Linux Audio

Check our new training course

Loading...
v3.15
   1/*
   2 * Memory Migration functionality - linux/mm/migration.c
   3 *
   4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
   5 *
   6 * Page migration was first developed in the context of the memory hotplug
   7 * project. The main authors of the migration code are:
   8 *
   9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
  10 * Hirokazu Takahashi <taka@valinux.co.jp>
  11 * Dave Hansen <haveblue@us.ibm.com>
  12 * Christoph Lameter
  13 */
  14
  15#include <linux/migrate.h>
  16#include <linux/export.h>
  17#include <linux/swap.h>
  18#include <linux/swapops.h>
  19#include <linux/pagemap.h>
  20#include <linux/buffer_head.h>
  21#include <linux/mm_inline.h>
  22#include <linux/nsproxy.h>
  23#include <linux/pagevec.h>
  24#include <linux/ksm.h>
  25#include <linux/rmap.h>
  26#include <linux/topology.h>
  27#include <linux/cpu.h>
  28#include <linux/cpuset.h>
  29#include <linux/writeback.h>
  30#include <linux/mempolicy.h>
  31#include <linux/vmalloc.h>
  32#include <linux/security.h>
  33#include <linux/memcontrol.h>
 
  34#include <linux/syscalls.h>
  35#include <linux/hugetlb.h>
  36#include <linux/hugetlb_cgroup.h>
  37#include <linux/gfp.h>
  38#include <linux/balloon_compaction.h>
  39#include <linux/mmu_notifier.h>
 
 
  40
  41#include <asm/tlbflush.h>
  42
  43#define CREATE_TRACE_POINTS
  44#include <trace/events/migrate.h>
  45
  46#include "internal.h"
  47
  48/*
  49 * migrate_prep() needs to be called before we start compiling a list of pages
  50 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
  51 * undesirable, use migrate_prep_local()
  52 */
  53int migrate_prep(void)
  54{
  55	/*
  56	 * Clear the LRU lists so pages can be isolated.
  57	 * Note that pages may be moved off the LRU after we have
  58	 * drained them. Those pages will fail to migrate like other
  59	 * pages that may be busy.
  60	 */
  61	lru_add_drain_all();
  62
  63	return 0;
  64}
  65
  66/* Do the necessary work of migrate_prep but not if it involves other CPUs */
  67int migrate_prep_local(void)
  68{
  69	lru_add_drain();
  70
  71	return 0;
  72}
  73
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  74/*
  75 * Put previously isolated pages back onto the appropriate lists
  76 * from where they were once taken off for compaction/migration.
  77 *
  78 * This function shall be used whenever the isolated pageset has been
  79 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
  80 * and isolate_huge_page().
  81 */
  82void putback_movable_pages(struct list_head *l)
  83{
  84	struct page *page;
  85	struct page *page2;
  86
  87	list_for_each_entry_safe(page, page2, l, lru) {
  88		if (unlikely(PageHuge(page))) {
  89			putback_active_hugepage(page);
  90			continue;
  91		}
  92		list_del(&page->lru);
  93		dec_zone_page_state(page, NR_ISOLATED_ANON +
  94				page_is_file_cache(page));
  95		if (unlikely(isolated_balloon_page(page)))
  96			balloon_page_putback(page);
  97		else
 
 
 
 
 
 
 
 
 
 
  98			putback_lru_page(page);
 
 
 
  99	}
 100}
 101
 102/*
 103 * Restore a potential migration pte to a working pte entry
 104 */
 105static int remove_migration_pte(struct page *new, struct vm_area_struct *vma,
 106				 unsigned long addr, void *old)
 107{
 108	struct mm_struct *mm = vma->vm_mm;
 109	swp_entry_t entry;
 110 	pmd_t *pmd;
 111	pte_t *ptep, pte;
 112 	spinlock_t *ptl;
 113
 114	if (unlikely(PageHuge(new))) {
 115		ptep = huge_pte_offset(mm, addr);
 116		if (!ptep)
 117			goto out;
 118		ptl = huge_pte_lockptr(hstate_vma(vma), mm, ptep);
 119	} else {
 120		pmd = mm_find_pmd(mm, addr);
 121		if (!pmd)
 122			goto out;
 123		if (pmd_trans_huge(*pmd))
 124			goto out;
 125
 126		ptep = pte_offset_map(pmd, addr);
 127
 128		/*
 129		 * Peek to check is_swap_pte() before taking ptlock?  No, we
 130		 * can race mremap's move_ptes(), which skips anon_vma lock.
 131		 */
 132
 133		ptl = pte_lockptr(mm, pmd);
 134	}
 135
 136 	spin_lock(ptl);
 137	pte = *ptep;
 138	if (!is_swap_pte(pte))
 139		goto unlock;
 140
 141	entry = pte_to_swp_entry(pte);
 142
 143	if (!is_migration_entry(entry) ||
 144	    migration_entry_to_page(entry) != old)
 145		goto unlock;
 146
 147	get_page(new);
 148	pte = pte_mkold(mk_pte(new, vma->vm_page_prot));
 149	if (pte_swp_soft_dirty(*ptep))
 150		pte = pte_mksoft_dirty(pte);
 
 
 151	if (is_write_migration_entry(entry))
 152		pte = pte_mkwrite(pte);
 
 153#ifdef CONFIG_HUGETLB_PAGE
 154	if (PageHuge(new)) {
 155		pte = pte_mkhuge(pte);
 156		pte = arch_make_huge_pte(pte, vma, new, 0);
 157	}
 158#endif
 159	flush_dcache_page(new);
 160	set_pte_at(mm, addr, ptep, pte);
 161
 162	if (PageHuge(new)) {
 163		if (PageAnon(new))
 164			hugepage_add_anon_rmap(new, vma, addr);
 165		else
 166			page_dup_rmap(new);
 167	} else if (PageAnon(new))
 168		page_add_anon_rmap(new, vma, addr);
 169	else
 170		page_add_file_rmap(new);
 
 
 
 171
 172	/* No need to invalidate - it was non-present before */
 173	update_mmu_cache(vma, addr, ptep);
 174unlock:
 175	pte_unmap_unlock(ptep, ptl);
 176out:
 177	return SWAP_AGAIN;
 178}
 179
 180/*
 181 * Congratulations to trinity for discovering this bug.
 182 * mm/fremap.c's remap_file_pages() accepts any range within a single vma to
 183 * convert that vma to VM_NONLINEAR; and generic_file_remap_pages() will then
 184 * replace the specified range by file ptes throughout (maybe populated after).
 185 * If page migration finds a page within that range, while it's still located
 186 * by vma_interval_tree rather than lost to i_mmap_nonlinear list, no problem:
 187 * zap_pte() clears the temporary migration entry before mmap_sem is dropped.
 188 * But if the migrating page is in a part of the vma outside the range to be
 189 * remapped, then it will not be cleared, and remove_migration_ptes() needs to
 190 * deal with it.  Fortunately, this part of the vma is of course still linear,
 191 * so we just need to use linear location on the nonlinear list.
 192 */
 193static int remove_linear_migration_ptes_from_nonlinear(struct page *page,
 194		struct address_space *mapping, void *arg)
 195{
 196	struct vm_area_struct *vma;
 197	/* hugetlbfs does not support remap_pages, so no huge pgoff worries */
 198	pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
 199	unsigned long addr;
 200
 201	list_for_each_entry(vma,
 202		&mapping->i_mmap_nonlinear, shared.nonlinear) {
 203
 204		addr = vma->vm_start + ((pgoff - vma->vm_pgoff) << PAGE_SHIFT);
 205		if (addr >= vma->vm_start && addr < vma->vm_end)
 206			remove_migration_pte(page, vma, addr, arg);
 207	}
 208	return SWAP_AGAIN;
 209}
 210
 211/*
 212 * Get rid of all migration entries and replace them by
 213 * references to the indicated page.
 214 */
 215static void remove_migration_ptes(struct page *old, struct page *new)
 216{
 217	struct rmap_walk_control rwc = {
 218		.rmap_one = remove_migration_pte,
 219		.arg = old,
 220		.file_nonlinear = remove_linear_migration_ptes_from_nonlinear,
 221	};
 222
 223	rmap_walk(new, &rwc);
 
 
 
 224}
 225
 226/*
 227 * Something used the pte of a page under migration. We need to
 228 * get to the page and wait until migration is finished.
 229 * When we return from this function the fault will be retried.
 230 */
 231static void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
 232				spinlock_t *ptl)
 233{
 234	pte_t pte;
 235	swp_entry_t entry;
 236	struct page *page;
 237
 238	spin_lock(ptl);
 239	pte = *ptep;
 240	if (!is_swap_pte(pte))
 241		goto out;
 242
 243	entry = pte_to_swp_entry(pte);
 244	if (!is_migration_entry(entry))
 245		goto out;
 246
 247	page = migration_entry_to_page(entry);
 248
 249	/*
 250	 * Once radix-tree replacement of page migration started, page_count
 251	 * *must* be zero. And, we don't want to call wait_on_page_locked()
 252	 * against a page without get_page().
 253	 * So, we use get_page_unless_zero(), here. Even failed, page fault
 254	 * will occur again.
 255	 */
 256	if (!get_page_unless_zero(page))
 257		goto out;
 258	pte_unmap_unlock(ptep, ptl);
 259	wait_on_page_locked(page);
 260	put_page(page);
 261	return;
 262out:
 263	pte_unmap_unlock(ptep, ptl);
 264}
 265
 266void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
 267				unsigned long address)
 268{
 269	spinlock_t *ptl = pte_lockptr(mm, pmd);
 270	pte_t *ptep = pte_offset_map(pmd, address);
 271	__migration_entry_wait(mm, ptep, ptl);
 272}
 273
 274void migration_entry_wait_huge(struct vm_area_struct *vma,
 275		struct mm_struct *mm, pte_t *pte)
 276{
 277	spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
 278	__migration_entry_wait(mm, pte, ptl);
 279}
 280
 281#ifdef CONFIG_BLOCK
 282/* Returns true if all buffers are successfully locked */
 283static bool buffer_migrate_lock_buffers(struct buffer_head *head,
 284							enum migrate_mode mode)
 285{
 286	struct buffer_head *bh = head;
 287
 288	/* Simple case, sync compaction */
 289	if (mode != MIGRATE_ASYNC) {
 290		do {
 291			get_bh(bh);
 292			lock_buffer(bh);
 293			bh = bh->b_this_page;
 294
 295		} while (bh != head);
 296
 297		return true;
 298	}
 299
 300	/* async case, we cannot block on lock_buffer so use trylock_buffer */
 301	do {
 302		get_bh(bh);
 303		if (!trylock_buffer(bh)) {
 304			/*
 305			 * We failed to lock the buffer and cannot stall in
 306			 * async migration. Release the taken locks
 307			 */
 308			struct buffer_head *failed_bh = bh;
 309			put_bh(failed_bh);
 310			bh = head;
 311			while (bh != failed_bh) {
 312				unlock_buffer(bh);
 313				put_bh(bh);
 314				bh = bh->b_this_page;
 315			}
 316			return false;
 317		}
 318
 319		bh = bh->b_this_page;
 320	} while (bh != head);
 321	return true;
 322}
 323#else
 324static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
 325							enum migrate_mode mode)
 326{
 327	return true;
 328}
 329#endif /* CONFIG_BLOCK */
 330
 331/*
 332 * Replace the page in the mapping.
 333 *
 334 * The number of remaining references must be:
 335 * 1 for anonymous pages without a mapping
 336 * 2 for pages with a mapping
 337 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
 338 */
 339int migrate_page_move_mapping(struct address_space *mapping,
 340		struct page *newpage, struct page *page,
 341		struct buffer_head *head, enum migrate_mode mode,
 342		int extra_count)
 343{
 
 
 344	int expected_count = 1 + extra_count;
 345	void **pslot;
 346
 347	if (!mapping) {
 348		/* Anonymous page without mapping */
 349		if (page_count(page) != expected_count)
 350			return -EAGAIN;
 
 
 
 
 
 
 
 351		return MIGRATEPAGE_SUCCESS;
 352	}
 353
 
 
 
 354	spin_lock_irq(&mapping->tree_lock);
 355
 356	pslot = radix_tree_lookup_slot(&mapping->page_tree,
 357 					page_index(page));
 358
 359	expected_count += 1 + page_has_private(page);
 360	if (page_count(page) != expected_count ||
 361		radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
 362		spin_unlock_irq(&mapping->tree_lock);
 363		return -EAGAIN;
 364	}
 365
 366	if (!page_freeze_refs(page, expected_count)) {
 367		spin_unlock_irq(&mapping->tree_lock);
 368		return -EAGAIN;
 369	}
 370
 371	/*
 372	 * In the async migration case of moving a page with buffers, lock the
 373	 * buffers using trylock before the mapping is moved. If the mapping
 374	 * was moved, we later failed to lock the buffers and could not move
 375	 * the mapping back due to an elevated page count, we would have to
 376	 * block waiting on other references to be dropped.
 377	 */
 378	if (mode == MIGRATE_ASYNC && head &&
 379			!buffer_migrate_lock_buffers(head, mode)) {
 380		page_unfreeze_refs(page, expected_count);
 381		spin_unlock_irq(&mapping->tree_lock);
 382		return -EAGAIN;
 383	}
 384
 385	/*
 386	 * Now we know that no one else is looking at the page.
 
 387	 */
 
 
 388	get_page(newpage);	/* add cache reference */
 389	if (PageSwapCache(page)) {
 390		SetPageSwapCache(newpage);
 391		set_page_private(newpage, page_private(page));
 
 
 
 
 
 
 
 
 
 
 
 
 392	}
 393
 394	radix_tree_replace_slot(pslot, newpage);
 395
 396	/*
 397	 * Drop cache reference from old page by unfreezing
 398	 * to one less reference.
 399	 * We know this isn't the last reference.
 400	 */
 401	page_unfreeze_refs(page, expected_count - 1);
 
 
 
 402
 403	/*
 404	 * If moved to a different zone then also account
 405	 * the page for that zone. Other VM counters will be
 406	 * taken care of when we establish references to the
 407	 * new page and drop references to the old page.
 408	 *
 409	 * Note that anonymous pages are accounted for
 410	 * via NR_FILE_PAGES and NR_ANON_PAGES if they
 411	 * are mapped to swap space.
 412	 */
 413	__dec_zone_page_state(page, NR_FILE_PAGES);
 414	__inc_zone_page_state(newpage, NR_FILE_PAGES);
 415	if (!PageSwapCache(page) && PageSwapBacked(page)) {
 416		__dec_zone_page_state(page, NR_SHMEM);
 417		__inc_zone_page_state(newpage, NR_SHMEM);
 
 
 
 
 
 
 
 
 418	}
 419	spin_unlock_irq(&mapping->tree_lock);
 420
 421	return MIGRATEPAGE_SUCCESS;
 422}
 
 423
 424/*
 425 * The expected number of remaining references is the same as that
 426 * of migrate_page_move_mapping().
 427 */
 428int migrate_huge_page_move_mapping(struct address_space *mapping,
 429				   struct page *newpage, struct page *page)
 430{
 431	int expected_count;
 432	void **pslot;
 433
 434	if (!mapping) {
 435		if (page_count(page) != 1)
 436			return -EAGAIN;
 437		return MIGRATEPAGE_SUCCESS;
 438	}
 439
 440	spin_lock_irq(&mapping->tree_lock);
 441
 442	pslot = radix_tree_lookup_slot(&mapping->page_tree,
 443					page_index(page));
 444
 445	expected_count = 2 + page_has_private(page);
 446	if (page_count(page) != expected_count ||
 447		radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
 448		spin_unlock_irq(&mapping->tree_lock);
 449		return -EAGAIN;
 450	}
 451
 452	if (!page_freeze_refs(page, expected_count)) {
 453		spin_unlock_irq(&mapping->tree_lock);
 454		return -EAGAIN;
 455	}
 456
 
 
 
 457	get_page(newpage);
 458
 459	radix_tree_replace_slot(pslot, newpage);
 460
 461	page_unfreeze_refs(page, expected_count - 1);
 462
 463	spin_unlock_irq(&mapping->tree_lock);
 
 464	return MIGRATEPAGE_SUCCESS;
 465}
 466
 467/*
 468 * Gigantic pages are so large that we do not guarantee that page++ pointer
 469 * arithmetic will work across the entire page.  We need something more
 470 * specialized.
 471 */
 472static void __copy_gigantic_page(struct page *dst, struct page *src,
 473				int nr_pages)
 474{
 475	int i;
 476	struct page *dst_base = dst;
 477	struct page *src_base = src;
 478
 479	for (i = 0; i < nr_pages; ) {
 480		cond_resched();
 481		copy_highpage(dst, src);
 482
 483		i++;
 484		dst = mem_map_next(dst, dst_base, i);
 485		src = mem_map_next(src, src_base, i);
 486	}
 487}
 488
 489static void copy_huge_page(struct page *dst, struct page *src)
 490{
 491	int i;
 492	int nr_pages;
 493
 494	if (PageHuge(src)) {
 495		/* hugetlbfs page */
 496		struct hstate *h = page_hstate(src);
 497		nr_pages = pages_per_huge_page(h);
 498
 499		if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
 500			__copy_gigantic_page(dst, src, nr_pages);
 501			return;
 502		}
 503	} else {
 504		/* thp page */
 505		BUG_ON(!PageTransHuge(src));
 506		nr_pages = hpage_nr_pages(src);
 507	}
 508
 509	for (i = 0; i < nr_pages; i++) {
 510		cond_resched();
 511		copy_highpage(dst + i, src + i);
 512	}
 513}
 514
 515/*
 516 * Copy the page to its new location
 517 */
 518void migrate_page_copy(struct page *newpage, struct page *page)
 519{
 520	int cpupid;
 521
 522	if (PageHuge(page) || PageTransHuge(page))
 523		copy_huge_page(newpage, page);
 524	else
 525		copy_highpage(newpage, page);
 526
 527	if (PageError(page))
 528		SetPageError(newpage);
 529	if (PageReferenced(page))
 530		SetPageReferenced(newpage);
 531	if (PageUptodate(page))
 532		SetPageUptodate(newpage);
 533	if (TestClearPageActive(page)) {
 534		VM_BUG_ON_PAGE(PageUnevictable(page), page);
 535		SetPageActive(newpage);
 536	} else if (TestClearPageUnevictable(page))
 537		SetPageUnevictable(newpage);
 538	if (PageChecked(page))
 539		SetPageChecked(newpage);
 540	if (PageMappedToDisk(page))
 541		SetPageMappedToDisk(newpage);
 542
 543	if (PageDirty(page)) {
 544		clear_page_dirty_for_io(page);
 545		/*
 546		 * Want to mark the page and the radix tree as dirty, and
 547		 * redo the accounting that clear_page_dirty_for_io undid,
 548		 * but we can't use set_page_dirty because that function
 549		 * is actually a signal that all of the page has become dirty.
 550		 * Whereas only part of our page may be dirty.
 551		 */
 552		if (PageSwapBacked(page))
 553			SetPageDirty(newpage);
 554		else
 555			__set_page_dirty_nobuffers(newpage);
 556 	}
 557
 558	/*
 559	 * Copy NUMA information to the new page, to prevent over-eager
 560	 * future migrations of this same page.
 561	 */
 562	cpupid = page_cpupid_xchg_last(page, -1);
 563	page_cpupid_xchg_last(newpage, cpupid);
 564
 565	mlock_migrate_page(newpage, page);
 566	ksm_migrate_page(newpage, page);
 567	/*
 568	 * Please do not reorder this without considering how mm/ksm.c's
 569	 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
 570	 */
 571	ClearPageSwapCache(page);
 
 572	ClearPagePrivate(page);
 573	set_page_private(page, 0);
 574
 575	/*
 576	 * If any waiters have accumulated on the new page then
 577	 * wake them up.
 578	 */
 579	if (PageWriteback(newpage))
 580		end_page_writeback(newpage);
 
 
 
 
 581}
 
 582
 583/************************************************************
 584 *                    Migration functions
 585 ***********************************************************/
 586
 587/*
 588 * Common logic to directly migrate a single page suitable for
 589 * pages that do not use PagePrivate/PagePrivate2.
 590 *
 591 * Pages are locked upon entry and exit.
 592 */
 593int migrate_page(struct address_space *mapping,
 594		struct page *newpage, struct page *page,
 595		enum migrate_mode mode)
 596{
 597	int rc;
 598
 599	BUG_ON(PageWriteback(page));	/* Writeback must be complete */
 600
 601	rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
 602
 603	if (rc != MIGRATEPAGE_SUCCESS)
 604		return rc;
 605
 606	migrate_page_copy(newpage, page);
 607	return MIGRATEPAGE_SUCCESS;
 608}
 609EXPORT_SYMBOL(migrate_page);
 610
 611#ifdef CONFIG_BLOCK
 612/*
 613 * Migration function for pages with buffers. This function can only be used
 614 * if the underlying filesystem guarantees that no other references to "page"
 615 * exist.
 616 */
 617int buffer_migrate_page(struct address_space *mapping,
 618		struct page *newpage, struct page *page, enum migrate_mode mode)
 619{
 620	struct buffer_head *bh, *head;
 621	int rc;
 622
 623	if (!page_has_buffers(page))
 624		return migrate_page(mapping, newpage, page, mode);
 625
 626	head = page_buffers(page);
 627
 628	rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0);
 629
 630	if (rc != MIGRATEPAGE_SUCCESS)
 631		return rc;
 632
 633	/*
 634	 * In the async case, migrate_page_move_mapping locked the buffers
 635	 * with an IRQ-safe spinlock held. In the sync case, the buffers
 636	 * need to be locked now
 637	 */
 638	if (mode != MIGRATE_ASYNC)
 639		BUG_ON(!buffer_migrate_lock_buffers(head, mode));
 640
 641	ClearPagePrivate(page);
 642	set_page_private(newpage, page_private(page));
 643	set_page_private(page, 0);
 644	put_page(page);
 645	get_page(newpage);
 646
 647	bh = head;
 648	do {
 649		set_bh_page(bh, newpage, bh_offset(bh));
 650		bh = bh->b_this_page;
 651
 652	} while (bh != head);
 653
 654	SetPagePrivate(newpage);
 655
 656	migrate_page_copy(newpage, page);
 657
 658	bh = head;
 659	do {
 660		unlock_buffer(bh);
 661 		put_bh(bh);
 662		bh = bh->b_this_page;
 663
 664	} while (bh != head);
 665
 666	return MIGRATEPAGE_SUCCESS;
 667}
 668EXPORT_SYMBOL(buffer_migrate_page);
 669#endif
 670
 671/*
 672 * Writeback a page to clean the dirty state
 673 */
 674static int writeout(struct address_space *mapping, struct page *page)
 675{
 676	struct writeback_control wbc = {
 677		.sync_mode = WB_SYNC_NONE,
 678		.nr_to_write = 1,
 679		.range_start = 0,
 680		.range_end = LLONG_MAX,
 681		.for_reclaim = 1
 682	};
 683	int rc;
 684
 685	if (!mapping->a_ops->writepage)
 686		/* No write method for the address space */
 687		return -EINVAL;
 688
 689	if (!clear_page_dirty_for_io(page))
 690		/* Someone else already triggered a write */
 691		return -EAGAIN;
 692
 693	/*
 694	 * A dirty page may imply that the underlying filesystem has
 695	 * the page on some queue. So the page must be clean for
 696	 * migration. Writeout may mean we loose the lock and the
 697	 * page state is no longer what we checked for earlier.
 698	 * At this point we know that the migration attempt cannot
 699	 * be successful.
 700	 */
 701	remove_migration_ptes(page, page);
 702
 703	rc = mapping->a_ops->writepage(page, &wbc);
 704
 705	if (rc != AOP_WRITEPAGE_ACTIVATE)
 706		/* unlocked. Relock */
 707		lock_page(page);
 708
 709	return (rc < 0) ? -EIO : -EAGAIN;
 710}
 711
 712/*
 713 * Default handling if a filesystem does not provide a migration function.
 714 */
 715static int fallback_migrate_page(struct address_space *mapping,
 716	struct page *newpage, struct page *page, enum migrate_mode mode)
 717{
 718	if (PageDirty(page)) {
 719		/* Only writeback pages in full synchronous migration */
 720		if (mode != MIGRATE_SYNC)
 721			return -EBUSY;
 722		return writeout(mapping, page);
 723	}
 724
 725	/*
 726	 * Buffers may be managed in a filesystem specific way.
 727	 * We must have no buffers or drop them.
 728	 */
 729	if (page_has_private(page) &&
 730	    !try_to_release_page(page, GFP_KERNEL))
 731		return -EAGAIN;
 732
 733	return migrate_page(mapping, newpage, page, mode);
 734}
 735
 736/*
 737 * Move a page to a newly allocated page
 738 * The page is locked and all ptes have been successfully removed.
 739 *
 740 * The new page will have replaced the old page if this function
 741 * is successful.
 742 *
 743 * Return value:
 744 *   < 0 - error code
 745 *  MIGRATEPAGE_SUCCESS - success
 746 */
 747static int move_to_new_page(struct page *newpage, struct page *page,
 748				int remap_swapcache, enum migrate_mode mode)
 749{
 750	struct address_space *mapping;
 751	int rc;
 752
 753	/*
 754	 * Block others from accessing the page when we get around to
 755	 * establishing additional references. We are the only one
 756	 * holding a reference to the new page at this point.
 757	 */
 758	if (!trylock_page(newpage))
 759		BUG();
 760
 761	/* Prepare mapping for the new page.*/
 762	newpage->index = page->index;
 763	newpage->mapping = page->mapping;
 764	if (PageSwapBacked(page))
 765		SetPageSwapBacked(newpage);
 766
 767	mapping = page_mapping(page);
 768	if (!mapping)
 769		rc = migrate_page(mapping, newpage, page, mode);
 770	else if (mapping->a_ops->migratepage)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 771		/*
 772		 * Most pages have a mapping and most filesystems provide a
 773		 * migratepage callback. Anonymous pages are part of swap
 774		 * space which also has its own migratepage callback. This
 775		 * is the most common path for page migration.
 776		 */
 777		rc = mapping->a_ops->migratepage(mapping,
 778						newpage, page, mode);
 779	else
 780		rc = fallback_migrate_page(mapping, newpage, page, mode);
 
 
 781
 782	if (rc != MIGRATEPAGE_SUCCESS) {
 783		newpage->mapping = NULL;
 784	} else {
 785		if (remap_swapcache)
 786			remove_migration_ptes(page, newpage);
 787		page->mapping = NULL;
 788	}
 789
 790	unlock_page(newpage);
 
 
 
 
 
 
 791
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 792	return rc;
 793}
 794
 795static int __unmap_and_move(struct page *page, struct page *newpage,
 796				int force, enum migrate_mode mode)
 797{
 798	int rc = -EAGAIN;
 799	int remap_swapcache = 1;
 800	struct mem_cgroup *mem;
 801	struct anon_vma *anon_vma = NULL;
 
 802
 803	if (!trylock_page(page)) {
 804		if (!force || mode == MIGRATE_ASYNC)
 805			goto out;
 806
 807		/*
 808		 * It's not safe for direct compaction to call lock_page.
 809		 * For example, during page readahead pages are added locked
 810		 * to the LRU. Later, when the IO completes the pages are
 811		 * marked uptodate and unlocked. However, the queueing
 812		 * could be merging multiple pages for one bio (e.g.
 813		 * mpage_readpages). If an allocation happens for the
 814		 * second or third page, the process can end up locking
 815		 * the same page twice and deadlocking. Rather than
 816		 * trying to be clever about what pages can be locked,
 817		 * avoid the use of lock_page for direct compaction
 818		 * altogether.
 819		 */
 820		if (current->flags & PF_MEMALLOC)
 821			goto out;
 822
 823		lock_page(page);
 824	}
 825
 826	/* charge against new page */
 827	mem_cgroup_prepare_migration(page, newpage, &mem);
 828
 829	if (PageWriteback(page)) {
 830		/*
 831		 * Only in the case of a full synchronous migration is it
 832		 * necessary to wait for PageWriteback. In the async case,
 833		 * the retry loop is too short and in the sync-light case,
 834		 * the overhead of stalling is too much
 835		 */
 836		if (mode != MIGRATE_SYNC) {
 837			rc = -EBUSY;
 838			goto uncharge;
 839		}
 840		if (!force)
 841			goto uncharge;
 842		wait_on_page_writeback(page);
 843	}
 
 844	/*
 845	 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
 846	 * we cannot notice that anon_vma is freed while we migrates a page.
 847	 * This get_anon_vma() delays freeing anon_vma pointer until the end
 848	 * of migration. File cache pages are no problem because of page_lock()
 849	 * File Caches may use write_page() or lock_page() in migration, then,
 850	 * just care Anon page here.
 
 
 
 
 
 
 851	 */
 852	if (PageAnon(page) && !PageKsm(page)) {
 853		/*
 854		 * Only page_lock_anon_vma_read() understands the subtleties of
 855		 * getting a hold on an anon_vma from outside one of its mms.
 856		 */
 857		anon_vma = page_get_anon_vma(page);
 858		if (anon_vma) {
 859			/*
 860			 * Anon page
 861			 */
 862		} else if (PageSwapCache(page)) {
 863			/*
 864			 * We cannot be sure that the anon_vma of an unmapped
 865			 * swapcache page is safe to use because we don't
 866			 * know in advance if the VMA that this page belonged
 867			 * to still exists. If the VMA and others sharing the
 868			 * data have been freed, then the anon_vma could
 869			 * already be invalid.
 870			 *
 871			 * To avoid this possibility, swapcache pages get
 872			 * migrated but are not remapped when migration
 873			 * completes
 874			 */
 875			remap_swapcache = 0;
 876		} else {
 877			goto uncharge;
 878		}
 879	}
 880
 881	if (unlikely(balloon_page_movable(page))) {
 882		/*
 883		 * A ballooned page does not need any special attention from
 884		 * physical to virtual reverse mapping procedures.
 885		 * Skip any attempt to unmap PTEs or to remap swap cache,
 886		 * in order to avoid burning cycles at rmap level, and perform
 887		 * the page migration right away (proteced by page lock).
 888		 */
 889		rc = balloon_page_migrate(newpage, page, mode);
 890		goto uncharge;
 
 
 
 
 891	}
 892
 893	/*
 894	 * Corner case handling:
 895	 * 1. When a new swap-cache page is read into, it is added to the LRU
 896	 * and treated as swapcache but it has no rmap yet.
 897	 * Calling try_to_unmap() against a page->mapping==NULL page will
 898	 * trigger a BUG.  So handle it here.
 899	 * 2. An orphaned page (see truncate_complete_page) might have
 900	 * fs-private metadata. The page can be picked up due to memory
 901	 * offlining.  Everywhere else except page reclaim, the page is
 902	 * invisible to the vm, so the page can not be migrated.  So try to
 903	 * free the metadata, so the page can be freed.
 904	 */
 905	if (!page->mapping) {
 906		VM_BUG_ON_PAGE(PageAnon(page), page);
 907		if (page_has_private(page)) {
 908			try_to_free_buffers(page);
 909			goto uncharge;
 910		}
 911		goto skip_unmap;
 
 
 
 
 
 
 912	}
 913
 914	/* Establish migration ptes or remove ptes */
 915	try_to_unmap(page, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
 916
 917skip_unmap:
 918	if (!page_mapped(page))
 919		rc = move_to_new_page(newpage, page, remap_swapcache, mode);
 920
 921	if (rc && remap_swapcache)
 922		remove_migration_ptes(page, page);
 
 923
 
 
 
 924	/* Drop an anon_vma reference if we took one */
 925	if (anon_vma)
 926		put_anon_vma(anon_vma);
 927
 928uncharge:
 929	mem_cgroup_end_migration(mem, page, newpage,
 930				 (rc == MIGRATEPAGE_SUCCESS ||
 931				  rc == MIGRATEPAGE_BALLOON_SUCCESS));
 932	unlock_page(page);
 933out:
 
 
 
 
 
 
 
 
 
 
 
 
 
 934	return rc;
 935}
 936
 937/*
 
 
 
 
 
 
 
 
 
 
 938 * Obtain the lock on page, remove all ptes and migrate the page
 939 * to the newly allocated page in newpage.
 940 */
 941static int unmap_and_move(new_page_t get_new_page, unsigned long private,
 942			struct page *page, int force, enum migrate_mode mode)
 
 
 
 943{
 944	int rc = 0;
 945	int *result = NULL;
 946	struct page *newpage = get_new_page(page, private, &result);
 947
 
 948	if (!newpage)
 949		return -ENOMEM;
 950
 951	if (page_count(page) == 1) {
 952		/* page was freed from under us. So we are done. */
 
 
 
 
 
 
 
 
 
 
 
 
 953		goto out;
 954	}
 955
 956	if (unlikely(PageTransHuge(page)))
 957		if (unlikely(split_huge_page(page)))
 
 
 
 958			goto out;
 
 959
 960	rc = __unmap_and_move(page, newpage, force, mode);
 
 
 961
 962	if (unlikely(rc == MIGRATEPAGE_BALLOON_SUCCESS)) {
 963		/*
 964		 * A ballooned page has been migrated already.
 965		 * Now, it's the time to wrap-up counters,
 966		 * handle the page back to Buddy and return.
 967		 */
 968		dec_zone_page_state(page, NR_ISOLATED_ANON +
 969				    page_is_file_cache(page));
 970		balloon_page_free(page);
 971		return MIGRATEPAGE_SUCCESS;
 972	}
 973out:
 974	if (rc != -EAGAIN) {
 975		/*
 976		 * A page that has been migrated has all references
 977		 * removed and will be freed. A page that has not been
 978		 * migrated will have kepts its references and be
 979		 * restored.
 980		 */
 981		list_del(&page->lru);
 982		dec_zone_page_state(page, NR_ISOLATED_ANON +
 983				page_is_file_cache(page));
 984		putback_lru_page(page);
 
 
 
 
 
 
 985	}
 
 986	/*
 987	 * Move the new page to the LRU. If migration was not successful
 988	 * then this will free the page.
 
 989	 */
 990	putback_lru_page(newpage);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 991	if (result) {
 992		if (rc)
 993			*result = rc;
 994		else
 995			*result = page_to_nid(newpage);
 996	}
 997	return rc;
 998}
 999
1000/*
1001 * Counterpart of unmap_and_move_page() for hugepage migration.
1002 *
1003 * This function doesn't wait the completion of hugepage I/O
1004 * because there is no race between I/O and migration for hugepage.
1005 * Note that currently hugepage I/O occurs only in direct I/O
1006 * where no lock is held and PG_writeback is irrelevant,
1007 * and writeback status of all subpages are counted in the reference
1008 * count of the head page (i.e. if all subpages of a 2MB hugepage are
1009 * under direct I/O, the reference of the head page is 512 and a bit more.)
1010 * This means that when we try to migrate hugepage whose subpages are
1011 * doing direct I/O, some references remain after try_to_unmap() and
1012 * hugepage migration fails without data corruption.
1013 *
1014 * There is also no race when direct I/O is issued on the page under migration,
1015 * because then pte is replaced with migration swap entry and direct I/O code
1016 * will wait in the page fault for migration to complete.
1017 */
1018static int unmap_and_move_huge_page(new_page_t get_new_page,
1019				unsigned long private, struct page *hpage,
1020				int force, enum migrate_mode mode)
 
1021{
1022	int rc = 0;
1023	int *result = NULL;
 
1024	struct page *new_hpage;
1025	struct anon_vma *anon_vma = NULL;
1026
1027	/*
1028	 * Movability of hugepages depends on architectures and hugepage size.
1029	 * This check is necessary because some callers of hugepage migration
1030	 * like soft offline and memory hotremove don't walk through page
1031	 * tables or check whether the hugepage is pmd-based or not before
1032	 * kicking migration.
1033	 */
1034	if (!hugepage_migration_support(page_hstate(hpage))) {
1035		putback_active_hugepage(hpage);
1036		return -ENOSYS;
1037	}
1038
1039	new_hpage = get_new_page(hpage, private, &result);
1040	if (!new_hpage)
1041		return -ENOMEM;
1042
1043	rc = -EAGAIN;
1044
1045	if (!trylock_page(hpage)) {
1046		if (!force || mode != MIGRATE_SYNC)
1047			goto out;
1048		lock_page(hpage);
1049	}
1050
1051	if (PageAnon(hpage))
1052		anon_vma = page_get_anon_vma(hpage);
1053
1054	try_to_unmap(hpage, TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
 
 
 
 
 
 
 
1055
1056	if (!page_mapped(hpage))
1057		rc = move_to_new_page(new_hpage, hpage, 1, mode);
 
 
 
 
1058
1059	if (rc)
1060		remove_migration_ptes(hpage, hpage);
1061
 
1062	if (anon_vma)
1063		put_anon_vma(anon_vma);
1064
1065	if (!rc)
1066		hugetlb_cgroup_migrate(hpage, new_hpage);
 
 
 
1067
1068	unlock_page(hpage);
1069out:
1070	if (rc != -EAGAIN)
1071		putback_active_hugepage(hpage);
1072	put_page(new_hpage);
 
 
 
 
 
 
 
 
 
 
1073	if (result) {
1074		if (rc)
1075			*result = rc;
1076		else
1077			*result = page_to_nid(new_hpage);
1078	}
1079	return rc;
1080}
1081
1082/*
1083 * migrate_pages - migrate the pages specified in a list, to the free pages
1084 *		   supplied as the target for the page migration
1085 *
1086 * @from:		The list of pages to be migrated.
1087 * @get_new_page:	The function used to allocate free pages to be used
1088 *			as the target of the page migration.
 
 
1089 * @private:		Private data to be passed on to get_new_page()
1090 * @mode:		The migration mode that specifies the constraints for
1091 *			page migration, if any.
1092 * @reason:		The reason for page migration.
1093 *
1094 * The function returns after 10 attempts or if no pages are movable any more
1095 * because the list has become empty or no retryable pages exist any more.
1096 * The caller should call putback_lru_pages() to return pages to the LRU
1097 * or free list only if ret != 0.
1098 *
1099 * Returns the number of pages that were not migrated, or an error code.
1100 */
1101int migrate_pages(struct list_head *from, new_page_t get_new_page,
1102		unsigned long private, enum migrate_mode mode, int reason)
 
1103{
1104	int retry = 1;
1105	int nr_failed = 0;
1106	int nr_succeeded = 0;
1107	int pass = 0;
1108	struct page *page;
1109	struct page *page2;
1110	int swapwrite = current->flags & PF_SWAPWRITE;
1111	int rc;
1112
1113	if (!swapwrite)
1114		current->flags |= PF_SWAPWRITE;
1115
1116	for(pass = 0; pass < 10 && retry; pass++) {
1117		retry = 0;
1118
1119		list_for_each_entry_safe(page, page2, from, lru) {
1120			cond_resched();
1121
1122			if (PageHuge(page))
1123				rc = unmap_and_move_huge_page(get_new_page,
1124						private, page, pass > 2, mode);
 
1125			else
1126				rc = unmap_and_move(get_new_page, private,
1127						page, pass > 2, mode);
 
1128
1129			switch(rc) {
1130			case -ENOMEM:
 
1131				goto out;
1132			case -EAGAIN:
1133				retry++;
1134				break;
1135			case MIGRATEPAGE_SUCCESS:
1136				nr_succeeded++;
1137				break;
1138			default:
1139				/*
1140				 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1141				 * unlike -EAGAIN case, the failed page is
1142				 * removed from migration page list and not
1143				 * retried in the next outer loop.
1144				 */
1145				nr_failed++;
1146				break;
1147			}
1148		}
1149	}
1150	rc = nr_failed + retry;
 
1151out:
1152	if (nr_succeeded)
1153		count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1154	if (nr_failed)
1155		count_vm_events(PGMIGRATE_FAIL, nr_failed);
1156	trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1157
1158	if (!swapwrite)
1159		current->flags &= ~PF_SWAPWRITE;
1160
1161	return rc;
1162}
1163
1164#ifdef CONFIG_NUMA
1165/*
1166 * Move a list of individual pages
1167 */
1168struct page_to_node {
1169	unsigned long addr;
1170	struct page *page;
1171	int node;
1172	int status;
1173};
1174
1175static struct page *new_page_node(struct page *p, unsigned long private,
1176		int **result)
1177{
1178	struct page_to_node *pm = (struct page_to_node *)private;
1179
1180	while (pm->node != MAX_NUMNODES && pm->page != p)
1181		pm++;
1182
1183	if (pm->node == MAX_NUMNODES)
1184		return NULL;
1185
1186	*result = &pm->status;
1187
1188	if (PageHuge(p))
1189		return alloc_huge_page_node(page_hstate(compound_head(p)),
1190					pm->node);
1191	else
1192		return alloc_pages_exact_node(pm->node,
1193				GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 0);
1194}
1195
1196/*
1197 * Move a set of pages as indicated in the pm array. The addr
1198 * field must be set to the virtual address of the page to be moved
1199 * and the node number must contain a valid target node.
1200 * The pm array ends with node = MAX_NUMNODES.
1201 */
1202static int do_move_page_to_node_array(struct mm_struct *mm,
1203				      struct page_to_node *pm,
1204				      int migrate_all)
1205{
1206	int err;
1207	struct page_to_node *pp;
1208	LIST_HEAD(pagelist);
1209
1210	down_read(&mm->mmap_sem);
1211
1212	/*
1213	 * Build a list of pages to migrate
1214	 */
1215	for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
1216		struct vm_area_struct *vma;
1217		struct page *page;
1218
1219		err = -EFAULT;
1220		vma = find_vma(mm, pp->addr);
1221		if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma))
1222			goto set_status;
1223
1224		page = follow_page(vma, pp->addr, FOLL_GET|FOLL_SPLIT);
 
 
1225
1226		err = PTR_ERR(page);
1227		if (IS_ERR(page))
1228			goto set_status;
1229
1230		err = -ENOENT;
1231		if (!page)
1232			goto set_status;
1233
1234		/* Use PageReserved to check for zero page */
1235		if (PageReserved(page))
1236			goto put_and_set;
1237
1238		pp->page = page;
1239		err = page_to_nid(page);
1240
1241		if (err == pp->node)
1242			/*
1243			 * Node already in the right place
1244			 */
1245			goto put_and_set;
1246
1247		err = -EACCES;
1248		if (page_mapcount(page) > 1 &&
1249				!migrate_all)
1250			goto put_and_set;
1251
1252		if (PageHuge(page)) {
1253			isolate_huge_page(page, &pagelist);
 
1254			goto put_and_set;
1255		}
1256
1257		err = isolate_lru_page(page);
1258		if (!err) {
1259			list_add_tail(&page->lru, &pagelist);
1260			inc_zone_page_state(page, NR_ISOLATED_ANON +
1261					    page_is_file_cache(page));
1262		}
1263put_and_set:
1264		/*
1265		 * Either remove the duplicate refcount from
1266		 * isolate_lru_page() or drop the page ref if it was
1267		 * not isolated.
1268		 */
1269		put_page(page);
1270set_status:
1271		pp->status = err;
1272	}
1273
1274	err = 0;
1275	if (!list_empty(&pagelist)) {
1276		err = migrate_pages(&pagelist, new_page_node,
1277				(unsigned long)pm, MIGRATE_SYNC, MR_SYSCALL);
1278		if (err)
1279			putback_movable_pages(&pagelist);
1280	}
1281
1282	up_read(&mm->mmap_sem);
1283	return err;
1284}
1285
1286/*
1287 * Migrate an array of page address onto an array of nodes and fill
1288 * the corresponding array of status.
1289 */
1290static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1291			 unsigned long nr_pages,
1292			 const void __user * __user *pages,
1293			 const int __user *nodes,
1294			 int __user *status, int flags)
1295{
1296	struct page_to_node *pm;
1297	unsigned long chunk_nr_pages;
1298	unsigned long chunk_start;
1299	int err;
1300
1301	err = -ENOMEM;
1302	pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
1303	if (!pm)
1304		goto out;
1305
1306	migrate_prep();
1307
1308	/*
1309	 * Store a chunk of page_to_node array in a page,
1310	 * but keep the last one as a marker
1311	 */
1312	chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
1313
1314	for (chunk_start = 0;
1315	     chunk_start < nr_pages;
1316	     chunk_start += chunk_nr_pages) {
1317		int j;
1318
1319		if (chunk_start + chunk_nr_pages > nr_pages)
1320			chunk_nr_pages = nr_pages - chunk_start;
1321
1322		/* fill the chunk pm with addrs and nodes from user-space */
1323		for (j = 0; j < chunk_nr_pages; j++) {
1324			const void __user *p;
1325			int node;
1326
1327			err = -EFAULT;
1328			if (get_user(p, pages + j + chunk_start))
1329				goto out_pm;
1330			pm[j].addr = (unsigned long) p;
1331
1332			if (get_user(node, nodes + j + chunk_start))
1333				goto out_pm;
1334
1335			err = -ENODEV;
1336			if (node < 0 || node >= MAX_NUMNODES)
1337				goto out_pm;
1338
1339			if (!node_state(node, N_MEMORY))
1340				goto out_pm;
1341
1342			err = -EACCES;
1343			if (!node_isset(node, task_nodes))
1344				goto out_pm;
1345
1346			pm[j].node = node;
1347		}
1348
1349		/* End marker for this chunk */
1350		pm[chunk_nr_pages].node = MAX_NUMNODES;
1351
1352		/* Migrate this chunk */
1353		err = do_move_page_to_node_array(mm, pm,
1354						 flags & MPOL_MF_MOVE_ALL);
1355		if (err < 0)
1356			goto out_pm;
1357
1358		/* Return status information */
1359		for (j = 0; j < chunk_nr_pages; j++)
1360			if (put_user(pm[j].status, status + j + chunk_start)) {
1361				err = -EFAULT;
1362				goto out_pm;
1363			}
1364	}
1365	err = 0;
1366
1367out_pm:
1368	free_page((unsigned long)pm);
1369out:
1370	return err;
1371}
1372
1373/*
1374 * Determine the nodes of an array of pages and store it in an array of status.
1375 */
1376static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1377				const void __user **pages, int *status)
1378{
1379	unsigned long i;
1380
1381	down_read(&mm->mmap_sem);
1382
1383	for (i = 0; i < nr_pages; i++) {
1384		unsigned long addr = (unsigned long)(*pages);
1385		struct vm_area_struct *vma;
1386		struct page *page;
1387		int err = -EFAULT;
1388
1389		vma = find_vma(mm, addr);
1390		if (!vma || addr < vma->vm_start)
1391			goto set_status;
1392
1393		page = follow_page(vma, addr, 0);
 
1394
1395		err = PTR_ERR(page);
1396		if (IS_ERR(page))
1397			goto set_status;
1398
1399		err = -ENOENT;
1400		/* Use PageReserved to check for zero page */
1401		if (!page || PageReserved(page))
1402			goto set_status;
1403
1404		err = page_to_nid(page);
1405set_status:
1406		*status = err;
1407
1408		pages++;
1409		status++;
1410	}
1411
1412	up_read(&mm->mmap_sem);
1413}
1414
1415/*
1416 * Determine the nodes of a user array of pages and store it in
1417 * a user array of status.
1418 */
1419static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1420			 const void __user * __user *pages,
1421			 int __user *status)
1422{
1423#define DO_PAGES_STAT_CHUNK_NR 16
1424	const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1425	int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1426
1427	while (nr_pages) {
1428		unsigned long chunk_nr;
1429
1430		chunk_nr = nr_pages;
1431		if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1432			chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1433
1434		if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1435			break;
1436
1437		do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1438
1439		if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1440			break;
1441
1442		pages += chunk_nr;
1443		status += chunk_nr;
1444		nr_pages -= chunk_nr;
1445	}
1446	return nr_pages ? -EFAULT : 0;
1447}
1448
1449/*
1450 * Move a list of pages in the address space of the currently executing
1451 * process.
1452 */
1453SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1454		const void __user * __user *, pages,
1455		const int __user *, nodes,
1456		int __user *, status, int, flags)
1457{
1458	const struct cred *cred = current_cred(), *tcred;
1459	struct task_struct *task;
1460	struct mm_struct *mm;
1461	int err;
1462	nodemask_t task_nodes;
1463
1464	/* Check flags */
1465	if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1466		return -EINVAL;
1467
1468	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1469		return -EPERM;
1470
1471	/* Find the mm_struct */
1472	rcu_read_lock();
1473	task = pid ? find_task_by_vpid(pid) : current;
1474	if (!task) {
1475		rcu_read_unlock();
1476		return -ESRCH;
1477	}
1478	get_task_struct(task);
1479
1480	/*
1481	 * Check if this process has the right to modify the specified
1482	 * process. The right exists if the process has administrative
1483	 * capabilities, superuser privileges or the same
1484	 * userid as the target process.
1485	 */
1486	tcred = __task_cred(task);
1487	if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1488	    !uid_eq(cred->uid,  tcred->suid) && !uid_eq(cred->uid,  tcred->uid) &&
1489	    !capable(CAP_SYS_NICE)) {
1490		rcu_read_unlock();
1491		err = -EPERM;
1492		goto out;
1493	}
1494	rcu_read_unlock();
1495
1496 	err = security_task_movememory(task);
1497 	if (err)
1498		goto out;
1499
1500	task_nodes = cpuset_mems_allowed(task);
1501	mm = get_task_mm(task);
1502	put_task_struct(task);
1503
1504	if (!mm)
1505		return -EINVAL;
1506
1507	if (nodes)
1508		err = do_pages_move(mm, task_nodes, nr_pages, pages,
1509				    nodes, status, flags);
1510	else
1511		err = do_pages_stat(mm, nr_pages, pages, status);
1512
1513	mmput(mm);
1514	return err;
1515
1516out:
1517	put_task_struct(task);
1518	return err;
1519}
1520
1521/*
1522 * Call migration functions in the vma_ops that may prepare
1523 * memory in a vm for migration. migration functions may perform
1524 * the migration for vmas that do not have an underlying page struct.
1525 */
1526int migrate_vmas(struct mm_struct *mm, const nodemask_t *to,
1527	const nodemask_t *from, unsigned long flags)
1528{
1529 	struct vm_area_struct *vma;
1530 	int err = 0;
1531
1532	for (vma = mm->mmap; vma && !err; vma = vma->vm_next) {
1533 		if (vma->vm_ops && vma->vm_ops->migrate) {
1534 			err = vma->vm_ops->migrate(vma, to, from, flags);
1535 			if (err)
1536 				break;
1537 		}
1538 	}
1539 	return err;
1540}
1541
1542#ifdef CONFIG_NUMA_BALANCING
1543/*
1544 * Returns true if this is a safe migration target node for misplaced NUMA
1545 * pages. Currently it only checks the watermarks which crude
1546 */
1547static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1548				   unsigned long nr_migrate_pages)
1549{
1550	int z;
 
 
 
 
1551	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1552		struct zone *zone = pgdat->node_zones + z;
1553
1554		if (!populated_zone(zone))
1555			continue;
1556
1557		if (!zone_reclaimable(zone))
1558			continue;
1559
1560		/* Avoid waking kswapd by allocating pages_to_migrate pages. */
1561		if (!zone_watermark_ok(zone, 0,
1562				       high_wmark_pages(zone) +
1563				       nr_migrate_pages,
1564				       0, 0))
1565			continue;
1566		return true;
1567	}
1568	return false;
1569}
1570
1571static struct page *alloc_misplaced_dst_page(struct page *page,
1572					   unsigned long data,
1573					   int **result)
1574{
1575	int nid = (int) data;
1576	struct page *newpage;
1577
1578	newpage = alloc_pages_exact_node(nid,
1579					 (GFP_HIGHUSER_MOVABLE |
1580					  __GFP_THISNODE | __GFP_NOMEMALLOC |
1581					  __GFP_NORETRY | __GFP_NOWARN) &
1582					 ~GFP_IOFS, 0);
1583
1584	return newpage;
1585}
1586
1587/*
1588 * page migration rate limiting control.
1589 * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs
1590 * window of time. Default here says do not migrate more than 1280M per second.
1591 * If a node is rate-limited then PTE NUMA updates are also rate-limited. However
1592 * as it is faults that reset the window, pte updates will happen unconditionally
1593 * if there has not been a fault since @pteupdate_interval_millisecs after the
1594 * throttle window closed.
1595 */
1596static unsigned int migrate_interval_millisecs __read_mostly = 100;
1597static unsigned int pteupdate_interval_millisecs __read_mostly = 1000;
1598static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT);
1599
1600/* Returns true if NUMA migration is currently rate limited */
1601bool migrate_ratelimited(int node)
1602{
1603	pg_data_t *pgdat = NODE_DATA(node);
1604
1605	if (time_after(jiffies, pgdat->numabalancing_migrate_next_window +
1606				msecs_to_jiffies(pteupdate_interval_millisecs)))
1607		return false;
1608
1609	if (pgdat->numabalancing_migrate_nr_pages < ratelimit_pages)
1610		return false;
1611
1612	return true;
1613}
1614
1615/* Returns true if the node is migrate rate-limited after the update */
1616static bool numamigrate_update_ratelimit(pg_data_t *pgdat,
1617					unsigned long nr_pages)
1618{
1619	/*
1620	 * Rate-limit the amount of data that is being migrated to a node.
1621	 * Optimal placement is no good if the memory bus is saturated and
1622	 * all the time is being spent migrating!
1623	 */
1624	if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) {
1625		spin_lock(&pgdat->numabalancing_migrate_lock);
1626		pgdat->numabalancing_migrate_nr_pages = 0;
1627		pgdat->numabalancing_migrate_next_window = jiffies +
1628			msecs_to_jiffies(migrate_interval_millisecs);
1629		spin_unlock(&pgdat->numabalancing_migrate_lock);
1630	}
1631	if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages) {
1632		trace_mm_numa_migrate_ratelimit(current, pgdat->node_id,
1633								nr_pages);
1634		return true;
1635	}
1636
1637	/*
1638	 * This is an unlocked non-atomic update so errors are possible.
1639	 * The consequences are failing to migrate when we potentiall should
1640	 * have which is not severe enough to warrant locking. If it is ever
1641	 * a problem, it can be converted to a per-cpu counter.
1642	 */
1643	pgdat->numabalancing_migrate_nr_pages += nr_pages;
1644	return false;
1645}
1646
1647static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1648{
1649	int page_lru;
1650
1651	VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
1652
1653	/* Avoid migrating to a node that is nearly full */
1654	if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
1655		return 0;
1656
1657	if (isolate_lru_page(page))
1658		return 0;
1659
1660	/*
1661	 * migrate_misplaced_transhuge_page() skips page migration's usual
1662	 * check on page_count(), so we must do it here, now that the page
1663	 * has been isolated: a GUP pin, or any other pin, prevents migration.
1664	 * The expected page count is 3: 1 for page's mapcount and 1 for the
1665	 * caller's pin and 1 for the reference taken by isolate_lru_page().
1666	 */
1667	if (PageTransHuge(page) && page_count(page) != 3) {
1668		putback_lru_page(page);
1669		return 0;
1670	}
1671
1672	page_lru = page_is_file_cache(page);
1673	mod_zone_page_state(page_zone(page), NR_ISOLATED_ANON + page_lru,
1674				hpage_nr_pages(page));
1675
1676	/*
1677	 * Isolating the page has taken another reference, so the
1678	 * caller's reference can be safely dropped without the page
1679	 * disappearing underneath us during migration.
1680	 */
1681	put_page(page);
1682	return 1;
1683}
1684
1685bool pmd_trans_migrating(pmd_t pmd)
1686{
1687	struct page *page = pmd_page(pmd);
1688	return PageLocked(page);
1689}
1690
1691void wait_migrate_huge_page(struct anon_vma *anon_vma, pmd_t *pmd)
1692{
1693	struct page *page = pmd_page(*pmd);
1694	wait_on_page_locked(page);
1695}
1696
1697/*
1698 * Attempt to migrate a misplaced page to the specified destination
1699 * node. Caller is expected to have an elevated reference count on
1700 * the page that will be dropped by this function before returning.
1701 */
1702int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1703			   int node)
1704{
1705	pg_data_t *pgdat = NODE_DATA(node);
1706	int isolated;
1707	int nr_remaining;
1708	LIST_HEAD(migratepages);
1709
1710	/*
1711	 * Don't migrate file pages that are mapped in multiple processes
1712	 * with execute permissions as they are probably shared libraries.
1713	 */
1714	if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
1715	    (vma->vm_flags & VM_EXEC))
1716		goto out;
1717
1718	/*
1719	 * Rate-limit the amount of data that is being migrated to a node.
1720	 * Optimal placement is no good if the memory bus is saturated and
1721	 * all the time is being spent migrating!
1722	 */
1723	if (numamigrate_update_ratelimit(pgdat, 1))
1724		goto out;
1725
1726	isolated = numamigrate_isolate_page(pgdat, page);
1727	if (!isolated)
1728		goto out;
1729
1730	list_add(&page->lru, &migratepages);
1731	nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
1732				     node, MIGRATE_ASYNC, MR_NUMA_MISPLACED);
 
1733	if (nr_remaining) {
1734		if (!list_empty(&migratepages)) {
1735			list_del(&page->lru);
1736			dec_zone_page_state(page, NR_ISOLATED_ANON +
1737					page_is_file_cache(page));
1738			putback_lru_page(page);
1739		}
1740		isolated = 0;
1741	} else
1742		count_vm_numa_event(NUMA_PAGE_MIGRATE);
1743	BUG_ON(!list_empty(&migratepages));
1744	return isolated;
1745
1746out:
1747	put_page(page);
1748	return 0;
1749}
1750#endif /* CONFIG_NUMA_BALANCING */
1751
1752#if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1753/*
1754 * Migrates a THP to a given target node. page must be locked and is unlocked
1755 * before returning.
1756 */
1757int migrate_misplaced_transhuge_page(struct mm_struct *mm,
1758				struct vm_area_struct *vma,
1759				pmd_t *pmd, pmd_t entry,
1760				unsigned long address,
1761				struct page *page, int node)
1762{
1763	spinlock_t *ptl;
1764	pg_data_t *pgdat = NODE_DATA(node);
1765	int isolated = 0;
1766	struct page *new_page = NULL;
1767	struct mem_cgroup *memcg = NULL;
1768	int page_lru = page_is_file_cache(page);
1769	unsigned long mmun_start = address & HPAGE_PMD_MASK;
1770	unsigned long mmun_end = mmun_start + HPAGE_PMD_SIZE;
1771	pmd_t orig_entry;
1772
1773	/*
1774	 * Rate-limit the amount of data that is being migrated to a node.
1775	 * Optimal placement is no good if the memory bus is saturated and
1776	 * all the time is being spent migrating!
1777	 */
1778	if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR))
1779		goto out_dropref;
1780
1781	new_page = alloc_pages_node(node,
1782		(GFP_TRANSHUGE | __GFP_THISNODE) & ~__GFP_WAIT,
1783		HPAGE_PMD_ORDER);
1784	if (!new_page)
1785		goto out_fail;
 
1786
1787	isolated = numamigrate_isolate_page(pgdat, page);
1788	if (!isolated) {
1789		put_page(new_page);
1790		goto out_fail;
1791	}
1792
 
 
 
1793	if (mm_tlb_flush_pending(mm))
1794		flush_tlb_range(vma, mmun_start, mmun_end);
1795
1796	/* Prepare a page as a migration target */
1797	__set_page_locked(new_page);
1798	SetPageSwapBacked(new_page);
1799
1800	/* anon mapping, we can simply copy page->mapping to the new page: */
1801	new_page->mapping = page->mapping;
1802	new_page->index = page->index;
1803	migrate_page_copy(new_page, page);
1804	WARN_ON(PageLRU(new_page));
1805
1806	/* Recheck the target PMD */
1807	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1808	ptl = pmd_lock(mm, pmd);
1809	if (unlikely(!pmd_same(*pmd, entry) || page_count(page) != 2)) {
1810fail_putback:
1811		spin_unlock(ptl);
1812		mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1813
1814		/* Reverse changes made by migrate_page_copy() */
1815		if (TestClearPageActive(new_page))
1816			SetPageActive(page);
1817		if (TestClearPageUnevictable(new_page))
1818			SetPageUnevictable(page);
1819		mlock_migrate_page(page, new_page);
1820
1821		unlock_page(new_page);
1822		put_page(new_page);		/* Free it */
1823
1824		/* Retake the callers reference and putback on LRU */
1825		get_page(page);
1826		putback_lru_page(page);
1827		mod_zone_page_state(page_zone(page),
1828			 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
1829
1830		goto out_unlock;
1831	}
1832
1833	/*
1834	 * Traditional migration needs to prepare the memcg charge
1835	 * transaction early to prevent the old page from being
1836	 * uncharged when installing migration entries.  Here we can
1837	 * save the potential rollback and start the charge transfer
1838	 * only when migration is already known to end successfully.
1839	 */
1840	mem_cgroup_prepare_migration(page, new_page, &memcg);
1841
1842	orig_entry = *pmd;
1843	entry = mk_pmd(new_page, vma->vm_page_prot);
1844	entry = pmd_mkhuge(entry);
1845	entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1846
1847	/*
1848	 * Clear the old entry under pagetable lock and establish the new PTE.
1849	 * Any parallel GUP will either observe the old page blocking on the
1850	 * page lock, block on the page table lock or observe the new page.
1851	 * The SetPageUptodate on the new page and page_add_new_anon_rmap
1852	 * guarantee the copy is visible before the pagetable update.
1853	 */
1854	flush_cache_range(vma, mmun_start, mmun_end);
1855	page_add_new_anon_rmap(new_page, vma, mmun_start);
1856	pmdp_clear_flush(vma, mmun_start, pmd);
1857	set_pmd_at(mm, mmun_start, pmd, entry);
1858	flush_tlb_range(vma, mmun_start, mmun_end);
1859	update_mmu_cache_pmd(vma, address, &entry);
1860
1861	if (page_count(page) != 2) {
1862		set_pmd_at(mm, mmun_start, pmd, orig_entry);
1863		flush_tlb_range(vma, mmun_start, mmun_end);
 
1864		update_mmu_cache_pmd(vma, address, &entry);
1865		page_remove_rmap(new_page);
1866		goto fail_putback;
1867	}
1868
1869	page_remove_rmap(page);
 
 
1870
1871	/*
1872	 * Finish the charge transaction under the page table lock to
1873	 * prevent split_huge_page() from dividing up the charge
1874	 * before it's fully transferred to the new page.
1875	 */
1876	mem_cgroup_end_migration(memcg, page, new_page, true);
1877	spin_unlock(ptl);
1878	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1879
 
 
 
 
1880	unlock_page(new_page);
1881	unlock_page(page);
1882	put_page(page);			/* Drop the rmap reference */
1883	put_page(page);			/* Drop the LRU isolation reference */
1884
1885	count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
1886	count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
1887
1888	mod_zone_page_state(page_zone(page),
1889			NR_ISOLATED_ANON + page_lru,
1890			-HPAGE_PMD_NR);
1891	return isolated;
1892
1893out_fail:
1894	count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
1895out_dropref:
1896	ptl = pmd_lock(mm, pmd);
1897	if (pmd_same(*pmd, entry)) {
1898		entry = pmd_mknonnuma(entry);
1899		set_pmd_at(mm, mmun_start, pmd, entry);
1900		update_mmu_cache_pmd(vma, address, &entry);
1901	}
1902	spin_unlock(ptl);
1903
1904out_unlock:
1905	unlock_page(page);
1906	put_page(page);
1907	return 0;
1908}
1909#endif /* CONFIG_NUMA_BALANCING */
1910
1911#endif /* CONFIG_NUMA */
v4.10.11
   1/*
   2 * Memory Migration functionality - linux/mm/migrate.c
   3 *
   4 * Copyright (C) 2006 Silicon Graphics, Inc., Christoph Lameter
   5 *
   6 * Page migration was first developed in the context of the memory hotplug
   7 * project. The main authors of the migration code are:
   8 *
   9 * IWAMOTO Toshihiro <iwamoto@valinux.co.jp>
  10 * Hirokazu Takahashi <taka@valinux.co.jp>
  11 * Dave Hansen <haveblue@us.ibm.com>
  12 * Christoph Lameter
  13 */
  14
  15#include <linux/migrate.h>
  16#include <linux/export.h>
  17#include <linux/swap.h>
  18#include <linux/swapops.h>
  19#include <linux/pagemap.h>
  20#include <linux/buffer_head.h>
  21#include <linux/mm_inline.h>
  22#include <linux/nsproxy.h>
  23#include <linux/pagevec.h>
  24#include <linux/ksm.h>
  25#include <linux/rmap.h>
  26#include <linux/topology.h>
  27#include <linux/cpu.h>
  28#include <linux/cpuset.h>
  29#include <linux/writeback.h>
  30#include <linux/mempolicy.h>
  31#include <linux/vmalloc.h>
  32#include <linux/security.h>
  33#include <linux/backing-dev.h>
  34#include <linux/compaction.h>
  35#include <linux/syscalls.h>
  36#include <linux/hugetlb.h>
  37#include <linux/hugetlb_cgroup.h>
  38#include <linux/gfp.h>
  39#include <linux/balloon_compaction.h>
  40#include <linux/mmu_notifier.h>
  41#include <linux/page_idle.h>
  42#include <linux/page_owner.h>
  43
  44#include <asm/tlbflush.h>
  45
  46#define CREATE_TRACE_POINTS
  47#include <trace/events/migrate.h>
  48
  49#include "internal.h"
  50
  51/*
  52 * migrate_prep() needs to be called before we start compiling a list of pages
  53 * to be migrated using isolate_lru_page(). If scheduling work on other CPUs is
  54 * undesirable, use migrate_prep_local()
  55 */
  56int migrate_prep(void)
  57{
  58	/*
  59	 * Clear the LRU lists so pages can be isolated.
  60	 * Note that pages may be moved off the LRU after we have
  61	 * drained them. Those pages will fail to migrate like other
  62	 * pages that may be busy.
  63	 */
  64	lru_add_drain_all();
  65
  66	return 0;
  67}
  68
  69/* Do the necessary work of migrate_prep but not if it involves other CPUs */
  70int migrate_prep_local(void)
  71{
  72	lru_add_drain();
  73
  74	return 0;
  75}
  76
  77bool isolate_movable_page(struct page *page, isolate_mode_t mode)
  78{
  79	struct address_space *mapping;
  80
  81	/*
  82	 * Avoid burning cycles with pages that are yet under __free_pages(),
  83	 * or just got freed under us.
  84	 *
  85	 * In case we 'win' a race for a movable page being freed under us and
  86	 * raise its refcount preventing __free_pages() from doing its job
  87	 * the put_page() at the end of this block will take care of
  88	 * release this page, thus avoiding a nasty leakage.
  89	 */
  90	if (unlikely(!get_page_unless_zero(page)))
  91		goto out;
  92
  93	/*
  94	 * Check PageMovable before holding a PG_lock because page's owner
  95	 * assumes anybody doesn't touch PG_lock of newly allocated page
  96	 * so unconditionally grapping the lock ruins page's owner side.
  97	 */
  98	if (unlikely(!__PageMovable(page)))
  99		goto out_putpage;
 100	/*
 101	 * As movable pages are not isolated from LRU lists, concurrent
 102	 * compaction threads can race against page migration functions
 103	 * as well as race against the releasing a page.
 104	 *
 105	 * In order to avoid having an already isolated movable page
 106	 * being (wrongly) re-isolated while it is under migration,
 107	 * or to avoid attempting to isolate pages being released,
 108	 * lets be sure we have the page lock
 109	 * before proceeding with the movable page isolation steps.
 110	 */
 111	if (unlikely(!trylock_page(page)))
 112		goto out_putpage;
 113
 114	if (!PageMovable(page) || PageIsolated(page))
 115		goto out_no_isolated;
 116
 117	mapping = page_mapping(page);
 118	VM_BUG_ON_PAGE(!mapping, page);
 119
 120	if (!mapping->a_ops->isolate_page(page, mode))
 121		goto out_no_isolated;
 122
 123	/* Driver shouldn't use PG_isolated bit of page->flags */
 124	WARN_ON_ONCE(PageIsolated(page));
 125	__SetPageIsolated(page);
 126	unlock_page(page);
 127
 128	return true;
 129
 130out_no_isolated:
 131	unlock_page(page);
 132out_putpage:
 133	put_page(page);
 134out:
 135	return false;
 136}
 137
 138/* It should be called on page which is PG_movable */
 139void putback_movable_page(struct page *page)
 140{
 141	struct address_space *mapping;
 142
 143	VM_BUG_ON_PAGE(!PageLocked(page), page);
 144	VM_BUG_ON_PAGE(!PageMovable(page), page);
 145	VM_BUG_ON_PAGE(!PageIsolated(page), page);
 146
 147	mapping = page_mapping(page);
 148	mapping->a_ops->putback_page(page);
 149	__ClearPageIsolated(page);
 150}
 151
 152/*
 153 * Put previously isolated pages back onto the appropriate lists
 154 * from where they were once taken off for compaction/migration.
 155 *
 156 * This function shall be used whenever the isolated pageset has been
 157 * built from lru, balloon, hugetlbfs page. See isolate_migratepages_range()
 158 * and isolate_huge_page().
 159 */
 160void putback_movable_pages(struct list_head *l)
 161{
 162	struct page *page;
 163	struct page *page2;
 164
 165	list_for_each_entry_safe(page, page2, l, lru) {
 166		if (unlikely(PageHuge(page))) {
 167			putback_active_hugepage(page);
 168			continue;
 169		}
 170		list_del(&page->lru);
 171		/*
 172		 * We isolated non-lru movable page so here we can use
 173		 * __PageMovable because LRU page's mapping cannot have
 174		 * PAGE_MAPPING_MOVABLE.
 175		 */
 176		if (unlikely(__PageMovable(page))) {
 177			VM_BUG_ON_PAGE(!PageIsolated(page), page);
 178			lock_page(page);
 179			if (PageMovable(page))
 180				putback_movable_page(page);
 181			else
 182				__ClearPageIsolated(page);
 183			unlock_page(page);
 184			put_page(page);
 185		} else {
 186			putback_lru_page(page);
 187			dec_node_page_state(page, NR_ISOLATED_ANON +
 188					page_is_file_cache(page));
 189		}
 190	}
 191}
 192
 193/*
 194 * Restore a potential migration pte to a working pte entry
 195 */
 196static int remove_migration_pte(struct page *new, struct vm_area_struct *vma,
 197				 unsigned long addr, void *old)
 198{
 199	struct mm_struct *mm = vma->vm_mm;
 200	swp_entry_t entry;
 201 	pmd_t *pmd;
 202	pte_t *ptep, pte;
 203 	spinlock_t *ptl;
 204
 205	if (unlikely(PageHuge(new))) {
 206		ptep = huge_pte_offset(mm, addr);
 207		if (!ptep)
 208			goto out;
 209		ptl = huge_pte_lockptr(hstate_vma(vma), mm, ptep);
 210	} else {
 211		pmd = mm_find_pmd(mm, addr);
 212		if (!pmd)
 213			goto out;
 
 
 214
 215		ptep = pte_offset_map(pmd, addr);
 216
 217		/*
 218		 * Peek to check is_swap_pte() before taking ptlock?  No, we
 219		 * can race mremap's move_ptes(), which skips anon_vma lock.
 220		 */
 221
 222		ptl = pte_lockptr(mm, pmd);
 223	}
 224
 225 	spin_lock(ptl);
 226	pte = *ptep;
 227	if (!is_swap_pte(pte))
 228		goto unlock;
 229
 230	entry = pte_to_swp_entry(pte);
 231
 232	if (!is_migration_entry(entry) ||
 233	    migration_entry_to_page(entry) != old)
 234		goto unlock;
 235
 236	get_page(new);
 237	pte = pte_mkold(mk_pte(new, READ_ONCE(vma->vm_page_prot)));
 238	if (pte_swp_soft_dirty(*ptep))
 239		pte = pte_mksoft_dirty(pte);
 240
 241	/* Recheck VMA as permissions can change since migration started  */
 242	if (is_write_migration_entry(entry))
 243		pte = maybe_mkwrite(pte, vma);
 244
 245#ifdef CONFIG_HUGETLB_PAGE
 246	if (PageHuge(new)) {
 247		pte = pte_mkhuge(pte);
 248		pte = arch_make_huge_pte(pte, vma, new, 0);
 249	}
 250#endif
 251	flush_dcache_page(new);
 252	set_pte_at(mm, addr, ptep, pte);
 253
 254	if (PageHuge(new)) {
 255		if (PageAnon(new))
 256			hugepage_add_anon_rmap(new, vma, addr);
 257		else
 258			page_dup_rmap(new, true);
 259	} else if (PageAnon(new))
 260		page_add_anon_rmap(new, vma, addr, false);
 261	else
 262		page_add_file_rmap(new, false);
 263
 264	if (vma->vm_flags & VM_LOCKED && !PageTransCompound(new))
 265		mlock_vma_page(new);
 266
 267	/* No need to invalidate - it was non-present before */
 268	update_mmu_cache(vma, addr, ptep);
 269unlock:
 270	pte_unmap_unlock(ptep, ptl);
 271out:
 272	return SWAP_AGAIN;
 273}
 274
 275/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 276 * Get rid of all migration entries and replace them by
 277 * references to the indicated page.
 278 */
 279void remove_migration_ptes(struct page *old, struct page *new, bool locked)
 280{
 281	struct rmap_walk_control rwc = {
 282		.rmap_one = remove_migration_pte,
 283		.arg = old,
 
 284	};
 285
 286	if (locked)
 287		rmap_walk_locked(new, &rwc);
 288	else
 289		rmap_walk(new, &rwc);
 290}
 291
 292/*
 293 * Something used the pte of a page under migration. We need to
 294 * get to the page and wait until migration is finished.
 295 * When we return from this function the fault will be retried.
 296 */
 297void __migration_entry_wait(struct mm_struct *mm, pte_t *ptep,
 298				spinlock_t *ptl)
 299{
 300	pte_t pte;
 301	swp_entry_t entry;
 302	struct page *page;
 303
 304	spin_lock(ptl);
 305	pte = *ptep;
 306	if (!is_swap_pte(pte))
 307		goto out;
 308
 309	entry = pte_to_swp_entry(pte);
 310	if (!is_migration_entry(entry))
 311		goto out;
 312
 313	page = migration_entry_to_page(entry);
 314
 315	/*
 316	 * Once radix-tree replacement of page migration started, page_count
 317	 * *must* be zero. And, we don't want to call wait_on_page_locked()
 318	 * against a page without get_page().
 319	 * So, we use get_page_unless_zero(), here. Even failed, page fault
 320	 * will occur again.
 321	 */
 322	if (!get_page_unless_zero(page))
 323		goto out;
 324	pte_unmap_unlock(ptep, ptl);
 325	wait_on_page_locked(page);
 326	put_page(page);
 327	return;
 328out:
 329	pte_unmap_unlock(ptep, ptl);
 330}
 331
 332void migration_entry_wait(struct mm_struct *mm, pmd_t *pmd,
 333				unsigned long address)
 334{
 335	spinlock_t *ptl = pte_lockptr(mm, pmd);
 336	pte_t *ptep = pte_offset_map(pmd, address);
 337	__migration_entry_wait(mm, ptep, ptl);
 338}
 339
 340void migration_entry_wait_huge(struct vm_area_struct *vma,
 341		struct mm_struct *mm, pte_t *pte)
 342{
 343	spinlock_t *ptl = huge_pte_lockptr(hstate_vma(vma), mm, pte);
 344	__migration_entry_wait(mm, pte, ptl);
 345}
 346
 347#ifdef CONFIG_BLOCK
 348/* Returns true if all buffers are successfully locked */
 349static bool buffer_migrate_lock_buffers(struct buffer_head *head,
 350							enum migrate_mode mode)
 351{
 352	struct buffer_head *bh = head;
 353
 354	/* Simple case, sync compaction */
 355	if (mode != MIGRATE_ASYNC) {
 356		do {
 357			get_bh(bh);
 358			lock_buffer(bh);
 359			bh = bh->b_this_page;
 360
 361		} while (bh != head);
 362
 363		return true;
 364	}
 365
 366	/* async case, we cannot block on lock_buffer so use trylock_buffer */
 367	do {
 368		get_bh(bh);
 369		if (!trylock_buffer(bh)) {
 370			/*
 371			 * We failed to lock the buffer and cannot stall in
 372			 * async migration. Release the taken locks
 373			 */
 374			struct buffer_head *failed_bh = bh;
 375			put_bh(failed_bh);
 376			bh = head;
 377			while (bh != failed_bh) {
 378				unlock_buffer(bh);
 379				put_bh(bh);
 380				bh = bh->b_this_page;
 381			}
 382			return false;
 383		}
 384
 385		bh = bh->b_this_page;
 386	} while (bh != head);
 387	return true;
 388}
 389#else
 390static inline bool buffer_migrate_lock_buffers(struct buffer_head *head,
 391							enum migrate_mode mode)
 392{
 393	return true;
 394}
 395#endif /* CONFIG_BLOCK */
 396
 397/*
 398 * Replace the page in the mapping.
 399 *
 400 * The number of remaining references must be:
 401 * 1 for anonymous pages without a mapping
 402 * 2 for pages with a mapping
 403 * 3 for pages with a mapping and PagePrivate/PagePrivate2 set.
 404 */
 405int migrate_page_move_mapping(struct address_space *mapping,
 406		struct page *newpage, struct page *page,
 407		struct buffer_head *head, enum migrate_mode mode,
 408		int extra_count)
 409{
 410	struct zone *oldzone, *newzone;
 411	int dirty;
 412	int expected_count = 1 + extra_count;
 413	void **pslot;
 414
 415	if (!mapping) {
 416		/* Anonymous page without mapping */
 417		if (page_count(page) != expected_count)
 418			return -EAGAIN;
 419
 420		/* No turning back from here */
 421		newpage->index = page->index;
 422		newpage->mapping = page->mapping;
 423		if (PageSwapBacked(page))
 424			__SetPageSwapBacked(newpage);
 425
 426		return MIGRATEPAGE_SUCCESS;
 427	}
 428
 429	oldzone = page_zone(page);
 430	newzone = page_zone(newpage);
 431
 432	spin_lock_irq(&mapping->tree_lock);
 433
 434	pslot = radix_tree_lookup_slot(&mapping->page_tree,
 435 					page_index(page));
 436
 437	expected_count += 1 + page_has_private(page);
 438	if (page_count(page) != expected_count ||
 439		radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
 440		spin_unlock_irq(&mapping->tree_lock);
 441		return -EAGAIN;
 442	}
 443
 444	if (!page_ref_freeze(page, expected_count)) {
 445		spin_unlock_irq(&mapping->tree_lock);
 446		return -EAGAIN;
 447	}
 448
 449	/*
 450	 * In the async migration case of moving a page with buffers, lock the
 451	 * buffers using trylock before the mapping is moved. If the mapping
 452	 * was moved, we later failed to lock the buffers and could not move
 453	 * the mapping back due to an elevated page count, we would have to
 454	 * block waiting on other references to be dropped.
 455	 */
 456	if (mode == MIGRATE_ASYNC && head &&
 457			!buffer_migrate_lock_buffers(head, mode)) {
 458		page_ref_unfreeze(page, expected_count);
 459		spin_unlock_irq(&mapping->tree_lock);
 460		return -EAGAIN;
 461	}
 462
 463	/*
 464	 * Now we know that no one else is looking at the page:
 465	 * no turning back from here.
 466	 */
 467	newpage->index = page->index;
 468	newpage->mapping = page->mapping;
 469	get_page(newpage);	/* add cache reference */
 470	if (PageSwapBacked(page)) {
 471		__SetPageSwapBacked(newpage);
 472		if (PageSwapCache(page)) {
 473			SetPageSwapCache(newpage);
 474			set_page_private(newpage, page_private(page));
 475		}
 476	} else {
 477		VM_BUG_ON_PAGE(PageSwapCache(page), page);
 478	}
 479
 480	/* Move dirty while page refs frozen and newpage not yet exposed */
 481	dirty = PageDirty(page);
 482	if (dirty) {
 483		ClearPageDirty(page);
 484		SetPageDirty(newpage);
 485	}
 486
 487	radix_tree_replace_slot(&mapping->page_tree, pslot, newpage);
 488
 489	/*
 490	 * Drop cache reference from old page by unfreezing
 491	 * to one less reference.
 492	 * We know this isn't the last reference.
 493	 */
 494	page_ref_unfreeze(page, expected_count - 1);
 495
 496	spin_unlock(&mapping->tree_lock);
 497	/* Leave irq disabled to prevent preemption while updating stats */
 498
 499	/*
 500	 * If moved to a different zone then also account
 501	 * the page for that zone. Other VM counters will be
 502	 * taken care of when we establish references to the
 503	 * new page and drop references to the old page.
 504	 *
 505	 * Note that anonymous pages are accounted for
 506	 * via NR_FILE_PAGES and NR_ANON_MAPPED if they
 507	 * are mapped to swap space.
 508	 */
 509	if (newzone != oldzone) {
 510		__dec_node_state(oldzone->zone_pgdat, NR_FILE_PAGES);
 511		__inc_node_state(newzone->zone_pgdat, NR_FILE_PAGES);
 512		if (PageSwapBacked(page) && !PageSwapCache(page)) {
 513			__dec_node_state(oldzone->zone_pgdat, NR_SHMEM);
 514			__inc_node_state(newzone->zone_pgdat, NR_SHMEM);
 515		}
 516		if (dirty && mapping_cap_account_dirty(mapping)) {
 517			__dec_node_state(oldzone->zone_pgdat, NR_FILE_DIRTY);
 518			__dec_zone_state(oldzone, NR_ZONE_WRITE_PENDING);
 519			__inc_node_state(newzone->zone_pgdat, NR_FILE_DIRTY);
 520			__inc_zone_state(newzone, NR_ZONE_WRITE_PENDING);
 521		}
 522	}
 523	local_irq_enable();
 524
 525	return MIGRATEPAGE_SUCCESS;
 526}
 527EXPORT_SYMBOL(migrate_page_move_mapping);
 528
 529/*
 530 * The expected number of remaining references is the same as that
 531 * of migrate_page_move_mapping().
 532 */
 533int migrate_huge_page_move_mapping(struct address_space *mapping,
 534				   struct page *newpage, struct page *page)
 535{
 536	int expected_count;
 537	void **pslot;
 538
 
 
 
 
 
 
 539	spin_lock_irq(&mapping->tree_lock);
 540
 541	pslot = radix_tree_lookup_slot(&mapping->page_tree,
 542					page_index(page));
 543
 544	expected_count = 2 + page_has_private(page);
 545	if (page_count(page) != expected_count ||
 546		radix_tree_deref_slot_protected(pslot, &mapping->tree_lock) != page) {
 547		spin_unlock_irq(&mapping->tree_lock);
 548		return -EAGAIN;
 549	}
 550
 551	if (!page_ref_freeze(page, expected_count)) {
 552		spin_unlock_irq(&mapping->tree_lock);
 553		return -EAGAIN;
 554	}
 555
 556	newpage->index = page->index;
 557	newpage->mapping = page->mapping;
 558
 559	get_page(newpage);
 560
 561	radix_tree_replace_slot(&mapping->page_tree, pslot, newpage);
 562
 563	page_ref_unfreeze(page, expected_count - 1);
 564
 565	spin_unlock_irq(&mapping->tree_lock);
 566
 567	return MIGRATEPAGE_SUCCESS;
 568}
 569
 570/*
 571 * Gigantic pages are so large that we do not guarantee that page++ pointer
 572 * arithmetic will work across the entire page.  We need something more
 573 * specialized.
 574 */
 575static void __copy_gigantic_page(struct page *dst, struct page *src,
 576				int nr_pages)
 577{
 578	int i;
 579	struct page *dst_base = dst;
 580	struct page *src_base = src;
 581
 582	for (i = 0; i < nr_pages; ) {
 583		cond_resched();
 584		copy_highpage(dst, src);
 585
 586		i++;
 587		dst = mem_map_next(dst, dst_base, i);
 588		src = mem_map_next(src, src_base, i);
 589	}
 590}
 591
 592static void copy_huge_page(struct page *dst, struct page *src)
 593{
 594	int i;
 595	int nr_pages;
 596
 597	if (PageHuge(src)) {
 598		/* hugetlbfs page */
 599		struct hstate *h = page_hstate(src);
 600		nr_pages = pages_per_huge_page(h);
 601
 602		if (unlikely(nr_pages > MAX_ORDER_NR_PAGES)) {
 603			__copy_gigantic_page(dst, src, nr_pages);
 604			return;
 605		}
 606	} else {
 607		/* thp page */
 608		BUG_ON(!PageTransHuge(src));
 609		nr_pages = hpage_nr_pages(src);
 610	}
 611
 612	for (i = 0; i < nr_pages; i++) {
 613		cond_resched();
 614		copy_highpage(dst + i, src + i);
 615	}
 616}
 617
 618/*
 619 * Copy the page to its new location
 620 */
 621void migrate_page_copy(struct page *newpage, struct page *page)
 622{
 623	int cpupid;
 624
 625	if (PageHuge(page) || PageTransHuge(page))
 626		copy_huge_page(newpage, page);
 627	else
 628		copy_highpage(newpage, page);
 629
 630	if (PageError(page))
 631		SetPageError(newpage);
 632	if (PageReferenced(page))
 633		SetPageReferenced(newpage);
 634	if (PageUptodate(page))
 635		SetPageUptodate(newpage);
 636	if (TestClearPageActive(page)) {
 637		VM_BUG_ON_PAGE(PageUnevictable(page), page);
 638		SetPageActive(newpage);
 639	} else if (TestClearPageUnevictable(page))
 640		SetPageUnevictable(newpage);
 641	if (PageChecked(page))
 642		SetPageChecked(newpage);
 643	if (PageMappedToDisk(page))
 644		SetPageMappedToDisk(newpage);
 645
 646	/* Move dirty on pages not done by migrate_page_move_mapping() */
 647	if (PageDirty(page))
 648		SetPageDirty(newpage);
 649
 650	if (page_is_young(page))
 651		set_page_young(newpage);
 652	if (page_is_idle(page))
 653		set_page_idle(newpage);
 
 
 
 
 
 
 654
 655	/*
 656	 * Copy NUMA information to the new page, to prevent over-eager
 657	 * future migrations of this same page.
 658	 */
 659	cpupid = page_cpupid_xchg_last(page, -1);
 660	page_cpupid_xchg_last(newpage, cpupid);
 661
 
 662	ksm_migrate_page(newpage, page);
 663	/*
 664	 * Please do not reorder this without considering how mm/ksm.c's
 665	 * get_ksm_page() depends upon ksm_migrate_page() and PageSwapCache().
 666	 */
 667	if (PageSwapCache(page))
 668		ClearPageSwapCache(page);
 669	ClearPagePrivate(page);
 670	set_page_private(page, 0);
 671
 672	/*
 673	 * If any waiters have accumulated on the new page then
 674	 * wake them up.
 675	 */
 676	if (PageWriteback(newpage))
 677		end_page_writeback(newpage);
 678
 679	copy_page_owner(page, newpage);
 680
 681	mem_cgroup_migrate(page, newpage);
 682}
 683EXPORT_SYMBOL(migrate_page_copy);
 684
 685/************************************************************
 686 *                    Migration functions
 687 ***********************************************************/
 688
 689/*
 690 * Common logic to directly migrate a single LRU page suitable for
 691 * pages that do not use PagePrivate/PagePrivate2.
 692 *
 693 * Pages are locked upon entry and exit.
 694 */
 695int migrate_page(struct address_space *mapping,
 696		struct page *newpage, struct page *page,
 697		enum migrate_mode mode)
 698{
 699	int rc;
 700
 701	BUG_ON(PageWriteback(page));	/* Writeback must be complete */
 702
 703	rc = migrate_page_move_mapping(mapping, newpage, page, NULL, mode, 0);
 704
 705	if (rc != MIGRATEPAGE_SUCCESS)
 706		return rc;
 707
 708	migrate_page_copy(newpage, page);
 709	return MIGRATEPAGE_SUCCESS;
 710}
 711EXPORT_SYMBOL(migrate_page);
 712
 713#ifdef CONFIG_BLOCK
 714/*
 715 * Migration function for pages with buffers. This function can only be used
 716 * if the underlying filesystem guarantees that no other references to "page"
 717 * exist.
 718 */
 719int buffer_migrate_page(struct address_space *mapping,
 720		struct page *newpage, struct page *page, enum migrate_mode mode)
 721{
 722	struct buffer_head *bh, *head;
 723	int rc;
 724
 725	if (!page_has_buffers(page))
 726		return migrate_page(mapping, newpage, page, mode);
 727
 728	head = page_buffers(page);
 729
 730	rc = migrate_page_move_mapping(mapping, newpage, page, head, mode, 0);
 731
 732	if (rc != MIGRATEPAGE_SUCCESS)
 733		return rc;
 734
 735	/*
 736	 * In the async case, migrate_page_move_mapping locked the buffers
 737	 * with an IRQ-safe spinlock held. In the sync case, the buffers
 738	 * need to be locked now
 739	 */
 740	if (mode != MIGRATE_ASYNC)
 741		BUG_ON(!buffer_migrate_lock_buffers(head, mode));
 742
 743	ClearPagePrivate(page);
 744	set_page_private(newpage, page_private(page));
 745	set_page_private(page, 0);
 746	put_page(page);
 747	get_page(newpage);
 748
 749	bh = head;
 750	do {
 751		set_bh_page(bh, newpage, bh_offset(bh));
 752		bh = bh->b_this_page;
 753
 754	} while (bh != head);
 755
 756	SetPagePrivate(newpage);
 757
 758	migrate_page_copy(newpage, page);
 759
 760	bh = head;
 761	do {
 762		unlock_buffer(bh);
 763 		put_bh(bh);
 764		bh = bh->b_this_page;
 765
 766	} while (bh != head);
 767
 768	return MIGRATEPAGE_SUCCESS;
 769}
 770EXPORT_SYMBOL(buffer_migrate_page);
 771#endif
 772
 773/*
 774 * Writeback a page to clean the dirty state
 775 */
 776static int writeout(struct address_space *mapping, struct page *page)
 777{
 778	struct writeback_control wbc = {
 779		.sync_mode = WB_SYNC_NONE,
 780		.nr_to_write = 1,
 781		.range_start = 0,
 782		.range_end = LLONG_MAX,
 783		.for_reclaim = 1
 784	};
 785	int rc;
 786
 787	if (!mapping->a_ops->writepage)
 788		/* No write method for the address space */
 789		return -EINVAL;
 790
 791	if (!clear_page_dirty_for_io(page))
 792		/* Someone else already triggered a write */
 793		return -EAGAIN;
 794
 795	/*
 796	 * A dirty page may imply that the underlying filesystem has
 797	 * the page on some queue. So the page must be clean for
 798	 * migration. Writeout may mean we loose the lock and the
 799	 * page state is no longer what we checked for earlier.
 800	 * At this point we know that the migration attempt cannot
 801	 * be successful.
 802	 */
 803	remove_migration_ptes(page, page, false);
 804
 805	rc = mapping->a_ops->writepage(page, &wbc);
 806
 807	if (rc != AOP_WRITEPAGE_ACTIVATE)
 808		/* unlocked. Relock */
 809		lock_page(page);
 810
 811	return (rc < 0) ? -EIO : -EAGAIN;
 812}
 813
 814/*
 815 * Default handling if a filesystem does not provide a migration function.
 816 */
 817static int fallback_migrate_page(struct address_space *mapping,
 818	struct page *newpage, struct page *page, enum migrate_mode mode)
 819{
 820	if (PageDirty(page)) {
 821		/* Only writeback pages in full synchronous migration */
 822		if (mode != MIGRATE_SYNC)
 823			return -EBUSY;
 824		return writeout(mapping, page);
 825	}
 826
 827	/*
 828	 * Buffers may be managed in a filesystem specific way.
 829	 * We must have no buffers or drop them.
 830	 */
 831	if (page_has_private(page) &&
 832	    !try_to_release_page(page, GFP_KERNEL))
 833		return -EAGAIN;
 834
 835	return migrate_page(mapping, newpage, page, mode);
 836}
 837
 838/*
 839 * Move a page to a newly allocated page
 840 * The page is locked and all ptes have been successfully removed.
 841 *
 842 * The new page will have replaced the old page if this function
 843 * is successful.
 844 *
 845 * Return value:
 846 *   < 0 - error code
 847 *  MIGRATEPAGE_SUCCESS - success
 848 */
 849static int move_to_new_page(struct page *newpage, struct page *page,
 850				enum migrate_mode mode)
 851{
 852	struct address_space *mapping;
 853	int rc = -EAGAIN;
 854	bool is_lru = !__PageMovable(page);
 
 
 
 
 
 
 
 855
 856	VM_BUG_ON_PAGE(!PageLocked(page), page);
 857	VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
 
 
 
 858
 859	mapping = page_mapping(page);
 860
 861	if (likely(is_lru)) {
 862		if (!mapping)
 863			rc = migrate_page(mapping, newpage, page, mode);
 864		else if (mapping->a_ops->migratepage)
 865			/*
 866			 * Most pages have a mapping and most filesystems
 867			 * provide a migratepage callback. Anonymous pages
 868			 * are part of swap space which also has its own
 869			 * migratepage callback. This is the most common path
 870			 * for page migration.
 871			 */
 872			rc = mapping->a_ops->migratepage(mapping, newpage,
 873							page, mode);
 874		else
 875			rc = fallback_migrate_page(mapping, newpage,
 876							page, mode);
 877	} else {
 878		/*
 879		 * In case of non-lru page, it could be released after
 880		 * isolation step. In that case, we shouldn't try migration.
 
 
 881		 */
 882		VM_BUG_ON_PAGE(!PageIsolated(page), page);
 883		if (!PageMovable(page)) {
 884			rc = MIGRATEPAGE_SUCCESS;
 885			__ClearPageIsolated(page);
 886			goto out;
 887		}
 888
 889		rc = mapping->a_ops->migratepage(mapping, newpage,
 890						page, mode);
 891		WARN_ON_ONCE(rc == MIGRATEPAGE_SUCCESS &&
 892			!PageIsolated(page));
 
 
 893	}
 894
 895	/*
 896	 * When successful, old pagecache page->mapping must be cleared before
 897	 * page is freed; but stats require that PageAnon be left as PageAnon.
 898	 */
 899	if (rc == MIGRATEPAGE_SUCCESS) {
 900		if (__PageMovable(page)) {
 901			VM_BUG_ON_PAGE(!PageIsolated(page), page);
 902
 903			/*
 904			 * We clear PG_movable under page_lock so any compactor
 905			 * cannot try to migrate this page.
 906			 */
 907			__ClearPageIsolated(page);
 908		}
 909
 910		/*
 911		 * Anonymous and movable page->mapping will be cleard by
 912		 * free_pages_prepare so don't reset it here for keeping
 913		 * the type to work PageAnon, for example.
 914		 */
 915		if (!PageMappingFlags(page))
 916			page->mapping = NULL;
 917	}
 918out:
 919	return rc;
 920}
 921
 922static int __unmap_and_move(struct page *page, struct page *newpage,
 923				int force, enum migrate_mode mode)
 924{
 925	int rc = -EAGAIN;
 926	int page_was_mapped = 0;
 
 927	struct anon_vma *anon_vma = NULL;
 928	bool is_lru = !__PageMovable(page);
 929
 930	if (!trylock_page(page)) {
 931		if (!force || mode == MIGRATE_ASYNC)
 932			goto out;
 933
 934		/*
 935		 * It's not safe for direct compaction to call lock_page.
 936		 * For example, during page readahead pages are added locked
 937		 * to the LRU. Later, when the IO completes the pages are
 938		 * marked uptodate and unlocked. However, the queueing
 939		 * could be merging multiple pages for one bio (e.g.
 940		 * mpage_readpages). If an allocation happens for the
 941		 * second or third page, the process can end up locking
 942		 * the same page twice and deadlocking. Rather than
 943		 * trying to be clever about what pages can be locked,
 944		 * avoid the use of lock_page for direct compaction
 945		 * altogether.
 946		 */
 947		if (current->flags & PF_MEMALLOC)
 948			goto out;
 949
 950		lock_page(page);
 951	}
 952
 
 
 
 953	if (PageWriteback(page)) {
 954		/*
 955		 * Only in the case of a full synchronous migration is it
 956		 * necessary to wait for PageWriteback. In the async case,
 957		 * the retry loop is too short and in the sync-light case,
 958		 * the overhead of stalling is too much
 959		 */
 960		if (mode != MIGRATE_SYNC) {
 961			rc = -EBUSY;
 962			goto out_unlock;
 963		}
 964		if (!force)
 965			goto out_unlock;
 966		wait_on_page_writeback(page);
 967	}
 968
 969	/*
 970	 * By try_to_unmap(), page->mapcount goes down to 0 here. In this case,
 971	 * we cannot notice that anon_vma is freed while we migrates a page.
 972	 * This get_anon_vma() delays freeing anon_vma pointer until the end
 973	 * of migration. File cache pages are no problem because of page_lock()
 974	 * File Caches may use write_page() or lock_page() in migration, then,
 975	 * just care Anon page here.
 976	 *
 977	 * Only page_get_anon_vma() understands the subtleties of
 978	 * getting a hold on an anon_vma from outside one of its mms.
 979	 * But if we cannot get anon_vma, then we won't need it anyway,
 980	 * because that implies that the anon page is no longer mapped
 981	 * (and cannot be remapped so long as we hold the page lock).
 982	 */
 983	if (PageAnon(page) && !PageKsm(page))
 
 
 
 
 984		anon_vma = page_get_anon_vma(page);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 985
 986	/*
 987	 * Block others from accessing the new page when we get around to
 988	 * establishing additional references. We are usually the only one
 989	 * holding a reference to newpage at this point. We used to have a BUG
 990	 * here if trylock_page(newpage) fails, but would like to allow for
 991	 * cases where there might be a race with the previous use of newpage.
 992	 * This is much like races on refcount of oldpage: just don't BUG().
 993	 */
 994	if (unlikely(!trylock_page(newpage)))
 995		goto out_unlock;
 996
 997	if (unlikely(!is_lru)) {
 998		rc = move_to_new_page(newpage, page, mode);
 999		goto out_unlock_both;
1000	}
1001
1002	/*
1003	 * Corner case handling:
1004	 * 1. When a new swap-cache page is read into, it is added to the LRU
1005	 * and treated as swapcache but it has no rmap yet.
1006	 * Calling try_to_unmap() against a page->mapping==NULL page will
1007	 * trigger a BUG.  So handle it here.
1008	 * 2. An orphaned page (see truncate_complete_page) might have
1009	 * fs-private metadata. The page can be picked up due to memory
1010	 * offlining.  Everywhere else except page reclaim, the page is
1011	 * invisible to the vm, so the page can not be migrated.  So try to
1012	 * free the metadata, so the page can be freed.
1013	 */
1014	if (!page->mapping) {
1015		VM_BUG_ON_PAGE(PageAnon(page), page);
1016		if (page_has_private(page)) {
1017			try_to_free_buffers(page);
1018			goto out_unlock_both;
1019		}
1020	} else if (page_mapped(page)) {
1021		/* Establish migration ptes */
1022		VM_BUG_ON_PAGE(PageAnon(page) && !PageKsm(page) && !anon_vma,
1023				page);
1024		try_to_unmap(page,
1025			TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1026		page_was_mapped = 1;
1027	}
1028
 
 
 
 
1029	if (!page_mapped(page))
1030		rc = move_to_new_page(newpage, page, mode);
1031
1032	if (page_was_mapped)
1033		remove_migration_ptes(page,
1034			rc == MIGRATEPAGE_SUCCESS ? newpage : page, false);
1035
1036out_unlock_both:
1037	unlock_page(newpage);
1038out_unlock:
1039	/* Drop an anon_vma reference if we took one */
1040	if (anon_vma)
1041		put_anon_vma(anon_vma);
 
 
 
 
 
1042	unlock_page(page);
1043out:
1044	/*
1045	 * If migration is successful, decrease refcount of the newpage
1046	 * which will not free the page because new page owner increased
1047	 * refcounter. As well, if it is LRU page, add the page to LRU
1048	 * list in here.
1049	 */
1050	if (rc == MIGRATEPAGE_SUCCESS) {
1051		if (unlikely(__PageMovable(newpage)))
1052			put_page(newpage);
1053		else
1054			putback_lru_page(newpage);
1055	}
1056
1057	return rc;
1058}
1059
1060/*
1061 * gcc 4.7 and 4.8 on arm get an ICEs when inlining unmap_and_move().  Work
1062 * around it.
1063 */
1064#if (GCC_VERSION >= 40700 && GCC_VERSION < 40900) && defined(CONFIG_ARM)
1065#define ICE_noinline noinline
1066#else
1067#define ICE_noinline
1068#endif
1069
1070/*
1071 * Obtain the lock on page, remove all ptes and migrate the page
1072 * to the newly allocated page in newpage.
1073 */
1074static ICE_noinline int unmap_and_move(new_page_t get_new_page,
1075				   free_page_t put_new_page,
1076				   unsigned long private, struct page *page,
1077				   int force, enum migrate_mode mode,
1078				   enum migrate_reason reason)
1079{
1080	int rc = MIGRATEPAGE_SUCCESS;
1081	int *result = NULL;
1082	struct page *newpage;
1083
1084	newpage = get_new_page(page, private, &result);
1085	if (!newpage)
1086		return -ENOMEM;
1087
1088	if (page_count(page) == 1) {
1089		/* page was freed from under us. So we are done. */
1090		ClearPageActive(page);
1091		ClearPageUnevictable(page);
1092		if (unlikely(__PageMovable(page))) {
1093			lock_page(page);
1094			if (!PageMovable(page))
1095				__ClearPageIsolated(page);
1096			unlock_page(page);
1097		}
1098		if (put_new_page)
1099			put_new_page(newpage, private);
1100		else
1101			put_page(newpage);
1102		goto out;
1103	}
1104
1105	if (unlikely(PageTransHuge(page))) {
1106		lock_page(page);
1107		rc = split_huge_page(page);
1108		unlock_page(page);
1109		if (rc)
1110			goto out;
1111	}
1112
1113	rc = __unmap_and_move(page, newpage, force, mode);
1114	if (rc == MIGRATEPAGE_SUCCESS)
1115		set_page_owner_migrate_reason(newpage, reason);
1116
 
 
 
 
 
 
 
 
 
 
 
1117out:
1118	if (rc != -EAGAIN) {
1119		/*
1120		 * A page that has been migrated has all references
1121		 * removed and will be freed. A page that has not been
1122		 * migrated will have kepts its references and be
1123		 * restored.
1124		 */
1125		list_del(&page->lru);
1126
1127		/*
1128		 * Compaction can migrate also non-LRU pages which are
1129		 * not accounted to NR_ISOLATED_*. They can be recognized
1130		 * as __PageMovable
1131		 */
1132		if (likely(!__PageMovable(page)))
1133			dec_node_page_state(page, NR_ISOLATED_ANON +
1134					page_is_file_cache(page));
1135	}
1136
1137	/*
1138	 * If migration is successful, releases reference grabbed during
1139	 * isolation. Otherwise, restore the page to right list unless
1140	 * we want to retry.
1141	 */
1142	if (rc == MIGRATEPAGE_SUCCESS) {
1143		put_page(page);
1144		if (reason == MR_MEMORY_FAILURE) {
1145			/*
1146			 * Set PG_HWPoison on just freed page
1147			 * intentionally. Although it's rather weird,
1148			 * it's how HWPoison flag works at the moment.
1149			 */
1150			if (!test_set_page_hwpoison(page))
1151				num_poisoned_pages_inc();
1152		}
1153	} else {
1154		if (rc != -EAGAIN) {
1155			if (likely(!__PageMovable(page))) {
1156				putback_lru_page(page);
1157				goto put_new;
1158			}
1159
1160			lock_page(page);
1161			if (PageMovable(page))
1162				putback_movable_page(page);
1163			else
1164				__ClearPageIsolated(page);
1165			unlock_page(page);
1166			put_page(page);
1167		}
1168put_new:
1169		if (put_new_page)
1170			put_new_page(newpage, private);
1171		else
1172			put_page(newpage);
1173	}
1174
1175	if (result) {
1176		if (rc)
1177			*result = rc;
1178		else
1179			*result = page_to_nid(newpage);
1180	}
1181	return rc;
1182}
1183
1184/*
1185 * Counterpart of unmap_and_move_page() for hugepage migration.
1186 *
1187 * This function doesn't wait the completion of hugepage I/O
1188 * because there is no race between I/O and migration for hugepage.
1189 * Note that currently hugepage I/O occurs only in direct I/O
1190 * where no lock is held and PG_writeback is irrelevant,
1191 * and writeback status of all subpages are counted in the reference
1192 * count of the head page (i.e. if all subpages of a 2MB hugepage are
1193 * under direct I/O, the reference of the head page is 512 and a bit more.)
1194 * This means that when we try to migrate hugepage whose subpages are
1195 * doing direct I/O, some references remain after try_to_unmap() and
1196 * hugepage migration fails without data corruption.
1197 *
1198 * There is also no race when direct I/O is issued on the page under migration,
1199 * because then pte is replaced with migration swap entry and direct I/O code
1200 * will wait in the page fault for migration to complete.
1201 */
1202static int unmap_and_move_huge_page(new_page_t get_new_page,
1203				free_page_t put_new_page, unsigned long private,
1204				struct page *hpage, int force,
1205				enum migrate_mode mode, int reason)
1206{
1207	int rc = -EAGAIN;
1208	int *result = NULL;
1209	int page_was_mapped = 0;
1210	struct page *new_hpage;
1211	struct anon_vma *anon_vma = NULL;
1212
1213	/*
1214	 * Movability of hugepages depends on architectures and hugepage size.
1215	 * This check is necessary because some callers of hugepage migration
1216	 * like soft offline and memory hotremove don't walk through page
1217	 * tables or check whether the hugepage is pmd-based or not before
1218	 * kicking migration.
1219	 */
1220	if (!hugepage_migration_supported(page_hstate(hpage))) {
1221		putback_active_hugepage(hpage);
1222		return -ENOSYS;
1223	}
1224
1225	new_hpage = get_new_page(hpage, private, &result);
1226	if (!new_hpage)
1227		return -ENOMEM;
1228
 
 
1229	if (!trylock_page(hpage)) {
1230		if (!force || mode != MIGRATE_SYNC)
1231			goto out;
1232		lock_page(hpage);
1233	}
1234
1235	if (PageAnon(hpage))
1236		anon_vma = page_get_anon_vma(hpage);
1237
1238	if (unlikely(!trylock_page(new_hpage)))
1239		goto put_anon;
1240
1241	if (page_mapped(hpage)) {
1242		try_to_unmap(hpage,
1243			TTU_MIGRATION|TTU_IGNORE_MLOCK|TTU_IGNORE_ACCESS);
1244		page_was_mapped = 1;
1245	}
1246
1247	if (!page_mapped(hpage))
1248		rc = move_to_new_page(new_hpage, hpage, mode);
1249
1250	if (page_was_mapped)
1251		remove_migration_ptes(hpage,
1252			rc == MIGRATEPAGE_SUCCESS ? new_hpage : hpage, false);
1253
1254	unlock_page(new_hpage);
 
1255
1256put_anon:
1257	if (anon_vma)
1258		put_anon_vma(anon_vma);
1259
1260	if (rc == MIGRATEPAGE_SUCCESS) {
1261		hugetlb_cgroup_migrate(hpage, new_hpage);
1262		put_new_page = NULL;
1263		set_page_owner_migrate_reason(new_hpage, reason);
1264	}
1265
1266	unlock_page(hpage);
1267out:
1268	if (rc != -EAGAIN)
1269		putback_active_hugepage(hpage);
1270
1271	/*
1272	 * If migration was not successful and there's a freeing callback, use
1273	 * it.  Otherwise, put_page() will drop the reference grabbed during
1274	 * isolation.
1275	 */
1276	if (put_new_page)
1277		put_new_page(new_hpage, private);
1278	else
1279		putback_active_hugepage(new_hpage);
1280
1281	if (result) {
1282		if (rc)
1283			*result = rc;
1284		else
1285			*result = page_to_nid(new_hpage);
1286	}
1287	return rc;
1288}
1289
1290/*
1291 * migrate_pages - migrate the pages specified in a list, to the free pages
1292 *		   supplied as the target for the page migration
1293 *
1294 * @from:		The list of pages to be migrated.
1295 * @get_new_page:	The function used to allocate free pages to be used
1296 *			as the target of the page migration.
1297 * @put_new_page:	The function used to free target pages if migration
1298 *			fails, or NULL if no special handling is necessary.
1299 * @private:		Private data to be passed on to get_new_page()
1300 * @mode:		The migration mode that specifies the constraints for
1301 *			page migration, if any.
1302 * @reason:		The reason for page migration.
1303 *
1304 * The function returns after 10 attempts or if no pages are movable any more
1305 * because the list has become empty or no retryable pages exist any more.
1306 * The caller should call putback_movable_pages() to return pages to the LRU
1307 * or free list only if ret != 0.
1308 *
1309 * Returns the number of pages that were not migrated, or an error code.
1310 */
1311int migrate_pages(struct list_head *from, new_page_t get_new_page,
1312		free_page_t put_new_page, unsigned long private,
1313		enum migrate_mode mode, int reason)
1314{
1315	int retry = 1;
1316	int nr_failed = 0;
1317	int nr_succeeded = 0;
1318	int pass = 0;
1319	struct page *page;
1320	struct page *page2;
1321	int swapwrite = current->flags & PF_SWAPWRITE;
1322	int rc;
1323
1324	if (!swapwrite)
1325		current->flags |= PF_SWAPWRITE;
1326
1327	for(pass = 0; pass < 10 && retry; pass++) {
1328		retry = 0;
1329
1330		list_for_each_entry_safe(page, page2, from, lru) {
1331			cond_resched();
1332
1333			if (PageHuge(page))
1334				rc = unmap_and_move_huge_page(get_new_page,
1335						put_new_page, private, page,
1336						pass > 2, mode, reason);
1337			else
1338				rc = unmap_and_move(get_new_page, put_new_page,
1339						private, page, pass > 2, mode,
1340						reason);
1341
1342			switch(rc) {
1343			case -ENOMEM:
1344				nr_failed++;
1345				goto out;
1346			case -EAGAIN:
1347				retry++;
1348				break;
1349			case MIGRATEPAGE_SUCCESS:
1350				nr_succeeded++;
1351				break;
1352			default:
1353				/*
1354				 * Permanent failure (-EBUSY, -ENOSYS, etc.):
1355				 * unlike -EAGAIN case, the failed page is
1356				 * removed from migration page list and not
1357				 * retried in the next outer loop.
1358				 */
1359				nr_failed++;
1360				break;
1361			}
1362		}
1363	}
1364	nr_failed += retry;
1365	rc = nr_failed;
1366out:
1367	if (nr_succeeded)
1368		count_vm_events(PGMIGRATE_SUCCESS, nr_succeeded);
1369	if (nr_failed)
1370		count_vm_events(PGMIGRATE_FAIL, nr_failed);
1371	trace_mm_migrate_pages(nr_succeeded, nr_failed, mode, reason);
1372
1373	if (!swapwrite)
1374		current->flags &= ~PF_SWAPWRITE;
1375
1376	return rc;
1377}
1378
1379#ifdef CONFIG_NUMA
1380/*
1381 * Move a list of individual pages
1382 */
1383struct page_to_node {
1384	unsigned long addr;
1385	struct page *page;
1386	int node;
1387	int status;
1388};
1389
1390static struct page *new_page_node(struct page *p, unsigned long private,
1391		int **result)
1392{
1393	struct page_to_node *pm = (struct page_to_node *)private;
1394
1395	while (pm->node != MAX_NUMNODES && pm->page != p)
1396		pm++;
1397
1398	if (pm->node == MAX_NUMNODES)
1399		return NULL;
1400
1401	*result = &pm->status;
1402
1403	if (PageHuge(p))
1404		return alloc_huge_page_node(page_hstate(compound_head(p)),
1405					pm->node);
1406	else
1407		return __alloc_pages_node(pm->node,
1408				GFP_HIGHUSER_MOVABLE | __GFP_THISNODE, 0);
1409}
1410
1411/*
1412 * Move a set of pages as indicated in the pm array. The addr
1413 * field must be set to the virtual address of the page to be moved
1414 * and the node number must contain a valid target node.
1415 * The pm array ends with node = MAX_NUMNODES.
1416 */
1417static int do_move_page_to_node_array(struct mm_struct *mm,
1418				      struct page_to_node *pm,
1419				      int migrate_all)
1420{
1421	int err;
1422	struct page_to_node *pp;
1423	LIST_HEAD(pagelist);
1424
1425	down_read(&mm->mmap_sem);
1426
1427	/*
1428	 * Build a list of pages to migrate
1429	 */
1430	for (pp = pm; pp->node != MAX_NUMNODES; pp++) {
1431		struct vm_area_struct *vma;
1432		struct page *page;
1433
1434		err = -EFAULT;
1435		vma = find_vma(mm, pp->addr);
1436		if (!vma || pp->addr < vma->vm_start || !vma_migratable(vma))
1437			goto set_status;
1438
1439		/* FOLL_DUMP to ignore special (like zero) pages */
1440		page = follow_page(vma, pp->addr,
1441				FOLL_GET | FOLL_SPLIT | FOLL_DUMP);
1442
1443		err = PTR_ERR(page);
1444		if (IS_ERR(page))
1445			goto set_status;
1446
1447		err = -ENOENT;
1448		if (!page)
1449			goto set_status;
1450
 
 
 
 
1451		pp->page = page;
1452		err = page_to_nid(page);
1453
1454		if (err == pp->node)
1455			/*
1456			 * Node already in the right place
1457			 */
1458			goto put_and_set;
1459
1460		err = -EACCES;
1461		if (page_mapcount(page) > 1 &&
1462				!migrate_all)
1463			goto put_and_set;
1464
1465		if (PageHuge(page)) {
1466			if (PageHead(page))
1467				isolate_huge_page(page, &pagelist);
1468			goto put_and_set;
1469		}
1470
1471		err = isolate_lru_page(page);
1472		if (!err) {
1473			list_add_tail(&page->lru, &pagelist);
1474			inc_node_page_state(page, NR_ISOLATED_ANON +
1475					    page_is_file_cache(page));
1476		}
1477put_and_set:
1478		/*
1479		 * Either remove the duplicate refcount from
1480		 * isolate_lru_page() or drop the page ref if it was
1481		 * not isolated.
1482		 */
1483		put_page(page);
1484set_status:
1485		pp->status = err;
1486	}
1487
1488	err = 0;
1489	if (!list_empty(&pagelist)) {
1490		err = migrate_pages(&pagelist, new_page_node, NULL,
1491				(unsigned long)pm, MIGRATE_SYNC, MR_SYSCALL);
1492		if (err)
1493			putback_movable_pages(&pagelist);
1494	}
1495
1496	up_read(&mm->mmap_sem);
1497	return err;
1498}
1499
1500/*
1501 * Migrate an array of page address onto an array of nodes and fill
1502 * the corresponding array of status.
1503 */
1504static int do_pages_move(struct mm_struct *mm, nodemask_t task_nodes,
1505			 unsigned long nr_pages,
1506			 const void __user * __user *pages,
1507			 const int __user *nodes,
1508			 int __user *status, int flags)
1509{
1510	struct page_to_node *pm;
1511	unsigned long chunk_nr_pages;
1512	unsigned long chunk_start;
1513	int err;
1514
1515	err = -ENOMEM;
1516	pm = (struct page_to_node *)__get_free_page(GFP_KERNEL);
1517	if (!pm)
1518		goto out;
1519
1520	migrate_prep();
1521
1522	/*
1523	 * Store a chunk of page_to_node array in a page,
1524	 * but keep the last one as a marker
1525	 */
1526	chunk_nr_pages = (PAGE_SIZE / sizeof(struct page_to_node)) - 1;
1527
1528	for (chunk_start = 0;
1529	     chunk_start < nr_pages;
1530	     chunk_start += chunk_nr_pages) {
1531		int j;
1532
1533		if (chunk_start + chunk_nr_pages > nr_pages)
1534			chunk_nr_pages = nr_pages - chunk_start;
1535
1536		/* fill the chunk pm with addrs and nodes from user-space */
1537		for (j = 0; j < chunk_nr_pages; j++) {
1538			const void __user *p;
1539			int node;
1540
1541			err = -EFAULT;
1542			if (get_user(p, pages + j + chunk_start))
1543				goto out_pm;
1544			pm[j].addr = (unsigned long) p;
1545
1546			if (get_user(node, nodes + j + chunk_start))
1547				goto out_pm;
1548
1549			err = -ENODEV;
1550			if (node < 0 || node >= MAX_NUMNODES)
1551				goto out_pm;
1552
1553			if (!node_state(node, N_MEMORY))
1554				goto out_pm;
1555
1556			err = -EACCES;
1557			if (!node_isset(node, task_nodes))
1558				goto out_pm;
1559
1560			pm[j].node = node;
1561		}
1562
1563		/* End marker for this chunk */
1564		pm[chunk_nr_pages].node = MAX_NUMNODES;
1565
1566		/* Migrate this chunk */
1567		err = do_move_page_to_node_array(mm, pm,
1568						 flags & MPOL_MF_MOVE_ALL);
1569		if (err < 0)
1570			goto out_pm;
1571
1572		/* Return status information */
1573		for (j = 0; j < chunk_nr_pages; j++)
1574			if (put_user(pm[j].status, status + j + chunk_start)) {
1575				err = -EFAULT;
1576				goto out_pm;
1577			}
1578	}
1579	err = 0;
1580
1581out_pm:
1582	free_page((unsigned long)pm);
1583out:
1584	return err;
1585}
1586
1587/*
1588 * Determine the nodes of an array of pages and store it in an array of status.
1589 */
1590static void do_pages_stat_array(struct mm_struct *mm, unsigned long nr_pages,
1591				const void __user **pages, int *status)
1592{
1593	unsigned long i;
1594
1595	down_read(&mm->mmap_sem);
1596
1597	for (i = 0; i < nr_pages; i++) {
1598		unsigned long addr = (unsigned long)(*pages);
1599		struct vm_area_struct *vma;
1600		struct page *page;
1601		int err = -EFAULT;
1602
1603		vma = find_vma(mm, addr);
1604		if (!vma || addr < vma->vm_start)
1605			goto set_status;
1606
1607		/* FOLL_DUMP to ignore special (like zero) pages */
1608		page = follow_page(vma, addr, FOLL_DUMP);
1609
1610		err = PTR_ERR(page);
1611		if (IS_ERR(page))
1612			goto set_status;
1613
1614		err = page ? page_to_nid(page) : -ENOENT;
 
 
 
 
 
1615set_status:
1616		*status = err;
1617
1618		pages++;
1619		status++;
1620	}
1621
1622	up_read(&mm->mmap_sem);
1623}
1624
1625/*
1626 * Determine the nodes of a user array of pages and store it in
1627 * a user array of status.
1628 */
1629static int do_pages_stat(struct mm_struct *mm, unsigned long nr_pages,
1630			 const void __user * __user *pages,
1631			 int __user *status)
1632{
1633#define DO_PAGES_STAT_CHUNK_NR 16
1634	const void __user *chunk_pages[DO_PAGES_STAT_CHUNK_NR];
1635	int chunk_status[DO_PAGES_STAT_CHUNK_NR];
1636
1637	while (nr_pages) {
1638		unsigned long chunk_nr;
1639
1640		chunk_nr = nr_pages;
1641		if (chunk_nr > DO_PAGES_STAT_CHUNK_NR)
1642			chunk_nr = DO_PAGES_STAT_CHUNK_NR;
1643
1644		if (copy_from_user(chunk_pages, pages, chunk_nr * sizeof(*chunk_pages)))
1645			break;
1646
1647		do_pages_stat_array(mm, chunk_nr, chunk_pages, chunk_status);
1648
1649		if (copy_to_user(status, chunk_status, chunk_nr * sizeof(*status)))
1650			break;
1651
1652		pages += chunk_nr;
1653		status += chunk_nr;
1654		nr_pages -= chunk_nr;
1655	}
1656	return nr_pages ? -EFAULT : 0;
1657}
1658
1659/*
1660 * Move a list of pages in the address space of the currently executing
1661 * process.
1662 */
1663SYSCALL_DEFINE6(move_pages, pid_t, pid, unsigned long, nr_pages,
1664		const void __user * __user *, pages,
1665		const int __user *, nodes,
1666		int __user *, status, int, flags)
1667{
1668	const struct cred *cred = current_cred(), *tcred;
1669	struct task_struct *task;
1670	struct mm_struct *mm;
1671	int err;
1672	nodemask_t task_nodes;
1673
1674	/* Check flags */
1675	if (flags & ~(MPOL_MF_MOVE|MPOL_MF_MOVE_ALL))
1676		return -EINVAL;
1677
1678	if ((flags & MPOL_MF_MOVE_ALL) && !capable(CAP_SYS_NICE))
1679		return -EPERM;
1680
1681	/* Find the mm_struct */
1682	rcu_read_lock();
1683	task = pid ? find_task_by_vpid(pid) : current;
1684	if (!task) {
1685		rcu_read_unlock();
1686		return -ESRCH;
1687	}
1688	get_task_struct(task);
1689
1690	/*
1691	 * Check if this process has the right to modify the specified
1692	 * process. The right exists if the process has administrative
1693	 * capabilities, superuser privileges or the same
1694	 * userid as the target process.
1695	 */
1696	tcred = __task_cred(task);
1697	if (!uid_eq(cred->euid, tcred->suid) && !uid_eq(cred->euid, tcred->uid) &&
1698	    !uid_eq(cred->uid,  tcred->suid) && !uid_eq(cred->uid,  tcred->uid) &&
1699	    !capable(CAP_SYS_NICE)) {
1700		rcu_read_unlock();
1701		err = -EPERM;
1702		goto out;
1703	}
1704	rcu_read_unlock();
1705
1706 	err = security_task_movememory(task);
1707 	if (err)
1708		goto out;
1709
1710	task_nodes = cpuset_mems_allowed(task);
1711	mm = get_task_mm(task);
1712	put_task_struct(task);
1713
1714	if (!mm)
1715		return -EINVAL;
1716
1717	if (nodes)
1718		err = do_pages_move(mm, task_nodes, nr_pages, pages,
1719				    nodes, status, flags);
1720	else
1721		err = do_pages_stat(mm, nr_pages, pages, status);
1722
1723	mmput(mm);
1724	return err;
1725
1726out:
1727	put_task_struct(task);
1728	return err;
1729}
1730
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1731#ifdef CONFIG_NUMA_BALANCING
1732/*
1733 * Returns true if this is a safe migration target node for misplaced NUMA
1734 * pages. Currently it only checks the watermarks which crude
1735 */
1736static bool migrate_balanced_pgdat(struct pglist_data *pgdat,
1737				   unsigned long nr_migrate_pages)
1738{
1739	int z;
1740
1741	if (!pgdat_reclaimable(pgdat))
1742		return false;
1743
1744	for (z = pgdat->nr_zones - 1; z >= 0; z--) {
1745		struct zone *zone = pgdat->node_zones + z;
1746
1747		if (!populated_zone(zone))
1748			continue;
1749
 
 
 
1750		/* Avoid waking kswapd by allocating pages_to_migrate pages. */
1751		if (!zone_watermark_ok(zone, 0,
1752				       high_wmark_pages(zone) +
1753				       nr_migrate_pages,
1754				       0, 0))
1755			continue;
1756		return true;
1757	}
1758	return false;
1759}
1760
1761static struct page *alloc_misplaced_dst_page(struct page *page,
1762					   unsigned long data,
1763					   int **result)
1764{
1765	int nid = (int) data;
1766	struct page *newpage;
1767
1768	newpage = __alloc_pages_node(nid,
1769					 (GFP_HIGHUSER_MOVABLE |
1770					  __GFP_THISNODE | __GFP_NOMEMALLOC |
1771					  __GFP_NORETRY | __GFP_NOWARN) &
1772					 ~__GFP_RECLAIM, 0);
1773
1774	return newpage;
1775}
1776
1777/*
1778 * page migration rate limiting control.
1779 * Do not migrate more than @pages_to_migrate in a @migrate_interval_millisecs
1780 * window of time. Default here says do not migrate more than 1280M per second.
 
 
 
 
1781 */
1782static unsigned int migrate_interval_millisecs __read_mostly = 100;
 
1783static unsigned int ratelimit_pages __read_mostly = 128 << (20 - PAGE_SHIFT);
1784
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1785/* Returns true if the node is migrate rate-limited after the update */
1786static bool numamigrate_update_ratelimit(pg_data_t *pgdat,
1787					unsigned long nr_pages)
1788{
1789	/*
1790	 * Rate-limit the amount of data that is being migrated to a node.
1791	 * Optimal placement is no good if the memory bus is saturated and
1792	 * all the time is being spent migrating!
1793	 */
1794	if (time_after(jiffies, pgdat->numabalancing_migrate_next_window)) {
1795		spin_lock(&pgdat->numabalancing_migrate_lock);
1796		pgdat->numabalancing_migrate_nr_pages = 0;
1797		pgdat->numabalancing_migrate_next_window = jiffies +
1798			msecs_to_jiffies(migrate_interval_millisecs);
1799		spin_unlock(&pgdat->numabalancing_migrate_lock);
1800	}
1801	if (pgdat->numabalancing_migrate_nr_pages > ratelimit_pages) {
1802		trace_mm_numa_migrate_ratelimit(current, pgdat->node_id,
1803								nr_pages);
1804		return true;
1805	}
1806
1807	/*
1808	 * This is an unlocked non-atomic update so errors are possible.
1809	 * The consequences are failing to migrate when we potentiall should
1810	 * have which is not severe enough to warrant locking. If it is ever
1811	 * a problem, it can be converted to a per-cpu counter.
1812	 */
1813	pgdat->numabalancing_migrate_nr_pages += nr_pages;
1814	return false;
1815}
1816
1817static int numamigrate_isolate_page(pg_data_t *pgdat, struct page *page)
1818{
1819	int page_lru;
1820
1821	VM_BUG_ON_PAGE(compound_order(page) && !PageTransHuge(page), page);
1822
1823	/* Avoid migrating to a node that is nearly full */
1824	if (!migrate_balanced_pgdat(pgdat, 1UL << compound_order(page)))
1825		return 0;
1826
1827	if (isolate_lru_page(page))
1828		return 0;
1829
1830	/*
1831	 * migrate_misplaced_transhuge_page() skips page migration's usual
1832	 * check on page_count(), so we must do it here, now that the page
1833	 * has been isolated: a GUP pin, or any other pin, prevents migration.
1834	 * The expected page count is 3: 1 for page's mapcount and 1 for the
1835	 * caller's pin and 1 for the reference taken by isolate_lru_page().
1836	 */
1837	if (PageTransHuge(page) && page_count(page) != 3) {
1838		putback_lru_page(page);
1839		return 0;
1840	}
1841
1842	page_lru = page_is_file_cache(page);
1843	mod_node_page_state(page_pgdat(page), NR_ISOLATED_ANON + page_lru,
1844				hpage_nr_pages(page));
1845
1846	/*
1847	 * Isolating the page has taken another reference, so the
1848	 * caller's reference can be safely dropped without the page
1849	 * disappearing underneath us during migration.
1850	 */
1851	put_page(page);
1852	return 1;
1853}
1854
1855bool pmd_trans_migrating(pmd_t pmd)
1856{
1857	struct page *page = pmd_page(pmd);
1858	return PageLocked(page);
1859}
1860
 
 
 
 
 
 
1861/*
1862 * Attempt to migrate a misplaced page to the specified destination
1863 * node. Caller is expected to have an elevated reference count on
1864 * the page that will be dropped by this function before returning.
1865 */
1866int migrate_misplaced_page(struct page *page, struct vm_area_struct *vma,
1867			   int node)
1868{
1869	pg_data_t *pgdat = NODE_DATA(node);
1870	int isolated;
1871	int nr_remaining;
1872	LIST_HEAD(migratepages);
1873
1874	/*
1875	 * Don't migrate file pages that are mapped in multiple processes
1876	 * with execute permissions as they are probably shared libraries.
1877	 */
1878	if (page_mapcount(page) != 1 && page_is_file_cache(page) &&
1879	    (vma->vm_flags & VM_EXEC))
1880		goto out;
1881
1882	/*
1883	 * Rate-limit the amount of data that is being migrated to a node.
1884	 * Optimal placement is no good if the memory bus is saturated and
1885	 * all the time is being spent migrating!
1886	 */
1887	if (numamigrate_update_ratelimit(pgdat, 1))
1888		goto out;
1889
1890	isolated = numamigrate_isolate_page(pgdat, page);
1891	if (!isolated)
1892		goto out;
1893
1894	list_add(&page->lru, &migratepages);
1895	nr_remaining = migrate_pages(&migratepages, alloc_misplaced_dst_page,
1896				     NULL, node, MIGRATE_ASYNC,
1897				     MR_NUMA_MISPLACED);
1898	if (nr_remaining) {
1899		if (!list_empty(&migratepages)) {
1900			list_del(&page->lru);
1901			dec_node_page_state(page, NR_ISOLATED_ANON +
1902					page_is_file_cache(page));
1903			putback_lru_page(page);
1904		}
1905		isolated = 0;
1906	} else
1907		count_vm_numa_event(NUMA_PAGE_MIGRATE);
1908	BUG_ON(!list_empty(&migratepages));
1909	return isolated;
1910
1911out:
1912	put_page(page);
1913	return 0;
1914}
1915#endif /* CONFIG_NUMA_BALANCING */
1916
1917#if defined(CONFIG_NUMA_BALANCING) && defined(CONFIG_TRANSPARENT_HUGEPAGE)
1918/*
1919 * Migrates a THP to a given target node. page must be locked and is unlocked
1920 * before returning.
1921 */
1922int migrate_misplaced_transhuge_page(struct mm_struct *mm,
1923				struct vm_area_struct *vma,
1924				pmd_t *pmd, pmd_t entry,
1925				unsigned long address,
1926				struct page *page, int node)
1927{
1928	spinlock_t *ptl;
1929	pg_data_t *pgdat = NODE_DATA(node);
1930	int isolated = 0;
1931	struct page *new_page = NULL;
 
1932	int page_lru = page_is_file_cache(page);
1933	unsigned long mmun_start = address & HPAGE_PMD_MASK;
1934	unsigned long mmun_end = mmun_start + HPAGE_PMD_SIZE;
1935	pmd_t orig_entry;
1936
1937	/*
1938	 * Rate-limit the amount of data that is being migrated to a node.
1939	 * Optimal placement is no good if the memory bus is saturated and
1940	 * all the time is being spent migrating!
1941	 */
1942	if (numamigrate_update_ratelimit(pgdat, HPAGE_PMD_NR))
1943		goto out_dropref;
1944
1945	new_page = alloc_pages_node(node,
1946		(GFP_TRANSHUGE_LIGHT | __GFP_THISNODE),
1947		HPAGE_PMD_ORDER);
1948	if (!new_page)
1949		goto out_fail;
1950	prep_transhuge_page(new_page);
1951
1952	isolated = numamigrate_isolate_page(pgdat, page);
1953	if (!isolated) {
1954		put_page(new_page);
1955		goto out_fail;
1956	}
1957	/*
1958	 * We are not sure a pending tlb flush here is for a huge page
1959	 * mapping or not. Hence use the tlb range variant
1960	 */
1961	if (mm_tlb_flush_pending(mm))
1962		flush_tlb_range(vma, mmun_start, mmun_end);
1963
1964	/* Prepare a page as a migration target */
1965	__SetPageLocked(new_page);
1966	__SetPageSwapBacked(new_page);
1967
1968	/* anon mapping, we can simply copy page->mapping to the new page: */
1969	new_page->mapping = page->mapping;
1970	new_page->index = page->index;
1971	migrate_page_copy(new_page, page);
1972	WARN_ON(PageLRU(new_page));
1973
1974	/* Recheck the target PMD */
1975	mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1976	ptl = pmd_lock(mm, pmd);
1977	if (unlikely(!pmd_same(*pmd, entry) || page_count(page) != 2)) {
1978fail_putback:
1979		spin_unlock(ptl);
1980		mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1981
1982		/* Reverse changes made by migrate_page_copy() */
1983		if (TestClearPageActive(new_page))
1984			SetPageActive(page);
1985		if (TestClearPageUnevictable(new_page))
1986			SetPageUnevictable(page);
 
1987
1988		unlock_page(new_page);
1989		put_page(new_page);		/* Free it */
1990
1991		/* Retake the callers reference and putback on LRU */
1992		get_page(page);
1993		putback_lru_page(page);
1994		mod_node_page_state(page_pgdat(page),
1995			 NR_ISOLATED_ANON + page_lru, -HPAGE_PMD_NR);
1996
1997		goto out_unlock;
1998	}
1999
 
 
 
 
 
 
 
 
 
2000	orig_entry = *pmd;
2001	entry = mk_huge_pmd(new_page, vma->vm_page_prot);
 
2002	entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
2003
2004	/*
2005	 * Clear the old entry under pagetable lock and establish the new PTE.
2006	 * Any parallel GUP will either observe the old page blocking on the
2007	 * page lock, block on the page table lock or observe the new page.
2008	 * The SetPageUptodate on the new page and page_add_new_anon_rmap
2009	 * guarantee the copy is visible before the pagetable update.
2010	 */
2011	flush_cache_range(vma, mmun_start, mmun_end);
2012	page_add_anon_rmap(new_page, vma, mmun_start, true);
2013	pmdp_huge_clear_flush_notify(vma, mmun_start, pmd);
2014	set_pmd_at(mm, mmun_start, pmd, entry);
 
2015	update_mmu_cache_pmd(vma, address, &entry);
2016
2017	if (page_count(page) != 2) {
2018		set_pmd_at(mm, mmun_start, pmd, orig_entry);
2019		flush_pmd_tlb_range(vma, mmun_start, mmun_end);
2020		mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
2021		update_mmu_cache_pmd(vma, address, &entry);
2022		page_remove_rmap(new_page, true);
2023		goto fail_putback;
2024	}
2025
2026	mlock_migrate_page(new_page, page);
2027	page_remove_rmap(page, true);
2028	set_page_owner_migrate_reason(new_page, MR_NUMA_MISPLACED);
2029
 
 
 
 
 
 
2030	spin_unlock(ptl);
2031	mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2032
2033	/* Take an "isolate" reference and put new page on the LRU. */
2034	get_page(new_page);
2035	putback_lru_page(new_page);
2036
2037	unlock_page(new_page);
2038	unlock_page(page);
2039	put_page(page);			/* Drop the rmap reference */
2040	put_page(page);			/* Drop the LRU isolation reference */
2041
2042	count_vm_events(PGMIGRATE_SUCCESS, HPAGE_PMD_NR);
2043	count_vm_numa_events(NUMA_PAGE_MIGRATE, HPAGE_PMD_NR);
2044
2045	mod_node_page_state(page_pgdat(page),
2046			NR_ISOLATED_ANON + page_lru,
2047			-HPAGE_PMD_NR);
2048	return isolated;
2049
2050out_fail:
2051	count_vm_events(PGMIGRATE_FAIL, HPAGE_PMD_NR);
2052out_dropref:
2053	ptl = pmd_lock(mm, pmd);
2054	if (pmd_same(*pmd, entry)) {
2055		entry = pmd_modify(entry, vma->vm_page_prot);
2056		set_pmd_at(mm, mmun_start, pmd, entry);
2057		update_mmu_cache_pmd(vma, address, &entry);
2058	}
2059	spin_unlock(ptl);
2060
2061out_unlock:
2062	unlock_page(page);
2063	put_page(page);
2064	return 0;
2065}
2066#endif /* CONFIG_NUMA_BALANCING */
2067
2068#endif /* CONFIG_NUMA */