{
3417	unsigned long uentry;
3418
3419	if (get_user(uentry, (unsigned long __user *)head))
3420		return -EFAULT;
3421
3422	*entry = (void __user *)(uentry & ~1UL);
3423	*pi = uentry & 1;
3424
3425	return 0;
3426}
3427
3428/*
3429 * Walk curr->robust_list (very carefully, it's a userspace list!)
3430 * and mark any locks found there dead, and notify any waiters.
3431 *
3432 * We silently return on any sign of list-walking problem.
3433 */
3434void exit_robust_list(struct task_struct *curr)
3435{
3436	struct robust_list_head __user *head = curr->robust_list;
3437	struct robust_list __user *entry, *next_entry, *pending;
3438	unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3439	unsigned int uninitialized_var(next_pi);
3440	unsigned long futex_offset;
3441	int rc;
3442
3443	if (!futex_cmpxchg_enabled)
3444		return;
3445
3446	/*
3447	 * Fetch the list head (which was registered earlier, via
3448	 * sys_set_robust_list()):
3449	 */
3450	if (fetch_robust_entry(&entry, &head->list.next, &pi))
3451		return;
3452	/*
3453	 * Fetch the relative futex offset:
3454	 */
3455	if (get_user(futex_offset, &head->futex_offset))
3456		return;
3457	/*
3458	 * Fetch any possibly pending lock-add first, and handle it
3459	 * if it exists:
3460	 */
3461	if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
3462		return;
3463
3464	next_entry = NULL;	/* avoid warning with gcc */
3465	while (entry != &head->list) {
3466		/*
3467		 * Fetch the next entry in the list before calling
3468		 * handle_futex_death:
3469		 */
3470		rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
3471		/*
3472		 * A pending lock might already be on the list, so
3473		 * don't process it twice:
3474		 */
3475		if (entry != pending)
3476			if (handle_futex_death((void __user *)entry + futex_offset,
3477						curr, pi))
3478				return;
3479		if (rc)
3480			return;
3481		entry = next_entry;
3482		pi = next_pi;
3483		/*
3484		 * Avoid excessively long or circular lists:
3485		 */
3486		if (!--limit)
3487			break;
3488
3489		cond_resched();
3490	}
3491
3492	if (pending)
3493		handle_futex_death((void __user *)pending + futex_offset,
3494				   curr, pip);
3495}
3496
3497long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
3498		u32 __user *uaddr2, u32 val2, u32 val3)
3499{
3500	int cmd = op & FUTEX_CMD_MASK;
3501	unsigned int flags = 0;
3502
3503	if (!(op & FUTEX_PRIVATE_FLAG))
3504		flags |= FLAGS_SHARED;
3505
3506	if (op & FUTEX_CLOCK_REALTIME) {
3507		flags |= FLAGS_CLOCKRT;
3508		if (cmd != FUTEX_WAIT && cmd != FUTEX_WAIT_BITSET && \
3509		    cmd != FUTEX_WAIT_REQUEUE_PI)
3510			return -ENOSYS;
3511	}
3512
3513	switch (cmd) {
3514	case FUTEX_LOCK_PI:
3515	case FUTEX_UNLOCK_PI:
3516	case FUTEX_TRYLOCK_PI:
3517	case FUTEX_WAIT_REQUEUE_PI:
3518	case FUTEX_CMP_REQUEUE_PI:
3519		if (!futex_cmpxchg_enabled)
3520			return -ENOSYS;
3521	}
3522
3523	switch (cmd) {
3524	case FUTEX_WAIT:
3525		val3 = FUTEX_BITSET_MATCH_ANY;
3526	case FUTEX_WAIT_BITSET:
3527		return futex_wait(uaddr, flags, val, timeout, val3);
3528	case FUTEX_WAKE:
3529		val3 = FUTEX_BITSET_MATCH_ANY;
3530	case FUTEX_WAKE_BITSET:
3531		return futex_wake(uaddr, flags, val, val3);
3532	case FUTEX_REQUEUE:
3533		return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
3534	case FUTEX_CMP_REQUEUE:
3535		return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
3536	case FUTEX_WAKE_OP:
3537		return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
3538	case FUTEX_LOCK_PI:
3539		return futex_lock_pi(uaddr, flags, timeout, 0);
3540	case FUTEX_UNLOCK_PI:
3541		return futex_unlock_pi(uaddr, flags);
3542	case FUTEX_TRYLOCK_PI:
3543		return futex_lock_pi(uaddr, flags, NULL, 1);
3544	case FUTEX_WAIT_REQUEUE_PI:
3545		val3 = FUTEX_BITSET_MATCH_ANY;
3546		return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
3547					     uaddr2);
3548	case FUTEX_CMP_REQUEUE_PI:
3549		return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
3550	}
3551	return -ENOSYS;
3552}
3553
3554
3555SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
3556		struct timespec __user *, utime, u32 __user *, uaddr2,
3557		u32, val3)
3558{
3559	struct timespec ts;
3560	ktime_t t, *tp = NULL;
3561	u32 val2 = 0;
3562	int cmd = op & FUTEX_CMD_MASK;
3563
3564	if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
3565		      cmd == FUTEX_WAIT_BITSET ||
3566		      cmd == FUTEX_WAIT_REQUEUE_PI)) {
3567		if (unlikely(should_fail_futex(!(op & FUTEX_PRIVATE_FLAG))))
3568			return -EFAULT;
3569		if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
3570			return -EFAULT;
3571		if (!timespec_valid(&ts))
3572			return -EINVAL;
3573
3574		t = timespec_to_ktime(ts);
3575		if (cmd == FUTEX_WAIT)
3576			t = ktime_add_safe(ktime_get(), t);
3577		tp = &t;
3578	}
3579	/*
3580	 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
3581	 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
3582	 */
3583	if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
3584	    cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
3585		val2 = (u32) (unsigned long) utime;
3586
3587	return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
3588}
3589
3590static void __init futex_detect_cmpxchg(void)
3591{
3592#ifndef CONFIG_HAVE_FUTEX_CMPXCHG
3593	u32 curval;
3594
3595	/*
3596	 * This will fail and we want it. Some arch implementations do
3597	 * runtime detection of the futex_atomic_cmpxchg_inatomic()
3598	 * functionality. We want to know that before we call in any
3599	 * of the complex code paths. Also we want to prevent
3600	 * registration of robust lists in that case. NULL is
3601	 * guaranteed to fault and we get -EFAULT on functional
3602	 * implementation, the non-functional ones will return
3603	 * -ENOSYS.
3604	 */
3605	if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
3606		futex_cmpxchg_enabled = 1;
3607#endif
3608}
3609
3610static int __init futex_init(void)
3611{
3612	unsigned int futex_shift;
3613	unsigned long i;
3614
3615#if CONFIG_BASE_SMALL
3616	futex_hashsize = 16;
3617#else
3618	futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
3619#endif
3620
3621	futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
3622					       futex_hashsize, 0,
3623					       futex_hashsize < 256 ? HASH_SMALL : 0,
3624					       &futex_shift, NULL,
3625					       futex_hashsize, futex_hashsize);
3626	futex_hashsize = 1UL << futex_shift;
3627
3628	futex_detect_cmpxchg();
3629
3630	for (i = 0; i < futex_hashsize; i++) {
3631		atomic_set(&futex_queues[i].waiters, 0);
3632		plist_head_init(&futex_queues[i].chain);
3633		spin_lock_init(&futex_queues[i].lock);
3634	}
3635
3636	return 0;
3637}
3638core_initcall(futex_init);