Linux Audio

Check our new training course

Loading...
v3.15
  1/*
  2 * TLB Management (flush/create/diagnostics) for ARC700
  3 *
  4 * Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com)
  5 *
  6 * This program is free software; you can redistribute it and/or modify
  7 * it under the terms of the GNU General Public License version 2 as
  8 * published by the Free Software Foundation.
  9 *
 10 * vineetg: Aug 2011
 11 *  -Reintroduce duplicate PD fixup - some customer chips still have the issue
 12 *
 13 * vineetg: May 2011
 14 *  -No need to flush_cache_page( ) for each call to update_mmu_cache()
 15 *   some of the LMBench tests improved amazingly
 16 *      = page-fault thrice as fast (75 usec to 28 usec)
 17 *      = mmap twice as fast (9.6 msec to 4.6 msec),
 18 *      = fork (5.3 msec to 3.7 msec)
 19 *
 20 * vineetg: April 2011 :
 21 *  -MMU v3: PD{0,1} bits layout changed: They don't overlap anymore,
 22 *      helps avoid a shift when preparing PD0 from PTE
 23 *
 24 * vineetg: April 2011 : Preparing for MMU V3
 25 *  -MMU v2/v3 BCRs decoded differently
 26 *  -Remove TLB_SIZE hardcoding as it's variable now: 256 or 512
 27 *  -tlb_entry_erase( ) can be void
 28 *  -local_flush_tlb_range( ):
 29 *      = need not "ceil" @end
 30 *      = walks MMU only if range spans < 32 entries, as opposed to 256
 31 *
 32 * Vineetg: Sept 10th 2008
 33 *  -Changes related to MMU v2 (Rel 4.8)
 34 *
 35 * Vineetg: Aug 29th 2008
 36 *  -In TLB Flush operations (Metal Fix MMU) there is a explict command to
 37 *    flush Micro-TLBS. If TLB Index Reg is invalid prior to TLBIVUTLB cmd,
 38 *    it fails. Thus need to load it with ANY valid value before invoking
 39 *    TLBIVUTLB cmd
 40 *
 41 * Vineetg: Aug 21th 2008:
 42 *  -Reduced the duration of IRQ lockouts in TLB Flush routines
 43 *  -Multiple copies of TLB erase code seperated into a "single" function
 44 *  -In TLB Flush routines, interrupt disabling moved UP to retrieve ASID
 45 *       in interrupt-safe region.
 46 *
 47 * Vineetg: April 23rd Bug #93131
 48 *    Problem: tlb_flush_kernel_range() doesnt do anything if the range to
 49 *              flush is more than the size of TLB itself.
 50 *
 51 * Rahul Trivedi : Codito Technologies 2004
 52 */
 53
 54#include <linux/module.h>
 55#include <linux/bug.h>
 
 
 56#include <asm/arcregs.h>
 57#include <asm/setup.h>
 58#include <asm/mmu_context.h>
 59#include <asm/mmu.h>
 60
 61/*			Need for ARC MMU v2
 62 *
 63 * ARC700 MMU-v1 had a Joint-TLB for Code and Data and is 2 way set-assoc.
 64 * For a memcpy operation with 3 players (src/dst/code) such that all 3 pages
 65 * map into same set, there would be contention for the 2 ways causing severe
 66 * Thrashing.
 67 *
 68 * Although J-TLB is 2 way set assoc, ARC700 caches J-TLB into uTLBS which has
 69 * much higher associativity. u-D-TLB is 8 ways, u-I-TLB is 4 ways.
 70 * Given this, the thrasing problem should never happen because once the 3
 71 * J-TLB entries are created (even though 3rd will knock out one of the prev
 72 * two), the u-D-TLB and u-I-TLB will have what is required to accomplish memcpy
 73 *
 74 * Yet we still see the Thrashing because a J-TLB Write cause flush of u-TLBs.
 75 * This is a simple design for keeping them in sync. So what do we do?
 76 * The solution which James came up was pretty neat. It utilised the assoc
 77 * of uTLBs by not invalidating always but only when absolutely necessary.
 78 *
 79 * - Existing TLB commands work as before
 80 * - New command (TLBWriteNI) for TLB write without clearing uTLBs
 81 * - New command (TLBIVUTLB) to invalidate uTLBs.
 82 *
 83 * The uTLBs need only be invalidated when pages are being removed from the
 84 * OS page table. If a 'victim' TLB entry is being overwritten in the main TLB
 85 * as a result of a miss, the removed entry is still allowed to exist in the
 86 * uTLBs as it is still valid and present in the OS page table. This allows the
 87 * full associativity of the uTLBs to hide the limited associativity of the main
 88 * TLB.
 89 *
 90 * During a miss handler, the new "TLBWriteNI" command is used to load
 91 * entries without clearing the uTLBs.
 92 *
 93 * When the OS page table is updated, TLB entries that may be associated with a
 94 * removed page are removed (flushed) from the TLB using TLBWrite. In this
 95 * circumstance, the uTLBs must also be cleared. This is done by using the
 96 * existing TLBWrite command. An explicit IVUTLB is also required for those
 97 * corner cases when TLBWrite was not executed at all because the corresp
 98 * J-TLB entry got evicted/replaced.
 99 */
100
101
102/* A copy of the ASID from the PID reg is kept in asid_cache */
103DEFINE_PER_CPU(unsigned int, asid_cache) = MM_CTXT_FIRST_CYCLE;
104
 
 
105/*
106 * Utility Routine to erase a J-TLB entry
107 * Caller needs to setup Index Reg (manually or via getIndex)
108 */
109static inline void __tlb_entry_erase(void)
110{
111	write_aux_reg(ARC_REG_TLBPD1, 0);
 
 
 
 
112	write_aux_reg(ARC_REG_TLBPD0, 0);
113	write_aux_reg(ARC_REG_TLBCOMMAND, TLBWrite);
114}
115
 
 
116static inline unsigned int tlb_entry_lkup(unsigned long vaddr_n_asid)
117{
118	unsigned int idx;
119
120	write_aux_reg(ARC_REG_TLBPD0, vaddr_n_asid);
121
122	write_aux_reg(ARC_REG_TLBCOMMAND, TLBProbe);
123	idx = read_aux_reg(ARC_REG_TLBINDEX);
124
125	return idx;
126}
127
128static void tlb_entry_erase(unsigned int vaddr_n_asid)
129{
130	unsigned int idx;
131
132	/* Locate the TLB entry for this vaddr + ASID */
133	idx = tlb_entry_lkup(vaddr_n_asid);
134
135	/* No error means entry found, zero it out */
136	if (likely(!(idx & TLB_LKUP_ERR))) {
137		__tlb_entry_erase();
138	} else {
139		/* Duplicate entry error */
140		WARN(idx == TLB_DUP_ERR, "Probe returned Dup PD for %x\n",
141					   vaddr_n_asid);
142	}
143}
144
145/****************************************************************************
146 * ARC700 MMU caches recently used J-TLB entries (RAM) as uTLBs (FLOPs)
147 *
148 * New IVUTLB cmd in MMU v2 explictly invalidates the uTLB
149 *
150 * utlb_invalidate ( )
151 *  -For v2 MMU calls Flush uTLB Cmd
152 *  -For v1 MMU does nothing (except for Metal Fix v1 MMU)
153 *      This is because in v1 TLBWrite itself invalidate uTLBs
154 ***************************************************************************/
155
156static void utlb_invalidate(void)
157{
158#if (CONFIG_ARC_MMU_VER >= 2)
159
160#if (CONFIG_ARC_MMU_VER == 2)
161	/* MMU v2 introduced the uTLB Flush command.
162	 * There was however an obscure hardware bug, where uTLB flush would
163	 * fail when a prior probe for J-TLB (both totally unrelated) would
164	 * return lkup err - because the entry didnt exist in MMU.
165	 * The Workround was to set Index reg with some valid value, prior to
166	 * flush. This was fixed in MMU v3 hence not needed any more
167	 */
168	unsigned int idx;
169
170	/* make sure INDEX Reg is valid */
171	idx = read_aux_reg(ARC_REG_TLBINDEX);
172
173	/* If not write some dummy val */
174	if (unlikely(idx & TLB_LKUP_ERR))
175		write_aux_reg(ARC_REG_TLBINDEX, 0xa);
176#endif
177
178	write_aux_reg(ARC_REG_TLBCOMMAND, TLBIVUTLB);
179#endif
180
181}
182
183static void tlb_entry_insert(unsigned int pd0, unsigned int pd1)
184{
185	unsigned int idx;
186
187	/*
188	 * First verify if entry for this vaddr+ASID already exists
189	 * This also sets up PD0 (vaddr, ASID..) for final commit
190	 */
191	idx = tlb_entry_lkup(pd0);
192
193	/*
194	 * If Not already present get a free slot from MMU.
195	 * Otherwise, Probe would have located the entry and set INDEX Reg
196	 * with existing location. This will cause Write CMD to over-write
197	 * existing entry with new PD0 and PD1
198	 */
199	if (likely(idx & TLB_LKUP_ERR))
200		write_aux_reg(ARC_REG_TLBCOMMAND, TLBGetIndex);
201
202	/* setup the other half of TLB entry (pfn, rwx..) */
203	write_aux_reg(ARC_REG_TLBPD1, pd1);
204
205	/*
206	 * Commit the Entry to MMU
207	 * It doesnt sound safe to use the TLBWriteNI cmd here
208	 * which doesn't flush uTLBs. I'd rather be safe than sorry.
209	 */
210	write_aux_reg(ARC_REG_TLBCOMMAND, TLBWrite);
211}
212
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
213/*
214 * Un-conditionally (without lookup) erase the entire MMU contents
215 */
216
217noinline void local_flush_tlb_all(void)
218{
 
219	unsigned long flags;
220	unsigned int entry;
221	struct cpuinfo_arc_mmu *mmu = &cpuinfo_arc700[smp_processor_id()].mmu;
222
223	local_irq_save(flags);
224
225	/* Load PD0 and PD1 with template for a Blank Entry */
226	write_aux_reg(ARC_REG_TLBPD1, 0);
 
 
 
 
227	write_aux_reg(ARC_REG_TLBPD0, 0);
228
229	for (entry = 0; entry < mmu->num_tlb; entry++) {
230		/* write this entry to the TLB */
231		write_aux_reg(ARC_REG_TLBINDEX, entry);
232		write_aux_reg(ARC_REG_TLBCOMMAND, TLBWrite);
233	}
234
 
 
 
 
 
 
 
 
 
 
 
 
235	utlb_invalidate();
236
237	local_irq_restore(flags);
238}
239
240/*
241 * Flush the entrie MM for userland. The fastest way is to move to Next ASID
242 */
243noinline void local_flush_tlb_mm(struct mm_struct *mm)
244{
245	/*
246	 * Small optimisation courtesy IA64
247	 * flush_mm called during fork,exit,munmap etc, multiple times as well.
248	 * Only for fork( ) do we need to move parent to a new MMU ctxt,
249	 * all other cases are NOPs, hence this check.
250	 */
251	if (atomic_read(&mm->mm_users) == 0)
252		return;
253
254	/*
255	 * - Move to a new ASID, but only if the mm is still wired in
256	 *   (Android Binder ended up calling this for vma->mm != tsk->mm,
257	 *    causing h/w - s/w ASID to get out of sync)
258	 * - Also get_new_mmu_context() new implementation allocates a new
259	 *   ASID only if it is not allocated already - so unallocate first
260	 */
261	destroy_context(mm);
262	if (current->mm == mm)
263		get_new_mmu_context(mm);
264}
265
266/*
267 * Flush a Range of TLB entries for userland.
268 * @start is inclusive, while @end is exclusive
269 * Difference between this and Kernel Range Flush is
270 *  -Here the fastest way (if range is too large) is to move to next ASID
271 *      without doing any explicit Shootdown
272 *  -In case of kernel Flush, entry has to be shot down explictly
273 */
274void local_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
275			   unsigned long end)
276{
277	const unsigned int cpu = smp_processor_id();
278	unsigned long flags;
279
280	/* If range @start to @end is more than 32 TLB entries deep,
281	 * its better to move to a new ASID rather than searching for
282	 * individual entries and then shooting them down
283	 *
284	 * The calc above is rough, doesn't account for unaligned parts,
285	 * since this is heuristics based anyways
286	 */
287	if (unlikely((end - start) >= PAGE_SIZE * 32)) {
288		local_flush_tlb_mm(vma->vm_mm);
289		return;
290	}
291
292	/*
293	 * @start moved to page start: this alone suffices for checking
294	 * loop end condition below, w/o need for aligning @end to end
295	 * e.g. 2000 to 4001 will anyhow loop twice
296	 */
297	start &= PAGE_MASK;
298
299	local_irq_save(flags);
300
301	if (asid_mm(vma->vm_mm, cpu) != MM_CTXT_NO_ASID) {
302		while (start < end) {
303			tlb_entry_erase(start | hw_pid(vma->vm_mm, cpu));
304			start += PAGE_SIZE;
305		}
306	}
307
308	utlb_invalidate();
309
310	local_irq_restore(flags);
311}
312
313/* Flush the kernel TLB entries - vmalloc/modules (Global from MMU perspective)
314 *  @start, @end interpreted as kvaddr
315 * Interestingly, shared TLB entries can also be flushed using just
316 * @start,@end alone (interpreted as user vaddr), although technically SASID
317 * is also needed. However our smart TLbProbe lookup takes care of that.
318 */
319void local_flush_tlb_kernel_range(unsigned long start, unsigned long end)
320{
321	unsigned long flags;
322
323	/* exactly same as above, except for TLB entry not taking ASID */
324
325	if (unlikely((end - start) >= PAGE_SIZE * 32)) {
326		local_flush_tlb_all();
327		return;
328	}
329
330	start &= PAGE_MASK;
331
332	local_irq_save(flags);
333	while (start < end) {
334		tlb_entry_erase(start);
335		start += PAGE_SIZE;
336	}
337
338	utlb_invalidate();
339
340	local_irq_restore(flags);
341}
342
343/*
344 * Delete TLB entry in MMU for a given page (??? address)
345 * NOTE One TLB entry contains translation for single PAGE
346 */
347
348void local_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
349{
350	const unsigned int cpu = smp_processor_id();
351	unsigned long flags;
352
353	/* Note that it is critical that interrupts are DISABLED between
354	 * checking the ASID and using it flush the TLB entry
355	 */
356	local_irq_save(flags);
357
358	if (asid_mm(vma->vm_mm, cpu) != MM_CTXT_NO_ASID) {
359		tlb_entry_erase((page & PAGE_MASK) | hw_pid(vma->vm_mm, cpu));
360		utlb_invalidate();
361	}
362
363	local_irq_restore(flags);
364}
365
366#ifdef CONFIG_SMP
367
368struct tlb_args {
369	struct vm_area_struct *ta_vma;
370	unsigned long ta_start;
371	unsigned long ta_end;
372};
373
374static inline void ipi_flush_tlb_page(void *arg)
375{
376	struct tlb_args *ta = arg;
377
378	local_flush_tlb_page(ta->ta_vma, ta->ta_start);
379}
380
381static inline void ipi_flush_tlb_range(void *arg)
382{
383	struct tlb_args *ta = arg;
384
385	local_flush_tlb_range(ta->ta_vma, ta->ta_start, ta->ta_end);
386}
387
 
 
 
 
 
 
 
 
 
388static inline void ipi_flush_tlb_kernel_range(void *arg)
389{
390	struct tlb_args *ta = (struct tlb_args *)arg;
391
392	local_flush_tlb_kernel_range(ta->ta_start, ta->ta_end);
393}
394
395void flush_tlb_all(void)
396{
397	on_each_cpu((smp_call_func_t)local_flush_tlb_all, NULL, 1);
398}
399
400void flush_tlb_mm(struct mm_struct *mm)
401{
402	on_each_cpu_mask(mm_cpumask(mm), (smp_call_func_t)local_flush_tlb_mm,
403			 mm, 1);
404}
405
406void flush_tlb_page(struct vm_area_struct *vma, unsigned long uaddr)
407{
408	struct tlb_args ta = {
409		.ta_vma = vma,
410		.ta_start = uaddr
411	};
412
413	on_each_cpu_mask(mm_cpumask(vma->vm_mm), ipi_flush_tlb_page, &ta, 1);
414}
415
416void flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
417		     unsigned long end)
418{
419	struct tlb_args ta = {
420		.ta_vma = vma,
421		.ta_start = start,
422		.ta_end = end
423	};
424
425	on_each_cpu_mask(mm_cpumask(vma->vm_mm), ipi_flush_tlb_range, &ta, 1);
426}
427
 
 
 
 
 
 
 
 
 
 
 
 
 
 
428void flush_tlb_kernel_range(unsigned long start, unsigned long end)
429{
430	struct tlb_args ta = {
431		.ta_start = start,
432		.ta_end = end
433	};
434
435	on_each_cpu(ipi_flush_tlb_kernel_range, &ta, 1);
436}
437#endif
438
439/*
440 * Routine to create a TLB entry
441 */
442void create_tlb(struct vm_area_struct *vma, unsigned long address, pte_t *ptep)
443{
444	unsigned long flags;
445	unsigned int asid_or_sasid, rwx;
446	unsigned long pd0, pd1;
 
447
448	/*
449	 * create_tlb() assumes that current->mm == vma->mm, since
450	 * -it ASID for TLB entry is fetched from MMU ASID reg (valid for curr)
451	 * -completes the lazy write to SASID reg (again valid for curr tsk)
452	 *
453	 * Removing the assumption involves
454	 * -Using vma->mm->context{ASID,SASID}, as opposed to MMU reg.
455	 * -Fix the TLB paranoid debug code to not trigger false negatives.
456	 * -More importantly it makes this handler inconsistent with fast-path
457	 *  TLB Refill handler which always deals with "current"
458	 *
459	 * Lets see the use cases when current->mm != vma->mm and we land here
460	 *  1. execve->copy_strings()->__get_user_pages->handle_mm_fault
461	 *     Here VM wants to pre-install a TLB entry for user stack while
462	 *     current->mm still points to pre-execve mm (hence the condition).
463	 *     However the stack vaddr is soon relocated (randomization) and
464	 *     move_page_tables() tries to undo that TLB entry.
465	 *     Thus not creating TLB entry is not any worse.
466	 *
467	 *  2. ptrace(POKETEXT) causes a CoW - debugger(current) inserting a
468	 *     breakpoint in debugged task. Not creating a TLB now is not
469	 *     performance critical.
470	 *
471	 * Both the cases above are not good enough for code churn.
472	 */
473	if (current->active_mm != vma->vm_mm)
474		return;
475
476	local_irq_save(flags);
477
478	tlb_paranoid_check(asid_mm(vma->vm_mm, smp_processor_id()), address);
479
480	address &= PAGE_MASK;
481
482	/* update this PTE credentials */
483	pte_val(*ptep) |= (_PAGE_PRESENT | _PAGE_ACCESSED);
484
485	/* Create HW TLB(PD0,PD1) from PTE  */
486
487	/* ASID for this task */
488	asid_or_sasid = read_aux_reg(ARC_REG_PID) & 0xff;
489
490	pd0 = address | asid_or_sasid | (pte_val(*ptep) & PTE_BITS_IN_PD0);
491
492	/*
493	 * ARC MMU provides fully orthogonal access bits for K/U mode,
494	 * however Linux only saves 1 set to save PTE real-estate
495	 * Here we convert 3 PTE bits into 6 MMU bits:
496	 * -Kernel only entries have Kr Kw Kx 0 0 0
497	 * -User entries have mirrored K and U bits
498	 */
499	rwx = pte_val(*ptep) & PTE_BITS_RWX;
500
501	if (pte_val(*ptep) & _PAGE_GLOBAL)
502		rwx <<= 3;		/* r w x => Kr Kw Kx 0 0 0 */
503	else
504		rwx |= (rwx << 3);	/* r w x => Kr Kw Kx Ur Uw Ux */
505
506	pd1 = rwx | (pte_val(*ptep) & PTE_BITS_NON_RWX_IN_PD1);
507
508	tlb_entry_insert(pd0, pd1);
509
510	local_irq_restore(flags);
511}
512
513/*
514 * Called at the end of pagefault, for a userspace mapped page
515 *  -pre-install the corresponding TLB entry into MMU
516 *  -Finalize the delayed D-cache flush of kernel mapping of page due to
517 *  	flush_dcache_page(), copy_user_page()
518 *
519 * Note that flush (when done) involves both WBACK - so physical page is
520 * in sync as well as INV - so any non-congruent aliases don't remain
521 */
522void update_mmu_cache(struct vm_area_struct *vma, unsigned long vaddr_unaligned,
523		      pte_t *ptep)
524{
525	unsigned long vaddr = vaddr_unaligned & PAGE_MASK;
526	unsigned long paddr = pte_val(*ptep) & PAGE_MASK;
527	struct page *page = pfn_to_page(pte_pfn(*ptep));
528
529	create_tlb(vma, vaddr, ptep);
530
531	if (page == ZERO_PAGE(0)) {
532		return;
533	}
534
535	/*
536	 * Exec page : Independent of aliasing/page-color considerations,
537	 *	       since icache doesn't snoop dcache on ARC, any dirty
538	 *	       K-mapping of a code page needs to be wback+inv so that
539	 *	       icache fetch by userspace sees code correctly.
540	 * !EXEC page: If K-mapping is NOT congruent to U-mapping, flush it
541	 *	       so userspace sees the right data.
542	 *  (Avoids the flush for Non-exec + congruent mapping case)
543	 */
544	if ((vma->vm_flags & VM_EXEC) ||
545	     addr_not_cache_congruent(paddr, vaddr)) {
546
547		int dirty = !test_and_set_bit(PG_dc_clean, &page->flags);
548		if (dirty) {
549			/* wback + inv dcache lines */
550			__flush_dcache_page(paddr, paddr);
551
552			/* invalidate any existing icache lines */
553			if (vma->vm_flags & VM_EXEC)
554				__inv_icache_page(paddr, vaddr);
555		}
556	}
557}
558
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
559/* Read the Cache Build Confuration Registers, Decode them and save into
560 * the cpuinfo structure for later use.
561 * No Validation is done here, simply read/convert the BCRs
562 */
563void read_decode_mmu_bcr(void)
564{
565	struct cpuinfo_arc_mmu *mmu = &cpuinfo_arc700[smp_processor_id()].mmu;
566	unsigned int tmp;
567	struct bcr_mmu_1_2 {
568#ifdef CONFIG_CPU_BIG_ENDIAN
569		unsigned int ver:8, ways:4, sets:4, u_itlb:8, u_dtlb:8;
570#else
571		unsigned int u_dtlb:8, u_itlb:8, sets:4, ways:4, ver:8;
572#endif
573	} *mmu2;
574
575	struct bcr_mmu_3 {
576#ifdef CONFIG_CPU_BIG_ENDIAN
577	unsigned int ver:8, ways:4, sets:4, osm:1, reserv:3, pg_sz:4,
578		     u_itlb:4, u_dtlb:4;
579#else
580	unsigned int u_dtlb:4, u_itlb:4, pg_sz:4, reserv:3, osm:1, sets:4,
581		     ways:4, ver:8;
582#endif
583	} *mmu3;
584
 
 
 
 
 
 
 
 
 
 
 
585	tmp = read_aux_reg(ARC_REG_MMU_BCR);
586	mmu->ver = (tmp >> 24);
587
588	if (mmu->ver <= 2) {
589		mmu2 = (struct bcr_mmu_1_2 *)&tmp;
590		mmu->pg_sz = PAGE_SIZE;
591		mmu->sets = 1 << mmu2->sets;
592		mmu->ways = 1 << mmu2->ways;
593		mmu->u_dtlb = mmu2->u_dtlb;
594		mmu->u_itlb = mmu2->u_itlb;
 
 
 
 
 
 
 
 
 
 
595	} else {
596		mmu3 = (struct bcr_mmu_3 *)&tmp;
597		mmu->pg_sz = 512 << mmu3->pg_sz;
598		mmu->sets = 1 << mmu3->sets;
599		mmu->ways = 1 << mmu3->ways;
600		mmu->u_dtlb = mmu3->u_dtlb;
601		mmu->u_itlb = mmu3->u_itlb;
 
 
 
602	}
603
604	mmu->num_tlb = mmu->sets * mmu->ways;
605}
606
607char *arc_mmu_mumbojumbo(int cpu_id, char *buf, int len)
608{
609	int n = 0;
610	struct cpuinfo_arc_mmu *p_mmu = &cpuinfo_arc700[cpu_id].mmu;
 
611
612	n += scnprintf(buf + n, len - n, "ARC700 MMU [v%x]\t: %dk PAGE, ",
613		       p_mmu->ver, TO_KB(p_mmu->pg_sz));
 
 
614
615	n += scnprintf(buf + n, len - n,
616		       "J-TLB %d (%dx%d), uDTLB %d, uITLB %d, %s\n",
617		       p_mmu->num_tlb, p_mmu->sets, p_mmu->ways,
 
618		       p_mmu->u_dtlb, p_mmu->u_itlb,
619		       IS_ENABLED(CONFIG_ARC_MMU_SASID) ? "SASID" : "");
620
621	return buf;
622}
623
 
 
 
 
 
624void arc_mmu_init(void)
625{
626	char str[256];
627	struct cpuinfo_arc_mmu *mmu = &cpuinfo_arc700[smp_processor_id()].mmu;
 
 
628
629	printk(arc_mmu_mumbojumbo(0, str, sizeof(str)));
630
631	/* For efficiency sake, kernel is compile time built for a MMU ver
632	 * This must match the hardware it is running on.
633	 * Linux built for MMU V2, if run on MMU V1 will break down because V1
634	 *  hardware doesn't understand cmds such as WriteNI, or IVUTLB
635	 * On the other hand, Linux built for V1 if run on MMU V2 will do
636	 *   un-needed workarounds to prevent memcpy thrashing.
637	 * Similarly MMU V3 has new features which won't work on older MMU
638	 */
639	if (mmu->ver != CONFIG_ARC_MMU_VER) {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
640		panic("MMU ver %d doesn't match kernel built for %d...\n",
641		      mmu->ver, CONFIG_ARC_MMU_VER);
642	}
643
644	if (mmu->pg_sz != PAGE_SIZE)
645		panic("MMU pg size != PAGE_SIZE (%luk)\n", TO_KB(PAGE_SIZE));
646
 
 
 
 
 
 
 
 
647	/* Enable the MMU */
648	write_aux_reg(ARC_REG_PID, MMU_ENABLE);
649
650	/* In smp we use this reg for interrupt 1 scratch */
651#ifndef CONFIG_SMP
652	/* swapper_pg_dir is the pgd for the kernel, used by vmalloc */
653	write_aux_reg(ARC_REG_SCRATCH_DATA0, swapper_pg_dir);
654#endif
 
 
 
655}
656
657/*
658 * TLB Programmer's Model uses Linear Indexes: 0 to {255, 511} for 128 x {2,4}
659 * The mapping is Column-first.
660 *		---------------------	-----------
661 *		|way0|way1|way2|way3|	|way0|way1|
662 *		---------------------	-----------
663 * [set0]	|  0 |  1 |  2 |  3 |	|  0 |  1 |
664 * [set1]	|  4 |  5 |  6 |  7 |	|  2 |  3 |
665 *		~		    ~	~	  ~
666 * [set127]	| 508| 509| 510| 511|	| 254| 255|
667 *		---------------------	-----------
668 * For normal operations we don't(must not) care how above works since
669 * MMU cmd getIndex(vaddr) abstracts that out.
670 * However for walking WAYS of a SET, we need to know this
671 */
672#define SET_WAY_TO_IDX(mmu, set, way)  ((set) * mmu->ways + (way))
673
674/* Handling of Duplicate PD (TLB entry) in MMU.
675 * -Could be due to buggy customer tapeouts or obscure kernel bugs
676 * -MMU complaints not at the time of duplicate PD installation, but at the
677 *      time of lookup matching multiple ways.
678 * -Ideally these should never happen - but if they do - workaround by deleting
679 *      the duplicate one.
680 * -Knob to be verbose abt it.(TODO: hook them up to debugfs)
681 */
682volatile int dup_pd_verbose = 1;/* Be slient abt it or complain (default) */
683
684void do_tlb_overlap_fault(unsigned long cause, unsigned long address,
685			  struct pt_regs *regs)
686{
687	int set, way, n;
688	unsigned long flags, is_valid;
689	struct cpuinfo_arc_mmu *mmu = &cpuinfo_arc700[smp_processor_id()].mmu;
690	unsigned int pd0[mmu->ways], pd1[mmu->ways];
 
 
691
692	local_irq_save(flags);
693
694	/* re-enable the MMU */
695	write_aux_reg(ARC_REG_PID, MMU_ENABLE | read_aux_reg(ARC_REG_PID));
696
697	/* loop thru all sets of TLB */
698	for (set = 0; set < mmu->sets; set++) {
699
 
 
700		/* read out all the ways of current set */
701		for (way = 0, is_valid = 0; way < mmu->ways; way++) {
702			write_aux_reg(ARC_REG_TLBINDEX,
703					  SET_WAY_TO_IDX(mmu, set, way));
704			write_aux_reg(ARC_REG_TLBCOMMAND, TLBRead);
705			pd0[way] = read_aux_reg(ARC_REG_TLBPD0);
706			pd1[way] = read_aux_reg(ARC_REG_TLBPD1);
707			is_valid |= pd0[way] & _PAGE_PRESENT;
 
708		}
709
710		/* If all the WAYS in SET are empty, skip to next SET */
711		if (!is_valid)
712			continue;
713
714		/* Scan the set for duplicate ways: needs a nested loop */
715		for (way = 0; way < mmu->ways - 1; way++) {
 
 
 
716			if (!pd0[way])
717				continue;
718
719			for (n = way + 1; n < mmu->ways; n++) {
720				if ((pd0[way] & PAGE_MASK) ==
721				    (pd0[n] & PAGE_MASK)) {
722
723					if (dup_pd_verbose) {
724						pr_info("Duplicate PD's @"
725							"[%d:%d]/[%d:%d]\n",
726						     set, way, set, n);
727						pr_info("TLBPD0[%u]: %08x\n",
728						     way, pd0[way]);
729					}
730
731					/*
732					 * clear entry @way and not @n. This is
733					 * critical to our optimised loop
734					 */
735					pd0[way] = pd1[way] = 0;
736					write_aux_reg(ARC_REG_TLBINDEX,
737						SET_WAY_TO_IDX(mmu, set, way));
738					__tlb_entry_erase();
739				}
740			}
741		}
742	}
743
744	local_irq_restore(flags);
745}
746
747/***********************************************************************
748 * Diagnostic Routines
749 *  -Called from Low Level TLB Hanlders if things don;t look good
750 **********************************************************************/
751
752#ifdef CONFIG_ARC_DBG_TLB_PARANOIA
753
754/*
755 * Low Level ASM TLB handler calls this if it finds that HW and SW ASIDS
756 * don't match
757 */
758void print_asid_mismatch(int mm_asid, int mmu_asid, int is_fast_path)
759{
760	pr_emerg("ASID Mismatch in %s Path Handler: sw-pid=0x%x hw-pid=0x%x\n",
761	       is_fast_path ? "Fast" : "Slow", mm_asid, mmu_asid);
762
763	__asm__ __volatile__("flag 1");
764}
765
766void tlb_paranoid_check(unsigned int mm_asid, unsigned long addr)
767{
768	unsigned int mmu_asid;
769
770	mmu_asid = read_aux_reg(ARC_REG_PID) & 0xff;
771
772	/*
773	 * At the time of a TLB miss/installation
774	 *   - HW version needs to match SW version
775	 *   - SW needs to have a valid ASID
776	 */
777	if (addr < 0x70000000 &&
778	    ((mm_asid == MM_CTXT_NO_ASID) ||
779	      (mmu_asid != (mm_asid & MM_CTXT_ASID_MASK))))
780		print_asid_mismatch(mm_asid, mmu_asid, 0);
781}
782#endif
v4.17
   1/*
   2 * TLB Management (flush/create/diagnostics) for ARC700
   3 *
   4 * Copyright (C) 2004, 2007-2010, 2011-2012 Synopsys, Inc. (www.synopsys.com)
   5 *
   6 * This program is free software; you can redistribute it and/or modify
   7 * it under the terms of the GNU General Public License version 2 as
   8 * published by the Free Software Foundation.
   9 *
  10 * vineetg: Aug 2011
  11 *  -Reintroduce duplicate PD fixup - some customer chips still have the issue
  12 *
  13 * vineetg: May 2011
  14 *  -No need to flush_cache_page( ) for each call to update_mmu_cache()
  15 *   some of the LMBench tests improved amazingly
  16 *      = page-fault thrice as fast (75 usec to 28 usec)
  17 *      = mmap twice as fast (9.6 msec to 4.6 msec),
  18 *      = fork (5.3 msec to 3.7 msec)
  19 *
  20 * vineetg: April 2011 :
  21 *  -MMU v3: PD{0,1} bits layout changed: They don't overlap anymore,
  22 *      helps avoid a shift when preparing PD0 from PTE
  23 *
  24 * vineetg: April 2011 : Preparing for MMU V3
  25 *  -MMU v2/v3 BCRs decoded differently
  26 *  -Remove TLB_SIZE hardcoding as it's variable now: 256 or 512
  27 *  -tlb_entry_erase( ) can be void
  28 *  -local_flush_tlb_range( ):
  29 *      = need not "ceil" @end
  30 *      = walks MMU only if range spans < 32 entries, as opposed to 256
  31 *
  32 * Vineetg: Sept 10th 2008
  33 *  -Changes related to MMU v2 (Rel 4.8)
  34 *
  35 * Vineetg: Aug 29th 2008
  36 *  -In TLB Flush operations (Metal Fix MMU) there is a explict command to
  37 *    flush Micro-TLBS. If TLB Index Reg is invalid prior to TLBIVUTLB cmd,
  38 *    it fails. Thus need to load it with ANY valid value before invoking
  39 *    TLBIVUTLB cmd
  40 *
  41 * Vineetg: Aug 21th 2008:
  42 *  -Reduced the duration of IRQ lockouts in TLB Flush routines
  43 *  -Multiple copies of TLB erase code seperated into a "single" function
  44 *  -In TLB Flush routines, interrupt disabling moved UP to retrieve ASID
  45 *       in interrupt-safe region.
  46 *
  47 * Vineetg: April 23rd Bug #93131
  48 *    Problem: tlb_flush_kernel_range() doesn't do anything if the range to
  49 *              flush is more than the size of TLB itself.
  50 *
  51 * Rahul Trivedi : Codito Technologies 2004
  52 */
  53
  54#include <linux/module.h>
  55#include <linux/bug.h>
  56#include <linux/mm_types.h>
  57
  58#include <asm/arcregs.h>
  59#include <asm/setup.h>
  60#include <asm/mmu_context.h>
  61#include <asm/mmu.h>
  62
  63/*			Need for ARC MMU v2
  64 *
  65 * ARC700 MMU-v1 had a Joint-TLB for Code and Data and is 2 way set-assoc.
  66 * For a memcpy operation with 3 players (src/dst/code) such that all 3 pages
  67 * map into same set, there would be contention for the 2 ways causing severe
  68 * Thrashing.
  69 *
  70 * Although J-TLB is 2 way set assoc, ARC700 caches J-TLB into uTLBS which has
  71 * much higher associativity. u-D-TLB is 8 ways, u-I-TLB is 4 ways.
  72 * Given this, the thrasing problem should never happen because once the 3
  73 * J-TLB entries are created (even though 3rd will knock out one of the prev
  74 * two), the u-D-TLB and u-I-TLB will have what is required to accomplish memcpy
  75 *
  76 * Yet we still see the Thrashing because a J-TLB Write cause flush of u-TLBs.
  77 * This is a simple design for keeping them in sync. So what do we do?
  78 * The solution which James came up was pretty neat. It utilised the assoc
  79 * of uTLBs by not invalidating always but only when absolutely necessary.
  80 *
  81 * - Existing TLB commands work as before
  82 * - New command (TLBWriteNI) for TLB write without clearing uTLBs
  83 * - New command (TLBIVUTLB) to invalidate uTLBs.
  84 *
  85 * The uTLBs need only be invalidated when pages are being removed from the
  86 * OS page table. If a 'victim' TLB entry is being overwritten in the main TLB
  87 * as a result of a miss, the removed entry is still allowed to exist in the
  88 * uTLBs as it is still valid and present in the OS page table. This allows the
  89 * full associativity of the uTLBs to hide the limited associativity of the main
  90 * TLB.
  91 *
  92 * During a miss handler, the new "TLBWriteNI" command is used to load
  93 * entries without clearing the uTLBs.
  94 *
  95 * When the OS page table is updated, TLB entries that may be associated with a
  96 * removed page are removed (flushed) from the TLB using TLBWrite. In this
  97 * circumstance, the uTLBs must also be cleared. This is done by using the
  98 * existing TLBWrite command. An explicit IVUTLB is also required for those
  99 * corner cases when TLBWrite was not executed at all because the corresp
 100 * J-TLB entry got evicted/replaced.
 101 */
 102
 103
 104/* A copy of the ASID from the PID reg is kept in asid_cache */
 105DEFINE_PER_CPU(unsigned int, asid_cache) = MM_CTXT_FIRST_CYCLE;
 106
 107static int __read_mostly pae_exists;
 108
 109/*
 110 * Utility Routine to erase a J-TLB entry
 111 * Caller needs to setup Index Reg (manually or via getIndex)
 112 */
 113static inline void __tlb_entry_erase(void)
 114{
 115	write_aux_reg(ARC_REG_TLBPD1, 0);
 116
 117	if (is_pae40_enabled())
 118		write_aux_reg(ARC_REG_TLBPD1HI, 0);
 119
 120	write_aux_reg(ARC_REG_TLBPD0, 0);
 121	write_aux_reg(ARC_REG_TLBCOMMAND, TLBWrite);
 122}
 123
 124#if (CONFIG_ARC_MMU_VER < 4)
 125
 126static inline unsigned int tlb_entry_lkup(unsigned long vaddr_n_asid)
 127{
 128	unsigned int idx;
 129
 130	write_aux_reg(ARC_REG_TLBPD0, vaddr_n_asid);
 131
 132	write_aux_reg(ARC_REG_TLBCOMMAND, TLBProbe);
 133	idx = read_aux_reg(ARC_REG_TLBINDEX);
 134
 135	return idx;
 136}
 137
 138static void tlb_entry_erase(unsigned int vaddr_n_asid)
 139{
 140	unsigned int idx;
 141
 142	/* Locate the TLB entry for this vaddr + ASID */
 143	idx = tlb_entry_lkup(vaddr_n_asid);
 144
 145	/* No error means entry found, zero it out */
 146	if (likely(!(idx & TLB_LKUP_ERR))) {
 147		__tlb_entry_erase();
 148	} else {
 149		/* Duplicate entry error */
 150		WARN(idx == TLB_DUP_ERR, "Probe returned Dup PD for %x\n",
 151					   vaddr_n_asid);
 152	}
 153}
 154
 155/****************************************************************************
 156 * ARC700 MMU caches recently used J-TLB entries (RAM) as uTLBs (FLOPs)
 157 *
 158 * New IVUTLB cmd in MMU v2 explictly invalidates the uTLB
 159 *
 160 * utlb_invalidate ( )
 161 *  -For v2 MMU calls Flush uTLB Cmd
 162 *  -For v1 MMU does nothing (except for Metal Fix v1 MMU)
 163 *      This is because in v1 TLBWrite itself invalidate uTLBs
 164 ***************************************************************************/
 165
 166static void utlb_invalidate(void)
 167{
 168#if (CONFIG_ARC_MMU_VER >= 2)
 169
 170#if (CONFIG_ARC_MMU_VER == 2)
 171	/* MMU v2 introduced the uTLB Flush command.
 172	 * There was however an obscure hardware bug, where uTLB flush would
 173	 * fail when a prior probe for J-TLB (both totally unrelated) would
 174	 * return lkup err - because the entry didn't exist in MMU.
 175	 * The Workround was to set Index reg with some valid value, prior to
 176	 * flush. This was fixed in MMU v3 hence not needed any more
 177	 */
 178	unsigned int idx;
 179
 180	/* make sure INDEX Reg is valid */
 181	idx = read_aux_reg(ARC_REG_TLBINDEX);
 182
 183	/* If not write some dummy val */
 184	if (unlikely(idx & TLB_LKUP_ERR))
 185		write_aux_reg(ARC_REG_TLBINDEX, 0xa);
 186#endif
 187
 188	write_aux_reg(ARC_REG_TLBCOMMAND, TLBIVUTLB);
 189#endif
 190
 191}
 192
 193static void tlb_entry_insert(unsigned int pd0, pte_t pd1)
 194{
 195	unsigned int idx;
 196
 197	/*
 198	 * First verify if entry for this vaddr+ASID already exists
 199	 * This also sets up PD0 (vaddr, ASID..) for final commit
 200	 */
 201	idx = tlb_entry_lkup(pd0);
 202
 203	/*
 204	 * If Not already present get a free slot from MMU.
 205	 * Otherwise, Probe would have located the entry and set INDEX Reg
 206	 * with existing location. This will cause Write CMD to over-write
 207	 * existing entry with new PD0 and PD1
 208	 */
 209	if (likely(idx & TLB_LKUP_ERR))
 210		write_aux_reg(ARC_REG_TLBCOMMAND, TLBGetIndex);
 211
 212	/* setup the other half of TLB entry (pfn, rwx..) */
 213	write_aux_reg(ARC_REG_TLBPD1, pd1);
 214
 215	/*
 216	 * Commit the Entry to MMU
 217	 * It doesn't sound safe to use the TLBWriteNI cmd here
 218	 * which doesn't flush uTLBs. I'd rather be safe than sorry.
 219	 */
 220	write_aux_reg(ARC_REG_TLBCOMMAND, TLBWrite);
 221}
 222
 223#else	/* CONFIG_ARC_MMU_VER >= 4) */
 224
 225static void utlb_invalidate(void)
 226{
 227	/* No need since uTLB is always in sync with JTLB */
 228}
 229
 230static void tlb_entry_erase(unsigned int vaddr_n_asid)
 231{
 232	write_aux_reg(ARC_REG_TLBPD0, vaddr_n_asid | _PAGE_PRESENT);
 233	write_aux_reg(ARC_REG_TLBCOMMAND, TLBDeleteEntry);
 234}
 235
 236static void tlb_entry_insert(unsigned int pd0, pte_t pd1)
 237{
 238	write_aux_reg(ARC_REG_TLBPD0, pd0);
 239	write_aux_reg(ARC_REG_TLBPD1, pd1);
 240
 241	if (is_pae40_enabled())
 242		write_aux_reg(ARC_REG_TLBPD1HI, (u64)pd1 >> 32);
 243
 244	write_aux_reg(ARC_REG_TLBCOMMAND, TLBInsertEntry);
 245}
 246
 247#endif
 248
 249/*
 250 * Un-conditionally (without lookup) erase the entire MMU contents
 251 */
 252
 253noinline void local_flush_tlb_all(void)
 254{
 255	struct cpuinfo_arc_mmu *mmu = &cpuinfo_arc700[smp_processor_id()].mmu;
 256	unsigned long flags;
 257	unsigned int entry;
 258	int num_tlb = mmu->sets * mmu->ways;
 259
 260	local_irq_save(flags);
 261
 262	/* Load PD0 and PD1 with template for a Blank Entry */
 263	write_aux_reg(ARC_REG_TLBPD1, 0);
 264
 265	if (is_pae40_enabled())
 266		write_aux_reg(ARC_REG_TLBPD1HI, 0);
 267
 268	write_aux_reg(ARC_REG_TLBPD0, 0);
 269
 270	for (entry = 0; entry < num_tlb; entry++) {
 271		/* write this entry to the TLB */
 272		write_aux_reg(ARC_REG_TLBINDEX, entry);
 273		write_aux_reg(ARC_REG_TLBCOMMAND, TLBWrite);
 274	}
 275
 276	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE)) {
 277		const int stlb_idx = 0x800;
 278
 279		/* Blank sTLB entry */
 280		write_aux_reg(ARC_REG_TLBPD0, _PAGE_HW_SZ);
 281
 282		for (entry = stlb_idx; entry < stlb_idx + 16; entry++) {
 283			write_aux_reg(ARC_REG_TLBINDEX, entry);
 284			write_aux_reg(ARC_REG_TLBCOMMAND, TLBWrite);
 285		}
 286	}
 287
 288	utlb_invalidate();
 289
 290	local_irq_restore(flags);
 291}
 292
 293/*
 294 * Flush the entrie MM for userland. The fastest way is to move to Next ASID
 295 */
 296noinline void local_flush_tlb_mm(struct mm_struct *mm)
 297{
 298	/*
 299	 * Small optimisation courtesy IA64
 300	 * flush_mm called during fork,exit,munmap etc, multiple times as well.
 301	 * Only for fork( ) do we need to move parent to a new MMU ctxt,
 302	 * all other cases are NOPs, hence this check.
 303	 */
 304	if (atomic_read(&mm->mm_users) == 0)
 305		return;
 306
 307	/*
 308	 * - Move to a new ASID, but only if the mm is still wired in
 309	 *   (Android Binder ended up calling this for vma->mm != tsk->mm,
 310	 *    causing h/w - s/w ASID to get out of sync)
 311	 * - Also get_new_mmu_context() new implementation allocates a new
 312	 *   ASID only if it is not allocated already - so unallocate first
 313	 */
 314	destroy_context(mm);
 315	if (current->mm == mm)
 316		get_new_mmu_context(mm);
 317}
 318
 319/*
 320 * Flush a Range of TLB entries for userland.
 321 * @start is inclusive, while @end is exclusive
 322 * Difference between this and Kernel Range Flush is
 323 *  -Here the fastest way (if range is too large) is to move to next ASID
 324 *      without doing any explicit Shootdown
 325 *  -In case of kernel Flush, entry has to be shot down explictly
 326 */
 327void local_flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
 328			   unsigned long end)
 329{
 330	const unsigned int cpu = smp_processor_id();
 331	unsigned long flags;
 332
 333	/* If range @start to @end is more than 32 TLB entries deep,
 334	 * its better to move to a new ASID rather than searching for
 335	 * individual entries and then shooting them down
 336	 *
 337	 * The calc above is rough, doesn't account for unaligned parts,
 338	 * since this is heuristics based anyways
 339	 */
 340	if (unlikely((end - start) >= PAGE_SIZE * 32)) {
 341		local_flush_tlb_mm(vma->vm_mm);
 342		return;
 343	}
 344
 345	/*
 346	 * @start moved to page start: this alone suffices for checking
 347	 * loop end condition below, w/o need for aligning @end to end
 348	 * e.g. 2000 to 4001 will anyhow loop twice
 349	 */
 350	start &= PAGE_MASK;
 351
 352	local_irq_save(flags);
 353
 354	if (asid_mm(vma->vm_mm, cpu) != MM_CTXT_NO_ASID) {
 355		while (start < end) {
 356			tlb_entry_erase(start | hw_pid(vma->vm_mm, cpu));
 357			start += PAGE_SIZE;
 358		}
 359	}
 360
 361	utlb_invalidate();
 362
 363	local_irq_restore(flags);
 364}
 365
 366/* Flush the kernel TLB entries - vmalloc/modules (Global from MMU perspective)
 367 *  @start, @end interpreted as kvaddr
 368 * Interestingly, shared TLB entries can also be flushed using just
 369 * @start,@end alone (interpreted as user vaddr), although technically SASID
 370 * is also needed. However our smart TLbProbe lookup takes care of that.
 371 */
 372void local_flush_tlb_kernel_range(unsigned long start, unsigned long end)
 373{
 374	unsigned long flags;
 375
 376	/* exactly same as above, except for TLB entry not taking ASID */
 377
 378	if (unlikely((end - start) >= PAGE_SIZE * 32)) {
 379		local_flush_tlb_all();
 380		return;
 381	}
 382
 383	start &= PAGE_MASK;
 384
 385	local_irq_save(flags);
 386	while (start < end) {
 387		tlb_entry_erase(start);
 388		start += PAGE_SIZE;
 389	}
 390
 391	utlb_invalidate();
 392
 393	local_irq_restore(flags);
 394}
 395
 396/*
 397 * Delete TLB entry in MMU for a given page (??? address)
 398 * NOTE One TLB entry contains translation for single PAGE
 399 */
 400
 401void local_flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
 402{
 403	const unsigned int cpu = smp_processor_id();
 404	unsigned long flags;
 405
 406	/* Note that it is critical that interrupts are DISABLED between
 407	 * checking the ASID and using it flush the TLB entry
 408	 */
 409	local_irq_save(flags);
 410
 411	if (asid_mm(vma->vm_mm, cpu) != MM_CTXT_NO_ASID) {
 412		tlb_entry_erase((page & PAGE_MASK) | hw_pid(vma->vm_mm, cpu));
 413		utlb_invalidate();
 414	}
 415
 416	local_irq_restore(flags);
 417}
 418
 419#ifdef CONFIG_SMP
 420
 421struct tlb_args {
 422	struct vm_area_struct *ta_vma;
 423	unsigned long ta_start;
 424	unsigned long ta_end;
 425};
 426
 427static inline void ipi_flush_tlb_page(void *arg)
 428{
 429	struct tlb_args *ta = arg;
 430
 431	local_flush_tlb_page(ta->ta_vma, ta->ta_start);
 432}
 433
 434static inline void ipi_flush_tlb_range(void *arg)
 435{
 436	struct tlb_args *ta = arg;
 437
 438	local_flush_tlb_range(ta->ta_vma, ta->ta_start, ta->ta_end);
 439}
 440
 441#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 442static inline void ipi_flush_pmd_tlb_range(void *arg)
 443{
 444	struct tlb_args *ta = arg;
 445
 446	local_flush_pmd_tlb_range(ta->ta_vma, ta->ta_start, ta->ta_end);
 447}
 448#endif
 449
 450static inline void ipi_flush_tlb_kernel_range(void *arg)
 451{
 452	struct tlb_args *ta = (struct tlb_args *)arg;
 453
 454	local_flush_tlb_kernel_range(ta->ta_start, ta->ta_end);
 455}
 456
 457void flush_tlb_all(void)
 458{
 459	on_each_cpu((smp_call_func_t)local_flush_tlb_all, NULL, 1);
 460}
 461
 462void flush_tlb_mm(struct mm_struct *mm)
 463{
 464	on_each_cpu_mask(mm_cpumask(mm), (smp_call_func_t)local_flush_tlb_mm,
 465			 mm, 1);
 466}
 467
 468void flush_tlb_page(struct vm_area_struct *vma, unsigned long uaddr)
 469{
 470	struct tlb_args ta = {
 471		.ta_vma = vma,
 472		.ta_start = uaddr
 473	};
 474
 475	on_each_cpu_mask(mm_cpumask(vma->vm_mm), ipi_flush_tlb_page, &ta, 1);
 476}
 477
 478void flush_tlb_range(struct vm_area_struct *vma, unsigned long start,
 479		     unsigned long end)
 480{
 481	struct tlb_args ta = {
 482		.ta_vma = vma,
 483		.ta_start = start,
 484		.ta_end = end
 485	};
 486
 487	on_each_cpu_mask(mm_cpumask(vma->vm_mm), ipi_flush_tlb_range, &ta, 1);
 488}
 489
 490#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 491void flush_pmd_tlb_range(struct vm_area_struct *vma, unsigned long start,
 492			 unsigned long end)
 493{
 494	struct tlb_args ta = {
 495		.ta_vma = vma,
 496		.ta_start = start,
 497		.ta_end = end
 498	};
 499
 500	on_each_cpu_mask(mm_cpumask(vma->vm_mm), ipi_flush_pmd_tlb_range, &ta, 1);
 501}
 502#endif
 503
 504void flush_tlb_kernel_range(unsigned long start, unsigned long end)
 505{
 506	struct tlb_args ta = {
 507		.ta_start = start,
 508		.ta_end = end
 509	};
 510
 511	on_each_cpu(ipi_flush_tlb_kernel_range, &ta, 1);
 512}
 513#endif
 514
 515/*
 516 * Routine to create a TLB entry
 517 */
 518void create_tlb(struct vm_area_struct *vma, unsigned long vaddr, pte_t *ptep)
 519{
 520	unsigned long flags;
 521	unsigned int asid_or_sasid, rwx;
 522	unsigned long pd0;
 523	pte_t pd1;
 524
 525	/*
 526	 * create_tlb() assumes that current->mm == vma->mm, since
 527	 * -it ASID for TLB entry is fetched from MMU ASID reg (valid for curr)
 528	 * -completes the lazy write to SASID reg (again valid for curr tsk)
 529	 *
 530	 * Removing the assumption involves
 531	 * -Using vma->mm->context{ASID,SASID}, as opposed to MMU reg.
 532	 * -Fix the TLB paranoid debug code to not trigger false negatives.
 533	 * -More importantly it makes this handler inconsistent with fast-path
 534	 *  TLB Refill handler which always deals with "current"
 535	 *
 536	 * Lets see the use cases when current->mm != vma->mm and we land here
 537	 *  1. execve->copy_strings()->__get_user_pages->handle_mm_fault
 538	 *     Here VM wants to pre-install a TLB entry for user stack while
 539	 *     current->mm still points to pre-execve mm (hence the condition).
 540	 *     However the stack vaddr is soon relocated (randomization) and
 541	 *     move_page_tables() tries to undo that TLB entry.
 542	 *     Thus not creating TLB entry is not any worse.
 543	 *
 544	 *  2. ptrace(POKETEXT) causes a CoW - debugger(current) inserting a
 545	 *     breakpoint in debugged task. Not creating a TLB now is not
 546	 *     performance critical.
 547	 *
 548	 * Both the cases above are not good enough for code churn.
 549	 */
 550	if (current->active_mm != vma->vm_mm)
 551		return;
 552
 553	local_irq_save(flags);
 554
 555	tlb_paranoid_check(asid_mm(vma->vm_mm, smp_processor_id()), vaddr);
 556
 557	vaddr &= PAGE_MASK;
 558
 559	/* update this PTE credentials */
 560	pte_val(*ptep) |= (_PAGE_PRESENT | _PAGE_ACCESSED);
 561
 562	/* Create HW TLB(PD0,PD1) from PTE  */
 563
 564	/* ASID for this task */
 565	asid_or_sasid = read_aux_reg(ARC_REG_PID) & 0xff;
 566
 567	pd0 = vaddr | asid_or_sasid | (pte_val(*ptep) & PTE_BITS_IN_PD0);
 568
 569	/*
 570	 * ARC MMU provides fully orthogonal access bits for K/U mode,
 571	 * however Linux only saves 1 set to save PTE real-estate
 572	 * Here we convert 3 PTE bits into 6 MMU bits:
 573	 * -Kernel only entries have Kr Kw Kx 0 0 0
 574	 * -User entries have mirrored K and U bits
 575	 */
 576	rwx = pte_val(*ptep) & PTE_BITS_RWX;
 577
 578	if (pte_val(*ptep) & _PAGE_GLOBAL)
 579		rwx <<= 3;		/* r w x => Kr Kw Kx 0 0 0 */
 580	else
 581		rwx |= (rwx << 3);	/* r w x => Kr Kw Kx Ur Uw Ux */
 582
 583	pd1 = rwx | (pte_val(*ptep) & PTE_BITS_NON_RWX_IN_PD1);
 584
 585	tlb_entry_insert(pd0, pd1);
 586
 587	local_irq_restore(flags);
 588}
 589
 590/*
 591 * Called at the end of pagefault, for a userspace mapped page
 592 *  -pre-install the corresponding TLB entry into MMU
 593 *  -Finalize the delayed D-cache flush of kernel mapping of page due to
 594 *  	flush_dcache_page(), copy_user_page()
 595 *
 596 * Note that flush (when done) involves both WBACK - so physical page is
 597 * in sync as well as INV - so any non-congruent aliases don't remain
 598 */
 599void update_mmu_cache(struct vm_area_struct *vma, unsigned long vaddr_unaligned,
 600		      pte_t *ptep)
 601{
 602	unsigned long vaddr = vaddr_unaligned & PAGE_MASK;
 603	phys_addr_t paddr = pte_val(*ptep) & PAGE_MASK;
 604	struct page *page = pfn_to_page(pte_pfn(*ptep));
 605
 606	create_tlb(vma, vaddr, ptep);
 607
 608	if (page == ZERO_PAGE(0)) {
 609		return;
 610	}
 611
 612	/*
 613	 * Exec page : Independent of aliasing/page-color considerations,
 614	 *	       since icache doesn't snoop dcache on ARC, any dirty
 615	 *	       K-mapping of a code page needs to be wback+inv so that
 616	 *	       icache fetch by userspace sees code correctly.
 617	 * !EXEC page: If K-mapping is NOT congruent to U-mapping, flush it
 618	 *	       so userspace sees the right data.
 619	 *  (Avoids the flush for Non-exec + congruent mapping case)
 620	 */
 621	if ((vma->vm_flags & VM_EXEC) ||
 622	     addr_not_cache_congruent(paddr, vaddr)) {
 623
 624		int dirty = !test_and_set_bit(PG_dc_clean, &page->flags);
 625		if (dirty) {
 626			/* wback + inv dcache lines (K-mapping) */
 627			__flush_dcache_page(paddr, paddr);
 628
 629			/* invalidate any existing icache lines (U-mapping) */
 630			if (vma->vm_flags & VM_EXEC)
 631				__inv_icache_page(paddr, vaddr);
 632		}
 633	}
 634}
 635
 636#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 637
 638/*
 639 * MMUv4 in HS38x cores supports Super Pages which are basis for Linux THP
 640 * support.
 641 *
 642 * Normal and Super pages can co-exist (ofcourse not overlap) in TLB with a
 643 * new bit "SZ" in TLB page descriptor to distinguish between them.
 644 * Super Page size is configurable in hardware (4K to 16M), but fixed once
 645 * RTL builds.
 646 *
 647 * The exact THP size a Linx configuration will support is a function of:
 648 *  - MMU page size (typical 8K, RTL fixed)
 649 *  - software page walker address split between PGD:PTE:PFN (typical
 650 *    11:8:13, but can be changed with 1 line)
 651 * So for above default, THP size supported is 8K * (2^8) = 2M
 652 *
 653 * Default Page Walker is 2 levels, PGD:PTE:PFN, which in THP regime
 654 * reduces to 1 level (as PTE is folded into PGD and canonically referred
 655 * to as PMD).
 656 * Thus THP PMD accessors are implemented in terms of PTE (just like sparc)
 657 */
 658
 659void update_mmu_cache_pmd(struct vm_area_struct *vma, unsigned long addr,
 660				 pmd_t *pmd)
 661{
 662	pte_t pte = __pte(pmd_val(*pmd));
 663	update_mmu_cache(vma, addr, &pte);
 664}
 665
 666void pgtable_trans_huge_deposit(struct mm_struct *mm, pmd_t *pmdp,
 667				pgtable_t pgtable)
 668{
 669	struct list_head *lh = (struct list_head *) pgtable;
 670
 671	assert_spin_locked(&mm->page_table_lock);
 672
 673	/* FIFO */
 674	if (!pmd_huge_pte(mm, pmdp))
 675		INIT_LIST_HEAD(lh);
 676	else
 677		list_add(lh, (struct list_head *) pmd_huge_pte(mm, pmdp));
 678	pmd_huge_pte(mm, pmdp) = pgtable;
 679}
 680
 681pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm, pmd_t *pmdp)
 682{
 683	struct list_head *lh;
 684	pgtable_t pgtable;
 685
 686	assert_spin_locked(&mm->page_table_lock);
 687
 688	pgtable = pmd_huge_pte(mm, pmdp);
 689	lh = (struct list_head *) pgtable;
 690	if (list_empty(lh))
 691		pmd_huge_pte(mm, pmdp) = NULL;
 692	else {
 693		pmd_huge_pte(mm, pmdp) = (pgtable_t) lh->next;
 694		list_del(lh);
 695	}
 696
 697	pte_val(pgtable[0]) = 0;
 698	pte_val(pgtable[1]) = 0;
 699
 700	return pgtable;
 701}
 702
 703void local_flush_pmd_tlb_range(struct vm_area_struct *vma, unsigned long start,
 704			       unsigned long end)
 705{
 706	unsigned int cpu;
 707	unsigned long flags;
 708
 709	local_irq_save(flags);
 710
 711	cpu = smp_processor_id();
 712
 713	if (likely(asid_mm(vma->vm_mm, cpu) != MM_CTXT_NO_ASID)) {
 714		unsigned int asid = hw_pid(vma->vm_mm, cpu);
 715
 716		/* No need to loop here: this will always be for 1 Huge Page */
 717		tlb_entry_erase(start | _PAGE_HW_SZ | asid);
 718	}
 719
 720	local_irq_restore(flags);
 721}
 722
 723#endif
 724
 725/* Read the Cache Build Confuration Registers, Decode them and save into
 726 * the cpuinfo structure for later use.
 727 * No Validation is done here, simply read/convert the BCRs
 728 */
 729void read_decode_mmu_bcr(void)
 730{
 731	struct cpuinfo_arc_mmu *mmu = &cpuinfo_arc700[smp_processor_id()].mmu;
 732	unsigned int tmp;
 733	struct bcr_mmu_1_2 {
 734#ifdef CONFIG_CPU_BIG_ENDIAN
 735		unsigned int ver:8, ways:4, sets:4, u_itlb:8, u_dtlb:8;
 736#else
 737		unsigned int u_dtlb:8, u_itlb:8, sets:4, ways:4, ver:8;
 738#endif
 739	} *mmu2;
 740
 741	struct bcr_mmu_3 {
 742#ifdef CONFIG_CPU_BIG_ENDIAN
 743	unsigned int ver:8, ways:4, sets:4, res:3, sasid:1, pg_sz:4,
 744		     u_itlb:4, u_dtlb:4;
 745#else
 746	unsigned int u_dtlb:4, u_itlb:4, pg_sz:4, sasid:1, res:3, sets:4,
 747		     ways:4, ver:8;
 748#endif
 749	} *mmu3;
 750
 751	struct bcr_mmu_4 {
 752#ifdef CONFIG_CPU_BIG_ENDIAN
 753	unsigned int ver:8, sasid:1, sz1:4, sz0:4, res:2, pae:1,
 754		     n_ways:2, n_entry:2, n_super:2, u_itlb:3, u_dtlb:3;
 755#else
 756	/*           DTLB      ITLB      JES        JE         JA      */
 757	unsigned int u_dtlb:3, u_itlb:3, n_super:2, n_entry:2, n_ways:2,
 758		     pae:1, res:2, sz0:4, sz1:4, sasid:1, ver:8;
 759#endif
 760	} *mmu4;
 761
 762	tmp = read_aux_reg(ARC_REG_MMU_BCR);
 763	mmu->ver = (tmp >> 24);
 764
 765	if (is_isa_arcompact()) {
 766		if (mmu->ver <= 2) {
 767			mmu2 = (struct bcr_mmu_1_2 *)&tmp;
 768			mmu->pg_sz_k = TO_KB(0x2000);
 769			mmu->sets = 1 << mmu2->sets;
 770			mmu->ways = 1 << mmu2->ways;
 771			mmu->u_dtlb = mmu2->u_dtlb;
 772			mmu->u_itlb = mmu2->u_itlb;
 773		} else {
 774			mmu3 = (struct bcr_mmu_3 *)&tmp;
 775			mmu->pg_sz_k = 1 << (mmu3->pg_sz - 1);
 776			mmu->sets = 1 << mmu3->sets;
 777			mmu->ways = 1 << mmu3->ways;
 778			mmu->u_dtlb = mmu3->u_dtlb;
 779			mmu->u_itlb = mmu3->u_itlb;
 780			mmu->sasid = mmu3->sasid;
 781		}
 782	} else {
 783		mmu4 = (struct bcr_mmu_4 *)&tmp;
 784		mmu->pg_sz_k = 1 << (mmu4->sz0 - 1);
 785		mmu->s_pg_sz_m = 1 << (mmu4->sz1 - 11);
 786		mmu->sets = 64 << mmu4->n_entry;
 787		mmu->ways = mmu4->n_ways * 2;
 788		mmu->u_dtlb = mmu4->u_dtlb * 4;
 789		mmu->u_itlb = mmu4->u_itlb * 4;
 790		mmu->sasid = mmu4->sasid;
 791		pae_exists = mmu->pae = mmu4->pae;
 792	}
 
 
 793}
 794
 795char *arc_mmu_mumbojumbo(int cpu_id, char *buf, int len)
 796{
 797	int n = 0;
 798	struct cpuinfo_arc_mmu *p_mmu = &cpuinfo_arc700[cpu_id].mmu;
 799	char super_pg[64] = "";
 800
 801	if (p_mmu->s_pg_sz_m)
 802		scnprintf(super_pg, 64, "%dM Super Page %s",
 803			  p_mmu->s_pg_sz_m,
 804			  IS_USED_CFG(CONFIG_TRANSPARENT_HUGEPAGE));
 805
 806	n += scnprintf(buf + n, len - n,
 807		      "MMU [v%x]\t: %dk PAGE, %sJTLB %d (%dx%d), uDTLB %d, uITLB %d%s%s\n",
 808		       p_mmu->ver, p_mmu->pg_sz_k, super_pg,
 809		       p_mmu->sets * p_mmu->ways, p_mmu->sets, p_mmu->ways,
 810		       p_mmu->u_dtlb, p_mmu->u_itlb,
 811		       IS_AVAIL2(p_mmu->pae, ", PAE40 ", CONFIG_ARC_HAS_PAE40));
 812
 813	return buf;
 814}
 815
 816int pae40_exist_but_not_enab(void)
 817{
 818	return pae_exists && !is_pae40_enabled();
 819}
 820
 821void arc_mmu_init(void)
 822{
 
 823	struct cpuinfo_arc_mmu *mmu = &cpuinfo_arc700[smp_processor_id()].mmu;
 824	char str[256];
 825	int compat = 0;
 826
 827	pr_info("%s", arc_mmu_mumbojumbo(0, str, sizeof(str)));
 828
 829	/*
 830	 * Can't be done in processor.h due to header include depenedencies
 
 
 
 
 
 831	 */
 832	BUILD_BUG_ON(!IS_ALIGNED((CONFIG_ARC_KVADDR_SIZE << 20), PMD_SIZE));
 833
 834	/*
 835	 * stack top size sanity check,
 836	 * Can't be done in processor.h due to header include depenedencies
 837	 */
 838	BUILD_BUG_ON(!IS_ALIGNED(STACK_TOP, PMD_SIZE));
 839
 840	/*
 841	 * Ensure that MMU features assumed by kernel exist in hardware.
 842	 * For older ARC700 cpus, it has to be exact match, since the MMU
 843	 * revisions were not backwards compatible (MMUv3 TLB layout changed
 844	 * so even if kernel for v2 didn't use any new cmds of v3, it would
 845	 * still not work.
 846	 * For HS cpus, MMUv4 was baseline and v5 is backwards compatible
 847	 * (will run older software).
 848	 */
 849	if (is_isa_arcompact() && mmu->ver == CONFIG_ARC_MMU_VER)
 850		compat = 1;
 851	else if (is_isa_arcv2() && mmu->ver >= CONFIG_ARC_MMU_VER)
 852		compat = 1;
 853
 854	if (!compat) {
 855		panic("MMU ver %d doesn't match kernel built for %d...\n",
 856		      mmu->ver, CONFIG_ARC_MMU_VER);
 857	}
 858
 859	if (mmu->pg_sz_k != TO_KB(PAGE_SIZE))
 860		panic("MMU pg size != PAGE_SIZE (%luk)\n", TO_KB(PAGE_SIZE));
 861
 862	if (IS_ENABLED(CONFIG_TRANSPARENT_HUGEPAGE) &&
 863	    mmu->s_pg_sz_m != TO_MB(HPAGE_PMD_SIZE))
 864		panic("MMU Super pg size != Linux HPAGE_PMD_SIZE (%luM)\n",
 865		      (unsigned long)TO_MB(HPAGE_PMD_SIZE));
 866
 867	if (IS_ENABLED(CONFIG_ARC_HAS_PAE40) && !mmu->pae)
 868		panic("Hardware doesn't support PAE40\n");
 869
 870	/* Enable the MMU */
 871	write_aux_reg(ARC_REG_PID, MMU_ENABLE);
 872
 873	/* In smp we use this reg for interrupt 1 scratch */
 874#ifndef CONFIG_SMP
 875	/* swapper_pg_dir is the pgd for the kernel, used by vmalloc */
 876	write_aux_reg(ARC_REG_SCRATCH_DATA0, swapper_pg_dir);
 877#endif
 878
 879	if (pae40_exist_but_not_enab())
 880		write_aux_reg(ARC_REG_TLBPD1HI, 0);
 881}
 882
 883/*
 884 * TLB Programmer's Model uses Linear Indexes: 0 to {255, 511} for 128 x {2,4}
 885 * The mapping is Column-first.
 886 *		---------------------	-----------
 887 *		|way0|way1|way2|way3|	|way0|way1|
 888 *		---------------------	-----------
 889 * [set0]	|  0 |  1 |  2 |  3 |	|  0 |  1 |
 890 * [set1]	|  4 |  5 |  6 |  7 |	|  2 |  3 |
 891 *		~		    ~	~	  ~
 892 * [set127]	| 508| 509| 510| 511|	| 254| 255|
 893 *		---------------------	-----------
 894 * For normal operations we don't(must not) care how above works since
 895 * MMU cmd getIndex(vaddr) abstracts that out.
 896 * However for walking WAYS of a SET, we need to know this
 897 */
 898#define SET_WAY_TO_IDX(mmu, set, way)  ((set) * mmu->ways + (way))
 899
 900/* Handling of Duplicate PD (TLB entry) in MMU.
 901 * -Could be due to buggy customer tapeouts or obscure kernel bugs
 902 * -MMU complaints not at the time of duplicate PD installation, but at the
 903 *      time of lookup matching multiple ways.
 904 * -Ideally these should never happen - but if they do - workaround by deleting
 905 *      the duplicate one.
 906 * -Knob to be verbose abt it.(TODO: hook them up to debugfs)
 907 */
 908volatile int dup_pd_silent; /* Be slient abt it or complain (default) */
 909
 910void do_tlb_overlap_fault(unsigned long cause, unsigned long address,
 911			  struct pt_regs *regs)
 912{
 
 
 913	struct cpuinfo_arc_mmu *mmu = &cpuinfo_arc700[smp_processor_id()].mmu;
 914	unsigned int pd0[mmu->ways];
 915	unsigned long flags;
 916	int set;
 917
 918	local_irq_save(flags);
 919
 
 
 
 920	/* loop thru all sets of TLB */
 921	for (set = 0; set < mmu->sets; set++) {
 922
 923		int is_valid, way;
 924
 925		/* read out all the ways of current set */
 926		for (way = 0, is_valid = 0; way < mmu->ways; way++) {
 927			write_aux_reg(ARC_REG_TLBINDEX,
 928					  SET_WAY_TO_IDX(mmu, set, way));
 929			write_aux_reg(ARC_REG_TLBCOMMAND, TLBRead);
 930			pd0[way] = read_aux_reg(ARC_REG_TLBPD0);
 
 931			is_valid |= pd0[way] & _PAGE_PRESENT;
 932			pd0[way] &= PAGE_MASK;
 933		}
 934
 935		/* If all the WAYS in SET are empty, skip to next SET */
 936		if (!is_valid)
 937			continue;
 938
 939		/* Scan the set for duplicate ways: needs a nested loop */
 940		for (way = 0; way < mmu->ways - 1; way++) {
 941
 942			int n;
 943
 944			if (!pd0[way])
 945				continue;
 946
 947			for (n = way + 1; n < mmu->ways; n++) {
 948				if (pd0[way] != pd0[n])
 949					continue;
 950
 951				if (!dup_pd_silent)
 952					pr_info("Dup TLB PD0 %08x @ set %d ways %d,%d\n",
 953						pd0[way], set, way, n);
 954
 955				/*
 956				 * clear entry @way and not @n.
 957				 * This is critical to our optimised loop
 958				 */
 959				pd0[way] = 0;
 960				write_aux_reg(ARC_REG_TLBINDEX,
 
 
 
 
 961						SET_WAY_TO_IDX(mmu, set, way));
 962				__tlb_entry_erase();
 
 963			}
 964		}
 965	}
 966
 967	local_irq_restore(flags);
 968}
 969
 970/***********************************************************************
 971 * Diagnostic Routines
 972 *  -Called from Low Level TLB Hanlders if things don;t look good
 973 **********************************************************************/
 974
 975#ifdef CONFIG_ARC_DBG_TLB_PARANOIA
 976
 977/*
 978 * Low Level ASM TLB handler calls this if it finds that HW and SW ASIDS
 979 * don't match
 980 */
 981void print_asid_mismatch(int mm_asid, int mmu_asid, int is_fast_path)
 982{
 983	pr_emerg("ASID Mismatch in %s Path Handler: sw-pid=0x%x hw-pid=0x%x\n",
 984	       is_fast_path ? "Fast" : "Slow", mm_asid, mmu_asid);
 985
 986	__asm__ __volatile__("flag 1");
 987}
 988
 989void tlb_paranoid_check(unsigned int mm_asid, unsigned long addr)
 990{
 991	unsigned int mmu_asid;
 992
 993	mmu_asid = read_aux_reg(ARC_REG_PID) & 0xff;
 994
 995	/*
 996	 * At the time of a TLB miss/installation
 997	 *   - HW version needs to match SW version
 998	 *   - SW needs to have a valid ASID
 999	 */
1000	if (addr < 0x70000000 &&
1001	    ((mm_asid == MM_CTXT_NO_ASID) ||
1002	      (mmu_asid != (mm_asid & MM_CTXT_ASID_MASK))))
1003		print_asid_mismatch(mm_asid, mmu_asid, 0);
1004}
1005#endif