Linux Audio

Check our new training course

Loading...
v3.15
  1/*
  2 * Basic general purpose allocator for managing special purpose
  3 * memory, for example, memory that is not managed by the regular
  4 * kmalloc/kfree interface.  Uses for this includes on-device special
  5 * memory, uncached memory etc.
  6 *
  7 * It is safe to use the allocator in NMI handlers and other special
  8 * unblockable contexts that could otherwise deadlock on locks.  This
  9 * is implemented by using atomic operations and retries on any
 10 * conflicts.  The disadvantage is that there may be livelocks in
 11 * extreme cases.  For better scalability, one allocator can be used
 12 * for each CPU.
 13 *
 14 * The lockless operation only works if there is enough memory
 15 * available.  If new memory is added to the pool a lock has to be
 16 * still taken.  So any user relying on locklessness has to ensure
 17 * that sufficient memory is preallocated.
 18 *
 19 * The basic atomic operation of this allocator is cmpxchg on long.
 20 * On architectures that don't have NMI-safe cmpxchg implementation,
 21 * the allocator can NOT be used in NMI handler.  So code uses the
 22 * allocator in NMI handler should depend on
 23 * CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG.
 24 *
 25 * Copyright 2005 (C) Jes Sorensen <jes@trained-monkey.org>
 26 *
 27 * This source code is licensed under the GNU General Public License,
 28 * Version 2.  See the file COPYING for more details.
 29 */
 30
 31#include <linux/slab.h>
 32#include <linux/export.h>
 33#include <linux/bitmap.h>
 34#include <linux/rculist.h>
 35#include <linux/interrupt.h>
 36#include <linux/genalloc.h>
 37#include <linux/of_address.h>
 38#include <linux/of_device.h>
 39
 40static inline size_t chunk_size(const struct gen_pool_chunk *chunk)
 41{
 42	return chunk->end_addr - chunk->start_addr + 1;
 43}
 44
 45static int set_bits_ll(unsigned long *addr, unsigned long mask_to_set)
 46{
 47	unsigned long val, nval;
 48
 49	nval = *addr;
 50	do {
 51		val = nval;
 52		if (val & mask_to_set)
 53			return -EBUSY;
 54		cpu_relax();
 55	} while ((nval = cmpxchg(addr, val, val | mask_to_set)) != val);
 56
 57	return 0;
 58}
 59
 60static int clear_bits_ll(unsigned long *addr, unsigned long mask_to_clear)
 61{
 62	unsigned long val, nval;
 63
 64	nval = *addr;
 65	do {
 66		val = nval;
 67		if ((val & mask_to_clear) != mask_to_clear)
 68			return -EBUSY;
 69		cpu_relax();
 70	} while ((nval = cmpxchg(addr, val, val & ~mask_to_clear)) != val);
 71
 72	return 0;
 73}
 74
 75/*
 76 * bitmap_set_ll - set the specified number of bits at the specified position
 77 * @map: pointer to a bitmap
 78 * @start: a bit position in @map
 79 * @nr: number of bits to set
 80 *
 81 * Set @nr bits start from @start in @map lock-lessly. Several users
 82 * can set/clear the same bitmap simultaneously without lock. If two
 83 * users set the same bit, one user will return remain bits, otherwise
 84 * return 0.
 85 */
 86static int bitmap_set_ll(unsigned long *map, int start, int nr)
 87{
 88	unsigned long *p = map + BIT_WORD(start);
 89	const int size = start + nr;
 90	int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG);
 91	unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start);
 92
 93	while (nr - bits_to_set >= 0) {
 94		if (set_bits_ll(p, mask_to_set))
 95			return nr;
 96		nr -= bits_to_set;
 97		bits_to_set = BITS_PER_LONG;
 98		mask_to_set = ~0UL;
 99		p++;
100	}
101	if (nr) {
102		mask_to_set &= BITMAP_LAST_WORD_MASK(size);
103		if (set_bits_ll(p, mask_to_set))
104			return nr;
105	}
106
107	return 0;
108}
109
110/*
111 * bitmap_clear_ll - clear the specified number of bits at the specified position
112 * @map: pointer to a bitmap
113 * @start: a bit position in @map
114 * @nr: number of bits to set
115 *
116 * Clear @nr bits start from @start in @map lock-lessly. Several users
117 * can set/clear the same bitmap simultaneously without lock. If two
118 * users clear the same bit, one user will return remain bits,
119 * otherwise return 0.
120 */
121static int bitmap_clear_ll(unsigned long *map, int start, int nr)
122{
123	unsigned long *p = map + BIT_WORD(start);
124	const int size = start + nr;
125	int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG);
126	unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start);
127
128	while (nr - bits_to_clear >= 0) {
129		if (clear_bits_ll(p, mask_to_clear))
130			return nr;
131		nr -= bits_to_clear;
132		bits_to_clear = BITS_PER_LONG;
133		mask_to_clear = ~0UL;
134		p++;
135	}
136	if (nr) {
137		mask_to_clear &= BITMAP_LAST_WORD_MASK(size);
138		if (clear_bits_ll(p, mask_to_clear))
139			return nr;
140	}
141
142	return 0;
143}
144
145/**
146 * gen_pool_create - create a new special memory pool
147 * @min_alloc_order: log base 2 of number of bytes each bitmap bit represents
148 * @nid: node id of the node the pool structure should be allocated on, or -1
149 *
150 * Create a new special memory pool that can be used to manage special purpose
151 * memory not managed by the regular kmalloc/kfree interface.
152 */
153struct gen_pool *gen_pool_create(int min_alloc_order, int nid)
154{
155	struct gen_pool *pool;
156
157	pool = kmalloc_node(sizeof(struct gen_pool), GFP_KERNEL, nid);
158	if (pool != NULL) {
159		spin_lock_init(&pool->lock);
160		INIT_LIST_HEAD(&pool->chunks);
161		pool->min_alloc_order = min_alloc_order;
162		pool->algo = gen_pool_first_fit;
163		pool->data = NULL;
 
164	}
165	return pool;
166}
167EXPORT_SYMBOL(gen_pool_create);
168
169/**
170 * gen_pool_add_virt - add a new chunk of special memory to the pool
171 * @pool: pool to add new memory chunk to
172 * @virt: virtual starting address of memory chunk to add to pool
173 * @phys: physical starting address of memory chunk to add to pool
174 * @size: size in bytes of the memory chunk to add to pool
175 * @nid: node id of the node the chunk structure and bitmap should be
176 *       allocated on, or -1
177 *
178 * Add a new chunk of special memory to the specified pool.
179 *
180 * Returns 0 on success or a -ve errno on failure.
181 */
182int gen_pool_add_virt(struct gen_pool *pool, unsigned long virt, phys_addr_t phys,
183		 size_t size, int nid)
184{
185	struct gen_pool_chunk *chunk;
186	int nbits = size >> pool->min_alloc_order;
187	int nbytes = sizeof(struct gen_pool_chunk) +
188				BITS_TO_LONGS(nbits) * sizeof(long);
189
190	chunk = kzalloc_node(nbytes, GFP_KERNEL, nid);
191	if (unlikely(chunk == NULL))
192		return -ENOMEM;
193
194	chunk->phys_addr = phys;
195	chunk->start_addr = virt;
196	chunk->end_addr = virt + size - 1;
197	atomic_set(&chunk->avail, size);
198
199	spin_lock(&pool->lock);
200	list_add_rcu(&chunk->next_chunk, &pool->chunks);
201	spin_unlock(&pool->lock);
202
203	return 0;
204}
205EXPORT_SYMBOL(gen_pool_add_virt);
206
207/**
208 * gen_pool_virt_to_phys - return the physical address of memory
209 * @pool: pool to allocate from
210 * @addr: starting address of memory
211 *
212 * Returns the physical address on success, or -1 on error.
213 */
214phys_addr_t gen_pool_virt_to_phys(struct gen_pool *pool, unsigned long addr)
215{
216	struct gen_pool_chunk *chunk;
217	phys_addr_t paddr = -1;
218
219	rcu_read_lock();
220	list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk) {
221		if (addr >= chunk->start_addr && addr <= chunk->end_addr) {
222			paddr = chunk->phys_addr + (addr - chunk->start_addr);
223			break;
224		}
225	}
226	rcu_read_unlock();
227
228	return paddr;
229}
230EXPORT_SYMBOL(gen_pool_virt_to_phys);
231
232/**
233 * gen_pool_destroy - destroy a special memory pool
234 * @pool: pool to destroy
235 *
236 * Destroy the specified special memory pool. Verifies that there are no
237 * outstanding allocations.
238 */
239void gen_pool_destroy(struct gen_pool *pool)
240{
241	struct list_head *_chunk, *_next_chunk;
242	struct gen_pool_chunk *chunk;
243	int order = pool->min_alloc_order;
244	int bit, end_bit;
245
246	list_for_each_safe(_chunk, _next_chunk, &pool->chunks) {
247		chunk = list_entry(_chunk, struct gen_pool_chunk, next_chunk);
248		list_del(&chunk->next_chunk);
249
250		end_bit = chunk_size(chunk) >> order;
251		bit = find_next_bit(chunk->bits, end_bit, 0);
252		BUG_ON(bit < end_bit);
253
254		kfree(chunk);
255	}
 
256	kfree(pool);
257	return;
258}
259EXPORT_SYMBOL(gen_pool_destroy);
260
261/**
262 * gen_pool_alloc - allocate special memory from the pool
263 * @pool: pool to allocate from
264 * @size: number of bytes to allocate from the pool
265 *
266 * Allocate the requested number of bytes from the specified pool.
267 * Uses the pool allocation function (with first-fit algorithm by default).
268 * Can not be used in NMI handler on architectures without
269 * NMI-safe cmpxchg implementation.
270 */
271unsigned long gen_pool_alloc(struct gen_pool *pool, size_t size)
272{
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
273	struct gen_pool_chunk *chunk;
274	unsigned long addr = 0;
275	int order = pool->min_alloc_order;
276	int nbits, start_bit = 0, end_bit, remain;
277
278#ifndef CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG
279	BUG_ON(in_nmi());
280#endif
281
282	if (size == 0)
283		return 0;
284
285	nbits = (size + (1UL << order) - 1) >> order;
286	rcu_read_lock();
287	list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk) {
288		if (size > atomic_read(&chunk->avail))
289			continue;
290
 
291		end_bit = chunk_size(chunk) >> order;
292retry:
293		start_bit = pool->algo(chunk->bits, end_bit, start_bit, nbits,
294				pool->data);
295		if (start_bit >= end_bit)
296			continue;
297		remain = bitmap_set_ll(chunk->bits, start_bit, nbits);
298		if (remain) {
299			remain = bitmap_clear_ll(chunk->bits, start_bit,
300						 nbits - remain);
301			BUG_ON(remain);
302			goto retry;
303		}
304
305		addr = chunk->start_addr + ((unsigned long)start_bit << order);
306		size = nbits << order;
307		atomic_sub(size, &chunk->avail);
308		break;
309	}
310	rcu_read_unlock();
311	return addr;
312}
313EXPORT_SYMBOL(gen_pool_alloc);
314
315/**
316 * gen_pool_dma_alloc - allocate special memory from the pool for DMA usage
317 * @pool: pool to allocate from
318 * @size: number of bytes to allocate from the pool
319 * @dma: dma-view physical address return value.  Use NULL if unneeded.
320 *
321 * Allocate the requested number of bytes from the specified pool.
322 * Uses the pool allocation function (with first-fit algorithm by default).
323 * Can not be used in NMI handler on architectures without
324 * NMI-safe cmpxchg implementation.
325 */
326void *gen_pool_dma_alloc(struct gen_pool *pool, size_t size, dma_addr_t *dma)
327{
328	unsigned long vaddr;
329
330	if (!pool)
331		return NULL;
332
333	vaddr = gen_pool_alloc(pool, size);
334	if (!vaddr)
335		return NULL;
336
337	if (dma)
338		*dma = gen_pool_virt_to_phys(pool, vaddr);
339
340	return (void *)vaddr;
341}
342EXPORT_SYMBOL(gen_pool_dma_alloc);
343
344/**
345 * gen_pool_free - free allocated special memory back to the pool
346 * @pool: pool to free to
347 * @addr: starting address of memory to free back to pool
348 * @size: size in bytes of memory to free
349 *
350 * Free previously allocated special memory back to the specified
351 * pool.  Can not be used in NMI handler on architectures without
352 * NMI-safe cmpxchg implementation.
353 */
354void gen_pool_free(struct gen_pool *pool, unsigned long addr, size_t size)
355{
356	struct gen_pool_chunk *chunk;
357	int order = pool->min_alloc_order;
358	int start_bit, nbits, remain;
359
360#ifndef CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG
361	BUG_ON(in_nmi());
362#endif
363
364	nbits = (size + (1UL << order) - 1) >> order;
365	rcu_read_lock();
366	list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk) {
367		if (addr >= chunk->start_addr && addr <= chunk->end_addr) {
368			BUG_ON(addr + size - 1 > chunk->end_addr);
369			start_bit = (addr - chunk->start_addr) >> order;
370			remain = bitmap_clear_ll(chunk->bits, start_bit, nbits);
371			BUG_ON(remain);
372			size = nbits << order;
373			atomic_add(size, &chunk->avail);
374			rcu_read_unlock();
375			return;
376		}
377	}
378	rcu_read_unlock();
379	BUG();
380}
381EXPORT_SYMBOL(gen_pool_free);
382
383/**
384 * gen_pool_for_each_chunk - call func for every chunk of generic memory pool
385 * @pool:	the generic memory pool
386 * @func:	func to call
387 * @data:	additional data used by @func
388 *
389 * Call @func for every chunk of generic memory pool.  The @func is
390 * called with rcu_read_lock held.
391 */
392void gen_pool_for_each_chunk(struct gen_pool *pool,
393	void (*func)(struct gen_pool *pool, struct gen_pool_chunk *chunk, void *data),
394	void *data)
395{
396	struct gen_pool_chunk *chunk;
397
398	rcu_read_lock();
399	list_for_each_entry_rcu(chunk, &(pool)->chunks, next_chunk)
400		func(pool, chunk, data);
401	rcu_read_unlock();
402}
403EXPORT_SYMBOL(gen_pool_for_each_chunk);
404
405/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
406 * gen_pool_avail - get available free space of the pool
407 * @pool: pool to get available free space
408 *
409 * Return available free space of the specified pool.
410 */
411size_t gen_pool_avail(struct gen_pool *pool)
412{
413	struct gen_pool_chunk *chunk;
414	size_t avail = 0;
415
416	rcu_read_lock();
417	list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk)
418		avail += atomic_read(&chunk->avail);
419	rcu_read_unlock();
420	return avail;
421}
422EXPORT_SYMBOL_GPL(gen_pool_avail);
423
424/**
425 * gen_pool_size - get size in bytes of memory managed by the pool
426 * @pool: pool to get size
427 *
428 * Return size in bytes of memory managed by the pool.
429 */
430size_t gen_pool_size(struct gen_pool *pool)
431{
432	struct gen_pool_chunk *chunk;
433	size_t size = 0;
434
435	rcu_read_lock();
436	list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk)
437		size += chunk_size(chunk);
438	rcu_read_unlock();
439	return size;
440}
441EXPORT_SYMBOL_GPL(gen_pool_size);
442
443/**
444 * gen_pool_set_algo - set the allocation algorithm
445 * @pool: pool to change allocation algorithm
446 * @algo: custom algorithm function
447 * @data: additional data used by @algo
448 *
449 * Call @algo for each memory allocation in the pool.
450 * If @algo is NULL use gen_pool_first_fit as default
451 * memory allocation function.
452 */
453void gen_pool_set_algo(struct gen_pool *pool, genpool_algo_t algo, void *data)
454{
455	rcu_read_lock();
456
457	pool->algo = algo;
458	if (!pool->algo)
459		pool->algo = gen_pool_first_fit;
460
461	pool->data = data;
462
463	rcu_read_unlock();
464}
465EXPORT_SYMBOL(gen_pool_set_algo);
466
467/**
468 * gen_pool_first_fit - find the first available region
469 * of memory matching the size requirement (no alignment constraint)
470 * @map: The address to base the search on
471 * @size: The bitmap size in bits
472 * @start: The bitnumber to start searching at
473 * @nr: The number of zeroed bits we're looking for
474 * @data: additional data - unused
 
475 */
476unsigned long gen_pool_first_fit(unsigned long *map, unsigned long size,
477		unsigned long start, unsigned int nr, void *data)
 
478{
479	return bitmap_find_next_zero_area(map, size, start, nr, 0);
480}
481EXPORT_SYMBOL(gen_pool_first_fit);
482
483/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
484 * gen_pool_best_fit - find the best fitting region of memory
485 * macthing the size requirement (no alignment constraint)
486 * @map: The address to base the search on
487 * @size: The bitmap size in bits
488 * @start: The bitnumber to start searching at
489 * @nr: The number of zeroed bits we're looking for
490 * @data: additional data - unused
 
491 *
492 * Iterate over the bitmap to find the smallest free region
493 * which we can allocate the memory.
494 */
495unsigned long gen_pool_best_fit(unsigned long *map, unsigned long size,
496		unsigned long start, unsigned int nr, void *data)
 
497{
498	unsigned long start_bit = size;
499	unsigned long len = size + 1;
500	unsigned long index;
501
502	index = bitmap_find_next_zero_area(map, size, start, nr, 0);
503
504	while (index < size) {
505		int next_bit = find_next_bit(map, size, index + nr);
506		if ((next_bit - index) < len) {
507			len = next_bit - index;
508			start_bit = index;
509			if (len == nr)
510				return start_bit;
511		}
512		index = bitmap_find_next_zero_area(map, size,
513						   next_bit + 1, nr, 0);
514	}
515
516	return start_bit;
517}
518EXPORT_SYMBOL(gen_pool_best_fit);
519
520static void devm_gen_pool_release(struct device *dev, void *res)
521{
522	gen_pool_destroy(*(struct gen_pool **)res);
523}
524
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
525/**
526 * devm_gen_pool_create - managed gen_pool_create
527 * @dev: device that provides the gen_pool
528 * @min_alloc_order: log base 2 of number of bytes each bitmap bit represents
529 * @nid: node id of the node the pool structure should be allocated on, or -1
 
530 *
531 * Create a new special memory pool that can be used to manage special purpose
532 * memory not managed by the regular kmalloc/kfree interface. The pool will be
533 * automatically destroyed by the device management code.
534 */
535struct gen_pool *devm_gen_pool_create(struct device *dev, int min_alloc_order,
536		int nid)
537{
538	struct gen_pool **ptr, *pool;
 
 
 
 
 
 
 
 
 
 
 
539
540	ptr = devres_alloc(devm_gen_pool_release, sizeof(*ptr), GFP_KERNEL);
 
 
541
542	pool = gen_pool_create(min_alloc_order, nid);
543	if (pool) {
544		*ptr = pool;
545		devres_add(dev, ptr);
546	} else {
547		devres_free(ptr);
548	}
549
550	return pool;
551}
552
553/**
554 * dev_get_gen_pool - Obtain the gen_pool (if any) for a device
555 * @dev: device to retrieve the gen_pool from
556 *
557 * Returns the gen_pool for the device if one is present, or NULL.
558 */
559struct gen_pool *dev_get_gen_pool(struct device *dev)
560{
561	struct gen_pool **p = devres_find(dev, devm_gen_pool_release, NULL,
562					NULL);
563
564	if (!p)
565		return NULL;
566	return *p;
567}
568EXPORT_SYMBOL_GPL(dev_get_gen_pool);
569
570#ifdef CONFIG_OF
571/**
572 * of_get_named_gen_pool - find a pool by phandle property
573 * @np: device node
574 * @propname: property name containing phandle(s)
575 * @index: index into the phandle array
576 *
577 * Returns the pool that contains the chunk starting at the physical
578 * address of the device tree node pointed at by the phandle property,
579 * or NULL if not found.
580 */
581struct gen_pool *of_get_named_gen_pool(struct device_node *np,
582	const char *propname, int index)
583{
584	struct platform_device *pdev;
585	struct device_node *np_pool;
 
 
586
587	np_pool = of_parse_phandle(np, propname, index);
588	if (!np_pool)
589		return NULL;
 
590	pdev = of_find_device_by_node(np_pool);
591	if (!pdev)
592		return NULL;
593	return dev_get_gen_pool(&pdev->dev);
 
 
 
 
 
 
 
 
 
 
 
 
594}
595EXPORT_SYMBOL_GPL(of_get_named_gen_pool);
596#endif /* CONFIG_OF */
v4.10.11
  1/*
  2 * Basic general purpose allocator for managing special purpose
  3 * memory, for example, memory that is not managed by the regular
  4 * kmalloc/kfree interface.  Uses for this includes on-device special
  5 * memory, uncached memory etc.
  6 *
  7 * It is safe to use the allocator in NMI handlers and other special
  8 * unblockable contexts that could otherwise deadlock on locks.  This
  9 * is implemented by using atomic operations and retries on any
 10 * conflicts.  The disadvantage is that there may be livelocks in
 11 * extreme cases.  For better scalability, one allocator can be used
 12 * for each CPU.
 13 *
 14 * The lockless operation only works if there is enough memory
 15 * available.  If new memory is added to the pool a lock has to be
 16 * still taken.  So any user relying on locklessness has to ensure
 17 * that sufficient memory is preallocated.
 18 *
 19 * The basic atomic operation of this allocator is cmpxchg on long.
 20 * On architectures that don't have NMI-safe cmpxchg implementation,
 21 * the allocator can NOT be used in NMI handler.  So code uses the
 22 * allocator in NMI handler should depend on
 23 * CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG.
 24 *
 25 * Copyright 2005 (C) Jes Sorensen <jes@trained-monkey.org>
 26 *
 27 * This source code is licensed under the GNU General Public License,
 28 * Version 2.  See the file COPYING for more details.
 29 */
 30
 31#include <linux/slab.h>
 32#include <linux/export.h>
 33#include <linux/bitmap.h>
 34#include <linux/rculist.h>
 35#include <linux/interrupt.h>
 36#include <linux/genalloc.h>
 
 37#include <linux/of_device.h>
 38
 39static inline size_t chunk_size(const struct gen_pool_chunk *chunk)
 40{
 41	return chunk->end_addr - chunk->start_addr + 1;
 42}
 43
 44static int set_bits_ll(unsigned long *addr, unsigned long mask_to_set)
 45{
 46	unsigned long val, nval;
 47
 48	nval = *addr;
 49	do {
 50		val = nval;
 51		if (val & mask_to_set)
 52			return -EBUSY;
 53		cpu_relax();
 54	} while ((nval = cmpxchg(addr, val, val | mask_to_set)) != val);
 55
 56	return 0;
 57}
 58
 59static int clear_bits_ll(unsigned long *addr, unsigned long mask_to_clear)
 60{
 61	unsigned long val, nval;
 62
 63	nval = *addr;
 64	do {
 65		val = nval;
 66		if ((val & mask_to_clear) != mask_to_clear)
 67			return -EBUSY;
 68		cpu_relax();
 69	} while ((nval = cmpxchg(addr, val, val & ~mask_to_clear)) != val);
 70
 71	return 0;
 72}
 73
 74/*
 75 * bitmap_set_ll - set the specified number of bits at the specified position
 76 * @map: pointer to a bitmap
 77 * @start: a bit position in @map
 78 * @nr: number of bits to set
 79 *
 80 * Set @nr bits start from @start in @map lock-lessly. Several users
 81 * can set/clear the same bitmap simultaneously without lock. If two
 82 * users set the same bit, one user will return remain bits, otherwise
 83 * return 0.
 84 */
 85static int bitmap_set_ll(unsigned long *map, int start, int nr)
 86{
 87	unsigned long *p = map + BIT_WORD(start);
 88	const int size = start + nr;
 89	int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG);
 90	unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start);
 91
 92	while (nr - bits_to_set >= 0) {
 93		if (set_bits_ll(p, mask_to_set))
 94			return nr;
 95		nr -= bits_to_set;
 96		bits_to_set = BITS_PER_LONG;
 97		mask_to_set = ~0UL;
 98		p++;
 99	}
100	if (nr) {
101		mask_to_set &= BITMAP_LAST_WORD_MASK(size);
102		if (set_bits_ll(p, mask_to_set))
103			return nr;
104	}
105
106	return 0;
107}
108
109/*
110 * bitmap_clear_ll - clear the specified number of bits at the specified position
111 * @map: pointer to a bitmap
112 * @start: a bit position in @map
113 * @nr: number of bits to set
114 *
115 * Clear @nr bits start from @start in @map lock-lessly. Several users
116 * can set/clear the same bitmap simultaneously without lock. If two
117 * users clear the same bit, one user will return remain bits,
118 * otherwise return 0.
119 */
120static int bitmap_clear_ll(unsigned long *map, int start, int nr)
121{
122	unsigned long *p = map + BIT_WORD(start);
123	const int size = start + nr;
124	int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG);
125	unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start);
126
127	while (nr - bits_to_clear >= 0) {
128		if (clear_bits_ll(p, mask_to_clear))
129			return nr;
130		nr -= bits_to_clear;
131		bits_to_clear = BITS_PER_LONG;
132		mask_to_clear = ~0UL;
133		p++;
134	}
135	if (nr) {
136		mask_to_clear &= BITMAP_LAST_WORD_MASK(size);
137		if (clear_bits_ll(p, mask_to_clear))
138			return nr;
139	}
140
141	return 0;
142}
143
144/**
145 * gen_pool_create - create a new special memory pool
146 * @min_alloc_order: log base 2 of number of bytes each bitmap bit represents
147 * @nid: node id of the node the pool structure should be allocated on, or -1
148 *
149 * Create a new special memory pool that can be used to manage special purpose
150 * memory not managed by the regular kmalloc/kfree interface.
151 */
152struct gen_pool *gen_pool_create(int min_alloc_order, int nid)
153{
154	struct gen_pool *pool;
155
156	pool = kmalloc_node(sizeof(struct gen_pool), GFP_KERNEL, nid);
157	if (pool != NULL) {
158		spin_lock_init(&pool->lock);
159		INIT_LIST_HEAD(&pool->chunks);
160		pool->min_alloc_order = min_alloc_order;
161		pool->algo = gen_pool_first_fit;
162		pool->data = NULL;
163		pool->name = NULL;
164	}
165	return pool;
166}
167EXPORT_SYMBOL(gen_pool_create);
168
169/**
170 * gen_pool_add_virt - add a new chunk of special memory to the pool
171 * @pool: pool to add new memory chunk to
172 * @virt: virtual starting address of memory chunk to add to pool
173 * @phys: physical starting address of memory chunk to add to pool
174 * @size: size in bytes of the memory chunk to add to pool
175 * @nid: node id of the node the chunk structure and bitmap should be
176 *       allocated on, or -1
177 *
178 * Add a new chunk of special memory to the specified pool.
179 *
180 * Returns 0 on success or a -ve errno on failure.
181 */
182int gen_pool_add_virt(struct gen_pool *pool, unsigned long virt, phys_addr_t phys,
183		 size_t size, int nid)
184{
185	struct gen_pool_chunk *chunk;
186	int nbits = size >> pool->min_alloc_order;
187	int nbytes = sizeof(struct gen_pool_chunk) +
188				BITS_TO_LONGS(nbits) * sizeof(long);
189
190	chunk = kzalloc_node(nbytes, GFP_KERNEL, nid);
191	if (unlikely(chunk == NULL))
192		return -ENOMEM;
193
194	chunk->phys_addr = phys;
195	chunk->start_addr = virt;
196	chunk->end_addr = virt + size - 1;
197	atomic_set(&chunk->avail, size);
198
199	spin_lock(&pool->lock);
200	list_add_rcu(&chunk->next_chunk, &pool->chunks);
201	spin_unlock(&pool->lock);
202
203	return 0;
204}
205EXPORT_SYMBOL(gen_pool_add_virt);
206
207/**
208 * gen_pool_virt_to_phys - return the physical address of memory
209 * @pool: pool to allocate from
210 * @addr: starting address of memory
211 *
212 * Returns the physical address on success, or -1 on error.
213 */
214phys_addr_t gen_pool_virt_to_phys(struct gen_pool *pool, unsigned long addr)
215{
216	struct gen_pool_chunk *chunk;
217	phys_addr_t paddr = -1;
218
219	rcu_read_lock();
220	list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk) {
221		if (addr >= chunk->start_addr && addr <= chunk->end_addr) {
222			paddr = chunk->phys_addr + (addr - chunk->start_addr);
223			break;
224		}
225	}
226	rcu_read_unlock();
227
228	return paddr;
229}
230EXPORT_SYMBOL(gen_pool_virt_to_phys);
231
232/**
233 * gen_pool_destroy - destroy a special memory pool
234 * @pool: pool to destroy
235 *
236 * Destroy the specified special memory pool. Verifies that there are no
237 * outstanding allocations.
238 */
239void gen_pool_destroy(struct gen_pool *pool)
240{
241	struct list_head *_chunk, *_next_chunk;
242	struct gen_pool_chunk *chunk;
243	int order = pool->min_alloc_order;
244	int bit, end_bit;
245
246	list_for_each_safe(_chunk, _next_chunk, &pool->chunks) {
247		chunk = list_entry(_chunk, struct gen_pool_chunk, next_chunk);
248		list_del(&chunk->next_chunk);
249
250		end_bit = chunk_size(chunk) >> order;
251		bit = find_next_bit(chunk->bits, end_bit, 0);
252		BUG_ON(bit < end_bit);
253
254		kfree(chunk);
255	}
256	kfree_const(pool->name);
257	kfree(pool);
 
258}
259EXPORT_SYMBOL(gen_pool_destroy);
260
261/**
262 * gen_pool_alloc - allocate special memory from the pool
263 * @pool: pool to allocate from
264 * @size: number of bytes to allocate from the pool
265 *
266 * Allocate the requested number of bytes from the specified pool.
267 * Uses the pool allocation function (with first-fit algorithm by default).
268 * Can not be used in NMI handler on architectures without
269 * NMI-safe cmpxchg implementation.
270 */
271unsigned long gen_pool_alloc(struct gen_pool *pool, size_t size)
272{
273	return gen_pool_alloc_algo(pool, size, pool->algo, pool->data);
274}
275EXPORT_SYMBOL(gen_pool_alloc);
276
277/**
278 * gen_pool_alloc_algo - allocate special memory from the pool
279 * @pool: pool to allocate from
280 * @size: number of bytes to allocate from the pool
281 * @algo: algorithm passed from caller
282 * @data: data passed to algorithm
283 *
284 * Allocate the requested number of bytes from the specified pool.
285 * Uses the pool allocation function (with first-fit algorithm by default).
286 * Can not be used in NMI handler on architectures without
287 * NMI-safe cmpxchg implementation.
288 */
289unsigned long gen_pool_alloc_algo(struct gen_pool *pool, size_t size,
290		genpool_algo_t algo, void *data)
291{
292	struct gen_pool_chunk *chunk;
293	unsigned long addr = 0;
294	int order = pool->min_alloc_order;
295	int nbits, start_bit, end_bit, remain;
296
297#ifndef CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG
298	BUG_ON(in_nmi());
299#endif
300
301	if (size == 0)
302		return 0;
303
304	nbits = (size + (1UL << order) - 1) >> order;
305	rcu_read_lock();
306	list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk) {
307		if (size > atomic_read(&chunk->avail))
308			continue;
309
310		start_bit = 0;
311		end_bit = chunk_size(chunk) >> order;
312retry:
313		start_bit = algo(chunk->bits, end_bit, start_bit,
314				 nbits, data, pool);
315		if (start_bit >= end_bit)
316			continue;
317		remain = bitmap_set_ll(chunk->bits, start_bit, nbits);
318		if (remain) {
319			remain = bitmap_clear_ll(chunk->bits, start_bit,
320						 nbits - remain);
321			BUG_ON(remain);
322			goto retry;
323		}
324
325		addr = chunk->start_addr + ((unsigned long)start_bit << order);
326		size = nbits << order;
327		atomic_sub(size, &chunk->avail);
328		break;
329	}
330	rcu_read_unlock();
331	return addr;
332}
333EXPORT_SYMBOL(gen_pool_alloc_algo);
334
335/**
336 * gen_pool_dma_alloc - allocate special memory from the pool for DMA usage
337 * @pool: pool to allocate from
338 * @size: number of bytes to allocate from the pool
339 * @dma: dma-view physical address return value.  Use NULL if unneeded.
340 *
341 * Allocate the requested number of bytes from the specified pool.
342 * Uses the pool allocation function (with first-fit algorithm by default).
343 * Can not be used in NMI handler on architectures without
344 * NMI-safe cmpxchg implementation.
345 */
346void *gen_pool_dma_alloc(struct gen_pool *pool, size_t size, dma_addr_t *dma)
347{
348	unsigned long vaddr;
349
350	if (!pool)
351		return NULL;
352
353	vaddr = gen_pool_alloc(pool, size);
354	if (!vaddr)
355		return NULL;
356
357	if (dma)
358		*dma = gen_pool_virt_to_phys(pool, vaddr);
359
360	return (void *)vaddr;
361}
362EXPORT_SYMBOL(gen_pool_dma_alloc);
363
364/**
365 * gen_pool_free - free allocated special memory back to the pool
366 * @pool: pool to free to
367 * @addr: starting address of memory to free back to pool
368 * @size: size in bytes of memory to free
369 *
370 * Free previously allocated special memory back to the specified
371 * pool.  Can not be used in NMI handler on architectures without
372 * NMI-safe cmpxchg implementation.
373 */
374void gen_pool_free(struct gen_pool *pool, unsigned long addr, size_t size)
375{
376	struct gen_pool_chunk *chunk;
377	int order = pool->min_alloc_order;
378	int start_bit, nbits, remain;
379
380#ifndef CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG
381	BUG_ON(in_nmi());
382#endif
383
384	nbits = (size + (1UL << order) - 1) >> order;
385	rcu_read_lock();
386	list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk) {
387		if (addr >= chunk->start_addr && addr <= chunk->end_addr) {
388			BUG_ON(addr + size - 1 > chunk->end_addr);
389			start_bit = (addr - chunk->start_addr) >> order;
390			remain = bitmap_clear_ll(chunk->bits, start_bit, nbits);
391			BUG_ON(remain);
392			size = nbits << order;
393			atomic_add(size, &chunk->avail);
394			rcu_read_unlock();
395			return;
396		}
397	}
398	rcu_read_unlock();
399	BUG();
400}
401EXPORT_SYMBOL(gen_pool_free);
402
403/**
404 * gen_pool_for_each_chunk - call func for every chunk of generic memory pool
405 * @pool:	the generic memory pool
406 * @func:	func to call
407 * @data:	additional data used by @func
408 *
409 * Call @func for every chunk of generic memory pool.  The @func is
410 * called with rcu_read_lock held.
411 */
412void gen_pool_for_each_chunk(struct gen_pool *pool,
413	void (*func)(struct gen_pool *pool, struct gen_pool_chunk *chunk, void *data),
414	void *data)
415{
416	struct gen_pool_chunk *chunk;
417
418	rcu_read_lock();
419	list_for_each_entry_rcu(chunk, &(pool)->chunks, next_chunk)
420		func(pool, chunk, data);
421	rcu_read_unlock();
422}
423EXPORT_SYMBOL(gen_pool_for_each_chunk);
424
425/**
426 * addr_in_gen_pool - checks if an address falls within the range of a pool
427 * @pool:	the generic memory pool
428 * @start:	start address
429 * @size:	size of the region
430 *
431 * Check if the range of addresses falls within the specified pool. Returns
432 * true if the entire range is contained in the pool and false otherwise.
433 */
434bool addr_in_gen_pool(struct gen_pool *pool, unsigned long start,
435			size_t size)
436{
437	bool found = false;
438	unsigned long end = start + size - 1;
439	struct gen_pool_chunk *chunk;
440
441	rcu_read_lock();
442	list_for_each_entry_rcu(chunk, &(pool)->chunks, next_chunk) {
443		if (start >= chunk->start_addr && start <= chunk->end_addr) {
444			if (end <= chunk->end_addr) {
445				found = true;
446				break;
447			}
448		}
449	}
450	rcu_read_unlock();
451	return found;
452}
453
454/**
455 * gen_pool_avail - get available free space of the pool
456 * @pool: pool to get available free space
457 *
458 * Return available free space of the specified pool.
459 */
460size_t gen_pool_avail(struct gen_pool *pool)
461{
462	struct gen_pool_chunk *chunk;
463	size_t avail = 0;
464
465	rcu_read_lock();
466	list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk)
467		avail += atomic_read(&chunk->avail);
468	rcu_read_unlock();
469	return avail;
470}
471EXPORT_SYMBOL_GPL(gen_pool_avail);
472
473/**
474 * gen_pool_size - get size in bytes of memory managed by the pool
475 * @pool: pool to get size
476 *
477 * Return size in bytes of memory managed by the pool.
478 */
479size_t gen_pool_size(struct gen_pool *pool)
480{
481	struct gen_pool_chunk *chunk;
482	size_t size = 0;
483
484	rcu_read_lock();
485	list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk)
486		size += chunk_size(chunk);
487	rcu_read_unlock();
488	return size;
489}
490EXPORT_SYMBOL_GPL(gen_pool_size);
491
492/**
493 * gen_pool_set_algo - set the allocation algorithm
494 * @pool: pool to change allocation algorithm
495 * @algo: custom algorithm function
496 * @data: additional data used by @algo
497 *
498 * Call @algo for each memory allocation in the pool.
499 * If @algo is NULL use gen_pool_first_fit as default
500 * memory allocation function.
501 */
502void gen_pool_set_algo(struct gen_pool *pool, genpool_algo_t algo, void *data)
503{
504	rcu_read_lock();
505
506	pool->algo = algo;
507	if (!pool->algo)
508		pool->algo = gen_pool_first_fit;
509
510	pool->data = data;
511
512	rcu_read_unlock();
513}
514EXPORT_SYMBOL(gen_pool_set_algo);
515
516/**
517 * gen_pool_first_fit - find the first available region
518 * of memory matching the size requirement (no alignment constraint)
519 * @map: The address to base the search on
520 * @size: The bitmap size in bits
521 * @start: The bitnumber to start searching at
522 * @nr: The number of zeroed bits we're looking for
523 * @data: additional data - unused
524 * @pool: pool to find the fit region memory from
525 */
526unsigned long gen_pool_first_fit(unsigned long *map, unsigned long size,
527		unsigned long start, unsigned int nr, void *data,
528		struct gen_pool *pool)
529{
530	return bitmap_find_next_zero_area(map, size, start, nr, 0);
531}
532EXPORT_SYMBOL(gen_pool_first_fit);
533
534/**
535 * gen_pool_first_fit_align - find the first available region
536 * of memory matching the size requirement (alignment constraint)
537 * @map: The address to base the search on
538 * @size: The bitmap size in bits
539 * @start: The bitnumber to start searching at
540 * @nr: The number of zeroed bits we're looking for
541 * @data: data for alignment
542 * @pool: pool to get order from
543 */
544unsigned long gen_pool_first_fit_align(unsigned long *map, unsigned long size,
545		unsigned long start, unsigned int nr, void *data,
546		struct gen_pool *pool)
547{
548	struct genpool_data_align *alignment;
549	unsigned long align_mask;
550	int order;
551
552	alignment = data;
553	order = pool->min_alloc_order;
554	align_mask = ((alignment->align + (1UL << order) - 1) >> order) - 1;
555	return bitmap_find_next_zero_area(map, size, start, nr, align_mask);
556}
557EXPORT_SYMBOL(gen_pool_first_fit_align);
558
559/**
560 * gen_pool_fixed_alloc - reserve a specific region
561 * @map: The address to base the search on
562 * @size: The bitmap size in bits
563 * @start: The bitnumber to start searching at
564 * @nr: The number of zeroed bits we're looking for
565 * @data: data for alignment
566 * @pool: pool to get order from
567 */
568unsigned long gen_pool_fixed_alloc(unsigned long *map, unsigned long size,
569		unsigned long start, unsigned int nr, void *data,
570		struct gen_pool *pool)
571{
572	struct genpool_data_fixed *fixed_data;
573	int order;
574	unsigned long offset_bit;
575	unsigned long start_bit;
576
577	fixed_data = data;
578	order = pool->min_alloc_order;
579	offset_bit = fixed_data->offset >> order;
580	if (WARN_ON(fixed_data->offset & ((1UL << order) - 1)))
581		return size;
582
583	start_bit = bitmap_find_next_zero_area(map, size,
584			start + offset_bit, nr, 0);
585	if (start_bit != offset_bit)
586		start_bit = size;
587	return start_bit;
588}
589EXPORT_SYMBOL(gen_pool_fixed_alloc);
590
591/**
592 * gen_pool_first_fit_order_align - find the first available region
593 * of memory matching the size requirement. The region will be aligned
594 * to the order of the size specified.
595 * @map: The address to base the search on
596 * @size: The bitmap size in bits
597 * @start: The bitnumber to start searching at
598 * @nr: The number of zeroed bits we're looking for
599 * @data: additional data - unused
600 * @pool: pool to find the fit region memory from
601 */
602unsigned long gen_pool_first_fit_order_align(unsigned long *map,
603		unsigned long size, unsigned long start,
604		unsigned int nr, void *data, struct gen_pool *pool)
605{
606	unsigned long align_mask = roundup_pow_of_two(nr) - 1;
607
608	return bitmap_find_next_zero_area(map, size, start, nr, align_mask);
609}
610EXPORT_SYMBOL(gen_pool_first_fit_order_align);
611
612/**
613 * gen_pool_best_fit - find the best fitting region of memory
614 * macthing the size requirement (no alignment constraint)
615 * @map: The address to base the search on
616 * @size: The bitmap size in bits
617 * @start: The bitnumber to start searching at
618 * @nr: The number of zeroed bits we're looking for
619 * @data: additional data - unused
620 * @pool: pool to find the fit region memory from
621 *
622 * Iterate over the bitmap to find the smallest free region
623 * which we can allocate the memory.
624 */
625unsigned long gen_pool_best_fit(unsigned long *map, unsigned long size,
626		unsigned long start, unsigned int nr, void *data,
627		struct gen_pool *pool)
628{
629	unsigned long start_bit = size;
630	unsigned long len = size + 1;
631	unsigned long index;
632
633	index = bitmap_find_next_zero_area(map, size, start, nr, 0);
634
635	while (index < size) {
636		int next_bit = find_next_bit(map, size, index + nr);
637		if ((next_bit - index) < len) {
638			len = next_bit - index;
639			start_bit = index;
640			if (len == nr)
641				return start_bit;
642		}
643		index = bitmap_find_next_zero_area(map, size,
644						   next_bit + 1, nr, 0);
645	}
646
647	return start_bit;
648}
649EXPORT_SYMBOL(gen_pool_best_fit);
650
651static void devm_gen_pool_release(struct device *dev, void *res)
652{
653	gen_pool_destroy(*(struct gen_pool **)res);
654}
655
656static int devm_gen_pool_match(struct device *dev, void *res, void *data)
657{
658	struct gen_pool **p = res;
659
660	/* NULL data matches only a pool without an assigned name */
661	if (!data && !(*p)->name)
662		return 1;
663
664	if (!data || !(*p)->name)
665		return 0;
666
667	return !strcmp((*p)->name, data);
668}
669
670/**
671 * gen_pool_get - Obtain the gen_pool (if any) for a device
672 * @dev: device to retrieve the gen_pool from
673 * @name: name of a gen_pool or NULL, identifies a particular gen_pool on device
674 *
675 * Returns the gen_pool for the device if one is present, or NULL.
676 */
677struct gen_pool *gen_pool_get(struct device *dev, const char *name)
678{
679	struct gen_pool **p;
680
681	p = devres_find(dev, devm_gen_pool_release, devm_gen_pool_match,
682			(void *)name);
683	if (!p)
684		return NULL;
685	return *p;
686}
687EXPORT_SYMBOL_GPL(gen_pool_get);
688
689/**
690 * devm_gen_pool_create - managed gen_pool_create
691 * @dev: device that provides the gen_pool
692 * @min_alloc_order: log base 2 of number of bytes each bitmap bit represents
693 * @nid: node selector for allocated gen_pool, %NUMA_NO_NODE for all nodes
694 * @name: name of a gen_pool or NULL, identifies a particular gen_pool on device
695 *
696 * Create a new special memory pool that can be used to manage special purpose
697 * memory not managed by the regular kmalloc/kfree interface. The pool will be
698 * automatically destroyed by the device management code.
699 */
700struct gen_pool *devm_gen_pool_create(struct device *dev, int min_alloc_order,
701				      int nid, const char *name)
702{
703	struct gen_pool **ptr, *pool;
704	const char *pool_name = NULL;
705
706	/* Check that genpool to be created is uniquely addressed on device */
707	if (gen_pool_get(dev, name))
708		return ERR_PTR(-EINVAL);
709
710	if (name) {
711		pool_name = kstrdup_const(name, GFP_KERNEL);
712		if (!pool_name)
713			return ERR_PTR(-ENOMEM);
714	}
715
716	ptr = devres_alloc(devm_gen_pool_release, sizeof(*ptr), GFP_KERNEL);
717	if (!ptr)
718		goto free_pool_name;
719
720	pool = gen_pool_create(min_alloc_order, nid);
721	if (!pool)
722		goto free_devres;
723
724	*ptr = pool;
725	pool->name = pool_name;
726	devres_add(dev, ptr);
727
728	return pool;
 
729
730free_devres:
731	devres_free(ptr);
732free_pool_name:
733	kfree_const(pool_name);
 
 
 
 
 
 
734
735	return ERR_PTR(-ENOMEM);
 
 
736}
737EXPORT_SYMBOL(devm_gen_pool_create);
738
739#ifdef CONFIG_OF
740/**
741 * of_gen_pool_get - find a pool by phandle property
742 * @np: device node
743 * @propname: property name containing phandle(s)
744 * @index: index into the phandle array
745 *
746 * Returns the pool that contains the chunk starting at the physical
747 * address of the device tree node pointed at by the phandle property,
748 * or NULL if not found.
749 */
750struct gen_pool *of_gen_pool_get(struct device_node *np,
751	const char *propname, int index)
752{
753	struct platform_device *pdev;
754	struct device_node *np_pool, *parent;
755	const char *name = NULL;
756	struct gen_pool *pool = NULL;
757
758	np_pool = of_parse_phandle(np, propname, index);
759	if (!np_pool)
760		return NULL;
761
762	pdev = of_find_device_by_node(np_pool);
763	if (!pdev) {
764		/* Check if named gen_pool is created by parent node device */
765		parent = of_get_parent(np_pool);
766		pdev = of_find_device_by_node(parent);
767		of_node_put(parent);
768
769		of_property_read_string(np_pool, "label", &name);
770		if (!name)
771			name = np_pool->name;
772	}
773	if (pdev)
774		pool = gen_pool_get(&pdev->dev, name);
775	of_node_put(np_pool);
776
777	return pool;
778}
779EXPORT_SYMBOL_GPL(of_gen_pool_get);
780#endif /* CONFIG_OF */