Linux Audio

Check our new training course

Loading...
Note: File does not exist in v3.15.
   1/*
   2 * Copyright (C) 2013, 2014 ARM Limited, All Rights Reserved.
   3 * Author: Marc Zyngier <marc.zyngier@arm.com>
   4 *
   5 * This program is free software; you can redistribute it and/or modify
   6 * it under the terms of the GNU General Public License version 2 as
   7 * published by the Free Software Foundation.
   8 *
   9 * This program is distributed in the hope that it will be useful,
  10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
  11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  12 * GNU General Public License for more details.
  13 *
  14 * You should have received a copy of the GNU General Public License
  15 * along with this program.  If not, see <http://www.gnu.org/licenses/>.
  16 */
  17
  18#include <linux/acpi.h>
  19#include <linux/bitmap.h>
  20#include <linux/cpu.h>
  21#include <linux/delay.h>
  22#include <linux/dma-iommu.h>
  23#include <linux/interrupt.h>
  24#include <linux/irqdomain.h>
  25#include <linux/acpi_iort.h>
  26#include <linux/log2.h>
  27#include <linux/mm.h>
  28#include <linux/msi.h>
  29#include <linux/of.h>
  30#include <linux/of_address.h>
  31#include <linux/of_irq.h>
  32#include <linux/of_pci.h>
  33#include <linux/of_platform.h>
  34#include <linux/percpu.h>
  35#include <linux/slab.h>
  36
  37#include <linux/irqchip.h>
  38#include <linux/irqchip/arm-gic-v3.h>
  39
  40#include <asm/cputype.h>
  41#include <asm/exception.h>
  42
  43#include "irq-gic-common.h"
  44
  45#define ITS_FLAGS_CMDQ_NEEDS_FLUSHING		(1ULL << 0)
  46#define ITS_FLAGS_WORKAROUND_CAVIUM_22375	(1ULL << 1)
  47#define ITS_FLAGS_WORKAROUND_CAVIUM_23144	(1ULL << 2)
  48
  49#define RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING	(1 << 0)
  50
  51/*
  52 * Collection structure - just an ID, and a redistributor address to
  53 * ping. We use one per CPU as a bag of interrupts assigned to this
  54 * CPU.
  55 */
  56struct its_collection {
  57	u64			target_address;
  58	u16			col_id;
  59};
  60
  61/*
  62 * The ITS_BASER structure - contains memory information, cached
  63 * value of BASER register configuration and ITS page size.
  64 */
  65struct its_baser {
  66	void		*base;
  67	u64		val;
  68	u32		order;
  69	u32		psz;
  70};
  71
  72/*
  73 * The ITS structure - contains most of the infrastructure, with the
  74 * top-level MSI domain, the command queue, the collections, and the
  75 * list of devices writing to it.
  76 */
  77struct its_node {
  78	raw_spinlock_t		lock;
  79	struct list_head	entry;
  80	void __iomem		*base;
  81	phys_addr_t		phys_base;
  82	struct its_cmd_block	*cmd_base;
  83	struct its_cmd_block	*cmd_write;
  84	struct its_baser	tables[GITS_BASER_NR_REGS];
  85	struct its_collection	*collections;
  86	struct list_head	its_device_list;
  87	u64			flags;
  88	u32			ite_size;
  89	u32			device_ids;
  90	int			numa_node;
  91};
  92
  93#define ITS_ITT_ALIGN		SZ_256
  94
  95/* Convert page order to size in bytes */
  96#define PAGE_ORDER_TO_SIZE(o)	(PAGE_SIZE << (o))
  97
  98struct event_lpi_map {
  99	unsigned long		*lpi_map;
 100	u16			*col_map;
 101	irq_hw_number_t		lpi_base;
 102	int			nr_lpis;
 103};
 104
 105/*
 106 * The ITS view of a device - belongs to an ITS, a collection, owns an
 107 * interrupt translation table, and a list of interrupts.
 108 */
 109struct its_device {
 110	struct list_head	entry;
 111	struct its_node		*its;
 112	struct event_lpi_map	event_map;
 113	void			*itt;
 114	u32			nr_ites;
 115	u32			device_id;
 116};
 117
 118static LIST_HEAD(its_nodes);
 119static DEFINE_SPINLOCK(its_lock);
 120static struct rdists *gic_rdists;
 121static struct irq_domain *its_parent;
 122
 123#define gic_data_rdist()		(raw_cpu_ptr(gic_rdists->rdist))
 124#define gic_data_rdist_rd_base()	(gic_data_rdist()->rd_base)
 125
 126static struct its_collection *dev_event_to_col(struct its_device *its_dev,
 127					       u32 event)
 128{
 129	struct its_node *its = its_dev->its;
 130
 131	return its->collections + its_dev->event_map.col_map[event];
 132}
 133
 134/*
 135 * ITS command descriptors - parameters to be encoded in a command
 136 * block.
 137 */
 138struct its_cmd_desc {
 139	union {
 140		struct {
 141			struct its_device *dev;
 142			u32 event_id;
 143		} its_inv_cmd;
 144
 145		struct {
 146			struct its_device *dev;
 147			u32 event_id;
 148		} its_int_cmd;
 149
 150		struct {
 151			struct its_device *dev;
 152			int valid;
 153		} its_mapd_cmd;
 154
 155		struct {
 156			struct its_collection *col;
 157			int valid;
 158		} its_mapc_cmd;
 159
 160		struct {
 161			struct its_device *dev;
 162			u32 phys_id;
 163			u32 event_id;
 164		} its_mapvi_cmd;
 165
 166		struct {
 167			struct its_device *dev;
 168			struct its_collection *col;
 169			u32 event_id;
 170		} its_movi_cmd;
 171
 172		struct {
 173			struct its_device *dev;
 174			u32 event_id;
 175		} its_discard_cmd;
 176
 177		struct {
 178			struct its_collection *col;
 179		} its_invall_cmd;
 180	};
 181};
 182
 183/*
 184 * The ITS command block, which is what the ITS actually parses.
 185 */
 186struct its_cmd_block {
 187	u64	raw_cmd[4];
 188};
 189
 190#define ITS_CMD_QUEUE_SZ		SZ_64K
 191#define ITS_CMD_QUEUE_NR_ENTRIES	(ITS_CMD_QUEUE_SZ / sizeof(struct its_cmd_block))
 192
 193typedef struct its_collection *(*its_cmd_builder_t)(struct its_cmd_block *,
 194						    struct its_cmd_desc *);
 195
 196static void its_encode_cmd(struct its_cmd_block *cmd, u8 cmd_nr)
 197{
 198	cmd->raw_cmd[0] &= ~0xffULL;
 199	cmd->raw_cmd[0] |= cmd_nr;
 200}
 201
 202static void its_encode_devid(struct its_cmd_block *cmd, u32 devid)
 203{
 204	cmd->raw_cmd[0] &= BIT_ULL(32) - 1;
 205	cmd->raw_cmd[0] |= ((u64)devid) << 32;
 206}
 207
 208static void its_encode_event_id(struct its_cmd_block *cmd, u32 id)
 209{
 210	cmd->raw_cmd[1] &= ~0xffffffffULL;
 211	cmd->raw_cmd[1] |= id;
 212}
 213
 214static void its_encode_phys_id(struct its_cmd_block *cmd, u32 phys_id)
 215{
 216	cmd->raw_cmd[1] &= 0xffffffffULL;
 217	cmd->raw_cmd[1] |= ((u64)phys_id) << 32;
 218}
 219
 220static void its_encode_size(struct its_cmd_block *cmd, u8 size)
 221{
 222	cmd->raw_cmd[1] &= ~0x1fULL;
 223	cmd->raw_cmd[1] |= size & 0x1f;
 224}
 225
 226static void its_encode_itt(struct its_cmd_block *cmd, u64 itt_addr)
 227{
 228	cmd->raw_cmd[2] &= ~0xffffffffffffULL;
 229	cmd->raw_cmd[2] |= itt_addr & 0xffffffffff00ULL;
 230}
 231
 232static void its_encode_valid(struct its_cmd_block *cmd, int valid)
 233{
 234	cmd->raw_cmd[2] &= ~(1ULL << 63);
 235	cmd->raw_cmd[2] |= ((u64)!!valid) << 63;
 236}
 237
 238static void its_encode_target(struct its_cmd_block *cmd, u64 target_addr)
 239{
 240	cmd->raw_cmd[2] &= ~(0xffffffffULL << 16);
 241	cmd->raw_cmd[2] |= (target_addr & (0xffffffffULL << 16));
 242}
 243
 244static void its_encode_collection(struct its_cmd_block *cmd, u16 col)
 245{
 246	cmd->raw_cmd[2] &= ~0xffffULL;
 247	cmd->raw_cmd[2] |= col;
 248}
 249
 250static inline void its_fixup_cmd(struct its_cmd_block *cmd)
 251{
 252	/* Let's fixup BE commands */
 253	cmd->raw_cmd[0] = cpu_to_le64(cmd->raw_cmd[0]);
 254	cmd->raw_cmd[1] = cpu_to_le64(cmd->raw_cmd[1]);
 255	cmd->raw_cmd[2] = cpu_to_le64(cmd->raw_cmd[2]);
 256	cmd->raw_cmd[3] = cpu_to_le64(cmd->raw_cmd[3]);
 257}
 258
 259static struct its_collection *its_build_mapd_cmd(struct its_cmd_block *cmd,
 260						 struct its_cmd_desc *desc)
 261{
 262	unsigned long itt_addr;
 263	u8 size = ilog2(desc->its_mapd_cmd.dev->nr_ites);
 264
 265	itt_addr = virt_to_phys(desc->its_mapd_cmd.dev->itt);
 266	itt_addr = ALIGN(itt_addr, ITS_ITT_ALIGN);
 267
 268	its_encode_cmd(cmd, GITS_CMD_MAPD);
 269	its_encode_devid(cmd, desc->its_mapd_cmd.dev->device_id);
 270	its_encode_size(cmd, size - 1);
 271	its_encode_itt(cmd, itt_addr);
 272	its_encode_valid(cmd, desc->its_mapd_cmd.valid);
 273
 274	its_fixup_cmd(cmd);
 275
 276	return NULL;
 277}
 278
 279static struct its_collection *its_build_mapc_cmd(struct its_cmd_block *cmd,
 280						 struct its_cmd_desc *desc)
 281{
 282	its_encode_cmd(cmd, GITS_CMD_MAPC);
 283	its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
 284	its_encode_target(cmd, desc->its_mapc_cmd.col->target_address);
 285	its_encode_valid(cmd, desc->its_mapc_cmd.valid);
 286
 287	its_fixup_cmd(cmd);
 288
 289	return desc->its_mapc_cmd.col;
 290}
 291
 292static struct its_collection *its_build_mapvi_cmd(struct its_cmd_block *cmd,
 293						  struct its_cmd_desc *desc)
 294{
 295	struct its_collection *col;
 296
 297	col = dev_event_to_col(desc->its_mapvi_cmd.dev,
 298			       desc->its_mapvi_cmd.event_id);
 299
 300	its_encode_cmd(cmd, GITS_CMD_MAPVI);
 301	its_encode_devid(cmd, desc->its_mapvi_cmd.dev->device_id);
 302	its_encode_event_id(cmd, desc->its_mapvi_cmd.event_id);
 303	its_encode_phys_id(cmd, desc->its_mapvi_cmd.phys_id);
 304	its_encode_collection(cmd, col->col_id);
 305
 306	its_fixup_cmd(cmd);
 307
 308	return col;
 309}
 310
 311static struct its_collection *its_build_movi_cmd(struct its_cmd_block *cmd,
 312						 struct its_cmd_desc *desc)
 313{
 314	struct its_collection *col;
 315
 316	col = dev_event_to_col(desc->its_movi_cmd.dev,
 317			       desc->its_movi_cmd.event_id);
 318
 319	its_encode_cmd(cmd, GITS_CMD_MOVI);
 320	its_encode_devid(cmd, desc->its_movi_cmd.dev->device_id);
 321	its_encode_event_id(cmd, desc->its_movi_cmd.event_id);
 322	its_encode_collection(cmd, desc->its_movi_cmd.col->col_id);
 323
 324	its_fixup_cmd(cmd);
 325
 326	return col;
 327}
 328
 329static struct its_collection *its_build_discard_cmd(struct its_cmd_block *cmd,
 330						    struct its_cmd_desc *desc)
 331{
 332	struct its_collection *col;
 333
 334	col = dev_event_to_col(desc->its_discard_cmd.dev,
 335			       desc->its_discard_cmd.event_id);
 336
 337	its_encode_cmd(cmd, GITS_CMD_DISCARD);
 338	its_encode_devid(cmd, desc->its_discard_cmd.dev->device_id);
 339	its_encode_event_id(cmd, desc->its_discard_cmd.event_id);
 340
 341	its_fixup_cmd(cmd);
 342
 343	return col;
 344}
 345
 346static struct its_collection *its_build_inv_cmd(struct its_cmd_block *cmd,
 347						struct its_cmd_desc *desc)
 348{
 349	struct its_collection *col;
 350
 351	col = dev_event_to_col(desc->its_inv_cmd.dev,
 352			       desc->its_inv_cmd.event_id);
 353
 354	its_encode_cmd(cmd, GITS_CMD_INV);
 355	its_encode_devid(cmd, desc->its_inv_cmd.dev->device_id);
 356	its_encode_event_id(cmd, desc->its_inv_cmd.event_id);
 357
 358	its_fixup_cmd(cmd);
 359
 360	return col;
 361}
 362
 363static struct its_collection *its_build_invall_cmd(struct its_cmd_block *cmd,
 364						   struct its_cmd_desc *desc)
 365{
 366	its_encode_cmd(cmd, GITS_CMD_INVALL);
 367	its_encode_collection(cmd, desc->its_mapc_cmd.col->col_id);
 368
 369	its_fixup_cmd(cmd);
 370
 371	return NULL;
 372}
 373
 374static u64 its_cmd_ptr_to_offset(struct its_node *its,
 375				 struct its_cmd_block *ptr)
 376{
 377	return (ptr - its->cmd_base) * sizeof(*ptr);
 378}
 379
 380static int its_queue_full(struct its_node *its)
 381{
 382	int widx;
 383	int ridx;
 384
 385	widx = its->cmd_write - its->cmd_base;
 386	ridx = readl_relaxed(its->base + GITS_CREADR) / sizeof(struct its_cmd_block);
 387
 388	/* This is incredibly unlikely to happen, unless the ITS locks up. */
 389	if (((widx + 1) % ITS_CMD_QUEUE_NR_ENTRIES) == ridx)
 390		return 1;
 391
 392	return 0;
 393}
 394
 395static struct its_cmd_block *its_allocate_entry(struct its_node *its)
 396{
 397	struct its_cmd_block *cmd;
 398	u32 count = 1000000;	/* 1s! */
 399
 400	while (its_queue_full(its)) {
 401		count--;
 402		if (!count) {
 403			pr_err_ratelimited("ITS queue not draining\n");
 404			return NULL;
 405		}
 406		cpu_relax();
 407		udelay(1);
 408	}
 409
 410	cmd = its->cmd_write++;
 411
 412	/* Handle queue wrapping */
 413	if (its->cmd_write == (its->cmd_base + ITS_CMD_QUEUE_NR_ENTRIES))
 414		its->cmd_write = its->cmd_base;
 415
 416	return cmd;
 417}
 418
 419static struct its_cmd_block *its_post_commands(struct its_node *its)
 420{
 421	u64 wr = its_cmd_ptr_to_offset(its, its->cmd_write);
 422
 423	writel_relaxed(wr, its->base + GITS_CWRITER);
 424
 425	return its->cmd_write;
 426}
 427
 428static void its_flush_cmd(struct its_node *its, struct its_cmd_block *cmd)
 429{
 430	/*
 431	 * Make sure the commands written to memory are observable by
 432	 * the ITS.
 433	 */
 434	if (its->flags & ITS_FLAGS_CMDQ_NEEDS_FLUSHING)
 435		gic_flush_dcache_to_poc(cmd, sizeof(*cmd));
 436	else
 437		dsb(ishst);
 438}
 439
 440static void its_wait_for_range_completion(struct its_node *its,
 441					  struct its_cmd_block *from,
 442					  struct its_cmd_block *to)
 443{
 444	u64 rd_idx, from_idx, to_idx;
 445	u32 count = 1000000;	/* 1s! */
 446
 447	from_idx = its_cmd_ptr_to_offset(its, from);
 448	to_idx = its_cmd_ptr_to_offset(its, to);
 449
 450	while (1) {
 451		rd_idx = readl_relaxed(its->base + GITS_CREADR);
 452		if (rd_idx >= to_idx || rd_idx < from_idx)
 453			break;
 454
 455		count--;
 456		if (!count) {
 457			pr_err_ratelimited("ITS queue timeout\n");
 458			return;
 459		}
 460		cpu_relax();
 461		udelay(1);
 462	}
 463}
 464
 465static void its_send_single_command(struct its_node *its,
 466				    its_cmd_builder_t builder,
 467				    struct its_cmd_desc *desc)
 468{
 469	struct its_cmd_block *cmd, *sync_cmd, *next_cmd;
 470	struct its_collection *sync_col;
 471	unsigned long flags;
 472
 473	raw_spin_lock_irqsave(&its->lock, flags);
 474
 475	cmd = its_allocate_entry(its);
 476	if (!cmd) {		/* We're soooooo screewed... */
 477		pr_err_ratelimited("ITS can't allocate, dropping command\n");
 478		raw_spin_unlock_irqrestore(&its->lock, flags);
 479		return;
 480	}
 481	sync_col = builder(cmd, desc);
 482	its_flush_cmd(its, cmd);
 483
 484	if (sync_col) {
 485		sync_cmd = its_allocate_entry(its);
 486		if (!sync_cmd) {
 487			pr_err_ratelimited("ITS can't SYNC, skipping\n");
 488			goto post;
 489		}
 490		its_encode_cmd(sync_cmd, GITS_CMD_SYNC);
 491		its_encode_target(sync_cmd, sync_col->target_address);
 492		its_fixup_cmd(sync_cmd);
 493		its_flush_cmd(its, sync_cmd);
 494	}
 495
 496post:
 497	next_cmd = its_post_commands(its);
 498	raw_spin_unlock_irqrestore(&its->lock, flags);
 499
 500	its_wait_for_range_completion(its, cmd, next_cmd);
 501}
 502
 503static void its_send_inv(struct its_device *dev, u32 event_id)
 504{
 505	struct its_cmd_desc desc;
 506
 507	desc.its_inv_cmd.dev = dev;
 508	desc.its_inv_cmd.event_id = event_id;
 509
 510	its_send_single_command(dev->its, its_build_inv_cmd, &desc);
 511}
 512
 513static void its_send_mapd(struct its_device *dev, int valid)
 514{
 515	struct its_cmd_desc desc;
 516
 517	desc.its_mapd_cmd.dev = dev;
 518	desc.its_mapd_cmd.valid = !!valid;
 519
 520	its_send_single_command(dev->its, its_build_mapd_cmd, &desc);
 521}
 522
 523static void its_send_mapc(struct its_node *its, struct its_collection *col,
 524			  int valid)
 525{
 526	struct its_cmd_desc desc;
 527
 528	desc.its_mapc_cmd.col = col;
 529	desc.its_mapc_cmd.valid = !!valid;
 530
 531	its_send_single_command(its, its_build_mapc_cmd, &desc);
 532}
 533
 534static void its_send_mapvi(struct its_device *dev, u32 irq_id, u32 id)
 535{
 536	struct its_cmd_desc desc;
 537
 538	desc.its_mapvi_cmd.dev = dev;
 539	desc.its_mapvi_cmd.phys_id = irq_id;
 540	desc.its_mapvi_cmd.event_id = id;
 541
 542	its_send_single_command(dev->its, its_build_mapvi_cmd, &desc);
 543}
 544
 545static void its_send_movi(struct its_device *dev,
 546			  struct its_collection *col, u32 id)
 547{
 548	struct its_cmd_desc desc;
 549
 550	desc.its_movi_cmd.dev = dev;
 551	desc.its_movi_cmd.col = col;
 552	desc.its_movi_cmd.event_id = id;
 553
 554	its_send_single_command(dev->its, its_build_movi_cmd, &desc);
 555}
 556
 557static void its_send_discard(struct its_device *dev, u32 id)
 558{
 559	struct its_cmd_desc desc;
 560
 561	desc.its_discard_cmd.dev = dev;
 562	desc.its_discard_cmd.event_id = id;
 563
 564	its_send_single_command(dev->its, its_build_discard_cmd, &desc);
 565}
 566
 567static void its_send_invall(struct its_node *its, struct its_collection *col)
 568{
 569	struct its_cmd_desc desc;
 570
 571	desc.its_invall_cmd.col = col;
 572
 573	its_send_single_command(its, its_build_invall_cmd, &desc);
 574}
 575
 576/*
 577 * irqchip functions - assumes MSI, mostly.
 578 */
 579
 580static inline u32 its_get_event_id(struct irq_data *d)
 581{
 582	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
 583	return d->hwirq - its_dev->event_map.lpi_base;
 584}
 585
 586static void lpi_set_config(struct irq_data *d, bool enable)
 587{
 588	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
 589	irq_hw_number_t hwirq = d->hwirq;
 590	u32 id = its_get_event_id(d);
 591	u8 *cfg = page_address(gic_rdists->prop_page) + hwirq - 8192;
 592
 593	if (enable)
 594		*cfg |= LPI_PROP_ENABLED;
 595	else
 596		*cfg &= ~LPI_PROP_ENABLED;
 597
 598	/*
 599	 * Make the above write visible to the redistributors.
 600	 * And yes, we're flushing exactly: One. Single. Byte.
 601	 * Humpf...
 602	 */
 603	if (gic_rdists->flags & RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING)
 604		gic_flush_dcache_to_poc(cfg, sizeof(*cfg));
 605	else
 606		dsb(ishst);
 607	its_send_inv(its_dev, id);
 608}
 609
 610static void its_mask_irq(struct irq_data *d)
 611{
 612	lpi_set_config(d, false);
 613}
 614
 615static void its_unmask_irq(struct irq_data *d)
 616{
 617	lpi_set_config(d, true);
 618}
 619
 620static int its_set_affinity(struct irq_data *d, const struct cpumask *mask_val,
 621			    bool force)
 622{
 623	unsigned int cpu;
 624	const struct cpumask *cpu_mask = cpu_online_mask;
 625	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
 626	struct its_collection *target_col;
 627	u32 id = its_get_event_id(d);
 628
 629       /* lpi cannot be routed to a redistributor that is on a foreign node */
 630	if (its_dev->its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) {
 631		if (its_dev->its->numa_node >= 0) {
 632			cpu_mask = cpumask_of_node(its_dev->its->numa_node);
 633			if (!cpumask_intersects(mask_val, cpu_mask))
 634				return -EINVAL;
 635		}
 636	}
 637
 638	cpu = cpumask_any_and(mask_val, cpu_mask);
 639
 640	if (cpu >= nr_cpu_ids)
 641		return -EINVAL;
 642
 643	target_col = &its_dev->its->collections[cpu];
 644	its_send_movi(its_dev, target_col, id);
 645	its_dev->event_map.col_map[id] = cpu;
 646
 647	return IRQ_SET_MASK_OK_DONE;
 648}
 649
 650static void its_irq_compose_msi_msg(struct irq_data *d, struct msi_msg *msg)
 651{
 652	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
 653	struct its_node *its;
 654	u64 addr;
 655
 656	its = its_dev->its;
 657	addr = its->phys_base + GITS_TRANSLATER;
 658
 659	msg->address_lo		= lower_32_bits(addr);
 660	msg->address_hi		= upper_32_bits(addr);
 661	msg->data		= its_get_event_id(d);
 662
 663	iommu_dma_map_msi_msg(d->irq, msg);
 664}
 665
 666static struct irq_chip its_irq_chip = {
 667	.name			= "ITS",
 668	.irq_mask		= its_mask_irq,
 669	.irq_unmask		= its_unmask_irq,
 670	.irq_eoi		= irq_chip_eoi_parent,
 671	.irq_set_affinity	= its_set_affinity,
 672	.irq_compose_msi_msg	= its_irq_compose_msi_msg,
 673};
 674
 675/*
 676 * How we allocate LPIs:
 677 *
 678 * The GIC has id_bits bits for interrupt identifiers. From there, we
 679 * must subtract 8192 which are reserved for SGIs/PPIs/SPIs. Then, as
 680 * we allocate LPIs by chunks of 32, we can shift the whole thing by 5
 681 * bits to the right.
 682 *
 683 * This gives us (((1UL << id_bits) - 8192) >> 5) possible allocations.
 684 */
 685#define IRQS_PER_CHUNK_SHIFT	5
 686#define IRQS_PER_CHUNK		(1 << IRQS_PER_CHUNK_SHIFT)
 687
 688static unsigned long *lpi_bitmap;
 689static u32 lpi_chunks;
 690static DEFINE_SPINLOCK(lpi_lock);
 691
 692static int its_lpi_to_chunk(int lpi)
 693{
 694	return (lpi - 8192) >> IRQS_PER_CHUNK_SHIFT;
 695}
 696
 697static int its_chunk_to_lpi(int chunk)
 698{
 699	return (chunk << IRQS_PER_CHUNK_SHIFT) + 8192;
 700}
 701
 702static int __init its_lpi_init(u32 id_bits)
 703{
 704	lpi_chunks = its_lpi_to_chunk(1UL << id_bits);
 705
 706	lpi_bitmap = kzalloc(BITS_TO_LONGS(lpi_chunks) * sizeof(long),
 707			     GFP_KERNEL);
 708	if (!lpi_bitmap) {
 709		lpi_chunks = 0;
 710		return -ENOMEM;
 711	}
 712
 713	pr_info("ITS: Allocated %d chunks for LPIs\n", (int)lpi_chunks);
 714	return 0;
 715}
 716
 717static unsigned long *its_lpi_alloc_chunks(int nr_irqs, int *base, int *nr_ids)
 718{
 719	unsigned long *bitmap = NULL;
 720	int chunk_id;
 721	int nr_chunks;
 722	int i;
 723
 724	nr_chunks = DIV_ROUND_UP(nr_irqs, IRQS_PER_CHUNK);
 725
 726	spin_lock(&lpi_lock);
 727
 728	do {
 729		chunk_id = bitmap_find_next_zero_area(lpi_bitmap, lpi_chunks,
 730						      0, nr_chunks, 0);
 731		if (chunk_id < lpi_chunks)
 732			break;
 733
 734		nr_chunks--;
 735	} while (nr_chunks > 0);
 736
 737	if (!nr_chunks)
 738		goto out;
 739
 740	bitmap = kzalloc(BITS_TO_LONGS(nr_chunks * IRQS_PER_CHUNK) * sizeof (long),
 741			 GFP_ATOMIC);
 742	if (!bitmap)
 743		goto out;
 744
 745	for (i = 0; i < nr_chunks; i++)
 746		set_bit(chunk_id + i, lpi_bitmap);
 747
 748	*base = its_chunk_to_lpi(chunk_id);
 749	*nr_ids = nr_chunks * IRQS_PER_CHUNK;
 750
 751out:
 752	spin_unlock(&lpi_lock);
 753
 754	if (!bitmap)
 755		*base = *nr_ids = 0;
 756
 757	return bitmap;
 758}
 759
 760static void its_lpi_free(struct event_lpi_map *map)
 761{
 762	int base = map->lpi_base;
 763	int nr_ids = map->nr_lpis;
 764	int lpi;
 765
 766	spin_lock(&lpi_lock);
 767
 768	for (lpi = base; lpi < (base + nr_ids); lpi += IRQS_PER_CHUNK) {
 769		int chunk = its_lpi_to_chunk(lpi);
 770		BUG_ON(chunk > lpi_chunks);
 771		if (test_bit(chunk, lpi_bitmap)) {
 772			clear_bit(chunk, lpi_bitmap);
 773		} else {
 774			pr_err("Bad LPI chunk %d\n", chunk);
 775		}
 776	}
 777
 778	spin_unlock(&lpi_lock);
 779
 780	kfree(map->lpi_map);
 781	kfree(map->col_map);
 782}
 783
 784/*
 785 * We allocate 64kB for PROPBASE. That gives us at most 64K LPIs to
 786 * deal with (one configuration byte per interrupt). PENDBASE has to
 787 * be 64kB aligned (one bit per LPI, plus 8192 bits for SPI/PPI/SGI).
 788 */
 789#define LPI_PROPBASE_SZ		SZ_64K
 790#define LPI_PENDBASE_SZ		(LPI_PROPBASE_SZ / 8 + SZ_1K)
 791
 792/*
 793 * This is how many bits of ID we need, including the useless ones.
 794 */
 795#define LPI_NRBITS		ilog2(LPI_PROPBASE_SZ + SZ_8K)
 796
 797#define LPI_PROP_DEFAULT_PRIO	0xa0
 798
 799static int __init its_alloc_lpi_tables(void)
 800{
 801	phys_addr_t paddr;
 802
 803	gic_rdists->prop_page = alloc_pages(GFP_NOWAIT,
 804					   get_order(LPI_PROPBASE_SZ));
 805	if (!gic_rdists->prop_page) {
 806		pr_err("Failed to allocate PROPBASE\n");
 807		return -ENOMEM;
 808	}
 809
 810	paddr = page_to_phys(gic_rdists->prop_page);
 811	pr_info("GIC: using LPI property table @%pa\n", &paddr);
 812
 813	/* Priority 0xa0, Group-1, disabled */
 814	memset(page_address(gic_rdists->prop_page),
 815	       LPI_PROP_DEFAULT_PRIO | LPI_PROP_GROUP1,
 816	       LPI_PROPBASE_SZ);
 817
 818	/* Make sure the GIC will observe the written configuration */
 819	gic_flush_dcache_to_poc(page_address(gic_rdists->prop_page), LPI_PROPBASE_SZ);
 820
 821	return 0;
 822}
 823
 824static const char *its_base_type_string[] = {
 825	[GITS_BASER_TYPE_DEVICE]	= "Devices",
 826	[GITS_BASER_TYPE_VCPU]		= "Virtual CPUs",
 827	[GITS_BASER_TYPE_CPU]		= "Physical CPUs",
 828	[GITS_BASER_TYPE_COLLECTION]	= "Interrupt Collections",
 829	[GITS_BASER_TYPE_RESERVED5] 	= "Reserved (5)",
 830	[GITS_BASER_TYPE_RESERVED6] 	= "Reserved (6)",
 831	[GITS_BASER_TYPE_RESERVED7] 	= "Reserved (7)",
 832};
 833
 834static u64 its_read_baser(struct its_node *its, struct its_baser *baser)
 835{
 836	u32 idx = baser - its->tables;
 837
 838	return gits_read_baser(its->base + GITS_BASER + (idx << 3));
 839}
 840
 841static void its_write_baser(struct its_node *its, struct its_baser *baser,
 842			    u64 val)
 843{
 844	u32 idx = baser - its->tables;
 845
 846	gits_write_baser(val, its->base + GITS_BASER + (idx << 3));
 847	baser->val = its_read_baser(its, baser);
 848}
 849
 850static int its_setup_baser(struct its_node *its, struct its_baser *baser,
 851			   u64 cache, u64 shr, u32 psz, u32 order,
 852			   bool indirect)
 853{
 854	u64 val = its_read_baser(its, baser);
 855	u64 esz = GITS_BASER_ENTRY_SIZE(val);
 856	u64 type = GITS_BASER_TYPE(val);
 857	u32 alloc_pages;
 858	void *base;
 859	u64 tmp;
 860
 861retry_alloc_baser:
 862	alloc_pages = (PAGE_ORDER_TO_SIZE(order) / psz);
 863	if (alloc_pages > GITS_BASER_PAGES_MAX) {
 864		pr_warn("ITS@%pa: %s too large, reduce ITS pages %u->%u\n",
 865			&its->phys_base, its_base_type_string[type],
 866			alloc_pages, GITS_BASER_PAGES_MAX);
 867		alloc_pages = GITS_BASER_PAGES_MAX;
 868		order = get_order(GITS_BASER_PAGES_MAX * psz);
 869	}
 870
 871	base = (void *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, order);
 872	if (!base)
 873		return -ENOMEM;
 874
 875retry_baser:
 876	val = (virt_to_phys(base)				 |
 877		(type << GITS_BASER_TYPE_SHIFT)			 |
 878		((esz - 1) << GITS_BASER_ENTRY_SIZE_SHIFT)	 |
 879		((alloc_pages - 1) << GITS_BASER_PAGES_SHIFT)	 |
 880		cache						 |
 881		shr						 |
 882		GITS_BASER_VALID);
 883
 884	val |=	indirect ? GITS_BASER_INDIRECT : 0x0;
 885
 886	switch (psz) {
 887	case SZ_4K:
 888		val |= GITS_BASER_PAGE_SIZE_4K;
 889		break;
 890	case SZ_16K:
 891		val |= GITS_BASER_PAGE_SIZE_16K;
 892		break;
 893	case SZ_64K:
 894		val |= GITS_BASER_PAGE_SIZE_64K;
 895		break;
 896	}
 897
 898	its_write_baser(its, baser, val);
 899	tmp = baser->val;
 900
 901	if ((val ^ tmp) & GITS_BASER_SHAREABILITY_MASK) {
 902		/*
 903		 * Shareability didn't stick. Just use
 904		 * whatever the read reported, which is likely
 905		 * to be the only thing this redistributor
 906		 * supports. If that's zero, make it
 907		 * non-cacheable as well.
 908		 */
 909		shr = tmp & GITS_BASER_SHAREABILITY_MASK;
 910		if (!shr) {
 911			cache = GITS_BASER_nC;
 912			gic_flush_dcache_to_poc(base, PAGE_ORDER_TO_SIZE(order));
 913		}
 914		goto retry_baser;
 915	}
 916
 917	if ((val ^ tmp) & GITS_BASER_PAGE_SIZE_MASK) {
 918		/*
 919		 * Page size didn't stick. Let's try a smaller
 920		 * size and retry. If we reach 4K, then
 921		 * something is horribly wrong...
 922		 */
 923		free_pages((unsigned long)base, order);
 924		baser->base = NULL;
 925
 926		switch (psz) {
 927		case SZ_16K:
 928			psz = SZ_4K;
 929			goto retry_alloc_baser;
 930		case SZ_64K:
 931			psz = SZ_16K;
 932			goto retry_alloc_baser;
 933		}
 934	}
 935
 936	if (val != tmp) {
 937		pr_err("ITS@%pa: %s doesn't stick: %llx %llx\n",
 938		       &its->phys_base, its_base_type_string[type],
 939		       val, tmp);
 940		free_pages((unsigned long)base, order);
 941		return -ENXIO;
 942	}
 943
 944	baser->order = order;
 945	baser->base = base;
 946	baser->psz = psz;
 947	tmp = indirect ? GITS_LVL1_ENTRY_SIZE : esz;
 948
 949	pr_info("ITS@%pa: allocated %d %s @%lx (%s, esz %d, psz %dK, shr %d)\n",
 950		&its->phys_base, (int)(PAGE_ORDER_TO_SIZE(order) / (int)tmp),
 951		its_base_type_string[type],
 952		(unsigned long)virt_to_phys(base),
 953		indirect ? "indirect" : "flat", (int)esz,
 954		psz / SZ_1K, (int)shr >> GITS_BASER_SHAREABILITY_SHIFT);
 955
 956	return 0;
 957}
 958
 959static bool its_parse_baser_device(struct its_node *its, struct its_baser *baser,
 960				   u32 psz, u32 *order)
 961{
 962	u64 esz = GITS_BASER_ENTRY_SIZE(its_read_baser(its, baser));
 963	u64 val = GITS_BASER_InnerShareable | GITS_BASER_WaWb;
 964	u32 ids = its->device_ids;
 965	u32 new_order = *order;
 966	bool indirect = false;
 967
 968	/* No need to enable Indirection if memory requirement < (psz*2)bytes */
 969	if ((esz << ids) > (psz * 2)) {
 970		/*
 971		 * Find out whether hw supports a single or two-level table by
 972		 * table by reading bit at offset '62' after writing '1' to it.
 973		 */
 974		its_write_baser(its, baser, val | GITS_BASER_INDIRECT);
 975		indirect = !!(baser->val & GITS_BASER_INDIRECT);
 976
 977		if (indirect) {
 978			/*
 979			 * The size of the lvl2 table is equal to ITS page size
 980			 * which is 'psz'. For computing lvl1 table size,
 981			 * subtract ID bits that sparse lvl2 table from 'ids'
 982			 * which is reported by ITS hardware times lvl1 table
 983			 * entry size.
 984			 */
 985			ids -= ilog2(psz / (int)esz);
 986			esz = GITS_LVL1_ENTRY_SIZE;
 987		}
 988	}
 989
 990	/*
 991	 * Allocate as many entries as required to fit the
 992	 * range of device IDs that the ITS can grok... The ID
 993	 * space being incredibly sparse, this results in a
 994	 * massive waste of memory if two-level device table
 995	 * feature is not supported by hardware.
 996	 */
 997	new_order = max_t(u32, get_order(esz << ids), new_order);
 998	if (new_order >= MAX_ORDER) {
 999		new_order = MAX_ORDER - 1;
1000		ids = ilog2(PAGE_ORDER_TO_SIZE(new_order) / (int)esz);
1001		pr_warn("ITS@%pa: Device Table too large, reduce ids %u->%u\n",
1002			&its->phys_base, its->device_ids, ids);
1003	}
1004
1005	*order = new_order;
1006
1007	return indirect;
1008}
1009
1010static void its_free_tables(struct its_node *its)
1011{
1012	int i;
1013
1014	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
1015		if (its->tables[i].base) {
1016			free_pages((unsigned long)its->tables[i].base,
1017				   its->tables[i].order);
1018			its->tables[i].base = NULL;
1019		}
1020	}
1021}
1022
1023static int its_alloc_tables(struct its_node *its)
1024{
1025	u64 typer = gic_read_typer(its->base + GITS_TYPER);
1026	u32 ids = GITS_TYPER_DEVBITS(typer);
1027	u64 shr = GITS_BASER_InnerShareable;
1028	u64 cache = GITS_BASER_WaWb;
1029	u32 psz = SZ_64K;
1030	int err, i;
1031
1032	if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_22375) {
1033		/*
1034		* erratum 22375: only alloc 8MB table size
1035		* erratum 24313: ignore memory access type
1036		*/
1037		cache   = GITS_BASER_nCnB;
1038		ids     = 0x14;                 /* 20 bits, 8MB */
1039	}
1040
1041	its->device_ids = ids;
1042
1043	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
1044		struct its_baser *baser = its->tables + i;
1045		u64 val = its_read_baser(its, baser);
1046		u64 type = GITS_BASER_TYPE(val);
1047		u32 order = get_order(psz);
1048		bool indirect = false;
1049
1050		if (type == GITS_BASER_TYPE_NONE)
1051			continue;
1052
1053		if (type == GITS_BASER_TYPE_DEVICE)
1054			indirect = its_parse_baser_device(its, baser, psz, &order);
1055
1056		err = its_setup_baser(its, baser, cache, shr, psz, order, indirect);
1057		if (err < 0) {
1058			its_free_tables(its);
1059			return err;
1060		}
1061
1062		/* Update settings which will be used for next BASERn */
1063		psz = baser->psz;
1064		cache = baser->val & GITS_BASER_CACHEABILITY_MASK;
1065		shr = baser->val & GITS_BASER_SHAREABILITY_MASK;
1066	}
1067
1068	return 0;
1069}
1070
1071static int its_alloc_collections(struct its_node *its)
1072{
1073	its->collections = kzalloc(nr_cpu_ids * sizeof(*its->collections),
1074				   GFP_KERNEL);
1075	if (!its->collections)
1076		return -ENOMEM;
1077
1078	return 0;
1079}
1080
1081static void its_cpu_init_lpis(void)
1082{
1083	void __iomem *rbase = gic_data_rdist_rd_base();
1084	struct page *pend_page;
1085	u64 val, tmp;
1086
1087	/* If we didn't allocate the pending table yet, do it now */
1088	pend_page = gic_data_rdist()->pend_page;
1089	if (!pend_page) {
1090		phys_addr_t paddr;
1091		/*
1092		 * The pending pages have to be at least 64kB aligned,
1093		 * hence the 'max(LPI_PENDBASE_SZ, SZ_64K)' below.
1094		 */
1095		pend_page = alloc_pages(GFP_NOWAIT | __GFP_ZERO,
1096					get_order(max(LPI_PENDBASE_SZ, SZ_64K)));
1097		if (!pend_page) {
1098			pr_err("Failed to allocate PENDBASE for CPU%d\n",
1099			       smp_processor_id());
1100			return;
1101		}
1102
1103		/* Make sure the GIC will observe the zero-ed page */
1104		gic_flush_dcache_to_poc(page_address(pend_page), LPI_PENDBASE_SZ);
1105
1106		paddr = page_to_phys(pend_page);
1107		pr_info("CPU%d: using LPI pending table @%pa\n",
1108			smp_processor_id(), &paddr);
1109		gic_data_rdist()->pend_page = pend_page;
1110	}
1111
1112	/* Disable LPIs */
1113	val = readl_relaxed(rbase + GICR_CTLR);
1114	val &= ~GICR_CTLR_ENABLE_LPIS;
1115	writel_relaxed(val, rbase + GICR_CTLR);
1116
1117	/*
1118	 * Make sure any change to the table is observable by the GIC.
1119	 */
1120	dsb(sy);
1121
1122	/* set PROPBASE */
1123	val = (page_to_phys(gic_rdists->prop_page) |
1124	       GICR_PROPBASER_InnerShareable |
1125	       GICR_PROPBASER_WaWb |
1126	       ((LPI_NRBITS - 1) & GICR_PROPBASER_IDBITS_MASK));
1127
1128	gicr_write_propbaser(val, rbase + GICR_PROPBASER);
1129	tmp = gicr_read_propbaser(rbase + GICR_PROPBASER);
1130
1131	if ((tmp ^ val) & GICR_PROPBASER_SHAREABILITY_MASK) {
1132		if (!(tmp & GICR_PROPBASER_SHAREABILITY_MASK)) {
1133			/*
1134			 * The HW reports non-shareable, we must
1135			 * remove the cacheability attributes as
1136			 * well.
1137			 */
1138			val &= ~(GICR_PROPBASER_SHAREABILITY_MASK |
1139				 GICR_PROPBASER_CACHEABILITY_MASK);
1140			val |= GICR_PROPBASER_nC;
1141			gicr_write_propbaser(val, rbase + GICR_PROPBASER);
1142		}
1143		pr_info_once("GIC: using cache flushing for LPI property table\n");
1144		gic_rdists->flags |= RDIST_FLAGS_PROPBASE_NEEDS_FLUSHING;
1145	}
1146
1147	/* set PENDBASE */
1148	val = (page_to_phys(pend_page) |
1149	       GICR_PENDBASER_InnerShareable |
1150	       GICR_PENDBASER_WaWb);
1151
1152	gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
1153	tmp = gicr_read_pendbaser(rbase + GICR_PENDBASER);
1154
1155	if (!(tmp & GICR_PENDBASER_SHAREABILITY_MASK)) {
1156		/*
1157		 * The HW reports non-shareable, we must remove the
1158		 * cacheability attributes as well.
1159		 */
1160		val &= ~(GICR_PENDBASER_SHAREABILITY_MASK |
1161			 GICR_PENDBASER_CACHEABILITY_MASK);
1162		val |= GICR_PENDBASER_nC;
1163		gicr_write_pendbaser(val, rbase + GICR_PENDBASER);
1164	}
1165
1166	/* Enable LPIs */
1167	val = readl_relaxed(rbase + GICR_CTLR);
1168	val |= GICR_CTLR_ENABLE_LPIS;
1169	writel_relaxed(val, rbase + GICR_CTLR);
1170
1171	/* Make sure the GIC has seen the above */
1172	dsb(sy);
1173}
1174
1175static void its_cpu_init_collection(void)
1176{
1177	struct its_node *its;
1178	int cpu;
1179
1180	spin_lock(&its_lock);
1181	cpu = smp_processor_id();
1182
1183	list_for_each_entry(its, &its_nodes, entry) {
1184		u64 target;
1185
1186		/* avoid cross node collections and its mapping */
1187		if (its->flags & ITS_FLAGS_WORKAROUND_CAVIUM_23144) {
1188			struct device_node *cpu_node;
1189
1190			cpu_node = of_get_cpu_node(cpu, NULL);
1191			if (its->numa_node != NUMA_NO_NODE &&
1192				its->numa_node != of_node_to_nid(cpu_node))
1193				continue;
1194		}
1195
1196		/*
1197		 * We now have to bind each collection to its target
1198		 * redistributor.
1199		 */
1200		if (gic_read_typer(its->base + GITS_TYPER) & GITS_TYPER_PTA) {
1201			/*
1202			 * This ITS wants the physical address of the
1203			 * redistributor.
1204			 */
1205			target = gic_data_rdist()->phys_base;
1206		} else {
1207			/*
1208			 * This ITS wants a linear CPU number.
1209			 */
1210			target = gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER);
1211			target = GICR_TYPER_CPU_NUMBER(target) << 16;
1212		}
1213
1214		/* Perform collection mapping */
1215		its->collections[cpu].target_address = target;
1216		its->collections[cpu].col_id = cpu;
1217
1218		its_send_mapc(its, &its->collections[cpu], 1);
1219		its_send_invall(its, &its->collections[cpu]);
1220	}
1221
1222	spin_unlock(&its_lock);
1223}
1224
1225static struct its_device *its_find_device(struct its_node *its, u32 dev_id)
1226{
1227	struct its_device *its_dev = NULL, *tmp;
1228	unsigned long flags;
1229
1230	raw_spin_lock_irqsave(&its->lock, flags);
1231
1232	list_for_each_entry(tmp, &its->its_device_list, entry) {
1233		if (tmp->device_id == dev_id) {
1234			its_dev = tmp;
1235			break;
1236		}
1237	}
1238
1239	raw_spin_unlock_irqrestore(&its->lock, flags);
1240
1241	return its_dev;
1242}
1243
1244static struct its_baser *its_get_baser(struct its_node *its, u32 type)
1245{
1246	int i;
1247
1248	for (i = 0; i < GITS_BASER_NR_REGS; i++) {
1249		if (GITS_BASER_TYPE(its->tables[i].val) == type)
1250			return &its->tables[i];
1251	}
1252
1253	return NULL;
1254}
1255
1256static bool its_alloc_device_table(struct its_node *its, u32 dev_id)
1257{
1258	struct its_baser *baser;
1259	struct page *page;
1260	u32 esz, idx;
1261	__le64 *table;
1262
1263	baser = its_get_baser(its, GITS_BASER_TYPE_DEVICE);
1264
1265	/* Don't allow device id that exceeds ITS hardware limit */
1266	if (!baser)
1267		return (ilog2(dev_id) < its->device_ids);
1268
1269	/* Don't allow device id that exceeds single, flat table limit */
1270	esz = GITS_BASER_ENTRY_SIZE(baser->val);
1271	if (!(baser->val & GITS_BASER_INDIRECT))
1272		return (dev_id < (PAGE_ORDER_TO_SIZE(baser->order) / esz));
1273
1274	/* Compute 1st level table index & check if that exceeds table limit */
1275	idx = dev_id >> ilog2(baser->psz / esz);
1276	if (idx >= (PAGE_ORDER_TO_SIZE(baser->order) / GITS_LVL1_ENTRY_SIZE))
1277		return false;
1278
1279	table = baser->base;
1280
1281	/* Allocate memory for 2nd level table */
1282	if (!table[idx]) {
1283		page = alloc_pages(GFP_KERNEL | __GFP_ZERO, get_order(baser->psz));
1284		if (!page)
1285			return false;
1286
1287		/* Flush Lvl2 table to PoC if hw doesn't support coherency */
1288		if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
1289			gic_flush_dcache_to_poc(page_address(page), baser->psz);
1290
1291		table[idx] = cpu_to_le64(page_to_phys(page) | GITS_BASER_VALID);
1292
1293		/* Flush Lvl1 entry to PoC if hw doesn't support coherency */
1294		if (!(baser->val & GITS_BASER_SHAREABILITY_MASK))
1295			gic_flush_dcache_to_poc(table + idx, GITS_LVL1_ENTRY_SIZE);
1296
1297		/* Ensure updated table contents are visible to ITS hardware */
1298		dsb(sy);
1299	}
1300
1301	return true;
1302}
1303
1304static struct its_device *its_create_device(struct its_node *its, u32 dev_id,
1305					    int nvecs)
1306{
1307	struct its_device *dev;
1308	unsigned long *lpi_map;
1309	unsigned long flags;
1310	u16 *col_map = NULL;
1311	void *itt;
1312	int lpi_base;
1313	int nr_lpis;
1314	int nr_ites;
1315	int sz;
1316
1317	if (!its_alloc_device_table(its, dev_id))
1318		return NULL;
1319
1320	dev = kzalloc(sizeof(*dev), GFP_KERNEL);
1321	/*
1322	 * At least one bit of EventID is being used, hence a minimum
1323	 * of two entries. No, the architecture doesn't let you
1324	 * express an ITT with a single entry.
1325	 */
1326	nr_ites = max(2UL, roundup_pow_of_two(nvecs));
1327	sz = nr_ites * its->ite_size;
1328	sz = max(sz, ITS_ITT_ALIGN) + ITS_ITT_ALIGN - 1;
1329	itt = kzalloc(sz, GFP_KERNEL);
1330	lpi_map = its_lpi_alloc_chunks(nvecs, &lpi_base, &nr_lpis);
1331	if (lpi_map)
1332		col_map = kzalloc(sizeof(*col_map) * nr_lpis, GFP_KERNEL);
1333
1334	if (!dev || !itt || !lpi_map || !col_map) {
1335		kfree(dev);
1336		kfree(itt);
1337		kfree(lpi_map);
1338		kfree(col_map);
1339		return NULL;
1340	}
1341
1342	gic_flush_dcache_to_poc(itt, sz);
1343
1344	dev->its = its;
1345	dev->itt = itt;
1346	dev->nr_ites = nr_ites;
1347	dev->event_map.lpi_map = lpi_map;
1348	dev->event_map.col_map = col_map;
1349	dev->event_map.lpi_base = lpi_base;
1350	dev->event_map.nr_lpis = nr_lpis;
1351	dev->device_id = dev_id;
1352	INIT_LIST_HEAD(&dev->entry);
1353
1354	raw_spin_lock_irqsave(&its->lock, flags);
1355	list_add(&dev->entry, &its->its_device_list);
1356	raw_spin_unlock_irqrestore(&its->lock, flags);
1357
1358	/* Map device to its ITT */
1359	its_send_mapd(dev, 1);
1360
1361	return dev;
1362}
1363
1364static void its_free_device(struct its_device *its_dev)
1365{
1366	unsigned long flags;
1367
1368	raw_spin_lock_irqsave(&its_dev->its->lock, flags);
1369	list_del(&its_dev->entry);
1370	raw_spin_unlock_irqrestore(&its_dev->its->lock, flags);
1371	kfree(its_dev->itt);
1372	kfree(its_dev);
1373}
1374
1375static int its_alloc_device_irq(struct its_device *dev, irq_hw_number_t *hwirq)
1376{
1377	int idx;
1378
1379	idx = find_first_zero_bit(dev->event_map.lpi_map,
1380				  dev->event_map.nr_lpis);
1381	if (idx == dev->event_map.nr_lpis)
1382		return -ENOSPC;
1383
1384	*hwirq = dev->event_map.lpi_base + idx;
1385	set_bit(idx, dev->event_map.lpi_map);
1386
1387	return 0;
1388}
1389
1390static int its_msi_prepare(struct irq_domain *domain, struct device *dev,
1391			   int nvec, msi_alloc_info_t *info)
1392{
1393	struct its_node *its;
1394	struct its_device *its_dev;
1395	struct msi_domain_info *msi_info;
1396	u32 dev_id;
1397
1398	/*
1399	 * We ignore "dev" entierely, and rely on the dev_id that has
1400	 * been passed via the scratchpad. This limits this domain's
1401	 * usefulness to upper layers that definitely know that they
1402	 * are built on top of the ITS.
1403	 */
1404	dev_id = info->scratchpad[0].ul;
1405
1406	msi_info = msi_get_domain_info(domain);
1407	its = msi_info->data;
1408
1409	its_dev = its_find_device(its, dev_id);
1410	if (its_dev) {
1411		/*
1412		 * We already have seen this ID, probably through
1413		 * another alias (PCI bridge of some sort). No need to
1414		 * create the device.
1415		 */
1416		pr_debug("Reusing ITT for devID %x\n", dev_id);
1417		goto out;
1418	}
1419
1420	its_dev = its_create_device(its, dev_id, nvec);
1421	if (!its_dev)
1422		return -ENOMEM;
1423
1424	pr_debug("ITT %d entries, %d bits\n", nvec, ilog2(nvec));
1425out:
1426	info->scratchpad[0].ptr = its_dev;
1427	return 0;
1428}
1429
1430static struct msi_domain_ops its_msi_domain_ops = {
1431	.msi_prepare	= its_msi_prepare,
1432};
1433
1434static int its_irq_gic_domain_alloc(struct irq_domain *domain,
1435				    unsigned int virq,
1436				    irq_hw_number_t hwirq)
1437{
1438	struct irq_fwspec fwspec;
1439
1440	if (irq_domain_get_of_node(domain->parent)) {
1441		fwspec.fwnode = domain->parent->fwnode;
1442		fwspec.param_count = 3;
1443		fwspec.param[0] = GIC_IRQ_TYPE_LPI;
1444		fwspec.param[1] = hwirq;
1445		fwspec.param[2] = IRQ_TYPE_EDGE_RISING;
1446	} else if (is_fwnode_irqchip(domain->parent->fwnode)) {
1447		fwspec.fwnode = domain->parent->fwnode;
1448		fwspec.param_count = 2;
1449		fwspec.param[0] = hwirq;
1450		fwspec.param[1] = IRQ_TYPE_EDGE_RISING;
1451	} else {
1452		return -EINVAL;
1453	}
1454
1455	return irq_domain_alloc_irqs_parent(domain, virq, 1, &fwspec);
1456}
1457
1458static int its_irq_domain_alloc(struct irq_domain *domain, unsigned int virq,
1459				unsigned int nr_irqs, void *args)
1460{
1461	msi_alloc_info_t *info = args;
1462	struct its_device *its_dev = info->scratchpad[0].ptr;
1463	irq_hw_number_t hwirq;
1464	int err;
1465	int i;
1466
1467	for (i = 0; i < nr_irqs; i++) {
1468		err = its_alloc_device_irq(its_dev, &hwirq);
1469		if (err)
1470			return err;
1471
1472		err = its_irq_gic_domain_alloc(domain, virq + i, hwirq);
1473		if (err)
1474			return err;
1475
1476		irq_domain_set_hwirq_and_chip(domain, virq + i,
1477					      hwirq, &its_irq_chip, its_dev);
1478		pr_debug("ID:%d pID:%d vID:%d\n",
1479			 (int)(hwirq - its_dev->event_map.lpi_base),
1480			 (int) hwirq, virq + i);
1481	}
1482
1483	return 0;
1484}
1485
1486static void its_irq_domain_activate(struct irq_domain *domain,
1487				    struct irq_data *d)
1488{
1489	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1490	u32 event = its_get_event_id(d);
1491	const struct cpumask *cpu_mask = cpu_online_mask;
1492
1493	/* get the cpu_mask of local node */
1494	if (its_dev->its->numa_node >= 0)
1495		cpu_mask = cpumask_of_node(its_dev->its->numa_node);
1496
1497	/* Bind the LPI to the first possible CPU */
1498	its_dev->event_map.col_map[event] = cpumask_first(cpu_mask);
1499
1500	/* Map the GIC IRQ and event to the device */
1501	its_send_mapvi(its_dev, d->hwirq, event);
1502}
1503
1504static void its_irq_domain_deactivate(struct irq_domain *domain,
1505				      struct irq_data *d)
1506{
1507	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1508	u32 event = its_get_event_id(d);
1509
1510	/* Stop the delivery of interrupts */
1511	its_send_discard(its_dev, event);
1512}
1513
1514static void its_irq_domain_free(struct irq_domain *domain, unsigned int virq,
1515				unsigned int nr_irqs)
1516{
1517	struct irq_data *d = irq_domain_get_irq_data(domain, virq);
1518	struct its_device *its_dev = irq_data_get_irq_chip_data(d);
1519	int i;
1520
1521	for (i = 0; i < nr_irqs; i++) {
1522		struct irq_data *data = irq_domain_get_irq_data(domain,
1523								virq + i);
1524		u32 event = its_get_event_id(data);
1525
1526		/* Mark interrupt index as unused */
1527		clear_bit(event, its_dev->event_map.lpi_map);
1528
1529		/* Nuke the entry in the domain */
1530		irq_domain_reset_irq_data(data);
1531	}
1532
1533	/* If all interrupts have been freed, start mopping the floor */
1534	if (bitmap_empty(its_dev->event_map.lpi_map,
1535			 its_dev->event_map.nr_lpis)) {
1536		its_lpi_free(&its_dev->event_map);
1537
1538		/* Unmap device/itt */
1539		its_send_mapd(its_dev, 0);
1540		its_free_device(its_dev);
1541	}
1542
1543	irq_domain_free_irqs_parent(domain, virq, nr_irqs);
1544}
1545
1546static const struct irq_domain_ops its_domain_ops = {
1547	.alloc			= its_irq_domain_alloc,
1548	.free			= its_irq_domain_free,
1549	.activate		= its_irq_domain_activate,
1550	.deactivate		= its_irq_domain_deactivate,
1551};
1552
1553static int its_force_quiescent(void __iomem *base)
1554{
1555	u32 count = 1000000;	/* 1s */
1556	u32 val;
1557
1558	val = readl_relaxed(base + GITS_CTLR);
1559	/*
1560	 * GIC architecture specification requires the ITS to be both
1561	 * disabled and quiescent for writes to GITS_BASER<n> or
1562	 * GITS_CBASER to not have UNPREDICTABLE results.
1563	 */
1564	if ((val & GITS_CTLR_QUIESCENT) && !(val & GITS_CTLR_ENABLE))
1565		return 0;
1566
1567	/* Disable the generation of all interrupts to this ITS */
1568	val &= ~GITS_CTLR_ENABLE;
1569	writel_relaxed(val, base + GITS_CTLR);
1570
1571	/* Poll GITS_CTLR and wait until ITS becomes quiescent */
1572	while (1) {
1573		val = readl_relaxed(base + GITS_CTLR);
1574		if (val & GITS_CTLR_QUIESCENT)
1575			return 0;
1576
1577		count--;
1578		if (!count)
1579			return -EBUSY;
1580
1581		cpu_relax();
1582		udelay(1);
1583	}
1584}
1585
1586static void __maybe_unused its_enable_quirk_cavium_22375(void *data)
1587{
1588	struct its_node *its = data;
1589
1590	its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_22375;
1591}
1592
1593static void __maybe_unused its_enable_quirk_cavium_23144(void *data)
1594{
1595	struct its_node *its = data;
1596
1597	its->flags |= ITS_FLAGS_WORKAROUND_CAVIUM_23144;
1598}
1599
1600static void __maybe_unused its_enable_quirk_qdf2400_e0065(void *data)
1601{
1602	struct its_node *its = data;
1603
1604	/* On QDF2400, the size of the ITE is 16Bytes */
1605	its->ite_size = 16;
1606}
1607
1608static const struct gic_quirk its_quirks[] = {
1609#ifdef CONFIG_CAVIUM_ERRATUM_22375
1610	{
1611		.desc	= "ITS: Cavium errata 22375, 24313",
1612		.iidr	= 0xa100034c,	/* ThunderX pass 1.x */
1613		.mask	= 0xffff0fff,
1614		.init	= its_enable_quirk_cavium_22375,
1615	},
1616#endif
1617#ifdef CONFIG_CAVIUM_ERRATUM_23144
1618	{
1619		.desc	= "ITS: Cavium erratum 23144",
1620		.iidr	= 0xa100034c,	/* ThunderX pass 1.x */
1621		.mask	= 0xffff0fff,
1622		.init	= its_enable_quirk_cavium_23144,
1623	},
1624#endif
1625#ifdef CONFIG_QCOM_QDF2400_ERRATUM_0065
1626	{
1627		.desc	= "ITS: QDF2400 erratum 0065",
1628		.iidr	= 0x00001070, /* QDF2400 ITS rev 1.x */
1629		.mask	= 0xffffffff,
1630		.init	= its_enable_quirk_qdf2400_e0065,
1631	},
1632#endif
1633	{
1634	}
1635};
1636
1637static void its_enable_quirks(struct its_node *its)
1638{
1639	u32 iidr = readl_relaxed(its->base + GITS_IIDR);
1640
1641	gic_enable_quirks(iidr, its_quirks, its);
1642}
1643
1644static int its_init_domain(struct fwnode_handle *handle, struct its_node *its)
1645{
1646	struct irq_domain *inner_domain;
1647	struct msi_domain_info *info;
1648
1649	info = kzalloc(sizeof(*info), GFP_KERNEL);
1650	if (!info)
1651		return -ENOMEM;
1652
1653	inner_domain = irq_domain_create_tree(handle, &its_domain_ops, its);
1654	if (!inner_domain) {
1655		kfree(info);
1656		return -ENOMEM;
1657	}
1658
1659	inner_domain->parent = its_parent;
1660	inner_domain->bus_token = DOMAIN_BUS_NEXUS;
1661	info->ops = &its_msi_domain_ops;
1662	info->data = its;
1663	inner_domain->host_data = info;
1664
1665	return 0;
1666}
1667
1668static int __init its_probe_one(struct resource *res,
1669				struct fwnode_handle *handle, int numa_node)
1670{
1671	struct its_node *its;
1672	void __iomem *its_base;
1673	u32 val;
1674	u64 baser, tmp;
1675	int err;
1676
1677	its_base = ioremap(res->start, resource_size(res));
1678	if (!its_base) {
1679		pr_warn("ITS@%pa: Unable to map ITS registers\n", &res->start);
1680		return -ENOMEM;
1681	}
1682
1683	val = readl_relaxed(its_base + GITS_PIDR2) & GIC_PIDR2_ARCH_MASK;
1684	if (val != 0x30 && val != 0x40) {
1685		pr_warn("ITS@%pa: No ITS detected, giving up\n", &res->start);
1686		err = -ENODEV;
1687		goto out_unmap;
1688	}
1689
1690	err = its_force_quiescent(its_base);
1691	if (err) {
1692		pr_warn("ITS@%pa: Failed to quiesce, giving up\n", &res->start);
1693		goto out_unmap;
1694	}
1695
1696	pr_info("ITS %pR\n", res);
1697
1698	its = kzalloc(sizeof(*its), GFP_KERNEL);
1699	if (!its) {
1700		err = -ENOMEM;
1701		goto out_unmap;
1702	}
1703
1704	raw_spin_lock_init(&its->lock);
1705	INIT_LIST_HEAD(&its->entry);
1706	INIT_LIST_HEAD(&its->its_device_list);
1707	its->base = its_base;
1708	its->phys_base = res->start;
1709	its->ite_size = ((gic_read_typer(its_base + GITS_TYPER) >> 4) & 0xf) + 1;
1710	its->numa_node = numa_node;
1711
1712	its->cmd_base = kzalloc(ITS_CMD_QUEUE_SZ, GFP_KERNEL);
1713	if (!its->cmd_base) {
1714		err = -ENOMEM;
1715		goto out_free_its;
1716	}
1717	its->cmd_write = its->cmd_base;
1718
1719	its_enable_quirks(its);
1720
1721	err = its_alloc_tables(its);
1722	if (err)
1723		goto out_free_cmd;
1724
1725	err = its_alloc_collections(its);
1726	if (err)
1727		goto out_free_tables;
1728
1729	baser = (virt_to_phys(its->cmd_base)	|
1730		 GITS_CBASER_WaWb		|
1731		 GITS_CBASER_InnerShareable	|
1732		 (ITS_CMD_QUEUE_SZ / SZ_4K - 1)	|
1733		 GITS_CBASER_VALID);
1734
1735	gits_write_cbaser(baser, its->base + GITS_CBASER);
1736	tmp = gits_read_cbaser(its->base + GITS_CBASER);
1737
1738	if ((tmp ^ baser) & GITS_CBASER_SHAREABILITY_MASK) {
1739		if (!(tmp & GITS_CBASER_SHAREABILITY_MASK)) {
1740			/*
1741			 * The HW reports non-shareable, we must
1742			 * remove the cacheability attributes as
1743			 * well.
1744			 */
1745			baser &= ~(GITS_CBASER_SHAREABILITY_MASK |
1746				   GITS_CBASER_CACHEABILITY_MASK);
1747			baser |= GITS_CBASER_nC;
1748			gits_write_cbaser(baser, its->base + GITS_CBASER);
1749		}
1750		pr_info("ITS: using cache flushing for cmd queue\n");
1751		its->flags |= ITS_FLAGS_CMDQ_NEEDS_FLUSHING;
1752	}
1753
1754	gits_write_cwriter(0, its->base + GITS_CWRITER);
1755	writel_relaxed(GITS_CTLR_ENABLE, its->base + GITS_CTLR);
1756
1757	err = its_init_domain(handle, its);
1758	if (err)
1759		goto out_free_tables;
1760
1761	spin_lock(&its_lock);
1762	list_add(&its->entry, &its_nodes);
1763	spin_unlock(&its_lock);
1764
1765	return 0;
1766
1767out_free_tables:
1768	its_free_tables(its);
1769out_free_cmd:
1770	kfree(its->cmd_base);
1771out_free_its:
1772	kfree(its);
1773out_unmap:
1774	iounmap(its_base);
1775	pr_err("ITS@%pa: failed probing (%d)\n", &res->start, err);
1776	return err;
1777}
1778
1779static bool gic_rdists_supports_plpis(void)
1780{
1781	return !!(gic_read_typer(gic_data_rdist_rd_base() + GICR_TYPER) & GICR_TYPER_PLPIS);
1782}
1783
1784int its_cpu_init(void)
1785{
1786	if (!list_empty(&its_nodes)) {
1787		if (!gic_rdists_supports_plpis()) {
1788			pr_info("CPU%d: LPIs not supported\n", smp_processor_id());
1789			return -ENXIO;
1790		}
1791		its_cpu_init_lpis();
1792		its_cpu_init_collection();
1793	}
1794
1795	return 0;
1796}
1797
1798static struct of_device_id its_device_id[] = {
1799	{	.compatible	= "arm,gic-v3-its",	},
1800	{},
1801};
1802
1803static int __init its_of_probe(struct device_node *node)
1804{
1805	struct device_node *np;
1806	struct resource res;
1807
1808	for (np = of_find_matching_node(node, its_device_id); np;
1809	     np = of_find_matching_node(np, its_device_id)) {
1810		if (!of_property_read_bool(np, "msi-controller")) {
1811			pr_warn("%s: no msi-controller property, ITS ignored\n",
1812				np->full_name);
1813			continue;
1814		}
1815
1816		if (of_address_to_resource(np, 0, &res)) {
1817			pr_warn("%s: no regs?\n", np->full_name);
1818			continue;
1819		}
1820
1821		its_probe_one(&res, &np->fwnode, of_node_to_nid(np));
1822	}
1823	return 0;
1824}
1825
1826#ifdef CONFIG_ACPI
1827
1828#define ACPI_GICV3_ITS_MEM_SIZE (SZ_128K)
1829
1830static int __init gic_acpi_parse_madt_its(struct acpi_subtable_header *header,
1831					  const unsigned long end)
1832{
1833	struct acpi_madt_generic_translator *its_entry;
1834	struct fwnode_handle *dom_handle;
1835	struct resource res;
1836	int err;
1837
1838	its_entry = (struct acpi_madt_generic_translator *)header;
1839	memset(&res, 0, sizeof(res));
1840	res.start = its_entry->base_address;
1841	res.end = its_entry->base_address + ACPI_GICV3_ITS_MEM_SIZE - 1;
1842	res.flags = IORESOURCE_MEM;
1843
1844	dom_handle = irq_domain_alloc_fwnode((void *)its_entry->base_address);
1845	if (!dom_handle) {
1846		pr_err("ITS@%pa: Unable to allocate GICv3 ITS domain token\n",
1847		       &res.start);
1848		return -ENOMEM;
1849	}
1850
1851	err = iort_register_domain_token(its_entry->translation_id, dom_handle);
1852	if (err) {
1853		pr_err("ITS@%pa: Unable to register GICv3 ITS domain token (ITS ID %d) to IORT\n",
1854		       &res.start, its_entry->translation_id);
1855		goto dom_err;
1856	}
1857
1858	err = its_probe_one(&res, dom_handle, NUMA_NO_NODE);
1859	if (!err)
1860		return 0;
1861
1862	iort_deregister_domain_token(its_entry->translation_id);
1863dom_err:
1864	irq_domain_free_fwnode(dom_handle);
1865	return err;
1866}
1867
1868static void __init its_acpi_probe(void)
1869{
1870	acpi_table_parse_madt(ACPI_MADT_TYPE_GENERIC_TRANSLATOR,
1871			      gic_acpi_parse_madt_its, 0);
1872}
1873#else
1874static void __init its_acpi_probe(void) { }
1875#endif
1876
1877int __init its_init(struct fwnode_handle *handle, struct rdists *rdists,
1878		    struct irq_domain *parent_domain)
1879{
1880	struct device_node *of_node;
1881
1882	its_parent = parent_domain;
1883	of_node = to_of_node(handle);
1884	if (of_node)
1885		its_of_probe(of_node);
1886	else
1887		its_acpi_probe();
1888
1889	if (list_empty(&its_nodes)) {
1890		pr_warn("ITS: No ITS available, not enabling LPIs\n");
1891		return -ENXIO;
1892	}
1893
1894	gic_rdists = rdists;
1895	its_alloc_lpi_tables();
1896	its_lpi_init(rdists->id_bits);
1897
1898	return 0;
1899}