Linux Audio

Check our new training course

Loading...
v3.15
  1/*
  2 *  linux/arch/arm/kernel/smp.c
  3 *
  4 *  Copyright (C) 2002 ARM Limited, All Rights Reserved.
  5 *
  6 * This program is free software; you can redistribute it and/or modify
  7 * it under the terms of the GNU General Public License version 2 as
  8 * published by the Free Software Foundation.
  9 */
 10#include <linux/module.h>
 11#include <linux/delay.h>
 12#include <linux/init.h>
 13#include <linux/spinlock.h>
 14#include <linux/sched.h>
 
 
 15#include <linux/interrupt.h>
 16#include <linux/cache.h>
 17#include <linux/profile.h>
 18#include <linux/errno.h>
 19#include <linux/mm.h>
 20#include <linux/err.h>
 21#include <linux/cpu.h>
 22#include <linux/seq_file.h>
 23#include <linux/irq.h>
 
 24#include <linux/percpu.h>
 25#include <linux/clockchips.h>
 26#include <linux/completion.h>
 27#include <linux/cpufreq.h>
 28#include <linux/irq_work.h>
 29
 30#include <linux/atomic.h>
 31#include <asm/smp.h>
 32#include <asm/cacheflush.h>
 33#include <asm/cpu.h>
 34#include <asm/cputype.h>
 35#include <asm/exception.h>
 36#include <asm/idmap.h>
 37#include <asm/topology.h>
 38#include <asm/mmu_context.h>
 39#include <asm/pgtable.h>
 40#include <asm/pgalloc.h>
 41#include <asm/processor.h>
 42#include <asm/sections.h>
 43#include <asm/tlbflush.h>
 44#include <asm/ptrace.h>
 45#include <asm/smp_plat.h>
 46#include <asm/virt.h>
 47#include <asm/mach/arch.h>
 48#include <asm/mpu.h>
 49
 
 
 
 50/*
 51 * as from 2.5, kernels no longer have an init_tasks structure
 52 * so we need some other way of telling a new secondary core
 53 * where to place its SVC stack
 54 */
 55struct secondary_data secondary_data;
 56
 57/*
 58 * control for which core is the next to come out of the secondary
 59 * boot "holding pen"
 60 */
 61volatile int pen_release = -1;
 62
 63enum ipi_msg_type {
 64	IPI_WAKEUP,
 65	IPI_TIMER,
 66	IPI_RESCHEDULE,
 67	IPI_CALL_FUNC,
 68	IPI_CALL_FUNC_SINGLE,
 69	IPI_CPU_STOP,
 70	IPI_IRQ_WORK,
 71	IPI_COMPLETION,
 
 
 
 
 
 
 72};
 73
 74static DECLARE_COMPLETION(cpu_running);
 75
 76static struct smp_operations smp_ops;
 77
 78void __init smp_set_ops(struct smp_operations *ops)
 79{
 80	if (ops)
 81		smp_ops = *ops;
 82};
 83
 84static unsigned long get_arch_pgd(pgd_t *pgd)
 85{
 86	phys_addr_t pgdir = virt_to_idmap(pgd);
 87	BUG_ON(pgdir & ARCH_PGD_MASK);
 88	return pgdir >> ARCH_PGD_SHIFT;
 
 
 89}
 90
 91int __cpu_up(unsigned int cpu, struct task_struct *idle)
 92{
 93	int ret;
 94
 
 
 
 95	/*
 96	 * We need to tell the secondary core where to find
 97	 * its stack and the page tables.
 98	 */
 99	secondary_data.stack = task_stack_page(idle) + THREAD_START_SP;
100#ifdef CONFIG_ARM_MPU
101	secondary_data.mpu_rgn_szr = mpu_rgn_info.rgns[MPU_RAM_REGION].drsr;
102#endif
103
104#ifdef CONFIG_MMU
105	secondary_data.pgdir = get_arch_pgd(idmap_pgd);
106	secondary_data.swapper_pg_dir = get_arch_pgd(swapper_pg_dir);
107#endif
108	sync_cache_w(&secondary_data);
109
110	/*
111	 * Now bring the CPU into our world.
112	 */
113	ret = boot_secondary(cpu, idle);
114	if (ret == 0) {
115		/*
116		 * CPU was successfully started, wait for it
117		 * to come online or time out.
118		 */
119		wait_for_completion_timeout(&cpu_running,
120						 msecs_to_jiffies(1000));
121
122		if (!cpu_online(cpu)) {
123			pr_crit("CPU%u: failed to come online\n", cpu);
124			ret = -EIO;
125		}
126	} else {
127		pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
128	}
129
130
131	memset(&secondary_data, 0, sizeof(secondary_data));
132	return ret;
133}
134
135/* platform specific SMP operations */
136void __init smp_init_cpus(void)
137{
138	if (smp_ops.smp_init_cpus)
139		smp_ops.smp_init_cpus();
140}
141
142int boot_secondary(unsigned int cpu, struct task_struct *idle)
143{
144	if (smp_ops.smp_boot_secondary)
145		return smp_ops.smp_boot_secondary(cpu, idle);
146	return -ENOSYS;
147}
148
149int platform_can_cpu_hotplug(void)
150{
151#ifdef CONFIG_HOTPLUG_CPU
152	if (smp_ops.cpu_kill)
153		return 1;
154#endif
155
156	return 0;
157}
158
159#ifdef CONFIG_HOTPLUG_CPU
160static int platform_cpu_kill(unsigned int cpu)
161{
162	if (smp_ops.cpu_kill)
163		return smp_ops.cpu_kill(cpu);
164	return 1;
165}
166
167static int platform_cpu_disable(unsigned int cpu)
168{
169	if (smp_ops.cpu_disable)
170		return smp_ops.cpu_disable(cpu);
171
 
 
 
 
 
 
 
 
 
 
 
 
172	/*
173	 * By default, allow disabling all CPUs except the first one,
174	 * since this is special on a lot of platforms, e.g. because
175	 * of clock tick interrupts.
176	 */
177	return cpu == 0 ? -EPERM : 0;
178}
 
179/*
180 * __cpu_disable runs on the processor to be shutdown.
181 */
182int __cpu_disable(void)
183{
184	unsigned int cpu = smp_processor_id();
185	int ret;
186
187	ret = platform_cpu_disable(cpu);
188	if (ret)
189		return ret;
190
191	/*
192	 * Take this CPU offline.  Once we clear this, we can't return,
193	 * and we must not schedule until we're ready to give up the cpu.
194	 */
195	set_cpu_online(cpu, false);
196
197	/*
198	 * OK - migrate IRQs away from this CPU
199	 */
200	migrate_irqs();
201
202	/*
203	 * Flush user cache and TLB mappings, and then remove this CPU
204	 * from the vm mask set of all processes.
205	 *
206	 * Caches are flushed to the Level of Unification Inner Shareable
207	 * to write-back dirty lines to unified caches shared by all CPUs.
208	 */
209	flush_cache_louis();
210	local_flush_tlb_all();
211
212	clear_tasks_mm_cpumask(cpu);
213
214	return 0;
215}
216
217static DECLARE_COMPLETION(cpu_died);
218
219/*
220 * called on the thread which is asking for a CPU to be shutdown -
221 * waits until shutdown has completed, or it is timed out.
222 */
223void __cpu_die(unsigned int cpu)
224{
225	if (!wait_for_completion_timeout(&cpu_died, msecs_to_jiffies(5000))) {
226		pr_err("CPU%u: cpu didn't die\n", cpu);
227		return;
228	}
229	printk(KERN_NOTICE "CPU%u: shutdown\n", cpu);
230
231	/*
232	 * platform_cpu_kill() is generally expected to do the powering off
233	 * and/or cutting of clocks to the dying CPU.  Optionally, this may
234	 * be done by the CPU which is dying in preference to supporting
235	 * this call, but that means there is _no_ synchronisation between
236	 * the requesting CPU and the dying CPU actually losing power.
237	 */
238	if (!platform_cpu_kill(cpu))
239		printk("CPU%u: unable to kill\n", cpu);
240}
241
242/*
243 * Called from the idle thread for the CPU which has been shutdown.
244 *
245 * Note that we disable IRQs here, but do not re-enable them
246 * before returning to the caller. This is also the behaviour
247 * of the other hotplug-cpu capable cores, so presumably coming
248 * out of idle fixes this.
249 */
250void __ref cpu_die(void)
251{
252	unsigned int cpu = smp_processor_id();
253
254	idle_task_exit();
255
256	local_irq_disable();
257
258	/*
259	 * Flush the data out of the L1 cache for this CPU.  This must be
260	 * before the completion to ensure that data is safely written out
261	 * before platform_cpu_kill() gets called - which may disable
262	 * *this* CPU and power down its cache.
263	 */
264	flush_cache_louis();
265
266	/*
267	 * Tell __cpu_die() that this CPU is now safe to dispose of.  Once
268	 * this returns, power and/or clocks can be removed at any point
269	 * from this CPU and its cache by platform_cpu_kill().
270	 */
271	complete(&cpu_died);
272
273	/*
274	 * Ensure that the cache lines associated with that completion are
275	 * written out.  This covers the case where _this_ CPU is doing the
276	 * powering down, to ensure that the completion is visible to the
277	 * CPU waiting for this one.
278	 */
279	flush_cache_louis();
280
281	/*
282	 * The actual CPU shutdown procedure is at least platform (if not
283	 * CPU) specific.  This may remove power, or it may simply spin.
284	 *
285	 * Platforms are generally expected *NOT* to return from this call,
286	 * although there are some which do because they have no way to
287	 * power down the CPU.  These platforms are the _only_ reason we
288	 * have a return path which uses the fragment of assembly below.
289	 *
290	 * The return path should not be used for platforms which can
291	 * power off the CPU.
292	 */
293	if (smp_ops.cpu_die)
294		smp_ops.cpu_die(cpu);
295
296	pr_warn("CPU%u: smp_ops.cpu_die() returned, trying to resuscitate\n",
297		cpu);
298
299	/*
300	 * Do not return to the idle loop - jump back to the secondary
301	 * cpu initialisation.  There's some initialisation which needs
302	 * to be repeated to undo the effects of taking the CPU offline.
303	 */
304	__asm__("mov	sp, %0\n"
305	"	mov	fp, #0\n"
306	"	b	secondary_start_kernel"
307		:
308		: "r" (task_stack_page(current) + THREAD_SIZE - 8));
309}
310#endif /* CONFIG_HOTPLUG_CPU */
311
312/*
313 * Called by both boot and secondaries to move global data into
314 * per-processor storage.
315 */
316static void smp_store_cpu_info(unsigned int cpuid)
317{
318	struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid);
319
320	cpu_info->loops_per_jiffy = loops_per_jiffy;
321	cpu_info->cpuid = read_cpuid_id();
322
323	store_cpu_topology(cpuid);
324}
325
326/*
327 * This is the secondary CPU boot entry.  We're using this CPUs
328 * idle thread stack, but a set of temporary page tables.
329 */
330asmlinkage void secondary_start_kernel(void)
331{
332	struct mm_struct *mm = &init_mm;
333	unsigned int cpu;
334
335	/*
336	 * The identity mapping is uncached (strongly ordered), so
337	 * switch away from it before attempting any exclusive accesses.
338	 */
339	cpu_switch_mm(mm->pgd, mm);
340	local_flush_bp_all();
341	enter_lazy_tlb(mm, current);
342	local_flush_tlb_all();
343
344	/*
345	 * All kernel threads share the same mm context; grab a
346	 * reference and switch to it.
347	 */
348	cpu = smp_processor_id();
349	atomic_inc(&mm->mm_count);
350	current->active_mm = mm;
351	cpumask_set_cpu(cpu, mm_cpumask(mm));
352
353	cpu_init();
354
355	printk("CPU%u: Booted secondary processor\n", cpu);
 
 
 
356
357	preempt_disable();
358	trace_hardirqs_off();
359
360	/*
361	 * Give the platform a chance to do its own initialisation.
362	 */
363	if (smp_ops.smp_secondary_init)
364		smp_ops.smp_secondary_init(cpu);
365
366	notify_cpu_starting(cpu);
367
368	calibrate_delay();
369
370	smp_store_cpu_info(cpu);
371
372	/*
373	 * OK, now it's safe to let the boot CPU continue.  Wait for
374	 * the CPU migration code to notice that the CPU is online
375	 * before we continue - which happens after __cpu_up returns.
376	 */
377	set_cpu_online(cpu, true);
378	complete(&cpu_running);
379
380	local_irq_enable();
381	local_fiq_enable();
 
382
383	/*
384	 * OK, it's off to the idle thread for us
385	 */
386	cpu_startup_entry(CPUHP_ONLINE);
387}
388
389void __init smp_cpus_done(unsigned int max_cpus)
390{
391	printk(KERN_INFO "SMP: Total of %d processors activated.\n",
392	       num_online_cpus());
 
 
 
 
 
 
 
 
 
393
394	hyp_mode_check();
395}
396
397void __init smp_prepare_boot_cpu(void)
398{
399	set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
400}
401
402void __init smp_prepare_cpus(unsigned int max_cpus)
403{
404	unsigned int ncores = num_possible_cpus();
405
406	init_cpu_topology();
407
408	smp_store_cpu_info(smp_processor_id());
409
410	/*
411	 * are we trying to boot more cores than exist?
412	 */
413	if (max_cpus > ncores)
414		max_cpus = ncores;
415	if (ncores > 1 && max_cpus) {
416		/*
417		 * Initialise the present map, which describes the set of CPUs
418		 * actually populated at the present time. A platform should
419		 * re-initialize the map in the platforms smp_prepare_cpus()
420		 * if present != possible (e.g. physical hotplug).
421		 */
422		init_cpu_present(cpu_possible_mask);
423
424		/*
425		 * Initialise the SCU if there are more than one CPU
426		 * and let them know where to start.
427		 */
428		if (smp_ops.smp_prepare_cpus)
429			smp_ops.smp_prepare_cpus(max_cpus);
430	}
431}
432
433static void (*smp_cross_call)(const struct cpumask *, unsigned int);
434
435void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int))
436{
437	if (!smp_cross_call)
438		smp_cross_call = fn;
439}
440
441void arch_send_call_function_ipi_mask(const struct cpumask *mask)
442{
443	smp_cross_call(mask, IPI_CALL_FUNC);
444}
445
446void arch_send_wakeup_ipi_mask(const struct cpumask *mask)
447{
448	smp_cross_call(mask, IPI_WAKEUP);
449}
450
451void arch_send_call_function_single_ipi(int cpu)
452{
453	smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC_SINGLE);
454}
455
456#ifdef CONFIG_IRQ_WORK
457void arch_irq_work_raise(void)
458{
459	if (is_smp())
460		smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK);
461}
462#endif
463
464static const char *ipi_types[NR_IPI] = {
465#define S(x,s)	[x] = s
466	S(IPI_WAKEUP, "CPU wakeup interrupts"),
467	S(IPI_TIMER, "Timer broadcast interrupts"),
468	S(IPI_RESCHEDULE, "Rescheduling interrupts"),
469	S(IPI_CALL_FUNC, "Function call interrupts"),
470	S(IPI_CALL_FUNC_SINGLE, "Single function call interrupts"),
471	S(IPI_CPU_STOP, "CPU stop interrupts"),
472	S(IPI_IRQ_WORK, "IRQ work interrupts"),
473	S(IPI_COMPLETION, "completion interrupts"),
474};
475
 
 
 
 
 
 
476void show_ipi_list(struct seq_file *p, int prec)
477{
478	unsigned int cpu, i;
479
480	for (i = 0; i < NR_IPI; i++) {
481		seq_printf(p, "%*s%u: ", prec - 1, "IPI", i);
482
483		for_each_online_cpu(cpu)
484			seq_printf(p, "%10u ",
485				   __get_irq_stat(cpu, ipi_irqs[i]));
486
487		seq_printf(p, " %s\n", ipi_types[i]);
488	}
489}
490
491u64 smp_irq_stat_cpu(unsigned int cpu)
492{
493	u64 sum = 0;
494	int i;
495
496	for (i = 0; i < NR_IPI; i++)
497		sum += __get_irq_stat(cpu, ipi_irqs[i]);
498
499	return sum;
500}
501
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
502#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
503void tick_broadcast(const struct cpumask *mask)
504{
505	smp_cross_call(mask, IPI_TIMER);
506}
507#endif
508
509static DEFINE_RAW_SPINLOCK(stop_lock);
510
511/*
512 * ipi_cpu_stop - handle IPI from smp_send_stop()
513 */
514static void ipi_cpu_stop(unsigned int cpu)
515{
516	if (system_state == SYSTEM_BOOTING ||
517	    system_state == SYSTEM_RUNNING) {
518		raw_spin_lock(&stop_lock);
519		printk(KERN_CRIT "CPU%u: stopping\n", cpu);
520		dump_stack();
521		raw_spin_unlock(&stop_lock);
522	}
523
524	set_cpu_online(cpu, false);
525
526	local_fiq_disable();
527	local_irq_disable();
528
529	while (1)
530		cpu_relax();
531}
532
533static DEFINE_PER_CPU(struct completion *, cpu_completion);
534
535int register_ipi_completion(struct completion *completion, int cpu)
536{
537	per_cpu(cpu_completion, cpu) = completion;
538	return IPI_COMPLETION;
539}
540
541static void ipi_complete(unsigned int cpu)
542{
543	complete(per_cpu(cpu_completion, cpu));
544}
545
546/*
547 * Main handler for inter-processor interrupts
548 */
549asmlinkage void __exception_irq_entry do_IPI(int ipinr, struct pt_regs *regs)
550{
551	handle_IPI(ipinr, regs);
552}
553
554void handle_IPI(int ipinr, struct pt_regs *regs)
555{
556	unsigned int cpu = smp_processor_id();
557	struct pt_regs *old_regs = set_irq_regs(regs);
558
559	if (ipinr < NR_IPI)
 
560		__inc_irq_stat(cpu, ipi_irqs[ipinr]);
 
561
562	switch (ipinr) {
563	case IPI_WAKEUP:
564		break;
565
566#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
567	case IPI_TIMER:
568		irq_enter();
569		tick_receive_broadcast();
570		irq_exit();
571		break;
572#endif
573
574	case IPI_RESCHEDULE:
575		scheduler_ipi();
576		break;
577
578	case IPI_CALL_FUNC:
579		irq_enter();
580		generic_smp_call_function_interrupt();
581		irq_exit();
582		break;
583
584	case IPI_CALL_FUNC_SINGLE:
585		irq_enter();
586		generic_smp_call_function_single_interrupt();
587		irq_exit();
588		break;
589
590	case IPI_CPU_STOP:
591		irq_enter();
592		ipi_cpu_stop(cpu);
593		irq_exit();
594		break;
595
596#ifdef CONFIG_IRQ_WORK
597	case IPI_IRQ_WORK:
598		irq_enter();
599		irq_work_run();
600		irq_exit();
601		break;
602#endif
603
604	case IPI_COMPLETION:
605		irq_enter();
606		ipi_complete(cpu);
607		irq_exit();
608		break;
609
 
 
 
 
 
 
 
 
610	default:
611		printk(KERN_CRIT "CPU%u: Unknown IPI message 0x%x\n",
612		       cpu, ipinr);
613		break;
614	}
 
 
 
615	set_irq_regs(old_regs);
616}
617
618void smp_send_reschedule(int cpu)
619{
620	smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
621}
622
623void smp_send_stop(void)
624{
625	unsigned long timeout;
626	struct cpumask mask;
627
628	cpumask_copy(&mask, cpu_online_mask);
629	cpumask_clear_cpu(smp_processor_id(), &mask);
630	if (!cpumask_empty(&mask))
631		smp_cross_call(&mask, IPI_CPU_STOP);
632
633	/* Wait up to one second for other CPUs to stop */
634	timeout = USEC_PER_SEC;
635	while (num_online_cpus() > 1 && timeout--)
636		udelay(1);
637
638	if (num_online_cpus() > 1)
639		pr_warning("SMP: failed to stop secondary CPUs\n");
640}
641
642/*
643 * not supported here
644 */
645int setup_profiling_timer(unsigned int multiplier)
646{
647	return -EINVAL;
648}
649
650#ifdef CONFIG_CPU_FREQ
651
652static DEFINE_PER_CPU(unsigned long, l_p_j_ref);
653static DEFINE_PER_CPU(unsigned long, l_p_j_ref_freq);
654static unsigned long global_l_p_j_ref;
655static unsigned long global_l_p_j_ref_freq;
656
657static int cpufreq_callback(struct notifier_block *nb,
658					unsigned long val, void *data)
659{
660	struct cpufreq_freqs *freq = data;
661	int cpu = freq->cpu;
662
663	if (freq->flags & CPUFREQ_CONST_LOOPS)
664		return NOTIFY_OK;
665
666	if (!per_cpu(l_p_j_ref, cpu)) {
667		per_cpu(l_p_j_ref, cpu) =
668			per_cpu(cpu_data, cpu).loops_per_jiffy;
669		per_cpu(l_p_j_ref_freq, cpu) = freq->old;
670		if (!global_l_p_j_ref) {
671			global_l_p_j_ref = loops_per_jiffy;
672			global_l_p_j_ref_freq = freq->old;
673		}
674	}
675
676	if ((val == CPUFREQ_PRECHANGE  && freq->old < freq->new) ||
677	    (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
678		loops_per_jiffy = cpufreq_scale(global_l_p_j_ref,
679						global_l_p_j_ref_freq,
680						freq->new);
681		per_cpu(cpu_data, cpu).loops_per_jiffy =
682			cpufreq_scale(per_cpu(l_p_j_ref, cpu),
683					per_cpu(l_p_j_ref_freq, cpu),
684					freq->new);
685	}
686	return NOTIFY_OK;
687}
688
689static struct notifier_block cpufreq_notifier = {
690	.notifier_call  = cpufreq_callback,
691};
692
693static int __init register_cpufreq_notifier(void)
694{
695	return cpufreq_register_notifier(&cpufreq_notifier,
696						CPUFREQ_TRANSITION_NOTIFIER);
697}
698core_initcall(register_cpufreq_notifier);
699
700#endif
v4.17
  1/*
  2 *  linux/arch/arm/kernel/smp.c
  3 *
  4 *  Copyright (C) 2002 ARM Limited, All Rights Reserved.
  5 *
  6 * This program is free software; you can redistribute it and/or modify
  7 * it under the terms of the GNU General Public License version 2 as
  8 * published by the Free Software Foundation.
  9 */
 10#include <linux/module.h>
 11#include <linux/delay.h>
 12#include <linux/init.h>
 13#include <linux/spinlock.h>
 14#include <linux/sched/mm.h>
 15#include <linux/sched/hotplug.h>
 16#include <linux/sched/task_stack.h>
 17#include <linux/interrupt.h>
 18#include <linux/cache.h>
 19#include <linux/profile.h>
 20#include <linux/errno.h>
 21#include <linux/mm.h>
 22#include <linux/err.h>
 23#include <linux/cpu.h>
 24#include <linux/seq_file.h>
 25#include <linux/irq.h>
 26#include <linux/nmi.h>
 27#include <linux/percpu.h>
 28#include <linux/clockchips.h>
 29#include <linux/completion.h>
 30#include <linux/cpufreq.h>
 31#include <linux/irq_work.h>
 32
 33#include <linux/atomic.h>
 34#include <asm/smp.h>
 35#include <asm/cacheflush.h>
 36#include <asm/cpu.h>
 37#include <asm/cputype.h>
 38#include <asm/exception.h>
 39#include <asm/idmap.h>
 40#include <asm/topology.h>
 41#include <asm/mmu_context.h>
 42#include <asm/pgtable.h>
 43#include <asm/pgalloc.h>
 44#include <asm/processor.h>
 45#include <asm/sections.h>
 46#include <asm/tlbflush.h>
 47#include <asm/ptrace.h>
 48#include <asm/smp_plat.h>
 49#include <asm/virt.h>
 50#include <asm/mach/arch.h>
 51#include <asm/mpu.h>
 52
 53#define CREATE_TRACE_POINTS
 54#include <trace/events/ipi.h>
 55
 56/*
 57 * as from 2.5, kernels no longer have an init_tasks structure
 58 * so we need some other way of telling a new secondary core
 59 * where to place its SVC stack
 60 */
 61struct secondary_data secondary_data;
 62
 63/*
 64 * control for which core is the next to come out of the secondary
 65 * boot "holding pen"
 66 */
 67volatile int pen_release = -1;
 68
 69enum ipi_msg_type {
 70	IPI_WAKEUP,
 71	IPI_TIMER,
 72	IPI_RESCHEDULE,
 73	IPI_CALL_FUNC,
 
 74	IPI_CPU_STOP,
 75	IPI_IRQ_WORK,
 76	IPI_COMPLETION,
 77	IPI_CPU_BACKTRACE,
 78	/*
 79	 * SGI8-15 can be reserved by secure firmware, and thus may
 80	 * not be usable by the kernel. Please keep the above limited
 81	 * to at most 8 entries.
 82	 */
 83};
 84
 85static DECLARE_COMPLETION(cpu_running);
 86
 87static struct smp_operations smp_ops __ro_after_init;
 88
 89void __init smp_set_ops(const struct smp_operations *ops)
 90{
 91	if (ops)
 92		smp_ops = *ops;
 93};
 94
 95static unsigned long get_arch_pgd(pgd_t *pgd)
 96{
 97#ifdef CONFIG_ARM_LPAE
 98	return __phys_to_pfn(virt_to_phys(pgd));
 99#else
100	return virt_to_phys(pgd);
101#endif
102}
103
104int __cpu_up(unsigned int cpu, struct task_struct *idle)
105{
106	int ret;
107
108	if (!smp_ops.smp_boot_secondary)
109		return -ENOSYS;
110
111	/*
112	 * We need to tell the secondary core where to find
113	 * its stack and the page tables.
114	 */
115	secondary_data.stack = task_stack_page(idle) + THREAD_START_SP;
116#ifdef CONFIG_ARM_MPU
117	secondary_data.mpu_rgn_info = &mpu_rgn_info;
118#endif
119
120#ifdef CONFIG_MMU
121	secondary_data.pgdir = virt_to_phys(idmap_pgd);
122	secondary_data.swapper_pg_dir = get_arch_pgd(swapper_pg_dir);
123#endif
124	sync_cache_w(&secondary_data);
125
126	/*
127	 * Now bring the CPU into our world.
128	 */
129	ret = smp_ops.smp_boot_secondary(cpu, idle);
130	if (ret == 0) {
131		/*
132		 * CPU was successfully started, wait for it
133		 * to come online or time out.
134		 */
135		wait_for_completion_timeout(&cpu_running,
136						 msecs_to_jiffies(1000));
137
138		if (!cpu_online(cpu)) {
139			pr_crit("CPU%u: failed to come online\n", cpu);
140			ret = -EIO;
141		}
142	} else {
143		pr_err("CPU%u: failed to boot: %d\n", cpu, ret);
144	}
145
146
147	memset(&secondary_data, 0, sizeof(secondary_data));
148	return ret;
149}
150
151/* platform specific SMP operations */
152void __init smp_init_cpus(void)
153{
154	if (smp_ops.smp_init_cpus)
155		smp_ops.smp_init_cpus();
156}
157
158int platform_can_secondary_boot(void)
159{
160	return !!smp_ops.smp_boot_secondary;
 
 
161}
162
163int platform_can_cpu_hotplug(void)
164{
165#ifdef CONFIG_HOTPLUG_CPU
166	if (smp_ops.cpu_kill)
167		return 1;
168#endif
169
170	return 0;
171}
172
173#ifdef CONFIG_HOTPLUG_CPU
174static int platform_cpu_kill(unsigned int cpu)
175{
176	if (smp_ops.cpu_kill)
177		return smp_ops.cpu_kill(cpu);
178	return 1;
179}
180
181static int platform_cpu_disable(unsigned int cpu)
182{
183	if (smp_ops.cpu_disable)
184		return smp_ops.cpu_disable(cpu);
185
186	return 0;
187}
188
189int platform_can_hotplug_cpu(unsigned int cpu)
190{
191	/* cpu_die must be specified to support hotplug */
192	if (!smp_ops.cpu_die)
193		return 0;
194
195	if (smp_ops.cpu_can_disable)
196		return smp_ops.cpu_can_disable(cpu);
197
198	/*
199	 * By default, allow disabling all CPUs except the first one,
200	 * since this is special on a lot of platforms, e.g. because
201	 * of clock tick interrupts.
202	 */
203	return cpu != 0;
204}
205
206/*
207 * __cpu_disable runs on the processor to be shutdown.
208 */
209int __cpu_disable(void)
210{
211	unsigned int cpu = smp_processor_id();
212	int ret;
213
214	ret = platform_cpu_disable(cpu);
215	if (ret)
216		return ret;
217
218	/*
219	 * Take this CPU offline.  Once we clear this, we can't return,
220	 * and we must not schedule until we're ready to give up the cpu.
221	 */
222	set_cpu_online(cpu, false);
223
224	/*
225	 * OK - migrate IRQs away from this CPU
226	 */
227	migrate_irqs();
228
229	/*
230	 * Flush user cache and TLB mappings, and then remove this CPU
231	 * from the vm mask set of all processes.
232	 *
233	 * Caches are flushed to the Level of Unification Inner Shareable
234	 * to write-back dirty lines to unified caches shared by all CPUs.
235	 */
236	flush_cache_louis();
237	local_flush_tlb_all();
238
239	clear_tasks_mm_cpumask(cpu);
240
241	return 0;
242}
243
244static DECLARE_COMPLETION(cpu_died);
245
246/*
247 * called on the thread which is asking for a CPU to be shutdown -
248 * waits until shutdown has completed, or it is timed out.
249 */
250void __cpu_die(unsigned int cpu)
251{
252	if (!wait_for_completion_timeout(&cpu_died, msecs_to_jiffies(5000))) {
253		pr_err("CPU%u: cpu didn't die\n", cpu);
254		return;
255	}
256	pr_debug("CPU%u: shutdown\n", cpu);
257
258	/*
259	 * platform_cpu_kill() is generally expected to do the powering off
260	 * and/or cutting of clocks to the dying CPU.  Optionally, this may
261	 * be done by the CPU which is dying in preference to supporting
262	 * this call, but that means there is _no_ synchronisation between
263	 * the requesting CPU and the dying CPU actually losing power.
264	 */
265	if (!platform_cpu_kill(cpu))
266		pr_err("CPU%u: unable to kill\n", cpu);
267}
268
269/*
270 * Called from the idle thread for the CPU which has been shutdown.
271 *
272 * Note that we disable IRQs here, but do not re-enable them
273 * before returning to the caller. This is also the behaviour
274 * of the other hotplug-cpu capable cores, so presumably coming
275 * out of idle fixes this.
276 */
277void arch_cpu_idle_dead(void)
278{
279	unsigned int cpu = smp_processor_id();
280
281	idle_task_exit();
282
283	local_irq_disable();
284
285	/*
286	 * Flush the data out of the L1 cache for this CPU.  This must be
287	 * before the completion to ensure that data is safely written out
288	 * before platform_cpu_kill() gets called - which may disable
289	 * *this* CPU and power down its cache.
290	 */
291	flush_cache_louis();
292
293	/*
294	 * Tell __cpu_die() that this CPU is now safe to dispose of.  Once
295	 * this returns, power and/or clocks can be removed at any point
296	 * from this CPU and its cache by platform_cpu_kill().
297	 */
298	complete(&cpu_died);
299
300	/*
301	 * Ensure that the cache lines associated with that completion are
302	 * written out.  This covers the case where _this_ CPU is doing the
303	 * powering down, to ensure that the completion is visible to the
304	 * CPU waiting for this one.
305	 */
306	flush_cache_louis();
307
308	/*
309	 * The actual CPU shutdown procedure is at least platform (if not
310	 * CPU) specific.  This may remove power, or it may simply spin.
311	 *
312	 * Platforms are generally expected *NOT* to return from this call,
313	 * although there are some which do because they have no way to
314	 * power down the CPU.  These platforms are the _only_ reason we
315	 * have a return path which uses the fragment of assembly below.
316	 *
317	 * The return path should not be used for platforms which can
318	 * power off the CPU.
319	 */
320	if (smp_ops.cpu_die)
321		smp_ops.cpu_die(cpu);
322
323	pr_warn("CPU%u: smp_ops.cpu_die() returned, trying to resuscitate\n",
324		cpu);
325
326	/*
327	 * Do not return to the idle loop - jump back to the secondary
328	 * cpu initialisation.  There's some initialisation which needs
329	 * to be repeated to undo the effects of taking the CPU offline.
330	 */
331	__asm__("mov	sp, %0\n"
332	"	mov	fp, #0\n"
333	"	b	secondary_start_kernel"
334		:
335		: "r" (task_stack_page(current) + THREAD_SIZE - 8));
336}
337#endif /* CONFIG_HOTPLUG_CPU */
338
339/*
340 * Called by both boot and secondaries to move global data into
341 * per-processor storage.
342 */
343static void smp_store_cpu_info(unsigned int cpuid)
344{
345	struct cpuinfo_arm *cpu_info = &per_cpu(cpu_data, cpuid);
346
347	cpu_info->loops_per_jiffy = loops_per_jiffy;
348	cpu_info->cpuid = read_cpuid_id();
349
350	store_cpu_topology(cpuid);
351}
352
353/*
354 * This is the secondary CPU boot entry.  We're using this CPUs
355 * idle thread stack, but a set of temporary page tables.
356 */
357asmlinkage void secondary_start_kernel(void)
358{
359	struct mm_struct *mm = &init_mm;
360	unsigned int cpu;
361
362	/*
363	 * The identity mapping is uncached (strongly ordered), so
364	 * switch away from it before attempting any exclusive accesses.
365	 */
366	cpu_switch_mm(mm->pgd, mm);
367	local_flush_bp_all();
368	enter_lazy_tlb(mm, current);
369	local_flush_tlb_all();
370
371	/*
372	 * All kernel threads share the same mm context; grab a
373	 * reference and switch to it.
374	 */
375	cpu = smp_processor_id();
376	mmgrab(mm);
377	current->active_mm = mm;
378	cpumask_set_cpu(cpu, mm_cpumask(mm));
379
380	cpu_init();
381
382#ifndef CONFIG_MMU
383	setup_vectors_base();
384#endif
385	pr_debug("CPU%u: Booted secondary processor\n", cpu);
386
387	preempt_disable();
388	trace_hardirqs_off();
389
390	/*
391	 * Give the platform a chance to do its own initialisation.
392	 */
393	if (smp_ops.smp_secondary_init)
394		smp_ops.smp_secondary_init(cpu);
395
396	notify_cpu_starting(cpu);
397
398	calibrate_delay();
399
400	smp_store_cpu_info(cpu);
401
402	/*
403	 * OK, now it's safe to let the boot CPU continue.  Wait for
404	 * the CPU migration code to notice that the CPU is online
405	 * before we continue - which happens after __cpu_up returns.
406	 */
407	set_cpu_online(cpu, true);
408	complete(&cpu_running);
409
410	local_irq_enable();
411	local_fiq_enable();
412	local_abt_enable();
413
414	/*
415	 * OK, it's off to the idle thread for us
416	 */
417	cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
418}
419
420void __init smp_cpus_done(unsigned int max_cpus)
421{
422	int cpu;
423	unsigned long bogosum = 0;
424
425	for_each_online_cpu(cpu)
426		bogosum += per_cpu(cpu_data, cpu).loops_per_jiffy;
427
428	printk(KERN_INFO "SMP: Total of %d processors activated "
429	       "(%lu.%02lu BogoMIPS).\n",
430	       num_online_cpus(),
431	       bogosum / (500000/HZ),
432	       (bogosum / (5000/HZ)) % 100);
433
434	hyp_mode_check();
435}
436
437void __init smp_prepare_boot_cpu(void)
438{
439	set_my_cpu_offset(per_cpu_offset(smp_processor_id()));
440}
441
442void __init smp_prepare_cpus(unsigned int max_cpus)
443{
444	unsigned int ncores = num_possible_cpus();
445
446	init_cpu_topology();
447
448	smp_store_cpu_info(smp_processor_id());
449
450	/*
451	 * are we trying to boot more cores than exist?
452	 */
453	if (max_cpus > ncores)
454		max_cpus = ncores;
455	if (ncores > 1 && max_cpus) {
456		/*
457		 * Initialise the present map, which describes the set of CPUs
458		 * actually populated at the present time. A platform should
459		 * re-initialize the map in the platforms smp_prepare_cpus()
460		 * if present != possible (e.g. physical hotplug).
461		 */
462		init_cpu_present(cpu_possible_mask);
463
464		/*
465		 * Initialise the SCU if there are more than one CPU
466		 * and let them know where to start.
467		 */
468		if (smp_ops.smp_prepare_cpus)
469			smp_ops.smp_prepare_cpus(max_cpus);
470	}
471}
472
473static void (*__smp_cross_call)(const struct cpumask *, unsigned int);
474
475void __init set_smp_cross_call(void (*fn)(const struct cpumask *, unsigned int))
476{
477	if (!__smp_cross_call)
478		__smp_cross_call = fn;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
479}
480
481static const char *ipi_types[NR_IPI] __tracepoint_string = {
 
 
 
 
 
 
 
 
482#define S(x,s)	[x] = s
483	S(IPI_WAKEUP, "CPU wakeup interrupts"),
484	S(IPI_TIMER, "Timer broadcast interrupts"),
485	S(IPI_RESCHEDULE, "Rescheduling interrupts"),
486	S(IPI_CALL_FUNC, "Function call interrupts"),
 
487	S(IPI_CPU_STOP, "CPU stop interrupts"),
488	S(IPI_IRQ_WORK, "IRQ work interrupts"),
489	S(IPI_COMPLETION, "completion interrupts"),
490};
491
492static void smp_cross_call(const struct cpumask *target, unsigned int ipinr)
493{
494	trace_ipi_raise_rcuidle(target, ipi_types[ipinr]);
495	__smp_cross_call(target, ipinr);
496}
497
498void show_ipi_list(struct seq_file *p, int prec)
499{
500	unsigned int cpu, i;
501
502	for (i = 0; i < NR_IPI; i++) {
503		seq_printf(p, "%*s%u: ", prec - 1, "IPI", i);
504
505		for_each_online_cpu(cpu)
506			seq_printf(p, "%10u ",
507				   __get_irq_stat(cpu, ipi_irqs[i]));
508
509		seq_printf(p, " %s\n", ipi_types[i]);
510	}
511}
512
513u64 smp_irq_stat_cpu(unsigned int cpu)
514{
515	u64 sum = 0;
516	int i;
517
518	for (i = 0; i < NR_IPI; i++)
519		sum += __get_irq_stat(cpu, ipi_irqs[i]);
520
521	return sum;
522}
523
524void arch_send_call_function_ipi_mask(const struct cpumask *mask)
525{
526	smp_cross_call(mask, IPI_CALL_FUNC);
527}
528
529void arch_send_wakeup_ipi_mask(const struct cpumask *mask)
530{
531	smp_cross_call(mask, IPI_WAKEUP);
532}
533
534void arch_send_call_function_single_ipi(int cpu)
535{
536	smp_cross_call(cpumask_of(cpu), IPI_CALL_FUNC);
537}
538
539#ifdef CONFIG_IRQ_WORK
540void arch_irq_work_raise(void)
541{
542	if (arch_irq_work_has_interrupt())
543		smp_cross_call(cpumask_of(smp_processor_id()), IPI_IRQ_WORK);
544}
545#endif
546
547#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
548void tick_broadcast(const struct cpumask *mask)
549{
550	smp_cross_call(mask, IPI_TIMER);
551}
552#endif
553
554static DEFINE_RAW_SPINLOCK(stop_lock);
555
556/*
557 * ipi_cpu_stop - handle IPI from smp_send_stop()
558 */
559static void ipi_cpu_stop(unsigned int cpu)
560{
561	if (system_state <= SYSTEM_RUNNING) {
 
562		raw_spin_lock(&stop_lock);
563		pr_crit("CPU%u: stopping\n", cpu);
564		dump_stack();
565		raw_spin_unlock(&stop_lock);
566	}
567
568	set_cpu_online(cpu, false);
569
570	local_fiq_disable();
571	local_irq_disable();
572
573	while (1)
574		cpu_relax();
575}
576
577static DEFINE_PER_CPU(struct completion *, cpu_completion);
578
579int register_ipi_completion(struct completion *completion, int cpu)
580{
581	per_cpu(cpu_completion, cpu) = completion;
582	return IPI_COMPLETION;
583}
584
585static void ipi_complete(unsigned int cpu)
586{
587	complete(per_cpu(cpu_completion, cpu));
588}
589
590/*
591 * Main handler for inter-processor interrupts
592 */
593asmlinkage void __exception_irq_entry do_IPI(int ipinr, struct pt_regs *regs)
594{
595	handle_IPI(ipinr, regs);
596}
597
598void handle_IPI(int ipinr, struct pt_regs *regs)
599{
600	unsigned int cpu = smp_processor_id();
601	struct pt_regs *old_regs = set_irq_regs(regs);
602
603	if ((unsigned)ipinr < NR_IPI) {
604		trace_ipi_entry_rcuidle(ipi_types[ipinr]);
605		__inc_irq_stat(cpu, ipi_irqs[ipinr]);
606	}
607
608	switch (ipinr) {
609	case IPI_WAKEUP:
610		break;
611
612#ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
613	case IPI_TIMER:
614		irq_enter();
615		tick_receive_broadcast();
616		irq_exit();
617		break;
618#endif
619
620	case IPI_RESCHEDULE:
621		scheduler_ipi();
622		break;
623
624	case IPI_CALL_FUNC:
625		irq_enter();
626		generic_smp_call_function_interrupt();
627		irq_exit();
628		break;
629
 
 
 
 
 
 
630	case IPI_CPU_STOP:
631		irq_enter();
632		ipi_cpu_stop(cpu);
633		irq_exit();
634		break;
635
636#ifdef CONFIG_IRQ_WORK
637	case IPI_IRQ_WORK:
638		irq_enter();
639		irq_work_run();
640		irq_exit();
641		break;
642#endif
643
644	case IPI_COMPLETION:
645		irq_enter();
646		ipi_complete(cpu);
647		irq_exit();
648		break;
649
650	case IPI_CPU_BACKTRACE:
651		printk_nmi_enter();
652		irq_enter();
653		nmi_cpu_backtrace(regs);
654		irq_exit();
655		printk_nmi_exit();
656		break;
657
658	default:
659		pr_crit("CPU%u: Unknown IPI message 0x%x\n",
660		        cpu, ipinr);
661		break;
662	}
663
664	if ((unsigned)ipinr < NR_IPI)
665		trace_ipi_exit_rcuidle(ipi_types[ipinr]);
666	set_irq_regs(old_regs);
667}
668
669void smp_send_reschedule(int cpu)
670{
671	smp_cross_call(cpumask_of(cpu), IPI_RESCHEDULE);
672}
673
674void smp_send_stop(void)
675{
676	unsigned long timeout;
677	struct cpumask mask;
678
679	cpumask_copy(&mask, cpu_online_mask);
680	cpumask_clear_cpu(smp_processor_id(), &mask);
681	if (!cpumask_empty(&mask))
682		smp_cross_call(&mask, IPI_CPU_STOP);
683
684	/* Wait up to one second for other CPUs to stop */
685	timeout = USEC_PER_SEC;
686	while (num_online_cpus() > 1 && timeout--)
687		udelay(1);
688
689	if (num_online_cpus() > 1)
690		pr_warn("SMP: failed to stop secondary CPUs\n");
691}
692
693/*
694 * not supported here
695 */
696int setup_profiling_timer(unsigned int multiplier)
697{
698	return -EINVAL;
699}
700
701#ifdef CONFIG_CPU_FREQ
702
703static DEFINE_PER_CPU(unsigned long, l_p_j_ref);
704static DEFINE_PER_CPU(unsigned long, l_p_j_ref_freq);
705static unsigned long global_l_p_j_ref;
706static unsigned long global_l_p_j_ref_freq;
707
708static int cpufreq_callback(struct notifier_block *nb,
709					unsigned long val, void *data)
710{
711	struct cpufreq_freqs *freq = data;
712	int cpu = freq->cpu;
713
714	if (freq->flags & CPUFREQ_CONST_LOOPS)
715		return NOTIFY_OK;
716
717	if (!per_cpu(l_p_j_ref, cpu)) {
718		per_cpu(l_p_j_ref, cpu) =
719			per_cpu(cpu_data, cpu).loops_per_jiffy;
720		per_cpu(l_p_j_ref_freq, cpu) = freq->old;
721		if (!global_l_p_j_ref) {
722			global_l_p_j_ref = loops_per_jiffy;
723			global_l_p_j_ref_freq = freq->old;
724		}
725	}
726
727	if ((val == CPUFREQ_PRECHANGE  && freq->old < freq->new) ||
728	    (val == CPUFREQ_POSTCHANGE && freq->old > freq->new)) {
729		loops_per_jiffy = cpufreq_scale(global_l_p_j_ref,
730						global_l_p_j_ref_freq,
731						freq->new);
732		per_cpu(cpu_data, cpu).loops_per_jiffy =
733			cpufreq_scale(per_cpu(l_p_j_ref, cpu),
734					per_cpu(l_p_j_ref_freq, cpu),
735					freq->new);
736	}
737	return NOTIFY_OK;
738}
739
740static struct notifier_block cpufreq_notifier = {
741	.notifier_call  = cpufreq_callback,
742};
743
744static int __init register_cpufreq_notifier(void)
745{
746	return cpufreq_register_notifier(&cpufreq_notifier,
747						CPUFREQ_TRANSITION_NOTIFIER);
748}
749core_initcall(register_cpufreq_notifier);
750
751#endif
752
753static void raise_nmi(cpumask_t *mask)
754{
755	smp_cross_call(mask, IPI_CPU_BACKTRACE);
756}
757
758void arch_trigger_cpumask_backtrace(const cpumask_t *mask, bool exclude_self)
759{
760	nmi_trigger_cpumask_backtrace(mask, exclude_self, raise_nmi);
761}