Linux Audio

Check our new training course

Yocto / OpenEmbedded training

Mar 24-27, 2025, special US time zones
Register
Loading...
  1/*
  2 * Basic general purpose allocator for managing special purpose
  3 * memory, for example, memory that is not managed by the regular
  4 * kmalloc/kfree interface.  Uses for this includes on-device special
  5 * memory, uncached memory etc.
  6 *
  7 * It is safe to use the allocator in NMI handlers and other special
  8 * unblockable contexts that could otherwise deadlock on locks.  This
  9 * is implemented by using atomic operations and retries on any
 10 * conflicts.  The disadvantage is that there may be livelocks in
 11 * extreme cases.  For better scalability, one allocator can be used
 12 * for each CPU.
 13 *
 14 * The lockless operation only works if there is enough memory
 15 * available.  If new memory is added to the pool a lock has to be
 16 * still taken.  So any user relying on locklessness has to ensure
 17 * that sufficient memory is preallocated.
 18 *
 19 * The basic atomic operation of this allocator is cmpxchg on long.
 20 * On architectures that don't have NMI-safe cmpxchg implementation,
 21 * the allocator can NOT be used in NMI handler.  So code uses the
 22 * allocator in NMI handler should depend on
 23 * CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG.
 24 *
 25 * Copyright 2005 (C) Jes Sorensen <jes@trained-monkey.org>
 26 *
 27 * This source code is licensed under the GNU General Public License,
 28 * Version 2.  See the file COPYING for more details.
 29 */
 30
 31#include <linux/slab.h>
 32#include <linux/export.h>
 33#include <linux/bitmap.h>
 34#include <linux/rculist.h>
 35#include <linux/interrupt.h>
 36#include <linux/genalloc.h>
 37#include <linux/of_address.h>
 38#include <linux/of_device.h>
 39
 40static inline size_t chunk_size(const struct gen_pool_chunk *chunk)
 41{
 42	return chunk->end_addr - chunk->start_addr + 1;
 43}
 44
 45static int set_bits_ll(unsigned long *addr, unsigned long mask_to_set)
 46{
 47	unsigned long val, nval;
 48
 49	nval = *addr;
 50	do {
 51		val = nval;
 52		if (val & mask_to_set)
 53			return -EBUSY;
 54		cpu_relax();
 55	} while ((nval = cmpxchg(addr, val, val | mask_to_set)) != val);
 56
 57	return 0;
 58}
 59
 60static int clear_bits_ll(unsigned long *addr, unsigned long mask_to_clear)
 61{
 62	unsigned long val, nval;
 63
 64	nval = *addr;
 65	do {
 66		val = nval;
 67		if ((val & mask_to_clear) != mask_to_clear)
 68			return -EBUSY;
 69		cpu_relax();
 70	} while ((nval = cmpxchg(addr, val, val & ~mask_to_clear)) != val);
 71
 72	return 0;
 73}
 74
 75/*
 76 * bitmap_set_ll - set the specified number of bits at the specified position
 77 * @map: pointer to a bitmap
 78 * @start: a bit position in @map
 79 * @nr: number of bits to set
 80 *
 81 * Set @nr bits start from @start in @map lock-lessly. Several users
 82 * can set/clear the same bitmap simultaneously without lock. If two
 83 * users set the same bit, one user will return remain bits, otherwise
 84 * return 0.
 85 */
 86static int bitmap_set_ll(unsigned long *map, int start, int nr)
 87{
 88	unsigned long *p = map + BIT_WORD(start);
 89	const int size = start + nr;
 90	int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG);
 91	unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start);
 92
 93	while (nr - bits_to_set >= 0) {
 94		if (set_bits_ll(p, mask_to_set))
 95			return nr;
 96		nr -= bits_to_set;
 97		bits_to_set = BITS_PER_LONG;
 98		mask_to_set = ~0UL;
 99		p++;
100	}
101	if (nr) {
102		mask_to_set &= BITMAP_LAST_WORD_MASK(size);
103		if (set_bits_ll(p, mask_to_set))
104			return nr;
105	}
106
107	return 0;
108}
109
110/*
111 * bitmap_clear_ll - clear the specified number of bits at the specified position
112 * @map: pointer to a bitmap
113 * @start: a bit position in @map
114 * @nr: number of bits to set
115 *
116 * Clear @nr bits start from @start in @map lock-lessly. Several users
117 * can set/clear the same bitmap simultaneously without lock. If two
118 * users clear the same bit, one user will return remain bits,
119 * otherwise return 0.
120 */
121static int bitmap_clear_ll(unsigned long *map, int start, int nr)
122{
123	unsigned long *p = map + BIT_WORD(start);
124	const int size = start + nr;
125	int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG);
126	unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start);
127
128	while (nr - bits_to_clear >= 0) {
129		if (clear_bits_ll(p, mask_to_clear))
130			return nr;
131		nr -= bits_to_clear;
132		bits_to_clear = BITS_PER_LONG;
133		mask_to_clear = ~0UL;
134		p++;
135	}
136	if (nr) {
137		mask_to_clear &= BITMAP_LAST_WORD_MASK(size);
138		if (clear_bits_ll(p, mask_to_clear))
139			return nr;
140	}
141
142	return 0;
143}
144
145/**
146 * gen_pool_create - create a new special memory pool
147 * @min_alloc_order: log base 2 of number of bytes each bitmap bit represents
148 * @nid: node id of the node the pool structure should be allocated on, or -1
149 *
150 * Create a new special memory pool that can be used to manage special purpose
151 * memory not managed by the regular kmalloc/kfree interface.
152 */
153struct gen_pool *gen_pool_create(int min_alloc_order, int nid)
154{
155	struct gen_pool *pool;
156
157	pool = kmalloc_node(sizeof(struct gen_pool), GFP_KERNEL, nid);
158	if (pool != NULL) {
159		spin_lock_init(&pool->lock);
160		INIT_LIST_HEAD(&pool->chunks);
161		pool->min_alloc_order = min_alloc_order;
162		pool->algo = gen_pool_first_fit;
163		pool->data = NULL;
164	}
165	return pool;
166}
167EXPORT_SYMBOL(gen_pool_create);
168
169/**
170 * gen_pool_add_virt - add a new chunk of special memory to the pool
171 * @pool: pool to add new memory chunk to
172 * @virt: virtual starting address of memory chunk to add to pool
173 * @phys: physical starting address of memory chunk to add to pool
174 * @size: size in bytes of the memory chunk to add to pool
175 * @nid: node id of the node the chunk structure and bitmap should be
176 *       allocated on, or -1
177 *
178 * Add a new chunk of special memory to the specified pool.
179 *
180 * Returns 0 on success or a -ve errno on failure.
181 */
182int gen_pool_add_virt(struct gen_pool *pool, unsigned long virt, phys_addr_t phys,
183		 size_t size, int nid)
184{
185	struct gen_pool_chunk *chunk;
186	int nbits = size >> pool->min_alloc_order;
187	int nbytes = sizeof(struct gen_pool_chunk) +
188				BITS_TO_LONGS(nbits) * sizeof(long);
189
190	chunk = kzalloc_node(nbytes, GFP_KERNEL, nid);
191	if (unlikely(chunk == NULL))
192		return -ENOMEM;
193
194	chunk->phys_addr = phys;
195	chunk->start_addr = virt;
196	chunk->end_addr = virt + size - 1;
197	atomic_set(&chunk->avail, size);
198
199	spin_lock(&pool->lock);
200	list_add_rcu(&chunk->next_chunk, &pool->chunks);
201	spin_unlock(&pool->lock);
202
203	return 0;
204}
205EXPORT_SYMBOL(gen_pool_add_virt);
206
207/**
208 * gen_pool_virt_to_phys - return the physical address of memory
209 * @pool: pool to allocate from
210 * @addr: starting address of memory
211 *
212 * Returns the physical address on success, or -1 on error.
213 */
214phys_addr_t gen_pool_virt_to_phys(struct gen_pool *pool, unsigned long addr)
215{
216	struct gen_pool_chunk *chunk;
217	phys_addr_t paddr = -1;
218
219	rcu_read_lock();
220	list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk) {
221		if (addr >= chunk->start_addr && addr <= chunk->end_addr) {
222			paddr = chunk->phys_addr + (addr - chunk->start_addr);
223			break;
224		}
225	}
226	rcu_read_unlock();
227
228	return paddr;
229}
230EXPORT_SYMBOL(gen_pool_virt_to_phys);
231
232/**
233 * gen_pool_destroy - destroy a special memory pool
234 * @pool: pool to destroy
235 *
236 * Destroy the specified special memory pool. Verifies that there are no
237 * outstanding allocations.
238 */
239void gen_pool_destroy(struct gen_pool *pool)
240{
241	struct list_head *_chunk, *_next_chunk;
242	struct gen_pool_chunk *chunk;
243	int order = pool->min_alloc_order;
244	int bit, end_bit;
245
246	list_for_each_safe(_chunk, _next_chunk, &pool->chunks) {
247		chunk = list_entry(_chunk, struct gen_pool_chunk, next_chunk);
248		list_del(&chunk->next_chunk);
249
250		end_bit = chunk_size(chunk) >> order;
251		bit = find_next_bit(chunk->bits, end_bit, 0);
252		BUG_ON(bit < end_bit);
253
254		kfree(chunk);
255	}
256	kfree(pool);
257	return;
258}
259EXPORT_SYMBOL(gen_pool_destroy);
260
261/**
262 * gen_pool_alloc - allocate special memory from the pool
263 * @pool: pool to allocate from
264 * @size: number of bytes to allocate from the pool
265 *
266 * Allocate the requested number of bytes from the specified pool.
267 * Uses the pool allocation function (with first-fit algorithm by default).
268 * Can not be used in NMI handler on architectures without
269 * NMI-safe cmpxchg implementation.
270 */
271unsigned long gen_pool_alloc(struct gen_pool *pool, size_t size)
272{
273	struct gen_pool_chunk *chunk;
274	unsigned long addr = 0;
275	int order = pool->min_alloc_order;
276	int nbits, start_bit = 0, end_bit, remain;
277
278#ifndef CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG
279	BUG_ON(in_nmi());
280#endif
281
282	if (size == 0)
283		return 0;
284
285	nbits = (size + (1UL << order) - 1) >> order;
286	rcu_read_lock();
287	list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk) {
288		if (size > atomic_read(&chunk->avail))
289			continue;
290
291		end_bit = chunk_size(chunk) >> order;
292retry:
293		start_bit = pool->algo(chunk->bits, end_bit, start_bit, nbits,
294				pool->data);
295		if (start_bit >= end_bit)
296			continue;
297		remain = bitmap_set_ll(chunk->bits, start_bit, nbits);
298		if (remain) {
299			remain = bitmap_clear_ll(chunk->bits, start_bit,
300						 nbits - remain);
301			BUG_ON(remain);
302			goto retry;
303		}
304
305		addr = chunk->start_addr + ((unsigned long)start_bit << order);
306		size = nbits << order;
307		atomic_sub(size, &chunk->avail);
308		break;
309	}
310	rcu_read_unlock();
311	return addr;
312}
313EXPORT_SYMBOL(gen_pool_alloc);
314
315/**
316 * gen_pool_dma_alloc - allocate special memory from the pool for DMA usage
317 * @pool: pool to allocate from
318 * @size: number of bytes to allocate from the pool
319 * @dma: dma-view physical address return value.  Use NULL if unneeded.
320 *
321 * Allocate the requested number of bytes from the specified pool.
322 * Uses the pool allocation function (with first-fit algorithm by default).
323 * Can not be used in NMI handler on architectures without
324 * NMI-safe cmpxchg implementation.
325 */
326void *gen_pool_dma_alloc(struct gen_pool *pool, size_t size, dma_addr_t *dma)
327{
328	unsigned long vaddr;
329
330	if (!pool)
331		return NULL;
332
333	vaddr = gen_pool_alloc(pool, size);
334	if (!vaddr)
335		return NULL;
336
337	if (dma)
338		*dma = gen_pool_virt_to_phys(pool, vaddr);
339
340	return (void *)vaddr;
341}
342EXPORT_SYMBOL(gen_pool_dma_alloc);
343
344/**
345 * gen_pool_free - free allocated special memory back to the pool
346 * @pool: pool to free to
347 * @addr: starting address of memory to free back to pool
348 * @size: size in bytes of memory to free
349 *
350 * Free previously allocated special memory back to the specified
351 * pool.  Can not be used in NMI handler on architectures without
352 * NMI-safe cmpxchg implementation.
353 */
354void gen_pool_free(struct gen_pool *pool, unsigned long addr, size_t size)
355{
356	struct gen_pool_chunk *chunk;
357	int order = pool->min_alloc_order;
358	int start_bit, nbits, remain;
359
360#ifndef CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG
361	BUG_ON(in_nmi());
362#endif
363
364	nbits = (size + (1UL << order) - 1) >> order;
365	rcu_read_lock();
366	list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk) {
367		if (addr >= chunk->start_addr && addr <= chunk->end_addr) {
368			BUG_ON(addr + size - 1 > chunk->end_addr);
369			start_bit = (addr - chunk->start_addr) >> order;
370			remain = bitmap_clear_ll(chunk->bits, start_bit, nbits);
371			BUG_ON(remain);
372			size = nbits << order;
373			atomic_add(size, &chunk->avail);
374			rcu_read_unlock();
375			return;
376		}
377	}
378	rcu_read_unlock();
379	BUG();
380}
381EXPORT_SYMBOL(gen_pool_free);
382
383/**
384 * gen_pool_for_each_chunk - call func for every chunk of generic memory pool
385 * @pool:	the generic memory pool
386 * @func:	func to call
387 * @data:	additional data used by @func
388 *
389 * Call @func for every chunk of generic memory pool.  The @func is
390 * called with rcu_read_lock held.
391 */
392void gen_pool_for_each_chunk(struct gen_pool *pool,
393	void (*func)(struct gen_pool *pool, struct gen_pool_chunk *chunk, void *data),
394	void *data)
395{
396	struct gen_pool_chunk *chunk;
397
398	rcu_read_lock();
399	list_for_each_entry_rcu(chunk, &(pool)->chunks, next_chunk)
400		func(pool, chunk, data);
401	rcu_read_unlock();
402}
403EXPORT_SYMBOL(gen_pool_for_each_chunk);
404
405/**
406 * gen_pool_avail - get available free space of the pool
407 * @pool: pool to get available free space
408 *
409 * Return available free space of the specified pool.
410 */
411size_t gen_pool_avail(struct gen_pool *pool)
412{
413	struct gen_pool_chunk *chunk;
414	size_t avail = 0;
415
416	rcu_read_lock();
417	list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk)
418		avail += atomic_read(&chunk->avail);
419	rcu_read_unlock();
420	return avail;
421}
422EXPORT_SYMBOL_GPL(gen_pool_avail);
423
424/**
425 * gen_pool_size - get size in bytes of memory managed by the pool
426 * @pool: pool to get size
427 *
428 * Return size in bytes of memory managed by the pool.
429 */
430size_t gen_pool_size(struct gen_pool *pool)
431{
432	struct gen_pool_chunk *chunk;
433	size_t size = 0;
434
435	rcu_read_lock();
436	list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk)
437		size += chunk_size(chunk);
438	rcu_read_unlock();
439	return size;
440}
441EXPORT_SYMBOL_GPL(gen_pool_size);
442
443/**
444 * gen_pool_set_algo - set the allocation algorithm
445 * @pool: pool to change allocation algorithm
446 * @algo: custom algorithm function
447 * @data: additional data used by @algo
448 *
449 * Call @algo for each memory allocation in the pool.
450 * If @algo is NULL use gen_pool_first_fit as default
451 * memory allocation function.
452 */
453void gen_pool_set_algo(struct gen_pool *pool, genpool_algo_t algo, void *data)
454{
455	rcu_read_lock();
456
457	pool->algo = algo;
458	if (!pool->algo)
459		pool->algo = gen_pool_first_fit;
460
461	pool->data = data;
462
463	rcu_read_unlock();
464}
465EXPORT_SYMBOL(gen_pool_set_algo);
466
467/**
468 * gen_pool_first_fit - find the first available region
469 * of memory matching the size requirement (no alignment constraint)
470 * @map: The address to base the search on
471 * @size: The bitmap size in bits
472 * @start: The bitnumber to start searching at
473 * @nr: The number of zeroed bits we're looking for
474 * @data: additional data - unused
475 */
476unsigned long gen_pool_first_fit(unsigned long *map, unsigned long size,
477		unsigned long start, unsigned int nr, void *data)
478{
479	return bitmap_find_next_zero_area(map, size, start, nr, 0);
480}
481EXPORT_SYMBOL(gen_pool_first_fit);
482
483/**
484 * gen_pool_best_fit - find the best fitting region of memory
485 * macthing the size requirement (no alignment constraint)
486 * @map: The address to base the search on
487 * @size: The bitmap size in bits
488 * @start: The bitnumber to start searching at
489 * @nr: The number of zeroed bits we're looking for
490 * @data: additional data - unused
491 *
492 * Iterate over the bitmap to find the smallest free region
493 * which we can allocate the memory.
494 */
495unsigned long gen_pool_best_fit(unsigned long *map, unsigned long size,
496		unsigned long start, unsigned int nr, void *data)
497{
498	unsigned long start_bit = size;
499	unsigned long len = size + 1;
500	unsigned long index;
501
502	index = bitmap_find_next_zero_area(map, size, start, nr, 0);
503
504	while (index < size) {
505		int next_bit = find_next_bit(map, size, index + nr);
506		if ((next_bit - index) < len) {
507			len = next_bit - index;
508			start_bit = index;
509			if (len == nr)
510				return start_bit;
511		}
512		index = bitmap_find_next_zero_area(map, size,
513						   next_bit + 1, nr, 0);
514	}
515
516	return start_bit;
517}
518EXPORT_SYMBOL(gen_pool_best_fit);
519
520static void devm_gen_pool_release(struct device *dev, void *res)
521{
522	gen_pool_destroy(*(struct gen_pool **)res);
523}
524
525/**
526 * devm_gen_pool_create - managed gen_pool_create
527 * @dev: device that provides the gen_pool
528 * @min_alloc_order: log base 2 of number of bytes each bitmap bit represents
529 * @nid: node id of the node the pool structure should be allocated on, or -1
530 *
531 * Create a new special memory pool that can be used to manage special purpose
532 * memory not managed by the regular kmalloc/kfree interface. The pool will be
533 * automatically destroyed by the device management code.
534 */
535struct gen_pool *devm_gen_pool_create(struct device *dev, int min_alloc_order,
536		int nid)
537{
538	struct gen_pool **ptr, *pool;
539
540	ptr = devres_alloc(devm_gen_pool_release, sizeof(*ptr), GFP_KERNEL);
541
542	pool = gen_pool_create(min_alloc_order, nid);
543	if (pool) {
544		*ptr = pool;
545		devres_add(dev, ptr);
546	} else {
547		devres_free(ptr);
548	}
549
550	return pool;
551}
552
553/**
554 * dev_get_gen_pool - Obtain the gen_pool (if any) for a device
555 * @dev: device to retrieve the gen_pool from
556 *
557 * Returns the gen_pool for the device if one is present, or NULL.
558 */
559struct gen_pool *dev_get_gen_pool(struct device *dev)
560{
561	struct gen_pool **p = devres_find(dev, devm_gen_pool_release, NULL,
562					NULL);
563
564	if (!p)
565		return NULL;
566	return *p;
567}
568EXPORT_SYMBOL_GPL(dev_get_gen_pool);
569
570#ifdef CONFIG_OF
571/**
572 * of_get_named_gen_pool - find a pool by phandle property
573 * @np: device node
574 * @propname: property name containing phandle(s)
575 * @index: index into the phandle array
576 *
577 * Returns the pool that contains the chunk starting at the physical
578 * address of the device tree node pointed at by the phandle property,
579 * or NULL if not found.
580 */
581struct gen_pool *of_get_named_gen_pool(struct device_node *np,
582	const char *propname, int index)
583{
584	struct platform_device *pdev;
585	struct device_node *np_pool;
586
587	np_pool = of_parse_phandle(np, propname, index);
588	if (!np_pool)
589		return NULL;
590	pdev = of_find_device_by_node(np_pool);
591	if (!pdev)
592		return NULL;
593	return dev_get_gen_pool(&pdev->dev);
594}
595EXPORT_SYMBOL_GPL(of_get_named_gen_pool);
596#endif /* CONFIG_OF */
  1/*
  2 * Basic general purpose allocator for managing special purpose
  3 * memory, for example, memory that is not managed by the regular
  4 * kmalloc/kfree interface.  Uses for this includes on-device special
  5 * memory, uncached memory etc.
  6 *
  7 * It is safe to use the allocator in NMI handlers and other special
  8 * unblockable contexts that could otherwise deadlock on locks.  This
  9 * is implemented by using atomic operations and retries on any
 10 * conflicts.  The disadvantage is that there may be livelocks in
 11 * extreme cases.  For better scalability, one allocator can be used
 12 * for each CPU.
 13 *
 14 * The lockless operation only works if there is enough memory
 15 * available.  If new memory is added to the pool a lock has to be
 16 * still taken.  So any user relying on locklessness has to ensure
 17 * that sufficient memory is preallocated.
 18 *
 19 * The basic atomic operation of this allocator is cmpxchg on long.
 20 * On architectures that don't have NMI-safe cmpxchg implementation,
 21 * the allocator can NOT be used in NMI handler.  So code uses the
 22 * allocator in NMI handler should depend on
 23 * CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG.
 24 *
 25 * Copyright 2005 (C) Jes Sorensen <jes@trained-monkey.org>
 26 *
 27 * This source code is licensed under the GNU General Public License,
 28 * Version 2.  See the file COPYING for more details.
 29 */
 30
 31#include <linux/slab.h>
 32#include <linux/export.h>
 33#include <linux/bitmap.h>
 34#include <linux/rculist.h>
 35#include <linux/interrupt.h>
 36#include <linux/genalloc.h>
 
 
 
 
 
 
 
 37
 38static int set_bits_ll(unsigned long *addr, unsigned long mask_to_set)
 39{
 40	unsigned long val, nval;
 41
 42	nval = *addr;
 43	do {
 44		val = nval;
 45		if (val & mask_to_set)
 46			return -EBUSY;
 47		cpu_relax();
 48	} while ((nval = cmpxchg(addr, val, val | mask_to_set)) != val);
 49
 50	return 0;
 51}
 52
 53static int clear_bits_ll(unsigned long *addr, unsigned long mask_to_clear)
 54{
 55	unsigned long val, nval;
 56
 57	nval = *addr;
 58	do {
 59		val = nval;
 60		if ((val & mask_to_clear) != mask_to_clear)
 61			return -EBUSY;
 62		cpu_relax();
 63	} while ((nval = cmpxchg(addr, val, val & ~mask_to_clear)) != val);
 64
 65	return 0;
 66}
 67
 68/*
 69 * bitmap_set_ll - set the specified number of bits at the specified position
 70 * @map: pointer to a bitmap
 71 * @start: a bit position in @map
 72 * @nr: number of bits to set
 73 *
 74 * Set @nr bits start from @start in @map lock-lessly. Several users
 75 * can set/clear the same bitmap simultaneously without lock. If two
 76 * users set the same bit, one user will return remain bits, otherwise
 77 * return 0.
 78 */
 79static int bitmap_set_ll(unsigned long *map, int start, int nr)
 80{
 81	unsigned long *p = map + BIT_WORD(start);
 82	const int size = start + nr;
 83	int bits_to_set = BITS_PER_LONG - (start % BITS_PER_LONG);
 84	unsigned long mask_to_set = BITMAP_FIRST_WORD_MASK(start);
 85
 86	while (nr - bits_to_set >= 0) {
 87		if (set_bits_ll(p, mask_to_set))
 88			return nr;
 89		nr -= bits_to_set;
 90		bits_to_set = BITS_PER_LONG;
 91		mask_to_set = ~0UL;
 92		p++;
 93	}
 94	if (nr) {
 95		mask_to_set &= BITMAP_LAST_WORD_MASK(size);
 96		if (set_bits_ll(p, mask_to_set))
 97			return nr;
 98	}
 99
100	return 0;
101}
102
103/*
104 * bitmap_clear_ll - clear the specified number of bits at the specified position
105 * @map: pointer to a bitmap
106 * @start: a bit position in @map
107 * @nr: number of bits to set
108 *
109 * Clear @nr bits start from @start in @map lock-lessly. Several users
110 * can set/clear the same bitmap simultaneously without lock. If two
111 * users clear the same bit, one user will return remain bits,
112 * otherwise return 0.
113 */
114static int bitmap_clear_ll(unsigned long *map, int start, int nr)
115{
116	unsigned long *p = map + BIT_WORD(start);
117	const int size = start + nr;
118	int bits_to_clear = BITS_PER_LONG - (start % BITS_PER_LONG);
119	unsigned long mask_to_clear = BITMAP_FIRST_WORD_MASK(start);
120
121	while (nr - bits_to_clear >= 0) {
122		if (clear_bits_ll(p, mask_to_clear))
123			return nr;
124		nr -= bits_to_clear;
125		bits_to_clear = BITS_PER_LONG;
126		mask_to_clear = ~0UL;
127		p++;
128	}
129	if (nr) {
130		mask_to_clear &= BITMAP_LAST_WORD_MASK(size);
131		if (clear_bits_ll(p, mask_to_clear))
132			return nr;
133	}
134
135	return 0;
136}
137
138/**
139 * gen_pool_create - create a new special memory pool
140 * @min_alloc_order: log base 2 of number of bytes each bitmap bit represents
141 * @nid: node id of the node the pool structure should be allocated on, or -1
142 *
143 * Create a new special memory pool that can be used to manage special purpose
144 * memory not managed by the regular kmalloc/kfree interface.
145 */
146struct gen_pool *gen_pool_create(int min_alloc_order, int nid)
147{
148	struct gen_pool *pool;
149
150	pool = kmalloc_node(sizeof(struct gen_pool), GFP_KERNEL, nid);
151	if (pool != NULL) {
152		spin_lock_init(&pool->lock);
153		INIT_LIST_HEAD(&pool->chunks);
154		pool->min_alloc_order = min_alloc_order;
 
 
155	}
156	return pool;
157}
158EXPORT_SYMBOL(gen_pool_create);
159
160/**
161 * gen_pool_add_virt - add a new chunk of special memory to the pool
162 * @pool: pool to add new memory chunk to
163 * @virt: virtual starting address of memory chunk to add to pool
164 * @phys: physical starting address of memory chunk to add to pool
165 * @size: size in bytes of the memory chunk to add to pool
166 * @nid: node id of the node the chunk structure and bitmap should be
167 *       allocated on, or -1
168 *
169 * Add a new chunk of special memory to the specified pool.
170 *
171 * Returns 0 on success or a -ve errno on failure.
172 */
173int gen_pool_add_virt(struct gen_pool *pool, unsigned long virt, phys_addr_t phys,
174		 size_t size, int nid)
175{
176	struct gen_pool_chunk *chunk;
177	int nbits = size >> pool->min_alloc_order;
178	int nbytes = sizeof(struct gen_pool_chunk) +
179				(nbits + BITS_PER_BYTE - 1) / BITS_PER_BYTE;
180
181	chunk = kmalloc_node(nbytes, GFP_KERNEL | __GFP_ZERO, nid);
182	if (unlikely(chunk == NULL))
183		return -ENOMEM;
184
185	chunk->phys_addr = phys;
186	chunk->start_addr = virt;
187	chunk->end_addr = virt + size;
188	atomic_set(&chunk->avail, size);
189
190	spin_lock(&pool->lock);
191	list_add_rcu(&chunk->next_chunk, &pool->chunks);
192	spin_unlock(&pool->lock);
193
194	return 0;
195}
196EXPORT_SYMBOL(gen_pool_add_virt);
197
198/**
199 * gen_pool_virt_to_phys - return the physical address of memory
200 * @pool: pool to allocate from
201 * @addr: starting address of memory
202 *
203 * Returns the physical address on success, or -1 on error.
204 */
205phys_addr_t gen_pool_virt_to_phys(struct gen_pool *pool, unsigned long addr)
206{
207	struct gen_pool_chunk *chunk;
208	phys_addr_t paddr = -1;
209
210	rcu_read_lock();
211	list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk) {
212		if (addr >= chunk->start_addr && addr < chunk->end_addr) {
213			paddr = chunk->phys_addr + (addr - chunk->start_addr);
214			break;
215		}
216	}
217	rcu_read_unlock();
218
219	return paddr;
220}
221EXPORT_SYMBOL(gen_pool_virt_to_phys);
222
223/**
224 * gen_pool_destroy - destroy a special memory pool
225 * @pool: pool to destroy
226 *
227 * Destroy the specified special memory pool. Verifies that there are no
228 * outstanding allocations.
229 */
230void gen_pool_destroy(struct gen_pool *pool)
231{
232	struct list_head *_chunk, *_next_chunk;
233	struct gen_pool_chunk *chunk;
234	int order = pool->min_alloc_order;
235	int bit, end_bit;
236
237	list_for_each_safe(_chunk, _next_chunk, &pool->chunks) {
238		chunk = list_entry(_chunk, struct gen_pool_chunk, next_chunk);
239		list_del(&chunk->next_chunk);
240
241		end_bit = (chunk->end_addr - chunk->start_addr) >> order;
242		bit = find_next_bit(chunk->bits, end_bit, 0);
243		BUG_ON(bit < end_bit);
244
245		kfree(chunk);
246	}
247	kfree(pool);
248	return;
249}
250EXPORT_SYMBOL(gen_pool_destroy);
251
252/**
253 * gen_pool_alloc - allocate special memory from the pool
254 * @pool: pool to allocate from
255 * @size: number of bytes to allocate from the pool
256 *
257 * Allocate the requested number of bytes from the specified pool.
258 * Uses a first-fit algorithm. Can not be used in NMI handler on
259 * architectures without NMI-safe cmpxchg implementation.
 
260 */
261unsigned long gen_pool_alloc(struct gen_pool *pool, size_t size)
262{
263	struct gen_pool_chunk *chunk;
264	unsigned long addr = 0;
265	int order = pool->min_alloc_order;
266	int nbits, start_bit = 0, end_bit, remain;
267
268#ifndef CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG
269	BUG_ON(in_nmi());
270#endif
271
272	if (size == 0)
273		return 0;
274
275	nbits = (size + (1UL << order) - 1) >> order;
276	rcu_read_lock();
277	list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk) {
278		if (size > atomic_read(&chunk->avail))
279			continue;
280
281		end_bit = (chunk->end_addr - chunk->start_addr) >> order;
282retry:
283		start_bit = bitmap_find_next_zero_area(chunk->bits, end_bit,
284						       start_bit, nbits, 0);
285		if (start_bit >= end_bit)
286			continue;
287		remain = bitmap_set_ll(chunk->bits, start_bit, nbits);
288		if (remain) {
289			remain = bitmap_clear_ll(chunk->bits, start_bit,
290						 nbits - remain);
291			BUG_ON(remain);
292			goto retry;
293		}
294
295		addr = chunk->start_addr + ((unsigned long)start_bit << order);
296		size = nbits << order;
297		atomic_sub(size, &chunk->avail);
298		break;
299	}
300	rcu_read_unlock();
301	return addr;
302}
303EXPORT_SYMBOL(gen_pool_alloc);
304
305/**
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
306 * gen_pool_free - free allocated special memory back to the pool
307 * @pool: pool to free to
308 * @addr: starting address of memory to free back to pool
309 * @size: size in bytes of memory to free
310 *
311 * Free previously allocated special memory back to the specified
312 * pool.  Can not be used in NMI handler on architectures without
313 * NMI-safe cmpxchg implementation.
314 */
315void gen_pool_free(struct gen_pool *pool, unsigned long addr, size_t size)
316{
317	struct gen_pool_chunk *chunk;
318	int order = pool->min_alloc_order;
319	int start_bit, nbits, remain;
320
321#ifndef CONFIG_ARCH_HAVE_NMI_SAFE_CMPXCHG
322	BUG_ON(in_nmi());
323#endif
324
325	nbits = (size + (1UL << order) - 1) >> order;
326	rcu_read_lock();
327	list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk) {
328		if (addr >= chunk->start_addr && addr < chunk->end_addr) {
329			BUG_ON(addr + size > chunk->end_addr);
330			start_bit = (addr - chunk->start_addr) >> order;
331			remain = bitmap_clear_ll(chunk->bits, start_bit, nbits);
332			BUG_ON(remain);
333			size = nbits << order;
334			atomic_add(size, &chunk->avail);
335			rcu_read_unlock();
336			return;
337		}
338	}
339	rcu_read_unlock();
340	BUG();
341}
342EXPORT_SYMBOL(gen_pool_free);
343
344/**
345 * gen_pool_for_each_chunk - call func for every chunk of generic memory pool
346 * @pool:	the generic memory pool
347 * @func:	func to call
348 * @data:	additional data used by @func
349 *
350 * Call @func for every chunk of generic memory pool.  The @func is
351 * called with rcu_read_lock held.
352 */
353void gen_pool_for_each_chunk(struct gen_pool *pool,
354	void (*func)(struct gen_pool *pool, struct gen_pool_chunk *chunk, void *data),
355	void *data)
356{
357	struct gen_pool_chunk *chunk;
358
359	rcu_read_lock();
360	list_for_each_entry_rcu(chunk, &(pool)->chunks, next_chunk)
361		func(pool, chunk, data);
362	rcu_read_unlock();
363}
364EXPORT_SYMBOL(gen_pool_for_each_chunk);
365
366/**
367 * gen_pool_avail - get available free space of the pool
368 * @pool: pool to get available free space
369 *
370 * Return available free space of the specified pool.
371 */
372size_t gen_pool_avail(struct gen_pool *pool)
373{
374	struct gen_pool_chunk *chunk;
375	size_t avail = 0;
376
377	rcu_read_lock();
378	list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk)
379		avail += atomic_read(&chunk->avail);
380	rcu_read_unlock();
381	return avail;
382}
383EXPORT_SYMBOL_GPL(gen_pool_avail);
384
385/**
386 * gen_pool_size - get size in bytes of memory managed by the pool
387 * @pool: pool to get size
388 *
389 * Return size in bytes of memory managed by the pool.
390 */
391size_t gen_pool_size(struct gen_pool *pool)
392{
393	struct gen_pool_chunk *chunk;
394	size_t size = 0;
395
396	rcu_read_lock();
397	list_for_each_entry_rcu(chunk, &pool->chunks, next_chunk)
398		size += chunk->end_addr - chunk->start_addr;
399	rcu_read_unlock();
400	return size;
401}
402EXPORT_SYMBOL_GPL(gen_pool_size);