Linux Audio

Check our new training course

Loading...
v3.15
  1#include <linux/mm.h>
  2#include <linux/slab.h>
  3#include <linux/string.h>
  4#include <linux/compiler.h>
  5#include <linux/export.h>
  6#include <linux/err.h>
  7#include <linux/sched.h>
 
 
  8#include <linux/security.h>
  9#include <linux/swap.h>
 10#include <linux/swapops.h>
 11#include <linux/mman.h>
 12#include <linux/hugetlb.h>
 13#include <linux/vmalloc.h>
 
 14
 15#include <asm/uaccess.h>
 
 16
 17#include "internal.h"
 18
 19#define CREATE_TRACE_POINTS
 20#include <trace/events/kmem.h>
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 21
 22/**
 23 * kstrdup - allocate space for and copy an existing string
 24 * @s: the string to duplicate
 25 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
 26 */
 27char *kstrdup(const char *s, gfp_t gfp)
 28{
 29	size_t len;
 30	char *buf;
 31
 32	if (!s)
 33		return NULL;
 34
 35	len = strlen(s) + 1;
 36	buf = kmalloc_track_caller(len, gfp);
 37	if (buf)
 38		memcpy(buf, s, len);
 39	return buf;
 40}
 41EXPORT_SYMBOL(kstrdup);
 42
 43/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 44 * kstrndup - allocate space for and copy an existing string
 45 * @s: the string to duplicate
 46 * @max: read at most @max chars from @s
 47 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
 
 
 48 */
 49char *kstrndup(const char *s, size_t max, gfp_t gfp)
 50{
 51	size_t len;
 52	char *buf;
 53
 54	if (!s)
 55		return NULL;
 56
 57	len = strnlen(s, max);
 58	buf = kmalloc_track_caller(len+1, gfp);
 59	if (buf) {
 60		memcpy(buf, s, len);
 61		buf[len] = '\0';
 62	}
 63	return buf;
 64}
 65EXPORT_SYMBOL(kstrndup);
 66
 67/**
 68 * kmemdup - duplicate region of memory
 69 *
 70 * @src: memory region to duplicate
 71 * @len: memory region length
 72 * @gfp: GFP mask to use
 73 */
 74void *kmemdup(const void *src, size_t len, gfp_t gfp)
 75{
 76	void *p;
 77
 78	p = kmalloc_track_caller(len, gfp);
 79	if (p)
 80		memcpy(p, src, len);
 81	return p;
 82}
 83EXPORT_SYMBOL(kmemdup);
 84
 85/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 86 * memdup_user - duplicate memory region from user space
 87 *
 88 * @src: source address in user space
 89 * @len: number of bytes to copy
 90 *
 91 * Returns an ERR_PTR() on failure.
 
 92 */
 93void *memdup_user(const void __user *src, size_t len)
 94{
 95	void *p;
 96
 97	/*
 98	 * Always use GFP_KERNEL, since copy_from_user() can sleep and
 99	 * cause pagefault, which makes it pointless to use GFP_NOFS
100	 * or GFP_ATOMIC.
101	 */
102	p = kmalloc_track_caller(len, GFP_KERNEL);
103	if (!p)
104		return ERR_PTR(-ENOMEM);
105
106	if (copy_from_user(p, src, len)) {
107		kfree(p);
108		return ERR_PTR(-EFAULT);
109	}
110
111	return p;
112}
113EXPORT_SYMBOL(memdup_user);
114
115static __always_inline void *__do_krealloc(const void *p, size_t new_size,
116					   gfp_t flags)
117{
118	void *ret;
119	size_t ks = 0;
120
121	if (p)
122		ks = ksize(p);
123
124	if (ks >= new_size)
125		return (void *)p;
126
127	ret = kmalloc_track_caller(new_size, flags);
128	if (ret && p)
129		memcpy(ret, p, ks);
130
131	return ret;
132}
133
134/**
135 * __krealloc - like krealloc() but don't free @p.
136 * @p: object to reallocate memory for.
137 * @new_size: how many bytes of memory are required.
138 * @flags: the type of memory to allocate.
139 *
140 * This function is like krealloc() except it never frees the originally
141 * allocated buffer. Use this if you don't want to free the buffer immediately
142 * like, for example, with RCU.
143 */
144void *__krealloc(const void *p, size_t new_size, gfp_t flags)
145{
146	if (unlikely(!new_size))
147		return ZERO_SIZE_PTR;
148
149	return __do_krealloc(p, new_size, flags);
150
151}
152EXPORT_SYMBOL(__krealloc);
153
154/**
155 * krealloc - reallocate memory. The contents will remain unchanged.
156 * @p: object to reallocate memory for.
157 * @new_size: how many bytes of memory are required.
158 * @flags: the type of memory to allocate.
159 *
160 * The contents of the object pointed to are preserved up to the
161 * lesser of the new and old sizes.  If @p is %NULL, krealloc()
162 * behaves exactly like kmalloc().  If @new_size is 0 and @p is not a
163 * %NULL pointer, the object pointed to is freed.
164 */
165void *krealloc(const void *p, size_t new_size, gfp_t flags)
166{
167	void *ret;
168
169	if (unlikely(!new_size)) {
170		kfree(p);
171		return ZERO_SIZE_PTR;
172	}
173
174	ret = __do_krealloc(p, new_size, flags);
175	if (ret && p != ret)
176		kfree(p);
177
178	return ret;
179}
180EXPORT_SYMBOL(krealloc);
181
182/**
183 * kzfree - like kfree but zero memory
184 * @p: object to free memory of
185 *
186 * The memory of the object @p points to is zeroed before freed.
187 * If @p is %NULL, kzfree() does nothing.
188 *
189 * Note: this function zeroes the whole allocated buffer which can be a good
190 * deal bigger than the requested buffer size passed to kmalloc(). So be
191 * careful when using this function in performance sensitive code.
192 */
193void kzfree(const void *p)
194{
195	size_t ks;
196	void *mem = (void *)p;
197
198	if (unlikely(ZERO_OR_NULL_PTR(mem)))
199		return;
200	ks = ksize(mem);
201	memset(mem, 0, ks);
202	kfree(mem);
203}
204EXPORT_SYMBOL(kzfree);
205
206/*
207 * strndup_user - duplicate an existing string from user space
208 * @s: The string to duplicate
209 * @n: Maximum number of bytes to copy, including the trailing NUL.
210 */
211char *strndup_user(const char __user *s, long n)
212{
213	char *p;
214	long length;
215
216	length = strnlen_user(s, n);
217
218	if (!length)
219		return ERR_PTR(-EFAULT);
220
221	if (length > n)
222		return ERR_PTR(-EINVAL);
223
224	p = memdup_user(s, length);
225
226	if (IS_ERR(p))
227		return p;
228
229	p[length - 1] = '\0';
230
231	return p;
232}
233EXPORT_SYMBOL(strndup_user);
234
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
235void __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma,
236		struct vm_area_struct *prev, struct rb_node *rb_parent)
237{
238	struct vm_area_struct *next;
239
240	vma->vm_prev = prev;
241	if (prev) {
242		next = prev->vm_next;
243		prev->vm_next = vma;
244	} else {
245		mm->mmap = vma;
246		if (rb_parent)
247			next = rb_entry(rb_parent,
248					struct vm_area_struct, vm_rb);
249		else
250			next = NULL;
251	}
252	vma->vm_next = next;
253	if (next)
254		next->vm_prev = vma;
255}
256
257/* Check if the vma is being used as a stack by this task */
258static int vm_is_stack_for_task(struct task_struct *t,
259				struct vm_area_struct *vma)
260{
261	return (vma->vm_start <= KSTK_ESP(t) && vma->vm_end >= KSTK_ESP(t));
262}
263
264/*
265 * Check if the vma is being used as a stack.
266 * If is_group is non-zero, check in the entire thread group or else
267 * just check in the current task. Returns the pid of the task that
268 * the vma is stack for.
269 */
270pid_t vm_is_stack(struct task_struct *task,
271		  struct vm_area_struct *vma, int in_group)
272{
273	pid_t ret = 0;
274
275	if (vm_is_stack_for_task(task, vma))
276		return task->pid;
277
278	if (in_group) {
279		struct task_struct *t;
280		rcu_read_lock();
281		if (!pid_alive(task))
282			goto done;
283
284		t = task;
285		do {
286			if (vm_is_stack_for_task(t, vma)) {
287				ret = t->pid;
288				goto done;
289			}
290		} while_each_thread(task, t);
291done:
292		rcu_read_unlock();
293	}
294
295	return ret;
296}
297
298#if defined(CONFIG_MMU) && !defined(HAVE_ARCH_PICK_MMAP_LAYOUT)
299void arch_pick_mmap_layout(struct mm_struct *mm)
300{
301	mm->mmap_base = TASK_UNMAPPED_BASE;
302	mm->get_unmapped_area = arch_get_unmapped_area;
303}
304#endif
305
306/*
307 * Like get_user_pages_fast() except its IRQ-safe in that it won't fall
308 * back to the regular GUP.
309 * If the architecture not support this function, simply return with no
310 * page pinned
 
 
311 */
312int __weak __get_user_pages_fast(unsigned long start,
313				 int nr_pages, int write, struct page **pages)
314{
315	return 0;
316}
317EXPORT_SYMBOL_GPL(__get_user_pages_fast);
318
319/**
320 * get_user_pages_fast() - pin user pages in memory
321 * @start:	starting user address
322 * @nr_pages:	number of pages from start to pin
323 * @write:	whether pages will be written to
324 * @pages:	array that receives pointers to the pages pinned.
325 *		Should be at least nr_pages long.
326 *
327 * Returns number of pages pinned. This may be fewer than the number
328 * requested. If nr_pages is 0 or negative, returns 0. If no pages
329 * were pinned, returns -errno.
330 *
331 * get_user_pages_fast provides equivalent functionality to get_user_pages,
332 * operating on current and current->mm, with force=0 and vma=NULL. However
333 * unlike get_user_pages, it must be called without mmap_sem held.
334 *
335 * get_user_pages_fast may take mmap_sem and page table locks, so no
336 * assumptions can be made about lack of locking. get_user_pages_fast is to be
337 * implemented in a way that is advantageous (vs get_user_pages()) when the
338 * user memory area is already faulted in and present in ptes. However if the
339 * pages have to be faulted in, it may turn out to be slightly slower so
340 * callers need to carefully consider what to use. On many architectures,
341 * get_user_pages_fast simply falls back to get_user_pages.
342 */
343int __weak get_user_pages_fast(unsigned long start,
344				int nr_pages, int write, struct page **pages)
345{
346	struct mm_struct *mm = current->mm;
347	int ret;
348
349	down_read(&mm->mmap_sem);
350	ret = get_user_pages(current, mm, start, nr_pages,
351					write, 0, pages, NULL);
352	up_read(&mm->mmap_sem);
353
354	return ret;
355}
356EXPORT_SYMBOL_GPL(get_user_pages_fast);
357
358unsigned long vm_mmap_pgoff(struct file *file, unsigned long addr,
359	unsigned long len, unsigned long prot,
360	unsigned long flag, unsigned long pgoff)
361{
362	unsigned long ret;
363	struct mm_struct *mm = current->mm;
364	unsigned long populate;
 
365
366	ret = security_mmap_file(file, prot, flag);
367	if (!ret) {
368		down_write(&mm->mmap_sem);
 
369		ret = do_mmap_pgoff(file, addr, len, prot, flag, pgoff,
370				    &populate);
371		up_write(&mm->mmap_sem);
 
372		if (populate)
373			mm_populate(ret, populate);
374	}
375	return ret;
376}
377
378unsigned long vm_mmap(struct file *file, unsigned long addr,
379	unsigned long len, unsigned long prot,
380	unsigned long flag, unsigned long offset)
381{
382	if (unlikely(offset + PAGE_ALIGN(len) < offset))
383		return -EINVAL;
384	if (unlikely(offset & ~PAGE_MASK))
385		return -EINVAL;
386
387	return vm_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
388}
389EXPORT_SYMBOL(vm_mmap);
390
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
391void kvfree(const void *addr)
392{
393	if (is_vmalloc_addr(addr))
394		vfree(addr);
395	else
396		kfree(addr);
397}
398EXPORT_SYMBOL(kvfree);
399
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
400struct address_space *page_mapping(struct page *page)
401{
402	struct address_space *mapping = page->mapping;
 
 
403
404	/* This happens if someone calls flush_dcache_page on slab page */
405	if (unlikely(PageSlab(page)))
406		return NULL;
407
408	if (unlikely(PageSwapCache(page))) {
409		swp_entry_t entry;
410
411		entry.val = page_private(page);
412		mapping = swap_address_space(entry);
413	} else if ((unsigned long)mapping & PAGE_MAPPING_ANON)
414		mapping = NULL;
415	return mapping;
 
 
 
 
416}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
417
418int overcommit_ratio_handler(struct ctl_table *table, int write,
419			     void __user *buffer, size_t *lenp,
420			     loff_t *ppos)
421{
422	int ret;
423
424	ret = proc_dointvec(table, write, buffer, lenp, ppos);
425	if (ret == 0 && write)
426		sysctl_overcommit_kbytes = 0;
427	return ret;
428}
429
430int overcommit_kbytes_handler(struct ctl_table *table, int write,
431			     void __user *buffer, size_t *lenp,
432			     loff_t *ppos)
433{
434	int ret;
435
436	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
437	if (ret == 0 && write)
438		sysctl_overcommit_ratio = 0;
439	return ret;
440}
441
442/*
443 * Committed memory limit enforced when OVERCOMMIT_NEVER policy is used
444 */
445unsigned long vm_commit_limit(void)
446{
447	unsigned long allowed;
448
449	if (sysctl_overcommit_kbytes)
450		allowed = sysctl_overcommit_kbytes >> (PAGE_SHIFT - 10);
451	else
452		allowed = ((totalram_pages - hugetlb_total_pages())
453			   * sysctl_overcommit_ratio / 100);
454	allowed += total_swap_pages;
455
456	return allowed;
457}
458
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
459/**
460 * get_cmdline() - copy the cmdline value to a buffer.
461 * @task:     the task whose cmdline value to copy.
462 * @buffer:   the buffer to copy to.
463 * @buflen:   the length of the buffer. Larger cmdline values are truncated
464 *            to this length.
465 * Returns the size of the cmdline field copied. Note that the copy does
466 * not guarantee an ending NULL byte.
467 */
468int get_cmdline(struct task_struct *task, char *buffer, int buflen)
469{
470	int res = 0;
471	unsigned int len;
472	struct mm_struct *mm = get_task_mm(task);
 
473	if (!mm)
474		goto out;
475	if (!mm->arg_end)
476		goto out_mm;	/* Shh! No looking before we're done */
477
478	len = mm->arg_end - mm->arg_start;
 
 
 
 
 
 
 
479
480	if (len > buflen)
481		len = buflen;
482
483	res = access_process_vm(task, mm->arg_start, buffer, len, 0);
484
485	/*
486	 * If the nul at the end of args has been overwritten, then
487	 * assume application is using setproctitle(3).
488	 */
489	if (res > 0 && buffer[res-1] != '\0' && len < buflen) {
490		len = strnlen(buffer, res);
491		if (len < res) {
492			res = len;
493		} else {
494			len = mm->env_end - mm->env_start;
495			if (len > buflen - res)
496				len = buflen - res;
497			res += access_process_vm(task, mm->env_start,
498						 buffer+res, len, 0);
 
499			res = strnlen(buffer, res);
500		}
501	}
502out_mm:
503	mmput(mm);
504out:
505	return res;
506}
507
508/* Tracepoints definitions. */
509EXPORT_TRACEPOINT_SYMBOL(kmalloc);
510EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc);
511EXPORT_TRACEPOINT_SYMBOL(kmalloc_node);
512EXPORT_TRACEPOINT_SYMBOL(kmem_cache_alloc_node);
513EXPORT_TRACEPOINT_SYMBOL(kfree);
514EXPORT_TRACEPOINT_SYMBOL(kmem_cache_free);
v4.17
  1#include <linux/mm.h>
  2#include <linux/slab.h>
  3#include <linux/string.h>
  4#include <linux/compiler.h>
  5#include <linux/export.h>
  6#include <linux/err.h>
  7#include <linux/sched.h>
  8#include <linux/sched/mm.h>
  9#include <linux/sched/task_stack.h>
 10#include <linux/security.h>
 11#include <linux/swap.h>
 12#include <linux/swapops.h>
 13#include <linux/mman.h>
 14#include <linux/hugetlb.h>
 15#include <linux/vmalloc.h>
 16#include <linux/userfaultfd_k.h>
 17
 18#include <asm/sections.h>
 19#include <linux/uaccess.h>
 20
 21#include "internal.h"
 22
 23static inline int is_kernel_rodata(unsigned long addr)
 24{
 25	return addr >= (unsigned long)__start_rodata &&
 26		addr < (unsigned long)__end_rodata;
 27}
 28
 29/**
 30 * kfree_const - conditionally free memory
 31 * @x: pointer to the memory
 32 *
 33 * Function calls kfree only if @x is not in .rodata section.
 34 */
 35void kfree_const(const void *x)
 36{
 37	if (!is_kernel_rodata((unsigned long)x))
 38		kfree(x);
 39}
 40EXPORT_SYMBOL(kfree_const);
 41
 42/**
 43 * kstrdup - allocate space for and copy an existing string
 44 * @s: the string to duplicate
 45 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
 46 */
 47char *kstrdup(const char *s, gfp_t gfp)
 48{
 49	size_t len;
 50	char *buf;
 51
 52	if (!s)
 53		return NULL;
 54
 55	len = strlen(s) + 1;
 56	buf = kmalloc_track_caller(len, gfp);
 57	if (buf)
 58		memcpy(buf, s, len);
 59	return buf;
 60}
 61EXPORT_SYMBOL(kstrdup);
 62
 63/**
 64 * kstrdup_const - conditionally duplicate an existing const string
 65 * @s: the string to duplicate
 66 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
 67 *
 68 * Function returns source string if it is in .rodata section otherwise it
 69 * fallbacks to kstrdup.
 70 * Strings allocated by kstrdup_const should be freed by kfree_const.
 71 */
 72const char *kstrdup_const(const char *s, gfp_t gfp)
 73{
 74	if (is_kernel_rodata((unsigned long)s))
 75		return s;
 76
 77	return kstrdup(s, gfp);
 78}
 79EXPORT_SYMBOL(kstrdup_const);
 80
 81/**
 82 * kstrndup - allocate space for and copy an existing string
 83 * @s: the string to duplicate
 84 * @max: read at most @max chars from @s
 85 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
 86 *
 87 * Note: Use kmemdup_nul() instead if the size is known exactly.
 88 */
 89char *kstrndup(const char *s, size_t max, gfp_t gfp)
 90{
 91	size_t len;
 92	char *buf;
 93
 94	if (!s)
 95		return NULL;
 96
 97	len = strnlen(s, max);
 98	buf = kmalloc_track_caller(len+1, gfp);
 99	if (buf) {
100		memcpy(buf, s, len);
101		buf[len] = '\0';
102	}
103	return buf;
104}
105EXPORT_SYMBOL(kstrndup);
106
107/**
108 * kmemdup - duplicate region of memory
109 *
110 * @src: memory region to duplicate
111 * @len: memory region length
112 * @gfp: GFP mask to use
113 */
114void *kmemdup(const void *src, size_t len, gfp_t gfp)
115{
116	void *p;
117
118	p = kmalloc_track_caller(len, gfp);
119	if (p)
120		memcpy(p, src, len);
121	return p;
122}
123EXPORT_SYMBOL(kmemdup);
124
125/**
126 * kmemdup_nul - Create a NUL-terminated string from unterminated data
127 * @s: The data to stringify
128 * @len: The size of the data
129 * @gfp: the GFP mask used in the kmalloc() call when allocating memory
130 */
131char *kmemdup_nul(const char *s, size_t len, gfp_t gfp)
132{
133	char *buf;
134
135	if (!s)
136		return NULL;
137
138	buf = kmalloc_track_caller(len + 1, gfp);
139	if (buf) {
140		memcpy(buf, s, len);
141		buf[len] = '\0';
142	}
143	return buf;
144}
145EXPORT_SYMBOL(kmemdup_nul);
146
147/**
148 * memdup_user - duplicate memory region from user space
149 *
150 * @src: source address in user space
151 * @len: number of bytes to copy
152 *
153 * Returns an ERR_PTR() on failure.  Result is physically
154 * contiguous, to be freed by kfree().
155 */
156void *memdup_user(const void __user *src, size_t len)
157{
158	void *p;
159
160	p = kmalloc_track_caller(len, GFP_USER);
 
 
 
 
 
161	if (!p)
162		return ERR_PTR(-ENOMEM);
163
164	if (copy_from_user(p, src, len)) {
165		kfree(p);
166		return ERR_PTR(-EFAULT);
167	}
168
169	return p;
170}
171EXPORT_SYMBOL(memdup_user);
172
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
173/**
174 * vmemdup_user - duplicate memory region from user space
 
 
 
175 *
176 * @src: source address in user space
177 * @len: number of bytes to copy
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
178 *
179 * Returns an ERR_PTR() on failure.  Result may be not
180 * physically contiguous.  Use kvfree() to free.
 
 
181 */
182void *vmemdup_user(const void __user *src, size_t len)
183{
184	void *p;
 
 
 
 
 
 
 
 
 
185
186	p = kvmalloc(len, GFP_USER);
187	if (!p)
188		return ERR_PTR(-ENOMEM);
189
190	if (copy_from_user(p, src, len)) {
191		kvfree(p);
192		return ERR_PTR(-EFAULT);
193	}
 
 
 
 
 
 
 
 
 
 
 
194
195	return p;
 
 
 
 
196}
197EXPORT_SYMBOL(vmemdup_user);
198
199/*
200 * strndup_user - duplicate an existing string from user space
201 * @s: The string to duplicate
202 * @n: Maximum number of bytes to copy, including the trailing NUL.
203 */
204char *strndup_user(const char __user *s, long n)
205{
206	char *p;
207	long length;
208
209	length = strnlen_user(s, n);
210
211	if (!length)
212		return ERR_PTR(-EFAULT);
213
214	if (length > n)
215		return ERR_PTR(-EINVAL);
216
217	p = memdup_user(s, length);
218
219	if (IS_ERR(p))
220		return p;
221
222	p[length - 1] = '\0';
223
224	return p;
225}
226EXPORT_SYMBOL(strndup_user);
227
228/**
229 * memdup_user_nul - duplicate memory region from user space and NUL-terminate
230 *
231 * @src: source address in user space
232 * @len: number of bytes to copy
233 *
234 * Returns an ERR_PTR() on failure.
235 */
236void *memdup_user_nul(const void __user *src, size_t len)
237{
238	char *p;
239
240	/*
241	 * Always use GFP_KERNEL, since copy_from_user() can sleep and
242	 * cause pagefault, which makes it pointless to use GFP_NOFS
243	 * or GFP_ATOMIC.
244	 */
245	p = kmalloc_track_caller(len + 1, GFP_KERNEL);
246	if (!p)
247		return ERR_PTR(-ENOMEM);
248
249	if (copy_from_user(p, src, len)) {
250		kfree(p);
251		return ERR_PTR(-EFAULT);
252	}
253	p[len] = '\0';
254
255	return p;
256}
257EXPORT_SYMBOL(memdup_user_nul);
258
259void __vma_link_list(struct mm_struct *mm, struct vm_area_struct *vma,
260		struct vm_area_struct *prev, struct rb_node *rb_parent)
261{
262	struct vm_area_struct *next;
263
264	vma->vm_prev = prev;
265	if (prev) {
266		next = prev->vm_next;
267		prev->vm_next = vma;
268	} else {
269		mm->mmap = vma;
270		if (rb_parent)
271			next = rb_entry(rb_parent,
272					struct vm_area_struct, vm_rb);
273		else
274			next = NULL;
275	}
276	vma->vm_next = next;
277	if (next)
278		next->vm_prev = vma;
279}
280
281/* Check if the vma is being used as a stack by this task */
282int vma_is_stack_for_current(struct vm_area_struct *vma)
 
283{
284	struct task_struct * __maybe_unused t = current;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
285
286	return (vma->vm_start <= KSTK_ESP(t) && vma->vm_end >= KSTK_ESP(t));
287}
288
289#if defined(CONFIG_MMU) && !defined(HAVE_ARCH_PICK_MMAP_LAYOUT)
290void arch_pick_mmap_layout(struct mm_struct *mm, struct rlimit *rlim_stack)
291{
292	mm->mmap_base = TASK_UNMAPPED_BASE;
293	mm->get_unmapped_area = arch_get_unmapped_area;
294}
295#endif
296
297/*
298 * Like get_user_pages_fast() except its IRQ-safe in that it won't fall
299 * back to the regular GUP.
300 * Note a difference with get_user_pages_fast: this always returns the
301 * number of pages pinned, 0 if no pages were pinned.
302 * If the architecture does not support this function, simply return with no
303 * pages pinned.
304 */
305int __weak __get_user_pages_fast(unsigned long start,
306				 int nr_pages, int write, struct page **pages)
307{
308	return 0;
309}
310EXPORT_SYMBOL_GPL(__get_user_pages_fast);
311
312/**
313 * get_user_pages_fast() - pin user pages in memory
314 * @start:	starting user address
315 * @nr_pages:	number of pages from start to pin
316 * @write:	whether pages will be written to
317 * @pages:	array that receives pointers to the pages pinned.
318 *		Should be at least nr_pages long.
319 *
320 * Returns number of pages pinned. This may be fewer than the number
321 * requested. If nr_pages is 0 or negative, returns 0. If no pages
322 * were pinned, returns -errno.
323 *
324 * get_user_pages_fast provides equivalent functionality to get_user_pages,
325 * operating on current and current->mm, with force=0 and vma=NULL. However
326 * unlike get_user_pages, it must be called without mmap_sem held.
327 *
328 * get_user_pages_fast may take mmap_sem and page table locks, so no
329 * assumptions can be made about lack of locking. get_user_pages_fast is to be
330 * implemented in a way that is advantageous (vs get_user_pages()) when the
331 * user memory area is already faulted in and present in ptes. However if the
332 * pages have to be faulted in, it may turn out to be slightly slower so
333 * callers need to carefully consider what to use. On many architectures,
334 * get_user_pages_fast simply falls back to get_user_pages.
335 */
336int __weak get_user_pages_fast(unsigned long start,
337				int nr_pages, int write, struct page **pages)
338{
339	return get_user_pages_unlocked(start, nr_pages, pages,
340				       write ? FOLL_WRITE : 0);
 
 
 
 
 
 
 
341}
342EXPORT_SYMBOL_GPL(get_user_pages_fast);
343
344unsigned long vm_mmap_pgoff(struct file *file, unsigned long addr,
345	unsigned long len, unsigned long prot,
346	unsigned long flag, unsigned long pgoff)
347{
348	unsigned long ret;
349	struct mm_struct *mm = current->mm;
350	unsigned long populate;
351	LIST_HEAD(uf);
352
353	ret = security_mmap_file(file, prot, flag);
354	if (!ret) {
355		if (down_write_killable(&mm->mmap_sem))
356			return -EINTR;
357		ret = do_mmap_pgoff(file, addr, len, prot, flag, pgoff,
358				    &populate, &uf);
359		up_write(&mm->mmap_sem);
360		userfaultfd_unmap_complete(mm, &uf);
361		if (populate)
362			mm_populate(ret, populate);
363	}
364	return ret;
365}
366
367unsigned long vm_mmap(struct file *file, unsigned long addr,
368	unsigned long len, unsigned long prot,
369	unsigned long flag, unsigned long offset)
370{
371	if (unlikely(offset + PAGE_ALIGN(len) < offset))
372		return -EINVAL;
373	if (unlikely(offset_in_page(offset)))
374		return -EINVAL;
375
376	return vm_mmap_pgoff(file, addr, len, prot, flag, offset >> PAGE_SHIFT);
377}
378EXPORT_SYMBOL(vm_mmap);
379
380/**
381 * kvmalloc_node - attempt to allocate physically contiguous memory, but upon
382 * failure, fall back to non-contiguous (vmalloc) allocation.
383 * @size: size of the request.
384 * @flags: gfp mask for the allocation - must be compatible (superset) with GFP_KERNEL.
385 * @node: numa node to allocate from
386 *
387 * Uses kmalloc to get the memory but if the allocation fails then falls back
388 * to the vmalloc allocator. Use kvfree for freeing the memory.
389 *
390 * Reclaim modifiers - __GFP_NORETRY and __GFP_NOFAIL are not supported.
391 * __GFP_RETRY_MAYFAIL is supported, and it should be used only if kmalloc is
392 * preferable to the vmalloc fallback, due to visible performance drawbacks.
393 *
394 * Any use of gfp flags outside of GFP_KERNEL should be consulted with mm people.
395 */
396void *kvmalloc_node(size_t size, gfp_t flags, int node)
397{
398	gfp_t kmalloc_flags = flags;
399	void *ret;
400
401	/*
402	 * vmalloc uses GFP_KERNEL for some internal allocations (e.g page tables)
403	 * so the given set of flags has to be compatible.
404	 */
405	WARN_ON_ONCE((flags & GFP_KERNEL) != GFP_KERNEL);
406
407	/*
408	 * We want to attempt a large physically contiguous block first because
409	 * it is less likely to fragment multiple larger blocks and therefore
410	 * contribute to a long term fragmentation less than vmalloc fallback.
411	 * However make sure that larger requests are not too disruptive - no
412	 * OOM killer and no allocation failure warnings as we have a fallback.
413	 */
414	if (size > PAGE_SIZE) {
415		kmalloc_flags |= __GFP_NOWARN;
416
417		if (!(kmalloc_flags & __GFP_RETRY_MAYFAIL))
418			kmalloc_flags |= __GFP_NORETRY;
419	}
420
421	ret = kmalloc_node(size, kmalloc_flags, node);
422
423	/*
424	 * It doesn't really make sense to fallback to vmalloc for sub page
425	 * requests
426	 */
427	if (ret || size <= PAGE_SIZE)
428		return ret;
429
430	return __vmalloc_node_flags_caller(size, node, flags,
431			__builtin_return_address(0));
432}
433EXPORT_SYMBOL(kvmalloc_node);
434
435void kvfree(const void *addr)
436{
437	if (is_vmalloc_addr(addr))
438		vfree(addr);
439	else
440		kfree(addr);
441}
442EXPORT_SYMBOL(kvfree);
443
444static inline void *__page_rmapping(struct page *page)
445{
446	unsigned long mapping;
447
448	mapping = (unsigned long)page->mapping;
449	mapping &= ~PAGE_MAPPING_FLAGS;
450
451	return (void *)mapping;
452}
453
454/* Neutral page->mapping pointer to address_space or anon_vma or other */
455void *page_rmapping(struct page *page)
456{
457	page = compound_head(page);
458	return __page_rmapping(page);
459}
460
461/*
462 * Return true if this page is mapped into pagetables.
463 * For compound page it returns true if any subpage of compound page is mapped.
464 */
465bool page_mapped(struct page *page)
466{
467	int i;
468
469	if (likely(!PageCompound(page)))
470		return atomic_read(&page->_mapcount) >= 0;
471	page = compound_head(page);
472	if (atomic_read(compound_mapcount_ptr(page)) >= 0)
473		return true;
474	if (PageHuge(page))
475		return false;
476	for (i = 0; i < hpage_nr_pages(page); i++) {
477		if (atomic_read(&page[i]._mapcount) >= 0)
478			return true;
479	}
480	return false;
481}
482EXPORT_SYMBOL(page_mapped);
483
484struct anon_vma *page_anon_vma(struct page *page)
485{
486	unsigned long mapping;
487
488	page = compound_head(page);
489	mapping = (unsigned long)page->mapping;
490	if ((mapping & PAGE_MAPPING_FLAGS) != PAGE_MAPPING_ANON)
491		return NULL;
492	return __page_rmapping(page);
493}
494
495struct address_space *page_mapping(struct page *page)
496{
497	struct address_space *mapping;
498
499	page = compound_head(page);
500
501	/* This happens if someone calls flush_dcache_page on slab page */
502	if (unlikely(PageSlab(page)))
503		return NULL;
504
505	if (unlikely(PageSwapCache(page))) {
506		swp_entry_t entry;
507
508		entry.val = page_private(page);
509		return swap_address_space(entry);
510	}
511
512	mapping = page->mapping;
513	if ((unsigned long)mapping & PAGE_MAPPING_ANON)
514		return NULL;
515
516	return (void *)((unsigned long)mapping & ~PAGE_MAPPING_FLAGS);
517}
518EXPORT_SYMBOL(page_mapping);
519
520/*
521 * For file cache pages, return the address_space, otherwise return NULL
522 */
523struct address_space *page_mapping_file(struct page *page)
524{
525	if (unlikely(PageSwapCache(page)))
526		return NULL;
527	return page_mapping(page);
528}
529
530/* Slow path of page_mapcount() for compound pages */
531int __page_mapcount(struct page *page)
532{
533	int ret;
534
535	ret = atomic_read(&page->_mapcount) + 1;
536	/*
537	 * For file THP page->_mapcount contains total number of mapping
538	 * of the page: no need to look into compound_mapcount.
539	 */
540	if (!PageAnon(page) && !PageHuge(page))
541		return ret;
542	page = compound_head(page);
543	ret += atomic_read(compound_mapcount_ptr(page)) + 1;
544	if (PageDoubleMap(page))
545		ret--;
546	return ret;
547}
548EXPORT_SYMBOL_GPL(__page_mapcount);
549
550int sysctl_overcommit_memory __read_mostly = OVERCOMMIT_GUESS;
551int sysctl_overcommit_ratio __read_mostly = 50;
552unsigned long sysctl_overcommit_kbytes __read_mostly;
553int sysctl_max_map_count __read_mostly = DEFAULT_MAX_MAP_COUNT;
554unsigned long sysctl_user_reserve_kbytes __read_mostly = 1UL << 17; /* 128MB */
555unsigned long sysctl_admin_reserve_kbytes __read_mostly = 1UL << 13; /* 8MB */
556
557int overcommit_ratio_handler(struct ctl_table *table, int write,
558			     void __user *buffer, size_t *lenp,
559			     loff_t *ppos)
560{
561	int ret;
562
563	ret = proc_dointvec(table, write, buffer, lenp, ppos);
564	if (ret == 0 && write)
565		sysctl_overcommit_kbytes = 0;
566	return ret;
567}
568
569int overcommit_kbytes_handler(struct ctl_table *table, int write,
570			     void __user *buffer, size_t *lenp,
571			     loff_t *ppos)
572{
573	int ret;
574
575	ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
576	if (ret == 0 && write)
577		sysctl_overcommit_ratio = 0;
578	return ret;
579}
580
581/*
582 * Committed memory limit enforced when OVERCOMMIT_NEVER policy is used
583 */
584unsigned long vm_commit_limit(void)
585{
586	unsigned long allowed;
587
588	if (sysctl_overcommit_kbytes)
589		allowed = sysctl_overcommit_kbytes >> (PAGE_SHIFT - 10);
590	else
591		allowed = ((totalram_pages - hugetlb_total_pages())
592			   * sysctl_overcommit_ratio / 100);
593	allowed += total_swap_pages;
594
595	return allowed;
596}
597
598/*
599 * Make sure vm_committed_as in one cacheline and not cacheline shared with
600 * other variables. It can be updated by several CPUs frequently.
601 */
602struct percpu_counter vm_committed_as ____cacheline_aligned_in_smp;
603
604/*
605 * The global memory commitment made in the system can be a metric
606 * that can be used to drive ballooning decisions when Linux is hosted
607 * as a guest. On Hyper-V, the host implements a policy engine for dynamically
608 * balancing memory across competing virtual machines that are hosted.
609 * Several metrics drive this policy engine including the guest reported
610 * memory commitment.
611 */
612unsigned long vm_memory_committed(void)
613{
614	return percpu_counter_read_positive(&vm_committed_as);
615}
616EXPORT_SYMBOL_GPL(vm_memory_committed);
617
618/*
619 * Check that a process has enough memory to allocate a new virtual
620 * mapping. 0 means there is enough memory for the allocation to
621 * succeed and -ENOMEM implies there is not.
622 *
623 * We currently support three overcommit policies, which are set via the
624 * vm.overcommit_memory sysctl.  See Documentation/vm/overcommit-accounting
625 *
626 * Strict overcommit modes added 2002 Feb 26 by Alan Cox.
627 * Additional code 2002 Jul 20 by Robert Love.
628 *
629 * cap_sys_admin is 1 if the process has admin privileges, 0 otherwise.
630 *
631 * Note this is a helper function intended to be used by LSMs which
632 * wish to use this logic.
633 */
634int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin)
635{
636	long free, allowed, reserve;
637
638	VM_WARN_ONCE(percpu_counter_read(&vm_committed_as) <
639			-(s64)vm_committed_as_batch * num_online_cpus(),
640			"memory commitment underflow");
641
642	vm_acct_memory(pages);
643
644	/*
645	 * Sometimes we want to use more memory than we have
646	 */
647	if (sysctl_overcommit_memory == OVERCOMMIT_ALWAYS)
648		return 0;
649
650	if (sysctl_overcommit_memory == OVERCOMMIT_GUESS) {
651		free = global_zone_page_state(NR_FREE_PAGES);
652		free += global_node_page_state(NR_FILE_PAGES);
653
654		/*
655		 * shmem pages shouldn't be counted as free in this
656		 * case, they can't be purged, only swapped out, and
657		 * that won't affect the overall amount of available
658		 * memory in the system.
659		 */
660		free -= global_node_page_state(NR_SHMEM);
661
662		free += get_nr_swap_pages();
663
664		/*
665		 * Any slabs which are created with the
666		 * SLAB_RECLAIM_ACCOUNT flag claim to have contents
667		 * which are reclaimable, under pressure.  The dentry
668		 * cache and most inode caches should fall into this
669		 */
670		free += global_node_page_state(NR_SLAB_RECLAIMABLE);
671
672		/*
673		 * Part of the kernel memory, which can be released
674		 * under memory pressure.
675		 */
676		free += global_node_page_state(
677			NR_INDIRECTLY_RECLAIMABLE_BYTES) >> PAGE_SHIFT;
678
679		/*
680		 * Leave reserved pages. The pages are not for anonymous pages.
681		 */
682		if (free <= totalreserve_pages)
683			goto error;
684		else
685			free -= totalreserve_pages;
686
687		/*
688		 * Reserve some for root
689		 */
690		if (!cap_sys_admin)
691			free -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
692
693		if (free > pages)
694			return 0;
695
696		goto error;
697	}
698
699	allowed = vm_commit_limit();
700	/*
701	 * Reserve some for root
702	 */
703	if (!cap_sys_admin)
704		allowed -= sysctl_admin_reserve_kbytes >> (PAGE_SHIFT - 10);
705
706	/*
707	 * Don't let a single process grow so big a user can't recover
708	 */
709	if (mm) {
710		reserve = sysctl_user_reserve_kbytes >> (PAGE_SHIFT - 10);
711		allowed -= min_t(long, mm->total_vm / 32, reserve);
712	}
713
714	if (percpu_counter_read_positive(&vm_committed_as) < allowed)
715		return 0;
716error:
717	vm_unacct_memory(pages);
718
719	return -ENOMEM;
720}
721
722/**
723 * get_cmdline() - copy the cmdline value to a buffer.
724 * @task:     the task whose cmdline value to copy.
725 * @buffer:   the buffer to copy to.
726 * @buflen:   the length of the buffer. Larger cmdline values are truncated
727 *            to this length.
728 * Returns the size of the cmdline field copied. Note that the copy does
729 * not guarantee an ending NULL byte.
730 */
731int get_cmdline(struct task_struct *task, char *buffer, int buflen)
732{
733	int res = 0;
734	unsigned int len;
735	struct mm_struct *mm = get_task_mm(task);
736	unsigned long arg_start, arg_end, env_start, env_end;
737	if (!mm)
738		goto out;
739	if (!mm->arg_end)
740		goto out_mm;	/* Shh! No looking before we're done */
741
742	down_read(&mm->mmap_sem);
743	arg_start = mm->arg_start;
744	arg_end = mm->arg_end;
745	env_start = mm->env_start;
746	env_end = mm->env_end;
747	up_read(&mm->mmap_sem);
748
749	len = arg_end - arg_start;
750
751	if (len > buflen)
752		len = buflen;
753
754	res = access_process_vm(task, arg_start, buffer, len, FOLL_FORCE);
755
756	/*
757	 * If the nul at the end of args has been overwritten, then
758	 * assume application is using setproctitle(3).
759	 */
760	if (res > 0 && buffer[res-1] != '\0' && len < buflen) {
761		len = strnlen(buffer, res);
762		if (len < res) {
763			res = len;
764		} else {
765			len = env_end - env_start;
766			if (len > buflen - res)
767				len = buflen - res;
768			res += access_process_vm(task, env_start,
769						 buffer+res, len,
770						 FOLL_FORCE);
771			res = strnlen(buffer, res);
772		}
773	}
774out_mm:
775	mmput(mm);
776out:
777	return res;
778}