Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.15.
   1// SPDX-License-Identifier: GPL-2.0
   2/*
   3 * The Kyber I/O scheduler. Controls latency by throttling queue depths using
   4 * scalable techniques.
   5 *
   6 * Copyright (C) 2017 Facebook
   7 */
   8
   9#include <linux/kernel.h>
  10#include <linux/blkdev.h>
  11#include <linux/blk-mq.h>
  12#include <linux/elevator.h>
  13#include <linux/module.h>
  14#include <linux/sbitmap.h>
  15
  16#include <trace/events/block.h>
  17
  18#include "blk.h"
  19#include "blk-mq.h"
  20#include "blk-mq-debugfs.h"
  21#include "blk-mq-sched.h"
  22#include "blk-mq-tag.h"
  23
  24#define CREATE_TRACE_POINTS
  25#include <trace/events/kyber.h>
  26
  27/*
  28 * Scheduling domains: the device is divided into multiple domains based on the
  29 * request type.
  30 */
  31enum {
  32	KYBER_READ,
  33	KYBER_WRITE,
  34	KYBER_DISCARD,
  35	KYBER_OTHER,
  36	KYBER_NUM_DOMAINS,
  37};
  38
  39static const char *kyber_domain_names[] = {
  40	[KYBER_READ] = "READ",
  41	[KYBER_WRITE] = "WRITE",
  42	[KYBER_DISCARD] = "DISCARD",
  43	[KYBER_OTHER] = "OTHER",
  44};
  45
  46enum {
  47	/*
  48	 * In order to prevent starvation of synchronous requests by a flood of
  49	 * asynchronous requests, we reserve 25% of requests for synchronous
  50	 * operations.
  51	 */
  52	KYBER_ASYNC_PERCENT = 75,
  53};
  54
  55/*
  56 * Maximum device-wide depth for each scheduling domain.
  57 *
  58 * Even for fast devices with lots of tags like NVMe, you can saturate the
  59 * device with only a fraction of the maximum possible queue depth. So, we cap
  60 * these to a reasonable value.
  61 */
  62static const unsigned int kyber_depth[] = {
  63	[KYBER_READ] = 256,
  64	[KYBER_WRITE] = 128,
  65	[KYBER_DISCARD] = 64,
  66	[KYBER_OTHER] = 16,
  67};
  68
  69/*
  70 * Default latency targets for each scheduling domain.
  71 */
  72static const u64 kyber_latency_targets[] = {
  73	[KYBER_READ] = 2ULL * NSEC_PER_MSEC,
  74	[KYBER_WRITE] = 10ULL * NSEC_PER_MSEC,
  75	[KYBER_DISCARD] = 5ULL * NSEC_PER_SEC,
  76};
  77
  78/*
  79 * Batch size (number of requests we'll dispatch in a row) for each scheduling
  80 * domain.
  81 */
  82static const unsigned int kyber_batch_size[] = {
  83	[KYBER_READ] = 16,
  84	[KYBER_WRITE] = 8,
  85	[KYBER_DISCARD] = 1,
  86	[KYBER_OTHER] = 1,
  87};
  88
  89/*
  90 * Requests latencies are recorded in a histogram with buckets defined relative
  91 * to the target latency:
  92 *
  93 * <= 1/4 * target latency
  94 * <= 1/2 * target latency
  95 * <= 3/4 * target latency
  96 * <= target latency
  97 * <= 1 1/4 * target latency
  98 * <= 1 1/2 * target latency
  99 * <= 1 3/4 * target latency
 100 * > 1 3/4 * target latency
 101 */
 102enum {
 103	/*
 104	 * The width of the latency histogram buckets is
 105	 * 1 / (1 << KYBER_LATENCY_SHIFT) * target latency.
 106	 */
 107	KYBER_LATENCY_SHIFT = 2,
 108	/*
 109	 * The first (1 << KYBER_LATENCY_SHIFT) buckets are <= target latency,
 110	 * thus, "good".
 111	 */
 112	KYBER_GOOD_BUCKETS = 1 << KYBER_LATENCY_SHIFT,
 113	/* There are also (1 << KYBER_LATENCY_SHIFT) "bad" buckets. */
 114	KYBER_LATENCY_BUCKETS = 2 << KYBER_LATENCY_SHIFT,
 115};
 116
 117/*
 118 * We measure both the total latency and the I/O latency (i.e., latency after
 119 * submitting to the device).
 120 */
 121enum {
 122	KYBER_TOTAL_LATENCY,
 123	KYBER_IO_LATENCY,
 124};
 125
 126static const char *kyber_latency_type_names[] = {
 127	[KYBER_TOTAL_LATENCY] = "total",
 128	[KYBER_IO_LATENCY] = "I/O",
 129};
 130
 131/*
 132 * Per-cpu latency histograms: total latency and I/O latency for each scheduling
 133 * domain except for KYBER_OTHER.
 134 */
 135struct kyber_cpu_latency {
 136	atomic_t buckets[KYBER_OTHER][2][KYBER_LATENCY_BUCKETS];
 137};
 138
 139/*
 140 * There is a same mapping between ctx & hctx and kcq & khd,
 141 * we use request->mq_ctx->index_hw to index the kcq in khd.
 142 */
 143struct kyber_ctx_queue {
 144	/*
 145	 * Used to ensure operations on rq_list and kcq_map to be an atmoic one.
 146	 * Also protect the rqs on rq_list when merge.
 147	 */
 148	spinlock_t lock;
 149	struct list_head rq_list[KYBER_NUM_DOMAINS];
 150} ____cacheline_aligned_in_smp;
 151
 152struct kyber_queue_data {
 153	struct request_queue *q;
 154
 155	/*
 156	 * Each scheduling domain has a limited number of in-flight requests
 157	 * device-wide, limited by these tokens.
 158	 */
 159	struct sbitmap_queue domain_tokens[KYBER_NUM_DOMAINS];
 160
 161	/*
 162	 * Async request percentage, converted to per-word depth for
 163	 * sbitmap_get_shallow().
 164	 */
 165	unsigned int async_depth;
 166
 167	struct kyber_cpu_latency __percpu *cpu_latency;
 168
 169	/* Timer for stats aggregation and adjusting domain tokens. */
 170	struct timer_list timer;
 171
 172	unsigned int latency_buckets[KYBER_OTHER][2][KYBER_LATENCY_BUCKETS];
 173
 174	unsigned long latency_timeout[KYBER_OTHER];
 175
 176	int domain_p99[KYBER_OTHER];
 177
 178	/* Target latencies in nanoseconds. */
 179	u64 latency_targets[KYBER_OTHER];
 180};
 181
 182struct kyber_hctx_data {
 183	spinlock_t lock;
 184	struct list_head rqs[KYBER_NUM_DOMAINS];
 185	unsigned int cur_domain;
 186	unsigned int batching;
 187	struct kyber_ctx_queue *kcqs;
 188	struct sbitmap kcq_map[KYBER_NUM_DOMAINS];
 189	struct sbq_wait domain_wait[KYBER_NUM_DOMAINS];
 190	struct sbq_wait_state *domain_ws[KYBER_NUM_DOMAINS];
 191	atomic_t wait_index[KYBER_NUM_DOMAINS];
 192};
 193
 194static int kyber_domain_wake(wait_queue_entry_t *wait, unsigned mode, int flags,
 195			     void *key);
 196
 197static unsigned int kyber_sched_domain(unsigned int op)
 198{
 199	switch (op & REQ_OP_MASK) {
 200	case REQ_OP_READ:
 201		return KYBER_READ;
 202	case REQ_OP_WRITE:
 203		return KYBER_WRITE;
 204	case REQ_OP_DISCARD:
 205		return KYBER_DISCARD;
 206	default:
 207		return KYBER_OTHER;
 208	}
 209}
 210
 211static void flush_latency_buckets(struct kyber_queue_data *kqd,
 212				  struct kyber_cpu_latency *cpu_latency,
 213				  unsigned int sched_domain, unsigned int type)
 214{
 215	unsigned int *buckets = kqd->latency_buckets[sched_domain][type];
 216	atomic_t *cpu_buckets = cpu_latency->buckets[sched_domain][type];
 217	unsigned int bucket;
 218
 219	for (bucket = 0; bucket < KYBER_LATENCY_BUCKETS; bucket++)
 220		buckets[bucket] += atomic_xchg(&cpu_buckets[bucket], 0);
 221}
 222
 223/*
 224 * Calculate the histogram bucket with the given percentile rank, or -1 if there
 225 * aren't enough samples yet.
 226 */
 227static int calculate_percentile(struct kyber_queue_data *kqd,
 228				unsigned int sched_domain, unsigned int type,
 229				unsigned int percentile)
 230{
 231	unsigned int *buckets = kqd->latency_buckets[sched_domain][type];
 232	unsigned int bucket, samples = 0, percentile_samples;
 233
 234	for (bucket = 0; bucket < KYBER_LATENCY_BUCKETS; bucket++)
 235		samples += buckets[bucket];
 236
 237	if (!samples)
 238		return -1;
 239
 240	/*
 241	 * We do the calculation once we have 500 samples or one second passes
 242	 * since the first sample was recorded, whichever comes first.
 243	 */
 244	if (!kqd->latency_timeout[sched_domain])
 245		kqd->latency_timeout[sched_domain] = max(jiffies + HZ, 1UL);
 246	if (samples < 500 &&
 247	    time_is_after_jiffies(kqd->latency_timeout[sched_domain])) {
 248		return -1;
 249	}
 250	kqd->latency_timeout[sched_domain] = 0;
 251
 252	percentile_samples = DIV_ROUND_UP(samples * percentile, 100);
 253	for (bucket = 0; bucket < KYBER_LATENCY_BUCKETS - 1; bucket++) {
 254		if (buckets[bucket] >= percentile_samples)
 255			break;
 256		percentile_samples -= buckets[bucket];
 257	}
 258	memset(buckets, 0, sizeof(kqd->latency_buckets[sched_domain][type]));
 259
 260	trace_kyber_latency(kqd->q, kyber_domain_names[sched_domain],
 261			    kyber_latency_type_names[type], percentile,
 262			    bucket + 1, 1 << KYBER_LATENCY_SHIFT, samples);
 263
 264	return bucket;
 265}
 266
 267static void kyber_resize_domain(struct kyber_queue_data *kqd,
 268				unsigned int sched_domain, unsigned int depth)
 269{
 270	depth = clamp(depth, 1U, kyber_depth[sched_domain]);
 271	if (depth != kqd->domain_tokens[sched_domain].sb.depth) {
 272		sbitmap_queue_resize(&kqd->domain_tokens[sched_domain], depth);
 273		trace_kyber_adjust(kqd->q, kyber_domain_names[sched_domain],
 274				   depth);
 275	}
 276}
 277
 278static void kyber_timer_fn(struct timer_list *t)
 279{
 280	struct kyber_queue_data *kqd = from_timer(kqd, t, timer);
 281	unsigned int sched_domain;
 282	int cpu;
 283	bool bad = false;
 284
 285	/* Sum all of the per-cpu latency histograms. */
 286	for_each_online_cpu(cpu) {
 287		struct kyber_cpu_latency *cpu_latency;
 288
 289		cpu_latency = per_cpu_ptr(kqd->cpu_latency, cpu);
 290		for (sched_domain = 0; sched_domain < KYBER_OTHER; sched_domain++) {
 291			flush_latency_buckets(kqd, cpu_latency, sched_domain,
 292					      KYBER_TOTAL_LATENCY);
 293			flush_latency_buckets(kqd, cpu_latency, sched_domain,
 294					      KYBER_IO_LATENCY);
 295		}
 296	}
 297
 298	/*
 299	 * Check if any domains have a high I/O latency, which might indicate
 300	 * congestion in the device. Note that we use the p90; we don't want to
 301	 * be too sensitive to outliers here.
 302	 */
 303	for (sched_domain = 0; sched_domain < KYBER_OTHER; sched_domain++) {
 304		int p90;
 305
 306		p90 = calculate_percentile(kqd, sched_domain, KYBER_IO_LATENCY,
 307					   90);
 308		if (p90 >= KYBER_GOOD_BUCKETS)
 309			bad = true;
 310	}
 311
 312	/*
 313	 * Adjust the scheduling domain depths. If we determined that there was
 314	 * congestion, we throttle all domains with good latencies. Either way,
 315	 * we ease up on throttling domains with bad latencies.
 316	 */
 317	for (sched_domain = 0; sched_domain < KYBER_OTHER; sched_domain++) {
 318		unsigned int orig_depth, depth;
 319		int p99;
 320
 321		p99 = calculate_percentile(kqd, sched_domain,
 322					   KYBER_TOTAL_LATENCY, 99);
 323		/*
 324		 * This is kind of subtle: different domains will not
 325		 * necessarily have enough samples to calculate the latency
 326		 * percentiles during the same window, so we have to remember
 327		 * the p99 for the next time we observe congestion; once we do,
 328		 * we don't want to throttle again until we get more data, so we
 329		 * reset it to -1.
 330		 */
 331		if (bad) {
 332			if (p99 < 0)
 333				p99 = kqd->domain_p99[sched_domain];
 334			kqd->domain_p99[sched_domain] = -1;
 335		} else if (p99 >= 0) {
 336			kqd->domain_p99[sched_domain] = p99;
 337		}
 338		if (p99 < 0)
 339			continue;
 340
 341		/*
 342		 * If this domain has bad latency, throttle less. Otherwise,
 343		 * throttle more iff we determined that there is congestion.
 344		 *
 345		 * The new depth is scaled linearly with the p99 latency vs the
 346		 * latency target. E.g., if the p99 is 3/4 of the target, then
 347		 * we throttle down to 3/4 of the current depth, and if the p99
 348		 * is 2x the target, then we double the depth.
 349		 */
 350		if (bad || p99 >= KYBER_GOOD_BUCKETS) {
 351			orig_depth = kqd->domain_tokens[sched_domain].sb.depth;
 352			depth = (orig_depth * (p99 + 1)) >> KYBER_LATENCY_SHIFT;
 353			kyber_resize_domain(kqd, sched_domain, depth);
 354		}
 355	}
 356}
 357
 358static struct kyber_queue_data *kyber_queue_data_alloc(struct request_queue *q)
 359{
 360	struct kyber_queue_data *kqd;
 361	int ret = -ENOMEM;
 362	int i;
 363
 364	kqd = kzalloc_node(sizeof(*kqd), GFP_KERNEL, q->node);
 365	if (!kqd)
 366		goto err;
 367
 368	kqd->q = q;
 369
 370	kqd->cpu_latency = alloc_percpu_gfp(struct kyber_cpu_latency,
 371					    GFP_KERNEL | __GFP_ZERO);
 372	if (!kqd->cpu_latency)
 373		goto err_kqd;
 374
 375	timer_setup(&kqd->timer, kyber_timer_fn, 0);
 376
 377	for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
 378		WARN_ON(!kyber_depth[i]);
 379		WARN_ON(!kyber_batch_size[i]);
 380		ret = sbitmap_queue_init_node(&kqd->domain_tokens[i],
 381					      kyber_depth[i], -1, false,
 382					      GFP_KERNEL, q->node);
 383		if (ret) {
 384			while (--i >= 0)
 385				sbitmap_queue_free(&kqd->domain_tokens[i]);
 386			goto err_buckets;
 387		}
 388	}
 389
 390	for (i = 0; i < KYBER_OTHER; i++) {
 391		kqd->domain_p99[i] = -1;
 392		kqd->latency_targets[i] = kyber_latency_targets[i];
 393	}
 394
 395	return kqd;
 396
 397err_buckets:
 398	free_percpu(kqd->cpu_latency);
 399err_kqd:
 400	kfree(kqd);
 401err:
 402	return ERR_PTR(ret);
 403}
 404
 405static int kyber_init_sched(struct request_queue *q, struct elevator_type *e)
 406{
 407	struct kyber_queue_data *kqd;
 408	struct elevator_queue *eq;
 409
 410	eq = elevator_alloc(q, e);
 411	if (!eq)
 412		return -ENOMEM;
 413
 414	kqd = kyber_queue_data_alloc(q);
 415	if (IS_ERR(kqd)) {
 416		kobject_put(&eq->kobj);
 417		return PTR_ERR(kqd);
 418	}
 419
 420	blk_stat_enable_accounting(q);
 421
 422	eq->elevator_data = kqd;
 423	q->elevator = eq;
 424
 425	return 0;
 426}
 427
 428static void kyber_exit_sched(struct elevator_queue *e)
 429{
 430	struct kyber_queue_data *kqd = e->elevator_data;
 431	int i;
 432
 433	del_timer_sync(&kqd->timer);
 434
 435	for (i = 0; i < KYBER_NUM_DOMAINS; i++)
 436		sbitmap_queue_free(&kqd->domain_tokens[i]);
 437	free_percpu(kqd->cpu_latency);
 438	kfree(kqd);
 439}
 440
 441static void kyber_ctx_queue_init(struct kyber_ctx_queue *kcq)
 442{
 443	unsigned int i;
 444
 445	spin_lock_init(&kcq->lock);
 446	for (i = 0; i < KYBER_NUM_DOMAINS; i++)
 447		INIT_LIST_HEAD(&kcq->rq_list[i]);
 448}
 449
 450static void kyber_depth_updated(struct blk_mq_hw_ctx *hctx)
 451{
 452	struct kyber_queue_data *kqd = hctx->queue->elevator->elevator_data;
 453	struct blk_mq_tags *tags = hctx->sched_tags;
 454	unsigned int shift = tags->bitmap_tags->sb.shift;
 455
 456	kqd->async_depth = (1U << shift) * KYBER_ASYNC_PERCENT / 100U;
 457
 458	sbitmap_queue_min_shallow_depth(tags->bitmap_tags, kqd->async_depth);
 459}
 460
 461static int kyber_init_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
 462{
 463	struct kyber_hctx_data *khd;
 464	int i;
 465
 466	khd = kmalloc_node(sizeof(*khd), GFP_KERNEL, hctx->numa_node);
 467	if (!khd)
 468		return -ENOMEM;
 469
 470	khd->kcqs = kmalloc_array_node(hctx->nr_ctx,
 471				       sizeof(struct kyber_ctx_queue),
 472				       GFP_KERNEL, hctx->numa_node);
 473	if (!khd->kcqs)
 474		goto err_khd;
 475
 476	for (i = 0; i < hctx->nr_ctx; i++)
 477		kyber_ctx_queue_init(&khd->kcqs[i]);
 478
 479	for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
 480		if (sbitmap_init_node(&khd->kcq_map[i], hctx->nr_ctx,
 481				      ilog2(8), GFP_KERNEL, hctx->numa_node,
 482				      false, false)) {
 483			while (--i >= 0)
 484				sbitmap_free(&khd->kcq_map[i]);
 485			goto err_kcqs;
 486		}
 487	}
 488
 489	spin_lock_init(&khd->lock);
 490
 491	for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
 492		INIT_LIST_HEAD(&khd->rqs[i]);
 493		khd->domain_wait[i].sbq = NULL;
 494		init_waitqueue_func_entry(&khd->domain_wait[i].wait,
 495					  kyber_domain_wake);
 496		khd->domain_wait[i].wait.private = hctx;
 497		INIT_LIST_HEAD(&khd->domain_wait[i].wait.entry);
 498		atomic_set(&khd->wait_index[i], 0);
 499	}
 500
 501	khd->cur_domain = 0;
 502	khd->batching = 0;
 503
 504	hctx->sched_data = khd;
 505	kyber_depth_updated(hctx);
 506
 507	return 0;
 508
 509err_kcqs:
 510	kfree(khd->kcqs);
 511err_khd:
 512	kfree(khd);
 513	return -ENOMEM;
 514}
 515
 516static void kyber_exit_hctx(struct blk_mq_hw_ctx *hctx, unsigned int hctx_idx)
 517{
 518	struct kyber_hctx_data *khd = hctx->sched_data;
 519	int i;
 520
 521	for (i = 0; i < KYBER_NUM_DOMAINS; i++)
 522		sbitmap_free(&khd->kcq_map[i]);
 523	kfree(khd->kcqs);
 524	kfree(hctx->sched_data);
 525}
 526
 527static int rq_get_domain_token(struct request *rq)
 528{
 529	return (long)rq->elv.priv[0];
 530}
 531
 532static void rq_set_domain_token(struct request *rq, int token)
 533{
 534	rq->elv.priv[0] = (void *)(long)token;
 535}
 536
 537static void rq_clear_domain_token(struct kyber_queue_data *kqd,
 538				  struct request *rq)
 539{
 540	unsigned int sched_domain;
 541	int nr;
 542
 543	nr = rq_get_domain_token(rq);
 544	if (nr != -1) {
 545		sched_domain = kyber_sched_domain(rq->cmd_flags);
 546		sbitmap_queue_clear(&kqd->domain_tokens[sched_domain], nr,
 547				    rq->mq_ctx->cpu);
 548	}
 549}
 550
 551static void kyber_limit_depth(unsigned int op, struct blk_mq_alloc_data *data)
 552{
 553	/*
 554	 * We use the scheduler tags as per-hardware queue queueing tokens.
 555	 * Async requests can be limited at this stage.
 556	 */
 557	if (!op_is_sync(op)) {
 558		struct kyber_queue_data *kqd = data->q->elevator->elevator_data;
 559
 560		data->shallow_depth = kqd->async_depth;
 561	}
 562}
 563
 564static bool kyber_bio_merge(struct request_queue *q, struct bio *bio,
 565		unsigned int nr_segs)
 566{
 567	struct blk_mq_ctx *ctx = blk_mq_get_ctx(q);
 568	struct blk_mq_hw_ctx *hctx = blk_mq_map_queue(q, bio->bi_opf, ctx);
 569	struct kyber_hctx_data *khd = hctx->sched_data;
 570	struct kyber_ctx_queue *kcq = &khd->kcqs[ctx->index_hw[hctx->type]];
 571	unsigned int sched_domain = kyber_sched_domain(bio->bi_opf);
 572	struct list_head *rq_list = &kcq->rq_list[sched_domain];
 573	bool merged;
 574
 575	spin_lock(&kcq->lock);
 576	merged = blk_bio_list_merge(hctx->queue, rq_list, bio, nr_segs);
 577	spin_unlock(&kcq->lock);
 578
 579	return merged;
 580}
 581
 582static void kyber_prepare_request(struct request *rq)
 583{
 584	rq_set_domain_token(rq, -1);
 585}
 586
 587static void kyber_insert_requests(struct blk_mq_hw_ctx *hctx,
 588				  struct list_head *rq_list, bool at_head)
 589{
 590	struct kyber_hctx_data *khd = hctx->sched_data;
 591	struct request *rq, *next;
 592
 593	list_for_each_entry_safe(rq, next, rq_list, queuelist) {
 594		unsigned int sched_domain = kyber_sched_domain(rq->cmd_flags);
 595		struct kyber_ctx_queue *kcq = &khd->kcqs[rq->mq_ctx->index_hw[hctx->type]];
 596		struct list_head *head = &kcq->rq_list[sched_domain];
 597
 598		spin_lock(&kcq->lock);
 599		trace_block_rq_insert(rq);
 600		if (at_head)
 601			list_move(&rq->queuelist, head);
 602		else
 603			list_move_tail(&rq->queuelist, head);
 604		sbitmap_set_bit(&khd->kcq_map[sched_domain],
 605				rq->mq_ctx->index_hw[hctx->type]);
 606		spin_unlock(&kcq->lock);
 607	}
 608}
 609
 610static void kyber_finish_request(struct request *rq)
 611{
 612	struct kyber_queue_data *kqd = rq->q->elevator->elevator_data;
 613
 614	rq_clear_domain_token(kqd, rq);
 615}
 616
 617static void add_latency_sample(struct kyber_cpu_latency *cpu_latency,
 618			       unsigned int sched_domain, unsigned int type,
 619			       u64 target, u64 latency)
 620{
 621	unsigned int bucket;
 622	u64 divisor;
 623
 624	if (latency > 0) {
 625		divisor = max_t(u64, target >> KYBER_LATENCY_SHIFT, 1);
 626		bucket = min_t(unsigned int, div64_u64(latency - 1, divisor),
 627			       KYBER_LATENCY_BUCKETS - 1);
 628	} else {
 629		bucket = 0;
 630	}
 631
 632	atomic_inc(&cpu_latency->buckets[sched_domain][type][bucket]);
 633}
 634
 635static void kyber_completed_request(struct request *rq, u64 now)
 636{
 637	struct kyber_queue_data *kqd = rq->q->elevator->elevator_data;
 638	struct kyber_cpu_latency *cpu_latency;
 639	unsigned int sched_domain;
 640	u64 target;
 641
 642	sched_domain = kyber_sched_domain(rq->cmd_flags);
 643	if (sched_domain == KYBER_OTHER)
 644		return;
 645
 646	cpu_latency = get_cpu_ptr(kqd->cpu_latency);
 647	target = kqd->latency_targets[sched_domain];
 648	add_latency_sample(cpu_latency, sched_domain, KYBER_TOTAL_LATENCY,
 649			   target, now - rq->start_time_ns);
 650	add_latency_sample(cpu_latency, sched_domain, KYBER_IO_LATENCY, target,
 651			   now - rq->io_start_time_ns);
 652	put_cpu_ptr(kqd->cpu_latency);
 653
 654	timer_reduce(&kqd->timer, jiffies + HZ / 10);
 655}
 656
 657struct flush_kcq_data {
 658	struct kyber_hctx_data *khd;
 659	unsigned int sched_domain;
 660	struct list_head *list;
 661};
 662
 663static bool flush_busy_kcq(struct sbitmap *sb, unsigned int bitnr, void *data)
 664{
 665	struct flush_kcq_data *flush_data = data;
 666	struct kyber_ctx_queue *kcq = &flush_data->khd->kcqs[bitnr];
 667
 668	spin_lock(&kcq->lock);
 669	list_splice_tail_init(&kcq->rq_list[flush_data->sched_domain],
 670			      flush_data->list);
 671	sbitmap_clear_bit(sb, bitnr);
 672	spin_unlock(&kcq->lock);
 673
 674	return true;
 675}
 676
 677static void kyber_flush_busy_kcqs(struct kyber_hctx_data *khd,
 678				  unsigned int sched_domain,
 679				  struct list_head *list)
 680{
 681	struct flush_kcq_data data = {
 682		.khd = khd,
 683		.sched_domain = sched_domain,
 684		.list = list,
 685	};
 686
 687	sbitmap_for_each_set(&khd->kcq_map[sched_domain],
 688			     flush_busy_kcq, &data);
 689}
 690
 691static int kyber_domain_wake(wait_queue_entry_t *wqe, unsigned mode, int flags,
 692			     void *key)
 693{
 694	struct blk_mq_hw_ctx *hctx = READ_ONCE(wqe->private);
 695	struct sbq_wait *wait = container_of(wqe, struct sbq_wait, wait);
 696
 697	sbitmap_del_wait_queue(wait);
 698	blk_mq_run_hw_queue(hctx, true);
 699	return 1;
 700}
 701
 702static int kyber_get_domain_token(struct kyber_queue_data *kqd,
 703				  struct kyber_hctx_data *khd,
 704				  struct blk_mq_hw_ctx *hctx)
 705{
 706	unsigned int sched_domain = khd->cur_domain;
 707	struct sbitmap_queue *domain_tokens = &kqd->domain_tokens[sched_domain];
 708	struct sbq_wait *wait = &khd->domain_wait[sched_domain];
 709	struct sbq_wait_state *ws;
 710	int nr;
 711
 712	nr = __sbitmap_queue_get(domain_tokens);
 713
 714	/*
 715	 * If we failed to get a domain token, make sure the hardware queue is
 716	 * run when one becomes available. Note that this is serialized on
 717	 * khd->lock, but we still need to be careful about the waker.
 718	 */
 719	if (nr < 0 && list_empty_careful(&wait->wait.entry)) {
 720		ws = sbq_wait_ptr(domain_tokens,
 721				  &khd->wait_index[sched_domain]);
 722		khd->domain_ws[sched_domain] = ws;
 723		sbitmap_add_wait_queue(domain_tokens, ws, wait);
 724
 725		/*
 726		 * Try again in case a token was freed before we got on the wait
 727		 * queue.
 728		 */
 729		nr = __sbitmap_queue_get(domain_tokens);
 730	}
 731
 732	/*
 733	 * If we got a token while we were on the wait queue, remove ourselves
 734	 * from the wait queue to ensure that all wake ups make forward
 735	 * progress. It's possible that the waker already deleted the entry
 736	 * between the !list_empty_careful() check and us grabbing the lock, but
 737	 * list_del_init() is okay with that.
 738	 */
 739	if (nr >= 0 && !list_empty_careful(&wait->wait.entry)) {
 740		ws = khd->domain_ws[sched_domain];
 741		spin_lock_irq(&ws->wait.lock);
 742		sbitmap_del_wait_queue(wait);
 743		spin_unlock_irq(&ws->wait.lock);
 744	}
 745
 746	return nr;
 747}
 748
 749static struct request *
 750kyber_dispatch_cur_domain(struct kyber_queue_data *kqd,
 751			  struct kyber_hctx_data *khd,
 752			  struct blk_mq_hw_ctx *hctx)
 753{
 754	struct list_head *rqs;
 755	struct request *rq;
 756	int nr;
 757
 758	rqs = &khd->rqs[khd->cur_domain];
 759
 760	/*
 761	 * If we already have a flushed request, then we just need to get a
 762	 * token for it. Otherwise, if there are pending requests in the kcqs,
 763	 * flush the kcqs, but only if we can get a token. If not, we should
 764	 * leave the requests in the kcqs so that they can be merged. Note that
 765	 * khd->lock serializes the flushes, so if we observed any bit set in
 766	 * the kcq_map, we will always get a request.
 767	 */
 768	rq = list_first_entry_or_null(rqs, struct request, queuelist);
 769	if (rq) {
 770		nr = kyber_get_domain_token(kqd, khd, hctx);
 771		if (nr >= 0) {
 772			khd->batching++;
 773			rq_set_domain_token(rq, nr);
 774			list_del_init(&rq->queuelist);
 775			return rq;
 776		} else {
 777			trace_kyber_throttled(kqd->q,
 778					      kyber_domain_names[khd->cur_domain]);
 779		}
 780	} else if (sbitmap_any_bit_set(&khd->kcq_map[khd->cur_domain])) {
 781		nr = kyber_get_domain_token(kqd, khd, hctx);
 782		if (nr >= 0) {
 783			kyber_flush_busy_kcqs(khd, khd->cur_domain, rqs);
 784			rq = list_first_entry(rqs, struct request, queuelist);
 785			khd->batching++;
 786			rq_set_domain_token(rq, nr);
 787			list_del_init(&rq->queuelist);
 788			return rq;
 789		} else {
 790			trace_kyber_throttled(kqd->q,
 791					      kyber_domain_names[khd->cur_domain]);
 792		}
 793	}
 794
 795	/* There were either no pending requests or no tokens. */
 796	return NULL;
 797}
 798
 799static struct request *kyber_dispatch_request(struct blk_mq_hw_ctx *hctx)
 800{
 801	struct kyber_queue_data *kqd = hctx->queue->elevator->elevator_data;
 802	struct kyber_hctx_data *khd = hctx->sched_data;
 803	struct request *rq;
 804	int i;
 805
 806	spin_lock(&khd->lock);
 807
 808	/*
 809	 * First, if we are still entitled to batch, try to dispatch a request
 810	 * from the batch.
 811	 */
 812	if (khd->batching < kyber_batch_size[khd->cur_domain]) {
 813		rq = kyber_dispatch_cur_domain(kqd, khd, hctx);
 814		if (rq)
 815			goto out;
 816	}
 817
 818	/*
 819	 * Either,
 820	 * 1. We were no longer entitled to a batch.
 821	 * 2. The domain we were batching didn't have any requests.
 822	 * 3. The domain we were batching was out of tokens.
 823	 *
 824	 * Start another batch. Note that this wraps back around to the original
 825	 * domain if no other domains have requests or tokens.
 826	 */
 827	khd->batching = 0;
 828	for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
 829		if (khd->cur_domain == KYBER_NUM_DOMAINS - 1)
 830			khd->cur_domain = 0;
 831		else
 832			khd->cur_domain++;
 833
 834		rq = kyber_dispatch_cur_domain(kqd, khd, hctx);
 835		if (rq)
 836			goto out;
 837	}
 838
 839	rq = NULL;
 840out:
 841	spin_unlock(&khd->lock);
 842	return rq;
 843}
 844
 845static bool kyber_has_work(struct blk_mq_hw_ctx *hctx)
 846{
 847	struct kyber_hctx_data *khd = hctx->sched_data;
 848	int i;
 849
 850	for (i = 0; i < KYBER_NUM_DOMAINS; i++) {
 851		if (!list_empty_careful(&khd->rqs[i]) ||
 852		    sbitmap_any_bit_set(&khd->kcq_map[i]))
 853			return true;
 854	}
 855
 856	return false;
 857}
 858
 859#define KYBER_LAT_SHOW_STORE(domain, name)				\
 860static ssize_t kyber_##name##_lat_show(struct elevator_queue *e,	\
 861				       char *page)			\
 862{									\
 863	struct kyber_queue_data *kqd = e->elevator_data;		\
 864									\
 865	return sprintf(page, "%llu\n", kqd->latency_targets[domain]);	\
 866}									\
 867									\
 868static ssize_t kyber_##name##_lat_store(struct elevator_queue *e,	\
 869					const char *page, size_t count)	\
 870{									\
 871	struct kyber_queue_data *kqd = e->elevator_data;		\
 872	unsigned long long nsec;					\
 873	int ret;							\
 874									\
 875	ret = kstrtoull(page, 10, &nsec);				\
 876	if (ret)							\
 877		return ret;						\
 878									\
 879	kqd->latency_targets[domain] = nsec;				\
 880									\
 881	return count;							\
 882}
 883KYBER_LAT_SHOW_STORE(KYBER_READ, read);
 884KYBER_LAT_SHOW_STORE(KYBER_WRITE, write);
 885#undef KYBER_LAT_SHOW_STORE
 886
 887#define KYBER_LAT_ATTR(op) __ATTR(op##_lat_nsec, 0644, kyber_##op##_lat_show, kyber_##op##_lat_store)
 888static struct elv_fs_entry kyber_sched_attrs[] = {
 889	KYBER_LAT_ATTR(read),
 890	KYBER_LAT_ATTR(write),
 891	__ATTR_NULL
 892};
 893#undef KYBER_LAT_ATTR
 894
 895#ifdef CONFIG_BLK_DEBUG_FS
 896#define KYBER_DEBUGFS_DOMAIN_ATTRS(domain, name)			\
 897static int kyber_##name##_tokens_show(void *data, struct seq_file *m)	\
 898{									\
 899	struct request_queue *q = data;					\
 900	struct kyber_queue_data *kqd = q->elevator->elevator_data;	\
 901									\
 902	sbitmap_queue_show(&kqd->domain_tokens[domain], m);		\
 903	return 0;							\
 904}									\
 905									\
 906static void *kyber_##name##_rqs_start(struct seq_file *m, loff_t *pos)	\
 907	__acquires(&khd->lock)						\
 908{									\
 909	struct blk_mq_hw_ctx *hctx = m->private;			\
 910	struct kyber_hctx_data *khd = hctx->sched_data;			\
 911									\
 912	spin_lock(&khd->lock);						\
 913	return seq_list_start(&khd->rqs[domain], *pos);			\
 914}									\
 915									\
 916static void *kyber_##name##_rqs_next(struct seq_file *m, void *v,	\
 917				     loff_t *pos)			\
 918{									\
 919	struct blk_mq_hw_ctx *hctx = m->private;			\
 920	struct kyber_hctx_data *khd = hctx->sched_data;			\
 921									\
 922	return seq_list_next(v, &khd->rqs[domain], pos);		\
 923}									\
 924									\
 925static void kyber_##name##_rqs_stop(struct seq_file *m, void *v)	\
 926	__releases(&khd->lock)						\
 927{									\
 928	struct blk_mq_hw_ctx *hctx = m->private;			\
 929	struct kyber_hctx_data *khd = hctx->sched_data;			\
 930									\
 931	spin_unlock(&khd->lock);					\
 932}									\
 933									\
 934static const struct seq_operations kyber_##name##_rqs_seq_ops = {	\
 935	.start	= kyber_##name##_rqs_start,				\
 936	.next	= kyber_##name##_rqs_next,				\
 937	.stop	= kyber_##name##_rqs_stop,				\
 938	.show	= blk_mq_debugfs_rq_show,				\
 939};									\
 940									\
 941static int kyber_##name##_waiting_show(void *data, struct seq_file *m)	\
 942{									\
 943	struct blk_mq_hw_ctx *hctx = data;				\
 944	struct kyber_hctx_data *khd = hctx->sched_data;			\
 945	wait_queue_entry_t *wait = &khd->domain_wait[domain].wait;	\
 946									\
 947	seq_printf(m, "%d\n", !list_empty_careful(&wait->entry));	\
 948	return 0;							\
 949}
 950KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_READ, read)
 951KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_WRITE, write)
 952KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_DISCARD, discard)
 953KYBER_DEBUGFS_DOMAIN_ATTRS(KYBER_OTHER, other)
 954#undef KYBER_DEBUGFS_DOMAIN_ATTRS
 955
 956static int kyber_async_depth_show(void *data, struct seq_file *m)
 957{
 958	struct request_queue *q = data;
 959	struct kyber_queue_data *kqd = q->elevator->elevator_data;
 960
 961	seq_printf(m, "%u\n", kqd->async_depth);
 962	return 0;
 963}
 964
 965static int kyber_cur_domain_show(void *data, struct seq_file *m)
 966{
 967	struct blk_mq_hw_ctx *hctx = data;
 968	struct kyber_hctx_data *khd = hctx->sched_data;
 969
 970	seq_printf(m, "%s\n", kyber_domain_names[khd->cur_domain]);
 971	return 0;
 972}
 973
 974static int kyber_batching_show(void *data, struct seq_file *m)
 975{
 976	struct blk_mq_hw_ctx *hctx = data;
 977	struct kyber_hctx_data *khd = hctx->sched_data;
 978
 979	seq_printf(m, "%u\n", khd->batching);
 980	return 0;
 981}
 982
 983#define KYBER_QUEUE_DOMAIN_ATTRS(name)	\
 984	{#name "_tokens", 0400, kyber_##name##_tokens_show}
 985static const struct blk_mq_debugfs_attr kyber_queue_debugfs_attrs[] = {
 986	KYBER_QUEUE_DOMAIN_ATTRS(read),
 987	KYBER_QUEUE_DOMAIN_ATTRS(write),
 988	KYBER_QUEUE_DOMAIN_ATTRS(discard),
 989	KYBER_QUEUE_DOMAIN_ATTRS(other),
 990	{"async_depth", 0400, kyber_async_depth_show},
 991	{},
 992};
 993#undef KYBER_QUEUE_DOMAIN_ATTRS
 994
 995#define KYBER_HCTX_DOMAIN_ATTRS(name)					\
 996	{#name "_rqs", 0400, .seq_ops = &kyber_##name##_rqs_seq_ops},	\
 997	{#name "_waiting", 0400, kyber_##name##_waiting_show}
 998static const struct blk_mq_debugfs_attr kyber_hctx_debugfs_attrs[] = {
 999	KYBER_HCTX_DOMAIN_ATTRS(read),
1000	KYBER_HCTX_DOMAIN_ATTRS(write),
1001	KYBER_HCTX_DOMAIN_ATTRS(discard),
1002	KYBER_HCTX_DOMAIN_ATTRS(other),
1003	{"cur_domain", 0400, kyber_cur_domain_show},
1004	{"batching", 0400, kyber_batching_show},
1005	{},
1006};
1007#undef KYBER_HCTX_DOMAIN_ATTRS
1008#endif
1009
1010static struct elevator_type kyber_sched = {
1011	.ops = {
1012		.init_sched = kyber_init_sched,
1013		.exit_sched = kyber_exit_sched,
1014		.init_hctx = kyber_init_hctx,
1015		.exit_hctx = kyber_exit_hctx,
1016		.limit_depth = kyber_limit_depth,
1017		.bio_merge = kyber_bio_merge,
1018		.prepare_request = kyber_prepare_request,
1019		.insert_requests = kyber_insert_requests,
1020		.finish_request = kyber_finish_request,
1021		.requeue_request = kyber_finish_request,
1022		.completed_request = kyber_completed_request,
1023		.dispatch_request = kyber_dispatch_request,
1024		.has_work = kyber_has_work,
1025		.depth_updated = kyber_depth_updated,
1026	},
1027#ifdef CONFIG_BLK_DEBUG_FS
1028	.queue_debugfs_attrs = kyber_queue_debugfs_attrs,
1029	.hctx_debugfs_attrs = kyber_hctx_debugfs_attrs,
1030#endif
1031	.elevator_attrs = kyber_sched_attrs,
1032	.elevator_name = "kyber",
1033	.elevator_features = ELEVATOR_F_MQ_AWARE,
1034	.elevator_owner = THIS_MODULE,
1035};
1036
1037static int __init kyber_init(void)
1038{
1039	return elv_register(&kyber_sched);
1040}
1041
1042static void __exit kyber_exit(void)
1043{
1044	elv_unregister(&kyber_sched);
1045}
1046
1047module_init(kyber_init);
1048module_exit(kyber_exit);
1049
1050MODULE_AUTHOR("Omar Sandoval");
1051MODULE_LICENSE("GPL");
1052MODULE_DESCRIPTION("Kyber I/O scheduler");