Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.15.
   1/*
   2 * Copyright (C) 2013-2017 ARM Limited, All Rights Reserved.
   3 * Author: Marc Zyngier <marc.zyngier@arm.com>
   4 *
   5 * This program is free software; you can redistribute it and/or modify
   6 * it under the terms of the GNU General Public License version 2 as
   7 * published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope that it will be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
  16 */
  17
  18#include <linux/acpi.h>
  19#include <linux/acpi_iort.h>
  20#include <linux/bitmap.h>
  21#include <linux/cpu.h>
  22#include <linux/delay.h>
  23#include <linux/dma-iommu.h>
  24#include <linux/interrupt.h>
  25#include <linux/irqdomain.h>
  26#include <linux/log2.h>
  27#include <linux/mm.h>
  28#include <linux/msi.h>
  29#include <linux/of.h>
  30#include <linux/of_address.h>
  31#include <linux/of_irq.h>
  32#include <linux/of_pci.h>
  33#include <linux/of_platform.h>
  34#include <linux/percpu.h>
  35#include <linux/slab.h>
  36#include <linux/syscore_ops.h>
  37
  38#include <linux/irqchip.h>
  39#include <linux/irqchip/arm-gic-v3.h>
  40#include <linux/irqchip/arm-gic-v4.h>
  41
  42#include <asm/cputype.h>
  43#include <asm/exception.h>
  44
  45#include "irq-gic-common.h"
  46
  47#define ITS_FLAGS_CMDQ_NEEDS_FLUSHING		(1ULL << 0)
  48#define ITS_FLAGS_WORKAROUND_CAVIUM_22375	(1ULL << 1)
  49#define ITS_FLAGS_WORKAROUND_CAVIUM_23144	(1ULL << 2)
  50#define ITS_FLAGS_SAVE_SUSPEND_STATE		(1ULL << 3)
  51
  52#define RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING	(1 << 0)
  53
  54static u32 lpi_id_bits;
  55
  56/*
  57 * We allocate memory for PROPBASE to cover 2 ^ lpi_id_bits LPIs to
  58 * deal with (one configuration byte per interrupt). PENDBASE has to
  59 * be 64kB aligned (one bit per LPI, plus 8192 bits for SPI/PPI/SGI).
  60 */
  61#define LPI_NRBITS		lpi_id_bits
  62#define LPI_PROPBASE_SZ		ALIGN(BIT(LPI_NRBITS), SZ_64K)
  63#define LPI_PENDBASE_SZ		ALIGN(BIT(LPI_NRBITS) / 8, SZ_64K)
  64
  65#define LPI_PROP_DEFAULT_PRIO	0xa0
  66
  67/*
  68 * Collection structure - just an ID, and a redistributor address to
  69 * ping. We use one per CPU as a bag of interrupts assigned to this
  70 * CPU.
  71 */
  72struct its_collection {
  73	u64			target_address;
  74	u16			col_id;
  75};
  76
  77/*
  78 * The ITS_BASER structure - contains memory information, cached
  79 * value of BASER register configuration and ITS page size.
  80 */
  81struct its_baser {
  82	void		*base;
  83	u64		val;
  84	u32		order;
  85	u32		psz;
  86};
  87
  88struct its_device;
  89
  90/*
  91 * The ITS structure - contains most of the infrastructure, with the
  92 * top-level MSI domain, the command queue, the collections, and the
  93 * list of devices writing to it.
  94 */
  95struct its_node {
  96	raw_spinlock_t		lock;
  97	struct list_head	entry;
  98	void __iomem		*base;
  99	phys_addr_t		phys_base;
 100	struct its_cmd_block	*cmd_base;
 101	struct its_cmd_block	*cmd_write;
 102	struct its_baser	tables[GITS_BASER_NR_REGS];
 103	struct its_collection	*collections;
 104	struct fwnode_handle	*fwnode_handle;
 105	u64			(*get_msi_base)(struct its_device *its_dev);
 106	u64			cbaser_save;
 107	u32			ctlr_save;
 108	struct list_head	its_device_list;
 109	u64			flags;
 110	unsigned long		list_nr;
 111	u32			ite_size;
 112	u32			device_ids;
 113	int			numa_node;
 114	unsigned int		msi_domain_flags;
 115	u32			pre_its_base; /* for Socionext Synquacer */
 116	bool			is_v4;
 117	int			vlpi_redist_offset;
 118};
 119
 120#define ITS_ITT_ALIGN		SZ_256
 121
 122/* The maximum number of VPEID bits supported by VLPI commands */
 123#define ITS_MAX_VPEID_BITS	(16)
 124#define ITS_MAX_VPEID		(1 << (ITS_MAX_VPEID_BITS))
 125
 126/* Convert page order to size in bytes */
 127#define PAGE_ORDER_TO_SIZE(o)	(PAGE_SIZE << (o))
 128
 129struct event_lpi_map {
 130	unsigned long		*lpi_map;
 131	u16			*col_map;
 132	irq_hw_number_t		lpi_base;
 133	int			nr_lpis;
 134	struct mutex		vlpi_lock;
 135	struct its_vm		*vm;
 136	struct its_vlpi_map	*vlpi_maps;
 137	int			nr_vlpis;
 138};
 139
 140/*
 141 * The ITS view of a device - belongs to an ITS, owns an interrupt
 142 * translation table, and a list of interrupts.  If it some of its
 143 * LPIs are injected into a guest (GICv4), the event_map.vm field
 144 * indicates which one.
 145 */
 146struct its_device {
 147	struct list_head	entry;
 148	struct its_node		*its;
 149	struct event_lpi_map	event_map;
 150	void			*itt;
 151	u32			nr_ites;
 152	u32			device_id;
 153};
 154
 155static struct {
 156	raw_spinlock_t		lock;
 157	struct its_device	*dev;
 158	struct its_vpe		**vpes;
 159	int			next_victim;
 160} vpe_proxy;
 161
 162static LIST_HEAD(its_nodes);
 163static DEFINE_SPINLOCK(its_lock);
 164static struct rdists *gic_rdists;
 165static struct irq_domain *its_parent;
 166
 167static unsigned long its_list_map;
 168static u16 vmovp_seq_num;
 169static DEFINE_RAW_SPINLOCK(vmovp_lock);
 170
 171static DEFINE_IDA(its_vpeid_ida);
 172
 173#define gic_data_rdist()		(raw_cpu_ptr(gic_rdists->rdist))
 174#define gic_data_rdist_rd_base()	(gic_data_rdist()->rd_base)
 175#define gic_data_rdist_vlpi_base()	(gic_data_rdist_rd_base() + SZ_128K)
 176
 177static struct its_collection *dev_event_to_col(struct its_device *its_dev,
 178					       u32 event)
 179{
 180	struct its_node *its = its_dev->its;
 181
 182	return its->collections + its_dev->event_map.col_map[event];
 183}
 184
 185/*
 186 * ITS command descriptors - parameters to be encoded in a command
 187 * block.
 188 */
 189struct its_cmd_desc {
 190	union {
 191		struct {
 192			struct its_device *dev;
 193			u32 event_id;
 194		} its_inv_cmd;
 195
 196		struct {
 197			struct its_device *dev;
 198			u32 event_id;
 199		} its_clear_cmd;
 200
 201		struct {
 202			struct its_device *dev;
 203			u32 event_id;
 204		} its_int_cmd;
 205
 206		struct {
 207			struct its_device *dev;
 208			int valid;
 209		} its_mapd_cmd;
 210
 211		struct {
 212			struct its_collection *col;
 213			int valid;
 214		} its_mapc_cmd;
 215
 216		struct {
 217			struct its_device *dev;
 218			u32 phys_id;
 219			u32 event_id;
 220		} its_mapti_cmd;
 221
 222		struct {
 223			struct its_device *dev;
 224			struct its_collection *col;
 225			u32 event_id;
 226		} its_movi_cmd;
 227
 228		struct {
 229			struct its_device *dev;
 230			u32 event_id;
 231		} its_discard_cmd;
 232
 233		struct {
 234			struct its_collection *col;
 235		} its_invall_cmd;
 236
 237		struct {
 238			struct its_vpe *vpe;
 239		} its_vinvall_cmd;
 240
 241		struct {
 242			struct its_vpe *vpe;
 243			struct its_collection *col;
 244			bool valid;
 245		} its_vmapp_cmd;
 246
 247		struct {
 248			struct its_vpe *vpe;
 249			struct its_device *dev;
 250			u32 virt_id;
 251			u32 event_id;
 252			bool db_enabled;
 253		} its_vmapti_cmd;
 254
 255		struct {
 256			struct its_vpe *vpe;
 257			struct its_device *dev;
 258			u32 event_id;
 259			bool db_enabled;
 260		} its_vmovi_cmd;
 261
 262		struct {
 263			struct its_vpe *vpe;
 264			struct its_collection *col;
 265			u16 seq_num;
 266			u16 its_list;
 267		} its_vmovp_cmd;
 268	};
 269};
 270
 271/*
 272 * The ITS command block, which is what the ITS actually parses.
 273 */
 274struct its_cmd_block {
 275	u64	raw_cmd[4];
 276};
 277
 278#define ITS_CMD_QUEUE_SZ		SZ_64K
 279#define ITS_CMD_QUEUE_NR_ENTRIES	(ITS_CMD_QUEUE_SZ / sizeof(struct its_cmd_block))
 280
 281typedef struct its_collection *(*its_cmd_builder_t)(struct its_node *,
 282						    struct its_cmd_block *,
 283						    struct its_cmd_desc *);
 284
 285typedef struct its_vpe *(*its_cmd_vbuilder_t)(struct its_node *,
 286					      struct its_cmd_block *,
 287					      struct its_cmd_desc *);
 288
 289static void its_mask_encode(u64 *raw_cmd, u64 val, int h, int l)
 290{
 291	u64 mask = GENMASK_ULL(h, l);
 292	*raw_cmd &= ~mask;
 293	*raw_cmd |= (val << l) & mask;
 294}
 295
 296static void its_encode_cmd(struct its_cmd_block *cmd, u8 cmd_nr)
 297{
 298	its_mask_encode(&cmd->raw_cmd[0], cmd_nr, 7, 0);
 299}
 300
 301static void its_encode_devid(struct its_cmd_block *cmd, u32 devid)
 302{
 303	its_mask_encode(&cmd->raw_cmd[0], devid, 63, 32);
 304}
 305
 306static void its_encode_event_id(struct its_cmd_block *cmd, u32 id)
 307{
 308	its_mask_encode(&cmd->raw_cmd[1], id, 31, 0);
 309}
 310
 311static void its_encode_phys_id(struct its_cmd_block *cmd, u32 phys_id)
 312{
 313	its_mask_encode(&cmd->raw_cmd[1], phys_id, 63, 32);
 314}
 315
 316static void its_encode_size(struct its_cmd_block *cmd, u8 size)
 317{
 318	its_mask_encode(&cmd->raw_cmd[1], size, 4, 0);
 319}
 320
 321static void its_encode_itt(struct its_cmd_block *cmd, u64 itt_addr)
 322{
 323	its_mask_encode(&cmd->raw_cmd[2], itt_addr >> 8, 51, 8);
 324}
 325
 326static void its_encode_valid(struct its_cmd_block *cmd, int valid)
 327{
 328	its_mask_encode(&cmd->raw_cmd[2], !!valid, 63, 63);
 329}
 330
 331static void its_encode_target(struct its_cmd_block *cmd, u64 target_addr)
 332{
 333	its_mask_encode(&cmd->raw_cmd[2], target_addr >> 16, 51, 16);
 334}
 335
 336static void its_encode_collection(struct its_cmd_block *cmd, u16 col)
 337{
 338	its_mask_encode(&cmd->raw_cmd[2], col, 15, 0);
 339}
 340
 341static void its_encode_vpeid(struct its_cmd_block *cmd, u16 vpeid)
 342{
 343	its_mask_encode(&cmd->raw_cmd[1], vpeid, 47, 32);
 344}
 345
 346static void its_encode_virt_id(struct its_cmd_block *cmd, u32 virt_id)
 347{
 348	its_mask_encode(&cmd->raw_cmd[2], virt_id, 31, 0);
 349}
 350
 351static void its_encode_db_phys_id(struct its_cmd_block *cmd, u32 db_phys_id)
 352{
 353	its_mask_encode(&cmd->raw_cmd[2], db_phys_id, 63, 32);
 354}
 355
 356static void its_encode_db_valid(struct its_cmd_block *cmd, bool db_valid)
 357{
 358	its_mask_encode(&cmd->raw_cmd[2], db_valid, 0, 0);
 359}
 360
 361static void its_encode_seq_num(struct its_cmd_block *cmd, u16 seq_num)
 362{
 363	its_mask_encode(&cmd->raw_cmd[0], seq_num, 47, 32);
 364}
 365
 366static void its_encode_its_list(struct its_cmd_block *cmd, u16 its_list)
 367{
 368	its_mask_encode(&cmd->raw_cmd[1], its_list, 15, 0);
 369}
 370
 371static void its_encode_vpt_addr(struct its_cmd_block *cmd, u64 vpt_pa)
 372{
 373	its_mask_encode(&cmd->raw_cmd[3], vpt_pa >> 16, 51, 16);
 374}
 375
 376static void its_encode_vpt_size(struct its_cmd_block *cmd, u8 vpt_size)
 377{
 378	its_mask_encode(&cmd->raw_cmd[3], vpt_size, 4, 0);
 379}
 380
 381static inline void its_fixup_cmd(struct its_cmd_block *cmd)
 382{
 383	/* Let's fixup BE commands */
 384	cmd->raw_cmd[0] = cpu_to_le64(cmd->raw_cmd[0]);
 385	cmd->raw_cmd[1] = cpu_to_le64(cmd->raw_cmd[1]);
 386	cmd->raw_cmd[2] = cpu_to_le64(cmd->raw_cmd[2]);
 387	cmd->raw_cmd[3] = cpu_to_le64(cmd->raw_cmd[3]);
 388}
 389
 390static struct its_collection *its_build_mapd_cmd(struct its_node *its,
 391						 struct its_cmd_block *cmd,
 392						 struct its_cmd_desc *desc)
 393{
 394	unsigned long itt_addr;
 395	u8 size = ilog2(desc->its_mapd_cmd.dev->nr_ites);
 396
 397	itt_addr = virt_to_phys(desc->its_mapd_cmd.dev->itt);
 398	itt_addr = ALIGN(itt_addr, ITS_ITT_ALIGN);
 399
 400	its_encode_cmd(cmd, GITS_CMD_MAPD);
 401	its_encode_devid(cmd, desc->its_mapd_cmd.dev->device_id);
 402	its_encode_size(cmd, size - 1);
 403	its_encode_itt(cmd, itt_addr);
 404	its_encode_valid(cmd, desc->its_mapd_cmd.valid);
 405
 406	its_fixup_cmd(cmd);
 407
 408	return NULL;
 409}
 410
 411static struct its_collection *its_build_mapc_cmd(struct its_node *its,
 412						 struct its_cmd_block *cmd,
 413						 struct its_cmd_desc *desc)
 414{
 415	its_encode_cmd(cmd, GITS_CMD_MAPC);
 416	its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
 417	its_encode_target(cmd, desc->its_mapc_cmd.col->target_address);
 418	its_encode_valid(cmd, desc->its_mapc_cmd.valid);
 419
 420	its_fixup_cmd(cmd);
 421
 422	return desc->its_mapc_cmd.col;
 423}
 424
 425static struct its_collection *its_build_mapti_cmd(struct its_node *its,
 426						  struct its_cmd_block *cmd,
 427						  struct its_cmd_desc *desc)
 428{
 429	struct its_collection *col;
 430
 431	col = dev_event_to_col(desc->its_mapti_cmd.dev,
 432			       desc->its_mapti_cmd.event_id);
 433
 434	its_encode_cmd(cmd, GITS_CMD_MAPTI);
 435	its_encode_devid(cmd, desc->its_mapti_cmd.dev->device_id);
 436	its_encode_event_id(cmd, desc->its_mapti_cmd.event_id);
 437	its_encode_phys_id(cmd, desc->its_mapti_cmd.phys_id);
 438	its_encode_collection(cmd, col->col_id);
 439
 440	its_fixup_cmd(cmd);
 441
 442	return col;
 443}
 444
 445static struct its_collection *its_build_movi_cmd(struct its_node *its,
 446						 struct its_cmd_block *cmd,
 447						 struct its_cmd_desc *desc)
 448{
 449	struct its_collection *col;
 450
 451	col = dev_event_to_col(desc->its_movi_cmd.dev,
 452			       desc->its_movi_cmd.event_id);
 453
 454	its_encode_cmd(cmd, GITS_CMD_MOVI);
 455	its_encode_devid(cmd, desc->its_movi_cmd.dev->device_id);
 456	its_encode_event_id(cmd, desc->its_movi_cmd.event_id);
 457	its_encode_collection(cmd, desc->its_movi_cmd.col->col_id);
 458
 459	its_fixup_cmd(cmd);
 460
 461	return col;
 462}
 463
 464static struct its_collection *its_build_discard_cmd(struct its_node *its,
 465						    struct its_cmd_block *cmd,
 466						    struct its_cmd_desc *desc)
 467{
 468	struct its_collection *col;
 469
 470	col = dev_event_to_col(desc->its_discard_cmd.dev,
 471			       desc->its_discard_cmd.event_id);
 472
 473	its_encode_cmd(cmd, GITS_CMD_DISCARD);
 474	its_encode_devid(cmd, desc->its_discard_cmd.dev->device_id);
 475	its_encode_event_id(cmd, desc->its_discard_cmd.event_id);
 476
 477	its_fixup_cmd(cmd);
 478
 479	return col;
 480}
 481
 482static struct its_collection *its_build_inv_cmd(struct its_node *its,
 483						struct its_cmd_block *cmd,
 484						struct its_cmd_desc *desc)
 485{
 486	struct its_collection *col;
 487
 488	col = dev_event_to_col(desc->its_inv_cmd.dev,
 489			       desc->its_inv_cmd.event_id);
 490
 491	its_encode_cmd(cmd, GITS_CMD_INV);
 492	its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
 493	its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
 494
 495	its_fixup_cmd(cmd);
 496
 497	return col;
 498}
 499
 500static struct its_collection *its_build_int_cmd(struct its_node *its,
 501						struct its_cmd_block *cmd,
 502						struct its_cmd_desc *desc)
 503{
 504	struct its_collection *col;
 505
 506	col = dev_event_to_col(desc->its_int_cmd.dev,
 507			       desc->its_int_cmd.event_id);
 508
 509	its_encode_cmd(cmd, GITS_CMD_INT);
 510	its_encode_devid(cmd, desc->its_int_cmd.dev->device_id);
 511	its_encode_event_id(cmd, desc->its_int_cmd.event_id);
 512
 513	its_fixup_cmd(cmd);
 514
 515	return col;
 516}
 517
 518static struct its_collection *its_build_clear_cmd(struct its_node *its,
 519						  struct its_cmd_block *cmd,
 520						  struct its_cmd_desc *desc)
 521{
 522	struct its_collection *col;
 523
 524	col = dev_event_to_col(desc->its_clear_cmd.dev,
 525			       desc->its_clear_cmd.event_id);
 526
 527	its_encode_cmd(cmd, GITS_CMD_CLEAR);
 528	its_encode_devid(cmd, desc->its_clear_cmd.dev->device_id);
 529	its_encode_event_id(cmd, desc->its_clear_cmd.event_id);
 530
 531	its_fixup_cmd(cmd);
 532
 533	return col;
 534}
 535
 536static struct its_collection *its_build_invall_cmd(struct its_node *its,
 537						   struct its_cmd_block *cmd,
 538						   struct its_cmd_desc *desc)
 539{
 540	its_encode_cmd(cmd, GITS_CMD_INVALL);
 541	its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
 542
 543	its_fixup_cmd(cmd);
 544
 545	return NULL;
 546}
 547
 548static struct its_vpe *its_build_vinvall_cmd(struct its_node *its,
 549					     struct its_cmd_block *cmd,
 550					     struct its_cmd_desc *desc)
 551{
 552	its_encode_cmd(cmd, GITS_CMD_VINVALL);
 553	its_encode_vpeid(cmd, desc->its_vinvall_cmd.vpe->vpe_id);
 554
 555	its_fixup_cmd(cmd);
 556
 557	return desc->its_vinvall_cmd.vpe;
 558}
 559
 560static struct its_vpe *its_build_vmapp_cmd(struct its_node *its,
 561					   struct its_cmd_block *cmd,
 562					   struct its_cmd_desc *desc)
 563{
 564	unsigned long vpt_addr;
 565	u64 target;
 566
 567	vpt_addr = virt_to_phys(page_address(desc->its_vmapp_cmd.vpe->vpt_page));
 568	target = desc->its_vmapp_cmd.col->target_address + its->vlpi_redist_offset;
 569
 570	its_encode_cmd(cmd, GITS_CMD_VMAPP);
 571	its_encode_vpeid(cmd, desc->its_vmapp_cmd.vpe->vpe_id);
 572	its_encode_valid(cmd, desc->its_vmapp_cmd.valid);
 573	its_encode_target(cmd, target);
 574	its_encode_vpt_addr(cmd, vpt_addr);
 575	its_encode_vpt_size(cmd, LPI_NRBITS - 1);
 576
 577	its_fixup_cmd(cmd);
 578
 579	return desc->its_vmapp_cmd.vpe;
 580}
 581
 582static struct its_vpe *its_build_vmapti_cmd(struct its_node *its,
 583					    struct its_cmd_block *cmd,
 584					    struct its_cmd_desc *desc)
 585{
 586	u32 db;
 587
 588	if (desc->its_vmapti_cmd.db_enabled)
 589		db = desc->its_vmapti_cmd.vpe->vpe_db_lpi;
 590	else
 591		db = 1023;
 592
 593	its_encode_cmd(cmd, GITS_CMD_VMAPTI);
 594	its_encode_devid(cmd, desc->its_vmapti_cmd.dev->device_id);
 595	its_encode_vpeid(cmd, desc->its_vmapti_cmd.vpe->vpe_id);
 596	its_encode_event_id(cmd, desc->its_vmapti_cmd.event_id);
 597	its_encode_db_phys_id(cmd, db);
 598	its_encode_virt_id(cmd, desc->its_vmapti_cmd.virt_id);
 599
 600	its_fixup_cmd(cmd);
 601
 602	return desc->its_vmapti_cmd.vpe;
 603}
 604
 605static struct its_vpe *its_build_vmovi_cmd(struct its_node *its,
 606					   struct its_cmd_block *cmd,
 607					   struct its_cmd_desc *desc)
 608{
 609	u32 db;
 610
 611	if (desc->its_vmovi_cmd.db_enabled)
 612		db = desc->its_vmovi_cmd.vpe->vpe_db_lpi;
 613	else
 614		db = 1023;
 615
 616	its_encode_cmd(cmd, GITS_CMD_VMOVI);
 617	its_encode_devid(cmd, desc->its_vmovi_cmd.dev->device_id);
 618	its_encode_vpeid(cmd, desc->its_vmovi_cmd.vpe->vpe_id);
 619	its_encode_event_id(cmd, desc->its_vmovi_cmd.event_id);
 620	its_encode_db_phys_id(cmd, db);
 621	its_encode_db_valid(cmd, true);
 622
 623	its_fixup_cmd(cmd);
 624
 625	return desc->its_vmovi_cmd.vpe;
 626}
 627
 628static struct its_vpe *its_build_vmovp_cmd(struct its_node *its,
 629					   struct its_cmd_block *cmd,
 630					   struct its_cmd_desc *desc)
 631{
 632	u64 target;
 633
 634	target = desc->its_vmovp_cmd.col->target_address + its->vlpi_redist_offset;
 635	its_encode_cmd(cmd, GITS_CMD_VMOVP);
 636	its_encode_seq_num(cmd, desc->its_vmovp_cmd.seq_num);
 637	its_encode_its_list(cmd, desc->its_vmovp_cmd.its_list);
 638	its_encode_vpeid(cmd, desc->its_vmovp_cmd.vpe->vpe_id);
 639	its_encode_target(cmd, target);
 640
 641	its_fixup_cmd(cmd);
 642
 643	return desc->its_vmovp_cmd.vpe;
 644}
 645
 646static u64 its_cmd_ptr_to_offset(struct its_node *its,
 647				 struct its_cmd_block *ptr)
 648{
 649	return (ptr - its->cmd_base) * sizeof(*ptr);
 650}
 651
 652static int its_queue_full(struct its_node *its)
 653{
 654	int widx;
 655	int ridx;
 656
 657	widx = its->cmd_write - its->cmd_base;
 658	ridx = readl_relaxed(its->base + GITS_CREADR) / sizeof(struct its_cmd_block);
 659
 660	/* This is incredibly unlikely to happen, unless the ITS locks up. */
 661	if (((widx + 1) % ITS_CMD_QUEUE_NR_ENTRIES) == ridx)
 662		return 1;
 663
 664	return 0;
 665}
 666
 667static struct its_cmd_block *its_allocate_entry(struct its_node *its)
 668{
 669	struct its_cmd_block *cmd;
 670	u32 count = 1000000;	/* 1s! */
 671
 672	while (its_queue_full(its)) {
 673		count--;
 674		if (!count) {
 675			pr_err_ratelimited("ITS queue not draining\n");
 676			return NULL;
 677		}
 678		cpu_relax();
 679		udelay(1);
 680	}
 681
 682	cmd = its->cmd_write++;
 683
 684	/* Handle queue wrapping */
 685	if (its->cmd_write == (its->cmd_base + ITS_CMD_QUEUE_NR_ENTRIES))
 686		its->cmd_write = its->cmd_base;
 687
 688	/* Clear command  */
 689	cmd->raw_cmd[0] = 0;
 690	cmd->raw_cmd[1] = 0;
 691	cmd->raw_cmd[2] = 0;
 692	cmd->raw_cmd[3] = 0;
 693
 694	return cmd;
 695}
 696
 697static struct its_cmd_block *its_post_commands(struct its_node *its)
 698{
 699	u64 wr = its_cmd_ptr_to_offset(its, its->cmd_write);
 700
 701	writel_relaxed(wr, its->base + GITS_CWRITER);
 702
 703	return its->cmd_write;
 704}
 705
 706static void its_flush_cmd(struct its_node *its, struct its_cmd_block *cmd)
 707{
 708	/*
 709	 * Make sure the commands written to memory are observable by
 710	 * the ITS.
 711	 */
 712	if (its->flags & ITS_FLAGS_CMDQ_NEEDS_FLUSHING)
 713		gic_flush_dcache_to_poc(cmd, sizeof(*cmd));
 714	else
 715		dsb(ishst);
 716}
 717
 718static int its_wait_for_range_completion(struct its_node *its,
 719					 struct its_cmd_block *from,
 720					 struct its_cmd_block *to)
 721{
 722	u64 rd_idx, from_idx, to_idx;
 723	u32 count = 1000000;	/* 1s! */
 724
 725	from_idx = its_cmd_ptr_to_offset(its, from);
 726	to_idx = its_cmd_ptr_to_offset(its, to);
 727
 728	while (1) {
 729		rd_idx = readl_relaxed(its->base + GITS_CREADR);
 730
 731		/* Direct case */
 732		if (from_idx < to_idx && rd_idx >= to_idx)
 733			break;
 734
 735		/* Wrapped case */
 736		if (from_idx >= to_idx && rd_idx >= to_idx && rd_idx < from_idx)
 737			break;
 738
 739		count--;
 740		if (!count) {
 741			pr_err_ratelimited("ITS queue timeout (%llu %llu %llu)\n",
 742					   from_idx, to_idx, rd_idx);
 743			return -1;
 744		}
 745		cpu_relax();
 746		udelay(1);
 747	}
 748
 749	return 0;
 750}
 751
 752/* Warning, macro hell follows */
 753#define BUILD_SINGLE_CMD_FUNC(name, buildtype, synctype, buildfn)	\
 754void name(struct its_node *its,						\
 755	  buildtype builder,						\
 756	  struct its_cmd_desc *desc)					\
 757{									\
 758	struct its_cmd_block *cmd, *sync_cmd, *next_cmd;		\
 759	synctype *sync_obj;						\
 760	unsigned long flags;						\
 761									\
 762	raw_spin_lock_irqsave(&its->lock, flags);			\
 763									\
 764	cmd = its_allocate_entry(its);					\
 765	if (!cmd) {		/* We're soooooo screewed... */		\
 766		raw_spin_unlock_irqrestore(&its->lock, flags);		\
 767		return;							\
 768	}								\
 769	sync_obj = builder(its, cmd, desc);				\
 770	its_flush_cmd(its, cmd);					\
 771									\
 772	if (sync_obj) {							\
 773		sync_cmd = its_allocate_entry(its);			\
 774		if (!sync_cmd)						\
 775			goto post;					\
 776									\
 777		buildfn(its, sync_cmd, sync_obj);			\
 778		its_flush_cmd(its, sync_cmd);				\
 779	}								\
 780									\
 781post:									\
 782	next_cmd = its_post_commands(its);				\
 783	raw_spin_unlock_irqrestore(&its->lock, flags);			\
 784									\
 785	if (its_wait_for_range_completion(its, cmd, next_cmd))		\
 786		pr_err_ratelimited("ITS cmd %ps failed\n", builder);	\
 787}
 788
 789static void its_build_sync_cmd(struct its_node *its,
 790			       struct its_cmd_block *sync_cmd,
 791			       struct its_collection *sync_col)
 792{
 793	its_encode_cmd(sync_cmd, GITS_CMD_SYNC);
 794	its_encode_target(sync_cmd, sync_col->target_address);
 795
 796	its_fixup_cmd(sync_cmd);
 797}
 798
 799static BUILD_SINGLE_CMD_FUNC(its_send_single_command, its_cmd_builder_t,
 800			     struct its_collection, its_build_sync_cmd)
 801
 802static void its_build_vsync_cmd(struct its_node *its,
 803				struct its_cmd_block *sync_cmd,
 804				struct its_vpe *sync_vpe)
 805{
 806	its_encode_cmd(sync_cmd, GITS_CMD_VSYNC);
 807	its_encode_vpeid(sync_cmd, sync_vpe->vpe_id);
 808
 809	its_fixup_cmd(sync_cmd);
 810}
 811
 812static BUILD_SINGLE_CMD_FUNC(its_send_single_vcommand, its_cmd_vbuilder_t,
 813			     struct its_vpe, its_build_vsync_cmd)
 814
 815static void its_send_int(struct its_device *dev, u32 event_id)
 816{
 817	struct its_cmd_desc desc;
 818
 819	desc.its_int_cmd.dev = dev;
 820	desc.its_int_cmd.event_id = event_id;
 821
 822	its_send_single_command(dev->its, its_build_int_cmd, &desc);
 823}
 824
 825static void its_send_clear(struct its_device *dev, u32 event_id)
 826{
 827	struct its_cmd_desc desc;
 828
 829	desc.its_clear_cmd.dev = dev;
 830	desc.its_clear_cmd.event_id = event_id;
 831
 832	its_send_single_command(dev->its, its_build_clear_cmd, &desc);
 833}
 834
 835static void its_send_inv(struct its_device *dev, u32 event_id)
 836{
 837	struct its_cmd_desc desc;
 838
 839	desc.its_inv_cmd.dev = dev;
 840	desc.its_inv_cmd.event_id = event_id;
 841
 842	its_send_single_command(dev->its, its_build_inv_cmd, &desc);
 843}
 844
 845static void its_send_mapd(struct its_device *dev, int valid)
 846{
 847	struct its_cmd_desc desc;
 848
 849	desc.its_mapd_cmd.dev = dev;
 850	desc.its_mapd_cmd.valid = !!valid;
 851
 852	its_send_single_command(dev->its, its_build_mapd_cmd, &desc);
 853}
 854
 855static void its_send_mapc(struct its_node *its, struct its_collection *col,
 856			  int valid)
 857{
 858	struct its_cmd_desc desc;
 859
 860	desc.its_mapc_cmd.col = col;
 861	desc.its_mapc_cmd.valid = !!valid;
 862
 863	its_send_single_command(its, its_build_mapc_cmd, &desc);
 864}
 865
 866static void its_send_mapti(struct its_device *dev, u32 irq_id, u32 id)
 867{
 868	struct its_cmd_desc desc;
 869
 870	desc.its_mapti_cmd.dev = dev;
 871	desc.its_mapti_cmd.phys_id = irq_id;
 872	desc.its_mapti_cmd.event_id = id;
 873
 874	its_send_single_command(dev->its, its_build_mapti_cmd, &desc);
 875}
 876
 877static void its_send_movi(struct its_device *dev,
 878			  struct its_collection *col, u32 id)
 879{
 880	struct its_cmd_desc desc;
 881
 882	desc.its_movi_cmd.dev = dev;
 883	desc.its_movi_cmd.col = col;
 884	desc.its_movi_cmd.event_id = id;
 885
 886	its_send_single_command(dev->its, its_build_movi_cmd, &desc);
 887}
 888
 889static void its_send_discard(struct its_device *dev, u32 id)
 890{
 891	struct its_cmd_desc desc;
 892
 893	desc.its_discard_cmd.dev = dev;
 894	desc.its_discard_cmd.event_id = id;
 895
 896	its_send_single_command(dev->its, its_build_discard_cmd, &desc);
 897}
 898
 899static void its_send_invall(struct its_node *its, struct its_collection *col)
 900{
 901	struct its_cmd_desc desc;
 902
 903	desc.its_invall_cmd.col = col;
 904
 905	its_send_single_command(its, its_build_invall_cmd, &desc);
 906}
 907
 908static void its_send_vmapti(struct its_device *dev, u32 id)
 909{
 910	struct its_vlpi_map *map = &dev->event_map.vlpi_maps[id];
 911	struct its_cmd_desc desc;
 912
 913	desc.its_vmapti_cmd.vpe = map->vpe;
 914	desc.its_vmapti_cmd.dev = dev;
 915	desc.its_vmapti_cmd.virt_id = map->vintid;
 916	desc.its_vmapti_cmd.event_id = id;
 917	desc.its_vmapti_cmd.db_enabled = map->db_enabled;
 918
 919	its_send_single_vcommand(dev->its, its_build_vmapti_cmd, &desc);
 920}
 921
 922static void its_send_vmovi(struct its_device *dev, u32 id)
 923{
 924	struct its_vlpi_map *map = &dev->event_map.vlpi_maps[id];
 925	struct its_cmd_desc desc;
 926
 927	desc.its_vmovi_cmd.vpe = map->vpe;
 928	desc.its_vmovi_cmd.dev = dev;
 929	desc.its_vmovi_cmd.event_id = id;
 930	desc.its_vmovi_cmd.db_enabled = map->db_enabled;
 931
 932	its_send_single_vcommand(dev->its, its_build_vmovi_cmd, &desc);
 933}
 934
 935static void its_send_vmapp(struct its_node *its,
 936			   struct its_vpe *vpe, bool valid)
 937{
 938	struct its_cmd_desc desc;
 939
 940	desc.its_vmapp_cmd.vpe = vpe;
 941	desc.its_vmapp_cmd.valid = valid;
 942	desc.its_vmapp_cmd.col = &its->collections[vpe->col_idx];
 943
 944	its_send_single_vcommand(its, its_build_vmapp_cmd, &desc);
 945}
 946
 947static void its_send_vmovp(struct its_vpe *vpe)
 948{
 949	struct its_cmd_desc desc;
 950	struct its_node *its;
 951	unsigned long flags;
 952	int col_id = vpe->col_idx;
 953
 954	desc.its_vmovp_cmd.vpe = vpe;
 955	desc.its_vmovp_cmd.its_list = (u16)its_list_map;
 956
 957	if (!its_list_map) {
 958		its = list_first_entry(&its_nodes, struct its_node, entry);
 959		desc.its_vmovp_cmd.seq_num = 0;
 960		desc.its_vmovp_cmd.col = &its->collections[col_id];
 961		its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
 962		return;
 963	}
 964
 965	/*
 966	 * Yet another marvel of the architecture. If using the
 967	 * its_list "feature", we need to make sure that all ITSs
 968	 * receive all VMOVP commands in the same order. The only way
 969	 * to guarantee this is to make vmovp a serialization point.
 970	 *
 971	 * Wall <-- Head.
 972	 */
 973	raw_spin_lock_irqsave(&vmovp_lock, flags);
 974
 975	desc.its_vmovp_cmd.seq_num = vmovp_seq_num++;
 976
 977	/* Emit VMOVPs */
 978	list_for_each_entry(its, &its_nodes, entry) {
 979		if (!its->is_v4)
 980			continue;
 981
 982		if (!vpe->its_vm->vlpi_count[its->list_nr])
 983			continue;
 984
 985		desc.its_vmovp_cmd.col = &its->collections[col_id];
 986		its_send_single_vcommand(its, its_build_vmovp_cmd, &desc);
 987	}
 988
 989	raw_spin_unlock_irqrestore(&vmovp_lock, flags);
 990}
 991
 992static void its_send_vinvall(struct its_node *its, struct its_vpe *vpe)
 993{
 994	struct its_cmd_desc desc;
 995
 996	desc.its_vinvall_cmd.vpe = vpe;
 997	its_send_single_vcommand(its, its_build_vinvall_cmd, &desc);
 998}
 999
1000/*
1001 * irqchip functions - assumes MSI, mostly.
1002 */
1003
1004static inline u32 its_get_event_id(struct irq_data *d)
1005{
1006	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1007	return d->hwirq - its_dev->event_map.lpi_base;
1008}
1009
1010static void lpi_write_config(struct irq_data *d, u8 clr, u8 set)
1011{
1012	irq_hw_number_t hwirq;
1013	struct page *prop_page;
1014	u8 *cfg;
1015
1016	if (irqd_is_forwarded_to_vcpu(d)) {
1017		struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1018		u32 event = its_get_event_id(d);
1019		struct its_vlpi_map *map;
1020
1021		prop_page = its_dev->event_map.vm->vprop_page;
1022		map = &its_dev->event_map.vlpi_maps[event];
1023		hwirq = map->vintid;
1024
1025		/* Remember the updated property */
1026		map->properties &= ~clr;
1027		map->properties |= set | LPI_PROP_GROUP1;
1028	} else {
1029		prop_page = gic_rdists->prop_page;
1030		hwirq = d->hwirq;
1031	}
1032
1033	cfg = page_address(prop_page) + hwirq - 8192;
1034	*cfg &= ~clr;
1035	*cfg |= set | LPI_PROP_GROUP1;
1036
1037	/*
1038	 * Make the above write visible to the redistributors.
1039	 * And yes, we're flushing exactly: One. Single. Byte.
1040	 * Humpf...
1041	 */
1042	if (gic_rdists->flags & RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING)
1043		gic_flush_dcache_to_poc(cfg, sizeof(*cfg));
1044	else
1045		dsb(ishst);
1046}
1047
1048static void lpi_update_config(struct irq_data *d, u8 clr, u8 set)
1049{
1050	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1051
1052	lpi_write_config(d, clr, set);
1053	its_send_inv(its_dev, its_get_event_id(d));
1054}
1055
1056static void its_vlpi_set_doorbell(struct irq_data *d, bool enable)
1057{
1058	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1059	u32 event = its_get_event_id(d);
1060
1061	if (its_dev->event_map.vlpi_maps[event].db_enabled == enable)
1062		return;
1063
1064	its_dev->event_map.vlpi_maps[event].db_enabled = enable;
1065
1066	/*
1067	 * More fun with the architecture:
1068	 *
1069	 * Ideally, we'd issue a VMAPTI to set the doorbell to its LPI
1070	 * value or to 1023, depending on the enable bit. But that
1071	 * would be issueing a mapping for an /existing/ DevID+EventID
1072	 * pair, which is UNPREDICTABLE. Instead, let's issue a VMOVI
1073	 * to the /same/ vPE, using this opportunity to adjust the
1074	 * doorbell. Mouahahahaha. We loves it, Precious.
1075	 */
1076	its_send_vmovi(its_dev, event);
1077}
1078
1079static void its_mask_irq(struct irq_data *d)
1080{
1081	if (irqd_is_forwarded_to_vcpu(d))
1082		its_vlpi_set_doorbell(d, false);
1083
1084	lpi_update_config(d, LPI_PROP_ENABLED, 0);
1085}
1086
1087static void its_unmask_irq(struct irq_data *d)
1088{
1089	if (irqd_is_forwarded_to_vcpu(d))
1090		its_vlpi_set_doorbell(d, true);
1091
1092	lpi_update_config(d, 0, LPI_PROP_ENABLED);
1093}
1094
1095static int its_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
1096			    bool force)
1097{
1098	unsigned int cpu;
1099	const struct cpumask *cpu_mask = cpu_online_mask;
1100	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1101	struct its_collection *target_col;
1102	u32 id = its_get_event_id(d);
1103
1104	/* A forwarded interrupt should use irq_set_vcpu_affinity */
1105	if (irqd_is_forwarded_to_vcpu(d))
1106		return -EINVAL;
1107
1108       /* lpi cannot be routed to a redistributor that is on a foreign node */
1109	if (its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) {
1110		if (its_dev->its->numa_node >= 0) {
1111			cpu_mask = cpumask_of_node(its_dev->its->numa_node);
1112			if (!cpumask_intersects(mask_val, cpu_mask))
1113				return -EINVAL;
1114		}
1115	}
1116
1117	cpu = cpumask_any_and(mask_val, cpu_mask);
1118
1119	if (cpu >= nr_cpu_ids)
1120		return -EINVAL;
1121
1122	/* don't set the affinity when the target cpu is same as current one */
1123	if (cpu != its_dev->event_map.col_map[id]) {
1124		target_col = &its_dev->its->collections[cpu];
1125		its_send_movi(its_dev, target_col, id);
1126		its_dev->event_map.col_map[id] = cpu;
1127		irq_data_update_effective_affinity(d, cpumask_of(cpu));
1128	}
1129
1130	return IRQ_SET_MASK_OK_DONE;
1131}
1132
1133static u64 its_irq_get_msi_base(struct its_device *its_dev)
1134{
1135	struct its_node *its = its_dev->its;
1136
1137	return its->phys_base + GITS_TRANSLATER;
1138}
1139
1140static void its_irq_compose_msi_msg(struct irq_data *d, struct msi_msg *msg)
1141{
1142	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1143	struct its_node *its;
1144	u64 addr;
1145
1146	its = its_dev->its;
1147	addr = its->get_msi_base(its_dev);
1148
1149	msg->address_lo		= lower_32_bits(addr);
1150	msg->address_hi		= upper_32_bits(addr);
1151	msg->data		= its_get_event_id(d);
1152
1153	iommu_dma_map_msi_msg(d->irq, msg);
1154}
1155
1156static int its_irq_set_irqchip_state(struct irq_data *d,
1157				     enum irqchip_irq_state which,
1158				     bool state)
1159{
1160	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1161	u32 event = its_get_event_id(d);
1162
1163	if (which != IRQCHIP_STATE_PENDING)
1164		return -EINVAL;
1165
1166	if (state)
1167		its_send_int(its_dev, event);
1168	else
1169		its_send_clear(its_dev, event);
1170
1171	return 0;
1172}
1173
1174static void its_map_vm(struct its_node *its, struct its_vm *vm)
1175{
1176	unsigned long flags;
1177
1178	/* Not using the ITS list? Everything is always mapped. */
1179	if (!its_list_map)
1180		return;
1181
1182	raw_spin_lock_irqsave(&vmovp_lock, flags);
1183
1184	/*
1185	 * If the VM wasn't mapped yet, iterate over the vpes and get
1186	 * them mapped now.
1187	 */
1188	vm->vlpi_count[its->list_nr]++;
1189
1190	if (vm->vlpi_count[its->list_nr] == 1) {
1191		int i;
1192
1193		for (i = 0; i < vm->nr_vpes; i++) {
1194			struct its_vpe *vpe = vm->vpes[i];
1195			struct irq_data *d = irq_get_irq_data(vpe->irq);
1196
1197			/* Map the VPE to the first possible CPU */
1198			vpe->col_idx = cpumask_first(cpu_online_mask);
1199			its_send_vmapp(its, vpe, true);
1200			its_send_vinvall(its, vpe);
1201			irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx));
1202		}
1203	}
1204
1205	raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1206}
1207
1208static void its_unmap_vm(struct its_node *its, struct its_vm *vm)
1209{
1210	unsigned long flags;
1211
1212	/* Not using the ITS list? Everything is always mapped. */
1213	if (!its_list_map)
1214		return;
1215
1216	raw_spin_lock_irqsave(&vmovp_lock, flags);
1217
1218	if (!--vm->vlpi_count[its->list_nr]) {
1219		int i;
1220
1221		for (i = 0; i < vm->nr_vpes; i++)
1222			its_send_vmapp(its, vm->vpes[i], false);
1223	}
1224
1225	raw_spin_unlock_irqrestore(&vmovp_lock, flags);
1226}
1227
1228static int its_vlpi_map(struct irq_data *d, struct its_cmd_info *info)
1229{
1230	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1231	u32 event = its_get_event_id(d);
1232	int ret = 0;
1233
1234	if (!info->map)
1235		return -EINVAL;
1236
1237	mutex_lock(&its_dev->event_map.vlpi_lock);
1238
1239	if (!its_dev->event_map.vm) {
1240		struct its_vlpi_map *maps;
1241
1242		maps = kzalloc(sizeof(*maps) * its_dev->event_map.nr_lpis,
1243			       GFP_KERNEL);
1244		if (!maps) {
1245			ret = -ENOMEM;
1246			goto out;
1247		}
1248
1249		its_dev->event_map.vm = info->map->vm;
1250		its_dev->event_map.vlpi_maps = maps;
1251	} else if (its_dev->event_map.vm != info->map->vm) {
1252		ret = -EINVAL;
1253		goto out;
1254	}
1255
1256	/* Get our private copy of the mapping information */
1257	its_dev->event_map.vlpi_maps[event] = *info->map;
1258
1259	if (irqd_is_forwarded_to_vcpu(d)) {
1260		/* Already mapped, move it around */
1261		its_send_vmovi(its_dev, event);
1262	} else {
1263		/* Ensure all the VPEs are mapped on this ITS */
1264		its_map_vm(its_dev->its, info->map->vm);
1265
1266		/*
1267		 * Flag the interrupt as forwarded so that we can
1268		 * start poking the virtual property table.
1269		 */
1270		irqd_set_forwarded_to_vcpu(d);
1271
1272		/* Write out the property to the prop table */
1273		lpi_write_config(d, 0xff, info->map->properties);
1274
1275		/* Drop the physical mapping */
1276		its_send_discard(its_dev, event);
1277
1278		/* and install the virtual one */
1279		its_send_vmapti(its_dev, event);
1280
1281		/* Increment the number of VLPIs */
1282		its_dev->event_map.nr_vlpis++;
1283	}
1284
1285out:
1286	mutex_unlock(&its_dev->event_map.vlpi_lock);
1287	return ret;
1288}
1289
1290static int its_vlpi_get(struct irq_data *d, struct its_cmd_info *info)
1291{
1292	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1293	u32 event = its_get_event_id(d);
1294	int ret = 0;
1295
1296	mutex_lock(&its_dev->event_map.vlpi_lock);
1297
1298	if (!its_dev->event_map.vm ||
1299	    !its_dev->event_map.vlpi_maps[event].vm) {
1300		ret = -EINVAL;
1301		goto out;
1302	}
1303
1304	/* Copy our mapping information to the incoming request */
1305	*info->map = its_dev->event_map.vlpi_maps[event];
1306
1307out:
1308	mutex_unlock(&its_dev->event_map.vlpi_lock);
1309	return ret;
1310}
1311
1312static int its_vlpi_unmap(struct irq_data *d)
1313{
1314	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1315	u32 event = its_get_event_id(d);
1316	int ret = 0;
1317
1318	mutex_lock(&its_dev->event_map.vlpi_lock);
1319
1320	if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d)) {
1321		ret = -EINVAL;
1322		goto out;
1323	}
1324
1325	/* Drop the virtual mapping */
1326	its_send_discard(its_dev, event);
1327
1328	/* and restore the physical one */
1329	irqd_clr_forwarded_to_vcpu(d);
1330	its_send_mapti(its_dev, d->hwirq, event);
1331	lpi_update_config(d, 0xff, (LPI_PROP_DEFAULT_PRIO |
1332				    LPI_PROP_ENABLED |
1333				    LPI_PROP_GROUP1));
1334
1335	/* Potentially unmap the VM from this ITS */
1336	its_unmap_vm(its_dev->its, its_dev->event_map.vm);
1337
1338	/*
1339	 * Drop the refcount and make the device available again if
1340	 * this was the last VLPI.
1341	 */
1342	if (!--its_dev->event_map.nr_vlpis) {
1343		its_dev->event_map.vm = NULL;
1344		kfree(its_dev->event_map.vlpi_maps);
1345	}
1346
1347out:
1348	mutex_unlock(&its_dev->event_map.vlpi_lock);
1349	return ret;
1350}
1351
1352static int its_vlpi_prop_update(struct irq_data *d, struct its_cmd_info *info)
1353{
1354	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1355
1356	if (!its_dev->event_map.vm || !irqd_is_forwarded_to_vcpu(d))
1357		return -EINVAL;
1358
1359	if (info->cmd_type == PROP_UPDATE_AND_INV_VLPI)
1360		lpi_update_config(d, 0xff, info->config);
1361	else
1362		lpi_write_config(d, 0xff, info->config);
1363	its_vlpi_set_doorbell(d, !!(info->config & LPI_PROP_ENABLED));
1364
1365	return 0;
1366}
1367
1368static int its_irq_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
1369{
1370	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1371	struct its_cmd_info *info = vcpu_info;
1372
1373	/* Need a v4 ITS */
1374	if (!its_dev->its->is_v4)
1375		return -EINVAL;
1376
1377	/* Unmap request? */
1378	if (!info)
1379		return its_vlpi_unmap(d);
1380
1381	switch (info->cmd_type) {
1382	case MAP_VLPI:
1383		return its_vlpi_map(d, info);
1384
1385	case GET_VLPI:
1386		return its_vlpi_get(d, info);
1387
1388	case PROP_UPDATE_VLPI:
1389	case PROP_UPDATE_AND_INV_VLPI:
1390		return its_vlpi_prop_update(d, info);
1391
1392	default:
1393		return -EINVAL;
1394	}
1395}
1396
1397static struct irq_chip its_irq_chip = {
1398	.name			= "ITS",
1399	.irq_mask		= its_mask_irq,
1400	.irq_unmask		= its_unmask_irq,
1401	.irq_eoi		= irq_chip_eoi_parent,
1402	.irq_set_affinity	= its_set_affinity,
1403	.irq_compose_msi_msg	= its_irq_compose_msi_msg,
1404	.irq_set_irqchip_state	= its_irq_set_irqchip_state,
1405	.irq_set_vcpu_affinity	= its_irq_set_vcpu_affinity,
1406};
1407
1408/*
1409 * How we allocate LPIs:
1410 *
1411 * The GIC has id_bits bits for interrupt identifiers. From there, we
1412 * must subtract 8192 which are reserved for SGIs/PPIs/SPIs. Then, as
1413 * we allocate LPIs by chunks of 32, we can shift the whole thing by 5
1414 * bits to the right.
1415 *
1416 * This gives us (((1UL << id_bits) - 8192) >> 5) possible allocations.
1417 */
1418#define IRQS_PER_CHUNK_SHIFT	5
1419#define IRQS_PER_CHUNK		(1UL << IRQS_PER_CHUNK_SHIFT)
1420#define ITS_MAX_LPI_NRBITS	16 /* 64K LPIs */
1421
1422static unsigned long *lpi_bitmap;
1423static u32 lpi_chunks;
1424static DEFINE_SPINLOCK(lpi_lock);
1425
1426static int its_lpi_to_chunk(int lpi)
1427{
1428	return (lpi - 8192) >> IRQS_PER_CHUNK_SHIFT;
1429}
1430
1431static int its_chunk_to_lpi(int chunk)
1432{
1433	return (chunk << IRQS_PER_CHUNK_SHIFT) + 8192;
1434}
1435
1436static int __init its_lpi_init(u32 id_bits)
1437{
1438	lpi_chunks = its_lpi_to_chunk(1UL << id_bits);
1439
1440	lpi_bitmap = kzalloc(BITS_TO_LONGS(lpi_chunks) * sizeof(long),
1441			     GFP_KERNEL);
1442	if (!lpi_bitmap) {
1443		lpi_chunks = 0;
1444		return -ENOMEM;
1445	}
1446
1447	pr_info("ITS: Allocated %d chunks for LPIs\n", (int)lpi_chunks);
1448	return 0;
1449}
1450
1451static unsigned long *its_lpi_alloc_chunks(int nr_irqs, int *base, int *nr_ids)
1452{
1453	unsigned long *bitmap = NULL;
1454	int chunk_id;
1455	int nr_chunks;
1456	int i;
1457
1458	nr_chunks = DIV_ROUND_UP(nr_irqs, IRQS_PER_CHUNK);
1459
1460	spin_lock(&lpi_lock);
1461
1462	do {
1463		chunk_id = bitmap_find_next_zero_area(lpi_bitmap, lpi_chunks,
1464						      0, nr_chunks, 0);
1465		if (chunk_id < lpi_chunks)
1466			break;
1467
1468		nr_chunks--;
1469	} while (nr_chunks > 0);
1470
1471	if (!nr_chunks)
1472		goto out;
1473
1474	bitmap = kzalloc(BITS_TO_LONGS(nr_chunks * IRQS_PER_CHUNK) * sizeof (long),
1475			 GFP_ATOMIC);
1476	if (!bitmap)
1477		goto out;
1478
1479	for (i = 0; i < nr_chunks; i++)
1480		set_bit(chunk_id + i, lpi_bitmap);
1481
1482	*base = its_chunk_to_lpi(chunk_id);
1483	*nr_ids = nr_chunks * IRQS_PER_CHUNK;
1484
1485out:
1486	spin_unlock(&lpi_lock);
1487
1488	if (!bitmap)
1489		*base = *nr_ids = 0;
1490
1491	return bitmap;
1492}
1493
1494static void its_lpi_free_chunks(unsigned long *bitmap, int base, int nr_ids)
1495{
1496	int lpi;
1497
1498	spin_lock(&lpi_lock);
1499
1500	for (lpi = base; lpi < (base + nr_ids); lpi += IRQS_PER_CHUNK) {
1501		int chunk = its_lpi_to_chunk(lpi);
1502
1503		BUG_ON(chunk > lpi_chunks);
1504		if (test_bit(chunk, lpi_bitmap)) {
1505			clear_bit(chunk, lpi_bitmap);
1506		} else {
1507			pr_err("Bad LPI chunk %d\n", chunk);
1508		}
1509	}
1510
1511	spin_unlock(&lpi_lock);
1512
1513	kfree(bitmap);
1514}
1515
1516static struct page *its_allocate_prop_table(gfp_t gfp_flags)
1517{
1518	struct page *prop_page;
1519
1520	prop_page = alloc_pages(gfp_flags, get_order(LPI_PROPBASE_SZ));
1521	if (!prop_page)
1522		return NULL;
1523
1524	/* Priority 0xa0, Group-1, disabled */
1525	memset(page_address(prop_page),
1526	       LPI_PROP_DEFAULT_PRIO | LPI_PROP_GROUP1,
1527	       LPI_PROPBASE_SZ);
1528
1529	/* Make sure the GIC will observe the written configuration */
1530	gic_flush_dcache_to_poc(page_address(prop_page), LPI_PROPBASE_SZ);
1531
1532	return prop_page;
1533}
1534
1535static void its_free_prop_table(struct page *prop_page)
1536{
1537	free_pages((unsigned long)page_address(prop_page),
1538		   get_order(LPI_PROPBASE_SZ));
1539}
1540
1541static int __init its_alloc_lpi_tables(void)
1542{
1543	phys_addr_t paddr;
1544
1545	lpi_id_bits = min_t(u32, gic_rdists->id_bits, ITS_MAX_LPI_NRBITS);
1546	gic_rdists->prop_page = its_allocate_prop_table(GFP_NOWAIT);
1547	if (!gic_rdists->prop_page) {
1548		pr_err("Failed to allocate PROPBASE\n");
1549		return -ENOMEM;
1550	}
1551
1552	paddr = page_to_phys(gic_rdists->prop_page);
1553	pr_info("GIC: using LPI property table @%pa\n", &paddr);
1554
1555	return its_lpi_init(lpi_id_bits);
1556}
1557
1558static const char *its_base_type_string[] = {
1559	[GITS_BASER_TYPE_DEVICE]	= "Devices",
1560	[GITS_BASER_TYPE_VCPU]		= "Virtual CPUs",
1561	[GITS_BASER_TYPE_RESERVED3]	= "Reserved (3)",
1562	[GITS_BASER_TYPE_COLLECTION]	= "Interrupt Collections",
1563	[GITS_BASER_TYPE_RESERVED5] 	= "Reserved (5)",
1564	[GITS_BASER_TYPE_RESERVED6] 	= "Reserved (6)",
1565	[GITS_BASER_TYPE_RESERVED7] 	= "Reserved (7)",
1566};
1567
1568static u64 its_read_baser(struct its_node *its, struct its_baser *baser)
1569{
1570	u32 idx = baser - its->tables;
1571
1572	return gits_read_baser(its->base + GITS_BASER + (idx << 3));
1573}
1574
1575static void its_write_baser(struct its_node *its, struct its_baser *baser,
1576			    u64 val)
1577{
1578	u32 idx = baser - its->tables;
1579
1580	gits_write_baser(val, its->base + GITS_BASER + (idx << 3));
1581	baser->val = its_read_baser(its, baser);
1582}
1583
1584static int its_setup_baser(struct its_node *its, struct its_baser *baser,
1585			   u64 cache, u64 shr, u32 psz, u32 order,
1586			   bool indirect)
1587{
1588	u64 val = its_read_baser(its, baser);
1589	u64 esz = GITS_BASER_ENTRY_SIZE(val);
1590	u64 type = GITS_BASER_TYPE(val);
1591	u64 baser_phys, tmp;
1592	u32 alloc_pages;
1593	void *base;
1594
1595retry_alloc_baser:
1596	alloc_pages = (PAGE_ORDER_TO_SIZE(order) / psz);
1597	if (alloc_pages > GITS_BASER_PAGES_MAX) {
1598		pr_warn("ITS@%pa: %s too large, reduce ITS pages %u->%u\n",
1599			&its->phys_base, its_base_type_string[type],
1600			alloc_pages, GITS_BASER_PAGES_MAX);
1601		alloc_pages = GITS_BASER_PAGES_MAX;
1602		order = get_order(GITS_BASER_PAGES_MAX * psz);
1603	}
1604
1605	base = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, order);
1606	if (!base)
1607		return -ENOMEM;
1608
1609	baser_phys = virt_to_phys(base);
1610
1611	/* Check if the physical address of the memory is above 48bits */
1612	if (IS_ENABLED(CONFIG_ARM64_64K_PAGES) && (baser_phys >> 48)) {
1613
1614		/* 52bit PA is supported only when PageSize=64K */
1615		if (psz != SZ_64K) {
1616			pr_err("ITS: no 52bit PA support when psz=%d\n", psz);
1617			free_pages((unsigned long)base, order);
1618			return -ENXIO;
1619		}
1620
1621		/* Convert 52bit PA to 48bit field */
1622		baser_phys = GITS_BASER_PHYS_52_to_48(baser_phys);
1623	}
1624
1625retry_baser:
1626	val = (baser_phys					 |
1627		(type << GITS_BASER_TYPE_SHIFT)			 |
1628		((esz - 1) << GITS_BASER_ENTRY_SIZE_SHIFT)	 |
1629		((alloc_pages - 1) << GITS_BASER_PAGES_SHIFT)	 |
1630		cache						 |
1631		shr						 |
1632		GITS_BASER_VALID);
1633
1634	val |=	indirect ? GITS_BASER_INDIRECT : 0x0;
1635
1636	switch (psz) {
1637	case SZ_4K:
1638		val |= GITS_BASER_PAGE_SIZE_4K;
1639		break;
1640	case SZ_16K:
1641		val |= GITS_BASER_PAGE_SIZE_16K;
1642		break;
1643	case SZ_64K:
1644		val |= GITS_BASER_PAGE_SIZE_64K;
1645		break;
1646	}
1647
1648	its_write_baser(its, baser, val);
1649	tmp = baser->val;
1650
1651	if ((val ^ tmp) & GITS_BASER_SHAREABILITY_MASK) {
1652		/*
1653		 * Shareability didn't stick. Just use
1654		 * whatever the read reported, which is likely
1655		 * to be the only thing this redistributor
1656		 * supports. If that's zero, make it
1657		 * non-cacheable as well.
1658		 */
1659		shr = tmp & GITS_BASER_SHAREABILITY_MASK;
1660		if (!shr) {
1661			cache = GITS_BASER_nC;
1662			gic_flush_dcache_to_poc(base, PAGE_ORDER_TO_SIZE(order));
1663		}
1664		goto retry_baser;
1665	}
1666
1667	if ((val ^ tmp) & GITS_BASER_PAGE_SIZE_MASK) {
1668		/*
1669		 * Page size didn't stick. Let's try a smaller
1670		 * size and retry. If we reach 4K, then
1671		 * something is horribly wrong...
1672		 */
1673		free_pages((unsigned long)base, order);
1674		baser->base = NULL;
1675
1676		switch (psz) {
1677		case SZ_16K:
1678			psz = SZ_4K;
1679			goto retry_alloc_baser;
1680		case SZ_64K:
1681			psz = SZ_16K;
1682			goto retry_alloc_baser;
1683		}
1684	}
1685
1686	if (val != tmp) {
1687		pr_err("ITS@%pa: %s doesn't stick: %llx %llx\n",
1688		       &its->phys_base, its_base_type_string[type],
1689		       val, tmp);
1690		free_pages((unsigned long)base, order);
1691		return -ENXIO;
1692	}
1693
1694	baser->order = order;
1695	baser->base = base;
1696	baser->psz = psz;
1697	tmp = indirect ? GITS_LVL1_ENTRY_SIZE : esz;
1698
1699	pr_info("ITS@%pa: allocated %d %s @%lx (%s, esz %d, psz %dK, shr %d)\n",
1700		&its->phys_base, (int)(PAGE_ORDER_TO_SIZE(order) / (int)tmp),
1701		its_base_type_string[type],
1702		(unsigned long)virt_to_phys(base),
1703		indirect ? "indirect" : "flat", (int)esz,
1704		psz / SZ_1K, (int)shr >> GITS_BASER_SHAREABILITY_SHIFT);
1705
1706	return 0;
1707}
1708
1709static bool its_parse_indirect_baser(struct its_node *its,
1710				     struct its_baser *baser,
1711				     u32 psz, u32 *order, u32 ids)
1712{
1713	u64 tmp = its_read_baser(its, baser);
1714	u64 type = GITS_BASER_TYPE(tmp);
1715	u64 esz = GITS_BASER_ENTRY_SIZE(tmp);
1716	u64 val = GITS_BASER_InnerShareable | GITS_BASER_RaWaWb;
1717	u32 new_order = *order;
1718	bool indirect = false;
1719
1720	/* No need to enable Indirection if memory requirement < (psz*2)bytes */
1721	if ((esz << ids) > (psz * 2)) {
1722		/*
1723		 * Find out whether hw supports a single or two-level table by
1724		 * table by reading bit at offset '62' after writing '1' to it.
1725		 */
1726		its_write_baser(its, baser, val | GITS_BASER_INDIRECT);
1727		indirect = !!(baser->val & GITS_BASER_INDIRECT);
1728
1729		if (indirect) {
1730			/*
1731			 * The size of the lvl2 table is equal to ITS page size
1732			 * which is 'psz'. For computing lvl1 table size,
1733			 * subtract ID bits that sparse lvl2 table from 'ids'
1734			 * which is reported by ITS hardware times lvl1 table
1735			 * entry size.
1736			 */
1737			ids -= ilog2(psz / (int)esz);
1738			esz = GITS_LVL1_ENTRY_SIZE;
1739		}
1740	}
1741
1742	/*
1743	 * Allocate as many entries as required to fit the
1744	 * range of device IDs that the ITS can grok... The ID
1745	 * space being incredibly sparse, this results in a
1746	 * massive waste of memory if two-level device table
1747	 * feature is not supported by hardware.
1748	 */
1749	new_order = max_t(u32, get_order(esz << ids), new_order);
1750	if (new_order >= MAX_ORDER) {
1751		new_order = MAX_ORDER - 1;
1752		ids = ilog2(PAGE_ORDER_TO_SIZE(new_order) / (int)esz);
1753		pr_warn("ITS@%pa: %s Table too large, reduce ids %u->%u\n",
1754			&its->phys_base, its_base_type_string[type],
1755			its->device_ids, ids);
1756	}
1757
1758	*order = new_order;
1759
1760	return indirect;
1761}
1762
1763static void its_free_tables(struct its_node *its)
1764{
1765	int i;
1766
1767	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
1768		if (its->tables[i].base) {
1769			free_pages((unsigned long)its->tables[i].base,
1770				   its->tables[i].order);
1771			its->tables[i].base = NULL;
1772		}
1773	}
1774}
1775
1776static int its_alloc_tables(struct its_node *its)
1777{
1778	u64 shr = GITS_BASER_InnerShareable;
1779	u64 cache = GITS_BASER_RaWaWb;
1780	u32 psz = SZ_64K;
1781	int err, i;
1782
1783	if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_22375)
1784		/* erratum 24313: ignore memory access type */
1785		cache = GITS_BASER_nCnB;
1786
1787	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
1788		struct its_baser *baser = its->tables + i;
1789		u64 val = its_read_baser(its, baser);
1790		u64 type = GITS_BASER_TYPE(val);
1791		u32 order = get_order(psz);
1792		bool indirect = false;
1793
1794		switch (type) {
1795		case GITS_BASER_TYPE_NONE:
1796			continue;
1797
1798		case GITS_BASER_TYPE_DEVICE:
1799			indirect = its_parse_indirect_baser(its, baser,
1800							    psz, &order,
1801							    its->device_ids);
1802		case GITS_BASER_TYPE_VCPU:
1803			indirect = its_parse_indirect_baser(its, baser,
1804							    psz, &order,
1805							    ITS_MAX_VPEID_BITS);
1806			break;
1807		}
1808
1809		err = its_setup_baser(its, baser, cache, shr, psz, order, indirect);
1810		if (err < 0) {
1811			its_free_tables(its);
1812			return err;
1813		}
1814
1815		/* Update settings which will be used for next BASERn */
1816		psz = baser->psz;
1817		cache = baser->val & GITS_BASER_CACHEABILITY_MASK;
1818		shr = baser->val & GITS_BASER_SHAREABILITY_MASK;
1819	}
1820
1821	return 0;
1822}
1823
1824static int its_alloc_collections(struct its_node *its)
1825{
1826	its->collections = kzalloc(nr_cpu_ids * sizeof(*its->collections),
1827				   GFP_KERNEL);
1828	if (!its->collections)
1829		return -ENOMEM;
1830
1831	return 0;
1832}
1833
1834static struct page *its_allocate_pending_table(gfp_t gfp_flags)
1835{
1836	struct page *pend_page;
1837	/*
1838	 * The pending pages have to be at least 64kB aligned,
1839	 * hence the 'max(LPI_PENDBASE_SZ, SZ_64K)' below.
1840	 */
1841	pend_page = alloc_pages(gfp_flags | __GFP_ZERO,
1842				get_order(max_t(u32, LPI_PENDBASE_SZ, SZ_64K)));
1843	if (!pend_page)
1844		return NULL;
1845
1846	/* Make sure the GIC will observe the zero-ed page */
1847	gic_flush_dcache_to_poc(page_address(pend_page), LPI_PENDBASE_SZ);
1848
1849	return pend_page;
1850}
1851
1852static void its_free_pending_table(struct page *pt)
1853{
1854	free_pages((unsigned long)page_address(pt),
1855		   get_order(max_t(u32, LPI_PENDBASE_SZ, SZ_64K)));
1856}
1857
1858static void its_cpu_init_lpis(void)
1859{
1860	void __iomem *rbase = gic_data_rdist_rd_base();
1861	struct page *pend_page;
1862	u64 val, tmp;
1863
1864	/* If we didn't allocate the pending table yet, do it now */
1865	pend_page = gic_data_rdist()->pend_page;
1866	if (!pend_page) {
1867		phys_addr_t paddr;
1868
1869		pend_page = its_allocate_pending_table(GFP_NOWAIT);
1870		if (!pend_page) {
1871			pr_err("Failed to allocate PENDBASE for CPU%d\n",
1872			       smp_processor_id());
1873			return;
1874		}
1875
1876		paddr = page_to_phys(pend_page);
1877		pr_info("CPU%d: using LPI pending table @%pa\n",
1878			smp_processor_id(), &paddr);
1879		gic_data_rdist()->pend_page = pend_page;
1880	}
1881
1882	/* set PROPBASE */
1883	val = (page_to_phys(gic_rdists->prop_page) |
1884	       GICR_PROPBASER_InnerShareable |
1885	       GICR_PROPBASER_RaWaWb |
1886	       ((LPI_NRBITS - 1) & GICR_PROPBASER_IDBITS_MASK));
1887
1888	gicr_write_propbaser(val, rbase + GICR_PROPBASER);
1889	tmp = gicr_read_propbaser(rbase + GICR_PROPBASER);
1890
1891	if ((tmp ^ val) & GICR_PROPBASER_SHAREABILITY_MASK) {
1892		if (!(tmp & GICR_PROPBASER_SHAREABILITY_MASK)) {
1893			/*
1894			 * The HW reports non-shareable, we must
1895			 * remove the cacheability attributes as
1896			 * well.
1897			 */
1898			val &= ~(GICR_PROPBASER_SHAREABILITY_MASK |
1899				 GICR_PROPBASER_CACHEABILITY_MASK);
1900			val |= GICR_PROPBASER_nC;
1901			gicr_write_propbaser(val, rbase + GICR_PROPBASER);
1902		}
1903		pr_info_once("GIC: using cache flushing for LPI property table\n");
1904		gic_rdists->flags |= RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING;
1905	}
1906
1907	/* set PENDBASE */
1908	val = (page_to_phys(pend_page) |
1909	       GICR_PENDBASER_InnerShareable |
1910	       GICR_PENDBASER_RaWaWb);
1911
1912	gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
1913	tmp = gicr_read_pendbaser(rbase + GICR_PENDBASER);
1914
1915	if (!(tmp & GICR_PENDBASER_SHAREABILITY_MASK)) {
1916		/*
1917		 * The HW reports non-shareable, we must remove the
1918		 * cacheability attributes as well.
1919		 */
1920		val &= ~(GICR_PENDBASER_SHAREABILITY_MASK |
1921			 GICR_PENDBASER_CACHEABILITY_MASK);
1922		val |= GICR_PENDBASER_nC;
1923		gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
1924	}
1925
1926	/* Enable LPIs */
1927	val = readl_relaxed(rbase + GICR_CTLR);
1928	val |= GICR_CTLR_ENABLE_LPIS;
1929	writel_relaxed(val, rbase + GICR_CTLR);
1930
1931	/* Make sure the GIC has seen the above */
1932	dsb(sy);
1933}
1934
1935static void its_cpu_init_collection(struct its_node *its)
1936{
1937	int cpu = smp_processor_id();
1938	u64 target;
1939
1940	/* avoid cross node collections and its mapping */
1941	if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) {
1942		struct device_node *cpu_node;
1943
1944		cpu_node = of_get_cpu_node(cpu, NULL);
1945		if (its->numa_node != NUMA_NO_NODE &&
1946			its->numa_node != of_node_to_nid(cpu_node))
1947			return;
1948	}
1949
1950	/*
1951	 * We now have to bind each collection to its target
1952	 * redistributor.
1953	 */
1954	if (gic_read_typer(its->base + GITS_TYPER) & GITS_TYPER_PTA) {
1955		/*
1956		 * This ITS wants the physical address of the
1957		 * redistributor.
1958		 */
1959		target = gic_data_rdist()->phys_base;
1960	} else {
1961		/* This ITS wants a linear CPU number. */
1962		target = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
1963		target = GICR_TYPER_CPU_NUMBER(target) << 16;
1964	}
1965
1966	/* Perform collection mapping */
1967	its->collections[cpu].target_address = target;
1968	its->collections[cpu].col_id = cpu;
1969
1970	its_send_mapc(its, &its->collections[cpu], 1);
1971	its_send_invall(its, &its->collections[cpu]);
1972}
1973
1974static void its_cpu_init_collections(void)
1975{
1976	struct its_node *its;
1977
1978	spin_lock(&its_lock);
1979
1980	list_for_each_entry(its, &its_nodes, entry)
1981		its_cpu_init_collection(its);
1982
1983	spin_unlock(&its_lock);
1984}
1985
1986static struct its_device *its_find_device(struct its_node *its, u32 dev_id)
1987{
1988	struct its_device *its_dev = NULL, *tmp;
1989	unsigned long flags;
1990
1991	raw_spin_lock_irqsave(&its->lock, flags);
1992
1993	list_for_each_entry(tmp, &its->its_device_list, entry) {
1994		if (tmp->device_id == dev_id) {
1995			its_dev = tmp;
1996			break;
1997		}
1998	}
1999
2000	raw_spin_unlock_irqrestore(&its->lock, flags);
2001
2002	return its_dev;
2003}
2004
2005static struct its_baser *its_get_baser(struct its_node *its, u32 type)
2006{
2007	int i;
2008
2009	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
2010		if (GITS_BASER_TYPE(its->tables[i].val) == type)
2011			return &its->tables[i];
2012	}
2013
2014	return NULL;
2015}
2016
2017static bool its_alloc_table_entry(struct its_baser *baser, u32 id)
2018{
2019	struct page *page;
2020	u32 esz, idx;
2021	__le64 *table;
2022
2023	/* Don't allow device id that exceeds single, flat table limit */
2024	esz = GITS_BASER_ENTRY_SIZE(baser->val);
2025	if (!(baser->val & GITS_BASER_INDIRECT))
2026		return (id < (PAGE_ORDER_TO_SIZE(baser->order) / esz));
2027
2028	/* Compute 1st level table index & check if that exceeds table limit */
2029	idx = id >> ilog2(baser->psz / esz);
2030	if (idx >= (PAGE_ORDER_TO_SIZE(baser->order) / GITS_LVL1_ENTRY_SIZE))
2031		return false;
2032
2033	table = baser->base;
2034
2035	/* Allocate memory for 2nd level table */
2036	if (!table[idx]) {
2037		page = alloc_pages(GFP_KERNEL | __GFP_ZERO, get_order(baser->psz));
2038		if (!page)
2039			return false;
2040
2041		/* Flush Lvl2 table to PoC if hw doesn't support coherency */
2042		if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
2043			gic_flush_dcache_to_poc(page_address(page), baser->psz);
2044
2045		table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID);
2046
2047		/* Flush Lvl1 entry to PoC if hw doesn't support coherency */
2048		if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
2049			gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE);
2050
2051		/* Ensure updated table contents are visible to ITS hardware */
2052		dsb(sy);
2053	}
2054
2055	return true;
2056}
2057
2058static bool its_alloc_device_table(struct its_node *its, u32 dev_id)
2059{
2060	struct its_baser *baser;
2061
2062	baser = its_get_baser(its, GITS_BASER_TYPE_DEVICE);
2063
2064	/* Don't allow device id that exceeds ITS hardware limit */
2065	if (!baser)
2066		return (ilog2(dev_id) < its->device_ids);
2067
2068	return its_alloc_table_entry(baser, dev_id);
2069}
2070
2071static bool its_alloc_vpe_table(u32 vpe_id)
2072{
2073	struct its_node *its;
2074
2075	/*
2076	 * Make sure the L2 tables are allocated on *all* v4 ITSs. We
2077	 * could try and only do it on ITSs corresponding to devices
2078	 * that have interrupts targeted at this VPE, but the
2079	 * complexity becomes crazy (and you have tons of memory
2080	 * anyway, right?).
2081	 */
2082	list_for_each_entry(its, &its_nodes, entry) {
2083		struct its_baser *baser;
2084
2085		if (!its->is_v4)
2086			continue;
2087
2088		baser = its_get_baser(its, GITS_BASER_TYPE_VCPU);
2089		if (!baser)
2090			return false;
2091
2092		if (!its_alloc_table_entry(baser, vpe_id))
2093			return false;
2094	}
2095
2096	return true;
2097}
2098
2099static struct its_device *its_create_device(struct its_node *its, u32 dev_id,
2100					    int nvecs, bool alloc_lpis)
2101{
2102	struct its_device *dev;
2103	unsigned long *lpi_map = NULL;
2104	unsigned long flags;
2105	u16 *col_map = NULL;
2106	void *itt;
2107	int lpi_base;
2108	int nr_lpis;
2109	int nr_ites;
2110	int sz;
2111
2112	if (!its_alloc_device_table(its, dev_id))
2113		return NULL;
2114
2115	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
2116	/*
2117	 * We allocate at least one chunk worth of LPIs bet device,
2118	 * and thus that many ITEs. The device may require less though.
2119	 */
2120	nr_ites = max(IRQS_PER_CHUNK, roundup_pow_of_two(nvecs));
2121	sz = nr_ites * its->ite_size;
2122	sz = max(sz, ITS_ITT_ALIGN) + ITS_ITT_ALIGN - 1;
2123	itt = kzalloc(sz, GFP_KERNEL);
2124	if (alloc_lpis) {
2125		lpi_map = its_lpi_alloc_chunks(nvecs, &lpi_base, &nr_lpis);
2126		if (lpi_map)
2127			col_map = kzalloc(sizeof(*col_map) * nr_lpis,
2128					  GFP_KERNEL);
2129	} else {
2130		col_map = kzalloc(sizeof(*col_map) * nr_ites, GFP_KERNEL);
2131		nr_lpis = 0;
2132		lpi_base = 0;
2133	}
2134
2135	if (!dev || !itt ||  !col_map || (!lpi_map && alloc_lpis)) {
2136		kfree(dev);
2137		kfree(itt);
2138		kfree(lpi_map);
2139		kfree(col_map);
2140		return NULL;
2141	}
2142
2143	gic_flush_dcache_to_poc(itt, sz);
2144
2145	dev->its = its;
2146	dev->itt = itt;
2147	dev->nr_ites = nr_ites;
2148	dev->event_map.lpi_map = lpi_map;
2149	dev->event_map.col_map = col_map;
2150	dev->event_map.lpi_base = lpi_base;
2151	dev->event_map.nr_lpis = nr_lpis;
2152	mutex_init(&dev->event_map.vlpi_lock);
2153	dev->device_id = dev_id;
2154	INIT_LIST_HEAD(&dev->entry);
2155
2156	raw_spin_lock_irqsave(&its->lock, flags);
2157	list_add(&dev->entry, &its->its_device_list);
2158	raw_spin_unlock_irqrestore(&its->lock, flags);
2159
2160	/* Map device to its ITT */
2161	its_send_mapd(dev, 1);
2162
2163	return dev;
2164}
2165
2166static void its_free_device(struct its_device *its_dev)
2167{
2168	unsigned long flags;
2169
2170	raw_spin_lock_irqsave(&its_dev->its->lock, flags);
2171	list_del(&its_dev->entry);
2172	raw_spin_unlock_irqrestore(&its_dev->its->lock, flags);
2173	kfree(its_dev->itt);
2174	kfree(its_dev);
2175}
2176
2177static int its_alloc_device_irq(struct its_device *dev, irq_hw_number_t *hwirq)
2178{
2179	int idx;
2180
2181	idx = find_first_zero_bit(dev->event_map.lpi_map,
2182				  dev->event_map.nr_lpis);
2183	if (idx == dev->event_map.nr_lpis)
2184		return -ENOSPC;
2185
2186	*hwirq = dev->event_map.lpi_base + idx;
2187	set_bit(idx, dev->event_map.lpi_map);
2188
2189	return 0;
2190}
2191
2192static int its_msi_prepare(struct irq_domain *domain, struct device *dev,
2193			   int nvec, msi_alloc_info_t *info)
2194{
2195	struct its_node *its;
2196	struct its_device *its_dev;
2197	struct msi_domain_info *msi_info;
2198	u32 dev_id;
2199
2200	/*
2201	 * We ignore "dev" entierely, and rely on the dev_id that has
2202	 * been passed via the scratchpad. This limits this domain's
2203	 * usefulness to upper layers that definitely know that they
2204	 * are built on top of the ITS.
2205	 */
2206	dev_id = info->scratchpad[0].ul;
2207
2208	msi_info = msi_get_domain_info(domain);
2209	its = msi_info->data;
2210
2211	if (!gic_rdists->has_direct_lpi &&
2212	    vpe_proxy.dev &&
2213	    vpe_proxy.dev->its == its &&
2214	    dev_id == vpe_proxy.dev->device_id) {
2215		/* Bad luck. Get yourself a better implementation */
2216		WARN_ONCE(1, "DevId %x clashes with GICv4 VPE proxy device\n",
2217			  dev_id);
2218		return -EINVAL;
2219	}
2220
2221	its_dev = its_find_device(its, dev_id);
2222	if (its_dev) {
2223		/*
2224		 * We already have seen this ID, probably through
2225		 * another alias (PCI bridge of some sort). No need to
2226		 * create the device.
2227		 */
2228		pr_debug("Reusing ITT for devID %x\n", dev_id);
2229		goto out;
2230	}
2231
2232	its_dev = its_create_device(its, dev_id, nvec, true);
2233	if (!its_dev)
2234		return -ENOMEM;
2235
2236	pr_debug("ITT %d entries, %d bits\n", nvec, ilog2(nvec));
2237out:
2238	info->scratchpad[0].ptr = its_dev;
2239	return 0;
2240}
2241
2242static struct msi_domain_ops its_msi_domain_ops = {
2243	.msi_prepare	= its_msi_prepare,
2244};
2245
2246static int its_irq_gic_domain_alloc(struct irq_domain *domain,
2247				    unsigned int virq,
2248				    irq_hw_number_t hwirq)
2249{
2250	struct irq_fwspec fwspec;
2251
2252	if (irq_domain_get_of_node(domain->parent)) {
2253		fwspec.fwnode = domain->parent->fwnode;
2254		fwspec.param_count = 3;
2255		fwspec.param[0] = GIC_IRQ_TYPE_LPI;
2256		fwspec.param[1] = hwirq;
2257		fwspec.param[2] = IRQ_TYPE_EDGE_RISING;
2258	} else if (is_fwnode_irqchip(domain->parent->fwnode)) {
2259		fwspec.fwnode = domain->parent->fwnode;
2260		fwspec.param_count = 2;
2261		fwspec.param[0] = hwirq;
2262		fwspec.param[1] = IRQ_TYPE_EDGE_RISING;
2263	} else {
2264		return -EINVAL;
2265	}
2266
2267	return irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec);
2268}
2269
2270static int its_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
2271				unsigned int nr_irqs, void *args)
2272{
2273	msi_alloc_info_t *info = args;
2274	struct its_device *its_dev = info->scratchpad[0].ptr;
2275	irq_hw_number_t hwirq;
2276	int err;
2277	int i;
2278
2279	for (i = 0; i < nr_irqs; i++) {
2280		err = its_alloc_device_irq(its_dev, &hwirq);
2281		if (err)
2282			return err;
2283
2284		err = its_irq_gic_domain_alloc(domain, virq + i, hwirq);
2285		if (err)
2286			return err;
2287
2288		irq_domain_set_hwirq_and_chip(domain, virq + i,
2289					      hwirq, &its_irq_chip, its_dev);
2290		irqd_set_single_target(irq_desc_get_irq_data(irq_to_desc(virq + i)));
2291		pr_debug("ID:%d pID:%d vID:%d\n",
2292			 (int)(hwirq - its_dev->event_map.lpi_base),
2293			 (int) hwirq, virq + i);
2294	}
2295
2296	return 0;
2297}
2298
2299static int its_irq_domain_activate(struct irq_domain *domain,
2300				   struct irq_data *d, bool reserve)
2301{
2302	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
2303	u32 event = its_get_event_id(d);
2304	const struct cpumask *cpu_mask = cpu_online_mask;
2305	int cpu;
2306
2307	/* get the cpu_mask of local node */
2308	if (its_dev->its->numa_node >= 0)
2309		cpu_mask = cpumask_of_node(its_dev->its->numa_node);
2310
2311	/* Bind the LPI to the first possible CPU */
2312	cpu = cpumask_first(cpu_mask);
2313	its_dev->event_map.col_map[event] = cpu;
2314	irq_data_update_effective_affinity(d, cpumask_of(cpu));
2315
2316	/* Map the GIC IRQ and event to the device */
2317	its_send_mapti(its_dev, d->hwirq, event);
2318	return 0;
2319}
2320
2321static void its_irq_domain_deactivate(struct irq_domain *domain,
2322				      struct irq_data *d)
2323{
2324	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
2325	u32 event = its_get_event_id(d);
2326
2327	/* Stop the delivery of interrupts */
2328	its_send_discard(its_dev, event);
2329}
2330
2331static void its_irq_domain_free(struct irq_domain *domain, unsigned int virq,
2332				unsigned int nr_irqs)
2333{
2334	struct irq_data *d = irq_domain_get_irq_data(domain, virq);
2335	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
2336	int i;
2337
2338	for (i = 0; i < nr_irqs; i++) {
2339		struct irq_data *data = irq_domain_get_irq_data(domain,
2340								virq + i);
2341		u32 event = its_get_event_id(data);
2342
2343		/* Mark interrupt index as unused */
2344		clear_bit(event, its_dev->event_map.lpi_map);
2345
2346		/* Nuke the entry in the domain */
2347		irq_domain_reset_irq_data(data);
2348	}
2349
2350	/* If all interrupts have been freed, start mopping the floor */
2351	if (bitmap_empty(its_dev->event_map.lpi_map,
2352			 its_dev->event_map.nr_lpis)) {
2353		its_lpi_free_chunks(its_dev->event_map.lpi_map,
2354				    its_dev->event_map.lpi_base,
2355				    its_dev->event_map.nr_lpis);
2356		kfree(its_dev->event_map.col_map);
2357
2358		/* Unmap device/itt */
2359		its_send_mapd(its_dev, 0);
2360		its_free_device(its_dev);
2361	}
2362
2363	irq_domain_free_irqs_parent(domain, virq, nr_irqs);
2364}
2365
2366static const struct irq_domain_ops its_domain_ops = {
2367	.alloc			= its_irq_domain_alloc,
2368	.free			= its_irq_domain_free,
2369	.activate		= its_irq_domain_activate,
2370	.deactivate		= its_irq_domain_deactivate,
2371};
2372
2373/*
2374 * This is insane.
2375 *
2376 * If a GICv4 doesn't implement Direct LPIs (which is extremely
2377 * likely), the only way to perform an invalidate is to use a fake
2378 * device to issue an INV command, implying that the LPI has first
2379 * been mapped to some event on that device. Since this is not exactly
2380 * cheap, we try to keep that mapping around as long as possible, and
2381 * only issue an UNMAP if we're short on available slots.
2382 *
2383 * Broken by design(tm).
2384 */
2385static void its_vpe_db_proxy_unmap_locked(struct its_vpe *vpe)
2386{
2387	/* Already unmapped? */
2388	if (vpe->vpe_proxy_event == -1)
2389		return;
2390
2391	its_send_discard(vpe_proxy.dev, vpe->vpe_proxy_event);
2392	vpe_proxy.vpes[vpe->vpe_proxy_event] = NULL;
2393
2394	/*
2395	 * We don't track empty slots at all, so let's move the
2396	 * next_victim pointer if we can quickly reuse that slot
2397	 * instead of nuking an existing entry. Not clear that this is
2398	 * always a win though, and this might just generate a ripple
2399	 * effect... Let's just hope VPEs don't migrate too often.
2400	 */
2401	if (vpe_proxy.vpes[vpe_proxy.next_victim])
2402		vpe_proxy.next_victim = vpe->vpe_proxy_event;
2403
2404	vpe->vpe_proxy_event = -1;
2405}
2406
2407static void its_vpe_db_proxy_unmap(struct its_vpe *vpe)
2408{
2409	if (!gic_rdists->has_direct_lpi) {
2410		unsigned long flags;
2411
2412		raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
2413		its_vpe_db_proxy_unmap_locked(vpe);
2414		raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
2415	}
2416}
2417
2418static void its_vpe_db_proxy_map_locked(struct its_vpe *vpe)
2419{
2420	/* Already mapped? */
2421	if (vpe->vpe_proxy_event != -1)
2422		return;
2423
2424	/* This slot was already allocated. Kick the other VPE out. */
2425	if (vpe_proxy.vpes[vpe_proxy.next_victim])
2426		its_vpe_db_proxy_unmap_locked(vpe_proxy.vpes[vpe_proxy.next_victim]);
2427
2428	/* Map the new VPE instead */
2429	vpe_proxy.vpes[vpe_proxy.next_victim] = vpe;
2430	vpe->vpe_proxy_event = vpe_proxy.next_victim;
2431	vpe_proxy.next_victim = (vpe_proxy.next_victim + 1) % vpe_proxy.dev->nr_ites;
2432
2433	vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = vpe->col_idx;
2434	its_send_mapti(vpe_proxy.dev, vpe->vpe_db_lpi, vpe->vpe_proxy_event);
2435}
2436
2437static void its_vpe_db_proxy_move(struct its_vpe *vpe, int from, int to)
2438{
2439	unsigned long flags;
2440	struct its_collection *target_col;
2441
2442	if (gic_rdists->has_direct_lpi) {
2443		void __iomem *rdbase;
2444
2445		rdbase = per_cpu_ptr(gic_rdists->rdist, from)->rd_base;
2446		gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
2447		while (gic_read_lpir(rdbase + GICR_SYNCR) & 1)
2448			cpu_relax();
2449
2450		return;
2451	}
2452
2453	raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
2454
2455	its_vpe_db_proxy_map_locked(vpe);
2456
2457	target_col = &vpe_proxy.dev->its->collections[to];
2458	its_send_movi(vpe_proxy.dev, target_col, vpe->vpe_proxy_event);
2459	vpe_proxy.dev->event_map.col_map[vpe->vpe_proxy_event] = to;
2460
2461	raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
2462}
2463
2464static int its_vpe_set_affinity(struct irq_data *d,
2465				const struct cpumask *mask_val,
2466				bool force)
2467{
2468	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
2469	int cpu = cpumask_first(mask_val);
2470
2471	/*
2472	 * Changing affinity is mega expensive, so let's be as lazy as
2473	 * we can and only do it if we really have to. Also, if mapped
2474	 * into the proxy device, we need to move the doorbell
2475	 * interrupt to its new location.
2476	 */
2477	if (vpe->col_idx != cpu) {
2478		int from = vpe->col_idx;
2479
2480		vpe->col_idx = cpu;
2481		its_send_vmovp(vpe);
2482		its_vpe_db_proxy_move(vpe, from, cpu);
2483	}
2484
2485	irq_data_update_effective_affinity(d, cpumask_of(cpu));
2486
2487	return IRQ_SET_MASK_OK_DONE;
2488}
2489
2490static void its_vpe_schedule(struct its_vpe *vpe)
2491{
2492	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
2493	u64 val;
2494
2495	/* Schedule the VPE */
2496	val  = virt_to_phys(page_address(vpe->its_vm->vprop_page)) &
2497		GENMASK_ULL(51, 12);
2498	val |= (LPI_NRBITS - 1) & GICR_VPROPBASER_IDBITS_MASK;
2499	val |= GICR_VPROPBASER_RaWb;
2500	val |= GICR_VPROPBASER_InnerShareable;
2501	gits_write_vpropbaser(val, vlpi_base + GICR_VPROPBASER);
2502
2503	val  = virt_to_phys(page_address(vpe->vpt_page)) &
2504		GENMASK_ULL(51, 16);
2505	val |= GICR_VPENDBASER_RaWaWb;
2506	val |= GICR_VPENDBASER_NonShareable;
2507	/*
2508	 * There is no good way of finding out if the pending table is
2509	 * empty as we can race against the doorbell interrupt very
2510	 * easily. So in the end, vpe->pending_last is only an
2511	 * indication that the vcpu has something pending, not one
2512	 * that the pending table is empty. A good implementation
2513	 * would be able to read its coarse map pretty quickly anyway,
2514	 * making this a tolerable issue.
2515	 */
2516	val |= GICR_VPENDBASER_PendingLast;
2517	val |= vpe->idai ? GICR_VPENDBASER_IDAI : 0;
2518	val |= GICR_VPENDBASER_Valid;
2519	gits_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
2520}
2521
2522static void its_vpe_deschedule(struct its_vpe *vpe)
2523{
2524	void __iomem *vlpi_base = gic_data_rdist_vlpi_base();
2525	u32 count = 1000000;	/* 1s! */
2526	bool clean;
2527	u64 val;
2528
2529	/* We're being scheduled out */
2530	val = gits_read_vpendbaser(vlpi_base + GICR_VPENDBASER);
2531	val &= ~GICR_VPENDBASER_Valid;
2532	gits_write_vpendbaser(val, vlpi_base + GICR_VPENDBASER);
2533
2534	do {
2535		val = gits_read_vpendbaser(vlpi_base + GICR_VPENDBASER);
2536		clean = !(val & GICR_VPENDBASER_Dirty);
2537		if (!clean) {
2538			count--;
2539			cpu_relax();
2540			udelay(1);
2541		}
2542	} while (!clean && count);
2543
2544	if (unlikely(!clean && !count)) {
2545		pr_err_ratelimited("ITS virtual pending table not cleaning\n");
2546		vpe->idai = false;
2547		vpe->pending_last = true;
2548	} else {
2549		vpe->idai = !!(val & GICR_VPENDBASER_IDAI);
2550		vpe->pending_last = !!(val & GICR_VPENDBASER_PendingLast);
2551	}
2552}
2553
2554static void its_vpe_invall(struct its_vpe *vpe)
2555{
2556	struct its_node *its;
2557
2558	list_for_each_entry(its, &its_nodes, entry) {
2559		if (!its->is_v4)
2560			continue;
2561
2562		if (its_list_map && !vpe->its_vm->vlpi_count[its->list_nr])
2563			continue;
2564
2565		/*
2566		 * Sending a VINVALL to a single ITS is enough, as all
2567		 * we need is to reach the redistributors.
2568		 */
2569		its_send_vinvall(its, vpe);
2570		return;
2571	}
2572}
2573
2574static int its_vpe_set_vcpu_affinity(struct irq_data *d, void *vcpu_info)
2575{
2576	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
2577	struct its_cmd_info *info = vcpu_info;
2578
2579	switch (info->cmd_type) {
2580	case SCHEDULE_VPE:
2581		its_vpe_schedule(vpe);
2582		return 0;
2583
2584	case DESCHEDULE_VPE:
2585		its_vpe_deschedule(vpe);
2586		return 0;
2587
2588	case INVALL_VPE:
2589		its_vpe_invall(vpe);
2590		return 0;
2591
2592	default:
2593		return -EINVAL;
2594	}
2595}
2596
2597static void its_vpe_send_cmd(struct its_vpe *vpe,
2598			     void (*cmd)(struct its_device *, u32))
2599{
2600	unsigned long flags;
2601
2602	raw_spin_lock_irqsave(&vpe_proxy.lock, flags);
2603
2604	its_vpe_db_proxy_map_locked(vpe);
2605	cmd(vpe_proxy.dev, vpe->vpe_proxy_event);
2606
2607	raw_spin_unlock_irqrestore(&vpe_proxy.lock, flags);
2608}
2609
2610static void its_vpe_send_inv(struct irq_data *d)
2611{
2612	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
2613
2614	if (gic_rdists->has_direct_lpi) {
2615		void __iomem *rdbase;
2616
2617		rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base;
2618		gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_INVLPIR);
2619		while (gic_read_lpir(rdbase + GICR_SYNCR) & 1)
2620			cpu_relax();
2621	} else {
2622		its_vpe_send_cmd(vpe, its_send_inv);
2623	}
2624}
2625
2626static void its_vpe_mask_irq(struct irq_data *d)
2627{
2628	/*
2629	 * We need to unmask the LPI, which is described by the parent
2630	 * irq_data. Instead of calling into the parent (which won't
2631	 * exactly do the right thing, let's simply use the
2632	 * parent_data pointer. Yes, I'm naughty.
2633	 */
2634	lpi_write_config(d->parent_data, LPI_PROP_ENABLED, 0);
2635	its_vpe_send_inv(d);
2636}
2637
2638static void its_vpe_unmask_irq(struct irq_data *d)
2639{
2640	/* Same hack as above... */
2641	lpi_write_config(d->parent_data, 0, LPI_PROP_ENABLED);
2642	its_vpe_send_inv(d);
2643}
2644
2645static int its_vpe_set_irqchip_state(struct irq_data *d,
2646				     enum irqchip_irq_state which,
2647				     bool state)
2648{
2649	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
2650
2651	if (which != IRQCHIP_STATE_PENDING)
2652		return -EINVAL;
2653
2654	if (gic_rdists->has_direct_lpi) {
2655		void __iomem *rdbase;
2656
2657		rdbase = per_cpu_ptr(gic_rdists->rdist, vpe->col_idx)->rd_base;
2658		if (state) {
2659			gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_SETLPIR);
2660		} else {
2661			gic_write_lpir(vpe->vpe_db_lpi, rdbase + GICR_CLRLPIR);
2662			while (gic_read_lpir(rdbase + GICR_SYNCR) & 1)
2663				cpu_relax();
2664		}
2665	} else {
2666		if (state)
2667			its_vpe_send_cmd(vpe, its_send_int);
2668		else
2669			its_vpe_send_cmd(vpe, its_send_clear);
2670	}
2671
2672	return 0;
2673}
2674
2675static struct irq_chip its_vpe_irq_chip = {
2676	.name			= "GICv4-vpe",
2677	.irq_mask		= its_vpe_mask_irq,
2678	.irq_unmask		= its_vpe_unmask_irq,
2679	.irq_eoi		= irq_chip_eoi_parent,
2680	.irq_set_affinity	= its_vpe_set_affinity,
2681	.irq_set_irqchip_state	= its_vpe_set_irqchip_state,
2682	.irq_set_vcpu_affinity	= its_vpe_set_vcpu_affinity,
2683};
2684
2685static int its_vpe_id_alloc(void)
2686{
2687	return ida_simple_get(&its_vpeid_ida, 0, ITS_MAX_VPEID, GFP_KERNEL);
2688}
2689
2690static void its_vpe_id_free(u16 id)
2691{
2692	ida_simple_remove(&its_vpeid_ida, id);
2693}
2694
2695static int its_vpe_init(struct its_vpe *vpe)
2696{
2697	struct page *vpt_page;
2698	int vpe_id;
2699
2700	/* Allocate vpe_id */
2701	vpe_id = its_vpe_id_alloc();
2702	if (vpe_id < 0)
2703		return vpe_id;
2704
2705	/* Allocate VPT */
2706	vpt_page = its_allocate_pending_table(GFP_KERNEL);
2707	if (!vpt_page) {
2708		its_vpe_id_free(vpe_id);
2709		return -ENOMEM;
2710	}
2711
2712	if (!its_alloc_vpe_table(vpe_id)) {
2713		its_vpe_id_free(vpe_id);
2714		its_free_pending_table(vpe->vpt_page);
2715		return -ENOMEM;
2716	}
2717
2718	vpe->vpe_id = vpe_id;
2719	vpe->vpt_page = vpt_page;
2720	vpe->vpe_proxy_event = -1;
2721
2722	return 0;
2723}
2724
2725static void its_vpe_teardown(struct its_vpe *vpe)
2726{
2727	its_vpe_db_proxy_unmap(vpe);
2728	its_vpe_id_free(vpe->vpe_id);
2729	its_free_pending_table(vpe->vpt_page);
2730}
2731
2732static void its_vpe_irq_domain_free(struct irq_domain *domain,
2733				    unsigned int virq,
2734				    unsigned int nr_irqs)
2735{
2736	struct its_vm *vm = domain->host_data;
2737	int i;
2738
2739	irq_domain_free_irqs_parent(domain, virq, nr_irqs);
2740
2741	for (i = 0; i < nr_irqs; i++) {
2742		struct irq_data *data = irq_domain_get_irq_data(domain,
2743								virq + i);
2744		struct its_vpe *vpe = irq_data_get_irq_chip_data(data);
2745
2746		BUG_ON(vm != vpe->its_vm);
2747
2748		clear_bit(data->hwirq, vm->db_bitmap);
2749		its_vpe_teardown(vpe);
2750		irq_domain_reset_irq_data(data);
2751	}
2752
2753	if (bitmap_empty(vm->db_bitmap, vm->nr_db_lpis)) {
2754		its_lpi_free_chunks(vm->db_bitmap, vm->db_lpi_base, vm->nr_db_lpis);
2755		its_free_prop_table(vm->vprop_page);
2756	}
2757}
2758
2759static int its_vpe_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
2760				    unsigned int nr_irqs, void *args)
2761{
2762	struct its_vm *vm = args;
2763	unsigned long *bitmap;
2764	struct page *vprop_page;
2765	int base, nr_ids, i, err = 0;
2766
2767	BUG_ON(!vm);
2768
2769	bitmap = its_lpi_alloc_chunks(nr_irqs, &base, &nr_ids);
2770	if (!bitmap)
2771		return -ENOMEM;
2772
2773	if (nr_ids < nr_irqs) {
2774		its_lpi_free_chunks(bitmap, base, nr_ids);
2775		return -ENOMEM;
2776	}
2777
2778	vprop_page = its_allocate_prop_table(GFP_KERNEL);
2779	if (!vprop_page) {
2780		its_lpi_free_chunks(bitmap, base, nr_ids);
2781		return -ENOMEM;
2782	}
2783
2784	vm->db_bitmap = bitmap;
2785	vm->db_lpi_base = base;
2786	vm->nr_db_lpis = nr_ids;
2787	vm->vprop_page = vprop_page;
2788
2789	for (i = 0; i < nr_irqs; i++) {
2790		vm->vpes[i]->vpe_db_lpi = base + i;
2791		err = its_vpe_init(vm->vpes[i]);
2792		if (err)
2793			break;
2794		err = its_irq_gic_domain_alloc(domain, virq + i,
2795					       vm->vpes[i]->vpe_db_lpi);
2796		if (err)
2797			break;
2798		irq_domain_set_hwirq_and_chip(domain, virq + i, i,
2799					      &its_vpe_irq_chip, vm->vpes[i]);
2800		set_bit(i, bitmap);
2801	}
2802
2803	if (err) {
2804		if (i > 0)
2805			its_vpe_irq_domain_free(domain, virq, i - 1);
2806
2807		its_lpi_free_chunks(bitmap, base, nr_ids);
2808		its_free_prop_table(vprop_page);
2809	}
2810
2811	return err;
2812}
2813
2814static int its_vpe_irq_domain_activate(struct irq_domain *domain,
2815				       struct irq_data *d, bool reserve)
2816{
2817	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
2818	struct its_node *its;
2819
2820	/* If we use the list map, we issue VMAPP on demand... */
2821	if (its_list_map)
2822		return 0;
2823
2824	/* Map the VPE to the first possible CPU */
2825	vpe->col_idx = cpumask_first(cpu_online_mask);
2826
2827	list_for_each_entry(its, &its_nodes, entry) {
2828		if (!its->is_v4)
2829			continue;
2830
2831		its_send_vmapp(its, vpe, true);
2832		its_send_vinvall(its, vpe);
2833	}
2834
2835	irq_data_update_effective_affinity(d, cpumask_of(vpe->col_idx));
2836
2837	return 0;
2838}
2839
2840static void its_vpe_irq_domain_deactivate(struct irq_domain *domain,
2841					  struct irq_data *d)
2842{
2843	struct its_vpe *vpe = irq_data_get_irq_chip_data(d);
2844	struct its_node *its;
2845
2846	/*
2847	 * If we use the list map, we unmap the VPE once no VLPIs are
2848	 * associated with the VM.
2849	 */
2850	if (its_list_map)
2851		return;
2852
2853	list_for_each_entry(its, &its_nodes, entry) {
2854		if (!its->is_v4)
2855			continue;
2856
2857		its_send_vmapp(its, vpe, false);
2858	}
2859}
2860
2861static const struct irq_domain_ops its_vpe_domain_ops = {
2862	.alloc			= its_vpe_irq_domain_alloc,
2863	.free			= its_vpe_irq_domain_free,
2864	.activate		= its_vpe_irq_domain_activate,
2865	.deactivate		= its_vpe_irq_domain_deactivate,
2866};
2867
2868static int its_force_quiescent(void __iomem *base)
2869{
2870	u32 count = 1000000;	/* 1s */
2871	u32 val;
2872
2873	val = readl_relaxed(base + GITS_CTLR);
2874	/*
2875	 * GIC architecture specification requires the ITS to be both
2876	 * disabled and quiescent for writes to GITS_BASER<n> or
2877	 * GITS_CBASER to not have UNPREDICTABLE results.
2878	 */
2879	if ((val & GITS_CTLR_QUIESCENT) && !(val & GITS_CTLR_ENABLE))
2880		return 0;
2881
2882	/* Disable the generation of all interrupts to this ITS */
2883	val &= ~(GITS_CTLR_ENABLE | GITS_CTLR_ImDe);
2884	writel_relaxed(val, base + GITS_CTLR);
2885
2886	/* Poll GITS_CTLR and wait until ITS becomes quiescent */
2887	while (1) {
2888		val = readl_relaxed(base + GITS_CTLR);
2889		if (val & GITS_CTLR_QUIESCENT)
2890			return 0;
2891
2892		count--;
2893		if (!count)
2894			return -EBUSY;
2895
2896		cpu_relax();
2897		udelay(1);
2898	}
2899}
2900
2901static bool __maybe_unused its_enable_quirk_cavium_22375(void *data)
2902{
2903	struct its_node *its = data;
2904
2905	/* erratum 22375: only alloc 8MB table size */
2906	its->device_ids = 0x14;		/* 20 bits, 8MB */
2907	its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_22375;
2908
2909	return true;
2910}
2911
2912static bool __maybe_unused its_enable_quirk_cavium_23144(void *data)
2913{
2914	struct its_node *its = data;
2915
2916	its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_23144;
2917
2918	return true;
2919}
2920
2921static bool __maybe_unused its_enable_quirk_qdf2400_e0065(void *data)
2922{
2923	struct its_node *its = data;
2924
2925	/* On QDF2400, the size of the ITE is 16Bytes */
2926	its->ite_size = 16;
2927
2928	return true;
2929}
2930
2931static u64 its_irq_get_msi_base_pre_its(struct its_device *its_dev)
2932{
2933	struct its_node *its = its_dev->its;
2934
2935	/*
2936	 * The Socionext Synquacer SoC has a so-called 'pre-ITS',
2937	 * which maps 32-bit writes targeted at a separate window of
2938	 * size '4 << device_id_bits' onto writes to GITS_TRANSLATER
2939	 * with device ID taken from bits [device_id_bits + 1:2] of
2940	 * the window offset.
2941	 */
2942	return its->pre_its_base + (its_dev->device_id << 2);
2943}
2944
2945static bool __maybe_unused its_enable_quirk_socionext_synquacer(void *data)
2946{
2947	struct its_node *its = data;
2948	u32 pre_its_window[2];
2949	u32 ids;
2950
2951	if (!fwnode_property_read_u32_array(its->fwnode_handle,
2952					   "socionext,synquacer-pre-its",
2953					   pre_its_window,
2954					   ARRAY_SIZE(pre_its_window))) {
2955
2956		its->pre_its_base = pre_its_window[0];
2957		its->get_msi_base = its_irq_get_msi_base_pre_its;
2958
2959		ids = ilog2(pre_its_window[1]) - 2;
2960		if (its->device_ids > ids)
2961			its->device_ids = ids;
2962
2963		/* the pre-ITS breaks isolation, so disable MSI remapping */
2964		its->msi_domain_flags &= ~IRQ_DOMAIN_FLAG_MSI_REMAP;
2965		return true;
2966	}
2967	return false;
2968}
2969
2970static bool __maybe_unused its_enable_quirk_hip07_161600802(void *data)
2971{
2972	struct its_node *its = data;
2973
2974	/*
2975	 * Hip07 insists on using the wrong address for the VLPI
2976	 * page. Trick it into doing the right thing...
2977	 */
2978	its->vlpi_redist_offset = SZ_128K;
2979	return true;
2980}
2981
2982static const struct gic_quirk its_quirks[] = {
2983#ifdef CONFIG_CAVIUM_ERRATUM_22375
2984	{
2985		.desc	= "ITS: Cavium errata 22375, 24313",
2986		.iidr	= 0xa100034c,	/* ThunderX pass 1.x */
2987		.mask	= 0xffff0fff,
2988		.init	= its_enable_quirk_cavium_22375,
2989	},
2990#endif
2991#ifdef CONFIG_CAVIUM_ERRATUM_23144
2992	{
2993		.desc	= "ITS: Cavium erratum 23144",
2994		.iidr	= 0xa100034c,	/* ThunderX pass 1.x */
2995		.mask	= 0xffff0fff,
2996		.init	= its_enable_quirk_cavium_23144,
2997	},
2998#endif
2999#ifdef CONFIG_QCOM_QDF2400_ERRATUM_0065
3000	{
3001		.desc	= "ITS: QDF2400 erratum 0065",
3002		.iidr	= 0x00001070, /* QDF2400 ITS rev 1.x */
3003		.mask	= 0xffffffff,
3004		.init	= its_enable_quirk_qdf2400_e0065,
3005	},
3006#endif
3007#ifdef CONFIG_SOCIONEXT_SYNQUACER_PREITS
3008	{
3009		/*
3010		 * The Socionext Synquacer SoC incorporates ARM's own GIC-500
3011		 * implementation, but with a 'pre-ITS' added that requires
3012		 * special handling in software.
3013		 */
3014		.desc	= "ITS: Socionext Synquacer pre-ITS",
3015		.iidr	= 0x0001143b,
3016		.mask	= 0xffffffff,
3017		.init	= its_enable_quirk_socionext_synquacer,
3018	},
3019#endif
3020#ifdef CONFIG_HISILICON_ERRATUM_161600802
3021	{
3022		.desc	= "ITS: Hip07 erratum 161600802",
3023		.iidr	= 0x00000004,
3024		.mask	= 0xffffffff,
3025		.init	= its_enable_quirk_hip07_161600802,
3026	},
3027#endif
3028	{
3029	}
3030};
3031
3032static void its_enable_quirks(struct its_node *its)
3033{
3034	u32 iidr = readl_relaxed(its->base + GITS_IIDR);
3035
3036	gic_enable_quirks(iidr, its_quirks, its);
3037}
3038
3039static int its_save_disable(void)
3040{
3041	struct its_node *its;
3042	int err = 0;
3043
3044	spin_lock(&its_lock);
3045	list_for_each_entry(its, &its_nodes, entry) {
3046		void __iomem *base;
3047
3048		if (!(its->flags & ITS_FLAGS_SAVE_SUSPEND_STATE))
3049			continue;
3050
3051		base = its->base;
3052		its->ctlr_save = readl_relaxed(base + GITS_CTLR);
3053		err = its_force_quiescent(base);
3054		if (err) {
3055			pr_err("ITS@%pa: failed to quiesce: %d\n",
3056			       &its->phys_base, err);
3057			writel_relaxed(its->ctlr_save, base + GITS_CTLR);
3058			goto err;
3059		}
3060
3061		its->cbaser_save = gits_read_cbaser(base + GITS_CBASER);
3062	}
3063
3064err:
3065	if (err) {
3066		list_for_each_entry_continue_reverse(its, &its_nodes, entry) {
3067			void __iomem *base;
3068
3069			if (!(its->flags & ITS_FLAGS_SAVE_SUSPEND_STATE))
3070				continue;
3071
3072			base = its->base;
3073			writel_relaxed(its->ctlr_save, base + GITS_CTLR);
3074		}
3075	}
3076	spin_unlock(&its_lock);
3077
3078	return err;
3079}
3080
3081static void its_restore_enable(void)
3082{
3083	struct its_node *its;
3084	int ret;
3085
3086	spin_lock(&its_lock);
3087	list_for_each_entry(its, &its_nodes, entry) {
3088		void __iomem *base;
3089		int i;
3090
3091		if (!(its->flags & ITS_FLAGS_SAVE_SUSPEND_STATE))
3092			continue;
3093
3094		base = its->base;
3095
3096		/*
3097		 * Make sure that the ITS is disabled. If it fails to quiesce,
3098		 * don't restore it since writing to CBASER or BASER<n>
3099		 * registers is undefined according to the GIC v3 ITS
3100		 * Specification.
3101		 */
3102		ret = its_force_quiescent(base);
3103		if (ret) {
3104			pr_err("ITS@%pa: failed to quiesce on resume: %d\n",
3105			       &its->phys_base, ret);
3106			continue;
3107		}
3108
3109		gits_write_cbaser(its->cbaser_save, base + GITS_CBASER);
3110
3111		/*
3112		 * Writing CBASER resets CREADR to 0, so make CWRITER and
3113		 * cmd_write line up with it.
3114		 */
3115		its->cmd_write = its->cmd_base;
3116		gits_write_cwriter(0, base + GITS_CWRITER);
3117
3118		/* Restore GITS_BASER from the value cache. */
3119		for (i = 0; i < GITS_BASER_NR_REGS; i++) {
3120			struct its_baser *baser = &its->tables[i];
3121
3122			if (!(baser->val & GITS_BASER_VALID))
3123				continue;
3124
3125			its_write_baser(its, baser, baser->val);
3126		}
3127		writel_relaxed(its->ctlr_save, base + GITS_CTLR);
3128
3129		/*
3130		 * Reinit the collection if it's stored in the ITS. This is
3131		 * indicated by the col_id being less than the HCC field.
3132		 * CID < HCC as specified in the GIC v3 Documentation.
3133		 */
3134		if (its->collections[smp_processor_id()].col_id <
3135		    GITS_TYPER_HCC(gic_read_typer(base + GITS_TYPER)))
3136			its_cpu_init_collection(its);
3137	}
3138	spin_unlock(&its_lock);
3139}
3140
3141static struct syscore_ops its_syscore_ops = {
3142	.suspend = its_save_disable,
3143	.resume = its_restore_enable,
3144};
3145
3146static int its_init_domain(struct fwnode_handle *handle, struct its_node *its)
3147{
3148	struct irq_domain *inner_domain;
3149	struct msi_domain_info *info;
3150
3151	info = kzalloc(sizeof(*info), GFP_KERNEL);
3152	if (!info)
3153		return -ENOMEM;
3154
3155	inner_domain = irq_domain_create_tree(handle, &its_domain_ops, its);
3156	if (!inner_domain) {
3157		kfree(info);
3158		return -ENOMEM;
3159	}
3160
3161	inner_domain->parent = its_parent;
3162	irq_domain_update_bus_token(inner_domain, DOMAIN_BUS_NEXUS);
3163	inner_domain->flags |= its->msi_domain_flags;
3164	info->ops = &its_msi_domain_ops;
3165	info->data = its;
3166	inner_domain->host_data = info;
3167
3168	return 0;
3169}
3170
3171static int its_init_vpe_domain(void)
3172{
3173	struct its_node *its;
3174	u32 devid;
3175	int entries;
3176
3177	if (gic_rdists->has_direct_lpi) {
3178		pr_info("ITS: Using DirectLPI for VPE invalidation\n");
3179		return 0;
3180	}
3181
3182	/* Any ITS will do, even if not v4 */
3183	its = list_first_entry(&its_nodes, struct its_node, entry);
3184
3185	entries = roundup_pow_of_two(nr_cpu_ids);
3186	vpe_proxy.vpes = kzalloc(sizeof(*vpe_proxy.vpes) * entries,
3187				 GFP_KERNEL);
3188	if (!vpe_proxy.vpes) {
3189		pr_err("ITS: Can't allocate GICv4 proxy device array\n");
3190		return -ENOMEM;
3191	}
3192
3193	/* Use the last possible DevID */
3194	devid = GENMASK(its->device_ids - 1, 0);
3195	vpe_proxy.dev = its_create_device(its, devid, entries, false);
3196	if (!vpe_proxy.dev) {
3197		kfree(vpe_proxy.vpes);
3198		pr_err("ITS: Can't allocate GICv4 proxy device\n");
3199		return -ENOMEM;
3200	}
3201
3202	BUG_ON(entries > vpe_proxy.dev->nr_ites);
3203
3204	raw_spin_lock_init(&vpe_proxy.lock);
3205	vpe_proxy.next_victim = 0;
3206	pr_info("ITS: Allocated DevID %x as GICv4 proxy device (%d slots)\n",
3207		devid, vpe_proxy.dev->nr_ites);
3208
3209	return 0;
3210}
3211
3212static int __init its_compute_its_list_map(struct resource *res,
3213					   void __iomem *its_base)
3214{
3215	int its_number;
3216	u32 ctlr;
3217
3218	/*
3219	 * This is assumed to be done early enough that we're
3220	 * guaranteed to be single-threaded, hence no
3221	 * locking. Should this change, we should address
3222	 * this.
3223	 */
3224	its_number = find_first_zero_bit(&its_list_map, GICv4_ITS_LIST_MAX);
3225	if (its_number >= GICv4_ITS_LIST_MAX) {
3226		pr_err("ITS@%pa: No ITSList entry available!\n",
3227		       &res->start);
3228		return -EINVAL;
3229	}
3230
3231	ctlr = readl_relaxed(its_base + GITS_CTLR);
3232	ctlr &= ~GITS_CTLR_ITS_NUMBER;
3233	ctlr |= its_number << GITS_CTLR_ITS_NUMBER_SHIFT;
3234	writel_relaxed(ctlr, its_base + GITS_CTLR);
3235	ctlr = readl_relaxed(its_base + GITS_CTLR);
3236	if ((ctlr & GITS_CTLR_ITS_NUMBER) != (its_number << GITS_CTLR_ITS_NUMBER_SHIFT)) {
3237		its_number = ctlr & GITS_CTLR_ITS_NUMBER;
3238		its_number >>= GITS_CTLR_ITS_NUMBER_SHIFT;
3239	}
3240
3241	if (test_and_set_bit(its_number, &its_list_map)) {
3242		pr_err("ITS@%pa: Duplicate ITSList entry %d\n",
3243		       &res->start, its_number);
3244		return -EINVAL;
3245	}
3246
3247	return its_number;
3248}
3249
3250static int __init its_probe_one(struct resource *res,
3251				struct fwnode_handle *handle, int numa_node)
3252{
3253	struct its_node *its;
3254	void __iomem *its_base;
3255	u32 val, ctlr;
3256	u64 baser, tmp, typer;
3257	int err;
3258
3259	its_base = ioremap(res->start, resource_size(res));
3260	if (!its_base) {
3261		pr_warn("ITS@%pa: Unable to map ITS registers\n", &res->start);
3262		return -ENOMEM;
3263	}
3264
3265	val = readl_relaxed(its_base + GITS_PIDR2) & GIC_PIDR2_ARCH_MASK;
3266	if (val != 0x30 && val != 0x40) {
3267		pr_warn("ITS@%pa: No ITS detected, giving up\n", &res->start);
3268		err = -ENODEV;
3269		goto out_unmap;
3270	}
3271
3272	err = its_force_quiescent(its_base);
3273	if (err) {
3274		pr_warn("ITS@%pa: Failed to quiesce, giving up\n", &res->start);
3275		goto out_unmap;
3276	}
3277
3278	pr_info("ITS %pR\n", res);
3279
3280	its = kzalloc(sizeof(*its), GFP_KERNEL);
3281	if (!its) {
3282		err = -ENOMEM;
3283		goto out_unmap;
3284	}
3285
3286	raw_spin_lock_init(&its->lock);
3287	INIT_LIST_HEAD(&its->entry);
3288	INIT_LIST_HEAD(&its->its_device_list);
3289	typer = gic_read_typer(its_base + GITS_TYPER);
3290	its->base = its_base;
3291	its->phys_base = res->start;
3292	its->ite_size = GITS_TYPER_ITT_ENTRY_SIZE(typer);
3293	its->device_ids = GITS_TYPER_DEVBITS(typer);
3294	its->is_v4 = !!(typer & GITS_TYPER_VLPIS);
3295	if (its->is_v4) {
3296		if (!(typer & GITS_TYPER_VMOVP)) {
3297			err = its_compute_its_list_map(res, its_base);
3298			if (err < 0)
3299				goto out_free_its;
3300
3301			its->list_nr = err;
3302
3303			pr_info("ITS@%pa: Using ITS number %d\n",
3304				&res->start, err);
3305		} else {
3306			pr_info("ITS@%pa: Single VMOVP capable\n", &res->start);
3307		}
3308	}
3309
3310	its->numa_node = numa_node;
3311
3312	its->cmd_base = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO,
3313						get_order(ITS_CMD_QUEUE_SZ));
3314	if (!its->cmd_base) {
3315		err = -ENOMEM;
3316		goto out_free_its;
3317	}
3318	its->cmd_write = its->cmd_base;
3319	its->fwnode_handle = handle;
3320	its->get_msi_base = its_irq_get_msi_base;
3321	its->msi_domain_flags = IRQ_DOMAIN_FLAG_MSI_REMAP;
3322
3323	its_enable_quirks(its);
3324
3325	err = its_alloc_tables(its);
3326	if (err)
3327		goto out_free_cmd;
3328
3329	err = its_alloc_collections(its);
3330	if (err)
3331		goto out_free_tables;
3332
3333	baser = (virt_to_phys(its->cmd_base)	|
3334		 GITS_CBASER_RaWaWb		|
3335		 GITS_CBASER_InnerShareable	|
3336		 (ITS_CMD_QUEUE_SZ / SZ_4K - 1)	|
3337		 GITS_CBASER_VALID);
3338
3339	gits_write_cbaser(baser, its->base + GITS_CBASER);
3340	tmp = gits_read_cbaser(its->base + GITS_CBASER);
3341
3342	if ((tmp ^ baser) & GITS_CBASER_SHAREABILITY_MASK) {
3343		if (!(tmp & GITS_CBASER_SHAREABILITY_MASK)) {
3344			/*
3345			 * The HW reports non-shareable, we must
3346			 * remove the cacheability attributes as
3347			 * well.
3348			 */
3349			baser &= ~(GITS_CBASER_SHAREABILITY_MASK |
3350				   GITS_CBASER_CACHEABILITY_MASK);
3351			baser |= GITS_CBASER_nC;
3352			gits_write_cbaser(baser, its->base + GITS_CBASER);
3353		}
3354		pr_info("ITS: using cache flushing for cmd queue\n");
3355		its->flags |= ITS_FLAGS_CMDQ_NEEDS_FLUSHING;
3356	}
3357
3358	gits_write_cwriter(0, its->base + GITS_CWRITER);
3359	ctlr = readl_relaxed(its->base + GITS_CTLR);
3360	ctlr |= GITS_CTLR_ENABLE;
3361	if (its->is_v4)
3362		ctlr |= GITS_CTLR_ImDe;
3363	writel_relaxed(ctlr, its->base + GITS_CTLR);
3364
3365	if (GITS_TYPER_HCC(typer))
3366		its->flags |= ITS_FLAGS_SAVE_SUSPEND_STATE;
3367
3368	err = its_init_domain(handle, its);
3369	if (err)
3370		goto out_free_tables;
3371
3372	spin_lock(&its_lock);
3373	list_add(&its->entry, &its_nodes);
3374	spin_unlock(&its_lock);
3375
3376	return 0;
3377
3378out_free_tables:
3379	its_free_tables(its);
3380out_free_cmd:
3381	free_pages((unsigned long)its->cmd_base, get_order(ITS_CMD_QUEUE_SZ));
3382out_free_its:
3383	kfree(its);
3384out_unmap:
3385	iounmap(its_base);
3386	pr_err("ITS@%pa: failed probing (%d)\n", &res->start, err);
3387	return err;
3388}
3389
3390static bool gic_rdists_supports_plpis(void)
3391{
3392	return !!(gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER) & GICR_TYPER_PLPIS);
3393}
3394
3395static int redist_disable_lpis(void)
3396{
3397	void __iomem *rbase = gic_data_rdist_rd_base();
3398	u64 timeout = USEC_PER_SEC;
3399	u64 val;
3400
3401	if (!gic_rdists_supports_plpis()) {
3402		pr_info("CPU%d: LPIs not supported\n", smp_processor_id());
3403		return -ENXIO;
3404	}
3405
3406	val = readl_relaxed(rbase + GICR_CTLR);
3407	if (!(val & GICR_CTLR_ENABLE_LPIS))
3408		return 0;
3409
3410	pr_warn("CPU%d: Booted with LPIs enabled, memory probably corrupted\n",
3411		smp_processor_id());
3412	add_taint(TAINT_CRAP, LOCKDEP_STILL_OK);
3413
3414	/* Disable LPIs */
3415	val &= ~GICR_CTLR_ENABLE_LPIS;
3416	writel_relaxed(val, rbase + GICR_CTLR);
3417
3418	/* Make sure any change to GICR_CTLR is observable by the GIC */
3419	dsb(sy);
3420
3421	/*
3422	 * Software must observe RWP==0 after clearing GICR_CTLR.EnableLPIs
3423	 * from 1 to 0 before programming GICR_PEND{PROP}BASER registers.
3424	 * Error out if we time out waiting for RWP to clear.
3425	 */
3426	while (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_RWP) {
3427		if (!timeout) {
3428			pr_err("CPU%d: Timeout while disabling LPIs\n",
3429			       smp_processor_id());
3430			return -ETIMEDOUT;
3431		}
3432		udelay(1);
3433		timeout--;
3434	}
3435
3436	/*
3437	 * After it has been written to 1, it is IMPLEMENTATION
3438	 * DEFINED whether GICR_CTLR.EnableLPI becomes RES1 or can be
3439	 * cleared to 0. Error out if clearing the bit failed.
3440	 */
3441	if (readl_relaxed(rbase + GICR_CTLR) & GICR_CTLR_ENABLE_LPIS) {
3442		pr_err("CPU%d: Failed to disable LPIs\n", smp_processor_id());
3443		return -EBUSY;
3444	}
3445
3446	return 0;
3447}
3448
3449int its_cpu_init(void)
3450{
3451	if (!list_empty(&its_nodes)) {
3452		int ret;
3453
3454		ret = redist_disable_lpis();
3455		if (ret)
3456			return ret;
3457
3458		its_cpu_init_lpis();
3459		its_cpu_init_collections();
3460	}
3461
3462	return 0;
3463}
3464
3465static const struct of_device_id its_device_id[] = {
3466	{	.compatible	= "arm,gic-v3-its",	},
3467	{},
3468};
3469
3470static int __init its_of_probe(struct device_node *node)
3471{
3472	struct device_node *np;
3473	struct resource res;
3474
3475	for (np = of_find_matching_node(node, its_device_id); np;
3476	     np = of_find_matching_node(np, its_device_id)) {
3477		if (!of_device_is_available(np))
3478			continue;
3479		if (!of_property_read_bool(np, "msi-controller")) {
3480			pr_warn("%pOF: no msi-controller property, ITS ignored\n",
3481				np);
3482			continue;
3483		}
3484
3485		if (of_address_to_resource(np, 0, &res)) {
3486			pr_warn("%pOF: no regs?\n", np);
3487			continue;
3488		}
3489
3490		its_probe_one(&res, &np->fwnode, of_node_to_nid(np));
3491	}
3492	return 0;
3493}
3494
3495#ifdef CONFIG_ACPI
3496
3497#define ACPI_GICV3_ITS_MEM_SIZE (SZ_128K)
3498
3499#ifdef CONFIG_ACPI_NUMA
3500struct its_srat_map {
3501	/* numa node id */
3502	u32	numa_node;
3503	/* GIC ITS ID */
3504	u32	its_id;
3505};
3506
3507static struct its_srat_map *its_srat_maps __initdata;
3508static int its_in_srat __initdata;
3509
3510static int __init acpi_get_its_numa_node(u32 its_id)
3511{
3512	int i;
3513
3514	for (i = 0; i < its_in_srat; i++) {
3515		if (its_id == its_srat_maps[i].its_id)
3516			return its_srat_maps[i].numa_node;
3517	}
3518	return NUMA_NO_NODE;
3519}
3520
3521static int __init gic_acpi_match_srat_its(struct acpi_subtable_header *header,
3522					  const unsigned long end)
3523{
3524	return 0;
3525}
3526
3527static int __init gic_acpi_parse_srat_its(struct acpi_subtable_header *header,
3528			 const unsigned long end)
3529{
3530	int node;
3531	struct acpi_srat_gic_its_affinity *its_affinity;
3532
3533	its_affinity = (struct acpi_srat_gic_its_affinity *)header;
3534	if (!its_affinity)
3535		return -EINVAL;
3536
3537	if (its_affinity->header.length < sizeof(*its_affinity)) {
3538		pr_err("SRAT: Invalid header length %d in ITS affinity\n",
3539			its_affinity->header.length);
3540		return -EINVAL;
3541	}
3542
3543	node = acpi_map_pxm_to_node(its_affinity->proximity_domain);
3544
3545	if (node == NUMA_NO_NODE || node >= MAX_NUMNODES) {
3546		pr_err("SRAT: Invalid NUMA node %d in ITS affinity\n", node);
3547		return 0;
3548	}
3549
3550	its_srat_maps[its_in_srat].numa_node = node;
3551	its_srat_maps[its_in_srat].its_id = its_affinity->its_id;
3552	its_in_srat++;
3553	pr_info("SRAT: PXM %d -> ITS %d -> Node %d\n",
3554		its_affinity->proximity_domain, its_affinity->its_id, node);
3555
3556	return 0;
3557}
3558
3559static void __init acpi_table_parse_srat_its(void)
3560{
3561	int count;
3562
3563	count = acpi_table_parse_entries(ACPI_SIG_SRAT,
3564			sizeof(struct acpi_table_srat),
3565			ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
3566			gic_acpi_match_srat_its, 0);
3567	if (count <= 0)
3568		return;
3569
3570	its_srat_maps = kmalloc(count * sizeof(struct its_srat_map),
3571				GFP_KERNEL);
3572	if (!its_srat_maps) {
3573		pr_warn("SRAT: Failed to allocate memory for its_srat_maps!\n");
3574		return;
3575	}
3576
3577	acpi_table_parse_entries(ACPI_SIG_SRAT,
3578			sizeof(struct acpi_table_srat),
3579			ACPI_SRAT_TYPE_GIC_ITS_AFFINITY,
3580			gic_acpi_parse_srat_its, 0);
3581}
3582
3583/* free the its_srat_maps after ITS probing */
3584static void __init acpi_its_srat_maps_free(void)
3585{
3586	kfree(its_srat_maps);
3587}
3588#else
3589static void __init acpi_table_parse_srat_its(void)	{ }
3590static int __init acpi_get_its_numa_node(u32 its_id) { return NUMA_NO_NODE; }
3591static void __init acpi_its_srat_maps_free(void) { }
3592#endif
3593
3594static int __init gic_acpi_parse_madt_its(struct acpi_subtable_header *header,
3595					  const unsigned long end)
3596{
3597	struct acpi_madt_generic_translator *its_entry;
3598	struct fwnode_handle *dom_handle;
3599	struct resource res;
3600	int err;
3601
3602	its_entry = (struct acpi_madt_generic_translator *)header;
3603	memset(&res, 0, sizeof(res));
3604	res.start = its_entry->base_address;
3605	res.end = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1;
3606	res.flags = IORESOURCE_MEM;
3607
3608	dom_handle = irq_domain_alloc_fwnode((void *)its_entry->base_address);
3609	if (!dom_handle) {
3610		pr_err("ITS@%pa: Unable to allocate GICv3 ITS domain token\n",
3611		       &res.start);
3612		return -ENOMEM;
3613	}
3614
3615	err = iort_register_domain_token(its_entry->translation_id, res.start,
3616					 dom_handle);
3617	if (err) {
3618		pr_err("ITS@%pa: Unable to register GICv3 ITS domain token (ITS ID %d) to IORT\n",
3619		       &res.start, its_entry->translation_id);
3620		goto dom_err;
3621	}
3622
3623	err = its_probe_one(&res, dom_handle,
3624			acpi_get_its_numa_node(its_entry->translation_id));
3625	if (!err)
3626		return 0;
3627
3628	iort_deregister_domain_token(its_entry->translation_id);
3629dom_err:
3630	irq_domain_free_fwnode(dom_handle);
3631	return err;
3632}
3633
3634static void __init its_acpi_probe(void)
3635{
3636	acpi_table_parse_srat_its();
3637	acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR,
3638			      gic_acpi_parse_madt_its, 0);
3639	acpi_its_srat_maps_free();
3640}
3641#else
3642static void __init its_acpi_probe(void) { }
3643#endif
3644
3645int __init its_init(struct fwnode_handle *handle, struct rdists *rdists,
3646		    struct irq_domain *parent_domain)
3647{
3648	struct device_node *of_node;
3649	struct its_node *its;
3650	bool has_v4 = false;
3651	int err;
3652
3653	its_parent = parent_domain;
3654	of_node = to_of_node(handle);
3655	if (of_node)
3656		its_of_probe(of_node);
3657	else
3658		its_acpi_probe();
3659
3660	if (list_empty(&its_nodes)) {
3661		pr_warn("ITS: No ITS available, not enabling LPIs\n");
3662		return -ENXIO;
3663	}
3664
3665	gic_rdists = rdists;
3666	err = its_alloc_lpi_tables();
3667	if (err)
3668		return err;
3669
3670	list_for_each_entry(its, &its_nodes, entry)
3671		has_v4 |= its->is_v4;
3672
3673	if (has_v4 & rdists->has_vlpis) {
3674		if (its_init_vpe_domain() ||
3675		    its_init_v4(parent_domain, &its_vpe_domain_ops)) {
3676			rdists->has_vlpis = false;
3677			pr_err("ITS: Disabling GICv4 support\n");
3678		}
3679	}
3680
3681	register_syscore_ops(&its_syscore_ops);
3682
3683	return 0;
3684}