Linux Audio

Check our new training course

Linux kernel drivers training

Mar 31-Apr 9, 2025, special US time zones
Register
Loading...
v3.15
 
   1/*
   2 * Copyright (C) 2001 Momchil Velikov
   3 * Portions Copyright (C) 2001 Christoph Hellwig
   4 * Copyright (C) 2005 SGI, Christoph Lameter
   5 * Copyright (C) 2006 Nick Piggin
   6 * Copyright (C) 2012 Konstantin Khlebnikov
   7 *
   8 * This program is free software; you can redistribute it and/or
   9 * modify it under the terms of the GNU General Public License as
  10 * published by the Free Software Foundation; either version 2, or (at
  11 * your option) any later version.
  12 *
  13 * This program is distributed in the hope that it will be useful, but
  14 * WITHOUT ANY WARRANTY; without even the implied warranty of
  15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
  16 * General Public License for more details.
  17 *
  18 * You should have received a copy of the GNU General Public License
  19 * along with this program; if not, write to the Free Software
  20 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
  21 */
  22
 
 
 
 
  23#include <linux/errno.h>
 
 
  24#include <linux/init.h>
  25#include <linux/kernel.h>
  26#include <linux/export.h>
  27#include <linux/radix-tree.h>
  28#include <linux/percpu.h>
 
 
 
  29#include <linux/slab.h>
  30#include <linux/notifier.h>
  31#include <linux/cpu.h>
  32#include <linux/string.h>
  33#include <linux/bitops.h>
  34#include <linux/rcupdate.h>
  35#include <linux/hardirq.h>		/* in_interrupt() */
  36
  37
  38/*
  39 * The height_to_maxindex array needs to be one deeper than the maximum
  40 * path as height 0 holds only 1 entry.
  41 */
  42static unsigned long height_to_maxindex[RADIX_TREE_MAX_PATH + 1] __read_mostly;
  43
  44/*
  45 * Radix tree node cache.
  46 */
  47static struct kmem_cache *radix_tree_node_cachep;
  48
  49/*
  50 * The radix tree is variable-height, so an insert operation not only has
  51 * to build the branch to its corresponding item, it also has to build the
  52 * branch to existing items if the size has to be increased (by
  53 * radix_tree_extend).
  54 *
  55 * The worst case is a zero height tree with just a single item at index 0,
  56 * and then inserting an item at index ULONG_MAX. This requires 2 new branches
  57 * of RADIX_TREE_MAX_PATH size to be created, with only the root node shared.
  58 * Hence:
  59 */
  60#define RADIX_TREE_PRELOAD_SIZE (RADIX_TREE_MAX_PATH * 2 - 1)
  61
  62/*
 
 
 
 
 
 
 
 
 
  63 * Per-cpu pool of preloaded nodes
  64 */
  65struct radix_tree_preload {
  66	int nr;
  67	struct radix_tree_node *nodes[RADIX_TREE_PRELOAD_SIZE];
  68};
  69static DEFINE_PER_CPU(struct radix_tree_preload, radix_tree_preloads) = { 0, };
 
 
 
 
 
  70
  71static inline void *ptr_to_indirect(void *ptr)
  72{
  73	return (void *)((unsigned long)ptr | RADIX_TREE_INDIRECT_PTR);
  74}
  75
  76static inline void *indirect_to_ptr(void *ptr)
 
 
 
  77{
  78	return (void *)((unsigned long)ptr & ~RADIX_TREE_INDIRECT_PTR);
  79}
  80
  81static inline gfp_t root_gfp_mask(struct radix_tree_root *root)
 
  82{
  83	return root->gfp_mask & __GFP_BITS_MASK;
 
 
 
 
 
 
 
 
 
  84}
  85
  86static inline void tag_set(struct radix_tree_node *node, unsigned int tag,
  87		int offset)
  88{
  89	__set_bit(offset, node->tags[tag]);
  90}
  91
  92static inline void tag_clear(struct radix_tree_node *node, unsigned int tag,
  93		int offset)
  94{
  95	__clear_bit(offset, node->tags[tag]);
  96}
  97
  98static inline int tag_get(struct radix_tree_node *node, unsigned int tag,
  99		int offset)
 100{
 101	return test_bit(offset, node->tags[tag]);
 102}
 103
 104static inline void root_tag_set(struct radix_tree_root *root, unsigned int tag)
 105{
 106	root->gfp_mask |= (__force gfp_t)(1 << (tag + __GFP_BITS_SHIFT));
 107}
 108
 109static inline void root_tag_clear(struct radix_tree_root *root, unsigned int tag)
 110{
 111	root->gfp_mask &= (__force gfp_t)~(1 << (tag + __GFP_BITS_SHIFT));
 112}
 113
 114static inline void root_tag_clear_all(struct radix_tree_root *root)
 115{
 116	root->gfp_mask &= __GFP_BITS_MASK;
 
 
 
 
 
 117}
 118
 119static inline int root_tag_get(struct radix_tree_root *root, unsigned int tag)
 120{
 121	return (__force unsigned)root->gfp_mask & (1 << (tag + __GFP_BITS_SHIFT));
 
 
 
 
 
 122}
 123
 124/*
 125 * Returns 1 if any slot in the node has this tag set.
 126 * Otherwise returns 0.
 127 */
 128static inline int any_tag_set(struct radix_tree_node *node, unsigned int tag)
 
 129{
 130	int idx;
 131	for (idx = 0; idx < RADIX_TREE_TAG_LONGS; idx++) {
 132		if (node->tags[tag][idx])
 133			return 1;
 134	}
 135	return 0;
 136}
 137
 
 
 
 
 
 138/**
 139 * radix_tree_find_next_bit - find the next set bit in a memory region
 140 *
 141 * @addr: The address to base the search on
 142 * @size: The bitmap size in bits
 143 * @offset: The bitnumber to start searching at
 144 *
 145 * Unrollable variant of find_next_bit() for constant size arrays.
 146 * Tail bits starting from size to roundup(size, BITS_PER_LONG) must be zero.
 147 * Returns next bit offset, or size if nothing found.
 148 */
 149static __always_inline unsigned long
 150radix_tree_find_next_bit(const unsigned long *addr,
 151			 unsigned long size, unsigned long offset)
 152{
 153	if (!__builtin_constant_p(size))
 154		return find_next_bit(addr, size, offset);
 155
 156	if (offset < size) {
 157		unsigned long tmp;
 158
 159		addr += offset / BITS_PER_LONG;
 160		tmp = *addr >> (offset % BITS_PER_LONG);
 161		if (tmp)
 162			return __ffs(tmp) + offset;
 163		offset = (offset + BITS_PER_LONG) & ~(BITS_PER_LONG - 1);
 164		while (offset < size) {
 165			tmp = *++addr;
 166			if (tmp)
 167				return __ffs(tmp) + offset;
 168			offset += BITS_PER_LONG;
 169		}
 170	}
 171	return size;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 172}
 173
 174/*
 175 * This assumes that the caller has performed appropriate preallocation, and
 176 * that the caller has pinned this thread of control to the current CPU.
 177 */
 178static struct radix_tree_node *
 179radix_tree_node_alloc(struct radix_tree_root *root)
 
 
 
 180{
 181	struct radix_tree_node *ret = NULL;
 182	gfp_t gfp_mask = root_gfp_mask(root);
 183
 184	/*
 185	 * Preload code isn't irq safe and it doesn't make sence to use
 186	 * preloading in the interrupt anyway as all the allocations have to
 187	 * be atomic. So just do normal allocation when in interrupt.
 188	 */
 189	if (!(gfp_mask & __GFP_WAIT) && !in_interrupt()) {
 190		struct radix_tree_preload *rtp;
 191
 192		/*
 
 
 
 
 
 
 
 
 
 
 193		 * Provided the caller has preloaded here, we will always
 194		 * succeed in getting a node here (and never reach
 195		 * kmem_cache_alloc)
 196		 */
 197		rtp = &__get_cpu_var(radix_tree_preloads);
 198		if (rtp->nr) {
 199			ret = rtp->nodes[rtp->nr - 1];
 200			rtp->nodes[rtp->nr - 1] = NULL;
 201			rtp->nr--;
 202		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 203	}
 204	if (ret == NULL)
 205		ret = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
 206
 207	BUG_ON(radix_tree_is_indirect_ptr(ret));
 208	return ret;
 209}
 210
 211static void radix_tree_node_rcu_free(struct rcu_head *head)
 212{
 213	struct radix_tree_node *node =
 214			container_of(head, struct radix_tree_node, rcu_head);
 215	int i;
 216
 217	/*
 218	 * must only free zeroed nodes into the slab. radix_tree_shrink
 219	 * can leave us with a non-NULL entry in the first slot, so clear
 220	 * that here to make sure.
 221	 */
 222	for (i = 0; i < RADIX_TREE_MAX_TAGS; i++)
 223		tag_clear(node, i, 0);
 224
 225	node->slots[0] = NULL;
 226	node->count = 0;
 227
 228	kmem_cache_free(radix_tree_node_cachep, node);
 229}
 230
 231static inline void
 232radix_tree_node_free(struct radix_tree_node *node)
 233{
 234	call_rcu(&node->rcu_head, radix_tree_node_rcu_free);
 235}
 236
 237/*
 238 * Load up this CPU's radix_tree_node buffer with sufficient objects to
 239 * ensure that the addition of a single element in the tree cannot fail.  On
 240 * success, return zero, with preemption disabled.  On error, return -ENOMEM
 241 * with preemption not disabled.
 242 *
 243 * To make use of this facility, the radix tree must be initialised without
 244 * __GFP_WAIT being passed to INIT_RADIX_TREE().
 245 */
 246static int __radix_tree_preload(gfp_t gfp_mask)
 247{
 248	struct radix_tree_preload *rtp;
 249	struct radix_tree_node *node;
 250	int ret = -ENOMEM;
 251
 252	preempt_disable();
 253	rtp = &__get_cpu_var(radix_tree_preloads);
 254	while (rtp->nr < ARRAY_SIZE(rtp->nodes)) {
 255		preempt_enable();
 
 
 
 
 
 
 256		node = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
 257		if (node == NULL)
 258			goto out;
 259		preempt_disable();
 260		rtp = &__get_cpu_var(radix_tree_preloads);
 261		if (rtp->nr < ARRAY_SIZE(rtp->nodes))
 262			rtp->nodes[rtp->nr++] = node;
 263		else
 
 
 264			kmem_cache_free(radix_tree_node_cachep, node);
 
 265	}
 266	ret = 0;
 267out:
 268	return ret;
 269}
 270
 271/*
 272 * Load up this CPU's radix_tree_node buffer with sufficient objects to
 273 * ensure that the addition of a single element in the tree cannot fail.  On
 274 * success, return zero, with preemption disabled.  On error, return -ENOMEM
 275 * with preemption not disabled.
 276 *
 277 * To make use of this facility, the radix tree must be initialised without
 278 * __GFP_WAIT being passed to INIT_RADIX_TREE().
 279 */
 280int radix_tree_preload(gfp_t gfp_mask)
 281{
 282	/* Warn on non-sensical use... */
 283	WARN_ON_ONCE(!(gfp_mask & __GFP_WAIT));
 284	return __radix_tree_preload(gfp_mask);
 285}
 286EXPORT_SYMBOL(radix_tree_preload);
 287
 288/*
 289 * The same as above function, except we don't guarantee preloading happens.
 290 * We do it, if we decide it helps. On success, return zero with preemption
 291 * disabled. On error, return -ENOMEM with preemption not disabled.
 292 */
 293int radix_tree_maybe_preload(gfp_t gfp_mask)
 294{
 295	if (gfp_mask & __GFP_WAIT)
 296		return __radix_tree_preload(gfp_mask);
 297	/* Preloading doesn't help anything with this gfp mask, skip it */
 298	preempt_disable();
 299	return 0;
 300}
 301EXPORT_SYMBOL(radix_tree_maybe_preload);
 302
 303/*
 304 *	Return the maximum key which can be store into a
 305 *	radix tree with height HEIGHT.
 306 */
 307static inline unsigned long radix_tree_maxindex(unsigned int height)
 308{
 309	return height_to_maxindex[height];
 
 
 
 
 
 
 
 
 
 
 
 310}
 311
 312/*
 313 *	Extend a radix tree so it can store key @index.
 314 */
 315static int radix_tree_extend(struct radix_tree_root *root, unsigned long index)
 
 316{
 317	struct radix_tree_node *node;
 318	struct radix_tree_node *slot;
 319	unsigned int height;
 320	int tag;
 321
 322	/* Figure out what the height should be.  */
 323	height = root->height + 1;
 324	while (index > radix_tree_maxindex(height))
 325		height++;
 326
 327	if (root->rnode == NULL) {
 328		root->height = height;
 329		goto out;
 330	}
 331
 332	do {
 333		unsigned int newheight;
 334		if (!(node = radix_tree_node_alloc(root)))
 
 335			return -ENOMEM;
 336
 337		/* Propagate the aggregated tag info into the new root */
 338		for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
 339			if (root_tag_get(root, tag))
 340				tag_set(node, tag, 0);
 
 
 
 
 
 
 
 
 341		}
 342
 343		/* Increase the height.  */
 344		newheight = root->height+1;
 345		BUG_ON(newheight & ~RADIX_TREE_HEIGHT_MASK);
 346		node->path = newheight;
 347		node->count = 1;
 348		node->parent = NULL;
 349		slot = root->rnode;
 350		if (newheight > 1) {
 351			slot = indirect_to_ptr(slot);
 352			slot->parent = node;
 353		}
 354		node->slots[0] = slot;
 355		node = ptr_to_indirect(node);
 356		rcu_assign_pointer(root->rnode, node);
 357		root->height = newheight;
 358	} while (height > root->height);
 
 
 
 
 359out:
 360	return 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 361}
 362
 363/**
 364 *	__radix_tree_create	-	create a slot in a radix tree
 365 *	@root:		radix tree root
 366 *	@index:		index key
 367 *	@nodep:		returns node
 368 *	@slotp:		returns slot
 369 *
 370 *	Create, if necessary, and return the node and slot for an item
 371 *	at position @index in the radix tree @root.
 372 *
 373 *	Until there is more than one item in the tree, no nodes are
 374 *	allocated and @root->rnode is used as a direct slot instead of
 375 *	pointing to a node, in which case *@nodep will be NULL.
 376 *
 377 *	Returns -ENOMEM, or 0 for success.
 378 */
 379int __radix_tree_create(struct radix_tree_root *root, unsigned long index,
 380			struct radix_tree_node **nodep, void ***slotp)
 381{
 382	struct radix_tree_node *node = NULL, *slot;
 383	unsigned int height, shift, offset;
 384	int error;
 
 
 
 
 
 
 385
 386	/* Make sure the tree is high enough.  */
 387	if (index > radix_tree_maxindex(root->height)) {
 388		error = radix_tree_extend(root, index);
 389		if (error)
 390			return error;
 
 
 391	}
 392
 393	slot = indirect_to_ptr(root->rnode);
 394
 395	height = root->height;
 396	shift = (height-1) * RADIX_TREE_MAP_SHIFT;
 397
 398	offset = 0;			/* uninitialised var warning */
 399	while (height > 0) {
 400		if (slot == NULL) {
 401			/* Have to add a child node.  */
 402			if (!(slot = radix_tree_node_alloc(root)))
 
 
 403				return -ENOMEM;
 404			slot->path = height;
 405			slot->parent = node;
 406			if (node) {
 407				rcu_assign_pointer(node->slots[offset], slot);
 408				node->count++;
 409				slot->path |= offset << RADIX_TREE_HEIGHT_SHIFT;
 410			} else
 411				rcu_assign_pointer(root->rnode, ptr_to_indirect(slot));
 412		}
 413
 414		/* Go a level down */
 415		offset = (index >> shift) & RADIX_TREE_MAP_MASK;
 416		node = slot;
 417		slot = node->slots[offset];
 418		shift -= RADIX_TREE_MAP_SHIFT;
 419		height--;
 420	}
 421
 422	if (nodep)
 423		*nodep = node;
 424	if (slotp)
 425		*slotp = node ? node->slots + offset : (void **)&root->rnode;
 426	return 0;
 427}
 428
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 429/**
 430 *	radix_tree_insert    -    insert into a radix tree
 431 *	@root:		radix tree root
 432 *	@index:		index key
 433 *	@item:		item to insert
 434 *
 435 *	Insert an item into the radix tree at position @index.
 436 */
 437int radix_tree_insert(struct radix_tree_root *root,
 438			unsigned long index, void *item)
 439{
 440	struct radix_tree_node *node;
 441	void **slot;
 442	int error;
 443
 444	BUG_ON(radix_tree_is_indirect_ptr(item));
 445
 446	error = __radix_tree_create(root, index, &node, &slot);
 447	if (error)
 448		return error;
 449	if (*slot != NULL)
 450		return -EEXIST;
 451	rcu_assign_pointer(*slot, item);
 
 452
 453	if (node) {
 454		node->count++;
 455		BUG_ON(tag_get(node, 0, index & RADIX_TREE_MAP_MASK));
 456		BUG_ON(tag_get(node, 1, index & RADIX_TREE_MAP_MASK));
 
 457	} else {
 458		BUG_ON(root_tag_get(root, 0));
 459		BUG_ON(root_tag_get(root, 1));
 460	}
 461
 462	return 0;
 463}
 464EXPORT_SYMBOL(radix_tree_insert);
 465
 466/**
 467 *	__radix_tree_lookup	-	lookup an item in a radix tree
 468 *	@root:		radix tree root
 469 *	@index:		index key
 470 *	@nodep:		returns node
 471 *	@slotp:		returns slot
 472 *
 473 *	Lookup and return the item at position @index in the radix
 474 *	tree @root.
 475 *
 476 *	Until there is more than one item in the tree, no nodes are
 477 *	allocated and @root->rnode is used as a direct slot instead of
 478 *	pointing to a node, in which case *@nodep will be NULL.
 479 */
 480void *__radix_tree_lookup(struct radix_tree_root *root, unsigned long index,
 481			  struct radix_tree_node **nodep, void ***slotp)
 
 482{
 483	struct radix_tree_node *node, *parent;
 484	unsigned int height, shift;
 485	void **slot;
 486
 487	node = rcu_dereference_raw(root->rnode);
 488	if (node == NULL)
 489		return NULL;
 490
 491	if (!radix_tree_is_indirect_ptr(node)) {
 492		if (index > 0)
 493			return NULL;
 494
 495		if (nodep)
 496			*nodep = NULL;
 497		if (slotp)
 498			*slotp = (void **)&root->rnode;
 499		return node;
 500	}
 501	node = indirect_to_ptr(node);
 502
 503	height = node->path & RADIX_TREE_HEIGHT_MASK;
 504	if (index > radix_tree_maxindex(height))
 
 
 
 505		return NULL;
 506
 507	shift = (height-1) * RADIX_TREE_MAP_SHIFT;
 
 508
 509	do {
 510		parent = node;
 511		slot = node->slots + ((index >> shift) & RADIX_TREE_MAP_MASK);
 512		node = rcu_dereference_raw(*slot);
 513		if (node == NULL)
 514			return NULL;
 515
 516		shift -= RADIX_TREE_MAP_SHIFT;
 517		height--;
 518	} while (height > 0);
 519
 520	if (nodep)
 521		*nodep = parent;
 522	if (slotp)
 523		*slotp = slot;
 524	return node;
 525}
 526
 527/**
 528 *	radix_tree_lookup_slot    -    lookup a slot in a radix tree
 529 *	@root:		radix tree root
 530 *	@index:		index key
 531 *
 532 *	Returns:  the slot corresponding to the position @index in the
 533 *	radix tree @root. This is useful for update-if-exists operations.
 534 *
 535 *	This function can be called under rcu_read_lock iff the slot is not
 536 *	modified by radix_tree_replace_slot, otherwise it must be called
 537 *	exclusive from other writers. Any dereference of the slot must be done
 538 *	using radix_tree_deref_slot.
 539 */
 540void **radix_tree_lookup_slot(struct radix_tree_root *root, unsigned long index)
 
 541{
 542	void **slot;
 543
 544	if (!__radix_tree_lookup(root, index, NULL, &slot))
 545		return NULL;
 546	return slot;
 547}
 548EXPORT_SYMBOL(radix_tree_lookup_slot);
 549
 550/**
 551 *	radix_tree_lookup    -    perform lookup operation on a radix tree
 552 *	@root:		radix tree root
 553 *	@index:		index key
 554 *
 555 *	Lookup the item at the position @index in the radix tree @root.
 556 *
 557 *	This function can be called under rcu_read_lock, however the caller
 558 *	must manage lifetimes of leaf nodes (eg. RCU may also be used to free
 559 *	them safely). No RCU barriers are required to access or modify the
 560 *	returned item, however.
 561 */
 562void *radix_tree_lookup(struct radix_tree_root *root, unsigned long index)
 563{
 564	return __radix_tree_lookup(root, index, NULL, NULL);
 565}
 566EXPORT_SYMBOL(radix_tree_lookup);
 567
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 568/**
 569 *	radix_tree_tag_set - set a tag on a radix tree node
 570 *	@root:		radix tree root
 571 *	@index:		index key
 572 *	@tag: 		tag index
 573 *
 574 *	Set the search tag (which must be < RADIX_TREE_MAX_TAGS)
 575 *	corresponding to @index in the radix tree.  From
 576 *	the root all the way down to the leaf node.
 577 *
 578 *	Returns the address of the tagged item.   Setting a tag on a not-present
 579 *	item is a bug.
 580 */
 581void *radix_tree_tag_set(struct radix_tree_root *root,
 582			unsigned long index, unsigned int tag)
 583{
 584	unsigned int height, shift;
 585	struct radix_tree_node *slot;
 586
 587	height = root->height;
 588	BUG_ON(index > radix_tree_maxindex(height));
 589
 590	slot = indirect_to_ptr(root->rnode);
 591	shift = (height - 1) * RADIX_TREE_MAP_SHIFT;
 592
 593	while (height > 0) {
 594		int offset;
 595
 596		offset = (index >> shift) & RADIX_TREE_MAP_MASK;
 597		if (!tag_get(slot, tag, offset))
 598			tag_set(slot, tag, offset);
 599		slot = slot->slots[offset];
 600		BUG_ON(slot == NULL);
 601		shift -= RADIX_TREE_MAP_SHIFT;
 602		height--;
 603	}
 604
 605	/* set the root's tag bit */
 606	if (slot && !root_tag_get(root, tag))
 607		root_tag_set(root, tag);
 608
 609	return slot;
 610}
 611EXPORT_SYMBOL(radix_tree_tag_set);
 612
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 613/**
 614 *	radix_tree_tag_clear - clear a tag on a radix tree node
 615 *	@root:		radix tree root
 616 *	@index:		index key
 617 *	@tag: 		tag index
 618 *
 619 *	Clear the search tag (which must be < RADIX_TREE_MAX_TAGS)
 620 *	corresponding to @index in the radix tree.  If
 621 *	this causes the leaf node to have no tags set then clear the tag in the
 622 *	next-to-leaf node, etc.
 623 *
 624 *	Returns the address of the tagged item on success, else NULL.  ie:
 625 *	has the same return value and semantics as radix_tree_lookup().
 626 */
 627void *radix_tree_tag_clear(struct radix_tree_root *root,
 628			unsigned long index, unsigned int tag)
 629{
 630	struct radix_tree_node *node = NULL;
 631	struct radix_tree_node *slot = NULL;
 632	unsigned int height, shift;
 633	int uninitialized_var(offset);
 634
 635	height = root->height;
 636	if (index > radix_tree_maxindex(height))
 637		goto out;
 638
 639	shift = height * RADIX_TREE_MAP_SHIFT;
 640	slot = indirect_to_ptr(root->rnode);
 641
 642	while (shift) {
 643		if (slot == NULL)
 644			goto out;
 645
 646		shift -= RADIX_TREE_MAP_SHIFT;
 647		offset = (index >> shift) & RADIX_TREE_MAP_MASK;
 648		node = slot;
 649		slot = slot->slots[offset];
 650	}
 651
 652	if (slot == NULL)
 653		goto out;
 
 654
 655	while (node) {
 656		if (!tag_get(node, tag, offset))
 657			goto out;
 658		tag_clear(node, tag, offset);
 659		if (any_tag_set(node, tag))
 660			goto out;
 661
 662		index >>= RADIX_TREE_MAP_SHIFT;
 663		offset = index & RADIX_TREE_MAP_MASK;
 664		node = node->parent;
 665	}
 666
 667	/* clear the root's tag bit */
 668	if (root_tag_get(root, tag))
 669		root_tag_clear(root, tag);
 670
 671out:
 672	return slot;
 673}
 674EXPORT_SYMBOL(radix_tree_tag_clear);
 675
 676/**
 
 
 
 
 
 
 
 
 
 
 
 
 677 * radix_tree_tag_get - get a tag on a radix tree node
 678 * @root:		radix tree root
 679 * @index:		index key
 680 * @tag: 		tag index (< RADIX_TREE_MAX_TAGS)
 681 *
 682 * Return values:
 683 *
 684 *  0: tag not present or not set
 685 *  1: tag set
 686 *
 687 * Note that the return value of this function may not be relied on, even if
 688 * the RCU lock is held, unless tag modification and node deletion are excluded
 689 * from concurrency.
 690 */
 691int radix_tree_tag_get(struct radix_tree_root *root,
 692			unsigned long index, unsigned int tag)
 693{
 694	unsigned int height, shift;
 695	struct radix_tree_node *node;
 696
 697	/* check the root's tag bit */
 698	if (!root_tag_get(root, tag))
 699		return 0;
 700
 701	node = rcu_dereference_raw(root->rnode);
 702	if (node == NULL)
 703		return 0;
 704
 705	if (!radix_tree_is_indirect_ptr(node))
 706		return (index == 0);
 707	node = indirect_to_ptr(node);
 708
 709	height = node->path & RADIX_TREE_HEIGHT_MASK;
 710	if (index > radix_tree_maxindex(height))
 711		return 0;
 712
 713	shift = (height - 1) * RADIX_TREE_MAP_SHIFT;
 
 
 
 
 714
 715	for ( ; ; ) {
 716		int offset;
 
 717
 718		if (node == NULL)
 719			return 0;
 
 
 
 
 
 720
 721		offset = (index >> shift) & RADIX_TREE_MAP_MASK;
 722		if (!tag_get(node, tag, offset))
 723			return 0;
 724		if (height == 1)
 725			return 1;
 726		node = rcu_dereference_raw(node->slots[offset]);
 727		shift -= RADIX_TREE_MAP_SHIFT;
 728		height--;
 
 
 
 
 
 
 
 729	}
 730}
 731EXPORT_SYMBOL(radix_tree_tag_get);
 
 
 
 
 
 
 
 
 
 732
 733/**
 734 * radix_tree_next_chunk - find next chunk of slots for iteration
 735 *
 736 * @root:	radix tree root
 737 * @iter:	iterator state
 738 * @flags:	RADIX_TREE_ITER_* flags and tag index
 739 * Returns:	pointer to chunk first slot, or NULL if iteration is over
 740 */
 741void **radix_tree_next_chunk(struct radix_tree_root *root,
 742			     struct radix_tree_iter *iter, unsigned flags)
 743{
 744	unsigned shift, tag = flags & RADIX_TREE_ITER_TAG_MASK;
 745	struct radix_tree_node *rnode, *node;
 746	unsigned long index, offset, height;
 747
 748	if ((flags & RADIX_TREE_ITER_TAGGED) && !root_tag_get(root, tag))
 749		return NULL;
 750
 751	/*
 752	 * Catch next_index overflow after ~0UL. iter->index never overflows
 753	 * during iterating; it can be zero only at the beginning.
 754	 * And we cannot overflow iter->next_index in a single step,
 755	 * because RADIX_TREE_MAP_SHIFT < BITS_PER_LONG.
 756	 *
 757	 * This condition also used by radix_tree_next_slot() to stop
 758	 * contiguous iterating, and forbid swithing to the next chunk.
 759	 */
 760	index = iter->next_index;
 761	if (!index && iter->index)
 762		return NULL;
 763
 764	rnode = rcu_dereference_raw(root->rnode);
 765	if (radix_tree_is_indirect_ptr(rnode)) {
 766		rnode = indirect_to_ptr(rnode);
 767	} else if (rnode && !index) {
 768		/* Single-slot tree */
 769		iter->index = 0;
 770		iter->next_index = 1;
 771		iter->tags = 1;
 772		return (void **)&root->rnode;
 773	} else
 774		return NULL;
 775
 776restart:
 777	height = rnode->path & RADIX_TREE_HEIGHT_MASK;
 778	shift = (height - 1) * RADIX_TREE_MAP_SHIFT;
 779	offset = index >> shift;
 
 
 
 
 780
 781	/* Index outside of the tree */
 782	if (offset >= RADIX_TREE_MAP_SIZE)
 783		return NULL;
 784
 785	node = rnode;
 786	while (1) {
 787		if ((flags & RADIX_TREE_ITER_TAGGED) ?
 788				!test_bit(offset, node->tags[tag]) :
 789				!node->slots[offset]) {
 790			/* Hole detected */
 791			if (flags & RADIX_TREE_ITER_CONTIG)
 792				return NULL;
 793
 794			if (flags & RADIX_TREE_ITER_TAGGED)
 795				offset = radix_tree_find_next_bit(
 796						node->tags[tag],
 797						RADIX_TREE_MAP_SIZE,
 798						offset + 1);
 799			else
 800				while (++offset	< RADIX_TREE_MAP_SIZE) {
 801					if (node->slots[offset])
 
 
 802						break;
 803				}
 804			index &= ~((RADIX_TREE_MAP_SIZE << shift) - 1);
 805			index += offset << shift;
 806			/* Overflow after ~0UL */
 807			if (!index)
 808				return NULL;
 809			if (offset == RADIX_TREE_MAP_SIZE)
 810				goto restart;
 
 811		}
 812
 813		/* This is leaf-node */
 814		if (!shift)
 815			break;
 816
 817		node = rcu_dereference_raw(node->slots[offset]);
 818		if (node == NULL)
 819			goto restart;
 820		shift -= RADIX_TREE_MAP_SHIFT;
 821		offset = (index >> shift) & RADIX_TREE_MAP_MASK;
 822	}
 823
 824	/* Update the iterator state */
 825	iter->index = index;
 826	iter->next_index = (index | RADIX_TREE_MAP_MASK) + 1;
 
 827
 828	/* Construct iter->tags bit-mask from node->tags[tag] array */
 829	if (flags & RADIX_TREE_ITER_TAGGED) {
 830		unsigned tag_long, tag_bit;
 831
 832		tag_long = offset / BITS_PER_LONG;
 833		tag_bit  = offset % BITS_PER_LONG;
 834		iter->tags = node->tags[tag][tag_long] >> tag_bit;
 835		/* This never happens if RADIX_TREE_TAG_LONGS == 1 */
 836		if (tag_long < RADIX_TREE_TAG_LONGS - 1) {
 837			/* Pick tags from next element */
 838			if (tag_bit)
 839				iter->tags |= node->tags[tag][tag_long + 1] <<
 840						(BITS_PER_LONG - tag_bit);
 841			/* Clip chunk size, here only BITS_PER_LONG tags */
 842			iter->next_index = index + BITS_PER_LONG;
 843		}
 844	}
 845
 846	return node->slots + offset;
 847}
 848EXPORT_SYMBOL(radix_tree_next_chunk);
 849
 850/**
 851 * radix_tree_range_tag_if_tagged - for each item in given range set given
 852 *				   tag if item has another tag set
 853 * @root:		radix tree root
 854 * @first_indexp:	pointer to a starting index of a range to scan
 855 * @last_index:		last index of a range to scan
 856 * @nr_to_tag:		maximum number items to tag
 857 * @iftag:		tag index to test
 858 * @settag:		tag index to set if tested tag is set
 859 *
 860 * This function scans range of radix tree from first_index to last_index
 861 * (inclusive).  For each item in the range if iftag is set, the function sets
 862 * also settag. The function stops either after tagging nr_to_tag items or
 863 * after reaching last_index.
 864 *
 865 * The tags must be set from the leaf level only and propagated back up the
 866 * path to the root. We must do this so that we resolve the full path before
 867 * setting any tags on intermediate nodes. If we set tags as we descend, then
 868 * we can get to the leaf node and find that the index that has the iftag
 869 * set is outside the range we are scanning. This reults in dangling tags and
 870 * can lead to problems with later tag operations (e.g. livelocks on lookups).
 871 *
 872 * The function returns number of leaves where the tag was set and sets
 873 * *first_indexp to the first unscanned index.
 874 * WARNING! *first_indexp can wrap if last_index is ULONG_MAX. Caller must
 875 * be prepared to handle that.
 876 */
 877unsigned long radix_tree_range_tag_if_tagged(struct radix_tree_root *root,
 878		unsigned long *first_indexp, unsigned long last_index,
 879		unsigned long nr_to_tag,
 880		unsigned int iftag, unsigned int settag)
 881{
 882	unsigned int height = root->height;
 883	struct radix_tree_node *node = NULL;
 884	struct radix_tree_node *slot;
 885	unsigned int shift;
 886	unsigned long tagged = 0;
 887	unsigned long index = *first_indexp;
 888
 889	last_index = min(last_index, radix_tree_maxindex(height));
 890	if (index > last_index)
 891		return 0;
 892	if (!nr_to_tag)
 893		return 0;
 894	if (!root_tag_get(root, iftag)) {
 895		*first_indexp = last_index + 1;
 896		return 0;
 897	}
 898	if (height == 0) {
 899		*first_indexp = last_index + 1;
 900		root_tag_set(root, settag);
 901		return 1;
 902	}
 903
 904	shift = (height - 1) * RADIX_TREE_MAP_SHIFT;
 905	slot = indirect_to_ptr(root->rnode);
 906
 907	for (;;) {
 908		unsigned long upindex;
 909		int offset;
 910
 911		offset = (index >> shift) & RADIX_TREE_MAP_MASK;
 912		if (!slot->slots[offset])
 913			goto next;
 914		if (!tag_get(slot, iftag, offset))
 915			goto next;
 916		if (shift) {
 917			/* Go down one level */
 918			shift -= RADIX_TREE_MAP_SHIFT;
 919			node = slot;
 920			slot = slot->slots[offset];
 921			continue;
 922		}
 923
 924		/* tag the leaf */
 925		tagged++;
 926		tag_set(slot, settag, offset);
 927
 928		/* walk back up the path tagging interior nodes */
 929		upindex = index;
 930		while (node) {
 931			upindex >>= RADIX_TREE_MAP_SHIFT;
 932			offset = upindex & RADIX_TREE_MAP_MASK;
 933
 934			/* stop if we find a node with the tag already set */
 935			if (tag_get(node, settag, offset))
 936				break;
 937			tag_set(node, settag, offset);
 938			node = node->parent;
 939		}
 940
 941		/*
 942		 * Small optimization: now clear that node pointer.
 943		 * Since all of this slot's ancestors now have the tag set
 944		 * from setting it above, we have no further need to walk
 945		 * back up the tree setting tags, until we update slot to
 946		 * point to another radix_tree_node.
 947		 */
 948		node = NULL;
 949
 950next:
 951		/* Go to next item at level determined by 'shift' */
 952		index = ((index >> shift) + 1) << shift;
 953		/* Overflow can happen when last_index is ~0UL... */
 954		if (index > last_index || !index)
 955			break;
 956		if (tagged >= nr_to_tag)
 957			break;
 958		while (((index >> shift) & RADIX_TREE_MAP_MASK) == 0) {
 959			/*
 960			 * We've fully scanned this node. Go up. Because
 961			 * last_index is guaranteed to be in the tree, what
 962			 * we do below cannot wander astray.
 963			 */
 964			slot = slot->parent;
 965			shift += RADIX_TREE_MAP_SHIFT;
 966		}
 967	}
 968	/*
 969	 * We need not to tag the root tag if there is no tag which is set with
 970	 * settag within the range from *first_indexp to last_index.
 971	 */
 972	if (tagged > 0)
 973		root_tag_set(root, settag);
 974	*first_indexp = index;
 975
 976	return tagged;
 977}
 978EXPORT_SYMBOL(radix_tree_range_tag_if_tagged);
 979
 980/**
 981 *	radix_tree_gang_lookup - perform multiple lookup on a radix tree
 982 *	@root:		radix tree root
 983 *	@results:	where the results of the lookup are placed
 984 *	@first_index:	start the lookup from this key
 985 *	@max_items:	place up to this many items at *results
 986 *
 987 *	Performs an index-ascending scan of the tree for present items.  Places
 988 *	them at *@results and returns the number of items which were placed at
 989 *	*@results.
 990 *
 991 *	The implementation is naive.
 992 *
 993 *	Like radix_tree_lookup, radix_tree_gang_lookup may be called under
 994 *	rcu_read_lock. In this case, rather than the returned results being
 995 *	an atomic snapshot of the tree at a single point in time, the semantics
 996 *	of an RCU protected gang lookup are as though multiple radix_tree_lookups
 997 *	have been issued in individual locks, and results stored in 'results'.
 
 998 */
 999unsigned int
1000radix_tree_gang_lookup(struct radix_tree_root *root, void **results,
1001			unsigned long first_index, unsigned int max_items)
1002{
1003	struct radix_tree_iter iter;
1004	void **slot;
1005	unsigned int ret = 0;
1006
1007	if (unlikely(!max_items))
1008		return 0;
1009
1010	radix_tree_for_each_slot(slot, root, &iter, first_index) {
1011		results[ret] = indirect_to_ptr(rcu_dereference_raw(*slot));
1012		if (!results[ret])
1013			continue;
 
 
 
 
1014		if (++ret == max_items)
1015			break;
1016	}
1017
1018	return ret;
1019}
1020EXPORT_SYMBOL(radix_tree_gang_lookup);
1021
1022/**
1023 *	radix_tree_gang_lookup_slot - perform multiple slot lookup on radix tree
1024 *	@root:		radix tree root
1025 *	@results:	where the results of the lookup are placed
1026 *	@indices:	where their indices should be placed (but usually NULL)
1027 *	@first_index:	start the lookup from this key
1028 *	@max_items:	place up to this many items at *results
1029 *
1030 *	Performs an index-ascending scan of the tree for present items.  Places
1031 *	their slots at *@results and returns the number of items which were
1032 *	placed at *@results.
1033 *
1034 *	The implementation is naive.
1035 *
1036 *	Like radix_tree_gang_lookup as far as RCU and locking goes. Slots must
1037 *	be dereferenced with radix_tree_deref_slot, and if using only RCU
1038 *	protection, radix_tree_deref_slot may fail requiring a retry.
1039 */
1040unsigned int
1041radix_tree_gang_lookup_slot(struct radix_tree_root *root,
1042			void ***results, unsigned long *indices,
1043			unsigned long first_index, unsigned int max_items)
1044{
1045	struct radix_tree_iter iter;
1046	void **slot;
1047	unsigned int ret = 0;
1048
1049	if (unlikely(!max_items))
1050		return 0;
1051
1052	radix_tree_for_each_slot(slot, root, &iter, first_index) {
1053		results[ret] = slot;
1054		if (indices)
1055			indices[ret] = iter.index;
1056		if (++ret == max_items)
1057			break;
1058	}
1059
1060	return ret;
1061}
1062EXPORT_SYMBOL(radix_tree_gang_lookup_slot);
1063
1064/**
1065 *	radix_tree_gang_lookup_tag - perform multiple lookup on a radix tree
1066 *	                             based on a tag
1067 *	@root:		radix tree root
1068 *	@results:	where the results of the lookup are placed
1069 *	@first_index:	start the lookup from this key
1070 *	@max_items:	place up to this many items at *results
1071 *	@tag:		the tag index (< RADIX_TREE_MAX_TAGS)
1072 *
1073 *	Performs an index-ascending scan of the tree for present items which
1074 *	have the tag indexed by @tag set.  Places the items at *@results and
1075 *	returns the number of items which were placed at *@results.
1076 */
1077unsigned int
1078radix_tree_gang_lookup_tag(struct radix_tree_root *root, void **results,
1079		unsigned long first_index, unsigned int max_items,
1080		unsigned int tag)
1081{
1082	struct radix_tree_iter iter;
1083	void **slot;
1084	unsigned int ret = 0;
1085
1086	if (unlikely(!max_items))
1087		return 0;
1088
1089	radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) {
1090		results[ret] = indirect_to_ptr(rcu_dereference_raw(*slot));
1091		if (!results[ret])
1092			continue;
 
 
 
 
1093		if (++ret == max_items)
1094			break;
1095	}
1096
1097	return ret;
1098}
1099EXPORT_SYMBOL(radix_tree_gang_lookup_tag);
1100
1101/**
1102 *	radix_tree_gang_lookup_tag_slot - perform multiple slot lookup on a
1103 *					  radix tree based on a tag
1104 *	@root:		radix tree root
1105 *	@results:	where the results of the lookup are placed
1106 *	@first_index:	start the lookup from this key
1107 *	@max_items:	place up to this many items at *results
1108 *	@tag:		the tag index (< RADIX_TREE_MAX_TAGS)
1109 *
1110 *	Performs an index-ascending scan of the tree for present items which
1111 *	have the tag indexed by @tag set.  Places the slots at *@results and
1112 *	returns the number of slots which were placed at *@results.
1113 */
1114unsigned int
1115radix_tree_gang_lookup_tag_slot(struct radix_tree_root *root, void ***results,
1116		unsigned long first_index, unsigned int max_items,
1117		unsigned int tag)
1118{
1119	struct radix_tree_iter iter;
1120	void **slot;
1121	unsigned int ret = 0;
1122
1123	if (unlikely(!max_items))
1124		return 0;
1125
1126	radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) {
1127		results[ret] = slot;
1128		if (++ret == max_items)
1129			break;
1130	}
1131
1132	return ret;
1133}
1134EXPORT_SYMBOL(radix_tree_gang_lookup_tag_slot);
1135
1136#if defined(CONFIG_SHMEM) && defined(CONFIG_SWAP)
1137#include <linux/sched.h> /* for cond_resched() */
1138
1139/*
1140 * This linear search is at present only useful to shmem_unuse_inode().
1141 */
1142static unsigned long __locate(struct radix_tree_node *slot, void *item,
1143			      unsigned long index, unsigned long *found_index)
1144{
1145	unsigned int shift, height;
1146	unsigned long i;
1147
1148	height = slot->path & RADIX_TREE_HEIGHT_MASK;
1149	shift = (height-1) * RADIX_TREE_MAP_SHIFT;
1150
1151	for ( ; height > 1; height--) {
1152		i = (index >> shift) & RADIX_TREE_MAP_MASK;
1153		for (;;) {
1154			if (slot->slots[i] != NULL)
1155				break;
1156			index &= ~((1UL << shift) - 1);
1157			index += 1UL << shift;
1158			if (index == 0)
1159				goto out;	/* 32-bit wraparound */
1160			i++;
1161			if (i == RADIX_TREE_MAP_SIZE)
1162				goto out;
1163		}
1164
1165		shift -= RADIX_TREE_MAP_SHIFT;
1166		slot = rcu_dereference_raw(slot->slots[i]);
1167		if (slot == NULL)
1168			goto out;
1169	}
1170
1171	/* Bottom level: check items */
1172	for (i = 0; i < RADIX_TREE_MAP_SIZE; i++) {
1173		if (slot->slots[i] == item) {
1174			*found_index = index + i;
1175			index = 0;
1176			goto out;
1177		}
1178	}
1179	index += RADIX_TREE_MAP_SIZE;
1180out:
1181	return index;
1182}
1183
1184/**
1185 *	radix_tree_locate_item - search through radix tree for item
1186 *	@root:		radix tree root
1187 *	@item:		item to be found
1188 *
1189 *	Returns index where item was found, or -1 if not found.
1190 *	Caller must hold no lock (since this time-consuming function needs
1191 *	to be preemptible), and must check afterwards if item is still there.
1192 */
1193unsigned long radix_tree_locate_item(struct radix_tree_root *root, void *item)
1194{
1195	struct radix_tree_node *node;
1196	unsigned long max_index;
1197	unsigned long cur_index = 0;
1198	unsigned long found_index = -1;
1199
1200	do {
1201		rcu_read_lock();
1202		node = rcu_dereference_raw(root->rnode);
1203		if (!radix_tree_is_indirect_ptr(node)) {
1204			rcu_read_unlock();
1205			if (node == item)
1206				found_index = 0;
1207			break;
1208		}
1209
1210		node = indirect_to_ptr(node);
1211		max_index = radix_tree_maxindex(node->path &
1212						RADIX_TREE_HEIGHT_MASK);
1213		if (cur_index > max_index) {
1214			rcu_read_unlock();
1215			break;
1216		}
1217
1218		cur_index = __locate(node, item, cur_index, &found_index);
1219		rcu_read_unlock();
1220		cond_resched();
1221	} while (cur_index != 0 && cur_index <= max_index);
1222
1223	return found_index;
1224}
1225#else
1226unsigned long radix_tree_locate_item(struct radix_tree_root *root, void *item)
1227{
1228	return -1;
1229}
1230#endif /* CONFIG_SHMEM && CONFIG_SWAP */
1231
1232/**
1233 *	radix_tree_shrink    -    shrink height of a radix tree to minimal
1234 *	@root		radix tree root
1235 */
1236static inline void radix_tree_shrink(struct radix_tree_root *root)
1237{
1238	/* try to shrink tree height */
1239	while (root->height > 0) {
1240		struct radix_tree_node *to_free = root->rnode;
1241		struct radix_tree_node *slot;
1242
1243		BUG_ON(!radix_tree_is_indirect_ptr(to_free));
1244		to_free = indirect_to_ptr(to_free);
1245
1246		/*
1247		 * The candidate node has more than one child, or its child
1248		 * is not at the leftmost slot, we cannot shrink.
1249		 */
1250		if (to_free->count != 1)
1251			break;
1252		if (!to_free->slots[0])
1253			break;
1254
1255		/*
1256		 * We don't need rcu_assign_pointer(), since we are simply
1257		 * moving the node from one part of the tree to another: if it
1258		 * was safe to dereference the old pointer to it
1259		 * (to_free->slots[0]), it will be safe to dereference the new
1260		 * one (root->rnode) as far as dependent read barriers go.
1261		 */
1262		slot = to_free->slots[0];
1263		if (root->height > 1) {
1264			slot->parent = NULL;
1265			slot = ptr_to_indirect(slot);
1266		}
1267		root->rnode = slot;
1268		root->height--;
1269
1270		/*
1271		 * We have a dilemma here. The node's slot[0] must not be
1272		 * NULLed in case there are concurrent lookups expecting to
1273		 * find the item. However if this was a bottom-level node,
1274		 * then it may be subject to the slot pointer being visible
1275		 * to callers dereferencing it. If item corresponding to
1276		 * slot[0] is subsequently deleted, these callers would expect
1277		 * their slot to become empty sooner or later.
1278		 *
1279		 * For example, lockless pagecache will look up a slot, deref
1280		 * the page pointer, and if the page is 0 refcount it means it
1281		 * was concurrently deleted from pagecache so try the deref
1282		 * again. Fortunately there is already a requirement for logic
1283		 * to retry the entire slot lookup -- the indirect pointer
1284		 * problem (replacing direct root node with an indirect pointer
1285		 * also results in a stale slot). So tag the slot as indirect
1286		 * to force callers to retry.
1287		 */
1288		if (root->height == 0)
1289			*((unsigned long *)&to_free->slots[0]) |=
1290						RADIX_TREE_INDIRECT_PTR;
1291
1292		radix_tree_node_free(to_free);
1293	}
1294}
1295
1296/**
1297 *	__radix_tree_delete_node    -    try to free node after clearing a slot
1298 *	@root:		radix tree root
1299 *	@index:		index key
1300 *	@node:		node containing @index
1301 *
1302 *	After clearing the slot at @index in @node from radix tree
1303 *	rooted at @root, call this function to attempt freeing the
1304 *	node and shrinking the tree.
1305 *
1306 *	Returns %true if @node was freed, %false otherwise.
 
 
 
 
1307 */
1308bool __radix_tree_delete_node(struct radix_tree_root *root,
1309			      struct radix_tree_node *node)
1310{
1311	bool deleted = false;
1312
1313	do {
1314		struct radix_tree_node *parent;
1315
1316		if (node->count) {
1317			if (node == indirect_to_ptr(root->rnode)) {
1318				radix_tree_shrink(root);
1319				if (root->height == 0)
1320					deleted = true;
1321			}
1322			return deleted;
1323		}
1324
1325		parent = node->parent;
1326		if (parent) {
1327			unsigned int offset;
1328
1329			offset = node->path >> RADIX_TREE_HEIGHT_SHIFT;
1330			parent->slots[offset] = NULL;
1331			parent->count--;
1332		} else {
1333			root_tag_clear_all(root);
1334			root->height = 0;
1335			root->rnode = NULL;
1336		}
1337
1338		radix_tree_node_free(node);
1339		deleted = true;
1340
1341		node = parent;
1342	} while (node);
1343
1344	return deleted;
1345}
 
1346
1347/**
1348 *	radix_tree_delete_item    -    delete an item from a radix tree
1349 *	@root:		radix tree root
1350 *	@index:		index key
1351 *	@item:		expected item
1352 *
1353 *	Remove @item at @index from the radix tree rooted at @root.
1354 *
1355 *	Returns the address of the deleted item, or NULL if it was not present
1356 *	or the entry at the given @index was not @item.
1357 */
1358void *radix_tree_delete_item(struct radix_tree_root *root,
1359			     unsigned long index, void *item)
1360{
1361	struct radix_tree_node *node;
1362	unsigned int offset;
1363	void **slot;
1364	void *entry;
1365	int tag;
1366
1367	entry = __radix_tree_lookup(root, index, &node, &slot);
1368	if (!entry)
 
 
 
1369		return NULL;
1370
1371	if (item && entry != item)
1372		return NULL;
1373
1374	if (!node) {
1375		root_tag_clear_all(root);
1376		root->rnode = NULL;
1377		return entry;
1378	}
1379
1380	offset = index & RADIX_TREE_MAP_MASK;
1381
1382	/*
1383	 * Clear all tags associated with the item to be deleted.
1384	 * This way of doing it would be inefficient, but seldom is any set.
1385	 */
1386	for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
1387		if (tag_get(node, tag, offset))
1388			radix_tree_tag_clear(root, index, tag);
1389	}
1390
1391	node->slots[offset] = NULL;
1392	node->count--;
1393
1394	__radix_tree_delete_node(root, node);
1395
1396	return entry;
1397}
1398EXPORT_SYMBOL(radix_tree_delete_item);
1399
1400/**
1401 *	radix_tree_delete    -    delete an item from a radix tree
1402 *	@root:		radix tree root
1403 *	@index:		index key
1404 *
1405 *	Remove the item at @index from the radix tree rooted at @root.
1406 *
1407 *	Returns the address of the deleted item, or NULL if it was not present.
1408 */
1409void *radix_tree_delete(struct radix_tree_root *root, unsigned long index)
1410{
1411	return radix_tree_delete_item(root, index, NULL);
1412}
1413EXPORT_SYMBOL(radix_tree_delete);
1414
1415/**
1416 *	radix_tree_tagged - test whether any items in the tree are tagged
1417 *	@root:		radix tree root
1418 *	@tag:		tag to test
1419 */
1420int radix_tree_tagged(struct radix_tree_root *root, unsigned int tag)
1421{
1422	return root_tag_get(root, tag);
1423}
1424EXPORT_SYMBOL(radix_tree_tagged);
1425
1426static void
1427radix_tree_node_ctor(void *arg)
 
 
 
 
 
 
1428{
1429	struct radix_tree_node *node = arg;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1430
1431	memset(node, 0, sizeof(*node));
1432	INIT_LIST_HEAD(&node->private_list);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1433}
1434
1435static __init unsigned long __maxindex(unsigned int height)
 
 
 
 
 
 
 
 
 
 
 
1436{
1437	unsigned int width = height * RADIX_TREE_MAP_SHIFT;
1438	int shift = RADIX_TREE_INDEX_BITS - width;
1439
1440	if (shift < 0)
1441		return ~0UL;
1442	if (shift >= BITS_PER_LONG)
1443		return 0UL;
1444	return ~0UL >> shift;
1445}
 
1446
1447static __init void radix_tree_init_maxindex(void)
 
1448{
1449	unsigned int i;
1450
1451	for (i = 0; i < ARRAY_SIZE(height_to_maxindex); i++)
1452		height_to_maxindex[i] = __maxindex(i);
1453}
1454
1455static int radix_tree_callback(struct notifier_block *nfb,
1456                            unsigned long action,
1457                            void *hcpu)
1458{
1459       int cpu = (long)hcpu;
1460       struct radix_tree_preload *rtp;
1461
1462       /* Free per-cpu pool of perloaded nodes */
1463       if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
1464               rtp = &per_cpu(radix_tree_preloads, cpu);
1465               while (rtp->nr) {
1466                       kmem_cache_free(radix_tree_node_cachep,
1467                                       rtp->nodes[rtp->nr-1]);
1468                       rtp->nodes[rtp->nr-1] = NULL;
1469                       rtp->nr--;
1470               }
1471       }
1472       return NOTIFY_OK;
1473}
1474
1475void __init radix_tree_init(void)
1476{
 
 
 
 
 
1477	radix_tree_node_cachep = kmem_cache_create("radix_tree_node",
1478			sizeof(struct radix_tree_node), 0,
1479			SLAB_PANIC | SLAB_RECLAIM_ACCOUNT,
1480			radix_tree_node_ctor);
1481	radix_tree_init_maxindex();
1482	hotcpu_notifier(radix_tree_callback, 0);
 
1483}
v6.13.7
   1// SPDX-License-Identifier: GPL-2.0-or-later
   2/*
   3 * Copyright (C) 2001 Momchil Velikov
   4 * Portions Copyright (C) 2001 Christoph Hellwig
   5 * Copyright (C) 2005 SGI, Christoph Lameter
   6 * Copyright (C) 2006 Nick Piggin
   7 * Copyright (C) 2012 Konstantin Khlebnikov
   8 * Copyright (C) 2016 Intel, Matthew Wilcox
   9 * Copyright (C) 2016 Intel, Ross Zwisler
 
 
 
 
 
 
 
 
 
 
 
 
  10 */
  11
  12#include <linux/bitmap.h>
  13#include <linux/bitops.h>
  14#include <linux/bug.h>
  15#include <linux/cpu.h>
  16#include <linux/errno.h>
  17#include <linux/export.h>
  18#include <linux/idr.h>
  19#include <linux/init.h>
  20#include <linux/kernel.h>
  21#include <linux/kmemleak.h>
 
  22#include <linux/percpu.h>
  23#include <linux/preempt.h>		/* in_interrupt() */
  24#include <linux/radix-tree.h>
  25#include <linux/rcupdate.h>
  26#include <linux/slab.h>
 
 
  27#include <linux/string.h>
  28#include <linux/xarray.h>
 
 
 
  29
  30#include "radix-tree.h"
 
 
 
 
  31
  32/*
  33 * Radix tree node cache.
  34 */
  35struct kmem_cache *radix_tree_node_cachep;
  36
  37/*
  38 * The radix tree is variable-height, so an insert operation not only has
  39 * to build the branch to its corresponding item, it also has to build the
  40 * branch to existing items if the size has to be increased (by
  41 * radix_tree_extend).
  42 *
  43 * The worst case is a zero height tree with just a single item at index 0,
  44 * and then inserting an item at index ULONG_MAX. This requires 2 new branches
  45 * of RADIX_TREE_MAX_PATH size to be created, with only the root node shared.
  46 * Hence:
  47 */
  48#define RADIX_TREE_PRELOAD_SIZE (RADIX_TREE_MAX_PATH * 2 - 1)
  49
  50/*
  51 * The IDR does not have to be as high as the radix tree since it uses
  52 * signed integers, not unsigned longs.
  53 */
  54#define IDR_INDEX_BITS		(8 /* CHAR_BIT */ * sizeof(int) - 1)
  55#define IDR_MAX_PATH		(DIV_ROUND_UP(IDR_INDEX_BITS, \
  56						RADIX_TREE_MAP_SHIFT))
  57#define IDR_PRELOAD_SIZE	(IDR_MAX_PATH * 2 - 1)
  58
  59/*
  60 * Per-cpu pool of preloaded nodes
  61 */
  62DEFINE_PER_CPU(struct radix_tree_preload, radix_tree_preloads) = {
  63	.lock = INIT_LOCAL_LOCK(lock),
 
  64};
  65EXPORT_PER_CPU_SYMBOL_GPL(radix_tree_preloads);
  66
  67static inline struct radix_tree_node *entry_to_node(void *ptr)
  68{
  69	return (void *)((unsigned long)ptr & ~RADIX_TREE_INTERNAL_NODE);
  70}
  71
  72static inline void *node_to_entry(void *ptr)
  73{
  74	return (void *)((unsigned long)ptr | RADIX_TREE_INTERNAL_NODE);
  75}
  76
  77#define RADIX_TREE_RETRY	XA_RETRY_ENTRY
  78
  79static inline unsigned long
  80get_slot_offset(const struct radix_tree_node *parent, void __rcu **slot)
  81{
  82	return parent ? slot - parent->slots : 0;
  83}
  84
  85static unsigned int radix_tree_descend(const struct radix_tree_node *parent,
  86			struct radix_tree_node **nodep, unsigned long index)
  87{
  88	unsigned int offset = (index >> parent->shift) & RADIX_TREE_MAP_MASK;
  89	void __rcu **entry = rcu_dereference_raw(parent->slots[offset]);
  90
  91	*nodep = (void *)entry;
  92	return offset;
  93}
  94
  95static inline gfp_t root_gfp_mask(const struct radix_tree_root *root)
  96{
  97	return root->xa_flags & (__GFP_BITS_MASK & ~GFP_ZONEMASK);
  98}
  99
 100static inline void tag_set(struct radix_tree_node *node, unsigned int tag,
 101		int offset)
 102{
 103	__set_bit(offset, node->tags[tag]);
 104}
 105
 106static inline void tag_clear(struct radix_tree_node *node, unsigned int tag,
 107		int offset)
 108{
 109	__clear_bit(offset, node->tags[tag]);
 110}
 111
 112static inline int tag_get(const struct radix_tree_node *node, unsigned int tag,
 113		int offset)
 114{
 115	return test_bit(offset, node->tags[tag]);
 116}
 117
 118static inline void root_tag_set(struct radix_tree_root *root, unsigned tag)
 119{
 120	root->xa_flags |= (__force gfp_t)(1 << (tag + ROOT_TAG_SHIFT));
 121}
 122
 123static inline void root_tag_clear(struct radix_tree_root *root, unsigned tag)
 124{
 125	root->xa_flags &= (__force gfp_t)~(1 << (tag + ROOT_TAG_SHIFT));
 126}
 127
 128static inline void root_tag_clear_all(struct radix_tree_root *root)
 129{
 130	root->xa_flags &= (__force gfp_t)((1 << ROOT_TAG_SHIFT) - 1);
 131}
 132
 133static inline int root_tag_get(const struct radix_tree_root *root, unsigned tag)
 134{
 135	return (__force int)root->xa_flags & (1 << (tag + ROOT_TAG_SHIFT));
 136}
 137
 138static inline unsigned root_tags_get(const struct radix_tree_root *root)
 139{
 140	return (__force unsigned)root->xa_flags >> ROOT_TAG_SHIFT;
 141}
 142
 143static inline bool is_idr(const struct radix_tree_root *root)
 144{
 145	return !!(root->xa_flags & ROOT_IS_IDR);
 146}
 147
 148/*
 149 * Returns 1 if any slot in the node has this tag set.
 150 * Otherwise returns 0.
 151 */
 152static inline int any_tag_set(const struct radix_tree_node *node,
 153							unsigned int tag)
 154{
 155	unsigned idx;
 156	for (idx = 0; idx < RADIX_TREE_TAG_LONGS; idx++) {
 157		if (node->tags[tag][idx])
 158			return 1;
 159	}
 160	return 0;
 161}
 162
 163static inline void all_tag_set(struct radix_tree_node *node, unsigned int tag)
 164{
 165	bitmap_fill(node->tags[tag], RADIX_TREE_MAP_SIZE);
 166}
 167
 168/**
 169 * radix_tree_find_next_bit - find the next set bit in a memory region
 170 *
 171 * @node: where to begin the search
 172 * @tag: the tag index
 173 * @offset: the bitnumber to start searching at
 174 *
 175 * Unrollable variant of find_next_bit() for constant size arrays.
 176 * Tail bits starting from size to roundup(size, BITS_PER_LONG) must be zero.
 177 * Returns next bit offset, or size if nothing found.
 178 */
 179static __always_inline unsigned long
 180radix_tree_find_next_bit(struct radix_tree_node *node, unsigned int tag,
 181			 unsigned long offset)
 182{
 183	const unsigned long *addr = node->tags[tag];
 
 184
 185	if (offset < RADIX_TREE_MAP_SIZE) {
 186		unsigned long tmp;
 187
 188		addr += offset / BITS_PER_LONG;
 189		tmp = *addr >> (offset % BITS_PER_LONG);
 190		if (tmp)
 191			return __ffs(tmp) + offset;
 192		offset = (offset + BITS_PER_LONG) & ~(BITS_PER_LONG - 1);
 193		while (offset < RADIX_TREE_MAP_SIZE) {
 194			tmp = *++addr;
 195			if (tmp)
 196				return __ffs(tmp) + offset;
 197			offset += BITS_PER_LONG;
 198		}
 199	}
 200	return RADIX_TREE_MAP_SIZE;
 201}
 202
 203static unsigned int iter_offset(const struct radix_tree_iter *iter)
 204{
 205	return iter->index & RADIX_TREE_MAP_MASK;
 206}
 207
 208/*
 209 * The maximum index which can be stored in a radix tree
 210 */
 211static inline unsigned long shift_maxindex(unsigned int shift)
 212{
 213	return (RADIX_TREE_MAP_SIZE << shift) - 1;
 214}
 215
 216static inline unsigned long node_maxindex(const struct radix_tree_node *node)
 217{
 218	return shift_maxindex(node->shift);
 219}
 220
 221static unsigned long next_index(unsigned long index,
 222				const struct radix_tree_node *node,
 223				unsigned long offset)
 224{
 225	return (index & ~node_maxindex(node)) + (offset << node->shift);
 226}
 227
 228/*
 229 * This assumes that the caller has performed appropriate preallocation, and
 230 * that the caller has pinned this thread of control to the current CPU.
 231 */
 232static struct radix_tree_node *
 233radix_tree_node_alloc(gfp_t gfp_mask, struct radix_tree_node *parent,
 234			struct radix_tree_root *root,
 235			unsigned int shift, unsigned int offset,
 236			unsigned int count, unsigned int nr_values)
 237{
 238	struct radix_tree_node *ret = NULL;
 
 239
 240	/*
 241	 * Preload code isn't irq safe and it doesn't make sense to use
 242	 * preloading during an interrupt anyway as all the allocations have
 243	 * to be atomic. So just do normal allocation when in interrupt.
 244	 */
 245	if (!gfpflags_allow_blocking(gfp_mask) && !in_interrupt()) {
 246		struct radix_tree_preload *rtp;
 247
 248		/*
 249		 * Even if the caller has preloaded, try to allocate from the
 250		 * cache first for the new node to get accounted to the memory
 251		 * cgroup.
 252		 */
 253		ret = kmem_cache_alloc(radix_tree_node_cachep,
 254				       gfp_mask | __GFP_NOWARN);
 255		if (ret)
 256			goto out;
 257
 258		/*
 259		 * Provided the caller has preloaded here, we will always
 260		 * succeed in getting a node here (and never reach
 261		 * kmem_cache_alloc)
 262		 */
 263		rtp = this_cpu_ptr(&radix_tree_preloads);
 264		if (rtp->nr) {
 265			ret = rtp->nodes;
 266			rtp->nodes = ret->parent;
 267			rtp->nr--;
 268		}
 269		/*
 270		 * Update the allocation stack trace as this is more useful
 271		 * for debugging.
 272		 */
 273		kmemleak_update_trace(ret);
 274		goto out;
 275	}
 276	ret = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
 277out:
 278	BUG_ON(radix_tree_is_internal_node(ret));
 279	if (ret) {
 280		ret->shift = shift;
 281		ret->offset = offset;
 282		ret->count = count;
 283		ret->nr_values = nr_values;
 284		ret->parent = parent;
 285		ret->array = root;
 286	}
 
 
 
 
 287	return ret;
 288}
 289
 290void radix_tree_node_rcu_free(struct rcu_head *head)
 291{
 292	struct radix_tree_node *node =
 293			container_of(head, struct radix_tree_node, rcu_head);
 
 294
 295	/*
 296	 * Must only free zeroed nodes into the slab.  We can be left with
 297	 * non-NULL entries by radix_tree_free_nodes, so clear the entries
 298	 * and tags here.
 299	 */
 300	memset(node->slots, 0, sizeof(node->slots));
 301	memset(node->tags, 0, sizeof(node->tags));
 302	INIT_LIST_HEAD(&node->private_list);
 
 
 303
 304	kmem_cache_free(radix_tree_node_cachep, node);
 305}
 306
 307static inline void
 308radix_tree_node_free(struct radix_tree_node *node)
 309{
 310	call_rcu(&node->rcu_head, radix_tree_node_rcu_free);
 311}
 312
 313/*
 314 * Load up this CPU's radix_tree_node buffer with sufficient objects to
 315 * ensure that the addition of a single element in the tree cannot fail.  On
 316 * success, return zero, with preemption disabled.  On error, return -ENOMEM
 317 * with preemption not disabled.
 318 *
 319 * To make use of this facility, the radix tree must be initialised without
 320 * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE().
 321 */
 322static __must_check int __radix_tree_preload(gfp_t gfp_mask, unsigned nr)
 323{
 324	struct radix_tree_preload *rtp;
 325	struct radix_tree_node *node;
 326	int ret = -ENOMEM;
 327
 328	/*
 329	 * Nodes preloaded by one cgroup can be used by another cgroup, so
 330	 * they should never be accounted to any particular memory cgroup.
 331	 */
 332	gfp_mask &= ~__GFP_ACCOUNT;
 333
 334	local_lock(&radix_tree_preloads.lock);
 335	rtp = this_cpu_ptr(&radix_tree_preloads);
 336	while (rtp->nr < nr) {
 337		local_unlock(&radix_tree_preloads.lock);
 338		node = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
 339		if (node == NULL)
 340			goto out;
 341		local_lock(&radix_tree_preloads.lock);
 342		rtp = this_cpu_ptr(&radix_tree_preloads);
 343		if (rtp->nr < nr) {
 344			node->parent = rtp->nodes;
 345			rtp->nodes = node;
 346			rtp->nr++;
 347		} else {
 348			kmem_cache_free(radix_tree_node_cachep, node);
 349		}
 350	}
 351	ret = 0;
 352out:
 353	return ret;
 354}
 355
 356/*
 357 * Load up this CPU's radix_tree_node buffer with sufficient objects to
 358 * ensure that the addition of a single element in the tree cannot fail.  On
 359 * success, return zero, with preemption disabled.  On error, return -ENOMEM
 360 * with preemption not disabled.
 361 *
 362 * To make use of this facility, the radix tree must be initialised without
 363 * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE().
 364 */
 365int radix_tree_preload(gfp_t gfp_mask)
 366{
 367	/* Warn on non-sensical use... */
 368	WARN_ON_ONCE(!gfpflags_allow_blocking(gfp_mask));
 369	return __radix_tree_preload(gfp_mask, RADIX_TREE_PRELOAD_SIZE);
 370}
 371EXPORT_SYMBOL(radix_tree_preload);
 372
 373/*
 374 * The same as above function, except we don't guarantee preloading happens.
 375 * We do it, if we decide it helps. On success, return zero with preemption
 376 * disabled. On error, return -ENOMEM with preemption not disabled.
 377 */
 378int radix_tree_maybe_preload(gfp_t gfp_mask)
 379{
 380	if (gfpflags_allow_blocking(gfp_mask))
 381		return __radix_tree_preload(gfp_mask, RADIX_TREE_PRELOAD_SIZE);
 382	/* Preloading doesn't help anything with this gfp mask, skip it */
 383	local_lock(&radix_tree_preloads.lock);
 384	return 0;
 385}
 386EXPORT_SYMBOL(radix_tree_maybe_preload);
 387
 388static unsigned radix_tree_load_root(const struct radix_tree_root *root,
 389		struct radix_tree_node **nodep, unsigned long *maxindex)
 
 
 
 390{
 391	struct radix_tree_node *node = rcu_dereference_raw(root->xa_head);
 392
 393	*nodep = node;
 394
 395	if (likely(radix_tree_is_internal_node(node))) {
 396		node = entry_to_node(node);
 397		*maxindex = node_maxindex(node);
 398		return node->shift + RADIX_TREE_MAP_SHIFT;
 399	}
 400
 401	*maxindex = 0;
 402	return 0;
 403}
 404
 405/*
 406 *	Extend a radix tree so it can store key @index.
 407 */
 408static int radix_tree_extend(struct radix_tree_root *root, gfp_t gfp,
 409				unsigned long index, unsigned int shift)
 410{
 411	void *entry;
 412	unsigned int maxshift;
 
 413	int tag;
 414
 415	/* Figure out what the shift should be.  */
 416	maxshift = shift;
 417	while (index > shift_maxindex(maxshift))
 418		maxshift += RADIX_TREE_MAP_SHIFT;
 419
 420	entry = rcu_dereference_raw(root->xa_head);
 421	if (!entry && (!is_idr(root) || root_tag_get(root, IDR_FREE)))
 422		goto out;
 
 423
 424	do {
 425		struct radix_tree_node *node = radix_tree_node_alloc(gfp, NULL,
 426							root, shift, 0, 1, 0);
 427		if (!node)
 428			return -ENOMEM;
 429
 430		if (is_idr(root)) {
 431			all_tag_set(node, IDR_FREE);
 432			if (!root_tag_get(root, IDR_FREE)) {
 433				tag_clear(node, IDR_FREE, 0);
 434				root_tag_set(root, IDR_FREE);
 435			}
 436		} else {
 437			/* Propagate the aggregated tag info to the new child */
 438			for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
 439				if (root_tag_get(root, tag))
 440					tag_set(node, tag, 0);
 441			}
 442		}
 443
 444		BUG_ON(shift > BITS_PER_LONG);
 445		if (radix_tree_is_internal_node(entry)) {
 446			entry_to_node(entry)->parent = node;
 447		} else if (xa_is_value(entry)) {
 448			/* Moving a value entry root->xa_head to a node */
 449			node->nr_values = 1;
 
 
 
 
 450		}
 451		/*
 452		 * entry was already in the radix tree, so we do not need
 453		 * rcu_assign_pointer here
 454		 */
 455		node->slots[0] = (void __rcu *)entry;
 456		entry = node_to_entry(node);
 457		rcu_assign_pointer(root->xa_head, entry);
 458		shift += RADIX_TREE_MAP_SHIFT;
 459	} while (shift <= maxshift);
 460out:
 461	return maxshift + RADIX_TREE_MAP_SHIFT;
 462}
 463
 464/**
 465 *	radix_tree_shrink    -    shrink radix tree to minimum height
 466 *	@root:		radix tree root
 467 */
 468static inline bool radix_tree_shrink(struct radix_tree_root *root)
 469{
 470	bool shrunk = false;
 471
 472	for (;;) {
 473		struct radix_tree_node *node = rcu_dereference_raw(root->xa_head);
 474		struct radix_tree_node *child;
 475
 476		if (!radix_tree_is_internal_node(node))
 477			break;
 478		node = entry_to_node(node);
 479
 480		/*
 481		 * The candidate node has more than one child, or its child
 482		 * is not at the leftmost slot, we cannot shrink.
 483		 */
 484		if (node->count != 1)
 485			break;
 486		child = rcu_dereference_raw(node->slots[0]);
 487		if (!child)
 488			break;
 489
 490		/*
 491		 * For an IDR, we must not shrink entry 0 into the root in
 492		 * case somebody calls idr_replace() with a pointer that
 493		 * appears to be an internal entry
 494		 */
 495		if (!node->shift && is_idr(root))
 496			break;
 497
 498		if (radix_tree_is_internal_node(child))
 499			entry_to_node(child)->parent = NULL;
 500
 501		/*
 502		 * We don't need rcu_assign_pointer(), since we are simply
 503		 * moving the node from one part of the tree to another: if it
 504		 * was safe to dereference the old pointer to it
 505		 * (node->slots[0]), it will be safe to dereference the new
 506		 * one (root->xa_head) as far as dependent read barriers go.
 507		 */
 508		root->xa_head = (void __rcu *)child;
 509		if (is_idr(root) && !tag_get(node, IDR_FREE, 0))
 510			root_tag_clear(root, IDR_FREE);
 511
 512		/*
 513		 * We have a dilemma here. The node's slot[0] must not be
 514		 * NULLed in case there are concurrent lookups expecting to
 515		 * find the item. However if this was a bottom-level node,
 516		 * then it may be subject to the slot pointer being visible
 517		 * to callers dereferencing it. If item corresponding to
 518		 * slot[0] is subsequently deleted, these callers would expect
 519		 * their slot to become empty sooner or later.
 520		 *
 521		 * For example, lockless pagecache will look up a slot, deref
 522		 * the page pointer, and if the page has 0 refcount it means it
 523		 * was concurrently deleted from pagecache so try the deref
 524		 * again. Fortunately there is already a requirement for logic
 525		 * to retry the entire slot lookup -- the indirect pointer
 526		 * problem (replacing direct root node with an indirect pointer
 527		 * also results in a stale slot). So tag the slot as indirect
 528		 * to force callers to retry.
 529		 */
 530		node->count = 0;
 531		if (!radix_tree_is_internal_node(child)) {
 532			node->slots[0] = (void __rcu *)RADIX_TREE_RETRY;
 533		}
 534
 535		WARN_ON_ONCE(!list_empty(&node->private_list));
 536		radix_tree_node_free(node);
 537		shrunk = true;
 538	}
 539
 540	return shrunk;
 541}
 542
 543static bool delete_node(struct radix_tree_root *root,
 544			struct radix_tree_node *node)
 545{
 546	bool deleted = false;
 547
 548	do {
 549		struct radix_tree_node *parent;
 550
 551		if (node->count) {
 552			if (node_to_entry(node) ==
 553					rcu_dereference_raw(root->xa_head))
 554				deleted |= radix_tree_shrink(root);
 555			return deleted;
 556		}
 557
 558		parent = node->parent;
 559		if (parent) {
 560			parent->slots[node->offset] = NULL;
 561			parent->count--;
 562		} else {
 563			/*
 564			 * Shouldn't the tags already have all been cleared
 565			 * by the caller?
 566			 */
 567			if (!is_idr(root))
 568				root_tag_clear_all(root);
 569			root->xa_head = NULL;
 570		}
 571
 572		WARN_ON_ONCE(!list_empty(&node->private_list));
 573		radix_tree_node_free(node);
 574		deleted = true;
 575
 576		node = parent;
 577	} while (node);
 578
 579	return deleted;
 580}
 581
 582/**
 583 *	__radix_tree_create	-	create a slot in a radix tree
 584 *	@root:		radix tree root
 585 *	@index:		index key
 586 *	@nodep:		returns node
 587 *	@slotp:		returns slot
 588 *
 589 *	Create, if necessary, and return the node and slot for an item
 590 *	at position @index in the radix tree @root.
 591 *
 592 *	Until there is more than one item in the tree, no nodes are
 593 *	allocated and @root->xa_head is used as a direct slot instead of
 594 *	pointing to a node, in which case *@nodep will be NULL.
 595 *
 596 *	Returns -ENOMEM, or 0 for success.
 597 */
 598static int __radix_tree_create(struct radix_tree_root *root,
 599		unsigned long index, struct radix_tree_node **nodep,
 600		void __rcu ***slotp)
 601{
 602	struct radix_tree_node *node = NULL, *child;
 603	void __rcu **slot = (void __rcu **)&root->xa_head;
 604	unsigned long maxindex;
 605	unsigned int shift, offset = 0;
 606	unsigned long max = index;
 607	gfp_t gfp = root_gfp_mask(root);
 608
 609	shift = radix_tree_load_root(root, &child, &maxindex);
 610
 611	/* Make sure the tree is high enough.  */
 612	if (max > maxindex) {
 613		int error = radix_tree_extend(root, gfp, max, shift);
 614		if (error < 0)
 615			return error;
 616		shift = error;
 617		child = rcu_dereference_raw(root->xa_head);
 618	}
 619
 620	while (shift > 0) {
 621		shift -= RADIX_TREE_MAP_SHIFT;
 622		if (child == NULL) {
 
 
 
 
 
 623			/* Have to add a child node.  */
 624			child = radix_tree_node_alloc(gfp, node, root, shift,
 625							offset, 0, 0);
 626			if (!child)
 627				return -ENOMEM;
 628			rcu_assign_pointer(*slot, node_to_entry(child));
 629			if (node)
 
 
 630				node->count++;
 631		} else if (!radix_tree_is_internal_node(child))
 632			break;
 
 
 633
 634		/* Go a level down */
 635		node = entry_to_node(child);
 636		offset = radix_tree_descend(node, &child, index);
 637		slot = &node->slots[offset];
 
 
 638	}
 639
 640	if (nodep)
 641		*nodep = node;
 642	if (slotp)
 643		*slotp = slot;
 644	return 0;
 645}
 646
 647/*
 648 * Free any nodes below this node.  The tree is presumed to not need
 649 * shrinking, and any user data in the tree is presumed to not need a
 650 * destructor called on it.  If we need to add a destructor, we can
 651 * add that functionality later.  Note that we may not clear tags or
 652 * slots from the tree as an RCU walker may still have a pointer into
 653 * this subtree.  We could replace the entries with RADIX_TREE_RETRY,
 654 * but we'll still have to clear those in rcu_free.
 655 */
 656static void radix_tree_free_nodes(struct radix_tree_node *node)
 657{
 658	unsigned offset = 0;
 659	struct radix_tree_node *child = entry_to_node(node);
 660
 661	for (;;) {
 662		void *entry = rcu_dereference_raw(child->slots[offset]);
 663		if (xa_is_node(entry) && child->shift) {
 664			child = entry_to_node(entry);
 665			offset = 0;
 666			continue;
 667		}
 668		offset++;
 669		while (offset == RADIX_TREE_MAP_SIZE) {
 670			struct radix_tree_node *old = child;
 671			offset = child->offset + 1;
 672			child = child->parent;
 673			WARN_ON_ONCE(!list_empty(&old->private_list));
 674			radix_tree_node_free(old);
 675			if (old == entry_to_node(node))
 676				return;
 677		}
 678	}
 679}
 680
 681static inline int insert_entries(struct radix_tree_node *node,
 682		void __rcu **slot, void *item)
 683{
 684	if (*slot)
 685		return -EEXIST;
 686	rcu_assign_pointer(*slot, item);
 687	if (node) {
 688		node->count++;
 689		if (xa_is_value(item))
 690			node->nr_values++;
 691	}
 692	return 1;
 693}
 694
 695/**
 696 *	radix_tree_insert    -    insert into a radix tree
 697 *	@root:		radix tree root
 698 *	@index:		index key
 699 *	@item:		item to insert
 700 *
 701 *	Insert an item into the radix tree at position @index.
 702 */
 703int radix_tree_insert(struct radix_tree_root *root, unsigned long index,
 704			void *item)
 705{
 706	struct radix_tree_node *node;
 707	void __rcu **slot;
 708	int error;
 709
 710	BUG_ON(radix_tree_is_internal_node(item));
 711
 712	error = __radix_tree_create(root, index, &node, &slot);
 713	if (error)
 714		return error;
 715
 716	error = insert_entries(node, slot, item);
 717	if (error < 0)
 718		return error;
 719
 720	if (node) {
 721		unsigned offset = get_slot_offset(node, slot);
 722		BUG_ON(tag_get(node, 0, offset));
 723		BUG_ON(tag_get(node, 1, offset));
 724		BUG_ON(tag_get(node, 2, offset));
 725	} else {
 726		BUG_ON(root_tags_get(root));
 
 727	}
 728
 729	return 0;
 730}
 731EXPORT_SYMBOL(radix_tree_insert);
 732
 733/**
 734 *	__radix_tree_lookup	-	lookup an item in a radix tree
 735 *	@root:		radix tree root
 736 *	@index:		index key
 737 *	@nodep:		returns node
 738 *	@slotp:		returns slot
 739 *
 740 *	Lookup and return the item at position @index in the radix
 741 *	tree @root.
 742 *
 743 *	Until there is more than one item in the tree, no nodes are
 744 *	allocated and @root->xa_head is used as a direct slot instead of
 745 *	pointing to a node, in which case *@nodep will be NULL.
 746 */
 747void *__radix_tree_lookup(const struct radix_tree_root *root,
 748			  unsigned long index, struct radix_tree_node **nodep,
 749			  void __rcu ***slotp)
 750{
 751	struct radix_tree_node *node, *parent;
 752	unsigned long maxindex;
 753	void __rcu **slot;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 754
 755 restart:
 756	parent = NULL;
 757	slot = (void __rcu **)&root->xa_head;
 758	radix_tree_load_root(root, &node, &maxindex);
 759	if (index > maxindex)
 760		return NULL;
 761
 762	while (radix_tree_is_internal_node(node)) {
 763		unsigned offset;
 764
 765		parent = entry_to_node(node);
 766		offset = radix_tree_descend(parent, &node, index);
 767		slot = parent->slots + offset;
 768		if (node == RADIX_TREE_RETRY)
 769			goto restart;
 770		if (parent->shift == 0)
 771			break;
 772	}
 
 
 773
 774	if (nodep)
 775		*nodep = parent;
 776	if (slotp)
 777		*slotp = slot;
 778	return node;
 779}
 780
 781/**
 782 *	radix_tree_lookup_slot    -    lookup a slot in a radix tree
 783 *	@root:		radix tree root
 784 *	@index:		index key
 785 *
 786 *	Returns:  the slot corresponding to the position @index in the
 787 *	radix tree @root. This is useful for update-if-exists operations.
 788 *
 789 *	This function can be called under rcu_read_lock iff the slot is not
 790 *	modified by radix_tree_replace_slot, otherwise it must be called
 791 *	exclusive from other writers. Any dereference of the slot must be done
 792 *	using radix_tree_deref_slot.
 793 */
 794void __rcu **radix_tree_lookup_slot(const struct radix_tree_root *root,
 795				unsigned long index)
 796{
 797	void __rcu **slot;
 798
 799	if (!__radix_tree_lookup(root, index, NULL, &slot))
 800		return NULL;
 801	return slot;
 802}
 803EXPORT_SYMBOL(radix_tree_lookup_slot);
 804
 805/**
 806 *	radix_tree_lookup    -    perform lookup operation on a radix tree
 807 *	@root:		radix tree root
 808 *	@index:		index key
 809 *
 810 *	Lookup the item at the position @index in the radix tree @root.
 811 *
 812 *	This function can be called under rcu_read_lock, however the caller
 813 *	must manage lifetimes of leaf nodes (eg. RCU may also be used to free
 814 *	them safely). No RCU barriers are required to access or modify the
 815 *	returned item, however.
 816 */
 817void *radix_tree_lookup(const struct radix_tree_root *root, unsigned long index)
 818{
 819	return __radix_tree_lookup(root, index, NULL, NULL);
 820}
 821EXPORT_SYMBOL(radix_tree_lookup);
 822
 823static void replace_slot(void __rcu **slot, void *item,
 824		struct radix_tree_node *node, int count, int values)
 825{
 826	if (node && (count || values)) {
 827		node->count += count;
 828		node->nr_values += values;
 829	}
 830
 831	rcu_assign_pointer(*slot, item);
 832}
 833
 834static bool node_tag_get(const struct radix_tree_root *root,
 835				const struct radix_tree_node *node,
 836				unsigned int tag, unsigned int offset)
 837{
 838	if (node)
 839		return tag_get(node, tag, offset);
 840	return root_tag_get(root, tag);
 841}
 842
 843/*
 844 * IDR users want to be able to store NULL in the tree, so if the slot isn't
 845 * free, don't adjust the count, even if it's transitioning between NULL and
 846 * non-NULL.  For the IDA, we mark slots as being IDR_FREE while they still
 847 * have empty bits, but it only stores NULL in slots when they're being
 848 * deleted.
 849 */
 850static int calculate_count(struct radix_tree_root *root,
 851				struct radix_tree_node *node, void __rcu **slot,
 852				void *item, void *old)
 853{
 854	if (is_idr(root)) {
 855		unsigned offset = get_slot_offset(node, slot);
 856		bool free = node_tag_get(root, node, IDR_FREE, offset);
 857		if (!free)
 858			return 0;
 859		if (!old)
 860			return 1;
 861	}
 862	return !!item - !!old;
 863}
 864
 865/**
 866 * __radix_tree_replace		- replace item in a slot
 867 * @root:		radix tree root
 868 * @node:		pointer to tree node
 869 * @slot:		pointer to slot in @node
 870 * @item:		new item to store in the slot.
 871 *
 872 * For use with __radix_tree_lookup().  Caller must hold tree write locked
 873 * across slot lookup and replacement.
 874 */
 875void __radix_tree_replace(struct radix_tree_root *root,
 876			  struct radix_tree_node *node,
 877			  void __rcu **slot, void *item)
 878{
 879	void *old = rcu_dereference_raw(*slot);
 880	int values = !!xa_is_value(item) - !!xa_is_value(old);
 881	int count = calculate_count(root, node, slot, item, old);
 882
 883	/*
 884	 * This function supports replacing value entries and
 885	 * deleting entries, but that needs accounting against the
 886	 * node unless the slot is root->xa_head.
 887	 */
 888	WARN_ON_ONCE(!node && (slot != (void __rcu **)&root->xa_head) &&
 889			(count || values));
 890	replace_slot(slot, item, node, count, values);
 891
 892	if (!node)
 893		return;
 894
 895	delete_node(root, node);
 896}
 897
 898/**
 899 * radix_tree_replace_slot	- replace item in a slot
 900 * @root:	radix tree root
 901 * @slot:	pointer to slot
 902 * @item:	new item to store in the slot.
 903 *
 904 * For use with radix_tree_lookup_slot() and
 905 * radix_tree_gang_lookup_tag_slot().  Caller must hold tree write locked
 906 * across slot lookup and replacement.
 907 *
 908 * NOTE: This cannot be used to switch between non-entries (empty slots),
 909 * regular entries, and value entries, as that requires accounting
 910 * inside the radix tree node. When switching from one type of entry or
 911 * deleting, use __radix_tree_lookup() and __radix_tree_replace() or
 912 * radix_tree_iter_replace().
 913 */
 914void radix_tree_replace_slot(struct radix_tree_root *root,
 915			     void __rcu **slot, void *item)
 916{
 917	__radix_tree_replace(root, NULL, slot, item);
 918}
 919EXPORT_SYMBOL(radix_tree_replace_slot);
 920
 921/**
 922 * radix_tree_iter_replace - replace item in a slot
 923 * @root:	radix tree root
 924 * @iter:	iterator state
 925 * @slot:	pointer to slot
 926 * @item:	new item to store in the slot.
 927 *
 928 * For use with radix_tree_for_each_slot().
 929 * Caller must hold tree write locked.
 930 */
 931void radix_tree_iter_replace(struct radix_tree_root *root,
 932				const struct radix_tree_iter *iter,
 933				void __rcu **slot, void *item)
 934{
 935	__radix_tree_replace(root, iter->node, slot, item);
 936}
 937
 938static void node_tag_set(struct radix_tree_root *root,
 939				struct radix_tree_node *node,
 940				unsigned int tag, unsigned int offset)
 941{
 942	while (node) {
 943		if (tag_get(node, tag, offset))
 944			return;
 945		tag_set(node, tag, offset);
 946		offset = node->offset;
 947		node = node->parent;
 948	}
 949
 950	if (!root_tag_get(root, tag))
 951		root_tag_set(root, tag);
 952}
 953
 954/**
 955 *	radix_tree_tag_set - set a tag on a radix tree node
 956 *	@root:		radix tree root
 957 *	@index:		index key
 958 *	@tag:		tag index
 959 *
 960 *	Set the search tag (which must be < RADIX_TREE_MAX_TAGS)
 961 *	corresponding to @index in the radix tree.  From
 962 *	the root all the way down to the leaf node.
 963 *
 964 *	Returns the address of the tagged item.  Setting a tag on a not-present
 965 *	item is a bug.
 966 */
 967void *radix_tree_tag_set(struct radix_tree_root *root,
 968			unsigned long index, unsigned int tag)
 969{
 970	struct radix_tree_node *node, *parent;
 971	unsigned long maxindex;
 972
 973	radix_tree_load_root(root, &node, &maxindex);
 974	BUG_ON(index > maxindex);
 975
 976	while (radix_tree_is_internal_node(node)) {
 977		unsigned offset;
 978
 979		parent = entry_to_node(node);
 980		offset = radix_tree_descend(parent, &node, index);
 981		BUG_ON(!node);
 982
 983		if (!tag_get(parent, tag, offset))
 984			tag_set(parent, tag, offset);
 
 
 
 
 985	}
 986
 987	/* set the root's tag bit */
 988	if (!root_tag_get(root, tag))
 989		root_tag_set(root, tag);
 990
 991	return node;
 992}
 993EXPORT_SYMBOL(radix_tree_tag_set);
 994
 995static void node_tag_clear(struct radix_tree_root *root,
 996				struct radix_tree_node *node,
 997				unsigned int tag, unsigned int offset)
 998{
 999	while (node) {
1000		if (!tag_get(node, tag, offset))
1001			return;
1002		tag_clear(node, tag, offset);
1003		if (any_tag_set(node, tag))
1004			return;
1005
1006		offset = node->offset;
1007		node = node->parent;
1008	}
1009
1010	/* clear the root's tag bit */
1011	if (root_tag_get(root, tag))
1012		root_tag_clear(root, tag);
1013}
1014
1015/**
1016 *	radix_tree_tag_clear - clear a tag on a radix tree node
1017 *	@root:		radix tree root
1018 *	@index:		index key
1019 *	@tag:		tag index
1020 *
1021 *	Clear the search tag (which must be < RADIX_TREE_MAX_TAGS)
1022 *	corresponding to @index in the radix tree.  If this causes
1023 *	the leaf node to have no tags set then clear the tag in the
1024 *	next-to-leaf node, etc.
1025 *
1026 *	Returns the address of the tagged item on success, else NULL.  ie:
1027 *	has the same return value and semantics as radix_tree_lookup().
1028 */
1029void *radix_tree_tag_clear(struct radix_tree_root *root,
1030			unsigned long index, unsigned int tag)
1031{
1032	struct radix_tree_node *node, *parent;
1033	unsigned long maxindex;
1034	int offset = 0;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1035
1036	radix_tree_load_root(root, &node, &maxindex);
1037	if (index > maxindex)
1038		return NULL;
1039
1040	parent = NULL;
 
 
 
 
 
1041
1042	while (radix_tree_is_internal_node(node)) {
1043		parent = entry_to_node(node);
1044		offset = radix_tree_descend(parent, &node, index);
1045	}
1046
1047	if (node)
1048		node_tag_clear(root, parent, tag, offset);
 
1049
1050	return node;
 
1051}
1052EXPORT_SYMBOL(radix_tree_tag_clear);
1053
1054/**
1055  * radix_tree_iter_tag_clear - clear a tag on the current iterator entry
1056  * @root: radix tree root
1057  * @iter: iterator state
1058  * @tag: tag to clear
1059  */
1060void radix_tree_iter_tag_clear(struct radix_tree_root *root,
1061			const struct radix_tree_iter *iter, unsigned int tag)
1062{
1063	node_tag_clear(root, iter->node, tag, iter_offset(iter));
1064}
1065
1066/**
1067 * radix_tree_tag_get - get a tag on a radix tree node
1068 * @root:		radix tree root
1069 * @index:		index key
1070 * @tag:		tag index (< RADIX_TREE_MAX_TAGS)
1071 *
1072 * Return values:
1073 *
1074 *  0: tag not present or not set
1075 *  1: tag set
1076 *
1077 * Note that the return value of this function may not be relied on, even if
1078 * the RCU lock is held, unless tag modification and node deletion are excluded
1079 * from concurrency.
1080 */
1081int radix_tree_tag_get(const struct radix_tree_root *root,
1082			unsigned long index, unsigned int tag)
1083{
1084	struct radix_tree_node *node, *parent;
1085	unsigned long maxindex;
1086
 
1087	if (!root_tag_get(root, tag))
1088		return 0;
1089
1090	radix_tree_load_root(root, &node, &maxindex);
1091	if (index > maxindex)
1092		return 0;
1093
1094	while (radix_tree_is_internal_node(node)) {
1095		unsigned offset;
 
1096
1097		parent = entry_to_node(node);
1098		offset = radix_tree_descend(parent, &node, index);
 
1099
1100		if (!tag_get(parent, tag, offset))
1101			return 0;
1102		if (node == RADIX_TREE_RETRY)
1103			break;
1104	}
1105
1106	return 1;
1107}
1108EXPORT_SYMBOL(radix_tree_tag_get);
1109
1110/* Construct iter->tags bit-mask from node->tags[tag] array */
1111static void set_iter_tags(struct radix_tree_iter *iter,
1112				struct radix_tree_node *node, unsigned offset,
1113				unsigned tag)
1114{
1115	unsigned tag_long = offset / BITS_PER_LONG;
1116	unsigned tag_bit  = offset % BITS_PER_LONG;
1117
1118	if (!node) {
1119		iter->tags = 1;
1120		return;
1121	}
1122
1123	iter->tags = node->tags[tag][tag_long] >> tag_bit;
1124
1125	/* This never happens if RADIX_TREE_TAG_LONGS == 1 */
1126	if (tag_long < RADIX_TREE_TAG_LONGS - 1) {
1127		/* Pick tags from next element */
1128		if (tag_bit)
1129			iter->tags |= node->tags[tag][tag_long + 1] <<
1130						(BITS_PER_LONG - tag_bit);
1131		/* Clip chunk size, here only BITS_PER_LONG tags */
1132		iter->next_index = __radix_tree_iter_add(iter, BITS_PER_LONG);
1133	}
1134}
1135
1136void __rcu **radix_tree_iter_resume(void __rcu **slot,
1137					struct radix_tree_iter *iter)
1138{
1139	iter->index = __radix_tree_iter_add(iter, 1);
1140	iter->next_index = iter->index;
1141	iter->tags = 0;
1142	return NULL;
1143}
1144EXPORT_SYMBOL(radix_tree_iter_resume);
1145
1146/**
1147 * radix_tree_next_chunk - find next chunk of slots for iteration
1148 *
1149 * @root:	radix tree root
1150 * @iter:	iterator state
1151 * @flags:	RADIX_TREE_ITER_* flags and tag index
1152 * Returns:	pointer to chunk first slot, or NULL if iteration is over
1153 */
1154void __rcu **radix_tree_next_chunk(const struct radix_tree_root *root,
1155			     struct radix_tree_iter *iter, unsigned flags)
1156{
1157	unsigned tag = flags & RADIX_TREE_ITER_TAG_MASK;
1158	struct radix_tree_node *node, *child;
1159	unsigned long index, offset, maxindex;
1160
1161	if ((flags & RADIX_TREE_ITER_TAGGED) && !root_tag_get(root, tag))
1162		return NULL;
1163
1164	/*
1165	 * Catch next_index overflow after ~0UL. iter->index never overflows
1166	 * during iterating; it can be zero only at the beginning.
1167	 * And we cannot overflow iter->next_index in a single step,
1168	 * because RADIX_TREE_MAP_SHIFT < BITS_PER_LONG.
1169	 *
1170	 * This condition also used by radix_tree_next_slot() to stop
1171	 * contiguous iterating, and forbid switching to the next chunk.
1172	 */
1173	index = iter->next_index;
1174	if (!index && iter->index)
1175		return NULL;
1176
1177 restart:
1178	radix_tree_load_root(root, &child, &maxindex);
1179	if (index > maxindex)
1180		return NULL;
1181	if (!child)
 
 
 
 
 
1182		return NULL;
1183
1184	if (!radix_tree_is_internal_node(child)) {
1185		/* Single-slot tree */
1186		iter->index = index;
1187		iter->next_index = maxindex + 1;
1188		iter->tags = 1;
1189		iter->node = NULL;
1190		return (void __rcu **)&root->xa_head;
1191	}
1192
1193	do {
1194		node = entry_to_node(child);
1195		offset = radix_tree_descend(node, &child, index);
1196
 
 
1197		if ((flags & RADIX_TREE_ITER_TAGGED) ?
1198				!tag_get(node, tag, offset) : !child) {
 
1199			/* Hole detected */
1200			if (flags & RADIX_TREE_ITER_CONTIG)
1201				return NULL;
1202
1203			if (flags & RADIX_TREE_ITER_TAGGED)
1204				offset = radix_tree_find_next_bit(node, tag,
 
 
1205						offset + 1);
1206			else
1207				while (++offset	< RADIX_TREE_MAP_SIZE) {
1208					void *slot = rcu_dereference_raw(
1209							node->slots[offset]);
1210					if (slot)
1211						break;
1212				}
1213			index &= ~node_maxindex(node);
1214			index += offset << node->shift;
1215			/* Overflow after ~0UL */
1216			if (!index)
1217				return NULL;
1218			if (offset == RADIX_TREE_MAP_SIZE)
1219				goto restart;
1220			child = rcu_dereference_raw(node->slots[offset]);
1221		}
1222
1223		if (!child)
 
 
 
 
 
1224			goto restart;
1225		if (child == RADIX_TREE_RETRY)
1226			break;
1227	} while (node->shift && radix_tree_is_internal_node(child));
1228
1229	/* Update the iterator state */
1230	iter->index = (index &~ node_maxindex(node)) | offset;
1231	iter->next_index = (index | node_maxindex(node)) + 1;
1232	iter->node = node;
1233
1234	if (flags & RADIX_TREE_ITER_TAGGED)
1235		set_iter_tags(iter, node, offset, tag);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1236
1237	return node->slots + offset;
1238}
1239EXPORT_SYMBOL(radix_tree_next_chunk);
1240
1241/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1242 *	radix_tree_gang_lookup - perform multiple lookup on a radix tree
1243 *	@root:		radix tree root
1244 *	@results:	where the results of the lookup are placed
1245 *	@first_index:	start the lookup from this key
1246 *	@max_items:	place up to this many items at *results
1247 *
1248 *	Performs an index-ascending scan of the tree for present items.  Places
1249 *	them at *@results and returns the number of items which were placed at
1250 *	*@results.
1251 *
1252 *	The implementation is naive.
1253 *
1254 *	Like radix_tree_lookup, radix_tree_gang_lookup may be called under
1255 *	rcu_read_lock. In this case, rather than the returned results being
1256 *	an atomic snapshot of the tree at a single point in time, the
1257 *	semantics of an RCU protected gang lookup are as though multiple
1258 *	radix_tree_lookups have been issued in individual locks, and results
1259 *	stored in 'results'.
1260 */
1261unsigned int
1262radix_tree_gang_lookup(const struct radix_tree_root *root, void **results,
1263			unsigned long first_index, unsigned int max_items)
1264{
1265	struct radix_tree_iter iter;
1266	void __rcu **slot;
1267	unsigned int ret = 0;
1268
1269	if (unlikely(!max_items))
1270		return 0;
1271
1272	radix_tree_for_each_slot(slot, root, &iter, first_index) {
1273		results[ret] = rcu_dereference_raw(*slot);
1274		if (!results[ret])
1275			continue;
1276		if (radix_tree_is_internal_node(results[ret])) {
1277			slot = radix_tree_iter_retry(&iter);
1278			continue;
1279		}
1280		if (++ret == max_items)
1281			break;
1282	}
1283
1284	return ret;
1285}
1286EXPORT_SYMBOL(radix_tree_gang_lookup);
1287
1288/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1289 *	radix_tree_gang_lookup_tag - perform multiple lookup on a radix tree
1290 *	                             based on a tag
1291 *	@root:		radix tree root
1292 *	@results:	where the results of the lookup are placed
1293 *	@first_index:	start the lookup from this key
1294 *	@max_items:	place up to this many items at *results
1295 *	@tag:		the tag index (< RADIX_TREE_MAX_TAGS)
1296 *
1297 *	Performs an index-ascending scan of the tree for present items which
1298 *	have the tag indexed by @tag set.  Places the items at *@results and
1299 *	returns the number of items which were placed at *@results.
1300 */
1301unsigned int
1302radix_tree_gang_lookup_tag(const struct radix_tree_root *root, void **results,
1303		unsigned long first_index, unsigned int max_items,
1304		unsigned int tag)
1305{
1306	struct radix_tree_iter iter;
1307	void __rcu **slot;
1308	unsigned int ret = 0;
1309
1310	if (unlikely(!max_items))
1311		return 0;
1312
1313	radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) {
1314		results[ret] = rcu_dereference_raw(*slot);
1315		if (!results[ret])
1316			continue;
1317		if (radix_tree_is_internal_node(results[ret])) {
1318			slot = radix_tree_iter_retry(&iter);
1319			continue;
1320		}
1321		if (++ret == max_items)
1322			break;
1323	}
1324
1325	return ret;
1326}
1327EXPORT_SYMBOL(radix_tree_gang_lookup_tag);
1328
1329/**
1330 *	radix_tree_gang_lookup_tag_slot - perform multiple slot lookup on a
1331 *					  radix tree based on a tag
1332 *	@root:		radix tree root
1333 *	@results:	where the results of the lookup are placed
1334 *	@first_index:	start the lookup from this key
1335 *	@max_items:	place up to this many items at *results
1336 *	@tag:		the tag index (< RADIX_TREE_MAX_TAGS)
1337 *
1338 *	Performs an index-ascending scan of the tree for present items which
1339 *	have the tag indexed by @tag set.  Places the slots at *@results and
1340 *	returns the number of slots which were placed at *@results.
1341 */
1342unsigned int
1343radix_tree_gang_lookup_tag_slot(const struct radix_tree_root *root,
1344		void __rcu ***results, unsigned long first_index,
1345		unsigned int max_items, unsigned int tag)
1346{
1347	struct radix_tree_iter iter;
1348	void __rcu **slot;
1349	unsigned int ret = 0;
1350
1351	if (unlikely(!max_items))
1352		return 0;
1353
1354	radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) {
1355		results[ret] = slot;
1356		if (++ret == max_items)
1357			break;
1358	}
1359
1360	return ret;
1361}
1362EXPORT_SYMBOL(radix_tree_gang_lookup_tag_slot);
1363
1364static bool __radix_tree_delete(struct radix_tree_root *root,
1365				struct radix_tree_node *node, void __rcu **slot)
 
 
 
 
 
 
1366{
1367	void *old = rcu_dereference_raw(*slot);
1368	int values = xa_is_value(old) ? -1 : 0;
1369	unsigned offset = get_slot_offset(node, slot);
1370	int tag;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1371
1372	if (is_idr(root))
1373		node_tag_set(root, node, IDR_FREE, offset);
1374	else
1375		for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
1376			node_tag_clear(root, node, tag, offset);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1377
1378	replace_slot(slot, NULL, node, -1, values);
1379	return node && delete_node(root, node);
1380}
1381
1382/**
1383 * radix_tree_iter_delete - delete the entry at this iterator position
1384 * @root: radix tree root
1385 * @iter: iterator state
1386 * @slot: pointer to slot
 
 
 
 
1387 *
1388 * Delete the entry at the position currently pointed to by the iterator.
1389 * This may result in the current node being freed; if it is, the iterator
1390 * is advanced so that it will not reference the freed memory.  This
1391 * function may be called without any locking if there are no other threads
1392 * which can access this tree.
1393 */
1394void radix_tree_iter_delete(struct radix_tree_root *root,
1395				struct radix_tree_iter *iter, void __rcu **slot)
1396{
1397	if (__radix_tree_delete(root, iter->node, slot))
1398		iter->index = iter->next_index;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1399}
1400EXPORT_SYMBOL(radix_tree_iter_delete);
1401
1402/**
1403 * radix_tree_delete_item - delete an item from a radix tree
1404 * @root: radix tree root
1405 * @index: index key
1406 * @item: expected item
1407 *
1408 * Remove @item at @index from the radix tree rooted at @root.
1409 *
1410 * Return: the deleted entry, or %NULL if it was not present
1411 * or the entry at the given @index was not @item.
1412 */
1413void *radix_tree_delete_item(struct radix_tree_root *root,
1414			     unsigned long index, void *item)
1415{
1416	struct radix_tree_node *node = NULL;
1417	void __rcu **slot = NULL;
 
1418	void *entry;
 
1419
1420	entry = __radix_tree_lookup(root, index, &node, &slot);
1421	if (!slot)
1422		return NULL;
1423	if (!entry && (!is_idr(root) || node_tag_get(root, node, IDR_FREE,
1424						get_slot_offset(node, slot))))
1425		return NULL;
1426
1427	if (item && entry != item)
1428		return NULL;
1429
1430	__radix_tree_delete(root, node, slot);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1431
1432	return entry;
1433}
1434EXPORT_SYMBOL(radix_tree_delete_item);
1435
1436/**
1437 * radix_tree_delete - delete an entry from a radix tree
1438 * @root: radix tree root
1439 * @index: index key
1440 *
1441 * Remove the entry at @index from the radix tree rooted at @root.
1442 *
1443 * Return: The deleted entry, or %NULL if it was not present.
1444 */
1445void *radix_tree_delete(struct radix_tree_root *root, unsigned long index)
1446{
1447	return radix_tree_delete_item(root, index, NULL);
1448}
1449EXPORT_SYMBOL(radix_tree_delete);
1450
1451/**
1452 *	radix_tree_tagged - test whether any items in the tree are tagged
1453 *	@root:		radix tree root
1454 *	@tag:		tag to test
1455 */
1456int radix_tree_tagged(const struct radix_tree_root *root, unsigned int tag)
1457{
1458	return root_tag_get(root, tag);
1459}
1460EXPORT_SYMBOL(radix_tree_tagged);
1461
1462/**
1463 * idr_preload - preload for idr_alloc()
1464 * @gfp_mask: allocation mask to use for preloading
1465 *
1466 * Preallocate memory to use for the next call to idr_alloc().  This function
1467 * returns with preemption disabled.  It will be enabled by idr_preload_end().
1468 */
1469void idr_preload(gfp_t gfp_mask)
1470{
1471	if (__radix_tree_preload(gfp_mask, IDR_PRELOAD_SIZE))
1472		local_lock(&radix_tree_preloads.lock);
1473}
1474EXPORT_SYMBOL(idr_preload);
1475
1476void __rcu **idr_get_free(struct radix_tree_root *root,
1477			      struct radix_tree_iter *iter, gfp_t gfp,
1478			      unsigned long max)
1479{
1480	struct radix_tree_node *node = NULL, *child;
1481	void __rcu **slot = (void __rcu **)&root->xa_head;
1482	unsigned long maxindex, start = iter->next_index;
1483	unsigned int shift, offset = 0;
1484
1485 grow:
1486	shift = radix_tree_load_root(root, &child, &maxindex);
1487	if (!radix_tree_tagged(root, IDR_FREE))
1488		start = max(start, maxindex + 1);
1489	if (start > max)
1490		return ERR_PTR(-ENOSPC);
1491
1492	if (start > maxindex) {
1493		int error = radix_tree_extend(root, gfp, start, shift);
1494		if (error < 0)
1495			return ERR_PTR(error);
1496		shift = error;
1497		child = rcu_dereference_raw(root->xa_head);
1498	}
1499	if (start == 0 && shift == 0)
1500		shift = RADIX_TREE_MAP_SHIFT;
1501
1502	while (shift) {
1503		shift -= RADIX_TREE_MAP_SHIFT;
1504		if (child == NULL) {
1505			/* Have to add a child node.  */
1506			child = radix_tree_node_alloc(gfp, node, root, shift,
1507							offset, 0, 0);
1508			if (!child)
1509				return ERR_PTR(-ENOMEM);
1510			all_tag_set(child, IDR_FREE);
1511			rcu_assign_pointer(*slot, node_to_entry(child));
1512			if (node)
1513				node->count++;
1514		} else if (!radix_tree_is_internal_node(child))
1515			break;
1516
1517		node = entry_to_node(child);
1518		offset = radix_tree_descend(node, &child, start);
1519		if (!tag_get(node, IDR_FREE, offset)) {
1520			offset = radix_tree_find_next_bit(node, IDR_FREE,
1521							offset + 1);
1522			start = next_index(start, node, offset);
1523			if (start > max || start == 0)
1524				return ERR_PTR(-ENOSPC);
1525			while (offset == RADIX_TREE_MAP_SIZE) {
1526				offset = node->offset + 1;
1527				node = node->parent;
1528				if (!node)
1529					goto grow;
1530				shift = node->shift;
1531			}
1532			child = rcu_dereference_raw(node->slots[offset]);
1533		}
1534		slot = &node->slots[offset];
1535	}
1536
1537	iter->index = start;
1538	if (node)
1539		iter->next_index = 1 + min(max, (start | node_maxindex(node)));
1540	else
1541		iter->next_index = 1;
1542	iter->node = node;
1543	set_iter_tags(iter, node, offset, IDR_FREE);
1544
1545	return slot;
1546}
1547
1548/**
1549 * idr_destroy - release all internal memory from an IDR
1550 * @idr: idr handle
1551 *
1552 * After this function is called, the IDR is empty, and may be reused or
1553 * the data structure containing it may be freed.
1554 *
1555 * A typical clean-up sequence for objects stored in an idr tree will use
1556 * idr_for_each() to free all objects, if necessary, then idr_destroy() to
1557 * free the memory used to keep track of those objects.
1558 */
1559void idr_destroy(struct idr *idr)
1560{
1561	struct radix_tree_node *node = rcu_dereference_raw(idr->idr_rt.xa_head);
1562	if (radix_tree_is_internal_node(node))
1563		radix_tree_free_nodes(node);
1564	idr->idr_rt.xa_head = NULL;
1565	root_tag_set(&idr->idr_rt, IDR_FREE);
 
 
 
1566}
1567EXPORT_SYMBOL(idr_destroy);
1568
1569static void
1570radix_tree_node_ctor(void *arg)
1571{
1572	struct radix_tree_node *node = arg;
1573
1574	memset(node, 0, sizeof(*node));
1575	INIT_LIST_HEAD(&node->private_list);
1576}
1577
1578static int radix_tree_cpu_dead(unsigned int cpu)
 
 
1579{
1580	struct radix_tree_preload *rtp;
1581	struct radix_tree_node *node;
1582
1583	/* Free per-cpu pool of preloaded nodes */
1584	rtp = &per_cpu(radix_tree_preloads, cpu);
1585	while (rtp->nr) {
1586		node = rtp->nodes;
1587		rtp->nodes = node->parent;
1588		kmem_cache_free(radix_tree_node_cachep, node);
1589		rtp->nr--;
1590	}
1591	return 0;
 
 
1592}
1593
1594void __init radix_tree_init(void)
1595{
1596	int ret;
1597
1598	BUILD_BUG_ON(RADIX_TREE_MAX_TAGS + __GFP_BITS_SHIFT > 32);
1599	BUILD_BUG_ON(ROOT_IS_IDR & ~GFP_ZONEMASK);
1600	BUILD_BUG_ON(XA_CHUNK_SIZE > 255);
1601	radix_tree_node_cachep = kmem_cache_create("radix_tree_node",
1602			sizeof(struct radix_tree_node), 0,
1603			SLAB_PANIC | SLAB_RECLAIM_ACCOUNT,
1604			radix_tree_node_ctor);
1605	ret = cpuhp_setup_state_nocalls(CPUHP_RADIX_DEAD, "lib/radix:dead",
1606					NULL, radix_tree_cpu_dead);
1607	WARN_ON(ret < 0);
1608}