Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.15.
  1/*
  2 * The Kyber I/O scheduler. Controls latency by throttling queue depths using
  3 * scalable techniques.
  4 *
  5 * Copyright (C) 2017 Facebook
  6 *
  7 * This program is free software; you can redistribute it and/or
  8 * modify it under the terms of the GNU General Public
  9 * License v2 as published by the Free Software Foundation.
 10 *
 11 * This program is distributed in the hope that it will be useful,
 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
 14 * General Public License for more details.
 15 *
 16 * You should have received a copy of the GNU General Public License
 17 * along with this program.  If not, see <https://www.gnu.org/licenses/>.
 18 */
 19
 20#include <linux/kernel.h>
 21#include <linux/blkdev.h>
 22#include <linux/blk-mq.h>
 23#include <linux/elevator.h>
 24#include <linux/module.h>
 25#include <linux/sbitmap.h>
 26
 27#include "blk.h"
 28#include "blk-mq.h"
 29#include "blk-mq-debugfs.h"
 30#include "blk-mq-sched.h"
 31#include "blk-mq-tag.h"
 32#include "blk-stat.h"
 33
 34/* Scheduling domains. */
 35enum {
 36	KYBER_READ,
 37	KYBER_SYNC_WRITE,
 38	KYBER_OTHER, /* Async writes, discard, etc. */
 39	KYBER_NUM_DOMAINS,
 40};
 41
 42enum {
 43	KYBER_MIN_DEPTH = 256,
 44
 45	/*
 46	 * In order to prevent starvation of synchronous requests by a flood of
 47	 * asynchronous requests, we reserve 25% of requests for synchronous
 48	 * operations.
 49	 */
 50	KYBER_ASYNC_PERCENT = 75,
 51};
 52
 53/*
 54 * Initial device-wide depths for each scheduling domain.
 55 *
 56 * Even for fast devices with lots of tags like NVMe, you can saturate
 57 * the device with only a fraction of the maximum possible queue depth.
 58 * So, we cap these to a reasonable value.
 59 */
 60static const unsigned int kyber_depth[] = {
 61	[KYBER_READ] = 256,
 62	[KYBER_SYNC_WRITE] = 128,
 63	[KYBER_OTHER] = 64,
 64};
 65
 66/*
 67 * Scheduling domain batch sizes. We favor reads.
 68 */
 69static const unsigned int kyber_batch_size[] = {
 70	[KYBER_READ] = 16,
 71	[KYBER_SYNC_WRITE] = 8,
 72	[KYBER_OTHER] = 8,
 73};
 74
 75struct kyber_queue_data {
 76	struct request_queue *q;
 77
 78	struct blk_stat_callback *cb;
 79
 80	/*
 81	 * The device is divided into multiple scheduling domains based on the
 82	 * request type. Each domain has a fixed number of in-flight requests of
 83	 * that type device-wide, limited by these tokens.
 84	 */
 85	struct sbitmap_queue domain_tokens[KYBER_NUM_DOMAINS];
 86
 87	/*
 88	 * Async request percentage, converted to per-word depth for
 89	 * sbitmap_get_shallow().
 90	 */
 91	unsigned int async_depth;
 92
 93	/* Target latencies in nanoseconds. */
 94	u64 read_lat_nsec, write_lat_nsec;
 95};
 96
 97struct kyber_hctx_data {
 98	spinlock_t lock;
 99	struct list_head rqs[KYBER_NUM_DOMAINS];
100	unsigned int cur_domain;
101	unsigned int batching;
102	wait_queue_entry_t domain_wait[KYBER_NUM_DOMAINS];
103	struct sbq_wait_state *domain_ws[KYBER_NUM_DOMAINS];
104	atomic_t wait_index[KYBER_NUM_DOMAINS];
105};
106
107static int kyber_domain_wake(wait_queue_entry_t *wait, unsigned mode, int flags,
108			     void *key);
109
110static int rq_sched_domain(const struct request *rq)
111{
112	unsigned int op = rq->cmd_flags;
113
114	if ((op & REQ_OP_MASK) == REQ_OP_READ)
115		return KYBER_READ;
116	else if ((op & REQ_OP_MASK) == REQ_OP_WRITE && op_is_sync(op))
117		return KYBER_SYNC_WRITE;
118	else
119		return KYBER_OTHER;
120}
121
122enum {
123	NONE = 0,
124	GOOD = 1,
125	GREAT = 2,
126	BAD = -1,
127	AWFUL = -2,
128};
129
130#define IS_GOOD(status) ((status) > 0)
131#define IS_BAD(status) ((status) < 0)
132
133static int kyber_lat_status(struct blk_stat_callback *cb,
134			    unsigned int sched_domain, u64 target)
135{
136	u64 latency;
137
138	if (!cb->stat[sched_domain].nr_samples)
139		return NONE;
140
141	latency = cb->stat[sched_domain].mean;
142	if (latency >= 2 * target)
143		return AWFUL;
144	else if (latency > target)
145		return BAD;
146	else if (latency <= target / 2)
147		return GREAT;
148	else /* (latency <= target) */
149		return GOOD;
150}
151
152/*
153 * Adjust the read or synchronous write depth given the status of reads and
154 * writes. The goal is that the latencies of the two domains are fair (i.e., if
155 * one is good, then the other is good).
156 */
157static void kyber_adjust_rw_depth(struct kyber_queue_data *kqd,
158				  unsigned int sched_domain, int this_status,
159				  int other_status)
160{
161	unsigned int orig_depth, depth;
162
163	/*
164	 * If this domain had no samples, or reads and writes are both good or
165	 * both bad, don't adjust the depth.
166	 */
167	if (this_status == NONE ||
168	    (IS_GOOD(this_status) && IS_GOOD(other_status)) ||
169	    (IS_BAD(this_status) && IS_BAD(other_status)))
170		return;
171
172	orig_depth = depth = kqd->domain_tokens[sched_domain].sb.depth;
173
174	if (other_status == NONE) {
175		depth++;
176	} else {
177		switch (this_status) {
178		case GOOD:
179			if (other_status == AWFUL)
180				depth -= max(depth / 4, 1U);
181			else
182				depth -= max(depth / 8, 1U);
183			break;
184		case GREAT:
185			if (other_status == AWFUL)
186				depth /= 2;
187			else
188				depth -= max(depth / 4, 1U);
189			break;
190		case BAD:
191			depth++;
192			break;
193		case AWFUL:
194			if (other_status == GREAT)
195				depth += 2;
196			else
197				depth++;
198			break;
199		}
200	}
201
202	depth = clamp(depth, 1U, kyber_depth[sched_domain]);
203	if (depth != orig_depth)
204		sbitmap_queue_resize(&kqd->domain_tokens[sched_domain], depth);
205}
206
207/*
208 * Adjust the depth of other requests given the status of reads and synchronous
209 * writes. As long as either domain is doing fine, we don't throttle, but if
210 * both domains are doing badly, we throttle heavily.
211 */
212static void kyber_adjust_other_depth(struct kyber_queue_data *kqd,
213				     int read_status, int write_status,
214				     bool have_samples)
215{
216	unsigned int orig_depth, depth;
217	int status;
218
219	orig_depth = depth = kqd->domain_tokens[KYBER_OTHER].sb.depth;
220
221	if (read_status == NONE && write_status == NONE) {
222		depth += 2;
223	} else if (have_samples) {
224		if (read_status == NONE)
225			status = write_status;
226		else if (write_status == NONE)
227			status = read_status;
228		else
229			status = max(read_status, write_status);
230		switch (status) {
231		case GREAT:
232			depth += 2;
233			break;
234		case GOOD:
235			depth++;
236			break;
237		case BAD:
238			depth -= max(depth / 4, 1U);
239			break;
240		case AWFUL:
241			depth /= 2;
242			break;
243		}
244	}
245
246	depth = clamp(depth, 1U, kyber_depth[KYBER_OTHER]);
247	if (depth != orig_depth)
248		sbitmap_queue_resize(&kqd->domain_tokens[KYBER_OTHER], depth);
249}
250
251/*
252 * Apply heuristics for limiting queue depths based on gathered latency
253 * statistics.
254 */
255static void kyber_stat_timer_fn(struct blk_stat_callback *cb)
256{
257	struct kyber_queue_data *kqd = cb->data;
258	int read_status, write_status;
259
260	read_status = kyber_lat_status(cb, KYBER_READ, kqd->read_lat_nsec);
261	write_status = kyber_lat_status(cb, KYBER_SYNC_WRITE, kqd->write_lat_nsec);
262
263	kyber_adjust_rw_depth(kqd, KYBER_READ, read_status, write_status);
264	kyber_adjust_rw_depth(kqd, KYBER_SYNC_WRITE, write_status, read_status);
265	kyber_adjust_other_depth(kqd, read_status, write_status,
266				 cb->stat[KYBER_OTHER].nr_samples != 0);
267
268	/*
269	 * Continue monitoring latencies if we aren't hitting the targets or
270	 * we're still throttling other requests.
271	 */
272	if (!blk_stat_is_active(kqd->cb) &&
273	    ((IS_BAD(read_status) || IS_BAD(write_status) ||
274	      kqd->domain_tokens[KYBER_OTHER].sb.depth < kyber_depth[KYBER_OTHER])))
275		blk_stat_activate_msecs(kqd->cb, 100);
276}
277
278static unsigned int kyber_sched_tags_shift(struct kyber_queue_data *kqd)
279{
280	/*
281	 * All of the hardware queues have the same depth, so we can just grab
282	 * the shift of the first one.
283	 */
284	return kqd->q->queue_hw_ctx[0]->sched_tags->bitmap_tags.sb.shift;
285}
286
287static struct kyber_queue_data *kyber_queue_data_alloc(struct request_queue *q)
288{
289	struct kyber_queue_data *kqd;
290	unsigned int max_tokens;
291	unsigned int shift;
292	int ret = -ENOMEM;
293	int i;
294
295	kqd = kmalloc_node(sizeof(*kqd), GFP_KERNEL, q->node);
296	if (!kqd)
297		goto err;
298	kqd->q = q;
299
300	kqd->cb = blk_stat_alloc_callback(kyber_stat_timer_fn, rq_sched_domain,
301					  KYBER_NUM_DOMAINS, kqd);
302	if (!kqd->cb)
303		goto err_kqd;
304
305	/*
306	 * The maximum number of tokens for any scheduling domain is at least
307	 * the queue depth of a single hardware queue. If the hardware doesn't
308	 * have many tags, still provide a reasonable number.
309	 */
310	max_tokens = max_t(unsigned int, q->tag_set->queue_depth,
311			   KYBER_MIN_DEPTH);
312	for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
313		WARN_ON(!kyber_depth[i]);
314		WARN_ON(!kyber_batch_size[i]);
315		ret = sbitmap_queue_init_node(&kqd->domain_tokens[i],
316					      max_tokens, -1, false, GFP_KERNEL,
317					      q->node);
318		if (ret) {
319			while (--i >= 0)
320				sbitmap_queue_free(&kqd->domain_tokens[i]);
321			goto err_cb;
322		}
323		sbitmap_queue_resize(&kqd->domain_tokens[i], kyber_depth[i]);
324	}
325
326	shift = kyber_sched_tags_shift(kqd);
327	kqd->async_depth = (1U << shift) * KYBER_ASYNC_PERCENT / 100U;
328
329	kqd->read_lat_nsec = 2000000ULL;
330	kqd->write_lat_nsec = 10000000ULL;
331
332	return kqd;
333
334err_cb:
335	blk_stat_free_callback(kqd->cb);
336err_kqd:
337	kfree(kqd);
338err:
339	return ERR_PTR(ret);
340}
341
342static int kyber_init_sched(struct request_queue *q, struct elevator_type *e)
343{
344	struct kyber_queue_data *kqd;
345	struct elevator_queue *eq;
346
347	eq = elevator_alloc(q, e);
348	if (!eq)
349		return -ENOMEM;
350
351	kqd = kyber_queue_data_alloc(q);
352	if (IS_ERR(kqd)) {
353		kobject_put(&eq->kobj);
354		return PTR_ERR(kqd);
355	}
356
357	eq->elevator_data = kqd;
358	q->elevator = eq;
359
360	blk_stat_add_callback(q, kqd->cb);
361
362	return 0;
363}
364
365static void kyber_exit_sched(struct elevator_queue *e)
366{
367	struct kyber_queue_data *kqd = e->elevator_data;
368	struct request_queue *q = kqd->q;
369	int i;
370
371	blk_stat_remove_callback(q, kqd->cb);
372
373	for (i = 0; i < KYBER_NUM_DOMAINS; i++)
374		sbitmap_queue_free(&kqd->domain_tokens[i]);
375	blk_stat_free_callback(kqd->cb);
376	kfree(kqd);
377}
378
379static int kyber_init_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
380{
381	struct kyber_hctx_data *khd;
382	int i;
383
384	khd = kmalloc_node(sizeof(*khd), GFP_KERNEL, hctx->numa_node);
385	if (!khd)
386		return -ENOMEM;
387
388	spin_lock_init(&khd->lock);
389
390	for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
391		INIT_LIST_HEAD(&khd->rqs[i]);
392		init_waitqueue_func_entry(&khd->domain_wait[i],
393					  kyber_domain_wake);
394		khd->domain_wait[i].private = hctx;
395		INIT_LIST_HEAD(&khd->domain_wait[i].entry);
396		atomic_set(&khd->wait_index[i], 0);
397	}
398
399	khd->cur_domain = 0;
400	khd->batching = 0;
401
402	hctx->sched_data = khd;
403
404	return 0;
405}
406
407static void kyber_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
408{
409	kfree(hctx->sched_data);
410}
411
412static int rq_get_domain_token(struct request *rq)
413{
414	return (long)rq->elv.priv[0];
415}
416
417static void rq_set_domain_token(struct request *rq, int token)
418{
419	rq->elv.priv[0] = (void *)(long)token;
420}
421
422static void rq_clear_domain_token(struct kyber_queue_data *kqd,
423				  struct request *rq)
424{
425	unsigned int sched_domain;
426	int nr;
427
428	nr = rq_get_domain_token(rq);
429	if (nr != -1) {
430		sched_domain = rq_sched_domain(rq);
431		sbitmap_queue_clear(&kqd->domain_tokens[sched_domain], nr,
432				    rq->mq_ctx->cpu);
433	}
434}
435
436static void kyber_limit_depth(unsigned int op, struct blk_mq_alloc_data *data)
437{
438	/*
439	 * We use the scheduler tags as per-hardware queue queueing tokens.
440	 * Async requests can be limited at this stage.
441	 */
442	if (!op_is_sync(op)) {
443		struct kyber_queue_data *kqd = data->q->elevator->elevator_data;
444
445		data->shallow_depth = kqd->async_depth;
446	}
447}
448
449static void kyber_prepare_request(struct request *rq, struct bio *bio)
450{
451	rq_set_domain_token(rq, -1);
452}
453
454static void kyber_finish_request(struct request *rq)
455{
456	struct kyber_queue_data *kqd = rq->q->elevator->elevator_data;
457
458	rq_clear_domain_token(kqd, rq);
459}
460
461static void kyber_completed_request(struct request *rq)
462{
463	struct request_queue *q = rq->q;
464	struct kyber_queue_data *kqd = q->elevator->elevator_data;
465	unsigned int sched_domain;
466	u64 now, latency, target;
467
468	/*
469	 * Check if this request met our latency goal. If not, quickly gather
470	 * some statistics and start throttling.
471	 */
472	sched_domain = rq_sched_domain(rq);
473	switch (sched_domain) {
474	case KYBER_READ:
475		target = kqd->read_lat_nsec;
476		break;
477	case KYBER_SYNC_WRITE:
478		target = kqd->write_lat_nsec;
479		break;
480	default:
481		return;
482	}
483
484	/* If we are already monitoring latencies, don't check again. */
485	if (blk_stat_is_active(kqd->cb))
486		return;
487
488	now = __blk_stat_time(ktime_to_ns(ktime_get()));
489	if (now < blk_stat_time(&rq->issue_stat))
490		return;
491
492	latency = now - blk_stat_time(&rq->issue_stat);
493
494	if (latency > target)
495		blk_stat_activate_msecs(kqd->cb, 10);
496}
497
498static void kyber_flush_busy_ctxs(struct kyber_hctx_data *khd,
499				  struct blk_mq_hw_ctx *hctx)
500{
501	LIST_HEAD(rq_list);
502	struct request *rq, *next;
503
504	blk_mq_flush_busy_ctxs(hctx, &rq_list);
505	list_for_each_entry_safe(rq, next, &rq_list, queuelist) {
506		unsigned int sched_domain;
507
508		sched_domain = rq_sched_domain(rq);
509		list_move_tail(&rq->queuelist, &khd->rqs[sched_domain]);
510	}
511}
512
513static int kyber_domain_wake(wait_queue_entry_t *wait, unsigned mode, int flags,
514			     void *key)
515{
516	struct blk_mq_hw_ctx *hctx = READ_ONCE(wait->private);
517
518	list_del_init(&wait->entry);
519	blk_mq_run_hw_queue(hctx, true);
520	return 1;
521}
522
523static int kyber_get_domain_token(struct kyber_queue_data *kqd,
524				  struct kyber_hctx_data *khd,
525				  struct blk_mq_hw_ctx *hctx)
526{
527	unsigned int sched_domain = khd->cur_domain;
528	struct sbitmap_queue *domain_tokens = &kqd->domain_tokens[sched_domain];
529	wait_queue_entry_t *wait = &khd->domain_wait[sched_domain];
530	struct sbq_wait_state *ws;
531	int nr;
532
533	nr = __sbitmap_queue_get(domain_tokens);
534
535	/*
536	 * If we failed to get a domain token, make sure the hardware queue is
537	 * run when one becomes available. Note that this is serialized on
538	 * khd->lock, but we still need to be careful about the waker.
539	 */
540	if (nr < 0 && list_empty_careful(&wait->entry)) {
541		ws = sbq_wait_ptr(domain_tokens,
542				  &khd->wait_index[sched_domain]);
543		khd->domain_ws[sched_domain] = ws;
544		add_wait_queue(&ws->wait, wait);
545
546		/*
547		 * Try again in case a token was freed before we got on the wait
548		 * queue.
549		 */
550		nr = __sbitmap_queue_get(domain_tokens);
551	}
552
553	/*
554	 * If we got a token while we were on the wait queue, remove ourselves
555	 * from the wait queue to ensure that all wake ups make forward
556	 * progress. It's possible that the waker already deleted the entry
557	 * between the !list_empty_careful() check and us grabbing the lock, but
558	 * list_del_init() is okay with that.
559	 */
560	if (nr >= 0 && !list_empty_careful(&wait->entry)) {
561		ws = khd->domain_ws[sched_domain];
562		spin_lock_irq(&ws->wait.lock);
563		list_del_init(&wait->entry);
564		spin_unlock_irq(&ws->wait.lock);
565	}
566
567	return nr;
568}
569
570static struct request *
571kyber_dispatch_cur_domain(struct kyber_queue_data *kqd,
572			  struct kyber_hctx_data *khd,
573			  struct blk_mq_hw_ctx *hctx,
574			  bool *flushed)
575{
576	struct list_head *rqs;
577	struct request *rq;
578	int nr;
579
580	rqs = &khd->rqs[khd->cur_domain];
581	rq = list_first_entry_or_null(rqs, struct request, queuelist);
582
583	/*
584	 * If there wasn't already a pending request and we haven't flushed the
585	 * software queues yet, flush the software queues and check again.
586	 */
587	if (!rq && !*flushed) {
588		kyber_flush_busy_ctxs(khd, hctx);
589		*flushed = true;
590		rq = list_first_entry_or_null(rqs, struct request, queuelist);
591	}
592
593	if (rq) {
594		nr = kyber_get_domain_token(kqd, khd, hctx);
595		if (nr >= 0) {
596			khd->batching++;
597			rq_set_domain_token(rq, nr);
598			list_del_init(&rq->queuelist);
599			return rq;
600		}
601	}
602
603	/* There were either no pending requests or no tokens. */
604	return NULL;
605}
606
607static struct request *kyber_dispatch_request(struct blk_mq_hw_ctx *hctx)
608{
609	struct kyber_queue_data *kqd = hctx->queue->elevator->elevator_data;
610	struct kyber_hctx_data *khd = hctx->sched_data;
611	bool flushed = false;
612	struct request *rq;
613	int i;
614
615	spin_lock(&khd->lock);
616
617	/*
618	 * First, if we are still entitled to batch, try to dispatch a request
619	 * from the batch.
620	 */
621	if (khd->batching < kyber_batch_size[khd->cur_domain]) {
622		rq = kyber_dispatch_cur_domain(kqd, khd, hctx, &flushed);
623		if (rq)
624			goto out;
625	}
626
627	/*
628	 * Either,
629	 * 1. We were no longer entitled to a batch.
630	 * 2. The domain we were batching didn't have any requests.
631	 * 3. The domain we were batching was out of tokens.
632	 *
633	 * Start another batch. Note that this wraps back around to the original
634	 * domain if no other domains have requests or tokens.
635	 */
636	khd->batching = 0;
637	for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
638		if (khd->cur_domain == KYBER_NUM_DOMAINS - 1)
639			khd->cur_domain = 0;
640		else
641			khd->cur_domain++;
642
643		rq = kyber_dispatch_cur_domain(kqd, khd, hctx, &flushed);
644		if (rq)
645			goto out;
646	}
647
648	rq = NULL;
649out:
650	spin_unlock(&khd->lock);
651	return rq;
652}
653
654static bool kyber_has_work(struct blk_mq_hw_ctx *hctx)
655{
656	struct kyber_hctx_data *khd = hctx->sched_data;
657	int i;
658
659	for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
660		if (!list_empty_careful(&khd->rqs[i]))
661			return true;
662	}
663	return sbitmap_any_bit_set(&hctx->ctx_map);
664}
665
666#define KYBER_LAT_SHOW_STORE(op)					\
667static ssize_t kyber_##op##_lat_show(struct elevator_queue *e,		\
668				     char *page)			\
669{									\
670	struct kyber_queue_data *kqd = e->elevator_data;		\
671									\
672	return sprintf(page, "%llu\n", kqd->op##_lat_nsec);		\
673}									\
674									\
675static ssize_t kyber_##op##_lat_store(struct elevator_queue *e,		\
676				      const char *page, size_t count)	\
677{									\
678	struct kyber_queue_data *kqd = e->elevator_data;		\
679	unsigned long long nsec;					\
680	int ret;							\
681									\
682	ret = kstrtoull(page, 10, &nsec);				\
683	if (ret)							\
684		return ret;						\
685									\
686	kqd->op##_lat_nsec = nsec;					\
687									\
688	return count;							\
689}
690KYBER_LAT_SHOW_STORE(read);
691KYBER_LAT_SHOW_STORE(write);
692#undef KYBER_LAT_SHOW_STORE
693
694#define KYBER_LAT_ATTR(op) __ATTR(op##_lat_nsec, 0644, kyber_##op##_lat_show, kyber_##op##_lat_store)
695static struct elv_fs_entry kyber_sched_attrs[] = {
696	KYBER_LAT_ATTR(read),
697	KYBER_LAT_ATTR(write),
698	__ATTR_NULL
699};
700#undef KYBER_LAT_ATTR
701
702#ifdef CONFIG_BLK_DEBUG_FS
703#define KYBER_DEBUGFS_DOMAIN_ATTRS(domain, name)			\
704static int kyber_##name##_tokens_show(void *data, struct seq_file *m)	\
705{									\
706	struct request_queue *q = data;					\
707	struct kyber_queue_data *kqd = q->elevator->elevator_data;	\
708									\
709	sbitmap_queue_show(&kqd->domain_tokens[domain], m);		\
710	return 0;							\
711}									\
712									\
713static void *kyber_##name##_rqs_start(struct seq_file *m, loff_t *pos)	\
714	__acquires(&khd->lock)						\
715{									\
716	struct blk_mq_hw_ctx *hctx = m->private;			\
717	struct kyber_hctx_data *khd = hctx->sched_data;			\
718									\
719	spin_lock(&khd->lock);						\
720	return seq_list_start(&khd->rqs[domain], *pos);			\
721}									\
722									\
723static void *kyber_##name##_rqs_next(struct seq_file *m, void *v,	\
724				     loff_t *pos)			\
725{									\
726	struct blk_mq_hw_ctx *hctx = m->private;			\
727	struct kyber_hctx_data *khd = hctx->sched_data;			\
728									\
729	return seq_list_next(v, &khd->rqs[domain], pos);		\
730}									\
731									\
732static void kyber_##name##_rqs_stop(struct seq_file *m, void *v)	\
733	__releases(&khd->lock)						\
734{									\
735	struct blk_mq_hw_ctx *hctx = m->private;			\
736	struct kyber_hctx_data *khd = hctx->sched_data;			\
737									\
738	spin_unlock(&khd->lock);					\
739}									\
740									\
741static const struct seq_operations kyber_##name##_rqs_seq_ops = {	\
742	.start	= kyber_##name##_rqs_start,				\
743	.next	= kyber_##name##_rqs_next,				\
744	.stop	= kyber_##name##_rqs_stop,				\
745	.show	= blk_mq_debugfs_rq_show,				\
746};									\
747									\
748static int kyber_##name##_waiting_show(void *data, struct seq_file *m)	\
749{									\
750	struct blk_mq_hw_ctx *hctx = data;				\
751	struct kyber_hctx_data *khd = hctx->sched_data;			\
752	wait_queue_entry_t *wait = &khd->domain_wait[domain];		\
753									\
754	seq_printf(m, "%d\n", !list_empty_careful(&wait->entry));	\
755	return 0;							\
756}
757KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_READ, read)
758KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_SYNC_WRITE, sync_write)
759KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_OTHER, other)
760#undef KYBER_DEBUGFS_DOMAIN_ATTRS
761
762static int kyber_async_depth_show(void *data, struct seq_file *m)
763{
764	struct request_queue *q = data;
765	struct kyber_queue_data *kqd = q->elevator->elevator_data;
766
767	seq_printf(m, "%u\n", kqd->async_depth);
768	return 0;
769}
770
771static int kyber_cur_domain_show(void *data, struct seq_file *m)
772{
773	struct blk_mq_hw_ctx *hctx = data;
774	struct kyber_hctx_data *khd = hctx->sched_data;
775
776	switch (khd->cur_domain) {
777	case KYBER_READ:
778		seq_puts(m, "READ\n");
779		break;
780	case KYBER_SYNC_WRITE:
781		seq_puts(m, "SYNC_WRITE\n");
782		break;
783	case KYBER_OTHER:
784		seq_puts(m, "OTHER\n");
785		break;
786	default:
787		seq_printf(m, "%u\n", khd->cur_domain);
788		break;
789	}
790	return 0;
791}
792
793static int kyber_batching_show(void *data, struct seq_file *m)
794{
795	struct blk_mq_hw_ctx *hctx = data;
796	struct kyber_hctx_data *khd = hctx->sched_data;
797
798	seq_printf(m, "%u\n", khd->batching);
799	return 0;
800}
801
802#define KYBER_QUEUE_DOMAIN_ATTRS(name)	\
803	{#name "_tokens", 0400, kyber_##name##_tokens_show}
804static const struct blk_mq_debugfs_attr kyber_queue_debugfs_attrs[] = {
805	KYBER_QUEUE_DOMAIN_ATTRS(read),
806	KYBER_QUEUE_DOMAIN_ATTRS(sync_write),
807	KYBER_QUEUE_DOMAIN_ATTRS(other),
808	{"async_depth", 0400, kyber_async_depth_show},
809	{},
810};
811#undef KYBER_QUEUE_DOMAIN_ATTRS
812
813#define KYBER_HCTX_DOMAIN_ATTRS(name)					\
814	{#name "_rqs", 0400, .seq_ops = &kyber_##name##_rqs_seq_ops},	\
815	{#name "_waiting", 0400, kyber_##name##_waiting_show}
816static const struct blk_mq_debugfs_attr kyber_hctx_debugfs_attrs[] = {
817	KYBER_HCTX_DOMAIN_ATTRS(read),
818	KYBER_HCTX_DOMAIN_ATTRS(sync_write),
819	KYBER_HCTX_DOMAIN_ATTRS(other),
820	{"cur_domain", 0400, kyber_cur_domain_show},
821	{"batching", 0400, kyber_batching_show},
822	{},
823};
824#undef KYBER_HCTX_DOMAIN_ATTRS
825#endif
826
827static struct elevator_type kyber_sched = {
828	.ops.mq = {
829		.init_sched = kyber_init_sched,
830		.exit_sched = kyber_exit_sched,
831		.init_hctx = kyber_init_hctx,
832		.exit_hctx = kyber_exit_hctx,
833		.limit_depth = kyber_limit_depth,
834		.prepare_request = kyber_prepare_request,
835		.finish_request = kyber_finish_request,
836		.requeue_request = kyber_finish_request,
837		.completed_request = kyber_completed_request,
838		.dispatch_request = kyber_dispatch_request,
839		.has_work = kyber_has_work,
840	},
841	.uses_mq = true,
842#ifdef CONFIG_BLK_DEBUG_FS
843	.queue_debugfs_attrs = kyber_queue_debugfs_attrs,
844	.hctx_debugfs_attrs = kyber_hctx_debugfs_attrs,
845#endif
846	.elevator_attrs = kyber_sched_attrs,
847	.elevator_name = "kyber",
848	.elevator_owner = THIS_MODULE,
849};
850
851static int __init kyber_init(void)
852{
853	return elv_register(&kyber_sched);
854}
855
856static void __exit kyber_exit(void)
857{
858	elv_unregister(&kyber_sched);
859}
860
861module_init(kyber_init);
862module_exit(kyber_exit);
863
864MODULE_AUTHOR("Omar Sandoval");
865MODULE_LICENSE("GPL");
866MODULE_DESCRIPTION("Kyber I/O scheduler");