Loading...
1/*
2 * Copyright (C) 1995 Linus Torvalds
3 * Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
4 * Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
5 */
6#include <linux/magic.h> /* STACK_END_MAGIC */
7#include <linux/sched.h> /* test_thread_flag(), ... */
8#include <linux/kdebug.h> /* oops_begin/end, ... */
9#include <linux/module.h> /* search_exception_table */
10#include <linux/bootmem.h> /* max_low_pfn */
11#include <linux/kprobes.h> /* __kprobes, ... */
12#include <linux/mmiotrace.h> /* kmmio_handler, ... */
13#include <linux/perf_event.h> /* perf_sw_event */
14#include <linux/hugetlb.h> /* hstate_index_to_shift */
15#include <linux/prefetch.h> /* prefetchw */
16#include <linux/context_tracking.h> /* exception_enter(), ... */
17
18#include <asm/traps.h> /* dotraplinkage, ... */
19#include <asm/pgalloc.h> /* pgd_*(), ... */
20#include <asm/kmemcheck.h> /* kmemcheck_*(), ... */
21#include <asm/fixmap.h> /* VSYSCALL_START */
22
23#define CREATE_TRACE_POINTS
24#include <asm/trace/exceptions.h>
25
26/*
27 * Page fault error code bits:
28 *
29 * bit 0 == 0: no page found 1: protection fault
30 * bit 1 == 0: read access 1: write access
31 * bit 2 == 0: kernel-mode access 1: user-mode access
32 * bit 3 == 1: use of reserved bit detected
33 * bit 4 == 1: fault was an instruction fetch
34 */
35enum x86_pf_error_code {
36
37 PF_PROT = 1 << 0,
38 PF_WRITE = 1 << 1,
39 PF_USER = 1 << 2,
40 PF_RSVD = 1 << 3,
41 PF_INSTR = 1 << 4,
42};
43
44/*
45 * Returns 0 if mmiotrace is disabled, or if the fault is not
46 * handled by mmiotrace:
47 */
48static inline int __kprobes
49kmmio_fault(struct pt_regs *regs, unsigned long addr)
50{
51 if (unlikely(is_kmmio_active()))
52 if (kmmio_handler(regs, addr) == 1)
53 return -1;
54 return 0;
55}
56
57static inline int __kprobes kprobes_fault(struct pt_regs *regs)
58{
59 int ret = 0;
60
61 /* kprobe_running() needs smp_processor_id() */
62 if (kprobes_built_in() && !user_mode_vm(regs)) {
63 preempt_disable();
64 if (kprobe_running() && kprobe_fault_handler(regs, 14))
65 ret = 1;
66 preempt_enable();
67 }
68
69 return ret;
70}
71
72/*
73 * Prefetch quirks:
74 *
75 * 32-bit mode:
76 *
77 * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
78 * Check that here and ignore it.
79 *
80 * 64-bit mode:
81 *
82 * Sometimes the CPU reports invalid exceptions on prefetch.
83 * Check that here and ignore it.
84 *
85 * Opcode checker based on code by Richard Brunner.
86 */
87static inline int
88check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
89 unsigned char opcode, int *prefetch)
90{
91 unsigned char instr_hi = opcode & 0xf0;
92 unsigned char instr_lo = opcode & 0x0f;
93
94 switch (instr_hi) {
95 case 0x20:
96 case 0x30:
97 /*
98 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
99 * In X86_64 long mode, the CPU will signal invalid
100 * opcode if some of these prefixes are present so
101 * X86_64 will never get here anyway
102 */
103 return ((instr_lo & 7) == 0x6);
104#ifdef CONFIG_X86_64
105 case 0x40:
106 /*
107 * In AMD64 long mode 0x40..0x4F are valid REX prefixes
108 * Need to figure out under what instruction mode the
109 * instruction was issued. Could check the LDT for lm,
110 * but for now it's good enough to assume that long
111 * mode only uses well known segments or kernel.
112 */
113 return (!user_mode(regs) || user_64bit_mode(regs));
114#endif
115 case 0x60:
116 /* 0x64 thru 0x67 are valid prefixes in all modes. */
117 return (instr_lo & 0xC) == 0x4;
118 case 0xF0:
119 /* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
120 return !instr_lo || (instr_lo>>1) == 1;
121 case 0x00:
122 /* Prefetch instruction is 0x0F0D or 0x0F18 */
123 if (probe_kernel_address(instr, opcode))
124 return 0;
125
126 *prefetch = (instr_lo == 0xF) &&
127 (opcode == 0x0D || opcode == 0x18);
128 return 0;
129 default:
130 return 0;
131 }
132}
133
134static int
135is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
136{
137 unsigned char *max_instr;
138 unsigned char *instr;
139 int prefetch = 0;
140
141 /*
142 * If it was a exec (instruction fetch) fault on NX page, then
143 * do not ignore the fault:
144 */
145 if (error_code & PF_INSTR)
146 return 0;
147
148 instr = (void *)convert_ip_to_linear(current, regs);
149 max_instr = instr + 15;
150
151 if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE)
152 return 0;
153
154 while (instr < max_instr) {
155 unsigned char opcode;
156
157 if (probe_kernel_address(instr, opcode))
158 break;
159
160 instr++;
161
162 if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
163 break;
164 }
165 return prefetch;
166}
167
168static void
169force_sig_info_fault(int si_signo, int si_code, unsigned long address,
170 struct task_struct *tsk, int fault)
171{
172 unsigned lsb = 0;
173 siginfo_t info;
174
175 info.si_signo = si_signo;
176 info.si_errno = 0;
177 info.si_code = si_code;
178 info.si_addr = (void __user *)address;
179 if (fault & VM_FAULT_HWPOISON_LARGE)
180 lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
181 if (fault & VM_FAULT_HWPOISON)
182 lsb = PAGE_SHIFT;
183 info.si_addr_lsb = lsb;
184
185 force_sig_info(si_signo, &info, tsk);
186}
187
188DEFINE_SPINLOCK(pgd_lock);
189LIST_HEAD(pgd_list);
190
191#ifdef CONFIG_X86_32
192static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
193{
194 unsigned index = pgd_index(address);
195 pgd_t *pgd_k;
196 pud_t *pud, *pud_k;
197 pmd_t *pmd, *pmd_k;
198
199 pgd += index;
200 pgd_k = init_mm.pgd + index;
201
202 if (!pgd_present(*pgd_k))
203 return NULL;
204
205 /*
206 * set_pgd(pgd, *pgd_k); here would be useless on PAE
207 * and redundant with the set_pmd() on non-PAE. As would
208 * set_pud.
209 */
210 pud = pud_offset(pgd, address);
211 pud_k = pud_offset(pgd_k, address);
212 if (!pud_present(*pud_k))
213 return NULL;
214
215 pmd = pmd_offset(pud, address);
216 pmd_k = pmd_offset(pud_k, address);
217 if (!pmd_present(*pmd_k))
218 return NULL;
219
220 if (!pmd_present(*pmd))
221 set_pmd(pmd, *pmd_k);
222 else
223 BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k));
224
225 return pmd_k;
226}
227
228void vmalloc_sync_all(void)
229{
230 unsigned long address;
231
232 if (SHARED_KERNEL_PMD)
233 return;
234
235 for (address = VMALLOC_START & PMD_MASK;
236 address >= TASK_SIZE && address < FIXADDR_TOP;
237 address += PMD_SIZE) {
238 struct page *page;
239
240 spin_lock(&pgd_lock);
241 list_for_each_entry(page, &pgd_list, lru) {
242 spinlock_t *pgt_lock;
243 pmd_t *ret;
244
245 /* the pgt_lock only for Xen */
246 pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
247
248 spin_lock(pgt_lock);
249 ret = vmalloc_sync_one(page_address(page), address);
250 spin_unlock(pgt_lock);
251
252 if (!ret)
253 break;
254 }
255 spin_unlock(&pgd_lock);
256 }
257}
258
259/*
260 * 32-bit:
261 *
262 * Handle a fault on the vmalloc or module mapping area
263 */
264static noinline __kprobes int vmalloc_fault(unsigned long address)
265{
266 unsigned long pgd_paddr;
267 pmd_t *pmd_k;
268 pte_t *pte_k;
269
270 /* Make sure we are in vmalloc area: */
271 if (!(address >= VMALLOC_START && address < VMALLOC_END))
272 return -1;
273
274 WARN_ON_ONCE(in_nmi());
275
276 /*
277 * Synchronize this task's top level page-table
278 * with the 'reference' page table.
279 *
280 * Do _not_ use "current" here. We might be inside
281 * an interrupt in the middle of a task switch..
282 */
283 pgd_paddr = read_cr3();
284 pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
285 if (!pmd_k)
286 return -1;
287
288 pte_k = pte_offset_kernel(pmd_k, address);
289 if (!pte_present(*pte_k))
290 return -1;
291
292 return 0;
293}
294
295/*
296 * Did it hit the DOS screen memory VA from vm86 mode?
297 */
298static inline void
299check_v8086_mode(struct pt_regs *regs, unsigned long address,
300 struct task_struct *tsk)
301{
302 unsigned long bit;
303
304 if (!v8086_mode(regs))
305 return;
306
307 bit = (address - 0xA0000) >> PAGE_SHIFT;
308 if (bit < 32)
309 tsk->thread.screen_bitmap |= 1 << bit;
310}
311
312static bool low_pfn(unsigned long pfn)
313{
314 return pfn < max_low_pfn;
315}
316
317static void dump_pagetable(unsigned long address)
318{
319 pgd_t *base = __va(read_cr3());
320 pgd_t *pgd = &base[pgd_index(address)];
321 pmd_t *pmd;
322 pte_t *pte;
323
324#ifdef CONFIG_X86_PAE
325 printk("*pdpt = %016Lx ", pgd_val(*pgd));
326 if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd))
327 goto out;
328#endif
329 pmd = pmd_offset(pud_offset(pgd, address), address);
330 printk(KERN_CONT "*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd));
331
332 /*
333 * We must not directly access the pte in the highpte
334 * case if the page table is located in highmem.
335 * And let's rather not kmap-atomic the pte, just in case
336 * it's allocated already:
337 */
338 if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd))
339 goto out;
340
341 pte = pte_offset_kernel(pmd, address);
342 printk("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte));
343out:
344 printk("\n");
345}
346
347#else /* CONFIG_X86_64: */
348
349void vmalloc_sync_all(void)
350{
351 sync_global_pgds(VMALLOC_START & PGDIR_MASK, VMALLOC_END);
352}
353
354/*
355 * 64-bit:
356 *
357 * Handle a fault on the vmalloc area
358 *
359 * This assumes no large pages in there.
360 */
361static noinline __kprobes int vmalloc_fault(unsigned long address)
362{
363 pgd_t *pgd, *pgd_ref;
364 pud_t *pud, *pud_ref;
365 pmd_t *pmd, *pmd_ref;
366 pte_t *pte, *pte_ref;
367
368 /* Make sure we are in vmalloc area: */
369 if (!(address >= VMALLOC_START && address < VMALLOC_END))
370 return -1;
371
372 WARN_ON_ONCE(in_nmi());
373
374 /*
375 * Copy kernel mappings over when needed. This can also
376 * happen within a race in page table update. In the later
377 * case just flush:
378 */
379 pgd = pgd_offset(current->active_mm, address);
380 pgd_ref = pgd_offset_k(address);
381 if (pgd_none(*pgd_ref))
382 return -1;
383
384 if (pgd_none(*pgd)) {
385 set_pgd(pgd, *pgd_ref);
386 arch_flush_lazy_mmu_mode();
387 } else {
388 BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_ref));
389 }
390
391 /*
392 * Below here mismatches are bugs because these lower tables
393 * are shared:
394 */
395
396 pud = pud_offset(pgd, address);
397 pud_ref = pud_offset(pgd_ref, address);
398 if (pud_none(*pud_ref))
399 return -1;
400
401 if (pud_none(*pud) || pud_page_vaddr(*pud) != pud_page_vaddr(*pud_ref))
402 BUG();
403
404 pmd = pmd_offset(pud, address);
405 pmd_ref = pmd_offset(pud_ref, address);
406 if (pmd_none(*pmd_ref))
407 return -1;
408
409 if (pmd_none(*pmd) || pmd_page(*pmd) != pmd_page(*pmd_ref))
410 BUG();
411
412 pte_ref = pte_offset_kernel(pmd_ref, address);
413 if (!pte_present(*pte_ref))
414 return -1;
415
416 pte = pte_offset_kernel(pmd, address);
417
418 /*
419 * Don't use pte_page here, because the mappings can point
420 * outside mem_map, and the NUMA hash lookup cannot handle
421 * that:
422 */
423 if (!pte_present(*pte) || pte_pfn(*pte) != pte_pfn(*pte_ref))
424 BUG();
425
426 return 0;
427}
428
429#ifdef CONFIG_CPU_SUP_AMD
430static const char errata93_warning[] =
431KERN_ERR
432"******* Your BIOS seems to not contain a fix for K8 errata #93\n"
433"******* Working around it, but it may cause SEGVs or burn power.\n"
434"******* Please consider a BIOS update.\n"
435"******* Disabling USB legacy in the BIOS may also help.\n";
436#endif
437
438/*
439 * No vm86 mode in 64-bit mode:
440 */
441static inline void
442check_v8086_mode(struct pt_regs *regs, unsigned long address,
443 struct task_struct *tsk)
444{
445}
446
447static int bad_address(void *p)
448{
449 unsigned long dummy;
450
451 return probe_kernel_address((unsigned long *)p, dummy);
452}
453
454static void dump_pagetable(unsigned long address)
455{
456 pgd_t *base = __va(read_cr3() & PHYSICAL_PAGE_MASK);
457 pgd_t *pgd = base + pgd_index(address);
458 pud_t *pud;
459 pmd_t *pmd;
460 pte_t *pte;
461
462 if (bad_address(pgd))
463 goto bad;
464
465 printk("PGD %lx ", pgd_val(*pgd));
466
467 if (!pgd_present(*pgd))
468 goto out;
469
470 pud = pud_offset(pgd, address);
471 if (bad_address(pud))
472 goto bad;
473
474 printk("PUD %lx ", pud_val(*pud));
475 if (!pud_present(*pud) || pud_large(*pud))
476 goto out;
477
478 pmd = pmd_offset(pud, address);
479 if (bad_address(pmd))
480 goto bad;
481
482 printk("PMD %lx ", pmd_val(*pmd));
483 if (!pmd_present(*pmd) || pmd_large(*pmd))
484 goto out;
485
486 pte = pte_offset_kernel(pmd, address);
487 if (bad_address(pte))
488 goto bad;
489
490 printk("PTE %lx", pte_val(*pte));
491out:
492 printk("\n");
493 return;
494bad:
495 printk("BAD\n");
496}
497
498#endif /* CONFIG_X86_64 */
499
500/*
501 * Workaround for K8 erratum #93 & buggy BIOS.
502 *
503 * BIOS SMM functions are required to use a specific workaround
504 * to avoid corruption of the 64bit RIP register on C stepping K8.
505 *
506 * A lot of BIOS that didn't get tested properly miss this.
507 *
508 * The OS sees this as a page fault with the upper 32bits of RIP cleared.
509 * Try to work around it here.
510 *
511 * Note we only handle faults in kernel here.
512 * Does nothing on 32-bit.
513 */
514static int is_errata93(struct pt_regs *regs, unsigned long address)
515{
516#if defined(CONFIG_X86_64) && defined(CONFIG_CPU_SUP_AMD)
517 if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD
518 || boot_cpu_data.x86 != 0xf)
519 return 0;
520
521 if (address != regs->ip)
522 return 0;
523
524 if ((address >> 32) != 0)
525 return 0;
526
527 address |= 0xffffffffUL << 32;
528 if ((address >= (u64)_stext && address <= (u64)_etext) ||
529 (address >= MODULES_VADDR && address <= MODULES_END)) {
530 printk_once(errata93_warning);
531 regs->ip = address;
532 return 1;
533 }
534#endif
535 return 0;
536}
537
538/*
539 * Work around K8 erratum #100 K8 in compat mode occasionally jumps
540 * to illegal addresses >4GB.
541 *
542 * We catch this in the page fault handler because these addresses
543 * are not reachable. Just detect this case and return. Any code
544 * segment in LDT is compatibility mode.
545 */
546static int is_errata100(struct pt_regs *regs, unsigned long address)
547{
548#ifdef CONFIG_X86_64
549 if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
550 return 1;
551#endif
552 return 0;
553}
554
555static int is_f00f_bug(struct pt_regs *regs, unsigned long address)
556{
557#ifdef CONFIG_X86_F00F_BUG
558 unsigned long nr;
559
560 /*
561 * Pentium F0 0F C7 C8 bug workaround:
562 */
563 if (boot_cpu_has_bug(X86_BUG_F00F)) {
564 nr = (address - idt_descr.address) >> 3;
565
566 if (nr == 6) {
567 do_invalid_op(regs, 0);
568 return 1;
569 }
570 }
571#endif
572 return 0;
573}
574
575static const char nx_warning[] = KERN_CRIT
576"kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n";
577
578static void
579show_fault_oops(struct pt_regs *regs, unsigned long error_code,
580 unsigned long address)
581{
582 if (!oops_may_print())
583 return;
584
585 if (error_code & PF_INSTR) {
586 unsigned int level;
587 pgd_t *pgd;
588 pte_t *pte;
589
590 pgd = __va(read_cr3() & PHYSICAL_PAGE_MASK);
591 pgd += pgd_index(address);
592
593 pte = lookup_address_in_pgd(pgd, address, &level);
594
595 if (pte && pte_present(*pte) && !pte_exec(*pte))
596 printk(nx_warning, from_kuid(&init_user_ns, current_uid()));
597 }
598
599 printk(KERN_ALERT "BUG: unable to handle kernel ");
600 if (address < PAGE_SIZE)
601 printk(KERN_CONT "NULL pointer dereference");
602 else
603 printk(KERN_CONT "paging request");
604
605 printk(KERN_CONT " at %p\n", (void *) address);
606 printk(KERN_ALERT "IP:");
607 printk_address(regs->ip);
608
609 dump_pagetable(address);
610}
611
612static noinline void
613pgtable_bad(struct pt_regs *regs, unsigned long error_code,
614 unsigned long address)
615{
616 struct task_struct *tsk;
617 unsigned long flags;
618 int sig;
619
620 flags = oops_begin();
621 tsk = current;
622 sig = SIGKILL;
623
624 printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
625 tsk->comm, address);
626 dump_pagetable(address);
627
628 tsk->thread.cr2 = address;
629 tsk->thread.trap_nr = X86_TRAP_PF;
630 tsk->thread.error_code = error_code;
631
632 if (__die("Bad pagetable", regs, error_code))
633 sig = 0;
634
635 oops_end(flags, regs, sig);
636}
637
638static noinline void
639no_context(struct pt_regs *regs, unsigned long error_code,
640 unsigned long address, int signal, int si_code)
641{
642 struct task_struct *tsk = current;
643 unsigned long *stackend;
644 unsigned long flags;
645 int sig;
646
647 /* Are we prepared to handle this kernel fault? */
648 if (fixup_exception(regs)) {
649 /*
650 * Any interrupt that takes a fault gets the fixup. This makes
651 * the below recursive fault logic only apply to a faults from
652 * task context.
653 */
654 if (in_interrupt())
655 return;
656
657 /*
658 * Per the above we're !in_interrupt(), aka. task context.
659 *
660 * In this case we need to make sure we're not recursively
661 * faulting through the emulate_vsyscall() logic.
662 */
663 if (current_thread_info()->sig_on_uaccess_error && signal) {
664 tsk->thread.trap_nr = X86_TRAP_PF;
665 tsk->thread.error_code = error_code | PF_USER;
666 tsk->thread.cr2 = address;
667
668 /* XXX: hwpoison faults will set the wrong code. */
669 force_sig_info_fault(signal, si_code, address, tsk, 0);
670 }
671
672 /*
673 * Barring that, we can do the fixup and be happy.
674 */
675 return;
676 }
677
678 /*
679 * 32-bit:
680 *
681 * Valid to do another page fault here, because if this fault
682 * had been triggered by is_prefetch fixup_exception would have
683 * handled it.
684 *
685 * 64-bit:
686 *
687 * Hall of shame of CPU/BIOS bugs.
688 */
689 if (is_prefetch(regs, error_code, address))
690 return;
691
692 if (is_errata93(regs, address))
693 return;
694
695 /*
696 * Oops. The kernel tried to access some bad page. We'll have to
697 * terminate things with extreme prejudice:
698 */
699 flags = oops_begin();
700
701 show_fault_oops(regs, error_code, address);
702
703 stackend = end_of_stack(tsk);
704 if (tsk != &init_task && *stackend != STACK_END_MAGIC)
705 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
706
707 tsk->thread.cr2 = address;
708 tsk->thread.trap_nr = X86_TRAP_PF;
709 tsk->thread.error_code = error_code;
710
711 sig = SIGKILL;
712 if (__die("Oops", regs, error_code))
713 sig = 0;
714
715 /* Executive summary in case the body of the oops scrolled away */
716 printk(KERN_DEFAULT "CR2: %016lx\n", address);
717
718 oops_end(flags, regs, sig);
719}
720
721/*
722 * Print out info about fatal segfaults, if the show_unhandled_signals
723 * sysctl is set:
724 */
725static inline void
726show_signal_msg(struct pt_regs *regs, unsigned long error_code,
727 unsigned long address, struct task_struct *tsk)
728{
729 if (!unhandled_signal(tsk, SIGSEGV))
730 return;
731
732 if (!printk_ratelimit())
733 return;
734
735 printk("%s%s[%d]: segfault at %lx ip %p sp %p error %lx",
736 task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG,
737 tsk->comm, task_pid_nr(tsk), address,
738 (void *)regs->ip, (void *)regs->sp, error_code);
739
740 print_vma_addr(KERN_CONT " in ", regs->ip);
741
742 printk(KERN_CONT "\n");
743}
744
745static void
746__bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
747 unsigned long address, int si_code)
748{
749 struct task_struct *tsk = current;
750
751 /* User mode accesses just cause a SIGSEGV */
752 if (error_code & PF_USER) {
753 /*
754 * It's possible to have interrupts off here:
755 */
756 local_irq_enable();
757
758 /*
759 * Valid to do another page fault here because this one came
760 * from user space:
761 */
762 if (is_prefetch(regs, error_code, address))
763 return;
764
765 if (is_errata100(regs, address))
766 return;
767
768#ifdef CONFIG_X86_64
769 /*
770 * Instruction fetch faults in the vsyscall page might need
771 * emulation.
772 */
773 if (unlikely((error_code & PF_INSTR) &&
774 ((address & ~0xfff) == VSYSCALL_START))) {
775 if (emulate_vsyscall(regs, address))
776 return;
777 }
778#endif
779 /* Kernel addresses are always protection faults: */
780 if (address >= TASK_SIZE)
781 error_code |= PF_PROT;
782
783 if (likely(show_unhandled_signals))
784 show_signal_msg(regs, error_code, address, tsk);
785
786 tsk->thread.cr2 = address;
787 tsk->thread.error_code = error_code;
788 tsk->thread.trap_nr = X86_TRAP_PF;
789
790 force_sig_info_fault(SIGSEGV, si_code, address, tsk, 0);
791
792 return;
793 }
794
795 if (is_f00f_bug(regs, address))
796 return;
797
798 no_context(regs, error_code, address, SIGSEGV, si_code);
799}
800
801static noinline void
802bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
803 unsigned long address)
804{
805 __bad_area_nosemaphore(regs, error_code, address, SEGV_MAPERR);
806}
807
808static void
809__bad_area(struct pt_regs *regs, unsigned long error_code,
810 unsigned long address, int si_code)
811{
812 struct mm_struct *mm = current->mm;
813
814 /*
815 * Something tried to access memory that isn't in our memory map..
816 * Fix it, but check if it's kernel or user first..
817 */
818 up_read(&mm->mmap_sem);
819
820 __bad_area_nosemaphore(regs, error_code, address, si_code);
821}
822
823static noinline void
824bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address)
825{
826 __bad_area(regs, error_code, address, SEGV_MAPERR);
827}
828
829static noinline void
830bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
831 unsigned long address)
832{
833 __bad_area(regs, error_code, address, SEGV_ACCERR);
834}
835
836static void
837do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address,
838 unsigned int fault)
839{
840 struct task_struct *tsk = current;
841 struct mm_struct *mm = tsk->mm;
842 int code = BUS_ADRERR;
843
844 up_read(&mm->mmap_sem);
845
846 /* Kernel mode? Handle exceptions or die: */
847 if (!(error_code & PF_USER)) {
848 no_context(regs, error_code, address, SIGBUS, BUS_ADRERR);
849 return;
850 }
851
852 /* User-space => ok to do another page fault: */
853 if (is_prefetch(regs, error_code, address))
854 return;
855
856 tsk->thread.cr2 = address;
857 tsk->thread.error_code = error_code;
858 tsk->thread.trap_nr = X86_TRAP_PF;
859
860#ifdef CONFIG_MEMORY_FAILURE
861 if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
862 printk(KERN_ERR
863 "MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
864 tsk->comm, tsk->pid, address);
865 code = BUS_MCEERR_AR;
866 }
867#endif
868 force_sig_info_fault(SIGBUS, code, address, tsk, fault);
869}
870
871static noinline void
872mm_fault_error(struct pt_regs *regs, unsigned long error_code,
873 unsigned long address, unsigned int fault)
874{
875 if (fatal_signal_pending(current) && !(error_code & PF_USER)) {
876 up_read(¤t->mm->mmap_sem);
877 no_context(regs, error_code, address, 0, 0);
878 return;
879 }
880
881 if (fault & VM_FAULT_OOM) {
882 /* Kernel mode? Handle exceptions or die: */
883 if (!(error_code & PF_USER)) {
884 up_read(¤t->mm->mmap_sem);
885 no_context(regs, error_code, address,
886 SIGSEGV, SEGV_MAPERR);
887 return;
888 }
889
890 up_read(¤t->mm->mmap_sem);
891
892 /*
893 * We ran out of memory, call the OOM killer, and return the
894 * userspace (which will retry the fault, or kill us if we got
895 * oom-killed):
896 */
897 pagefault_out_of_memory();
898 } else {
899 if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
900 VM_FAULT_HWPOISON_LARGE))
901 do_sigbus(regs, error_code, address, fault);
902 else
903 BUG();
904 }
905}
906
907static int spurious_fault_check(unsigned long error_code, pte_t *pte)
908{
909 if ((error_code & PF_WRITE) && !pte_write(*pte))
910 return 0;
911
912 if ((error_code & PF_INSTR) && !pte_exec(*pte))
913 return 0;
914
915 return 1;
916}
917
918/*
919 * Handle a spurious fault caused by a stale TLB entry.
920 *
921 * This allows us to lazily refresh the TLB when increasing the
922 * permissions of a kernel page (RO -> RW or NX -> X). Doing it
923 * eagerly is very expensive since that implies doing a full
924 * cross-processor TLB flush, even if no stale TLB entries exist
925 * on other processors.
926 *
927 * There are no security implications to leaving a stale TLB when
928 * increasing the permissions on a page.
929 */
930static noinline __kprobes int
931spurious_fault(unsigned long error_code, unsigned long address)
932{
933 pgd_t *pgd;
934 pud_t *pud;
935 pmd_t *pmd;
936 pte_t *pte;
937 int ret;
938
939 /* Reserved-bit violation or user access to kernel space? */
940 if (error_code & (PF_USER | PF_RSVD))
941 return 0;
942
943 pgd = init_mm.pgd + pgd_index(address);
944 if (!pgd_present(*pgd))
945 return 0;
946
947 pud = pud_offset(pgd, address);
948 if (!pud_present(*pud))
949 return 0;
950
951 if (pud_large(*pud))
952 return spurious_fault_check(error_code, (pte_t *) pud);
953
954 pmd = pmd_offset(pud, address);
955 if (!pmd_present(*pmd))
956 return 0;
957
958 if (pmd_large(*pmd))
959 return spurious_fault_check(error_code, (pte_t *) pmd);
960
961 pte = pte_offset_kernel(pmd, address);
962 if (!pte_present(*pte))
963 return 0;
964
965 ret = spurious_fault_check(error_code, pte);
966 if (!ret)
967 return 0;
968
969 /*
970 * Make sure we have permissions in PMD.
971 * If not, then there's a bug in the page tables:
972 */
973 ret = spurious_fault_check(error_code, (pte_t *) pmd);
974 WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
975
976 return ret;
977}
978
979int show_unhandled_signals = 1;
980
981static inline int
982access_error(unsigned long error_code, struct vm_area_struct *vma)
983{
984 if (error_code & PF_WRITE) {
985 /* write, present and write, not present: */
986 if (unlikely(!(vma->vm_flags & VM_WRITE)))
987 return 1;
988 return 0;
989 }
990
991 /* read, present: */
992 if (unlikely(error_code & PF_PROT))
993 return 1;
994
995 /* read, not present: */
996 if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))))
997 return 1;
998
999 return 0;
1000}
1001
1002static int fault_in_kernel_space(unsigned long address)
1003{
1004 return address >= TASK_SIZE_MAX;
1005}
1006
1007static inline bool smap_violation(int error_code, struct pt_regs *regs)
1008{
1009 if (!IS_ENABLED(CONFIG_X86_SMAP))
1010 return false;
1011
1012 if (!static_cpu_has(X86_FEATURE_SMAP))
1013 return false;
1014
1015 if (error_code & PF_USER)
1016 return false;
1017
1018 if (!user_mode_vm(regs) && (regs->flags & X86_EFLAGS_AC))
1019 return false;
1020
1021 return true;
1022}
1023
1024/*
1025 * This routine handles page faults. It determines the address,
1026 * and the problem, and then passes it off to one of the appropriate
1027 * routines.
1028 *
1029 * This function must have noinline because both callers
1030 * {,trace_}do_page_fault() have notrace on. Having this an actual function
1031 * guarantees there's a function trace entry.
1032 */
1033static void __kprobes noinline
1034__do_page_fault(struct pt_regs *regs, unsigned long error_code,
1035 unsigned long address)
1036{
1037 struct vm_area_struct *vma;
1038 struct task_struct *tsk;
1039 struct mm_struct *mm;
1040 int fault;
1041 unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1042
1043 tsk = current;
1044 mm = tsk->mm;
1045
1046 /*
1047 * Detect and handle instructions that would cause a page fault for
1048 * both a tracked kernel page and a userspace page.
1049 */
1050 if (kmemcheck_active(regs))
1051 kmemcheck_hide(regs);
1052 prefetchw(&mm->mmap_sem);
1053
1054 if (unlikely(kmmio_fault(regs, address)))
1055 return;
1056
1057 /*
1058 * We fault-in kernel-space virtual memory on-demand. The
1059 * 'reference' page table is init_mm.pgd.
1060 *
1061 * NOTE! We MUST NOT take any locks for this case. We may
1062 * be in an interrupt or a critical region, and should
1063 * only copy the information from the master page table,
1064 * nothing more.
1065 *
1066 * This verifies that the fault happens in kernel space
1067 * (error_code & 4) == 0, and that the fault was not a
1068 * protection error (error_code & 9) == 0.
1069 */
1070 if (unlikely(fault_in_kernel_space(address))) {
1071 if (!(error_code & (PF_RSVD | PF_USER | PF_PROT))) {
1072 if (vmalloc_fault(address) >= 0)
1073 return;
1074
1075 if (kmemcheck_fault(regs, address, error_code))
1076 return;
1077 }
1078
1079 /* Can handle a stale RO->RW TLB: */
1080 if (spurious_fault(error_code, address))
1081 return;
1082
1083 /* kprobes don't want to hook the spurious faults: */
1084 if (kprobes_fault(regs))
1085 return;
1086 /*
1087 * Don't take the mm semaphore here. If we fixup a prefetch
1088 * fault we could otherwise deadlock:
1089 */
1090 bad_area_nosemaphore(regs, error_code, address);
1091
1092 return;
1093 }
1094
1095 /* kprobes don't want to hook the spurious faults: */
1096 if (unlikely(kprobes_fault(regs)))
1097 return;
1098
1099 if (unlikely(error_code & PF_RSVD))
1100 pgtable_bad(regs, error_code, address);
1101
1102 if (unlikely(smap_violation(error_code, regs))) {
1103 bad_area_nosemaphore(regs, error_code, address);
1104 return;
1105 }
1106
1107 /*
1108 * If we're in an interrupt, have no user context or are running
1109 * in an atomic region then we must not take the fault:
1110 */
1111 if (unlikely(in_atomic() || !mm)) {
1112 bad_area_nosemaphore(regs, error_code, address);
1113 return;
1114 }
1115
1116 /*
1117 * It's safe to allow irq's after cr2 has been saved and the
1118 * vmalloc fault has been handled.
1119 *
1120 * User-mode registers count as a user access even for any
1121 * potential system fault or CPU buglet:
1122 */
1123 if (user_mode_vm(regs)) {
1124 local_irq_enable();
1125 error_code |= PF_USER;
1126 flags |= FAULT_FLAG_USER;
1127 } else {
1128 if (regs->flags & X86_EFLAGS_IF)
1129 local_irq_enable();
1130 }
1131
1132 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
1133
1134 if (error_code & PF_WRITE)
1135 flags |= FAULT_FLAG_WRITE;
1136
1137 /*
1138 * When running in the kernel we expect faults to occur only to
1139 * addresses in user space. All other faults represent errors in
1140 * the kernel and should generate an OOPS. Unfortunately, in the
1141 * case of an erroneous fault occurring in a code path which already
1142 * holds mmap_sem we will deadlock attempting to validate the fault
1143 * against the address space. Luckily the kernel only validly
1144 * references user space from well defined areas of code, which are
1145 * listed in the exceptions table.
1146 *
1147 * As the vast majority of faults will be valid we will only perform
1148 * the source reference check when there is a possibility of a
1149 * deadlock. Attempt to lock the address space, if we cannot we then
1150 * validate the source. If this is invalid we can skip the address
1151 * space check, thus avoiding the deadlock:
1152 */
1153 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
1154 if ((error_code & PF_USER) == 0 &&
1155 !search_exception_tables(regs->ip)) {
1156 bad_area_nosemaphore(regs, error_code, address);
1157 return;
1158 }
1159retry:
1160 down_read(&mm->mmap_sem);
1161 } else {
1162 /*
1163 * The above down_read_trylock() might have succeeded in
1164 * which case we'll have missed the might_sleep() from
1165 * down_read():
1166 */
1167 might_sleep();
1168 }
1169
1170 vma = find_vma(mm, address);
1171 if (unlikely(!vma)) {
1172 bad_area(regs, error_code, address);
1173 return;
1174 }
1175 if (likely(vma->vm_start <= address))
1176 goto good_area;
1177 if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) {
1178 bad_area(regs, error_code, address);
1179 return;
1180 }
1181 if (error_code & PF_USER) {
1182 /*
1183 * Accessing the stack below %sp is always a bug.
1184 * The large cushion allows instructions like enter
1185 * and pusha to work. ("enter $65535, $31" pushes
1186 * 32 pointers and then decrements %sp by 65535.)
1187 */
1188 if (unlikely(address + 65536 + 32 * sizeof(unsigned long) < regs->sp)) {
1189 bad_area(regs, error_code, address);
1190 return;
1191 }
1192 }
1193 if (unlikely(expand_stack(vma, address))) {
1194 bad_area(regs, error_code, address);
1195 return;
1196 }
1197
1198 /*
1199 * Ok, we have a good vm_area for this memory access, so
1200 * we can handle it..
1201 */
1202good_area:
1203 if (unlikely(access_error(error_code, vma))) {
1204 bad_area_access_error(regs, error_code, address);
1205 return;
1206 }
1207
1208 /*
1209 * If for any reason at all we couldn't handle the fault,
1210 * make sure we exit gracefully rather than endlessly redo
1211 * the fault:
1212 */
1213 fault = handle_mm_fault(mm, vma, address, flags);
1214
1215 /*
1216 * If we need to retry but a fatal signal is pending, handle the
1217 * signal first. We do not need to release the mmap_sem because it
1218 * would already be released in __lock_page_or_retry in mm/filemap.c.
1219 */
1220 if (unlikely((fault & VM_FAULT_RETRY) && fatal_signal_pending(current)))
1221 return;
1222
1223 if (unlikely(fault & VM_FAULT_ERROR)) {
1224 mm_fault_error(regs, error_code, address, fault);
1225 return;
1226 }
1227
1228 /*
1229 * Major/minor page fault accounting is only done on the
1230 * initial attempt. If we go through a retry, it is extremely
1231 * likely that the page will be found in page cache at that point.
1232 */
1233 if (flags & FAULT_FLAG_ALLOW_RETRY) {
1234 if (fault & VM_FAULT_MAJOR) {
1235 tsk->maj_flt++;
1236 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1,
1237 regs, address);
1238 } else {
1239 tsk->min_flt++;
1240 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1,
1241 regs, address);
1242 }
1243 if (fault & VM_FAULT_RETRY) {
1244 /* Clear FAULT_FLAG_ALLOW_RETRY to avoid any risk
1245 * of starvation. */
1246 flags &= ~FAULT_FLAG_ALLOW_RETRY;
1247 flags |= FAULT_FLAG_TRIED;
1248 goto retry;
1249 }
1250 }
1251
1252 check_v8086_mode(regs, address, tsk);
1253
1254 up_read(&mm->mmap_sem);
1255}
1256
1257dotraplinkage void __kprobes notrace
1258do_page_fault(struct pt_regs *regs, unsigned long error_code)
1259{
1260 unsigned long address = read_cr2(); /* Get the faulting address */
1261 enum ctx_state prev_state;
1262
1263 /*
1264 * We must have this function tagged with __kprobes, notrace and call
1265 * read_cr2() before calling anything else. To avoid calling any kind
1266 * of tracing machinery before we've observed the CR2 value.
1267 *
1268 * exception_{enter,exit}() contain all sorts of tracepoints.
1269 */
1270
1271 prev_state = exception_enter();
1272 __do_page_fault(regs, error_code, address);
1273 exception_exit(prev_state);
1274}
1275
1276#ifdef CONFIG_TRACING
1277static void trace_page_fault_entries(unsigned long address, struct pt_regs *regs,
1278 unsigned long error_code)
1279{
1280 if (user_mode(regs))
1281 trace_page_fault_user(address, regs, error_code);
1282 else
1283 trace_page_fault_kernel(address, regs, error_code);
1284}
1285
1286dotraplinkage void __kprobes notrace
1287trace_do_page_fault(struct pt_regs *regs, unsigned long error_code)
1288{
1289 /*
1290 * The exception_enter and tracepoint processing could
1291 * trigger another page faults (user space callchain
1292 * reading) and destroy the original cr2 value, so read
1293 * the faulting address now.
1294 */
1295 unsigned long address = read_cr2();
1296 enum ctx_state prev_state;
1297
1298 prev_state = exception_enter();
1299 trace_page_fault_entries(address, regs, error_code);
1300 __do_page_fault(regs, error_code, address);
1301 exception_exit(prev_state);
1302}
1303#endif /* CONFIG_TRACING */
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 1995 Linus Torvalds
4 * Copyright (C) 2001, 2002 Andi Kleen, SuSE Labs.
5 * Copyright (C) 2008-2009, Red Hat Inc., Ingo Molnar
6 */
7#include <linux/sched.h> /* test_thread_flag(), ... */
8#include <linux/sched/task_stack.h> /* task_stack_*(), ... */
9#include <linux/kdebug.h> /* oops_begin/end, ... */
10#include <linux/extable.h> /* search_exception_tables */
11#include <linux/bootmem.h> /* max_low_pfn */
12#include <linux/kprobes.h> /* NOKPROBE_SYMBOL, ... */
13#include <linux/mmiotrace.h> /* kmmio_handler, ... */
14#include <linux/perf_event.h> /* perf_sw_event */
15#include <linux/hugetlb.h> /* hstate_index_to_shift */
16#include <linux/prefetch.h> /* prefetchw */
17#include <linux/context_tracking.h> /* exception_enter(), ... */
18#include <linux/uaccess.h> /* faulthandler_disabled() */
19
20#include <asm/cpufeature.h> /* boot_cpu_has, ... */
21#include <asm/traps.h> /* dotraplinkage, ... */
22#include <asm/pgalloc.h> /* pgd_*(), ... */
23#include <asm/fixmap.h> /* VSYSCALL_ADDR */
24#include <asm/vsyscall.h> /* emulate_vsyscall */
25#include <asm/vm86.h> /* struct vm86 */
26#include <asm/mmu_context.h> /* vma_pkey() */
27
28#define CREATE_TRACE_POINTS
29#include <asm/trace/exceptions.h>
30
31/*
32 * Returns 0 if mmiotrace is disabled, or if the fault is not
33 * handled by mmiotrace:
34 */
35static nokprobe_inline int
36kmmio_fault(struct pt_regs *regs, unsigned long addr)
37{
38 if (unlikely(is_kmmio_active()))
39 if (kmmio_handler(regs, addr) == 1)
40 return -1;
41 return 0;
42}
43
44static nokprobe_inline int kprobes_fault(struct pt_regs *regs)
45{
46 int ret = 0;
47
48 /* kprobe_running() needs smp_processor_id() */
49 if (kprobes_built_in() && !user_mode(regs)) {
50 preempt_disable();
51 if (kprobe_running() && kprobe_fault_handler(regs, 14))
52 ret = 1;
53 preempt_enable();
54 }
55
56 return ret;
57}
58
59/*
60 * Prefetch quirks:
61 *
62 * 32-bit mode:
63 *
64 * Sometimes AMD Athlon/Opteron CPUs report invalid exceptions on prefetch.
65 * Check that here and ignore it.
66 *
67 * 64-bit mode:
68 *
69 * Sometimes the CPU reports invalid exceptions on prefetch.
70 * Check that here and ignore it.
71 *
72 * Opcode checker based on code by Richard Brunner.
73 */
74static inline int
75check_prefetch_opcode(struct pt_regs *regs, unsigned char *instr,
76 unsigned char opcode, int *prefetch)
77{
78 unsigned char instr_hi = opcode & 0xf0;
79 unsigned char instr_lo = opcode & 0x0f;
80
81 switch (instr_hi) {
82 case 0x20:
83 case 0x30:
84 /*
85 * Values 0x26,0x2E,0x36,0x3E are valid x86 prefixes.
86 * In X86_64 long mode, the CPU will signal invalid
87 * opcode if some of these prefixes are present so
88 * X86_64 will never get here anyway
89 */
90 return ((instr_lo & 7) == 0x6);
91#ifdef CONFIG_X86_64
92 case 0x40:
93 /*
94 * In AMD64 long mode 0x40..0x4F are valid REX prefixes
95 * Need to figure out under what instruction mode the
96 * instruction was issued. Could check the LDT for lm,
97 * but for now it's good enough to assume that long
98 * mode only uses well known segments or kernel.
99 */
100 return (!user_mode(regs) || user_64bit_mode(regs));
101#endif
102 case 0x60:
103 /* 0x64 thru 0x67 are valid prefixes in all modes. */
104 return (instr_lo & 0xC) == 0x4;
105 case 0xF0:
106 /* 0xF0, 0xF2, 0xF3 are valid prefixes in all modes. */
107 return !instr_lo || (instr_lo>>1) == 1;
108 case 0x00:
109 /* Prefetch instruction is 0x0F0D or 0x0F18 */
110 if (probe_kernel_address(instr, opcode))
111 return 0;
112
113 *prefetch = (instr_lo == 0xF) &&
114 (opcode == 0x0D || opcode == 0x18);
115 return 0;
116 default:
117 return 0;
118 }
119}
120
121static int
122is_prefetch(struct pt_regs *regs, unsigned long error_code, unsigned long addr)
123{
124 unsigned char *max_instr;
125 unsigned char *instr;
126 int prefetch = 0;
127
128 /*
129 * If it was a exec (instruction fetch) fault on NX page, then
130 * do not ignore the fault:
131 */
132 if (error_code & X86_PF_INSTR)
133 return 0;
134
135 instr = (void *)convert_ip_to_linear(current, regs);
136 max_instr = instr + 15;
137
138 if (user_mode(regs) && instr >= (unsigned char *)TASK_SIZE_MAX)
139 return 0;
140
141 while (instr < max_instr) {
142 unsigned char opcode;
143
144 if (probe_kernel_address(instr, opcode))
145 break;
146
147 instr++;
148
149 if (!check_prefetch_opcode(regs, instr, opcode, &prefetch))
150 break;
151 }
152 return prefetch;
153}
154
155/*
156 * A protection key fault means that the PKRU value did not allow
157 * access to some PTE. Userspace can figure out what PKRU was
158 * from the XSAVE state, and this function fills out a field in
159 * siginfo so userspace can discover which protection key was set
160 * on the PTE.
161 *
162 * If we get here, we know that the hardware signaled a X86_PF_PK
163 * fault and that there was a VMA once we got in the fault
164 * handler. It does *not* guarantee that the VMA we find here
165 * was the one that we faulted on.
166 *
167 * 1. T1 : mprotect_key(foo, PAGE_SIZE, pkey=4);
168 * 2. T1 : set PKRU to deny access to pkey=4, touches page
169 * 3. T1 : faults...
170 * 4. T2: mprotect_key(foo, PAGE_SIZE, pkey=5);
171 * 5. T1 : enters fault handler, takes mmap_sem, etc...
172 * 6. T1 : reaches here, sees vma_pkey(vma)=5, when we really
173 * faulted on a pte with its pkey=4.
174 */
175static void fill_sig_info_pkey(int si_signo, int si_code, siginfo_t *info,
176 u32 *pkey)
177{
178 /* This is effectively an #ifdef */
179 if (!boot_cpu_has(X86_FEATURE_OSPKE))
180 return;
181
182 /* Fault not from Protection Keys: nothing to do */
183 if ((si_code != SEGV_PKUERR) || (si_signo != SIGSEGV))
184 return;
185 /*
186 * force_sig_info_fault() is called from a number of
187 * contexts, some of which have a VMA and some of which
188 * do not. The X86_PF_PK handing happens after we have a
189 * valid VMA, so we should never reach this without a
190 * valid VMA.
191 */
192 if (!pkey) {
193 WARN_ONCE(1, "PKU fault with no VMA passed in");
194 info->si_pkey = 0;
195 return;
196 }
197 /*
198 * si_pkey should be thought of as a strong hint, but not
199 * absolutely guranteed to be 100% accurate because of
200 * the race explained above.
201 */
202 info->si_pkey = *pkey;
203}
204
205static void
206force_sig_info_fault(int si_signo, int si_code, unsigned long address,
207 struct task_struct *tsk, u32 *pkey, int fault)
208{
209 unsigned lsb = 0;
210 siginfo_t info;
211
212 info.si_signo = si_signo;
213 info.si_errno = 0;
214 info.si_code = si_code;
215 info.si_addr = (void __user *)address;
216 if (fault & VM_FAULT_HWPOISON_LARGE)
217 lsb = hstate_index_to_shift(VM_FAULT_GET_HINDEX(fault));
218 if (fault & VM_FAULT_HWPOISON)
219 lsb = PAGE_SHIFT;
220 info.si_addr_lsb = lsb;
221
222 fill_sig_info_pkey(si_signo, si_code, &info, pkey);
223
224 force_sig_info(si_signo, &info, tsk);
225}
226
227DEFINE_SPINLOCK(pgd_lock);
228LIST_HEAD(pgd_list);
229
230#ifdef CONFIG_X86_32
231static inline pmd_t *vmalloc_sync_one(pgd_t *pgd, unsigned long address)
232{
233 unsigned index = pgd_index(address);
234 pgd_t *pgd_k;
235 p4d_t *p4d, *p4d_k;
236 pud_t *pud, *pud_k;
237 pmd_t *pmd, *pmd_k;
238
239 pgd += index;
240 pgd_k = init_mm.pgd + index;
241
242 if (!pgd_present(*pgd_k))
243 return NULL;
244
245 /*
246 * set_pgd(pgd, *pgd_k); here would be useless on PAE
247 * and redundant with the set_pmd() on non-PAE. As would
248 * set_p4d/set_pud.
249 */
250 p4d = p4d_offset(pgd, address);
251 p4d_k = p4d_offset(pgd_k, address);
252 if (!p4d_present(*p4d_k))
253 return NULL;
254
255 pud = pud_offset(p4d, address);
256 pud_k = pud_offset(p4d_k, address);
257 if (!pud_present(*pud_k))
258 return NULL;
259
260 pmd = pmd_offset(pud, address);
261 pmd_k = pmd_offset(pud_k, address);
262 if (!pmd_present(*pmd_k))
263 return NULL;
264
265 if (!pmd_present(*pmd))
266 set_pmd(pmd, *pmd_k);
267 else
268 BUG_ON(pmd_page(*pmd) != pmd_page(*pmd_k));
269
270 return pmd_k;
271}
272
273void vmalloc_sync_all(void)
274{
275 unsigned long address;
276
277 if (SHARED_KERNEL_PMD)
278 return;
279
280 for (address = VMALLOC_START & PMD_MASK;
281 address >= TASK_SIZE_MAX && address < FIXADDR_TOP;
282 address += PMD_SIZE) {
283 struct page *page;
284
285 spin_lock(&pgd_lock);
286 list_for_each_entry(page, &pgd_list, lru) {
287 spinlock_t *pgt_lock;
288 pmd_t *ret;
289
290 /* the pgt_lock only for Xen */
291 pgt_lock = &pgd_page_get_mm(page)->page_table_lock;
292
293 spin_lock(pgt_lock);
294 ret = vmalloc_sync_one(page_address(page), address);
295 spin_unlock(pgt_lock);
296
297 if (!ret)
298 break;
299 }
300 spin_unlock(&pgd_lock);
301 }
302}
303
304/*
305 * 32-bit:
306 *
307 * Handle a fault on the vmalloc or module mapping area
308 */
309static noinline int vmalloc_fault(unsigned long address)
310{
311 unsigned long pgd_paddr;
312 pmd_t *pmd_k;
313 pte_t *pte_k;
314
315 /* Make sure we are in vmalloc area: */
316 if (!(address >= VMALLOC_START && address < VMALLOC_END))
317 return -1;
318
319 WARN_ON_ONCE(in_nmi());
320
321 /*
322 * Synchronize this task's top level page-table
323 * with the 'reference' page table.
324 *
325 * Do _not_ use "current" here. We might be inside
326 * an interrupt in the middle of a task switch..
327 */
328 pgd_paddr = read_cr3_pa();
329 pmd_k = vmalloc_sync_one(__va(pgd_paddr), address);
330 if (!pmd_k)
331 return -1;
332
333 if (pmd_large(*pmd_k))
334 return 0;
335
336 pte_k = pte_offset_kernel(pmd_k, address);
337 if (!pte_present(*pte_k))
338 return -1;
339
340 return 0;
341}
342NOKPROBE_SYMBOL(vmalloc_fault);
343
344/*
345 * Did it hit the DOS screen memory VA from vm86 mode?
346 */
347static inline void
348check_v8086_mode(struct pt_regs *regs, unsigned long address,
349 struct task_struct *tsk)
350{
351#ifdef CONFIG_VM86
352 unsigned long bit;
353
354 if (!v8086_mode(regs) || !tsk->thread.vm86)
355 return;
356
357 bit = (address - 0xA0000) >> PAGE_SHIFT;
358 if (bit < 32)
359 tsk->thread.vm86->screen_bitmap |= 1 << bit;
360#endif
361}
362
363static bool low_pfn(unsigned long pfn)
364{
365 return pfn < max_low_pfn;
366}
367
368static void dump_pagetable(unsigned long address)
369{
370 pgd_t *base = __va(read_cr3_pa());
371 pgd_t *pgd = &base[pgd_index(address)];
372 p4d_t *p4d;
373 pud_t *pud;
374 pmd_t *pmd;
375 pte_t *pte;
376
377#ifdef CONFIG_X86_PAE
378 pr_info("*pdpt = %016Lx ", pgd_val(*pgd));
379 if (!low_pfn(pgd_val(*pgd) >> PAGE_SHIFT) || !pgd_present(*pgd))
380 goto out;
381#define pr_pde pr_cont
382#else
383#define pr_pde pr_info
384#endif
385 p4d = p4d_offset(pgd, address);
386 pud = pud_offset(p4d, address);
387 pmd = pmd_offset(pud, address);
388 pr_pde("*pde = %0*Lx ", sizeof(*pmd) * 2, (u64)pmd_val(*pmd));
389#undef pr_pde
390
391 /*
392 * We must not directly access the pte in the highpte
393 * case if the page table is located in highmem.
394 * And let's rather not kmap-atomic the pte, just in case
395 * it's allocated already:
396 */
397 if (!low_pfn(pmd_pfn(*pmd)) || !pmd_present(*pmd) || pmd_large(*pmd))
398 goto out;
399
400 pte = pte_offset_kernel(pmd, address);
401 pr_cont("*pte = %0*Lx ", sizeof(*pte) * 2, (u64)pte_val(*pte));
402out:
403 pr_cont("\n");
404}
405
406#else /* CONFIG_X86_64: */
407
408void vmalloc_sync_all(void)
409{
410 sync_global_pgds(VMALLOC_START & PGDIR_MASK, VMALLOC_END);
411}
412
413/*
414 * 64-bit:
415 *
416 * Handle a fault on the vmalloc area
417 */
418static noinline int vmalloc_fault(unsigned long address)
419{
420 pgd_t *pgd, *pgd_k;
421 p4d_t *p4d, *p4d_k;
422 pud_t *pud;
423 pmd_t *pmd;
424 pte_t *pte;
425
426 /* Make sure we are in vmalloc area: */
427 if (!(address >= VMALLOC_START && address < VMALLOC_END))
428 return -1;
429
430 WARN_ON_ONCE(in_nmi());
431
432 /*
433 * Copy kernel mappings over when needed. This can also
434 * happen within a race in page table update. In the later
435 * case just flush:
436 */
437 pgd = (pgd_t *)__va(read_cr3_pa()) + pgd_index(address);
438 pgd_k = pgd_offset_k(address);
439 if (pgd_none(*pgd_k))
440 return -1;
441
442 if (pgtable_l5_enabled) {
443 if (pgd_none(*pgd)) {
444 set_pgd(pgd, *pgd_k);
445 arch_flush_lazy_mmu_mode();
446 } else {
447 BUG_ON(pgd_page_vaddr(*pgd) != pgd_page_vaddr(*pgd_k));
448 }
449 }
450
451 /* With 4-level paging, copying happens on the p4d level. */
452 p4d = p4d_offset(pgd, address);
453 p4d_k = p4d_offset(pgd_k, address);
454 if (p4d_none(*p4d_k))
455 return -1;
456
457 if (p4d_none(*p4d) && !pgtable_l5_enabled) {
458 set_p4d(p4d, *p4d_k);
459 arch_flush_lazy_mmu_mode();
460 } else {
461 BUG_ON(p4d_pfn(*p4d) != p4d_pfn(*p4d_k));
462 }
463
464 BUILD_BUG_ON(CONFIG_PGTABLE_LEVELS < 4);
465
466 pud = pud_offset(p4d, address);
467 if (pud_none(*pud))
468 return -1;
469
470 if (pud_large(*pud))
471 return 0;
472
473 pmd = pmd_offset(pud, address);
474 if (pmd_none(*pmd))
475 return -1;
476
477 if (pmd_large(*pmd))
478 return 0;
479
480 pte = pte_offset_kernel(pmd, address);
481 if (!pte_present(*pte))
482 return -1;
483
484 return 0;
485}
486NOKPROBE_SYMBOL(vmalloc_fault);
487
488#ifdef CONFIG_CPU_SUP_AMD
489static const char errata93_warning[] =
490KERN_ERR
491"******* Your BIOS seems to not contain a fix for K8 errata #93\n"
492"******* Working around it, but it may cause SEGVs or burn power.\n"
493"******* Please consider a BIOS update.\n"
494"******* Disabling USB legacy in the BIOS may also help.\n";
495#endif
496
497/*
498 * No vm86 mode in 64-bit mode:
499 */
500static inline void
501check_v8086_mode(struct pt_regs *regs, unsigned long address,
502 struct task_struct *tsk)
503{
504}
505
506static int bad_address(void *p)
507{
508 unsigned long dummy;
509
510 return probe_kernel_address((unsigned long *)p, dummy);
511}
512
513static void dump_pagetable(unsigned long address)
514{
515 pgd_t *base = __va(read_cr3_pa());
516 pgd_t *pgd = base + pgd_index(address);
517 p4d_t *p4d;
518 pud_t *pud;
519 pmd_t *pmd;
520 pte_t *pte;
521
522 if (bad_address(pgd))
523 goto bad;
524
525 pr_info("PGD %lx ", pgd_val(*pgd));
526
527 if (!pgd_present(*pgd))
528 goto out;
529
530 p4d = p4d_offset(pgd, address);
531 if (bad_address(p4d))
532 goto bad;
533
534 pr_cont("P4D %lx ", p4d_val(*p4d));
535 if (!p4d_present(*p4d) || p4d_large(*p4d))
536 goto out;
537
538 pud = pud_offset(p4d, address);
539 if (bad_address(pud))
540 goto bad;
541
542 pr_cont("PUD %lx ", pud_val(*pud));
543 if (!pud_present(*pud) || pud_large(*pud))
544 goto out;
545
546 pmd = pmd_offset(pud, address);
547 if (bad_address(pmd))
548 goto bad;
549
550 pr_cont("PMD %lx ", pmd_val(*pmd));
551 if (!pmd_present(*pmd) || pmd_large(*pmd))
552 goto out;
553
554 pte = pte_offset_kernel(pmd, address);
555 if (bad_address(pte))
556 goto bad;
557
558 pr_cont("PTE %lx", pte_val(*pte));
559out:
560 pr_cont("\n");
561 return;
562bad:
563 pr_info("BAD\n");
564}
565
566#endif /* CONFIG_X86_64 */
567
568/*
569 * Workaround for K8 erratum #93 & buggy BIOS.
570 *
571 * BIOS SMM functions are required to use a specific workaround
572 * to avoid corruption of the 64bit RIP register on C stepping K8.
573 *
574 * A lot of BIOS that didn't get tested properly miss this.
575 *
576 * The OS sees this as a page fault with the upper 32bits of RIP cleared.
577 * Try to work around it here.
578 *
579 * Note we only handle faults in kernel here.
580 * Does nothing on 32-bit.
581 */
582static int is_errata93(struct pt_regs *regs, unsigned long address)
583{
584#if defined(CONFIG_X86_64) && defined(CONFIG_CPU_SUP_AMD)
585 if (boot_cpu_data.x86_vendor != X86_VENDOR_AMD
586 || boot_cpu_data.x86 != 0xf)
587 return 0;
588
589 if (address != regs->ip)
590 return 0;
591
592 if ((address >> 32) != 0)
593 return 0;
594
595 address |= 0xffffffffUL << 32;
596 if ((address >= (u64)_stext && address <= (u64)_etext) ||
597 (address >= MODULES_VADDR && address <= MODULES_END)) {
598 printk_once(errata93_warning);
599 regs->ip = address;
600 return 1;
601 }
602#endif
603 return 0;
604}
605
606/*
607 * Work around K8 erratum #100 K8 in compat mode occasionally jumps
608 * to illegal addresses >4GB.
609 *
610 * We catch this in the page fault handler because these addresses
611 * are not reachable. Just detect this case and return. Any code
612 * segment in LDT is compatibility mode.
613 */
614static int is_errata100(struct pt_regs *regs, unsigned long address)
615{
616#ifdef CONFIG_X86_64
617 if ((regs->cs == __USER32_CS || (regs->cs & (1<<2))) && (address >> 32))
618 return 1;
619#endif
620 return 0;
621}
622
623static int is_f00f_bug(struct pt_regs *regs, unsigned long address)
624{
625#ifdef CONFIG_X86_F00F_BUG
626 unsigned long nr;
627
628 /*
629 * Pentium F0 0F C7 C8 bug workaround:
630 */
631 if (boot_cpu_has_bug(X86_BUG_F00F)) {
632 nr = (address - idt_descr.address) >> 3;
633
634 if (nr == 6) {
635 do_invalid_op(regs, 0);
636 return 1;
637 }
638 }
639#endif
640 return 0;
641}
642
643static const char nx_warning[] = KERN_CRIT
644"kernel tried to execute NX-protected page - exploit attempt? (uid: %d)\n";
645static const char smep_warning[] = KERN_CRIT
646"unable to execute userspace code (SMEP?) (uid: %d)\n";
647
648static void
649show_fault_oops(struct pt_regs *regs, unsigned long error_code,
650 unsigned long address)
651{
652 if (!oops_may_print())
653 return;
654
655 if (error_code & X86_PF_INSTR) {
656 unsigned int level;
657 pgd_t *pgd;
658 pte_t *pte;
659
660 pgd = __va(read_cr3_pa());
661 pgd += pgd_index(address);
662
663 pte = lookup_address_in_pgd(pgd, address, &level);
664
665 if (pte && pte_present(*pte) && !pte_exec(*pte))
666 printk(nx_warning, from_kuid(&init_user_ns, current_uid()));
667 if (pte && pte_present(*pte) && pte_exec(*pte) &&
668 (pgd_flags(*pgd) & _PAGE_USER) &&
669 (__read_cr4() & X86_CR4_SMEP))
670 printk(smep_warning, from_kuid(&init_user_ns, current_uid()));
671 }
672
673 printk(KERN_ALERT "BUG: unable to handle kernel ");
674 if (address < PAGE_SIZE)
675 printk(KERN_CONT "NULL pointer dereference");
676 else
677 printk(KERN_CONT "paging request");
678
679 printk(KERN_CONT " at %px\n", (void *) address);
680
681 dump_pagetable(address);
682}
683
684static noinline void
685pgtable_bad(struct pt_regs *regs, unsigned long error_code,
686 unsigned long address)
687{
688 struct task_struct *tsk;
689 unsigned long flags;
690 int sig;
691
692 flags = oops_begin();
693 tsk = current;
694 sig = SIGKILL;
695
696 printk(KERN_ALERT "%s: Corrupted page table at address %lx\n",
697 tsk->comm, address);
698 dump_pagetable(address);
699
700 tsk->thread.cr2 = address;
701 tsk->thread.trap_nr = X86_TRAP_PF;
702 tsk->thread.error_code = error_code;
703
704 if (__die("Bad pagetable", regs, error_code))
705 sig = 0;
706
707 oops_end(flags, regs, sig);
708}
709
710static noinline void
711no_context(struct pt_regs *regs, unsigned long error_code,
712 unsigned long address, int signal, int si_code)
713{
714 struct task_struct *tsk = current;
715 unsigned long flags;
716 int sig;
717
718 /* Are we prepared to handle this kernel fault? */
719 if (fixup_exception(regs, X86_TRAP_PF)) {
720 /*
721 * Any interrupt that takes a fault gets the fixup. This makes
722 * the below recursive fault logic only apply to a faults from
723 * task context.
724 */
725 if (in_interrupt())
726 return;
727
728 /*
729 * Per the above we're !in_interrupt(), aka. task context.
730 *
731 * In this case we need to make sure we're not recursively
732 * faulting through the emulate_vsyscall() logic.
733 */
734 if (current->thread.sig_on_uaccess_err && signal) {
735 tsk->thread.trap_nr = X86_TRAP_PF;
736 tsk->thread.error_code = error_code | X86_PF_USER;
737 tsk->thread.cr2 = address;
738
739 /* XXX: hwpoison faults will set the wrong code. */
740 force_sig_info_fault(signal, si_code, address,
741 tsk, NULL, 0);
742 }
743
744 /*
745 * Barring that, we can do the fixup and be happy.
746 */
747 return;
748 }
749
750#ifdef CONFIG_VMAP_STACK
751 /*
752 * Stack overflow? During boot, we can fault near the initial
753 * stack in the direct map, but that's not an overflow -- check
754 * that we're in vmalloc space to avoid this.
755 */
756 if (is_vmalloc_addr((void *)address) &&
757 (((unsigned long)tsk->stack - 1 - address < PAGE_SIZE) ||
758 address - ((unsigned long)tsk->stack + THREAD_SIZE) < PAGE_SIZE)) {
759 unsigned long stack = this_cpu_read(orig_ist.ist[DOUBLEFAULT_STACK]) - sizeof(void *);
760 /*
761 * We're likely to be running with very little stack space
762 * left. It's plausible that we'd hit this condition but
763 * double-fault even before we get this far, in which case
764 * we're fine: the double-fault handler will deal with it.
765 *
766 * We don't want to make it all the way into the oops code
767 * and then double-fault, though, because we're likely to
768 * break the console driver and lose most of the stack dump.
769 */
770 asm volatile ("movq %[stack], %%rsp\n\t"
771 "call handle_stack_overflow\n\t"
772 "1: jmp 1b"
773 : ASM_CALL_CONSTRAINT
774 : "D" ("kernel stack overflow (page fault)"),
775 "S" (regs), "d" (address),
776 [stack] "rm" (stack));
777 unreachable();
778 }
779#endif
780
781 /*
782 * 32-bit:
783 *
784 * Valid to do another page fault here, because if this fault
785 * had been triggered by is_prefetch fixup_exception would have
786 * handled it.
787 *
788 * 64-bit:
789 *
790 * Hall of shame of CPU/BIOS bugs.
791 */
792 if (is_prefetch(regs, error_code, address))
793 return;
794
795 if (is_errata93(regs, address))
796 return;
797
798 /*
799 * Oops. The kernel tried to access some bad page. We'll have to
800 * terminate things with extreme prejudice:
801 */
802 flags = oops_begin();
803
804 show_fault_oops(regs, error_code, address);
805
806 if (task_stack_end_corrupted(tsk))
807 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
808
809 tsk->thread.cr2 = address;
810 tsk->thread.trap_nr = X86_TRAP_PF;
811 tsk->thread.error_code = error_code;
812
813 sig = SIGKILL;
814 if (__die("Oops", regs, error_code))
815 sig = 0;
816
817 /* Executive summary in case the body of the oops scrolled away */
818 printk(KERN_DEFAULT "CR2: %016lx\n", address);
819
820 oops_end(flags, regs, sig);
821}
822
823/*
824 * Print out info about fatal segfaults, if the show_unhandled_signals
825 * sysctl is set:
826 */
827static inline void
828show_signal_msg(struct pt_regs *regs, unsigned long error_code,
829 unsigned long address, struct task_struct *tsk)
830{
831 if (!unhandled_signal(tsk, SIGSEGV))
832 return;
833
834 if (!printk_ratelimit())
835 return;
836
837 printk("%s%s[%d]: segfault at %lx ip %px sp %px error %lx",
838 task_pid_nr(tsk) > 1 ? KERN_INFO : KERN_EMERG,
839 tsk->comm, task_pid_nr(tsk), address,
840 (void *)regs->ip, (void *)regs->sp, error_code);
841
842 print_vma_addr(KERN_CONT " in ", regs->ip);
843
844 printk(KERN_CONT "\n");
845}
846
847static void
848__bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
849 unsigned long address, u32 *pkey, int si_code)
850{
851 struct task_struct *tsk = current;
852
853 /* User mode accesses just cause a SIGSEGV */
854 if (error_code & X86_PF_USER) {
855 /*
856 * It's possible to have interrupts off here:
857 */
858 local_irq_enable();
859
860 /*
861 * Valid to do another page fault here because this one came
862 * from user space:
863 */
864 if (is_prefetch(regs, error_code, address))
865 return;
866
867 if (is_errata100(regs, address))
868 return;
869
870#ifdef CONFIG_X86_64
871 /*
872 * Instruction fetch faults in the vsyscall page might need
873 * emulation.
874 */
875 if (unlikely((error_code & X86_PF_INSTR) &&
876 ((address & ~0xfff) == VSYSCALL_ADDR))) {
877 if (emulate_vsyscall(regs, address))
878 return;
879 }
880#endif
881
882 /*
883 * To avoid leaking information about the kernel page table
884 * layout, pretend that user-mode accesses to kernel addresses
885 * are always protection faults.
886 */
887 if (address >= TASK_SIZE_MAX)
888 error_code |= X86_PF_PROT;
889
890 if (likely(show_unhandled_signals))
891 show_signal_msg(regs, error_code, address, tsk);
892
893 tsk->thread.cr2 = address;
894 tsk->thread.error_code = error_code;
895 tsk->thread.trap_nr = X86_TRAP_PF;
896
897 force_sig_info_fault(SIGSEGV, si_code, address, tsk, pkey, 0);
898
899 return;
900 }
901
902 if (is_f00f_bug(regs, address))
903 return;
904
905 no_context(regs, error_code, address, SIGSEGV, si_code);
906}
907
908static noinline void
909bad_area_nosemaphore(struct pt_regs *regs, unsigned long error_code,
910 unsigned long address, u32 *pkey)
911{
912 __bad_area_nosemaphore(regs, error_code, address, pkey, SEGV_MAPERR);
913}
914
915static void
916__bad_area(struct pt_regs *regs, unsigned long error_code,
917 unsigned long address, struct vm_area_struct *vma, int si_code)
918{
919 struct mm_struct *mm = current->mm;
920 u32 pkey;
921
922 if (vma)
923 pkey = vma_pkey(vma);
924
925 /*
926 * Something tried to access memory that isn't in our memory map..
927 * Fix it, but check if it's kernel or user first..
928 */
929 up_read(&mm->mmap_sem);
930
931 __bad_area_nosemaphore(regs, error_code, address,
932 (vma) ? &pkey : NULL, si_code);
933}
934
935static noinline void
936bad_area(struct pt_regs *regs, unsigned long error_code, unsigned long address)
937{
938 __bad_area(regs, error_code, address, NULL, SEGV_MAPERR);
939}
940
941static inline bool bad_area_access_from_pkeys(unsigned long error_code,
942 struct vm_area_struct *vma)
943{
944 /* This code is always called on the current mm */
945 bool foreign = false;
946
947 if (!boot_cpu_has(X86_FEATURE_OSPKE))
948 return false;
949 if (error_code & X86_PF_PK)
950 return true;
951 /* this checks permission keys on the VMA: */
952 if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE),
953 (error_code & X86_PF_INSTR), foreign))
954 return true;
955 return false;
956}
957
958static noinline void
959bad_area_access_error(struct pt_regs *regs, unsigned long error_code,
960 unsigned long address, struct vm_area_struct *vma)
961{
962 /*
963 * This OSPKE check is not strictly necessary at runtime.
964 * But, doing it this way allows compiler optimizations
965 * if pkeys are compiled out.
966 */
967 if (bad_area_access_from_pkeys(error_code, vma))
968 __bad_area(regs, error_code, address, vma, SEGV_PKUERR);
969 else
970 __bad_area(regs, error_code, address, vma, SEGV_ACCERR);
971}
972
973static void
974do_sigbus(struct pt_regs *regs, unsigned long error_code, unsigned long address,
975 u32 *pkey, unsigned int fault)
976{
977 struct task_struct *tsk = current;
978 int code = BUS_ADRERR;
979
980 /* Kernel mode? Handle exceptions or die: */
981 if (!(error_code & X86_PF_USER)) {
982 no_context(regs, error_code, address, SIGBUS, BUS_ADRERR);
983 return;
984 }
985
986 /* User-space => ok to do another page fault: */
987 if (is_prefetch(regs, error_code, address))
988 return;
989
990 tsk->thread.cr2 = address;
991 tsk->thread.error_code = error_code;
992 tsk->thread.trap_nr = X86_TRAP_PF;
993
994#ifdef CONFIG_MEMORY_FAILURE
995 if (fault & (VM_FAULT_HWPOISON|VM_FAULT_HWPOISON_LARGE)) {
996 printk(KERN_ERR
997 "MCE: Killing %s:%d due to hardware memory corruption fault at %lx\n",
998 tsk->comm, tsk->pid, address);
999 code = BUS_MCEERR_AR;
1000 }
1001#endif
1002 force_sig_info_fault(SIGBUS, code, address, tsk, pkey, fault);
1003}
1004
1005static noinline void
1006mm_fault_error(struct pt_regs *regs, unsigned long error_code,
1007 unsigned long address, u32 *pkey, unsigned int fault)
1008{
1009 if (fatal_signal_pending(current) && !(error_code & X86_PF_USER)) {
1010 no_context(regs, error_code, address, 0, 0);
1011 return;
1012 }
1013
1014 if (fault & VM_FAULT_OOM) {
1015 /* Kernel mode? Handle exceptions or die: */
1016 if (!(error_code & X86_PF_USER)) {
1017 no_context(regs, error_code, address,
1018 SIGSEGV, SEGV_MAPERR);
1019 return;
1020 }
1021
1022 /*
1023 * We ran out of memory, call the OOM killer, and return the
1024 * userspace (which will retry the fault, or kill us if we got
1025 * oom-killed):
1026 */
1027 pagefault_out_of_memory();
1028 } else {
1029 if (fault & (VM_FAULT_SIGBUS|VM_FAULT_HWPOISON|
1030 VM_FAULT_HWPOISON_LARGE))
1031 do_sigbus(regs, error_code, address, pkey, fault);
1032 else if (fault & VM_FAULT_SIGSEGV)
1033 bad_area_nosemaphore(regs, error_code, address, pkey);
1034 else
1035 BUG();
1036 }
1037}
1038
1039static int spurious_fault_check(unsigned long error_code, pte_t *pte)
1040{
1041 if ((error_code & X86_PF_WRITE) && !pte_write(*pte))
1042 return 0;
1043
1044 if ((error_code & X86_PF_INSTR) && !pte_exec(*pte))
1045 return 0;
1046 /*
1047 * Note: We do not do lazy flushing on protection key
1048 * changes, so no spurious fault will ever set X86_PF_PK.
1049 */
1050 if ((error_code & X86_PF_PK))
1051 return 1;
1052
1053 return 1;
1054}
1055
1056/*
1057 * Handle a spurious fault caused by a stale TLB entry.
1058 *
1059 * This allows us to lazily refresh the TLB when increasing the
1060 * permissions of a kernel page (RO -> RW or NX -> X). Doing it
1061 * eagerly is very expensive since that implies doing a full
1062 * cross-processor TLB flush, even if no stale TLB entries exist
1063 * on other processors.
1064 *
1065 * Spurious faults may only occur if the TLB contains an entry with
1066 * fewer permission than the page table entry. Non-present (P = 0)
1067 * and reserved bit (R = 1) faults are never spurious.
1068 *
1069 * There are no security implications to leaving a stale TLB when
1070 * increasing the permissions on a page.
1071 *
1072 * Returns non-zero if a spurious fault was handled, zero otherwise.
1073 *
1074 * See Intel Developer's Manual Vol 3 Section 4.10.4.3, bullet 3
1075 * (Optional Invalidation).
1076 */
1077static noinline int
1078spurious_fault(unsigned long error_code, unsigned long address)
1079{
1080 pgd_t *pgd;
1081 p4d_t *p4d;
1082 pud_t *pud;
1083 pmd_t *pmd;
1084 pte_t *pte;
1085 int ret;
1086
1087 /*
1088 * Only writes to RO or instruction fetches from NX may cause
1089 * spurious faults.
1090 *
1091 * These could be from user or supervisor accesses but the TLB
1092 * is only lazily flushed after a kernel mapping protection
1093 * change, so user accesses are not expected to cause spurious
1094 * faults.
1095 */
1096 if (error_code != (X86_PF_WRITE | X86_PF_PROT) &&
1097 error_code != (X86_PF_INSTR | X86_PF_PROT))
1098 return 0;
1099
1100 pgd = init_mm.pgd + pgd_index(address);
1101 if (!pgd_present(*pgd))
1102 return 0;
1103
1104 p4d = p4d_offset(pgd, address);
1105 if (!p4d_present(*p4d))
1106 return 0;
1107
1108 if (p4d_large(*p4d))
1109 return spurious_fault_check(error_code, (pte_t *) p4d);
1110
1111 pud = pud_offset(p4d, address);
1112 if (!pud_present(*pud))
1113 return 0;
1114
1115 if (pud_large(*pud))
1116 return spurious_fault_check(error_code, (pte_t *) pud);
1117
1118 pmd = pmd_offset(pud, address);
1119 if (!pmd_present(*pmd))
1120 return 0;
1121
1122 if (pmd_large(*pmd))
1123 return spurious_fault_check(error_code, (pte_t *) pmd);
1124
1125 pte = pte_offset_kernel(pmd, address);
1126 if (!pte_present(*pte))
1127 return 0;
1128
1129 ret = spurious_fault_check(error_code, pte);
1130 if (!ret)
1131 return 0;
1132
1133 /*
1134 * Make sure we have permissions in PMD.
1135 * If not, then there's a bug in the page tables:
1136 */
1137 ret = spurious_fault_check(error_code, (pte_t *) pmd);
1138 WARN_ONCE(!ret, "PMD has incorrect permission bits\n");
1139
1140 return ret;
1141}
1142NOKPROBE_SYMBOL(spurious_fault);
1143
1144int show_unhandled_signals = 1;
1145
1146static inline int
1147access_error(unsigned long error_code, struct vm_area_struct *vma)
1148{
1149 /* This is only called for the current mm, so: */
1150 bool foreign = false;
1151
1152 /*
1153 * Read or write was blocked by protection keys. This is
1154 * always an unconditional error and can never result in
1155 * a follow-up action to resolve the fault, like a COW.
1156 */
1157 if (error_code & X86_PF_PK)
1158 return 1;
1159
1160 /*
1161 * Make sure to check the VMA so that we do not perform
1162 * faults just to hit a X86_PF_PK as soon as we fill in a
1163 * page.
1164 */
1165 if (!arch_vma_access_permitted(vma, (error_code & X86_PF_WRITE),
1166 (error_code & X86_PF_INSTR), foreign))
1167 return 1;
1168
1169 if (error_code & X86_PF_WRITE) {
1170 /* write, present and write, not present: */
1171 if (unlikely(!(vma->vm_flags & VM_WRITE)))
1172 return 1;
1173 return 0;
1174 }
1175
1176 /* read, present: */
1177 if (unlikely(error_code & X86_PF_PROT))
1178 return 1;
1179
1180 /* read, not present: */
1181 if (unlikely(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE))))
1182 return 1;
1183
1184 return 0;
1185}
1186
1187static int fault_in_kernel_space(unsigned long address)
1188{
1189 return address >= TASK_SIZE_MAX;
1190}
1191
1192static inline bool smap_violation(int error_code, struct pt_regs *regs)
1193{
1194 if (!IS_ENABLED(CONFIG_X86_SMAP))
1195 return false;
1196
1197 if (!static_cpu_has(X86_FEATURE_SMAP))
1198 return false;
1199
1200 if (error_code & X86_PF_USER)
1201 return false;
1202
1203 if (!user_mode(regs) && (regs->flags & X86_EFLAGS_AC))
1204 return false;
1205
1206 return true;
1207}
1208
1209/*
1210 * This routine handles page faults. It determines the address,
1211 * and the problem, and then passes it off to one of the appropriate
1212 * routines.
1213 */
1214static noinline void
1215__do_page_fault(struct pt_regs *regs, unsigned long error_code,
1216 unsigned long address)
1217{
1218 struct vm_area_struct *vma;
1219 struct task_struct *tsk;
1220 struct mm_struct *mm;
1221 int fault, major = 0;
1222 unsigned int flags = FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_KILLABLE;
1223 u32 pkey;
1224
1225 tsk = current;
1226 mm = tsk->mm;
1227
1228 prefetchw(&mm->mmap_sem);
1229
1230 if (unlikely(kmmio_fault(regs, address)))
1231 return;
1232
1233 /*
1234 * We fault-in kernel-space virtual memory on-demand. The
1235 * 'reference' page table is init_mm.pgd.
1236 *
1237 * NOTE! We MUST NOT take any locks for this case. We may
1238 * be in an interrupt or a critical region, and should
1239 * only copy the information from the master page table,
1240 * nothing more.
1241 *
1242 * This verifies that the fault happens in kernel space
1243 * (error_code & 4) == 0, and that the fault was not a
1244 * protection error (error_code & 9) == 0.
1245 */
1246 if (unlikely(fault_in_kernel_space(address))) {
1247 if (!(error_code & (X86_PF_RSVD | X86_PF_USER | X86_PF_PROT))) {
1248 if (vmalloc_fault(address) >= 0)
1249 return;
1250 }
1251
1252 /* Can handle a stale RO->RW TLB: */
1253 if (spurious_fault(error_code, address))
1254 return;
1255
1256 /* kprobes don't want to hook the spurious faults: */
1257 if (kprobes_fault(regs))
1258 return;
1259 /*
1260 * Don't take the mm semaphore here. If we fixup a prefetch
1261 * fault we could otherwise deadlock:
1262 */
1263 bad_area_nosemaphore(regs, error_code, address, NULL);
1264
1265 return;
1266 }
1267
1268 /* kprobes don't want to hook the spurious faults: */
1269 if (unlikely(kprobes_fault(regs)))
1270 return;
1271
1272 if (unlikely(error_code & X86_PF_RSVD))
1273 pgtable_bad(regs, error_code, address);
1274
1275 if (unlikely(smap_violation(error_code, regs))) {
1276 bad_area_nosemaphore(regs, error_code, address, NULL);
1277 return;
1278 }
1279
1280 /*
1281 * If we're in an interrupt, have no user context or are running
1282 * in a region with pagefaults disabled then we must not take the fault
1283 */
1284 if (unlikely(faulthandler_disabled() || !mm)) {
1285 bad_area_nosemaphore(regs, error_code, address, NULL);
1286 return;
1287 }
1288
1289 /*
1290 * It's safe to allow irq's after cr2 has been saved and the
1291 * vmalloc fault has been handled.
1292 *
1293 * User-mode registers count as a user access even for any
1294 * potential system fault or CPU buglet:
1295 */
1296 if (user_mode(regs)) {
1297 local_irq_enable();
1298 error_code |= X86_PF_USER;
1299 flags |= FAULT_FLAG_USER;
1300 } else {
1301 if (regs->flags & X86_EFLAGS_IF)
1302 local_irq_enable();
1303 }
1304
1305 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS, 1, regs, address);
1306
1307 if (error_code & X86_PF_WRITE)
1308 flags |= FAULT_FLAG_WRITE;
1309 if (error_code & X86_PF_INSTR)
1310 flags |= FAULT_FLAG_INSTRUCTION;
1311
1312 /*
1313 * When running in the kernel we expect faults to occur only to
1314 * addresses in user space. All other faults represent errors in
1315 * the kernel and should generate an OOPS. Unfortunately, in the
1316 * case of an erroneous fault occurring in a code path which already
1317 * holds mmap_sem we will deadlock attempting to validate the fault
1318 * against the address space. Luckily the kernel only validly
1319 * references user space from well defined areas of code, which are
1320 * listed in the exceptions table.
1321 *
1322 * As the vast majority of faults will be valid we will only perform
1323 * the source reference check when there is a possibility of a
1324 * deadlock. Attempt to lock the address space, if we cannot we then
1325 * validate the source. If this is invalid we can skip the address
1326 * space check, thus avoiding the deadlock:
1327 */
1328 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
1329 if (!(error_code & X86_PF_USER) &&
1330 !search_exception_tables(regs->ip)) {
1331 bad_area_nosemaphore(regs, error_code, address, NULL);
1332 return;
1333 }
1334retry:
1335 down_read(&mm->mmap_sem);
1336 } else {
1337 /*
1338 * The above down_read_trylock() might have succeeded in
1339 * which case we'll have missed the might_sleep() from
1340 * down_read():
1341 */
1342 might_sleep();
1343 }
1344
1345 vma = find_vma(mm, address);
1346 if (unlikely(!vma)) {
1347 bad_area(regs, error_code, address);
1348 return;
1349 }
1350 if (likely(vma->vm_start <= address))
1351 goto good_area;
1352 if (unlikely(!(vma->vm_flags & VM_GROWSDOWN))) {
1353 bad_area(regs, error_code, address);
1354 return;
1355 }
1356 if (error_code & X86_PF_USER) {
1357 /*
1358 * Accessing the stack below %sp is always a bug.
1359 * The large cushion allows instructions like enter
1360 * and pusha to work. ("enter $65535, $31" pushes
1361 * 32 pointers and then decrements %sp by 65535.)
1362 */
1363 if (unlikely(address + 65536 + 32 * sizeof(unsigned long) < regs->sp)) {
1364 bad_area(regs, error_code, address);
1365 return;
1366 }
1367 }
1368 if (unlikely(expand_stack(vma, address))) {
1369 bad_area(regs, error_code, address);
1370 return;
1371 }
1372
1373 /*
1374 * Ok, we have a good vm_area for this memory access, so
1375 * we can handle it..
1376 */
1377good_area:
1378 if (unlikely(access_error(error_code, vma))) {
1379 bad_area_access_error(regs, error_code, address, vma);
1380 return;
1381 }
1382
1383 /*
1384 * If for any reason at all we couldn't handle the fault,
1385 * make sure we exit gracefully rather than endlessly redo
1386 * the fault. Since we never set FAULT_FLAG_RETRY_NOWAIT, if
1387 * we get VM_FAULT_RETRY back, the mmap_sem has been unlocked.
1388 *
1389 * Note that handle_userfault() may also release and reacquire mmap_sem
1390 * (and not return with VM_FAULT_RETRY), when returning to userland to
1391 * repeat the page fault later with a VM_FAULT_NOPAGE retval
1392 * (potentially after handling any pending signal during the return to
1393 * userland). The return to userland is identified whenever
1394 * FAULT_FLAG_USER|FAULT_FLAG_KILLABLE are both set in flags.
1395 * Thus we have to be careful about not touching vma after handling the
1396 * fault, so we read the pkey beforehand.
1397 */
1398 pkey = vma_pkey(vma);
1399 fault = handle_mm_fault(vma, address, flags);
1400 major |= fault & VM_FAULT_MAJOR;
1401
1402 /*
1403 * If we need to retry the mmap_sem has already been released,
1404 * and if there is a fatal signal pending there is no guarantee
1405 * that we made any progress. Handle this case first.
1406 */
1407 if (unlikely(fault & VM_FAULT_RETRY)) {
1408 /* Retry at most once */
1409 if (flags & FAULT_FLAG_ALLOW_RETRY) {
1410 flags &= ~FAULT_FLAG_ALLOW_RETRY;
1411 flags |= FAULT_FLAG_TRIED;
1412 if (!fatal_signal_pending(tsk))
1413 goto retry;
1414 }
1415
1416 /* User mode? Just return to handle the fatal exception */
1417 if (flags & FAULT_FLAG_USER)
1418 return;
1419
1420 /* Not returning to user mode? Handle exceptions or die: */
1421 no_context(regs, error_code, address, SIGBUS, BUS_ADRERR);
1422 return;
1423 }
1424
1425 up_read(&mm->mmap_sem);
1426 if (unlikely(fault & VM_FAULT_ERROR)) {
1427 mm_fault_error(regs, error_code, address, &pkey, fault);
1428 return;
1429 }
1430
1431 /*
1432 * Major/minor page fault accounting. If any of the events
1433 * returned VM_FAULT_MAJOR, we account it as a major fault.
1434 */
1435 if (major) {
1436 tsk->maj_flt++;
1437 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MAJ, 1, regs, address);
1438 } else {
1439 tsk->min_flt++;
1440 perf_sw_event(PERF_COUNT_SW_PAGE_FAULTS_MIN, 1, regs, address);
1441 }
1442
1443 check_v8086_mode(regs, address, tsk);
1444}
1445NOKPROBE_SYMBOL(__do_page_fault);
1446
1447static nokprobe_inline void
1448trace_page_fault_entries(unsigned long address, struct pt_regs *regs,
1449 unsigned long error_code)
1450{
1451 if (user_mode(regs))
1452 trace_page_fault_user(address, regs, error_code);
1453 else
1454 trace_page_fault_kernel(address, regs, error_code);
1455}
1456
1457/*
1458 * We must have this function blacklisted from kprobes, tagged with notrace
1459 * and call read_cr2() before calling anything else. To avoid calling any
1460 * kind of tracing machinery before we've observed the CR2 value.
1461 *
1462 * exception_{enter,exit}() contains all sorts of tracepoints.
1463 */
1464dotraplinkage void notrace
1465do_page_fault(struct pt_regs *regs, unsigned long error_code)
1466{
1467 unsigned long address = read_cr2(); /* Get the faulting address */
1468 enum ctx_state prev_state;
1469
1470 prev_state = exception_enter();
1471 if (trace_pagefault_enabled())
1472 trace_page_fault_entries(address, regs, error_code);
1473
1474 __do_page_fault(regs, error_code, address);
1475 exception_exit(prev_state);
1476}
1477NOKPROBE_SYMBOL(do_page_fault);