Linux Audio

Check our new training course

Loading...
v3.15
   1/*
   2 * Copyright (C) 2001 Momchil Velikov
   3 * Portions Copyright (C) 2001 Christoph Hellwig
   4 * Copyright (C) 2005 SGI, Christoph Lameter
   5 * Copyright (C) 2006 Nick Piggin
   6 * Copyright (C) 2012 Konstantin Khlebnikov
 
 
   7 *
   8 * This program is free software; you can redistribute it and/or
   9 * modify it under the terms of the GNU General Public License as
  10 * published by the Free Software Foundation; either version 2, or (at
  11 * your option) any later version.
  12 *
  13 * This program is distributed in the hope that it will be useful, but
  14 * WITHOUT ANY WARRANTY; without even the implied warranty of
  15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  16 * General Public License for more details.
  17 *
  18 * You should have received a copy of the GNU General Public License
  19 * along with this program; if not, write to the Free Software
  20 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  21 */
  22
 
  23#include <linux/errno.h>
  24#include <linux/init.h>
  25#include <linux/kernel.h>
  26#include <linux/export.h>
  27#include <linux/radix-tree.h>
  28#include <linux/percpu.h>
  29#include <linux/slab.h>
  30#include <linux/notifier.h>
  31#include <linux/cpu.h>
  32#include <linux/string.h>
  33#include <linux/bitops.h>
  34#include <linux/rcupdate.h>
  35#include <linux/hardirq.h>		/* in_interrupt() */
  36
  37
  38/*
  39 * The height_to_maxindex array needs to be one deeper than the maximum
  40 * path as height 0 holds only 1 entry.
  41 */
  42static unsigned long height_to_maxindex[RADIX_TREE_MAX_PATH + 1] __read_mostly;
  43
  44/*
  45 * Radix tree node cache.
  46 */
  47static struct kmem_cache *radix_tree_node_cachep;
  48
  49/*
  50 * The radix tree is variable-height, so an insert operation not only has
  51 * to build the branch to its corresponding item, it also has to build the
  52 * branch to existing items if the size has to be increased (by
  53 * radix_tree_extend).
  54 *
  55 * The worst case is a zero height tree with just a single item at index 0,
  56 * and then inserting an item at index ULONG_MAX. This requires 2 new branches
  57 * of RADIX_TREE_MAX_PATH size to be created, with only the root node shared.
  58 * Hence:
  59 */
  60#define RADIX_TREE_PRELOAD_SIZE (RADIX_TREE_MAX_PATH * 2 - 1)
  61
  62/*
  63 * Per-cpu pool of preloaded nodes
  64 */
  65struct radix_tree_preload {
  66	int nr;
  67	struct radix_tree_node *nodes[RADIX_TREE_PRELOAD_SIZE];
 
  68};
  69static DEFINE_PER_CPU(struct radix_tree_preload, radix_tree_preloads) = { 0, };
  70
  71static inline void *ptr_to_indirect(void *ptr)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  72{
  73	return (void *)((unsigned long)ptr | RADIX_TREE_INDIRECT_PTR);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  74}
  75
  76static inline void *indirect_to_ptr(void *ptr)
 
  77{
  78	return (void *)((unsigned long)ptr & ~RADIX_TREE_INDIRECT_PTR);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  79}
  80
  81static inline gfp_t root_gfp_mask(struct radix_tree_root *root)
  82{
  83	return root->gfp_mask & __GFP_BITS_MASK;
  84}
  85
  86static inline void tag_set(struct radix_tree_node *node, unsigned int tag,
  87		int offset)
  88{
  89	__set_bit(offset, node->tags[tag]);
  90}
  91
  92static inline void tag_clear(struct radix_tree_node *node, unsigned int tag,
  93		int offset)
  94{
  95	__clear_bit(offset, node->tags[tag]);
  96}
  97
  98static inline int tag_get(struct radix_tree_node *node, unsigned int tag,
  99		int offset)
 100{
 101	return test_bit(offset, node->tags[tag]);
 102}
 103
 104static inline void root_tag_set(struct radix_tree_root *root, unsigned int tag)
 105{
 106	root->gfp_mask |= (__force gfp_t)(1 << (tag + __GFP_BITS_SHIFT));
 107}
 108
 109static inline void root_tag_clear(struct radix_tree_root *root, unsigned int tag)
 110{
 111	root->gfp_mask &= (__force gfp_t)~(1 << (tag + __GFP_BITS_SHIFT));
 112}
 113
 114static inline void root_tag_clear_all(struct radix_tree_root *root)
 115{
 116	root->gfp_mask &= __GFP_BITS_MASK;
 117}
 118
 119static inline int root_tag_get(struct radix_tree_root *root, unsigned int tag)
 120{
 121	return (__force unsigned)root->gfp_mask & (1 << (tag + __GFP_BITS_SHIFT));
 
 
 
 
 
 122}
 123
 124/*
 125 * Returns 1 if any slot in the node has this tag set.
 126 * Otherwise returns 0.
 127 */
 128static inline int any_tag_set(struct radix_tree_node *node, unsigned int tag)
 129{
 130	int idx;
 131	for (idx = 0; idx < RADIX_TREE_TAG_LONGS; idx++) {
 132		if (node->tags[tag][idx])
 133			return 1;
 134	}
 135	return 0;
 136}
 137
 138/**
 139 * radix_tree_find_next_bit - find the next set bit in a memory region
 140 *
 141 * @addr: The address to base the search on
 142 * @size: The bitmap size in bits
 143 * @offset: The bitnumber to start searching at
 144 *
 145 * Unrollable variant of find_next_bit() for constant size arrays.
 146 * Tail bits starting from size to roundup(size, BITS_PER_LONG) must be zero.
 147 * Returns next bit offset, or size if nothing found.
 148 */
 149static __always_inline unsigned long
 150radix_tree_find_next_bit(const unsigned long *addr,
 151			 unsigned long size, unsigned long offset)
 152{
 153	if (!__builtin_constant_p(size))
 154		return find_next_bit(addr, size, offset);
 155
 156	if (offset < size) {
 157		unsigned long tmp;
 158
 159		addr += offset / BITS_PER_LONG;
 160		tmp = *addr >> (offset % BITS_PER_LONG);
 161		if (tmp)
 162			return __ffs(tmp) + offset;
 163		offset = (offset + BITS_PER_LONG) & ~(BITS_PER_LONG - 1);
 164		while (offset < size) {
 165			tmp = *++addr;
 166			if (tmp)
 167				return __ffs(tmp) + offset;
 168			offset += BITS_PER_LONG;
 169		}
 170	}
 171	return size;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 172}
 173
 
 
 
 
 
 
 
 
 
 
 
 
 174/*
 175 * This assumes that the caller has performed appropriate preallocation, and
 176 * that the caller has pinned this thread of control to the current CPU.
 177 */
 178static struct radix_tree_node *
 179radix_tree_node_alloc(struct radix_tree_root *root)
 
 
 
 180{
 181	struct radix_tree_node *ret = NULL;
 182	gfp_t gfp_mask = root_gfp_mask(root);
 183
 184	/*
 185	 * Preload code isn't irq safe and it doesn't make sence to use
 186	 * preloading in the interrupt anyway as all the allocations have to
 187	 * be atomic. So just do normal allocation when in interrupt.
 188	 */
 189	if (!(gfp_mask & __GFP_WAIT) && !in_interrupt()) {
 190		struct radix_tree_preload *rtp;
 191
 192		/*
 
 
 
 
 
 
 
 
 
 
 193		 * Provided the caller has preloaded here, we will always
 194		 * succeed in getting a node here (and never reach
 195		 * kmem_cache_alloc)
 196		 */
 197		rtp = &__get_cpu_var(radix_tree_preloads);
 198		if (rtp->nr) {
 199			ret = rtp->nodes[rtp->nr - 1];
 200			rtp->nodes[rtp->nr - 1] = NULL;
 
 201			rtp->nr--;
 202		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 203	}
 204	if (ret == NULL)
 205		ret = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
 206
 207	BUG_ON(radix_tree_is_indirect_ptr(ret));
 208	return ret;
 209}
 210
 211static void radix_tree_node_rcu_free(struct rcu_head *head)
 212{
 213	struct radix_tree_node *node =
 214			container_of(head, struct radix_tree_node, rcu_head);
 215	int i;
 216
 217	/*
 218	 * must only free zeroed nodes into the slab. radix_tree_shrink
 219	 * can leave us with a non-NULL entry in the first slot, so clear
 220	 * that here to make sure.
 221	 */
 222	for (i = 0; i < RADIX_TREE_MAX_TAGS; i++)
 223		tag_clear(node, i, 0);
 224
 225	node->slots[0] = NULL;
 226	node->count = 0;
 227
 228	kmem_cache_free(radix_tree_node_cachep, node);
 229}
 230
 231static inline void
 232radix_tree_node_free(struct radix_tree_node *node)
 233{
 234	call_rcu(&node->rcu_head, radix_tree_node_rcu_free);
 235}
 236
 237/*
 238 * Load up this CPU's radix_tree_node buffer with sufficient objects to
 239 * ensure that the addition of a single element in the tree cannot fail.  On
 240 * success, return zero, with preemption disabled.  On error, return -ENOMEM
 241 * with preemption not disabled.
 242 *
 243 * To make use of this facility, the radix tree must be initialised without
 244 * __GFP_WAIT being passed to INIT_RADIX_TREE().
 245 */
 246static int __radix_tree_preload(gfp_t gfp_mask)
 247{
 248	struct radix_tree_preload *rtp;
 249	struct radix_tree_node *node;
 250	int ret = -ENOMEM;
 251
 
 
 
 
 
 
 252	preempt_disable();
 253	rtp = &__get_cpu_var(radix_tree_preloads);
 254	while (rtp->nr < ARRAY_SIZE(rtp->nodes)) {
 255		preempt_enable();
 256		node = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
 257		if (node == NULL)
 258			goto out;
 259		preempt_disable();
 260		rtp = &__get_cpu_var(radix_tree_preloads);
 261		if (rtp->nr < ARRAY_SIZE(rtp->nodes))
 262			rtp->nodes[rtp->nr++] = node;
 263		else
 
 
 264			kmem_cache_free(radix_tree_node_cachep, node);
 
 265	}
 266	ret = 0;
 267out:
 268	return ret;
 269}
 270
 271/*
 272 * Load up this CPU's radix_tree_node buffer with sufficient objects to
 273 * ensure that the addition of a single element in the tree cannot fail.  On
 274 * success, return zero, with preemption disabled.  On error, return -ENOMEM
 275 * with preemption not disabled.
 276 *
 277 * To make use of this facility, the radix tree must be initialised without
 278 * __GFP_WAIT being passed to INIT_RADIX_TREE().
 279 */
 280int radix_tree_preload(gfp_t gfp_mask)
 281{
 282	/* Warn on non-sensical use... */
 283	WARN_ON_ONCE(!(gfp_mask & __GFP_WAIT));
 284	return __radix_tree_preload(gfp_mask);
 285}
 286EXPORT_SYMBOL(radix_tree_preload);
 287
 288/*
 289 * The same as above function, except we don't guarantee preloading happens.
 290 * We do it, if we decide it helps. On success, return zero with preemption
 291 * disabled. On error, return -ENOMEM with preemption not disabled.
 292 */
 293int radix_tree_maybe_preload(gfp_t gfp_mask)
 294{
 295	if (gfp_mask & __GFP_WAIT)
 296		return __radix_tree_preload(gfp_mask);
 297	/* Preloading doesn't help anything with this gfp mask, skip it */
 298	preempt_disable();
 299	return 0;
 300}
 301EXPORT_SYMBOL(radix_tree_maybe_preload);
 302
 
 303/*
 304 *	Return the maximum key which can be store into a
 305 *	radix tree with height HEIGHT.
 306 */
 307static inline unsigned long radix_tree_maxindex(unsigned int height)
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 308{
 309	return height_to_maxindex[height];
 
 
 
 
 
 
 
 
 
 
 
 310}
 311
 312/*
 313 *	Extend a radix tree so it can store key @index.
 314 */
 315static int radix_tree_extend(struct radix_tree_root *root, unsigned long index)
 
 316{
 317	struct radix_tree_node *node;
 318	struct radix_tree_node *slot;
 319	unsigned int height;
 320	int tag;
 321
 322	/* Figure out what the height should be.  */
 323	height = root->height + 1;
 324	while (index > radix_tree_maxindex(height))
 325		height++;
 326
 327	if (root->rnode == NULL) {
 328		root->height = height;
 329		goto out;
 330	}
 331
 332	do {
 333		unsigned int newheight;
 334		if (!(node = radix_tree_node_alloc(root)))
 
 335			return -ENOMEM;
 336
 337		/* Propagate the aggregated tag info into the new root */
 338		for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
 339			if (root_tag_get(root, tag))
 340				tag_set(node, tag, 0);
 341		}
 342
 343		/* Increase the height.  */
 344		newheight = root->height+1;
 345		BUG_ON(newheight & ~RADIX_TREE_HEIGHT_MASK);
 346		node->path = newheight;
 347		node->count = 1;
 348		node->parent = NULL;
 349		slot = root->rnode;
 350		if (newheight > 1) {
 351			slot = indirect_to_ptr(slot);
 352			slot->parent = node;
 353		}
 354		node->slots[0] = slot;
 355		node = ptr_to_indirect(node);
 356		rcu_assign_pointer(root->rnode, node);
 357		root->height = newheight;
 358	} while (height > root->height);
 359out:
 360	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 361}
 362
 363/**
 364 *	__radix_tree_create	-	create a slot in a radix tree
 365 *	@root:		radix tree root
 366 *	@index:		index key
 
 367 *	@nodep:		returns node
 368 *	@slotp:		returns slot
 369 *
 370 *	Create, if necessary, and return the node and slot for an item
 371 *	at position @index in the radix tree @root.
 372 *
 373 *	Until there is more than one item in the tree, no nodes are
 374 *	allocated and @root->rnode is used as a direct slot instead of
 375 *	pointing to a node, in which case *@nodep will be NULL.
 376 *
 377 *	Returns -ENOMEM, or 0 for success.
 378 */
 379int __radix_tree_create(struct radix_tree_root *root, unsigned long index,
 380			struct radix_tree_node **nodep, void ***slotp)
 
 381{
 382	struct radix_tree_node *node = NULL, *slot;
 383	unsigned int height, shift, offset;
 384	int error;
 
 
 
 
 385
 386	/* Make sure the tree is high enough.  */
 387	if (index > radix_tree_maxindex(root->height)) {
 388		error = radix_tree_extend(root, index);
 389		if (error)
 
 
 390			return error;
 
 
 391	}
 392
 393	slot = indirect_to_ptr(root->rnode);
 394
 395	height = root->height;
 396	shift = (height-1) * RADIX_TREE_MAP_SHIFT;
 397
 398	offset = 0;			/* uninitialised var warning */
 399	while (height > 0) {
 400		if (slot == NULL) {
 401			/* Have to add a child node.  */
 402			if (!(slot = radix_tree_node_alloc(root)))
 
 
 403				return -ENOMEM;
 404			slot->path = height;
 405			slot->parent = node;
 406			if (node) {
 407				rcu_assign_pointer(node->slots[offset], slot);
 408				node->count++;
 409				slot->path |= offset << RADIX_TREE_HEIGHT_SHIFT;
 410			} else
 411				rcu_assign_pointer(root->rnode, ptr_to_indirect(slot));
 412		}
 413
 414		/* Go a level down */
 415		offset = (index >> shift) & RADIX_TREE_MAP_MASK;
 416		node = slot;
 417		slot = node->slots[offset];
 418		shift -= RADIX_TREE_MAP_SHIFT;
 419		height--;
 420	}
 421
 422	if (nodep)
 423		*nodep = node;
 424	if (slotp)
 425		*slotp = node ? node->slots + offset : (void **)&root->rnode;
 426	return 0;
 427}
 428
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 429/**
 430 *	radix_tree_insert    -    insert into a radix tree
 431 *	@root:		radix tree root
 432 *	@index:		index key
 
 433 *	@item:		item to insert
 434 *
 435 *	Insert an item into the radix tree at position @index.
 436 */
 437int radix_tree_insert(struct radix_tree_root *root,
 438			unsigned long index, void *item)
 439{
 440	struct radix_tree_node *node;
 441	void **slot;
 442	int error;
 443
 444	BUG_ON(radix_tree_is_indirect_ptr(item));
 445
 446	error = __radix_tree_create(root, index, &node, &slot);
 447	if (error)
 448		return error;
 449	if (*slot != NULL)
 450		return -EEXIST;
 451	rcu_assign_pointer(*slot, item);
 
 452
 453	if (node) {
 454		node->count++;
 455		BUG_ON(tag_get(node, 0, index & RADIX_TREE_MAP_MASK));
 456		BUG_ON(tag_get(node, 1, index & RADIX_TREE_MAP_MASK));
 
 457	} else {
 458		BUG_ON(root_tag_get(root, 0));
 459		BUG_ON(root_tag_get(root, 1));
 460	}
 461
 462	return 0;
 463}
 464EXPORT_SYMBOL(radix_tree_insert);
 465
 466/**
 467 *	__radix_tree_lookup	-	lookup an item in a radix tree
 468 *	@root:		radix tree root
 469 *	@index:		index key
 470 *	@nodep:		returns node
 471 *	@slotp:		returns slot
 472 *
 473 *	Lookup and return the item at position @index in the radix
 474 *	tree @root.
 475 *
 476 *	Until there is more than one item in the tree, no nodes are
 477 *	allocated and @root->rnode is used as a direct slot instead of
 478 *	pointing to a node, in which case *@nodep will be NULL.
 479 */
 480void *__radix_tree_lookup(struct radix_tree_root *root, unsigned long index,
 481			  struct radix_tree_node **nodep, void ***slotp)
 482{
 483	struct radix_tree_node *node, *parent;
 484	unsigned int height, shift;
 485	void **slot;
 486
 487	node = rcu_dereference_raw(root->rnode);
 488	if (node == NULL)
 489		return NULL;
 490
 491	if (!radix_tree_is_indirect_ptr(node)) {
 492		if (index > 0)
 493			return NULL;
 494
 495		if (nodep)
 496			*nodep = NULL;
 497		if (slotp)
 498			*slotp = (void **)&root->rnode;
 499		return node;
 500	}
 501	node = indirect_to_ptr(node);
 502
 503	height = node->path & RADIX_TREE_HEIGHT_MASK;
 504	if (index > radix_tree_maxindex(height))
 505		return NULL;
 506
 507	shift = (height-1) * RADIX_TREE_MAP_SHIFT;
 
 508
 509	do {
 510		parent = node;
 511		slot = node->slots + ((index >> shift) & RADIX_TREE_MAP_MASK);
 512		node = rcu_dereference_raw(*slot);
 513		if (node == NULL)
 514			return NULL;
 515
 516		shift -= RADIX_TREE_MAP_SHIFT;
 517		height--;
 518	} while (height > 0);
 519
 520	if (nodep)
 521		*nodep = parent;
 522	if (slotp)
 523		*slotp = slot;
 524	return node;
 525}
 526
 527/**
 528 *	radix_tree_lookup_slot    -    lookup a slot in a radix tree
 529 *	@root:		radix tree root
 530 *	@index:		index key
 531 *
 532 *	Returns:  the slot corresponding to the position @index in the
 533 *	radix tree @root. This is useful for update-if-exists operations.
 534 *
 535 *	This function can be called under rcu_read_lock iff the slot is not
 536 *	modified by radix_tree_replace_slot, otherwise it must be called
 537 *	exclusive from other writers. Any dereference of the slot must be done
 538 *	using radix_tree_deref_slot.
 539 */
 540void **radix_tree_lookup_slot(struct radix_tree_root *root, unsigned long index)
 541{
 542	void **slot;
 543
 544	if (!__radix_tree_lookup(root, index, NULL, &slot))
 545		return NULL;
 546	return slot;
 547}
 548EXPORT_SYMBOL(radix_tree_lookup_slot);
 549
 550/**
 551 *	radix_tree_lookup    -    perform lookup operation on a radix tree
 552 *	@root:		radix tree root
 553 *	@index:		index key
 554 *
 555 *	Lookup the item at the position @index in the radix tree @root.
 556 *
 557 *	This function can be called under rcu_read_lock, however the caller
 558 *	must manage lifetimes of leaf nodes (eg. RCU may also be used to free
 559 *	them safely). No RCU barriers are required to access or modify the
 560 *	returned item, however.
 561 */
 562void *radix_tree_lookup(struct radix_tree_root *root, unsigned long index)
 563{
 564	return __radix_tree_lookup(root, index, NULL, NULL);
 565}
 566EXPORT_SYMBOL(radix_tree_lookup);
 567
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 568/**
 569 *	radix_tree_tag_set - set a tag on a radix tree node
 570 *	@root:		radix tree root
 571 *	@index:		index key
 572 *	@tag: 		tag index
 573 *
 574 *	Set the search tag (which must be < RADIX_TREE_MAX_TAGS)
 575 *	corresponding to @index in the radix tree.  From
 576 *	the root all the way down to the leaf node.
 577 *
 578 *	Returns the address of the tagged item.   Setting a tag on a not-present
 579 *	item is a bug.
 580 */
 581void *radix_tree_tag_set(struct radix_tree_root *root,
 582			unsigned long index, unsigned int tag)
 583{
 584	unsigned int height, shift;
 585	struct radix_tree_node *slot;
 586
 587	height = root->height;
 588	BUG_ON(index > radix_tree_maxindex(height));
 589
 590	slot = indirect_to_ptr(root->rnode);
 591	shift = (height - 1) * RADIX_TREE_MAP_SHIFT;
 592
 593	while (height > 0) {
 594		int offset;
 
 595
 596		offset = (index >> shift) & RADIX_TREE_MAP_MASK;
 597		if (!tag_get(slot, tag, offset))
 598			tag_set(slot, tag, offset);
 599		slot = slot->slots[offset];
 600		BUG_ON(slot == NULL);
 601		shift -= RADIX_TREE_MAP_SHIFT;
 602		height--;
 603	}
 604
 605	/* set the root's tag bit */
 606	if (slot && !root_tag_get(root, tag))
 607		root_tag_set(root, tag);
 608
 609	return slot;
 610}
 611EXPORT_SYMBOL(radix_tree_tag_set);
 612
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 613/**
 614 *	radix_tree_tag_clear - clear a tag on a radix tree node
 615 *	@root:		radix tree root
 616 *	@index:		index key
 617 *	@tag: 		tag index
 618 *
 619 *	Clear the search tag (which must be < RADIX_TREE_MAX_TAGS)
 620 *	corresponding to @index in the radix tree.  If
 621 *	this causes the leaf node to have no tags set then clear the tag in the
 622 *	next-to-leaf node, etc.
 623 *
 624 *	Returns the address of the tagged item on success, else NULL.  ie:
 625 *	has the same return value and semantics as radix_tree_lookup().
 626 */
 627void *radix_tree_tag_clear(struct radix_tree_root *root,
 628			unsigned long index, unsigned int tag)
 629{
 630	struct radix_tree_node *node = NULL;
 631	struct radix_tree_node *slot = NULL;
 632	unsigned int height, shift;
 633	int uninitialized_var(offset);
 634
 635	height = root->height;
 636	if (index > radix_tree_maxindex(height))
 637		goto out;
 638
 639	shift = height * RADIX_TREE_MAP_SHIFT;
 640	slot = indirect_to_ptr(root->rnode);
 641
 642	while (shift) {
 643		if (slot == NULL)
 644			goto out;
 645
 646		shift -= RADIX_TREE_MAP_SHIFT;
 647		offset = (index >> shift) & RADIX_TREE_MAP_MASK;
 648		node = slot;
 649		slot = slot->slots[offset];
 650	}
 651
 652	if (slot == NULL)
 653		goto out;
 654
 655	while (node) {
 656		if (!tag_get(node, tag, offset))
 657			goto out;
 658		tag_clear(node, tag, offset);
 659		if (any_tag_set(node, tag))
 660			goto out;
 661
 662		index >>= RADIX_TREE_MAP_SHIFT;
 663		offset = index & RADIX_TREE_MAP_MASK;
 664		node = node->parent;
 665	}
 666
 667	/* clear the root's tag bit */
 668	if (root_tag_get(root, tag))
 669		root_tag_clear(root, tag);
 670
 671out:
 672	return slot;
 673}
 674EXPORT_SYMBOL(radix_tree_tag_clear);
 675
 676/**
 677 * radix_tree_tag_get - get a tag on a radix tree node
 678 * @root:		radix tree root
 679 * @index:		index key
 680 * @tag: 		tag index (< RADIX_TREE_MAX_TAGS)
 681 *
 682 * Return values:
 683 *
 684 *  0: tag not present or not set
 685 *  1: tag set
 686 *
 687 * Note that the return value of this function may not be relied on, even if
 688 * the RCU lock is held, unless tag modification and node deletion are excluded
 689 * from concurrency.
 690 */
 691int radix_tree_tag_get(struct radix_tree_root *root,
 692			unsigned long index, unsigned int tag)
 693{
 694	unsigned int height, shift;
 695	struct radix_tree_node *node;
 696
 697	/* check the root's tag bit */
 698	if (!root_tag_get(root, tag))
 699		return 0;
 700
 701	node = rcu_dereference_raw(root->rnode);
 702	if (node == NULL)
 703		return 0;
 704
 705	if (!radix_tree_is_indirect_ptr(node))
 706		return (index == 0);
 707	node = indirect_to_ptr(node);
 708
 709	height = node->path & RADIX_TREE_HEIGHT_MASK;
 710	if (index > radix_tree_maxindex(height))
 711		return 0;
 712
 713	shift = (height - 1) * RADIX_TREE_MAP_SHIFT;
 
 714
 715	for ( ; ; ) {
 716		int offset;
 717
 718		if (node == NULL)
 719			return 0;
 720
 721		offset = (index >> shift) & RADIX_TREE_MAP_MASK;
 722		if (!tag_get(node, tag, offset))
 723			return 0;
 724		if (height == 1)
 725			return 1;
 726		node = rcu_dereference_raw(node->slots[offset]);
 727		shift -= RADIX_TREE_MAP_SHIFT;
 728		height--;
 729	}
 
 
 730}
 731EXPORT_SYMBOL(radix_tree_tag_get);
 732
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 733/**
 734 * radix_tree_next_chunk - find next chunk of slots for iteration
 735 *
 736 * @root:	radix tree root
 737 * @iter:	iterator state
 738 * @flags:	RADIX_TREE_ITER_* flags and tag index
 739 * Returns:	pointer to chunk first slot, or NULL if iteration is over
 740 */
 741void **radix_tree_next_chunk(struct radix_tree_root *root,
 742			     struct radix_tree_iter *iter, unsigned flags)
 743{
 744	unsigned shift, tag = flags & RADIX_TREE_ITER_TAG_MASK;
 745	struct radix_tree_node *rnode, *node;
 746	unsigned long index, offset, height;
 747
 748	if ((flags & RADIX_TREE_ITER_TAGGED) && !root_tag_get(root, tag))
 749		return NULL;
 750
 751	/*
 752	 * Catch next_index overflow after ~0UL. iter->index never overflows
 753	 * during iterating; it can be zero only at the beginning.
 754	 * And we cannot overflow iter->next_index in a single step,
 755	 * because RADIX_TREE_MAP_SHIFT < BITS_PER_LONG.
 756	 *
 757	 * This condition also used by radix_tree_next_slot() to stop
 758	 * contiguous iterating, and forbid swithing to the next chunk.
 759	 */
 760	index = iter->next_index;
 761	if (!index && iter->index)
 762		return NULL;
 763
 764	rnode = rcu_dereference_raw(root->rnode);
 765	if (radix_tree_is_indirect_ptr(rnode)) {
 766		rnode = indirect_to_ptr(rnode);
 767	} else if (rnode && !index) {
 
 
 
 
 768		/* Single-slot tree */
 769		iter->index = 0;
 770		iter->next_index = 1;
 771		iter->tags = 1;
 
 
 772		return (void **)&root->rnode;
 773	} else
 774		return NULL;
 775
 776restart:
 777	height = rnode->path & RADIX_TREE_HEIGHT_MASK;
 778	shift = (height - 1) * RADIX_TREE_MAP_SHIFT;
 779	offset = index >> shift;
 780
 781	/* Index outside of the tree */
 782	if (offset >= RADIX_TREE_MAP_SIZE)
 783		return NULL;
 784
 785	node = rnode;
 786	while (1) {
 787		if ((flags & RADIX_TREE_ITER_TAGGED) ?
 788				!test_bit(offset, node->tags[tag]) :
 789				!node->slots[offset]) {
 790			/* Hole detected */
 791			if (flags & RADIX_TREE_ITER_CONTIG)
 792				return NULL;
 793
 794			if (flags & RADIX_TREE_ITER_TAGGED)
 795				offset = radix_tree_find_next_bit(
 796						node->tags[tag],
 797						RADIX_TREE_MAP_SIZE,
 798						offset + 1);
 799			else
 800				while (++offset	< RADIX_TREE_MAP_SIZE) {
 801					if (node->slots[offset])
 
 
 
 802						break;
 803				}
 804			index &= ~((RADIX_TREE_MAP_SIZE << shift) - 1);
 805			index += offset << shift;
 806			/* Overflow after ~0UL */
 807			if (!index)
 808				return NULL;
 809			if (offset == RADIX_TREE_MAP_SIZE)
 810				goto restart;
 
 811		}
 812
 813		/* This is leaf-node */
 814		if (!shift)
 815			break;
 816
 817		node = rcu_dereference_raw(node->slots[offset]);
 818		if (node == NULL)
 819			goto restart;
 820		shift -= RADIX_TREE_MAP_SHIFT;
 821		offset = (index >> shift) & RADIX_TREE_MAP_MASK;
 822	}
 823
 824	/* Update the iterator state */
 825	iter->index = index;
 826	iter->next_index = (index | RADIX_TREE_MAP_MASK) + 1;
 
 
 827
 828	/* Construct iter->tags bit-mask from node->tags[tag] array */
 829	if (flags & RADIX_TREE_ITER_TAGGED) {
 830		unsigned tag_long, tag_bit;
 831
 832		tag_long = offset / BITS_PER_LONG;
 833		tag_bit  = offset % BITS_PER_LONG;
 834		iter->tags = node->tags[tag][tag_long] >> tag_bit;
 835		/* This never happens if RADIX_TREE_TAG_LONGS == 1 */
 836		if (tag_long < RADIX_TREE_TAG_LONGS - 1) {
 837			/* Pick tags from next element */
 838			if (tag_bit)
 839				iter->tags |= node->tags[tag][tag_long + 1] <<
 840						(BITS_PER_LONG - tag_bit);
 841			/* Clip chunk size, here only BITS_PER_LONG tags */
 842			iter->next_index = index + BITS_PER_LONG;
 843		}
 844	}
 845
 846	return node->slots + offset;
 847}
 848EXPORT_SYMBOL(radix_tree_next_chunk);
 849
 850/**
 851 * radix_tree_range_tag_if_tagged - for each item in given range set given
 852 *				   tag if item has another tag set
 853 * @root:		radix tree root
 854 * @first_indexp:	pointer to a starting index of a range to scan
 855 * @last_index:		last index of a range to scan
 856 * @nr_to_tag:		maximum number items to tag
 857 * @iftag:		tag index to test
 858 * @settag:		tag index to set if tested tag is set
 859 *
 860 * This function scans range of radix tree from first_index to last_index
 861 * (inclusive).  For each item in the range if iftag is set, the function sets
 862 * also settag. The function stops either after tagging nr_to_tag items or
 863 * after reaching last_index.
 864 *
 865 * The tags must be set from the leaf level only and propagated back up the
 866 * path to the root. We must do this so that we resolve the full path before
 867 * setting any tags on intermediate nodes. If we set tags as we descend, then
 868 * we can get to the leaf node and find that the index that has the iftag
 869 * set is outside the range we are scanning. This reults in dangling tags and
 870 * can lead to problems with later tag operations (e.g. livelocks on lookups).
 871 *
 872 * The function returns number of leaves where the tag was set and sets
 873 * *first_indexp to the first unscanned index.
 874 * WARNING! *first_indexp can wrap if last_index is ULONG_MAX. Caller must
 875 * be prepared to handle that.
 876 */
 877unsigned long radix_tree_range_tag_if_tagged(struct radix_tree_root *root,
 878		unsigned long *first_indexp, unsigned long last_index,
 879		unsigned long nr_to_tag,
 880		unsigned int iftag, unsigned int settag)
 881{
 882	unsigned int height = root->height;
 883	struct radix_tree_node *node = NULL;
 884	struct radix_tree_node *slot;
 885	unsigned int shift;
 886	unsigned long tagged = 0;
 887	unsigned long index = *first_indexp;
 888
 889	last_index = min(last_index, radix_tree_maxindex(height));
 890	if (index > last_index)
 891		return 0;
 892	if (!nr_to_tag)
 893		return 0;
 894	if (!root_tag_get(root, iftag)) {
 895		*first_indexp = last_index + 1;
 896		return 0;
 897	}
 898	if (height == 0) {
 899		*first_indexp = last_index + 1;
 900		root_tag_set(root, settag);
 901		return 1;
 902	}
 903
 904	shift = (height - 1) * RADIX_TREE_MAP_SHIFT;
 905	slot = indirect_to_ptr(root->rnode);
 906
 907	for (;;) {
 908		unsigned long upindex;
 909		int offset;
 910
 911		offset = (index >> shift) & RADIX_TREE_MAP_MASK;
 912		if (!slot->slots[offset])
 913			goto next;
 914		if (!tag_get(slot, iftag, offset))
 915			goto next;
 916		if (shift) {
 917			/* Go down one level */
 918			shift -= RADIX_TREE_MAP_SHIFT;
 919			node = slot;
 920			slot = slot->slots[offset];
 921			continue;
 922		}
 923
 924		/* tag the leaf */
 925		tagged++;
 926		tag_set(slot, settag, offset);
 927
 928		/* walk back up the path tagging interior nodes */
 929		upindex = index;
 930		while (node) {
 931			upindex >>= RADIX_TREE_MAP_SHIFT;
 932			offset = upindex & RADIX_TREE_MAP_MASK;
 933
 934			/* stop if we find a node with the tag already set */
 935			if (tag_get(node, settag, offset))
 936				break;
 937			tag_set(node, settag, offset);
 938			node = node->parent;
 939		}
 940
 941		/*
 942		 * Small optimization: now clear that node pointer.
 943		 * Since all of this slot's ancestors now have the tag set
 944		 * from setting it above, we have no further need to walk
 945		 * back up the tree setting tags, until we update slot to
 946		 * point to another radix_tree_node.
 947		 */
 948		node = NULL;
 949
 950next:
 951		/* Go to next item at level determined by 'shift' */
 952		index = ((index >> shift) + 1) << shift;
 953		/* Overflow can happen when last_index is ~0UL... */
 954		if (index > last_index || !index)
 955			break;
 956		if (tagged >= nr_to_tag)
 957			break;
 958		while (((index >> shift) & RADIX_TREE_MAP_MASK) == 0) {
 959			/*
 960			 * We've fully scanned this node. Go up. Because
 961			 * last_index is guaranteed to be in the tree, what
 962			 * we do below cannot wander astray.
 963			 */
 964			slot = slot->parent;
 965			shift += RADIX_TREE_MAP_SHIFT;
 966		}
 967	}
 968	/*
 969	 * We need not to tag the root tag if there is no tag which is set with
 970	 * settag within the range from *first_indexp to last_index.
 971	 */
 972	if (tagged > 0)
 973		root_tag_set(root, settag);
 974	*first_indexp = index;
 975
 976	return tagged;
 977}
 978EXPORT_SYMBOL(radix_tree_range_tag_if_tagged);
 979
 980/**
 981 *	radix_tree_gang_lookup - perform multiple lookup on a radix tree
 982 *	@root:		radix tree root
 983 *	@results:	where the results of the lookup are placed
 984 *	@first_index:	start the lookup from this key
 985 *	@max_items:	place up to this many items at *results
 986 *
 987 *	Performs an index-ascending scan of the tree for present items.  Places
 988 *	them at *@results and returns the number of items which were placed at
 989 *	*@results.
 990 *
 991 *	The implementation is naive.
 992 *
 993 *	Like radix_tree_lookup, radix_tree_gang_lookup may be called under
 994 *	rcu_read_lock. In this case, rather than the returned results being
 995 *	an atomic snapshot of the tree at a single point in time, the semantics
 996 *	of an RCU protected gang lookup are as though multiple radix_tree_lookups
 997 *	have been issued in individual locks, and results stored in 'results'.
 
 998 */
 999unsigned int
1000radix_tree_gang_lookup(struct radix_tree_root *root, void **results,
1001			unsigned long first_index, unsigned int max_items)
1002{
1003	struct radix_tree_iter iter;
1004	void **slot;
1005	unsigned int ret = 0;
1006
1007	if (unlikely(!max_items))
1008		return 0;
1009
1010	radix_tree_for_each_slot(slot, root, &iter, first_index) {
1011		results[ret] = indirect_to_ptr(rcu_dereference_raw(*slot));
1012		if (!results[ret])
1013			continue;
 
 
 
 
1014		if (++ret == max_items)
1015			break;
1016	}
1017
1018	return ret;
1019}
1020EXPORT_SYMBOL(radix_tree_gang_lookup);
1021
1022/**
1023 *	radix_tree_gang_lookup_slot - perform multiple slot lookup on radix tree
1024 *	@root:		radix tree root
1025 *	@results:	where the results of the lookup are placed
1026 *	@indices:	where their indices should be placed (but usually NULL)
1027 *	@first_index:	start the lookup from this key
1028 *	@max_items:	place up to this many items at *results
1029 *
1030 *	Performs an index-ascending scan of the tree for present items.  Places
1031 *	their slots at *@results and returns the number of items which were
1032 *	placed at *@results.
1033 *
1034 *	The implementation is naive.
1035 *
1036 *	Like radix_tree_gang_lookup as far as RCU and locking goes. Slots must
1037 *	be dereferenced with radix_tree_deref_slot, and if using only RCU
1038 *	protection, radix_tree_deref_slot may fail requiring a retry.
1039 */
1040unsigned int
1041radix_tree_gang_lookup_slot(struct radix_tree_root *root,
1042			void ***results, unsigned long *indices,
1043			unsigned long first_index, unsigned int max_items)
1044{
1045	struct radix_tree_iter iter;
1046	void **slot;
1047	unsigned int ret = 0;
1048
1049	if (unlikely(!max_items))
1050		return 0;
1051
1052	radix_tree_for_each_slot(slot, root, &iter, first_index) {
1053		results[ret] = slot;
1054		if (indices)
1055			indices[ret] = iter.index;
1056		if (++ret == max_items)
1057			break;
1058	}
1059
1060	return ret;
1061}
1062EXPORT_SYMBOL(radix_tree_gang_lookup_slot);
1063
1064/**
1065 *	radix_tree_gang_lookup_tag - perform multiple lookup on a radix tree
1066 *	                             based on a tag
1067 *	@root:		radix tree root
1068 *	@results:	where the results of the lookup are placed
1069 *	@first_index:	start the lookup from this key
1070 *	@max_items:	place up to this many items at *results
1071 *	@tag:		the tag index (< RADIX_TREE_MAX_TAGS)
1072 *
1073 *	Performs an index-ascending scan of the tree for present items which
1074 *	have the tag indexed by @tag set.  Places the items at *@results and
1075 *	returns the number of items which were placed at *@results.
1076 */
1077unsigned int
1078radix_tree_gang_lookup_tag(struct radix_tree_root *root, void **results,
1079		unsigned long first_index, unsigned int max_items,
1080		unsigned int tag)
1081{
1082	struct radix_tree_iter iter;
1083	void **slot;
1084	unsigned int ret = 0;
1085
1086	if (unlikely(!max_items))
1087		return 0;
1088
1089	radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) {
1090		results[ret] = indirect_to_ptr(rcu_dereference_raw(*slot));
1091		if (!results[ret])
1092			continue;
 
 
 
 
1093		if (++ret == max_items)
1094			break;
1095	}
1096
1097	return ret;
1098}
1099EXPORT_SYMBOL(radix_tree_gang_lookup_tag);
1100
1101/**
1102 *	radix_tree_gang_lookup_tag_slot - perform multiple slot lookup on a
1103 *					  radix tree based on a tag
1104 *	@root:		radix tree root
1105 *	@results:	where the results of the lookup are placed
1106 *	@first_index:	start the lookup from this key
1107 *	@max_items:	place up to this many items at *results
1108 *	@tag:		the tag index (< RADIX_TREE_MAX_TAGS)
1109 *
1110 *	Performs an index-ascending scan of the tree for present items which
1111 *	have the tag indexed by @tag set.  Places the slots at *@results and
1112 *	returns the number of slots which were placed at *@results.
1113 */
1114unsigned int
1115radix_tree_gang_lookup_tag_slot(struct radix_tree_root *root, void ***results,
1116		unsigned long first_index, unsigned int max_items,
1117		unsigned int tag)
1118{
1119	struct radix_tree_iter iter;
1120	void **slot;
1121	unsigned int ret = 0;
1122
1123	if (unlikely(!max_items))
1124		return 0;
1125
1126	radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) {
1127		results[ret] = slot;
1128		if (++ret == max_items)
1129			break;
1130	}
1131
1132	return ret;
1133}
1134EXPORT_SYMBOL(radix_tree_gang_lookup_tag_slot);
1135
1136#if defined(CONFIG_SHMEM) && defined(CONFIG_SWAP)
1137#include <linux/sched.h> /* for cond_resched() */
1138
1139/*
1140 * This linear search is at present only useful to shmem_unuse_inode().
1141 */
1142static unsigned long __locate(struct radix_tree_node *slot, void *item,
1143			      unsigned long index, unsigned long *found_index)
1144{
1145	unsigned int shift, height;
1146	unsigned long i;
1147
1148	height = slot->path & RADIX_TREE_HEIGHT_MASK;
1149	shift = (height-1) * RADIX_TREE_MAP_SHIFT;
1150
1151	for ( ; height > 1; height--) {
1152		i = (index >> shift) & RADIX_TREE_MAP_MASK;
1153		for (;;) {
1154			if (slot->slots[i] != NULL)
1155				break;
1156			index &= ~((1UL << shift) - 1);
1157			index += 1UL << shift;
1158			if (index == 0)
1159				goto out;	/* 32-bit wraparound */
1160			i++;
1161			if (i == RADIX_TREE_MAP_SIZE)
1162				goto out;
1163		}
1164
1165		shift -= RADIX_TREE_MAP_SHIFT;
1166		slot = rcu_dereference_raw(slot->slots[i]);
1167		if (slot == NULL)
1168			goto out;
1169	}
1170
1171	/* Bottom level: check items */
1172	for (i = 0; i < RADIX_TREE_MAP_SIZE; i++) {
1173		if (slot->slots[i] == item) {
1174			*found_index = index + i;
1175			index = 0;
1176			goto out;
1177		}
1178	}
1179	index += RADIX_TREE_MAP_SIZE;
1180out:
1181	return index;
1182}
1183
1184/**
1185 *	radix_tree_locate_item - search through radix tree for item
1186 *	@root:		radix tree root
1187 *	@item:		item to be found
1188 *
1189 *	Returns index where item was found, or -1 if not found.
1190 *	Caller must hold no lock (since this time-consuming function needs
1191 *	to be preemptible), and must check afterwards if item is still there.
1192 */
1193unsigned long radix_tree_locate_item(struct radix_tree_root *root, void *item)
1194{
1195	struct radix_tree_node *node;
1196	unsigned long max_index;
1197	unsigned long cur_index = 0;
1198	unsigned long found_index = -1;
1199
1200	do {
1201		rcu_read_lock();
1202		node = rcu_dereference_raw(root->rnode);
1203		if (!radix_tree_is_indirect_ptr(node)) {
1204			rcu_read_unlock();
1205			if (node == item)
1206				found_index = 0;
1207			break;
1208		}
1209
1210		node = indirect_to_ptr(node);
1211		max_index = radix_tree_maxindex(node->path &
1212						RADIX_TREE_HEIGHT_MASK);
1213		if (cur_index > max_index) {
1214			rcu_read_unlock();
1215			break;
1216		}
1217
1218		cur_index = __locate(node, item, cur_index, &found_index);
1219		rcu_read_unlock();
1220		cond_resched();
1221	} while (cur_index != 0 && cur_index <= max_index);
1222
1223	return found_index;
1224}
1225#else
1226unsigned long radix_tree_locate_item(struct radix_tree_root *root, void *item)
1227{
1228	return -1;
1229}
1230#endif /* CONFIG_SHMEM && CONFIG_SWAP */
1231
1232/**
1233 *	radix_tree_shrink    -    shrink height of a radix tree to minimal
1234 *	@root		radix tree root
1235 */
1236static inline void radix_tree_shrink(struct radix_tree_root *root)
1237{
1238	/* try to shrink tree height */
1239	while (root->height > 0) {
1240		struct radix_tree_node *to_free = root->rnode;
1241		struct radix_tree_node *slot;
1242
1243		BUG_ON(!radix_tree_is_indirect_ptr(to_free));
1244		to_free = indirect_to_ptr(to_free);
1245
1246		/*
1247		 * The candidate node has more than one child, or its child
1248		 * is not at the leftmost slot, we cannot shrink.
1249		 */
1250		if (to_free->count != 1)
1251			break;
1252		if (!to_free->slots[0])
1253			break;
1254
1255		/*
1256		 * We don't need rcu_assign_pointer(), since we are simply
1257		 * moving the node from one part of the tree to another: if it
1258		 * was safe to dereference the old pointer to it
1259		 * (to_free->slots[0]), it will be safe to dereference the new
1260		 * one (root->rnode) as far as dependent read barriers go.
1261		 */
1262		slot = to_free->slots[0];
1263		if (root->height > 1) {
1264			slot->parent = NULL;
1265			slot = ptr_to_indirect(slot);
1266		}
1267		root->rnode = slot;
1268		root->height--;
1269
1270		/*
1271		 * We have a dilemma here. The node's slot[0] must not be
1272		 * NULLed in case there are concurrent lookups expecting to
1273		 * find the item. However if this was a bottom-level node,
1274		 * then it may be subject to the slot pointer being visible
1275		 * to callers dereferencing it. If item corresponding to
1276		 * slot[0] is subsequently deleted, these callers would expect
1277		 * their slot to become empty sooner or later.
1278		 *
1279		 * For example, lockless pagecache will look up a slot, deref
1280		 * the page pointer, and if the page is 0 refcount it means it
1281		 * was concurrently deleted from pagecache so try the deref
1282		 * again. Fortunately there is already a requirement for logic
1283		 * to retry the entire slot lookup -- the indirect pointer
1284		 * problem (replacing direct root node with an indirect pointer
1285		 * also results in a stale slot). So tag the slot as indirect
1286		 * to force callers to retry.
1287		 */
1288		if (root->height == 0)
1289			*((unsigned long *)&to_free->slots[0]) |=
1290						RADIX_TREE_INDIRECT_PTR;
1291
1292		radix_tree_node_free(to_free);
1293	}
1294}
1295
1296/**
1297 *	__radix_tree_delete_node    -    try to free node after clearing a slot
1298 *	@root:		radix tree root
1299 *	@index:		index key
1300 *	@node:		node containing @index
 
 
1301 *
1302 *	After clearing the slot at @index in @node from radix tree
1303 *	rooted at @root, call this function to attempt freeing the
1304 *	node and shrinking the tree.
1305 *
1306 *	Returns %true if @node was freed, %false otherwise.
1307 */
1308bool __radix_tree_delete_node(struct radix_tree_root *root,
1309			      struct radix_tree_node *node)
 
 
1310{
1311	bool deleted = false;
1312
1313	do {
1314		struct radix_tree_node *parent;
1315
1316		if (node->count) {
1317			if (node == indirect_to_ptr(root->rnode)) {
1318				radix_tree_shrink(root);
1319				if (root->height == 0)
1320					deleted = true;
1321			}
1322			return deleted;
1323		}
1324
1325		parent = node->parent;
1326		if (parent) {
1327			unsigned int offset;
1328
1329			offset = node->path >> RADIX_TREE_HEIGHT_SHIFT;
1330			parent->slots[offset] = NULL;
1331			parent->count--;
1332		} else {
1333			root_tag_clear_all(root);
1334			root->height = 0;
1335			root->rnode = NULL;
1336		}
1337
1338		radix_tree_node_free(node);
1339		deleted = true;
1340
1341		node = parent;
1342	} while (node);
1343
1344	return deleted;
1345}
1346
1347/**
1348 *	radix_tree_delete_item    -    delete an item from a radix tree
1349 *	@root:		radix tree root
1350 *	@index:		index key
1351 *	@item:		expected item
1352 *
1353 *	Remove @item at @index from the radix tree rooted at @root.
1354 *
1355 *	Returns the address of the deleted item, or NULL if it was not present
1356 *	or the entry at the given @index was not @item.
1357 */
1358void *radix_tree_delete_item(struct radix_tree_root *root,
1359			     unsigned long index, void *item)
1360{
1361	struct radix_tree_node *node;
1362	unsigned int offset;
1363	void **slot;
1364	void *entry;
1365	int tag;
1366
1367	entry = __radix_tree_lookup(root, index, &node, &slot);
1368	if (!entry)
1369		return NULL;
1370
1371	if (item && entry != item)
1372		return NULL;
1373
1374	if (!node) {
1375		root_tag_clear_all(root);
1376		root->rnode = NULL;
1377		return entry;
1378	}
1379
1380	offset = index & RADIX_TREE_MAP_MASK;
1381
1382	/*
1383	 * Clear all tags associated with the item to be deleted.
1384	 * This way of doing it would be inefficient, but seldom is any set.
1385	 */
1386	for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
1387		if (tag_get(node, tag, offset))
1388			radix_tree_tag_clear(root, index, tag);
1389	}
1390
1391	node->slots[offset] = NULL;
1392	node->count--;
 
1393
1394	__radix_tree_delete_node(root, node);
1395
1396	return entry;
1397}
1398EXPORT_SYMBOL(radix_tree_delete_item);
1399
1400/**
1401 *	radix_tree_delete    -    delete an item from a radix tree
1402 *	@root:		radix tree root
1403 *	@index:		index key
1404 *
1405 *	Remove the item at @index from the radix tree rooted at @root.
1406 *
1407 *	Returns the address of the deleted item, or NULL if it was not present.
1408 */
1409void *radix_tree_delete(struct radix_tree_root *root, unsigned long index)
1410{
1411	return radix_tree_delete_item(root, index, NULL);
1412}
1413EXPORT_SYMBOL(radix_tree_delete);
1414
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1415/**
1416 *	radix_tree_tagged - test whether any items in the tree are tagged
1417 *	@root:		radix tree root
1418 *	@tag:		tag to test
1419 */
1420int radix_tree_tagged(struct radix_tree_root *root, unsigned int tag)
1421{
1422	return root_tag_get(root, tag);
1423}
1424EXPORT_SYMBOL(radix_tree_tagged);
1425
1426static void
1427radix_tree_node_ctor(void *arg)
1428{
1429	struct radix_tree_node *node = arg;
1430
1431	memset(node, 0, sizeof(*node));
1432	INIT_LIST_HEAD(&node->private_list);
1433}
1434
1435static __init unsigned long __maxindex(unsigned int height)
1436{
1437	unsigned int width = height * RADIX_TREE_MAP_SHIFT;
1438	int shift = RADIX_TREE_INDEX_BITS - width;
1439
1440	if (shift < 0)
1441		return ~0UL;
1442	if (shift >= BITS_PER_LONG)
1443		return 0UL;
1444	return ~0UL >> shift;
1445}
1446
1447static __init void radix_tree_init_maxindex(void)
1448{
1449	unsigned int i;
 
1450
1451	for (i = 0; i < ARRAY_SIZE(height_to_maxindex); i++)
1452		height_to_maxindex[i] = __maxindex(i);
 
 
 
 
1453}
1454
1455static int radix_tree_callback(struct notifier_block *nfb,
1456                            unsigned long action,
1457                            void *hcpu)
1458{
1459       int cpu = (long)hcpu;
1460       struct radix_tree_preload *rtp;
1461
1462       /* Free per-cpu pool of perloaded nodes */
1463       if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
1464               rtp = &per_cpu(radix_tree_preloads, cpu);
1465               while (rtp->nr) {
1466                       kmem_cache_free(radix_tree_node_cachep,
1467                                       rtp->nodes[rtp->nr-1]);
1468                       rtp->nodes[rtp->nr-1] = NULL;
1469                       rtp->nr--;
1470               }
1471       }
1472       return NOTIFY_OK;
1473}
1474
1475void __init radix_tree_init(void)
1476{
 
1477	radix_tree_node_cachep = kmem_cache_create("radix_tree_node",
1478			sizeof(struct radix_tree_node), 0,
1479			SLAB_PANIC | SLAB_RECLAIM_ACCOUNT,
1480			radix_tree_node_ctor);
1481	radix_tree_init_maxindex();
1482	hotcpu_notifier(radix_tree_callback, 0);
 
 
1483}
v4.10.11
   1/*
   2 * Copyright (C) 2001 Momchil Velikov
   3 * Portions Copyright (C) 2001 Christoph Hellwig
   4 * Copyright (C) 2005 SGI, Christoph Lameter
   5 * Copyright (C) 2006 Nick Piggin
   6 * Copyright (C) 2012 Konstantin Khlebnikov
   7 * Copyright (C) 2016 Intel, Matthew Wilcox
   8 * Copyright (C) 2016 Intel, Ross Zwisler
   9 *
  10 * This program is free software; you can redistribute it and/or
  11 * modify it under the terms of the GNU General Public License as
  12 * published by the Free Software Foundation; either version 2, or (at
  13 * your option) any later version.
  14 *
  15 * This program is distributed in the hope that it will be useful, but
  16 * WITHOUT ANY WARRANTY; without even the implied warranty of
  17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  18 * General Public License for more details.
  19 *
  20 * You should have received a copy of the GNU General Public License
  21 * along with this program; if not, write to the Free Software
  22 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  23 */
  24
  25#include <linux/cpu.h>
  26#include <linux/errno.h>
  27#include <linux/init.h>
  28#include <linux/kernel.h>
  29#include <linux/export.h>
  30#include <linux/radix-tree.h>
  31#include <linux/percpu.h>
  32#include <linux/slab.h>
  33#include <linux/kmemleak.h>
  34#include <linux/cpu.h>
  35#include <linux/string.h>
  36#include <linux/bitops.h>
  37#include <linux/rcupdate.h>
  38#include <linux/preempt.h>		/* in_interrupt() */
  39
  40
  41/* Number of nodes in fully populated tree of given height */
  42static unsigned long height_to_maxnodes[RADIX_TREE_MAX_PATH + 1] __read_mostly;
 
 
 
  43
  44/*
  45 * Radix tree node cache.
  46 */
  47static struct kmem_cache *radix_tree_node_cachep;
  48
  49/*
  50 * The radix tree is variable-height, so an insert operation not only has
  51 * to build the branch to its corresponding item, it also has to build the
  52 * branch to existing items if the size has to be increased (by
  53 * radix_tree_extend).
  54 *
  55 * The worst case is a zero height tree with just a single item at index 0,
  56 * and then inserting an item at index ULONG_MAX. This requires 2 new branches
  57 * of RADIX_TREE_MAX_PATH size to be created, with only the root node shared.
  58 * Hence:
  59 */
  60#define RADIX_TREE_PRELOAD_SIZE (RADIX_TREE_MAX_PATH * 2 - 1)
  61
  62/*
  63 * Per-cpu pool of preloaded nodes
  64 */
  65struct radix_tree_preload {
  66	unsigned nr;
  67	/* nodes->private_data points to next preallocated node */
  68	struct radix_tree_node *nodes;
  69};
  70static DEFINE_PER_CPU(struct radix_tree_preload, radix_tree_preloads) = { 0, };
  71
  72static inline struct radix_tree_node *entry_to_node(void *ptr)
  73{
  74	return (void *)((unsigned long)ptr & ~RADIX_TREE_INTERNAL_NODE);
  75}
  76
  77static inline void *node_to_entry(void *ptr)
  78{
  79	return (void *)((unsigned long)ptr | RADIX_TREE_INTERNAL_NODE);
  80}
  81
  82#define RADIX_TREE_RETRY	node_to_entry(NULL)
  83
  84#ifdef CONFIG_RADIX_TREE_MULTIORDER
  85/* Sibling slots point directly to another slot in the same node */
  86static inline bool is_sibling_entry(struct radix_tree_node *parent, void *node)
  87{
  88	void **ptr = node;
  89	return (parent->slots <= ptr) &&
  90			(ptr < parent->slots + RADIX_TREE_MAP_SIZE);
  91}
  92#else
  93static inline bool is_sibling_entry(struct radix_tree_node *parent, void *node)
  94{
  95	return false;
  96}
  97#endif
  98
  99static inline unsigned long get_slot_offset(struct radix_tree_node *parent,
 100						 void **slot)
 101{
 102	return slot - parent->slots;
 103}
 104
 105static unsigned int radix_tree_descend(struct radix_tree_node *parent,
 106			struct radix_tree_node **nodep, unsigned long index)
 107{
 108	unsigned int offset = (index >> parent->shift) & RADIX_TREE_MAP_MASK;
 109	void **entry = rcu_dereference_raw(parent->slots[offset]);
 110
 111#ifdef CONFIG_RADIX_TREE_MULTIORDER
 112	if (radix_tree_is_internal_node(entry)) {
 113		if (is_sibling_entry(parent, entry)) {
 114			void **sibentry = (void **) entry_to_node(entry);
 115			offset = get_slot_offset(parent, sibentry);
 116			entry = rcu_dereference_raw(*sibentry);
 117		}
 118	}
 119#endif
 120
 121	*nodep = (void *)entry;
 122	return offset;
 123}
 124
 125static inline gfp_t root_gfp_mask(struct radix_tree_root *root)
 126{
 127	return root->gfp_mask & __GFP_BITS_MASK;
 128}
 129
 130static inline void tag_set(struct radix_tree_node *node, unsigned int tag,
 131		int offset)
 132{
 133	__set_bit(offset, node->tags[tag]);
 134}
 135
 136static inline void tag_clear(struct radix_tree_node *node, unsigned int tag,
 137		int offset)
 138{
 139	__clear_bit(offset, node->tags[tag]);
 140}
 141
 142static inline int tag_get(struct radix_tree_node *node, unsigned int tag,
 143		int offset)
 144{
 145	return test_bit(offset, node->tags[tag]);
 146}
 147
 148static inline void root_tag_set(struct radix_tree_root *root, unsigned int tag)
 149{
 150	root->gfp_mask |= (__force gfp_t)(1 << (tag + __GFP_BITS_SHIFT));
 151}
 152
 153static inline void root_tag_clear(struct radix_tree_root *root, unsigned tag)
 154{
 155	root->gfp_mask &= (__force gfp_t)~(1 << (tag + __GFP_BITS_SHIFT));
 156}
 157
 158static inline void root_tag_clear_all(struct radix_tree_root *root)
 159{
 160	root->gfp_mask &= __GFP_BITS_MASK;
 161}
 162
 163static inline int root_tag_get(struct radix_tree_root *root, unsigned int tag)
 164{
 165	return (__force int)root->gfp_mask & (1 << (tag + __GFP_BITS_SHIFT));
 166}
 167
 168static inline unsigned root_tags_get(struct radix_tree_root *root)
 169{
 170	return (__force unsigned)root->gfp_mask >> __GFP_BITS_SHIFT;
 171}
 172
 173/*
 174 * Returns 1 if any slot in the node has this tag set.
 175 * Otherwise returns 0.
 176 */
 177static inline int any_tag_set(struct radix_tree_node *node, unsigned int tag)
 178{
 179	unsigned idx;
 180	for (idx = 0; idx < RADIX_TREE_TAG_LONGS; idx++) {
 181		if (node->tags[tag][idx])
 182			return 1;
 183	}
 184	return 0;
 185}
 186
 187/**
 188 * radix_tree_find_next_bit - find the next set bit in a memory region
 189 *
 190 * @addr: The address to base the search on
 191 * @size: The bitmap size in bits
 192 * @offset: The bitnumber to start searching at
 193 *
 194 * Unrollable variant of find_next_bit() for constant size arrays.
 195 * Tail bits starting from size to roundup(size, BITS_PER_LONG) must be zero.
 196 * Returns next bit offset, or size if nothing found.
 197 */
 198static __always_inline unsigned long
 199radix_tree_find_next_bit(struct radix_tree_node *node, unsigned int tag,
 200			 unsigned long offset)
 201{
 202	const unsigned long *addr = node->tags[tag];
 
 203
 204	if (offset < RADIX_TREE_MAP_SIZE) {
 205		unsigned long tmp;
 206
 207		addr += offset / BITS_PER_LONG;
 208		tmp = *addr >> (offset % BITS_PER_LONG);
 209		if (tmp)
 210			return __ffs(tmp) + offset;
 211		offset = (offset + BITS_PER_LONG) & ~(BITS_PER_LONG - 1);
 212		while (offset < RADIX_TREE_MAP_SIZE) {
 213			tmp = *++addr;
 214			if (tmp)
 215				return __ffs(tmp) + offset;
 216			offset += BITS_PER_LONG;
 217		}
 218	}
 219	return RADIX_TREE_MAP_SIZE;
 220}
 221
 222static unsigned int iter_offset(const struct radix_tree_iter *iter)
 223{
 224	return (iter->index >> iter_shift(iter)) & RADIX_TREE_MAP_MASK;
 225}
 226
 227/*
 228 * The maximum index which can be stored in a radix tree
 229 */
 230static inline unsigned long shift_maxindex(unsigned int shift)
 231{
 232	return (RADIX_TREE_MAP_SIZE << shift) - 1;
 233}
 234
 235static inline unsigned long node_maxindex(struct radix_tree_node *node)
 236{
 237	return shift_maxindex(node->shift);
 238}
 239
 240#ifndef __KERNEL__
 241static void dump_node(struct radix_tree_node *node, unsigned long index)
 242{
 243	unsigned long i;
 244
 245	pr_debug("radix node: %p offset %d indices %lu-%lu parent %p tags %lx %lx %lx shift %d count %d exceptional %d\n",
 246		node, node->offset, index, index | node_maxindex(node),
 247		node->parent,
 248		node->tags[0][0], node->tags[1][0], node->tags[2][0],
 249		node->shift, node->count, node->exceptional);
 250
 251	for (i = 0; i < RADIX_TREE_MAP_SIZE; i++) {
 252		unsigned long first = index | (i << node->shift);
 253		unsigned long last = first | ((1UL << node->shift) - 1);
 254		void *entry = node->slots[i];
 255		if (!entry)
 256			continue;
 257		if (entry == RADIX_TREE_RETRY) {
 258			pr_debug("radix retry offset %ld indices %lu-%lu parent %p\n",
 259					i, first, last, node);
 260		} else if (!radix_tree_is_internal_node(entry)) {
 261			pr_debug("radix entry %p offset %ld indices %lu-%lu parent %p\n",
 262					entry, i, first, last, node);
 263		} else if (is_sibling_entry(node, entry)) {
 264			pr_debug("radix sblng %p offset %ld indices %lu-%lu parent %p val %p\n",
 265					entry, i, first, last, node,
 266					*(void **)entry_to_node(entry));
 267		} else {
 268			dump_node(entry_to_node(entry), first);
 269		}
 270	}
 271}
 272
 273/* For debug */
 274static void radix_tree_dump(struct radix_tree_root *root)
 275{
 276	pr_debug("radix root: %p rnode %p tags %x\n",
 277			root, root->rnode,
 278			root->gfp_mask >> __GFP_BITS_SHIFT);
 279	if (!radix_tree_is_internal_node(root->rnode))
 280		return;
 281	dump_node(entry_to_node(root->rnode), 0);
 282}
 283#endif
 284
 285/*
 286 * This assumes that the caller has performed appropriate preallocation, and
 287 * that the caller has pinned this thread of control to the current CPU.
 288 */
 289static struct radix_tree_node *
 290radix_tree_node_alloc(struct radix_tree_root *root,
 291			struct radix_tree_node *parent,
 292			unsigned int shift, unsigned int offset,
 293			unsigned int count, unsigned int exceptional)
 294{
 295	struct radix_tree_node *ret = NULL;
 296	gfp_t gfp_mask = root_gfp_mask(root);
 297
 298	/*
 299	 * Preload code isn't irq safe and it doesn't make sense to use
 300	 * preloading during an interrupt anyway as all the allocations have
 301	 * to be atomic. So just do normal allocation when in interrupt.
 302	 */
 303	if (!gfpflags_allow_blocking(gfp_mask) && !in_interrupt()) {
 304		struct radix_tree_preload *rtp;
 305
 306		/*
 307		 * Even if the caller has preloaded, try to allocate from the
 308		 * cache first for the new node to get accounted to the memory
 309		 * cgroup.
 310		 */
 311		ret = kmem_cache_alloc(radix_tree_node_cachep,
 312				       gfp_mask | __GFP_NOWARN);
 313		if (ret)
 314			goto out;
 315
 316		/*
 317		 * Provided the caller has preloaded here, we will always
 318		 * succeed in getting a node here (and never reach
 319		 * kmem_cache_alloc)
 320		 */
 321		rtp = this_cpu_ptr(&radix_tree_preloads);
 322		if (rtp->nr) {
 323			ret = rtp->nodes;
 324			rtp->nodes = ret->private_data;
 325			ret->private_data = NULL;
 326			rtp->nr--;
 327		}
 328		/*
 329		 * Update the allocation stack trace as this is more useful
 330		 * for debugging.
 331		 */
 332		kmemleak_update_trace(ret);
 333		goto out;
 334	}
 335	ret = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
 336out:
 337	BUG_ON(radix_tree_is_internal_node(ret));
 338	if (ret) {
 339		ret->parent = parent;
 340		ret->shift = shift;
 341		ret->offset = offset;
 342		ret->count = count;
 343		ret->exceptional = exceptional;
 344	}
 
 
 
 
 345	return ret;
 346}
 347
 348static void radix_tree_node_rcu_free(struct rcu_head *head)
 349{
 350	struct radix_tree_node *node =
 351			container_of(head, struct radix_tree_node, rcu_head);
 
 352
 353	/*
 354	 * Must only free zeroed nodes into the slab.  We can be left with
 355	 * non-NULL entries by radix_tree_free_nodes, so clear the entries
 356	 * and tags here.
 357	 */
 358	memset(node->slots, 0, sizeof(node->slots));
 359	memset(node->tags, 0, sizeof(node->tags));
 360	INIT_LIST_HEAD(&node->private_list);
 
 
 361
 362	kmem_cache_free(radix_tree_node_cachep, node);
 363}
 364
 365static inline void
 366radix_tree_node_free(struct radix_tree_node *node)
 367{
 368	call_rcu(&node->rcu_head, radix_tree_node_rcu_free);
 369}
 370
 371/*
 372 * Load up this CPU's radix_tree_node buffer with sufficient objects to
 373 * ensure that the addition of a single element in the tree cannot fail.  On
 374 * success, return zero, with preemption disabled.  On error, return -ENOMEM
 375 * with preemption not disabled.
 376 *
 377 * To make use of this facility, the radix tree must be initialised without
 378 * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE().
 379 */
 380static int __radix_tree_preload(gfp_t gfp_mask, unsigned nr)
 381{
 382	struct radix_tree_preload *rtp;
 383	struct radix_tree_node *node;
 384	int ret = -ENOMEM;
 385
 386	/*
 387	 * Nodes preloaded by one cgroup can be be used by another cgroup, so
 388	 * they should never be accounted to any particular memory cgroup.
 389	 */
 390	gfp_mask &= ~__GFP_ACCOUNT;
 391
 392	preempt_disable();
 393	rtp = this_cpu_ptr(&radix_tree_preloads);
 394	while (rtp->nr < nr) {
 395		preempt_enable();
 396		node = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
 397		if (node == NULL)
 398			goto out;
 399		preempt_disable();
 400		rtp = this_cpu_ptr(&radix_tree_preloads);
 401		if (rtp->nr < nr) {
 402			node->private_data = rtp->nodes;
 403			rtp->nodes = node;
 404			rtp->nr++;
 405		} else {
 406			kmem_cache_free(radix_tree_node_cachep, node);
 407		}
 408	}
 409	ret = 0;
 410out:
 411	return ret;
 412}
 413
 414/*
 415 * Load up this CPU's radix_tree_node buffer with sufficient objects to
 416 * ensure that the addition of a single element in the tree cannot fail.  On
 417 * success, return zero, with preemption disabled.  On error, return -ENOMEM
 418 * with preemption not disabled.
 419 *
 420 * To make use of this facility, the radix tree must be initialised without
 421 * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE().
 422 */
 423int radix_tree_preload(gfp_t gfp_mask)
 424{
 425	/* Warn on non-sensical use... */
 426	WARN_ON_ONCE(!gfpflags_allow_blocking(gfp_mask));
 427	return __radix_tree_preload(gfp_mask, RADIX_TREE_PRELOAD_SIZE);
 428}
 429EXPORT_SYMBOL(radix_tree_preload);
 430
 431/*
 432 * The same as above function, except we don't guarantee preloading happens.
 433 * We do it, if we decide it helps. On success, return zero with preemption
 434 * disabled. On error, return -ENOMEM with preemption not disabled.
 435 */
 436int radix_tree_maybe_preload(gfp_t gfp_mask)
 437{
 438	if (gfpflags_allow_blocking(gfp_mask))
 439		return __radix_tree_preload(gfp_mask, RADIX_TREE_PRELOAD_SIZE);
 440	/* Preloading doesn't help anything with this gfp mask, skip it */
 441	preempt_disable();
 442	return 0;
 443}
 444EXPORT_SYMBOL(radix_tree_maybe_preload);
 445
 446#ifdef CONFIG_RADIX_TREE_MULTIORDER
 447/*
 448 * Preload with enough objects to ensure that we can split a single entry
 449 * of order @old_order into many entries of size @new_order
 450 */
 451int radix_tree_split_preload(unsigned int old_order, unsigned int new_order,
 452							gfp_t gfp_mask)
 453{
 454	unsigned top = 1 << (old_order % RADIX_TREE_MAP_SHIFT);
 455	unsigned layers = (old_order / RADIX_TREE_MAP_SHIFT) -
 456				(new_order / RADIX_TREE_MAP_SHIFT);
 457	unsigned nr = 0;
 458
 459	WARN_ON_ONCE(!gfpflags_allow_blocking(gfp_mask));
 460	BUG_ON(new_order >= old_order);
 461
 462	while (layers--)
 463		nr = nr * RADIX_TREE_MAP_SIZE + 1;
 464	return __radix_tree_preload(gfp_mask, top * nr);
 465}
 466#endif
 467
 468/*
 469 * The same as function above, but preload number of nodes required to insert
 470 * (1 << order) continuous naturally-aligned elements.
 471 */
 472int radix_tree_maybe_preload_order(gfp_t gfp_mask, int order)
 473{
 474	unsigned long nr_subtrees;
 475	int nr_nodes, subtree_height;
 476
 477	/* Preloading doesn't help anything with this gfp mask, skip it */
 478	if (!gfpflags_allow_blocking(gfp_mask)) {
 479		preempt_disable();
 480		return 0;
 481	}
 482
 483	/*
 484	 * Calculate number and height of fully populated subtrees it takes to
 485	 * store (1 << order) elements.
 486	 */
 487	nr_subtrees = 1 << order;
 488	for (subtree_height = 0; nr_subtrees > RADIX_TREE_MAP_SIZE;
 489			subtree_height++)
 490		nr_subtrees >>= RADIX_TREE_MAP_SHIFT;
 491
 492	/*
 493	 * The worst case is zero height tree with a single item at index 0 and
 494	 * then inserting items starting at ULONG_MAX - (1 << order).
 495	 *
 496	 * This requires RADIX_TREE_MAX_PATH nodes to build branch from root to
 497	 * 0-index item.
 498	 */
 499	nr_nodes = RADIX_TREE_MAX_PATH;
 500
 501	/* Plus branch to fully populated subtrees. */
 502	nr_nodes += RADIX_TREE_MAX_PATH - subtree_height;
 503
 504	/* Root node is shared. */
 505	nr_nodes--;
 506
 507	/* Plus nodes required to build subtrees. */
 508	nr_nodes += nr_subtrees * height_to_maxnodes[subtree_height];
 509
 510	return __radix_tree_preload(gfp_mask, nr_nodes);
 511}
 512
 513static unsigned radix_tree_load_root(struct radix_tree_root *root,
 514		struct radix_tree_node **nodep, unsigned long *maxindex)
 515{
 516	struct radix_tree_node *node = rcu_dereference_raw(root->rnode);
 517
 518	*nodep = node;
 519
 520	if (likely(radix_tree_is_internal_node(node))) {
 521		node = entry_to_node(node);
 522		*maxindex = node_maxindex(node);
 523		return node->shift + RADIX_TREE_MAP_SHIFT;
 524	}
 525
 526	*maxindex = 0;
 527	return 0;
 528}
 529
 530/*
 531 *	Extend a radix tree so it can store key @index.
 532 */
 533static int radix_tree_extend(struct radix_tree_root *root,
 534				unsigned long index, unsigned int shift)
 535{
 
 536	struct radix_tree_node *slot;
 537	unsigned int maxshift;
 538	int tag;
 539
 540	/* Figure out what the shift should be.  */
 541	maxshift = shift;
 542	while (index > shift_maxindex(maxshift))
 543		maxshift += RADIX_TREE_MAP_SHIFT;
 544
 545	slot = root->rnode;
 546	if (!slot)
 547		goto out;
 
 548
 549	do {
 550		struct radix_tree_node *node = radix_tree_node_alloc(root,
 551							NULL, shift, 0, 1, 0);
 552		if (!node)
 553			return -ENOMEM;
 554
 555		/* Propagate the aggregated tag info into the new root */
 556		for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
 557			if (root_tag_get(root, tag))
 558				tag_set(node, tag, 0);
 559		}
 560
 561		BUG_ON(shift > BITS_PER_LONG);
 562		if (radix_tree_is_internal_node(slot)) {
 563			entry_to_node(slot)->parent = node;
 564		} else if (radix_tree_exceptional_entry(slot)) {
 565			/* Moving an exceptional root->rnode to a node */
 566			node->exceptional = 1;
 
 
 
 
 567		}
 568		node->slots[0] = slot;
 569		slot = node_to_entry(node);
 570		rcu_assign_pointer(root->rnode, slot);
 571		shift += RADIX_TREE_MAP_SHIFT;
 572	} while (shift <= maxshift);
 573out:
 574	return maxshift + RADIX_TREE_MAP_SHIFT;
 575}
 576
 577/**
 578 *	radix_tree_shrink    -    shrink radix tree to minimum height
 579 *	@root		radix tree root
 580 */
 581static inline void radix_tree_shrink(struct radix_tree_root *root,
 582				     radix_tree_update_node_t update_node,
 583				     void *private)
 584{
 585	for (;;) {
 586		struct radix_tree_node *node = root->rnode;
 587		struct radix_tree_node *child;
 588
 589		if (!radix_tree_is_internal_node(node))
 590			break;
 591		node = entry_to_node(node);
 592
 593		/*
 594		 * The candidate node has more than one child, or its child
 595		 * is not at the leftmost slot, or the child is a multiorder
 596		 * entry, we cannot shrink.
 597		 */
 598		if (node->count != 1)
 599			break;
 600		child = node->slots[0];
 601		if (!child)
 602			break;
 603		if (!radix_tree_is_internal_node(child) && node->shift)
 604			break;
 605
 606		if (radix_tree_is_internal_node(child))
 607			entry_to_node(child)->parent = NULL;
 608
 609		/*
 610		 * We don't need rcu_assign_pointer(), since we are simply
 611		 * moving the node from one part of the tree to another: if it
 612		 * was safe to dereference the old pointer to it
 613		 * (node->slots[0]), it will be safe to dereference the new
 614		 * one (root->rnode) as far as dependent read barriers go.
 615		 */
 616		root->rnode = child;
 617
 618		/*
 619		 * We have a dilemma here. The node's slot[0] must not be
 620		 * NULLed in case there are concurrent lookups expecting to
 621		 * find the item. However if this was a bottom-level node,
 622		 * then it may be subject to the slot pointer being visible
 623		 * to callers dereferencing it. If item corresponding to
 624		 * slot[0] is subsequently deleted, these callers would expect
 625		 * their slot to become empty sooner or later.
 626		 *
 627		 * For example, lockless pagecache will look up a slot, deref
 628		 * the page pointer, and if the page has 0 refcount it means it
 629		 * was concurrently deleted from pagecache so try the deref
 630		 * again. Fortunately there is already a requirement for logic
 631		 * to retry the entire slot lookup -- the indirect pointer
 632		 * problem (replacing direct root node with an indirect pointer
 633		 * also results in a stale slot). So tag the slot as indirect
 634		 * to force callers to retry.
 635		 */
 636		node->count = 0;
 637		if (!radix_tree_is_internal_node(child)) {
 638			node->slots[0] = RADIX_TREE_RETRY;
 639			if (update_node)
 640				update_node(node, private);
 641		}
 642
 643		WARN_ON_ONCE(!list_empty(&node->private_list));
 644		radix_tree_node_free(node);
 645	}
 646}
 647
 648static void delete_node(struct radix_tree_root *root,
 649			struct radix_tree_node *node,
 650			radix_tree_update_node_t update_node, void *private)
 651{
 652	do {
 653		struct radix_tree_node *parent;
 654
 655		if (node->count) {
 656			if (node == entry_to_node(root->rnode))
 657				radix_tree_shrink(root, update_node, private);
 658			return;
 659		}
 660
 661		parent = node->parent;
 662		if (parent) {
 663			parent->slots[node->offset] = NULL;
 664			parent->count--;
 665		} else {
 666			root_tag_clear_all(root);
 667			root->rnode = NULL;
 668		}
 669
 670		WARN_ON_ONCE(!list_empty(&node->private_list));
 671		radix_tree_node_free(node);
 672
 673		node = parent;
 674	} while (node);
 675}
 676
 677/**
 678 *	__radix_tree_create	-	create a slot in a radix tree
 679 *	@root:		radix tree root
 680 *	@index:		index key
 681 *	@order:		index occupies 2^order aligned slots
 682 *	@nodep:		returns node
 683 *	@slotp:		returns slot
 684 *
 685 *	Create, if necessary, and return the node and slot for an item
 686 *	at position @index in the radix tree @root.
 687 *
 688 *	Until there is more than one item in the tree, no nodes are
 689 *	allocated and @root->rnode is used as a direct slot instead of
 690 *	pointing to a node, in which case *@nodep will be NULL.
 691 *
 692 *	Returns -ENOMEM, or 0 for success.
 693 */
 694int __radix_tree_create(struct radix_tree_root *root, unsigned long index,
 695			unsigned order, struct radix_tree_node **nodep,
 696			void ***slotp)
 697{
 698	struct radix_tree_node *node = NULL, *child;
 699	void **slot = (void **)&root->rnode;
 700	unsigned long maxindex;
 701	unsigned int shift, offset = 0;
 702	unsigned long max = index | ((1UL << order) - 1);
 703
 704	shift = radix_tree_load_root(root, &child, &maxindex);
 705
 706	/* Make sure the tree is high enough.  */
 707	if (order > 0 && max == ((1UL << order) - 1))
 708		max++;
 709	if (max > maxindex) {
 710		int error = radix_tree_extend(root, max, shift);
 711		if (error < 0)
 712			return error;
 713		shift = error;
 714		child = root->rnode;
 715	}
 716
 717	while (shift > order) {
 718		shift -= RADIX_TREE_MAP_SHIFT;
 719		if (child == NULL) {
 
 
 
 
 
 720			/* Have to add a child node.  */
 721			child = radix_tree_node_alloc(root, node, shift,
 722							offset, 0, 0);
 723			if (!child)
 724				return -ENOMEM;
 725			rcu_assign_pointer(*slot, node_to_entry(child));
 726			if (node)
 
 
 727				node->count++;
 728		} else if (!radix_tree_is_internal_node(child))
 729			break;
 
 
 730
 731		/* Go a level down */
 732		node = entry_to_node(child);
 733		offset = radix_tree_descend(node, &child, index);
 734		slot = &node->slots[offset];
 
 
 735	}
 736
 737	if (nodep)
 738		*nodep = node;
 739	if (slotp)
 740		*slotp = slot;
 741	return 0;
 742}
 743
 744#ifdef CONFIG_RADIX_TREE_MULTIORDER
 745/*
 746 * Free any nodes below this node.  The tree is presumed to not need
 747 * shrinking, and any user data in the tree is presumed to not need a
 748 * destructor called on it.  If we need to add a destructor, we can
 749 * add that functionality later.  Note that we may not clear tags or
 750 * slots from the tree as an RCU walker may still have a pointer into
 751 * this subtree.  We could replace the entries with RADIX_TREE_RETRY,
 752 * but we'll still have to clear those in rcu_free.
 753 */
 754static void radix_tree_free_nodes(struct radix_tree_node *node)
 755{
 756	unsigned offset = 0;
 757	struct radix_tree_node *child = entry_to_node(node);
 758
 759	for (;;) {
 760		void *entry = child->slots[offset];
 761		if (radix_tree_is_internal_node(entry) &&
 762					!is_sibling_entry(child, entry)) {
 763			child = entry_to_node(entry);
 764			offset = 0;
 765			continue;
 766		}
 767		offset++;
 768		while (offset == RADIX_TREE_MAP_SIZE) {
 769			struct radix_tree_node *old = child;
 770			offset = child->offset + 1;
 771			child = child->parent;
 772			WARN_ON_ONCE(!list_empty(&old->private_list));
 773			radix_tree_node_free(old);
 774			if (old == entry_to_node(node))
 775				return;
 776		}
 777	}
 778}
 779
 780static inline int insert_entries(struct radix_tree_node *node, void **slot,
 781				void *item, unsigned order, bool replace)
 782{
 783	struct radix_tree_node *child;
 784	unsigned i, n, tag, offset, tags = 0;
 785
 786	if (node) {
 787		if (order > node->shift)
 788			n = 1 << (order - node->shift);
 789		else
 790			n = 1;
 791		offset = get_slot_offset(node, slot);
 792	} else {
 793		n = 1;
 794		offset = 0;
 795	}
 796
 797	if (n > 1) {
 798		offset = offset & ~(n - 1);
 799		slot = &node->slots[offset];
 800	}
 801	child = node_to_entry(slot);
 802
 803	for (i = 0; i < n; i++) {
 804		if (slot[i]) {
 805			if (replace) {
 806				node->count--;
 807				for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
 808					if (tag_get(node, tag, offset + i))
 809						tags |= 1 << tag;
 810			} else
 811				return -EEXIST;
 812		}
 813	}
 814
 815	for (i = 0; i < n; i++) {
 816		struct radix_tree_node *old = slot[i];
 817		if (i) {
 818			rcu_assign_pointer(slot[i], child);
 819			for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
 820				if (tags & (1 << tag))
 821					tag_clear(node, tag, offset + i);
 822		} else {
 823			rcu_assign_pointer(slot[i], item);
 824			for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
 825				if (tags & (1 << tag))
 826					tag_set(node, tag, offset);
 827		}
 828		if (radix_tree_is_internal_node(old) &&
 829					!is_sibling_entry(node, old) &&
 830					(old != RADIX_TREE_RETRY))
 831			radix_tree_free_nodes(old);
 832		if (radix_tree_exceptional_entry(old))
 833			node->exceptional--;
 834	}
 835	if (node) {
 836		node->count += n;
 837		if (radix_tree_exceptional_entry(item))
 838			node->exceptional += n;
 839	}
 840	return n;
 841}
 842#else
 843static inline int insert_entries(struct radix_tree_node *node, void **slot,
 844				void *item, unsigned order, bool replace)
 845{
 846	if (*slot)
 847		return -EEXIST;
 848	rcu_assign_pointer(*slot, item);
 849	if (node) {
 850		node->count++;
 851		if (radix_tree_exceptional_entry(item))
 852			node->exceptional++;
 853	}
 854	return 1;
 855}
 856#endif
 857
 858/**
 859 *	__radix_tree_insert    -    insert into a radix tree
 860 *	@root:		radix tree root
 861 *	@index:		index key
 862 *	@order:		key covers the 2^order indices around index
 863 *	@item:		item to insert
 864 *
 865 *	Insert an item into the radix tree at position @index.
 866 */
 867int __radix_tree_insert(struct radix_tree_root *root, unsigned long index,
 868			unsigned order, void *item)
 869{
 870	struct radix_tree_node *node;
 871	void **slot;
 872	int error;
 873
 874	BUG_ON(radix_tree_is_internal_node(item));
 875
 876	error = __radix_tree_create(root, index, order, &node, &slot);
 877	if (error)
 878		return error;
 879
 880	error = insert_entries(node, slot, item, order, false);
 881	if (error < 0)
 882		return error;
 883
 884	if (node) {
 885		unsigned offset = get_slot_offset(node, slot);
 886		BUG_ON(tag_get(node, 0, offset));
 887		BUG_ON(tag_get(node, 1, offset));
 888		BUG_ON(tag_get(node, 2, offset));
 889	} else {
 890		BUG_ON(root_tags_get(root));
 
 891	}
 892
 893	return 0;
 894}
 895EXPORT_SYMBOL(__radix_tree_insert);
 896
 897/**
 898 *	__radix_tree_lookup	-	lookup an item in a radix tree
 899 *	@root:		radix tree root
 900 *	@index:		index key
 901 *	@nodep:		returns node
 902 *	@slotp:		returns slot
 903 *
 904 *	Lookup and return the item at position @index in the radix
 905 *	tree @root.
 906 *
 907 *	Until there is more than one item in the tree, no nodes are
 908 *	allocated and @root->rnode is used as a direct slot instead of
 909 *	pointing to a node, in which case *@nodep will be NULL.
 910 */
 911void *__radix_tree_lookup(struct radix_tree_root *root, unsigned long index,
 912			  struct radix_tree_node **nodep, void ***slotp)
 913{
 914	struct radix_tree_node *node, *parent;
 915	unsigned long maxindex;
 916	void **slot;
 917
 918 restart:
 919	parent = NULL;
 920	slot = (void **)&root->rnode;
 921	radix_tree_load_root(root, &node, &maxindex);
 922	if (index > maxindex)
 
 
 
 
 
 
 
 
 
 
 
 
 
 923		return NULL;
 924
 925	while (radix_tree_is_internal_node(node)) {
 926		unsigned offset;
 927
 928		if (node == RADIX_TREE_RETRY)
 929			goto restart;
 930		parent = entry_to_node(node);
 931		offset = radix_tree_descend(parent, &node, index);
 932		slot = parent->slots + offset;
 933	}
 
 
 
 
 934
 935	if (nodep)
 936		*nodep = parent;
 937	if (slotp)
 938		*slotp = slot;
 939	return node;
 940}
 941
 942/**
 943 *	radix_tree_lookup_slot    -    lookup a slot in a radix tree
 944 *	@root:		radix tree root
 945 *	@index:		index key
 946 *
 947 *	Returns:  the slot corresponding to the position @index in the
 948 *	radix tree @root. This is useful for update-if-exists operations.
 949 *
 950 *	This function can be called under rcu_read_lock iff the slot is not
 951 *	modified by radix_tree_replace_slot, otherwise it must be called
 952 *	exclusive from other writers. Any dereference of the slot must be done
 953 *	using radix_tree_deref_slot.
 954 */
 955void **radix_tree_lookup_slot(struct radix_tree_root *root, unsigned long index)
 956{
 957	void **slot;
 958
 959	if (!__radix_tree_lookup(root, index, NULL, &slot))
 960		return NULL;
 961	return slot;
 962}
 963EXPORT_SYMBOL(radix_tree_lookup_slot);
 964
 965/**
 966 *	radix_tree_lookup    -    perform lookup operation on a radix tree
 967 *	@root:		radix tree root
 968 *	@index:		index key
 969 *
 970 *	Lookup the item at the position @index in the radix tree @root.
 971 *
 972 *	This function can be called under rcu_read_lock, however the caller
 973 *	must manage lifetimes of leaf nodes (eg. RCU may also be used to free
 974 *	them safely). No RCU barriers are required to access or modify the
 975 *	returned item, however.
 976 */
 977void *radix_tree_lookup(struct radix_tree_root *root, unsigned long index)
 978{
 979	return __radix_tree_lookup(root, index, NULL, NULL);
 980}
 981EXPORT_SYMBOL(radix_tree_lookup);
 982
 983static inline int slot_count(struct radix_tree_node *node,
 984						void **slot)
 985{
 986	int n = 1;
 987#ifdef CONFIG_RADIX_TREE_MULTIORDER
 988	void *ptr = node_to_entry(slot);
 989	unsigned offset = get_slot_offset(node, slot);
 990	int i;
 991
 992	for (i = 1; offset + i < RADIX_TREE_MAP_SIZE; i++) {
 993		if (node->slots[offset + i] != ptr)
 994			break;
 995		n++;
 996	}
 997#endif
 998	return n;
 999}
1000
1001static void replace_slot(struct radix_tree_root *root,
1002			 struct radix_tree_node *node,
1003			 void **slot, void *item,
1004			 bool warn_typeswitch)
1005{
1006	void *old = rcu_dereference_raw(*slot);
1007	int count, exceptional;
1008
1009	WARN_ON_ONCE(radix_tree_is_internal_node(item));
1010
1011	count = !!item - !!old;
1012	exceptional = !!radix_tree_exceptional_entry(item) -
1013		      !!radix_tree_exceptional_entry(old);
1014
1015	WARN_ON_ONCE(warn_typeswitch && (count || exceptional));
1016
1017	if (node) {
1018		node->count += count;
1019		if (exceptional) {
1020			exceptional *= slot_count(node, slot);
1021			node->exceptional += exceptional;
1022		}
1023	}
1024
1025	rcu_assign_pointer(*slot, item);
1026}
1027
1028static inline void delete_sibling_entries(struct radix_tree_node *node,
1029						void **slot)
1030{
1031#ifdef CONFIG_RADIX_TREE_MULTIORDER
1032	bool exceptional = radix_tree_exceptional_entry(*slot);
1033	void *ptr = node_to_entry(slot);
1034	unsigned offset = get_slot_offset(node, slot);
1035	int i;
1036
1037	for (i = 1; offset + i < RADIX_TREE_MAP_SIZE; i++) {
1038		if (node->slots[offset + i] != ptr)
1039			break;
1040		node->slots[offset + i] = NULL;
1041		node->count--;
1042		if (exceptional)
1043			node->exceptional--;
1044	}
1045#endif
1046}
1047
1048/**
1049 * __radix_tree_replace		- replace item in a slot
1050 * @root:		radix tree root
1051 * @node:		pointer to tree node
1052 * @slot:		pointer to slot in @node
1053 * @item:		new item to store in the slot.
1054 * @update_node:	callback for changing leaf nodes
1055 * @private:		private data to pass to @update_node
1056 *
1057 * For use with __radix_tree_lookup().  Caller must hold tree write locked
1058 * across slot lookup and replacement.
1059 */
1060void __radix_tree_replace(struct radix_tree_root *root,
1061			  struct radix_tree_node *node,
1062			  void **slot, void *item,
1063			  radix_tree_update_node_t update_node, void *private)
1064{
1065	if (!item)
1066		delete_sibling_entries(node, slot);
1067	/*
1068	 * This function supports replacing exceptional entries and
1069	 * deleting entries, but that needs accounting against the
1070	 * node unless the slot is root->rnode.
1071	 */
1072	replace_slot(root, node, slot, item,
1073		     !node && slot != (void **)&root->rnode);
1074
1075	if (!node)
1076		return;
1077
1078	if (update_node)
1079		update_node(node, private);
1080
1081	delete_node(root, node, update_node, private);
1082}
1083
1084/**
1085 * radix_tree_replace_slot	- replace item in a slot
1086 * @root:	radix tree root
1087 * @slot:	pointer to slot
1088 * @item:	new item to store in the slot.
1089 *
1090 * For use with radix_tree_lookup_slot(), radix_tree_gang_lookup_slot(),
1091 * radix_tree_gang_lookup_tag_slot().  Caller must hold tree write locked
1092 * across slot lookup and replacement.
1093 *
1094 * NOTE: This cannot be used to switch between non-entries (empty slots),
1095 * regular entries, and exceptional entries, as that requires accounting
1096 * inside the radix tree node. When switching from one type of entry or
1097 * deleting, use __radix_tree_lookup() and __radix_tree_replace() or
1098 * radix_tree_iter_replace().
1099 */
1100void radix_tree_replace_slot(struct radix_tree_root *root,
1101			     void **slot, void *item)
1102{
1103	replace_slot(root, NULL, slot, item, true);
1104}
1105
1106/**
1107 * radix_tree_iter_replace - replace item in a slot
1108 * @root:	radix tree root
1109 * @slot:	pointer to slot
1110 * @item:	new item to store in the slot.
1111 *
1112 * For use with radix_tree_split() and radix_tree_for_each_slot().
1113 * Caller must hold tree write locked across split and replacement.
1114 */
1115void radix_tree_iter_replace(struct radix_tree_root *root,
1116		const struct radix_tree_iter *iter, void **slot, void *item)
1117{
1118	__radix_tree_replace(root, iter->node, slot, item, NULL, NULL);
1119}
1120
1121#ifdef CONFIG_RADIX_TREE_MULTIORDER
1122/**
1123 * radix_tree_join - replace multiple entries with one multiorder entry
1124 * @root: radix tree root
1125 * @index: an index inside the new entry
1126 * @order: order of the new entry
1127 * @item: new entry
1128 *
1129 * Call this function to replace several entries with one larger entry.
1130 * The existing entries are presumed to not need freeing as a result of
1131 * this call.
1132 *
1133 * The replacement entry will have all the tags set on it that were set
1134 * on any of the entries it is replacing.
1135 */
1136int radix_tree_join(struct radix_tree_root *root, unsigned long index,
1137			unsigned order, void *item)
1138{
1139	struct radix_tree_node *node;
1140	void **slot;
1141	int error;
1142
1143	BUG_ON(radix_tree_is_internal_node(item));
1144
1145	error = __radix_tree_create(root, index, order, &node, &slot);
1146	if (!error)
1147		error = insert_entries(node, slot, item, order, true);
1148	if (error > 0)
1149		error = 0;
1150
1151	return error;
1152}
1153
1154/**
1155 * radix_tree_split - Split an entry into smaller entries
1156 * @root: radix tree root
1157 * @index: An index within the large entry
1158 * @order: Order of new entries
1159 *
1160 * Call this function as the first step in replacing a multiorder entry
1161 * with several entries of lower order.  After this function returns,
1162 * loop over the relevant portion of the tree using radix_tree_for_each_slot()
1163 * and call radix_tree_iter_replace() to set up each new entry.
1164 *
1165 * The tags from this entry are replicated to all the new entries.
1166 *
1167 * The radix tree should be locked against modification during the entire
1168 * replacement operation.  Lock-free lookups will see RADIX_TREE_RETRY which
1169 * should prompt RCU walkers to restart the lookup from the root.
1170 */
1171int radix_tree_split(struct radix_tree_root *root, unsigned long index,
1172				unsigned order)
1173{
1174	struct radix_tree_node *parent, *node, *child;
1175	void **slot;
1176	unsigned int offset, end;
1177	unsigned n, tag, tags = 0;
1178
1179	if (!__radix_tree_lookup(root, index, &parent, &slot))
1180		return -ENOENT;
1181	if (!parent)
1182		return -ENOENT;
1183
1184	offset = get_slot_offset(parent, slot);
1185
1186	for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
1187		if (tag_get(parent, tag, offset))
1188			tags |= 1 << tag;
1189
1190	for (end = offset + 1; end < RADIX_TREE_MAP_SIZE; end++) {
1191		if (!is_sibling_entry(parent, parent->slots[end]))
1192			break;
1193		for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
1194			if (tags & (1 << tag))
1195				tag_set(parent, tag, end);
1196		/* rcu_assign_pointer ensures tags are set before RETRY */
1197		rcu_assign_pointer(parent->slots[end], RADIX_TREE_RETRY);
1198	}
1199	rcu_assign_pointer(parent->slots[offset], RADIX_TREE_RETRY);
1200	parent->exceptional -= (end - offset);
1201
1202	if (order == parent->shift)
1203		return 0;
1204	if (order > parent->shift) {
1205		while (offset < end)
1206			offset += insert_entries(parent, &parent->slots[offset],
1207					RADIX_TREE_RETRY, order, true);
1208		return 0;
1209	}
1210
1211	node = parent;
1212
1213	for (;;) {
1214		if (node->shift > order) {
1215			child = radix_tree_node_alloc(root, node,
1216					node->shift - RADIX_TREE_MAP_SHIFT,
1217					offset, 0, 0);
1218			if (!child)
1219				goto nomem;
1220			if (node != parent) {
1221				node->count++;
1222				node->slots[offset] = node_to_entry(child);
1223				for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
1224					if (tags & (1 << tag))
1225						tag_set(node, tag, offset);
1226			}
1227
1228			node = child;
1229			offset = 0;
1230			continue;
1231		}
1232
1233		n = insert_entries(node, &node->slots[offset],
1234					RADIX_TREE_RETRY, order, false);
1235		BUG_ON(n > RADIX_TREE_MAP_SIZE);
1236
1237		for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
1238			if (tags & (1 << tag))
1239				tag_set(node, tag, offset);
1240		offset += n;
1241
1242		while (offset == RADIX_TREE_MAP_SIZE) {
1243			if (node == parent)
1244				break;
1245			offset = node->offset;
1246			child = node;
1247			node = node->parent;
1248			rcu_assign_pointer(node->slots[offset],
1249						node_to_entry(child));
1250			offset++;
1251		}
1252		if ((node == parent) && (offset == end))
1253			return 0;
1254	}
1255
1256 nomem:
1257	/* Shouldn't happen; did user forget to preload? */
1258	/* TODO: free all the allocated nodes */
1259	WARN_ON(1);
1260	return -ENOMEM;
1261}
1262#endif
1263
1264/**
1265 *	radix_tree_tag_set - set a tag on a radix tree node
1266 *	@root:		radix tree root
1267 *	@index:		index key
1268 *	@tag:		tag index
1269 *
1270 *	Set the search tag (which must be < RADIX_TREE_MAX_TAGS)
1271 *	corresponding to @index in the radix tree.  From
1272 *	the root all the way down to the leaf node.
1273 *
1274 *	Returns the address of the tagged item.  Setting a tag on a not-present
1275 *	item is a bug.
1276 */
1277void *radix_tree_tag_set(struct radix_tree_root *root,
1278			unsigned long index, unsigned int tag)
1279{
1280	struct radix_tree_node *node, *parent;
1281	unsigned long maxindex;
1282
1283	radix_tree_load_root(root, &node, &maxindex);
1284	BUG_ON(index > maxindex);
1285
1286	while (radix_tree_is_internal_node(node)) {
1287		unsigned offset;
1288
1289		parent = entry_to_node(node);
1290		offset = radix_tree_descend(parent, &node, index);
1291		BUG_ON(!node);
1292
1293		if (!tag_get(parent, tag, offset))
1294			tag_set(parent, tag, offset);
 
 
 
 
 
1295	}
1296
1297	/* set the root's tag bit */
1298	if (!root_tag_get(root, tag))
1299		root_tag_set(root, tag);
1300
1301	return node;
1302}
1303EXPORT_SYMBOL(radix_tree_tag_set);
1304
1305static void node_tag_clear(struct radix_tree_root *root,
1306				struct radix_tree_node *node,
1307				unsigned int tag, unsigned int offset)
1308{
1309	while (node) {
1310		if (!tag_get(node, tag, offset))
1311			return;
1312		tag_clear(node, tag, offset);
1313		if (any_tag_set(node, tag))
1314			return;
1315
1316		offset = node->offset;
1317		node = node->parent;
1318	}
1319
1320	/* clear the root's tag bit */
1321	if (root_tag_get(root, tag))
1322		root_tag_clear(root, tag);
1323}
1324
1325static void node_tag_set(struct radix_tree_root *root,
1326				struct radix_tree_node *node,
1327				unsigned int tag, unsigned int offset)
1328{
1329	while (node) {
1330		if (tag_get(node, tag, offset))
1331			return;
1332		tag_set(node, tag, offset);
1333		offset = node->offset;
1334		node = node->parent;
1335	}
1336
1337	if (!root_tag_get(root, tag))
1338		root_tag_set(root, tag);
1339}
1340
1341/**
1342 * radix_tree_iter_tag_set - set a tag on the current iterator entry
1343 * @root:	radix tree root
1344 * @iter:	iterator state
1345 * @tag:	tag to set
1346 */
1347void radix_tree_iter_tag_set(struct radix_tree_root *root,
1348			const struct radix_tree_iter *iter, unsigned int tag)
1349{
1350	node_tag_set(root, iter->node, tag, iter_offset(iter));
1351}
1352
1353/**
1354 *	radix_tree_tag_clear - clear a tag on a radix tree node
1355 *	@root:		radix tree root
1356 *	@index:		index key
1357 *	@tag:		tag index
1358 *
1359 *	Clear the search tag (which must be < RADIX_TREE_MAX_TAGS)
1360 *	corresponding to @index in the radix tree.  If this causes
1361 *	the leaf node to have no tags set then clear the tag in the
1362 *	next-to-leaf node, etc.
1363 *
1364 *	Returns the address of the tagged item on success, else NULL.  ie:
1365 *	has the same return value and semantics as radix_tree_lookup().
1366 */
1367void *radix_tree_tag_clear(struct radix_tree_root *root,
1368			unsigned long index, unsigned int tag)
1369{
1370	struct radix_tree_node *node, *parent;
1371	unsigned long maxindex;
 
1372	int uninitialized_var(offset);
1373
1374	radix_tree_load_root(root, &node, &maxindex);
1375	if (index > maxindex)
1376		return NULL;
 
 
 
 
 
 
 
 
 
 
 
 
 
1377
1378	parent = NULL;
 
1379
1380	while (radix_tree_is_internal_node(node)) {
1381		parent = entry_to_node(node);
1382		offset = radix_tree_descend(parent, &node, index);
 
 
 
 
 
 
 
1383	}
1384
1385	if (node)
1386		node_tag_clear(root, parent, tag, offset);
 
1387
1388	return node;
 
1389}
1390EXPORT_SYMBOL(radix_tree_tag_clear);
1391
1392/**
1393 * radix_tree_tag_get - get a tag on a radix tree node
1394 * @root:		radix tree root
1395 * @index:		index key
1396 * @tag:		tag index (< RADIX_TREE_MAX_TAGS)
1397 *
1398 * Return values:
1399 *
1400 *  0: tag not present or not set
1401 *  1: tag set
1402 *
1403 * Note that the return value of this function may not be relied on, even if
1404 * the RCU lock is held, unless tag modification and node deletion are excluded
1405 * from concurrency.
1406 */
1407int radix_tree_tag_get(struct radix_tree_root *root,
1408			unsigned long index, unsigned int tag)
1409{
1410	struct radix_tree_node *node, *parent;
1411	unsigned long maxindex;
1412
 
1413	if (!root_tag_get(root, tag))
1414		return 0;
1415
1416	radix_tree_load_root(root, &node, &maxindex);
1417	if (index > maxindex)
1418		return 0;
1419	if (node == NULL)
 
 
 
 
 
 
1420		return 0;
1421
1422	while (radix_tree_is_internal_node(node)) {
1423		unsigned offset;
1424
1425		parent = entry_to_node(node);
1426		offset = radix_tree_descend(parent, &node, index);
1427
1428		if (!node)
1429			return 0;
1430		if (!tag_get(parent, tag, offset))
 
 
1431			return 0;
1432		if (node == RADIX_TREE_RETRY)
1433			break;
 
 
 
1434	}
1435
1436	return 1;
1437}
1438EXPORT_SYMBOL(radix_tree_tag_get);
1439
1440static inline void __set_iter_shift(struct radix_tree_iter *iter,
1441					unsigned int shift)
1442{
1443#ifdef CONFIG_RADIX_TREE_MULTIORDER
1444	iter->shift = shift;
1445#endif
1446}
1447
1448/* Construct iter->tags bit-mask from node->tags[tag] array */
1449static void set_iter_tags(struct radix_tree_iter *iter,
1450				struct radix_tree_node *node, unsigned offset,
1451				unsigned tag)
1452{
1453	unsigned tag_long = offset / BITS_PER_LONG;
1454	unsigned tag_bit  = offset % BITS_PER_LONG;
1455
1456	iter->tags = node->tags[tag][tag_long] >> tag_bit;
1457
1458	/* This never happens if RADIX_TREE_TAG_LONGS == 1 */
1459	if (tag_long < RADIX_TREE_TAG_LONGS - 1) {
1460		/* Pick tags from next element */
1461		if (tag_bit)
1462			iter->tags |= node->tags[tag][tag_long + 1] <<
1463						(BITS_PER_LONG - tag_bit);
1464		/* Clip chunk size, here only BITS_PER_LONG tags */
1465		iter->next_index = __radix_tree_iter_add(iter, BITS_PER_LONG);
1466	}
1467}
1468
1469#ifdef CONFIG_RADIX_TREE_MULTIORDER
1470static void **skip_siblings(struct radix_tree_node **nodep,
1471			void **slot, struct radix_tree_iter *iter)
1472{
1473	void *sib = node_to_entry(slot - 1);
1474
1475	while (iter->index < iter->next_index) {
1476		*nodep = rcu_dereference_raw(*slot);
1477		if (*nodep && *nodep != sib)
1478			return slot;
1479		slot++;
1480		iter->index = __radix_tree_iter_add(iter, 1);
1481		iter->tags >>= 1;
1482	}
1483
1484	*nodep = NULL;
1485	return NULL;
1486}
1487
1488void ** __radix_tree_next_slot(void **slot, struct radix_tree_iter *iter,
1489					unsigned flags)
1490{
1491	unsigned tag = flags & RADIX_TREE_ITER_TAG_MASK;
1492	struct radix_tree_node *node = rcu_dereference_raw(*slot);
1493
1494	slot = skip_siblings(&node, slot, iter);
1495
1496	while (radix_tree_is_internal_node(node)) {
1497		unsigned offset;
1498		unsigned long next_index;
1499
1500		if (node == RADIX_TREE_RETRY)
1501			return slot;
1502		node = entry_to_node(node);
1503		iter->node = node;
1504		iter->shift = node->shift;
1505
1506		if (flags & RADIX_TREE_ITER_TAGGED) {
1507			offset = radix_tree_find_next_bit(node, tag, 0);
1508			if (offset == RADIX_TREE_MAP_SIZE)
1509				return NULL;
1510			slot = &node->slots[offset];
1511			iter->index = __radix_tree_iter_add(iter, offset);
1512			set_iter_tags(iter, node, offset, tag);
1513			node = rcu_dereference_raw(*slot);
1514		} else {
1515			offset = 0;
1516			slot = &node->slots[0];
1517			for (;;) {
1518				node = rcu_dereference_raw(*slot);
1519				if (node)
1520					break;
1521				slot++;
1522				offset++;
1523				if (offset == RADIX_TREE_MAP_SIZE)
1524					return NULL;
1525			}
1526			iter->index = __radix_tree_iter_add(iter, offset);
1527		}
1528		if ((flags & RADIX_TREE_ITER_CONTIG) && (offset > 0))
1529			goto none;
1530		next_index = (iter->index | shift_maxindex(iter->shift)) + 1;
1531		if (next_index < iter->next_index)
1532			iter->next_index = next_index;
1533	}
1534
1535	return slot;
1536 none:
1537	iter->next_index = 0;
1538	return NULL;
1539}
1540EXPORT_SYMBOL(__radix_tree_next_slot);
1541#else
1542static void **skip_siblings(struct radix_tree_node **nodep,
1543			void **slot, struct radix_tree_iter *iter)
1544{
1545	return slot;
1546}
1547#endif
1548
1549void **radix_tree_iter_resume(void **slot, struct radix_tree_iter *iter)
1550{
1551	struct radix_tree_node *node;
1552
1553	slot++;
1554	iter->index = __radix_tree_iter_add(iter, 1);
1555	node = rcu_dereference_raw(*slot);
1556	skip_siblings(&node, slot, iter);
1557	iter->next_index = iter->index;
1558	iter->tags = 0;
1559	return NULL;
1560}
1561EXPORT_SYMBOL(radix_tree_iter_resume);
1562
1563/**
1564 * radix_tree_next_chunk - find next chunk of slots for iteration
1565 *
1566 * @root:	radix tree root
1567 * @iter:	iterator state
1568 * @flags:	RADIX_TREE_ITER_* flags and tag index
1569 * Returns:	pointer to chunk first slot, or NULL if iteration is over
1570 */
1571void **radix_tree_next_chunk(struct radix_tree_root *root,
1572			     struct radix_tree_iter *iter, unsigned flags)
1573{
1574	unsigned tag = flags & RADIX_TREE_ITER_TAG_MASK;
1575	struct radix_tree_node *node, *child;
1576	unsigned long index, offset, maxindex;
1577
1578	if ((flags & RADIX_TREE_ITER_TAGGED) && !root_tag_get(root, tag))
1579		return NULL;
1580
1581	/*
1582	 * Catch next_index overflow after ~0UL. iter->index never overflows
1583	 * during iterating; it can be zero only at the beginning.
1584	 * And we cannot overflow iter->next_index in a single step,
1585	 * because RADIX_TREE_MAP_SHIFT < BITS_PER_LONG.
1586	 *
1587	 * This condition also used by radix_tree_next_slot() to stop
1588	 * contiguous iterating, and forbid switching to the next chunk.
1589	 */
1590	index = iter->next_index;
1591	if (!index && iter->index)
1592		return NULL;
1593
1594 restart:
1595	radix_tree_load_root(root, &child, &maxindex);
1596	if (index > maxindex)
1597		return NULL;
1598	if (!child)
1599		return NULL;
1600
1601	if (!radix_tree_is_internal_node(child)) {
1602		/* Single-slot tree */
1603		iter->index = index;
1604		iter->next_index = maxindex + 1;
1605		iter->tags = 1;
1606		iter->node = NULL;
1607		__set_iter_shift(iter, 0);
1608		return (void **)&root->rnode;
1609	}
 
 
 
 
 
 
1610
1611	do {
1612		node = entry_to_node(child);
1613		offset = radix_tree_descend(node, &child, index);
1614
 
 
1615		if ((flags & RADIX_TREE_ITER_TAGGED) ?
1616				!tag_get(node, tag, offset) : !child) {
 
1617			/* Hole detected */
1618			if (flags & RADIX_TREE_ITER_CONTIG)
1619				return NULL;
1620
1621			if (flags & RADIX_TREE_ITER_TAGGED)
1622				offset = radix_tree_find_next_bit(node, tag,
 
 
1623						offset + 1);
1624			else
1625				while (++offset	< RADIX_TREE_MAP_SIZE) {
1626					void *slot = node->slots[offset];
1627					if (is_sibling_entry(node, slot))
1628						continue;
1629					if (slot)
1630						break;
1631				}
1632			index &= ~node_maxindex(node);
1633			index += offset << node->shift;
1634			/* Overflow after ~0UL */
1635			if (!index)
1636				return NULL;
1637			if (offset == RADIX_TREE_MAP_SIZE)
1638				goto restart;
1639			child = rcu_dereference_raw(node->slots[offset]);
1640		}
1641
1642		if (!child)
 
 
 
 
 
1643			goto restart;
1644		if (child == RADIX_TREE_RETRY)
1645			break;
1646	} while (radix_tree_is_internal_node(child));
1647
1648	/* Update the iterator state */
1649	iter->index = (index &~ node_maxindex(node)) | (offset << node->shift);
1650	iter->next_index = (index | node_maxindex(node)) + 1;
1651	iter->node = node;
1652	__set_iter_shift(iter, node->shift);
1653
1654	if (flags & RADIX_TREE_ITER_TAGGED)
1655		set_iter_tags(iter, node, offset, tag);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1656
1657	return node->slots + offset;
1658}
1659EXPORT_SYMBOL(radix_tree_next_chunk);
1660
1661/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1662 *	radix_tree_gang_lookup - perform multiple lookup on a radix tree
1663 *	@root:		radix tree root
1664 *	@results:	where the results of the lookup are placed
1665 *	@first_index:	start the lookup from this key
1666 *	@max_items:	place up to this many items at *results
1667 *
1668 *	Performs an index-ascending scan of the tree for present items.  Places
1669 *	them at *@results and returns the number of items which were placed at
1670 *	*@results.
1671 *
1672 *	The implementation is naive.
1673 *
1674 *	Like radix_tree_lookup, radix_tree_gang_lookup may be called under
1675 *	rcu_read_lock. In this case, rather than the returned results being
1676 *	an atomic snapshot of the tree at a single point in time, the
1677 *	semantics of an RCU protected gang lookup are as though multiple
1678 *	radix_tree_lookups have been issued in individual locks, and results
1679 *	stored in 'results'.
1680 */
1681unsigned int
1682radix_tree_gang_lookup(struct radix_tree_root *root, void **results,
1683			unsigned long first_index, unsigned int max_items)
1684{
1685	struct radix_tree_iter iter;
1686	void **slot;
1687	unsigned int ret = 0;
1688
1689	if (unlikely(!max_items))
1690		return 0;
1691
1692	radix_tree_for_each_slot(slot, root, &iter, first_index) {
1693		results[ret] = rcu_dereference_raw(*slot);
1694		if (!results[ret])
1695			continue;
1696		if (radix_tree_is_internal_node(results[ret])) {
1697			slot = radix_tree_iter_retry(&iter);
1698			continue;
1699		}
1700		if (++ret == max_items)
1701			break;
1702	}
1703
1704	return ret;
1705}
1706EXPORT_SYMBOL(radix_tree_gang_lookup);
1707
1708/**
1709 *	radix_tree_gang_lookup_slot - perform multiple slot lookup on radix tree
1710 *	@root:		radix tree root
1711 *	@results:	where the results of the lookup are placed
1712 *	@indices:	where their indices should be placed (but usually NULL)
1713 *	@first_index:	start the lookup from this key
1714 *	@max_items:	place up to this many items at *results
1715 *
1716 *	Performs an index-ascending scan of the tree for present items.  Places
1717 *	their slots at *@results and returns the number of items which were
1718 *	placed at *@results.
1719 *
1720 *	The implementation is naive.
1721 *
1722 *	Like radix_tree_gang_lookup as far as RCU and locking goes. Slots must
1723 *	be dereferenced with radix_tree_deref_slot, and if using only RCU
1724 *	protection, radix_tree_deref_slot may fail requiring a retry.
1725 */
1726unsigned int
1727radix_tree_gang_lookup_slot(struct radix_tree_root *root,
1728			void ***results, unsigned long *indices,
1729			unsigned long first_index, unsigned int max_items)
1730{
1731	struct radix_tree_iter iter;
1732	void **slot;
1733	unsigned int ret = 0;
1734
1735	if (unlikely(!max_items))
1736		return 0;
1737
1738	radix_tree_for_each_slot(slot, root, &iter, first_index) {
1739		results[ret] = slot;
1740		if (indices)
1741			indices[ret] = iter.index;
1742		if (++ret == max_items)
1743			break;
1744	}
1745
1746	return ret;
1747}
1748EXPORT_SYMBOL(radix_tree_gang_lookup_slot);
1749
1750/**
1751 *	radix_tree_gang_lookup_tag - perform multiple lookup on a radix tree
1752 *	                             based on a tag
1753 *	@root:		radix tree root
1754 *	@results:	where the results of the lookup are placed
1755 *	@first_index:	start the lookup from this key
1756 *	@max_items:	place up to this many items at *results
1757 *	@tag:		the tag index (< RADIX_TREE_MAX_TAGS)
1758 *
1759 *	Performs an index-ascending scan of the tree for present items which
1760 *	have the tag indexed by @tag set.  Places the items at *@results and
1761 *	returns the number of items which were placed at *@results.
1762 */
1763unsigned int
1764radix_tree_gang_lookup_tag(struct radix_tree_root *root, void **results,
1765		unsigned long first_index, unsigned int max_items,
1766		unsigned int tag)
1767{
1768	struct radix_tree_iter iter;
1769	void **slot;
1770	unsigned int ret = 0;
1771
1772	if (unlikely(!max_items))
1773		return 0;
1774
1775	radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) {
1776		results[ret] = rcu_dereference_raw(*slot);
1777		if (!results[ret])
1778			continue;
1779		if (radix_tree_is_internal_node(results[ret])) {
1780			slot = radix_tree_iter_retry(&iter);
1781			continue;
1782		}
1783		if (++ret == max_items)
1784			break;
1785	}
1786
1787	return ret;
1788}
1789EXPORT_SYMBOL(radix_tree_gang_lookup_tag);
1790
1791/**
1792 *	radix_tree_gang_lookup_tag_slot - perform multiple slot lookup on a
1793 *					  radix tree based on a tag
1794 *	@root:		radix tree root
1795 *	@results:	where the results of the lookup are placed
1796 *	@first_index:	start the lookup from this key
1797 *	@max_items:	place up to this many items at *results
1798 *	@tag:		the tag index (< RADIX_TREE_MAX_TAGS)
1799 *
1800 *	Performs an index-ascending scan of the tree for present items which
1801 *	have the tag indexed by @tag set.  Places the slots at *@results and
1802 *	returns the number of slots which were placed at *@results.
1803 */
1804unsigned int
1805radix_tree_gang_lookup_tag_slot(struct radix_tree_root *root, void ***results,
1806		unsigned long first_index, unsigned int max_items,
1807		unsigned int tag)
1808{
1809	struct radix_tree_iter iter;
1810	void **slot;
1811	unsigned int ret = 0;
1812
1813	if (unlikely(!max_items))
1814		return 0;
1815
1816	radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) {
1817		results[ret] = slot;
1818		if (++ret == max_items)
1819			break;
1820	}
1821
1822	return ret;
1823}
1824EXPORT_SYMBOL(radix_tree_gang_lookup_tag_slot);
1825
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1826/**
1827 *	__radix_tree_delete_node    -    try to free node after clearing a slot
1828 *	@root:		radix tree root
 
1829 *	@node:		node containing @index
1830 *	@update_node:	callback for changing leaf nodes
1831 *	@private:	private data to pass to @update_node
1832 *
1833 *	After clearing the slot at @index in @node from radix tree
1834 *	rooted at @root, call this function to attempt freeing the
1835 *	node and shrinking the tree.
 
 
1836 */
1837void __radix_tree_delete_node(struct radix_tree_root *root,
1838			      struct radix_tree_node *node,
1839			      radix_tree_update_node_t update_node,
1840			      void *private)
1841{
1842	delete_node(root, node, update_node, private);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1843}
1844
1845/**
1846 *	radix_tree_delete_item    -    delete an item from a radix tree
1847 *	@root:		radix tree root
1848 *	@index:		index key
1849 *	@item:		expected item
1850 *
1851 *	Remove @item at @index from the radix tree rooted at @root.
1852 *
1853 *	Returns the address of the deleted item, or NULL if it was not present
1854 *	or the entry at the given @index was not @item.
1855 */
1856void *radix_tree_delete_item(struct radix_tree_root *root,
1857			     unsigned long index, void *item)
1858{
1859	struct radix_tree_node *node;
1860	unsigned int offset;
1861	void **slot;
1862	void *entry;
1863	int tag;
1864
1865	entry = __radix_tree_lookup(root, index, &node, &slot);
1866	if (!entry)
1867		return NULL;
1868
1869	if (item && entry != item)
1870		return NULL;
1871
1872	if (!node) {
1873		root_tag_clear_all(root);
1874		root->rnode = NULL;
1875		return entry;
1876	}
1877
1878	offset = get_slot_offset(node, slot);
 
 
 
 
 
 
 
 
 
1879
1880	/* Clear all tags associated with the item to be deleted.  */
1881	for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
1882		node_tag_clear(root, node, tag, offset);
1883
1884	__radix_tree_replace(root, node, slot, NULL, NULL, NULL);
1885
1886	return entry;
1887}
1888EXPORT_SYMBOL(radix_tree_delete_item);
1889
1890/**
1891 *	radix_tree_delete    -    delete an item from a radix tree
1892 *	@root:		radix tree root
1893 *	@index:		index key
1894 *
1895 *	Remove the item at @index from the radix tree rooted at @root.
1896 *
1897 *	Returns the address of the deleted item, or NULL if it was not present.
1898 */
1899void *radix_tree_delete(struct radix_tree_root *root, unsigned long index)
1900{
1901	return radix_tree_delete_item(root, index, NULL);
1902}
1903EXPORT_SYMBOL(radix_tree_delete);
1904
1905void radix_tree_clear_tags(struct radix_tree_root *root,
1906			   struct radix_tree_node *node,
1907			   void **slot)
1908{
1909	if (node) {
1910		unsigned int tag, offset = get_slot_offset(node, slot);
1911		for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
1912			node_tag_clear(root, node, tag, offset);
1913	} else {
1914		/* Clear root node tags */
1915		root->gfp_mask &= __GFP_BITS_MASK;
1916	}
1917}
1918
1919/**
1920 *	radix_tree_tagged - test whether any items in the tree are tagged
1921 *	@root:		radix tree root
1922 *	@tag:		tag to test
1923 */
1924int radix_tree_tagged(struct radix_tree_root *root, unsigned int tag)
1925{
1926	return root_tag_get(root, tag);
1927}
1928EXPORT_SYMBOL(radix_tree_tagged);
1929
1930static void
1931radix_tree_node_ctor(void *arg)
1932{
1933	struct radix_tree_node *node = arg;
1934
1935	memset(node, 0, sizeof(*node));
1936	INIT_LIST_HEAD(&node->private_list);
1937}
1938
1939static __init unsigned long __maxindex(unsigned int height)
1940{
1941	unsigned int width = height * RADIX_TREE_MAP_SHIFT;
1942	int shift = RADIX_TREE_INDEX_BITS - width;
1943
1944	if (shift < 0)
1945		return ~0UL;
1946	if (shift >= BITS_PER_LONG)
1947		return 0UL;
1948	return ~0UL >> shift;
1949}
1950
1951static __init void radix_tree_init_maxnodes(void)
1952{
1953	unsigned long height_to_maxindex[RADIX_TREE_MAX_PATH + 1];
1954	unsigned int i, j;
1955
1956	for (i = 0; i < ARRAY_SIZE(height_to_maxindex); i++)
1957		height_to_maxindex[i] = __maxindex(i);
1958	for (i = 0; i < ARRAY_SIZE(height_to_maxnodes); i++) {
1959		for (j = i; j > 0; j--)
1960			height_to_maxnodes[i] += height_to_maxindex[j - 1] + 1;
1961	}
1962}
1963
1964static int radix_tree_cpu_dead(unsigned int cpu)
1965{
1966	struct radix_tree_preload *rtp;
1967	struct radix_tree_node *node;
1968
1969	/* Free per-cpu pool of preloaded nodes */
1970	rtp = &per_cpu(radix_tree_preloads, cpu);
1971	while (rtp->nr) {
1972		node = rtp->nodes;
1973		rtp->nodes = node->private_data;
1974		kmem_cache_free(radix_tree_node_cachep, node);
1975		rtp->nr--;
1976	}
1977	return 0;
 
 
 
 
1978}
1979
1980void __init radix_tree_init(void)
1981{
1982	int ret;
1983	radix_tree_node_cachep = kmem_cache_create("radix_tree_node",
1984			sizeof(struct radix_tree_node), 0,
1985			SLAB_PANIC | SLAB_RECLAIM_ACCOUNT,
1986			radix_tree_node_ctor);
1987	radix_tree_init_maxnodes();
1988	ret = cpuhp_setup_state_nocalls(CPUHP_RADIX_DEAD, "lib/radix:dead",
1989					NULL, radix_tree_cpu_dead);
1990	WARN_ON(ret < 0);
1991}