Linux Audio

Check our new training course

Loading...
v3.15
   1/*
   2 *  Fast Userspace Mutexes (which I call "Futexes!").
   3 *  (C) Rusty Russell, IBM 2002
   4 *
   5 *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
   6 *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
   7 *
   8 *  Removed page pinning, fix privately mapped COW pages and other cleanups
   9 *  (C) Copyright 2003, 2004 Jamie Lokier
  10 *
  11 *  Robust futex support started by Ingo Molnar
  12 *  (C) Copyright 2006 Red Hat Inc, All Rights Reserved
  13 *  Thanks to Thomas Gleixner for suggestions, analysis and fixes.
  14 *
  15 *  PI-futex support started by Ingo Molnar and Thomas Gleixner
  16 *  Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
  17 *  Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
  18 *
  19 *  PRIVATE futexes by Eric Dumazet
  20 *  Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
  21 *
  22 *  Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
  23 *  Copyright (C) IBM Corporation, 2009
  24 *  Thanks to Thomas Gleixner for conceptual design and careful reviews.
  25 *
  26 *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
  27 *  enough at me, Linus for the original (flawed) idea, Matthew
  28 *  Kirkwood for proof-of-concept implementation.
  29 *
  30 *  "The futexes are also cursed."
  31 *  "But they come in a choice of three flavours!"
  32 *
  33 *  This program is free software; you can redistribute it and/or modify
  34 *  it under the terms of the GNU General Public License as published by
  35 *  the Free Software Foundation; either version 2 of the License, or
  36 *  (at your option) any later version.
  37 *
  38 *  This program is distributed in the hope that it will be useful,
  39 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
  40 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  41 *  GNU General Public License for more details.
  42 *
  43 *  You should have received a copy of the GNU General Public License
  44 *  along with this program; if not, write to the Free Software
  45 *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  46 */
  47#include <linux/slab.h>
  48#include <linux/poll.h>
  49#include <linux/fs.h>
  50#include <linux/file.h>
  51#include <linux/jhash.h>
  52#include <linux/init.h>
  53#include <linux/futex.h>
  54#include <linux/mount.h>
  55#include <linux/pagemap.h>
  56#include <linux/syscalls.h>
  57#include <linux/signal.h>
  58#include <linux/export.h>
  59#include <linux/magic.h>
  60#include <linux/pid.h>
  61#include <linux/nsproxy.h>
  62#include <linux/ptrace.h>
  63#include <linux/sched/rt.h>
  64#include <linux/hugetlb.h>
  65#include <linux/freezer.h>
  66#include <linux/bootmem.h>
 
  67
  68#include <asm/futex.h>
  69
  70#include "locking/rtmutex_common.h"
  71
  72/*
  73 * READ this before attempting to hack on futexes!
  74 *
  75 * Basic futex operation and ordering guarantees
  76 * =============================================
  77 *
  78 * The waiter reads the futex value in user space and calls
  79 * futex_wait(). This function computes the hash bucket and acquires
  80 * the hash bucket lock. After that it reads the futex user space value
  81 * again and verifies that the data has not changed. If it has not changed
  82 * it enqueues itself into the hash bucket, releases the hash bucket lock
  83 * and schedules.
  84 *
  85 * The waker side modifies the user space value of the futex and calls
  86 * futex_wake(). This function computes the hash bucket and acquires the
  87 * hash bucket lock. Then it looks for waiters on that futex in the hash
  88 * bucket and wakes them.
  89 *
  90 * In futex wake up scenarios where no tasks are blocked on a futex, taking
  91 * the hb spinlock can be avoided and simply return. In order for this
  92 * optimization to work, ordering guarantees must exist so that the waiter
  93 * being added to the list is acknowledged when the list is concurrently being
  94 * checked by the waker, avoiding scenarios like the following:
  95 *
  96 * CPU 0                               CPU 1
  97 * val = *futex;
  98 * sys_futex(WAIT, futex, val);
  99 *   futex_wait(futex, val);
 100 *   uval = *futex;
 101 *                                     *futex = newval;
 102 *                                     sys_futex(WAKE, futex);
 103 *                                       futex_wake(futex);
 104 *                                       if (queue_empty())
 105 *                                         return;
 106 *   if (uval == val)
 107 *      lock(hash_bucket(futex));
 108 *      queue();
 109 *     unlock(hash_bucket(futex));
 110 *     schedule();
 111 *
 112 * This would cause the waiter on CPU 0 to wait forever because it
 113 * missed the transition of the user space value from val to newval
 114 * and the waker did not find the waiter in the hash bucket queue.
 115 *
 116 * The correct serialization ensures that a waiter either observes
 117 * the changed user space value before blocking or is woken by a
 118 * concurrent waker:
 119 *
 120 * CPU 0                                 CPU 1
 121 * val = *futex;
 122 * sys_futex(WAIT, futex, val);
 123 *   futex_wait(futex, val);
 124 *
 125 *   waiters++; (a)
 126 *   mb(); (A) <-- paired with -.
 127 *                              |
 128 *   lock(hash_bucket(futex));  |
 129 *                              |
 130 *   uval = *futex;             |
 131 *                              |        *futex = newval;
 132 *                              |        sys_futex(WAKE, futex);
 133 *                              |          futex_wake(futex);
 134 *                              |
 135 *                              `------->  mb(); (B)
 136 *   if (uval == val)
 137 *     queue();
 138 *     unlock(hash_bucket(futex));
 139 *     schedule();                         if (waiters)
 140 *                                           lock(hash_bucket(futex));
 141 *   else                                    wake_waiters(futex);
 142 *     waiters--; (b)                        unlock(hash_bucket(futex));
 143 *
 144 * Where (A) orders the waiters increment and the futex value read through
 145 * atomic operations (see hb_waiters_inc) and where (B) orders the write
 146 * to futex and the waiters read -- this is done by the barriers in
 147 * get_futex_key_refs(), through either ihold or atomic_inc, depending on the
 148 * futex type.
 149 *
 150 * This yields the following case (where X:=waiters, Y:=futex):
 151 *
 152 *	X = Y = 0
 153 *
 154 *	w[X]=1		w[Y]=1
 155 *	MB		MB
 156 *	r[Y]=y		r[X]=x
 157 *
 158 * Which guarantees that x==0 && y==0 is impossible; which translates back into
 159 * the guarantee that we cannot both miss the futex variable change and the
 160 * enqueue.
 161 *
 162 * Note that a new waiter is accounted for in (a) even when it is possible that
 163 * the wait call can return error, in which case we backtrack from it in (b).
 164 * Refer to the comment in queue_lock().
 165 *
 166 * Similarly, in order to account for waiters being requeued on another
 167 * address we always increment the waiters for the destination bucket before
 168 * acquiring the lock. It then decrements them again  after releasing it -
 169 * the code that actually moves the futex(es) between hash buckets (requeue_futex)
 170 * will do the additional required waiter count housekeeping. This is done for
 171 * double_lock_hb() and double_unlock_hb(), respectively.
 172 */
 173
 174#ifndef CONFIG_HAVE_FUTEX_CMPXCHG
 175int __read_mostly futex_cmpxchg_enabled;
 176#endif
 177
 178/*
 179 * Futex flags used to encode options to functions and preserve them across
 180 * restarts.
 181 */
 182#define FLAGS_SHARED		0x01
 
 
 
 
 
 
 
 
 183#define FLAGS_CLOCKRT		0x02
 184#define FLAGS_HAS_TIMEOUT	0x04
 185
 186/*
 187 * Priority Inheritance state:
 188 */
 189struct futex_pi_state {
 190	/*
 191	 * list of 'owned' pi_state instances - these have to be
 192	 * cleaned up in do_exit() if the task exits prematurely:
 193	 */
 194	struct list_head list;
 195
 196	/*
 197	 * The PI object:
 198	 */
 199	struct rt_mutex pi_mutex;
 200
 201	struct task_struct *owner;
 202	atomic_t refcount;
 203
 204	union futex_key key;
 205};
 206
 207/**
 208 * struct futex_q - The hashed futex queue entry, one per waiting task
 209 * @list:		priority-sorted list of tasks waiting on this futex
 210 * @task:		the task waiting on the futex
 211 * @lock_ptr:		the hash bucket lock
 212 * @key:		the key the futex is hashed on
 213 * @pi_state:		optional priority inheritance state
 214 * @rt_waiter:		rt_waiter storage for use with requeue_pi
 215 * @requeue_pi_key:	the requeue_pi target futex key
 216 * @bitset:		bitset for the optional bitmasked wakeup
 217 *
 218 * We use this hashed waitqueue, instead of a normal wait_queue_t, so
 219 * we can wake only the relevant ones (hashed queues may be shared).
 220 *
 221 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
 222 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
 223 * The order of wakeup is always to make the first condition true, then
 224 * the second.
 225 *
 226 * PI futexes are typically woken before they are removed from the hash list via
 227 * the rt_mutex code. See unqueue_me_pi().
 228 */
 229struct futex_q {
 230	struct plist_node list;
 231
 232	struct task_struct *task;
 233	spinlock_t *lock_ptr;
 234	union futex_key key;
 235	struct futex_pi_state *pi_state;
 236	struct rt_mutex_waiter *rt_waiter;
 237	union futex_key *requeue_pi_key;
 238	u32 bitset;
 239};
 240
 241static const struct futex_q futex_q_init = {
 242	/* list gets initialized in queue_me()*/
 243	.key = FUTEX_KEY_INIT,
 244	.bitset = FUTEX_BITSET_MATCH_ANY
 245};
 246
 247/*
 248 * Hash buckets are shared by all the futex_keys that hash to the same
 249 * location.  Each key may have multiple futex_q structures, one for each task
 250 * waiting on a futex.
 251 */
 252struct futex_hash_bucket {
 253	atomic_t waiters;
 254	spinlock_t lock;
 255	struct plist_head chain;
 256} ____cacheline_aligned_in_smp;
 257
 258static unsigned long __read_mostly futex_hashsize;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 259
 260static struct futex_hash_bucket *futex_queues;
 
 
 
 
 
 261
 262static inline void futex_get_mm(union futex_key *key)
 263{
 264	atomic_inc(&key->private.mm->mm_count);
 265	/*
 266	 * Ensure futex_get_mm() implies a full barrier such that
 267	 * get_futex_key() implies a full barrier. This is relied upon
 268	 * as full barrier (B), see the ordering comment above.
 269	 */
 270	smp_mb__after_atomic_inc();
 271}
 272
 273/*
 274 * Reflects a new waiter being added to the waitqueue.
 275 */
 276static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
 277{
 278#ifdef CONFIG_SMP
 279	atomic_inc(&hb->waiters);
 280	/*
 281	 * Full barrier (A), see the ordering comment above.
 282	 */
 283	smp_mb__after_atomic_inc();
 284#endif
 285}
 286
 287/*
 288 * Reflects a waiter being removed from the waitqueue by wakeup
 289 * paths.
 290 */
 291static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
 292{
 293#ifdef CONFIG_SMP
 294	atomic_dec(&hb->waiters);
 295#endif
 296}
 297
 298static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
 299{
 300#ifdef CONFIG_SMP
 301	return atomic_read(&hb->waiters);
 302#else
 303	return 1;
 304#endif
 305}
 306
 307/*
 308 * We hash on the keys returned from get_futex_key (see below).
 
 
 
 
 309 */
 310static struct futex_hash_bucket *hash_futex(union futex_key *key)
 311{
 312	u32 hash = jhash2((u32*)&key->both.word,
 313			  (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
 314			  key->both.offset);
 315	return &futex_queues[hash & (futex_hashsize - 1)];
 316}
 317
 318/*
 
 
 
 
 
 319 * Return 1 if two futex_keys are equal, 0 otherwise.
 320 */
 321static inline int match_futex(union futex_key *key1, union futex_key *key2)
 322{
 323	return (key1 && key2
 324		&& key1->both.word == key2->both.word
 325		&& key1->both.ptr == key2->both.ptr
 326		&& key1->both.offset == key2->both.offset);
 327}
 328
 329/*
 330 * Take a reference to the resource addressed by a key.
 331 * Can be called while holding spinlocks.
 332 *
 333 */
 334static void get_futex_key_refs(union futex_key *key)
 335{
 336	if (!key->both.ptr)
 337		return;
 338
 
 
 
 
 
 
 
 
 
 
 339	switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
 340	case FUT_OFF_INODE:
 341		ihold(key->shared.inode); /* implies MB (B) */
 342		break;
 343	case FUT_OFF_MMSHARED:
 344		futex_get_mm(key); /* implies MB (B) */
 345		break;
 
 
 
 
 
 
 
 346	}
 347}
 348
 349/*
 350 * Drop a reference to the resource addressed by a key.
 351 * The hash bucket spinlock must not be held.
 
 
 352 */
 353static void drop_futex_key_refs(union futex_key *key)
 354{
 355	if (!key->both.ptr) {
 356		/* If we're here then we tried to put a key we failed to get */
 357		WARN_ON_ONCE(1);
 358		return;
 359	}
 360
 
 
 
 361	switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
 362	case FUT_OFF_INODE:
 363		iput(key->shared.inode);
 364		break;
 365	case FUT_OFF_MMSHARED:
 366		mmdrop(key->private.mm);
 367		break;
 368	}
 369}
 370
 371/**
 372 * get_futex_key() - Get parameters which are the keys for a futex
 373 * @uaddr:	virtual address of the futex
 374 * @fshared:	0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
 375 * @key:	address where result is stored.
 376 * @rw:		mapping needs to be read/write (values: VERIFY_READ,
 377 *              VERIFY_WRITE)
 378 *
 379 * Return: a negative error code or 0
 380 *
 381 * The key words are stored in *key on success.
 382 *
 383 * For shared mappings, it's (page->index, file_inode(vma->vm_file),
 384 * offset_within_page).  For private mappings, it's (uaddr, current->mm).
 385 * We can usually work out the index without swapping in the page.
 386 *
 387 * lock_page() might sleep, the caller should not hold a spinlock.
 388 */
 389static int
 390get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
 391{
 392	unsigned long address = (unsigned long)uaddr;
 393	struct mm_struct *mm = current->mm;
 394	struct page *page, *page_head;
 
 395	int err, ro = 0;
 396
 397	/*
 398	 * The futex address must be "naturally" aligned.
 399	 */
 400	key->both.offset = address % PAGE_SIZE;
 401	if (unlikely((address % sizeof(u32)) != 0))
 402		return -EINVAL;
 403	address -= key->both.offset;
 404
 405	if (unlikely(!access_ok(rw, uaddr, sizeof(u32))))
 406		return -EFAULT;
 407
 
 
 
 408	/*
 409	 * PROCESS_PRIVATE futexes are fast.
 410	 * As the mm cannot disappear under us and the 'key' only needs
 411	 * virtual address, we dont even have to find the underlying vma.
 412	 * Note : We do have to check 'uaddr' is a valid user address,
 413	 *        but access_ok() should be faster than find_vma()
 414	 */
 415	if (!fshared) {
 416		key->private.mm = mm;
 417		key->private.address = address;
 418		get_futex_key_refs(key);  /* implies MB (B) */
 419		return 0;
 420	}
 421
 422again:
 
 
 
 
 423	err = get_user_pages_fast(address, 1, 1, &page);
 424	/*
 425	 * If write access is not required (eg. FUTEX_WAIT), try
 426	 * and get read-only access.
 427	 */
 428	if (err == -EFAULT && rw == VERIFY_READ) {
 429		err = get_user_pages_fast(address, 1, 0, &page);
 430		ro = 1;
 431	}
 432	if (err < 0)
 433		return err;
 434	else
 435		err = 0;
 436
 437#ifdef CONFIG_TRANSPARENT_HUGEPAGE
 438	page_head = page;
 439	if (unlikely(PageTail(page))) {
 440		put_page(page);
 441		/* serialize against __split_huge_page_splitting() */
 442		local_irq_disable();
 443		if (likely(__get_user_pages_fast(address, 1, !ro, &page) == 1)) {
 444			page_head = compound_head(page);
 445			/*
 446			 * page_head is valid pointer but we must pin
 447			 * it before taking the PG_lock and/or
 448			 * PG_compound_lock. The moment we re-enable
 449			 * irqs __split_huge_page_splitting() can
 450			 * return and the head page can be freed from
 451			 * under us. We can't take the PG_lock and/or
 452			 * PG_compound_lock on a page that could be
 453			 * freed from under us.
 454			 */
 455			if (page != page_head) {
 456				get_page(page_head);
 457				put_page(page);
 458			}
 459			local_irq_enable();
 460		} else {
 461			local_irq_enable();
 462			goto again;
 463		}
 464	}
 465#else
 466	page_head = compound_head(page);
 467	if (page != page_head) {
 468		get_page(page_head);
 469		put_page(page);
 470	}
 471#endif
 472
 473	lock_page(page_head);
 474
 475	/*
 476	 * If page_head->mapping is NULL, then it cannot be a PageAnon
 477	 * page; but it might be the ZERO_PAGE or in the gate area or
 478	 * in a special mapping (all cases which we are happy to fail);
 479	 * or it may have been a good file page when get_user_pages_fast
 480	 * found it, but truncated or holepunched or subjected to
 481	 * invalidate_complete_page2 before we got the page lock (also
 482	 * cases which we are happy to fail).  And we hold a reference,
 483	 * so refcount care in invalidate_complete_page's remove_mapping
 484	 * prevents drop_caches from setting mapping to NULL beneath us.
 485	 *
 486	 * The case we do have to guard against is when memory pressure made
 487	 * shmem_writepage move it from filecache to swapcache beneath us:
 488	 * an unlikely race, but we do need to retry for page_head->mapping.
 489	 */
 490	if (!page_head->mapping) {
 491		int shmem_swizzled = PageSwapCache(page_head);
 492		unlock_page(page_head);
 493		put_page(page_head);
 
 
 
 
 
 
 
 
 
 494		if (shmem_swizzled)
 495			goto again;
 
 496		return -EFAULT;
 497	}
 498
 499	/*
 500	 * Private mappings are handled in a simple way.
 501	 *
 
 
 
 502	 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
 503	 * it's a read-only handle, it's expected that futexes attach to
 504	 * the object not the particular process.
 505	 */
 506	if (PageAnon(page_head)) {
 507		/*
 508		 * A RO anonymous page will never change and thus doesn't make
 509		 * sense for futex operations.
 510		 */
 511		if (ro) {
 512			err = -EFAULT;
 513			goto out;
 514		}
 515
 516		key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
 517		key->private.mm = mm;
 518		key->private.address = address;
 
 
 
 519	} else {
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 520		key->both.offset |= FUT_OFF_INODE; /* inode-based key */
 521		key->shared.inode = page_head->mapping->host;
 522		key->shared.pgoff = basepage_index(page);
 
 523	}
 524
 525	get_futex_key_refs(key); /* implies MB (B) */
 526
 527out:
 528	unlock_page(page_head);
 529	put_page(page_head);
 530	return err;
 531}
 532
 533static inline void put_futex_key(union futex_key *key)
 534{
 535	drop_futex_key_refs(key);
 536}
 537
 538/**
 539 * fault_in_user_writeable() - Fault in user address and verify RW access
 540 * @uaddr:	pointer to faulting user space address
 541 *
 542 * Slow path to fixup the fault we just took in the atomic write
 543 * access to @uaddr.
 544 *
 545 * We have no generic implementation of a non-destructive write to the
 546 * user address. We know that we faulted in the atomic pagefault
 547 * disabled section so we can as well avoid the #PF overhead by
 548 * calling get_user_pages() right away.
 549 */
 550static int fault_in_user_writeable(u32 __user *uaddr)
 551{
 552	struct mm_struct *mm = current->mm;
 553	int ret;
 554
 555	down_read(&mm->mmap_sem);
 556	ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
 557			       FAULT_FLAG_WRITE);
 558	up_read(&mm->mmap_sem);
 559
 560	return ret < 0 ? ret : 0;
 561}
 562
 563/**
 564 * futex_top_waiter() - Return the highest priority waiter on a futex
 565 * @hb:		the hash bucket the futex_q's reside in
 566 * @key:	the futex key (to distinguish it from other futex futex_q's)
 567 *
 568 * Must be called with the hb lock held.
 569 */
 570static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
 571					union futex_key *key)
 572{
 573	struct futex_q *this;
 574
 575	plist_for_each_entry(this, &hb->chain, list) {
 576		if (match_futex(&this->key, key))
 577			return this;
 578	}
 579	return NULL;
 580}
 581
 582static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
 583				      u32 uval, u32 newval)
 584{
 585	int ret;
 586
 587	pagefault_disable();
 588	ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
 589	pagefault_enable();
 590
 591	return ret;
 592}
 593
 594static int get_futex_value_locked(u32 *dest, u32 __user *from)
 595{
 596	int ret;
 597
 598	pagefault_disable();
 599	ret = __copy_from_user_inatomic(dest, from, sizeof(u32));
 600	pagefault_enable();
 601
 602	return ret ? -EFAULT : 0;
 603}
 604
 605
 606/*
 607 * PI code:
 608 */
 609static int refill_pi_state_cache(void)
 610{
 611	struct futex_pi_state *pi_state;
 612
 613	if (likely(current->pi_state_cache))
 614		return 0;
 615
 616	pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
 617
 618	if (!pi_state)
 619		return -ENOMEM;
 620
 621	INIT_LIST_HEAD(&pi_state->list);
 622	/* pi_mutex gets initialized later */
 623	pi_state->owner = NULL;
 624	atomic_set(&pi_state->refcount, 1);
 625	pi_state->key = FUTEX_KEY_INIT;
 626
 627	current->pi_state_cache = pi_state;
 628
 629	return 0;
 630}
 631
 632static struct futex_pi_state * alloc_pi_state(void)
 633{
 634	struct futex_pi_state *pi_state = current->pi_state_cache;
 635
 636	WARN_ON(!pi_state);
 637	current->pi_state_cache = NULL;
 638
 639	return pi_state;
 640}
 641
 642static void free_pi_state(struct futex_pi_state *pi_state)
 
 
 
 
 
 
 643{
 
 
 
 644	if (!atomic_dec_and_test(&pi_state->refcount))
 645		return;
 646
 647	/*
 648	 * If pi_state->owner is NULL, the owner is most probably dying
 649	 * and has cleaned up the pi_state already
 650	 */
 651	if (pi_state->owner) {
 652		raw_spin_lock_irq(&pi_state->owner->pi_lock);
 653		list_del_init(&pi_state->list);
 654		raw_spin_unlock_irq(&pi_state->owner->pi_lock);
 655
 656		rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
 657	}
 658
 659	if (current->pi_state_cache)
 660		kfree(pi_state);
 661	else {
 662		/*
 663		 * pi_state->list is already empty.
 664		 * clear pi_state->owner.
 665		 * refcount is at 0 - put it back to 1.
 666		 */
 667		pi_state->owner = NULL;
 668		atomic_set(&pi_state->refcount, 1);
 669		current->pi_state_cache = pi_state;
 670	}
 671}
 672
 673/*
 674 * Look up the task based on what TID userspace gave us.
 675 * We dont trust it.
 676 */
 677static struct task_struct * futex_find_get_task(pid_t pid)
 678{
 679	struct task_struct *p;
 680
 681	rcu_read_lock();
 682	p = find_task_by_vpid(pid);
 683	if (p)
 684		get_task_struct(p);
 685
 686	rcu_read_unlock();
 687
 688	return p;
 689}
 690
 691/*
 692 * This task is holding PI mutexes at exit time => bad.
 693 * Kernel cleans up PI-state, but userspace is likely hosed.
 694 * (Robust-futex cleanup is separate and might save the day for userspace.)
 695 */
 696void exit_pi_state_list(struct task_struct *curr)
 697{
 698	struct list_head *next, *head = &curr->pi_state_list;
 699	struct futex_pi_state *pi_state;
 700	struct futex_hash_bucket *hb;
 701	union futex_key key = FUTEX_KEY_INIT;
 702
 703	if (!futex_cmpxchg_enabled)
 704		return;
 705	/*
 706	 * We are a ZOMBIE and nobody can enqueue itself on
 707	 * pi_state_list anymore, but we have to be careful
 708	 * versus waiters unqueueing themselves:
 709	 */
 710	raw_spin_lock_irq(&curr->pi_lock);
 711	while (!list_empty(head)) {
 712
 713		next = head->next;
 714		pi_state = list_entry(next, struct futex_pi_state, list);
 715		key = pi_state->key;
 716		hb = hash_futex(&key);
 717		raw_spin_unlock_irq(&curr->pi_lock);
 718
 719		spin_lock(&hb->lock);
 720
 721		raw_spin_lock_irq(&curr->pi_lock);
 722		/*
 723		 * We dropped the pi-lock, so re-check whether this
 724		 * task still owns the PI-state:
 725		 */
 726		if (head->next != next) {
 727			spin_unlock(&hb->lock);
 728			continue;
 729		}
 730
 731		WARN_ON(pi_state->owner != curr);
 732		WARN_ON(list_empty(&pi_state->list));
 733		list_del_init(&pi_state->list);
 734		pi_state->owner = NULL;
 735		raw_spin_unlock_irq(&curr->pi_lock);
 736
 737		rt_mutex_unlock(&pi_state->pi_mutex);
 738
 739		spin_unlock(&hb->lock);
 740
 741		raw_spin_lock_irq(&curr->pi_lock);
 742	}
 743	raw_spin_unlock_irq(&curr->pi_lock);
 744}
 745
 746/*
 747 * We need to check the following states:
 748 *
 749 *      Waiter | pi_state | pi->owner | uTID      | uODIED | ?
 750 *
 751 * [1]  NULL   | ---      | ---       | 0         | 0/1    | Valid
 752 * [2]  NULL   | ---      | ---       | >0        | 0/1    | Valid
 753 *
 754 * [3]  Found  | NULL     | --        | Any       | 0/1    | Invalid
 755 *
 756 * [4]  Found  | Found    | NULL      | 0         | 1      | Valid
 757 * [5]  Found  | Found    | NULL      | >0        | 1      | Invalid
 758 *
 759 * [6]  Found  | Found    | task      | 0         | 1      | Valid
 760 *
 761 * [7]  Found  | Found    | NULL      | Any       | 0      | Invalid
 762 *
 763 * [8]  Found  | Found    | task      | ==taskTID | 0/1    | Valid
 764 * [9]  Found  | Found    | task      | 0         | 0      | Invalid
 765 * [10] Found  | Found    | task      | !=taskTID | 0/1    | Invalid
 766 *
 767 * [1]	Indicates that the kernel can acquire the futex atomically. We
 768 *	came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
 769 *
 770 * [2]	Valid, if TID does not belong to a kernel thread. If no matching
 771 *      thread is found then it indicates that the owner TID has died.
 772 *
 773 * [3]	Invalid. The waiter is queued on a non PI futex
 774 *
 775 * [4]	Valid state after exit_robust_list(), which sets the user space
 776 *	value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
 777 *
 778 * [5]	The user space value got manipulated between exit_robust_list()
 779 *	and exit_pi_state_list()
 780 *
 781 * [6]	Valid state after exit_pi_state_list() which sets the new owner in
 782 *	the pi_state but cannot access the user space value.
 783 *
 784 * [7]	pi_state->owner can only be NULL when the OWNER_DIED bit is set.
 785 *
 786 * [8]	Owner and user space value match
 787 *
 788 * [9]	There is no transient state which sets the user space TID to 0
 789 *	except exit_robust_list(), but this is indicated by the
 790 *	FUTEX_OWNER_DIED bit. See [4]
 791 *
 792 * [10] There is no transient state which leaves owner and user space
 793 *	TID out of sync.
 794 */
 795static int
 796lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
 797		union futex_key *key, struct futex_pi_state **ps)
 
 
 
 
 
 798{
 799	struct futex_pi_state *pi_state = NULL;
 800	struct futex_q *this, *next;
 801	struct task_struct *p;
 802	pid_t pid = uval & FUTEX_TID_MASK;
 803
 804	plist_for_each_entry_safe(this, next, &hb->chain, list) {
 805		if (match_futex(&this->key, key)) {
 806			/*
 807			 * Sanity check the waiter before increasing
 808			 * the refcount and attaching to it.
 809			 */
 810			pi_state = this->pi_state;
 811			/*
 812			 * Userspace might have messed up non-PI and
 813			 * PI futexes [3]
 814			 */
 815			if (unlikely(!pi_state))
 816				return -EINVAL;
 817
 818			WARN_ON(!atomic_read(&pi_state->refcount));
 819
 
 
 
 
 
 
 
 
 
 
 820			/*
 821			 * Handle the owner died case:
 
 822			 */
 823			if (uval & FUTEX_OWNER_DIED) {
 824				/*
 825				 * exit_pi_state_list sets owner to NULL and
 826				 * wakes the topmost waiter. The task which
 827				 * acquires the pi_state->rt_mutex will fixup
 828				 * owner.
 829				 */
 830				if (!pi_state->owner) {
 831					/*
 832					 * No pi state owner, but the user
 833					 * space TID is not 0. Inconsistent
 834					 * state. [5]
 835					 */
 836					if (pid)
 837						return -EINVAL;
 838					/*
 839					 * Take a ref on the state and
 840					 * return. [4]
 841					 */
 842					goto out_state;
 843				}
 844
 845				/*
 846				 * If TID is 0, then either the dying owner
 847				 * has not yet executed exit_pi_state_list()
 848				 * or some waiter acquired the rtmutex in the
 849				 * pi state, but did not yet fixup the TID in
 850				 * user space.
 851				 *
 852				 * Take a ref on the state and return. [6]
 853				 */
 854				if (!pid)
 855					goto out_state;
 856			} else {
 857				/*
 858				 * If the owner died bit is not set,
 859				 * then the pi_state must have an
 860				 * owner. [7]
 861				 */
 862				if (!pi_state->owner)
 863					return -EINVAL;
 864			}
 865
 866			/*
 867			 * Bail out if user space manipulated the
 868			 * futex value. If pi state exists then the
 869			 * owner TID must be the same as the user
 870			 * space TID. [9/10]
 871			 */
 872			if (pid != task_pid_vnr(pi_state->owner))
 873				return -EINVAL;
 874
 875		out_state:
 876			atomic_inc(&pi_state->refcount);
 877			*ps = pi_state;
 878			return 0;
 879		}
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 880	}
 881
 882	/*
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 883	 * We are the first waiter - try to look up the real owner and attach
 884	 * the new pi_state to it, but bail out when TID = 0 [1]
 885	 */
 886	if (!pid)
 887		return -ESRCH;
 888	p = futex_find_get_task(pid);
 889	if (!p)
 890		return -ESRCH;
 891
 892	if (!p->mm) {
 893		put_task_struct(p);
 894		return -EPERM;
 895	}
 896
 897	/*
 898	 * We need to look at the task state flags to figure out,
 899	 * whether the task is exiting. To protect against the do_exit
 900	 * change of the task flags, we do this protected by
 901	 * p->pi_lock:
 902	 */
 903	raw_spin_lock_irq(&p->pi_lock);
 904	if (unlikely(p->flags & PF_EXITING)) {
 905		/*
 906		 * The task is on the way out. When PF_EXITPIDONE is
 907		 * set, we know that the task has finished the
 908		 * cleanup:
 909		 */
 910		int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
 911
 912		raw_spin_unlock_irq(&p->pi_lock);
 913		put_task_struct(p);
 914		return ret;
 915	}
 916
 917	/*
 918	 * No existing pi state. First waiter. [2]
 919	 */
 920	pi_state = alloc_pi_state();
 921
 922	/*
 923	 * Initialize the pi_mutex in locked state and make 'p'
 924	 * the owner of it:
 925	 */
 926	rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
 927
 928	/* Store the key for possible exit cleanups: */
 929	pi_state->key = *key;
 930
 931	WARN_ON(!list_empty(&pi_state->list));
 932	list_add(&pi_state->list, &p->pi_state_list);
 933	pi_state->owner = p;
 934	raw_spin_unlock_irq(&p->pi_lock);
 935
 936	put_task_struct(p);
 937
 938	*ps = pi_state;
 939
 940	return 0;
 941}
 942
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 943/**
 944 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
 945 * @uaddr:		the pi futex user address
 946 * @hb:			the pi futex hash bucket
 947 * @key:		the futex key associated with uaddr and hb
 948 * @ps:			the pi_state pointer where we store the result of the
 949 *			lookup
 950 * @task:		the task to perform the atomic lock work for.  This will
 951 *			be "current" except in the case of requeue pi.
 952 * @set_waiters:	force setting the FUTEX_WAITERS bit (1) or not (0)
 953 *
 954 * Return:
 955 *  0 - ready to wait;
 956 *  1 - acquired the lock;
 957 * <0 - error
 958 *
 959 * The hb->lock and futex_key refs shall be held by the caller.
 960 */
 961static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
 962				union futex_key *key,
 963				struct futex_pi_state **ps,
 964				struct task_struct *task, int set_waiters)
 965{
 966	int lock_taken, ret, force_take = 0;
 967	u32 uval, newval, curval, vpid = task_pid_vnr(task);
 968
 969retry:
 970	ret = lock_taken = 0;
 971
 972	/*
 973	 * To avoid races, we attempt to take the lock here again
 974	 * (by doing a 0 -> TID atomic cmpxchg), while holding all
 975	 * the locks. It will most likely not succeed.
 976	 */
 977	newval = vpid;
 978	if (set_waiters)
 979		newval |= FUTEX_WAITERS;
 980
 981	if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, 0, newval)))
 982		return -EFAULT;
 983
 984	/*
 985	 * Detect deadlocks.
 986	 */
 987	if ((unlikely((curval & FUTEX_TID_MASK) == vpid)))
 988		return -EDEADLK;
 989
 990	/*
 991	 * Surprise - we got the lock, but we do not trust user space at all.
 992	 */
 993	if (unlikely(!curval)) {
 994		/*
 995		 * We verify whether there is kernel state for this
 996		 * futex. If not, we can safely assume, that the 0 ->
 997		 * TID transition is correct. If state exists, we do
 998		 * not bother to fixup the user space state as it was
 999		 * corrupted already.
1000		 */
1001		return futex_top_waiter(hb, key) ? -EINVAL : 1;
1002	}
1003
1004	uval = curval;
1005
1006	/*
1007	 * Set the FUTEX_WAITERS flag, so the owner will know it has someone
1008	 * to wake at the next unlock.
1009	 */
1010	newval = curval | FUTEX_WAITERS;
 
 
1011
1012	/*
1013	 * Should we force take the futex? See below.
 
 
 
1014	 */
1015	if (unlikely(force_take)) {
1016		/*
1017		 * Keep the OWNER_DIED and the WAITERS bit and set the
1018		 * new TID value.
1019		 */
1020		newval = (curval & ~FUTEX_TID_MASK) | vpid;
1021		force_take = 0;
1022		lock_taken = 1;
1023	}
1024
1025	if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
1026		return -EFAULT;
1027	if (unlikely(curval != uval))
1028		goto retry;
 
 
 
 
1029
1030	/*
1031	 * We took the lock due to forced take over.
 
 
1032	 */
1033	if (unlikely(lock_taken))
1034		return 1;
1035
 
1036	/*
1037	 * We dont have the lock. Look up the PI state (or create it if
1038	 * we are the first waiter):
 
1039	 */
1040	ret = lookup_pi_state(uval, hb, key, ps);
1041
1042	if (unlikely(ret)) {
1043		switch (ret) {
1044		case -ESRCH:
1045			/*
1046			 * We failed to find an owner for this
1047			 * futex. So we have no pi_state to block
1048			 * on. This can happen in two cases:
1049			 *
1050			 * 1) The owner died
1051			 * 2) A stale FUTEX_WAITERS bit
1052			 *
1053			 * Re-read the futex value.
1054			 */
1055			if (get_futex_value_locked(&curval, uaddr))
1056				return -EFAULT;
1057
1058			/*
1059			 * If the owner died or we have a stale
1060			 * WAITERS bit the owner TID in the user space
1061			 * futex is 0.
1062			 */
1063			if (!(curval & FUTEX_TID_MASK)) {
1064				force_take = 1;
1065				goto retry;
1066			}
1067		default:
1068			break;
1069		}
1070	}
1071
1072	return ret;
1073}
1074
1075/**
1076 * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
1077 * @q:	The futex_q to unqueue
1078 *
1079 * The q->lock_ptr must not be NULL and must be held by the caller.
1080 */
1081static void __unqueue_futex(struct futex_q *q)
1082{
1083	struct futex_hash_bucket *hb;
1084
1085	if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
1086	    || WARN_ON(plist_node_empty(&q->list)))
1087		return;
1088
1089	hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
1090	plist_del(&q->list, &hb->chain);
1091	hb_waiters_dec(hb);
1092}
1093
1094/*
1095 * The hash bucket lock must be held when this is called.
1096 * Afterwards, the futex_q must not be accessed.
 
 
1097 */
1098static void wake_futex(struct futex_q *q)
1099{
1100	struct task_struct *p = q->task;
1101
1102	if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
1103		return;
1104
1105	/*
1106	 * We set q->lock_ptr = NULL _before_ we wake up the task. If
1107	 * a non-futex wake up happens on another CPU then the task
1108	 * might exit and p would dereference a non-existing task
1109	 * struct. Prevent this by holding a reference on p across the
1110	 * wake up.
1111	 */
1112	get_task_struct(p);
1113
1114	__unqueue_futex(q);
1115	/*
1116	 * The waiting task can free the futex_q as soon as
1117	 * q->lock_ptr = NULL is written, without taking any locks. A
1118	 * memory barrier is required here to prevent the following
1119	 * store to lock_ptr from getting ahead of the plist_del.
1120	 */
1121	smp_wmb();
1122	q->lock_ptr = NULL;
1123
1124	wake_up_state(p, TASK_NORMAL);
1125	put_task_struct(p);
1126}
1127
1128static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this)
 
1129{
1130	struct task_struct *new_owner;
1131	struct futex_pi_state *pi_state = this->pi_state;
1132	u32 uninitialized_var(curval), newval;
 
 
1133	int ret = 0;
1134
1135	if (!pi_state)
1136		return -EINVAL;
1137
1138	/*
1139	 * If current does not own the pi_state then the futex is
1140	 * inconsistent and user space fiddled with the futex value.
1141	 */
1142	if (pi_state->owner != current)
1143		return -EINVAL;
1144
1145	raw_spin_lock(&pi_state->pi_mutex.wait_lock);
1146	new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
1147
1148	/*
1149	 * It is possible that the next waiter (the one that brought
1150	 * this owner to the kernel) timed out and is no longer
1151	 * waiting on the lock.
1152	 */
1153	if (!new_owner)
1154		new_owner = this->task;
1155
1156	/*
1157	 * We pass it to the next owner. The WAITERS bit is always
1158	 * kept enabled while there is PI state around. We cleanup the
1159	 * owner died bit, because we are the owner.
1160	 */
1161	newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
1162
1163	if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
1164		ret = -EFAULT;
1165	else if (curval != uval)
1166		ret = -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
1167	if (ret) {
1168		raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
1169		return ret;
1170	}
1171
1172	raw_spin_lock_irq(&pi_state->owner->pi_lock);
1173	WARN_ON(list_empty(&pi_state->list));
1174	list_del_init(&pi_state->list);
1175	raw_spin_unlock_irq(&pi_state->owner->pi_lock);
1176
1177	raw_spin_lock_irq(&new_owner->pi_lock);
1178	WARN_ON(!list_empty(&pi_state->list));
1179	list_add(&pi_state->list, &new_owner->pi_state_list);
1180	pi_state->owner = new_owner;
1181	raw_spin_unlock_irq(&new_owner->pi_lock);
1182
1183	raw_spin_unlock(&pi_state->pi_mutex.wait_lock);
1184	rt_mutex_unlock(&pi_state->pi_mutex);
1185
1186	return 0;
1187}
1188
1189static int unlock_futex_pi(u32 __user *uaddr, u32 uval)
1190{
1191	u32 uninitialized_var(oldval);
1192
1193	/*
1194	 * There is no waiter, so we unlock the futex. The owner died
1195	 * bit has not to be preserved here. We are the owner:
 
 
1196	 */
1197	if (cmpxchg_futex_value_locked(&oldval, uaddr, uval, 0))
1198		return -EFAULT;
1199	if (oldval != uval)
1200		return -EAGAIN;
1201
1202	return 0;
1203}
1204
1205/*
1206 * Express the locking dependencies for lockdep:
1207 */
1208static inline void
1209double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1210{
1211	if (hb1 <= hb2) {
1212		spin_lock(&hb1->lock);
1213		if (hb1 < hb2)
1214			spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1215	} else { /* hb1 > hb2 */
1216		spin_lock(&hb2->lock);
1217		spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1218	}
1219}
1220
1221static inline void
1222double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1223{
1224	spin_unlock(&hb1->lock);
1225	if (hb1 != hb2)
1226		spin_unlock(&hb2->lock);
1227}
1228
1229/*
1230 * Wake up waiters matching bitset queued on this futex (uaddr).
1231 */
1232static int
1233futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1234{
1235	struct futex_hash_bucket *hb;
1236	struct futex_q *this, *next;
1237	union futex_key key = FUTEX_KEY_INIT;
1238	int ret;
 
1239
1240	if (!bitset)
1241		return -EINVAL;
1242
1243	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
1244	if (unlikely(ret != 0))
1245		goto out;
1246
1247	hb = hash_futex(&key);
1248
1249	/* Make sure we really have tasks to wakeup */
1250	if (!hb_waiters_pending(hb))
1251		goto out_put_key;
1252
1253	spin_lock(&hb->lock);
1254
1255	plist_for_each_entry_safe(this, next, &hb->chain, list) {
1256		if (match_futex (&this->key, &key)) {
1257			if (this->pi_state || this->rt_waiter) {
1258				ret = -EINVAL;
1259				break;
1260			}
1261
1262			/* Check if one of the bits is set in both bitsets */
1263			if (!(this->bitset & bitset))
1264				continue;
1265
1266			wake_futex(this);
1267			if (++ret >= nr_wake)
1268				break;
1269		}
1270	}
1271
1272	spin_unlock(&hb->lock);
 
1273out_put_key:
1274	put_futex_key(&key);
1275out:
1276	return ret;
1277}
1278
1279/*
1280 * Wake up all waiters hashed on the physical page that is mapped
1281 * to this virtual address:
1282 */
1283static int
1284futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1285	      int nr_wake, int nr_wake2, int op)
1286{
1287	union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1288	struct futex_hash_bucket *hb1, *hb2;
1289	struct futex_q *this, *next;
1290	int ret, op_ret;
 
1291
1292retry:
1293	ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1294	if (unlikely(ret != 0))
1295		goto out;
1296	ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
1297	if (unlikely(ret != 0))
1298		goto out_put_key1;
1299
1300	hb1 = hash_futex(&key1);
1301	hb2 = hash_futex(&key2);
1302
1303retry_private:
1304	double_lock_hb(hb1, hb2);
1305	op_ret = futex_atomic_op_inuser(op, uaddr2);
1306	if (unlikely(op_ret < 0)) {
1307
1308		double_unlock_hb(hb1, hb2);
1309
1310#ifndef CONFIG_MMU
1311		/*
1312		 * we don't get EFAULT from MMU faults if we don't have an MMU,
1313		 * but we might get them from range checking
1314		 */
1315		ret = op_ret;
1316		goto out_put_keys;
1317#endif
1318
1319		if (unlikely(op_ret != -EFAULT)) {
1320			ret = op_ret;
1321			goto out_put_keys;
1322		}
1323
1324		ret = fault_in_user_writeable(uaddr2);
1325		if (ret)
1326			goto out_put_keys;
1327
1328		if (!(flags & FLAGS_SHARED))
1329			goto retry_private;
1330
1331		put_futex_key(&key2);
1332		put_futex_key(&key1);
1333		goto retry;
1334	}
1335
1336	plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1337		if (match_futex (&this->key, &key1)) {
1338			if (this->pi_state || this->rt_waiter) {
1339				ret = -EINVAL;
1340				goto out_unlock;
1341			}
1342			wake_futex(this);
1343			if (++ret >= nr_wake)
1344				break;
1345		}
1346	}
1347
1348	if (op_ret > 0) {
1349		op_ret = 0;
1350		plist_for_each_entry_safe(this, next, &hb2->chain, list) {
1351			if (match_futex (&this->key, &key2)) {
1352				if (this->pi_state || this->rt_waiter) {
1353					ret = -EINVAL;
1354					goto out_unlock;
1355				}
1356				wake_futex(this);
1357				if (++op_ret >= nr_wake2)
1358					break;
1359			}
1360		}
1361		ret += op_ret;
1362	}
1363
1364out_unlock:
1365	double_unlock_hb(hb1, hb2);
 
1366out_put_keys:
1367	put_futex_key(&key2);
1368out_put_key1:
1369	put_futex_key(&key1);
1370out:
1371	return ret;
1372}
1373
1374/**
1375 * requeue_futex() - Requeue a futex_q from one hb to another
1376 * @q:		the futex_q to requeue
1377 * @hb1:	the source hash_bucket
1378 * @hb2:	the target hash_bucket
1379 * @key2:	the new key for the requeued futex_q
1380 */
1381static inline
1382void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1383		   struct futex_hash_bucket *hb2, union futex_key *key2)
1384{
1385
1386	/*
1387	 * If key1 and key2 hash to the same bucket, no need to
1388	 * requeue.
1389	 */
1390	if (likely(&hb1->chain != &hb2->chain)) {
1391		plist_del(&q->list, &hb1->chain);
1392		hb_waiters_dec(hb1);
1393		plist_add(&q->list, &hb2->chain);
1394		hb_waiters_inc(hb2);
 
1395		q->lock_ptr = &hb2->lock;
1396	}
1397	get_futex_key_refs(key2);
1398	q->key = *key2;
1399}
1400
1401/**
1402 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1403 * @q:		the futex_q
1404 * @key:	the key of the requeue target futex
1405 * @hb:		the hash_bucket of the requeue target futex
1406 *
1407 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1408 * target futex if it is uncontended or via a lock steal.  Set the futex_q key
1409 * to the requeue target futex so the waiter can detect the wakeup on the right
1410 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1411 * atomic lock acquisition.  Set the q->lock_ptr to the requeue target hb->lock
1412 * to protect access to the pi_state to fixup the owner later.  Must be called
1413 * with both q->lock_ptr and hb->lock held.
1414 */
1415static inline
1416void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1417			   struct futex_hash_bucket *hb)
1418{
1419	get_futex_key_refs(key);
1420	q->key = *key;
1421
1422	__unqueue_futex(q);
1423
1424	WARN_ON(!q->rt_waiter);
1425	q->rt_waiter = NULL;
1426
1427	q->lock_ptr = &hb->lock;
1428
1429	wake_up_state(q->task, TASK_NORMAL);
1430}
1431
1432/**
1433 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1434 * @pifutex:		the user address of the to futex
1435 * @hb1:		the from futex hash bucket, must be locked by the caller
1436 * @hb2:		the to futex hash bucket, must be locked by the caller
1437 * @key1:		the from futex key
1438 * @key2:		the to futex key
1439 * @ps:			address to store the pi_state pointer
1440 * @set_waiters:	force setting the FUTEX_WAITERS bit (1) or not (0)
1441 *
1442 * Try and get the lock on behalf of the top waiter if we can do it atomically.
1443 * Wake the top waiter if we succeed.  If the caller specified set_waiters,
1444 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1445 * hb1 and hb2 must be held by the caller.
1446 *
1447 * Return:
1448 *  0 - failed to acquire the lock atomically;
1449 * >0 - acquired the lock, return value is vpid of the top_waiter
1450 * <0 - error
1451 */
1452static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1453				 struct futex_hash_bucket *hb1,
1454				 struct futex_hash_bucket *hb2,
1455				 union futex_key *key1, union futex_key *key2,
1456				 struct futex_pi_state **ps, int set_waiters)
1457{
1458	struct futex_q *top_waiter = NULL;
1459	u32 curval;
1460	int ret, vpid;
1461
1462	if (get_futex_value_locked(&curval, pifutex))
1463		return -EFAULT;
1464
 
 
 
1465	/*
1466	 * Find the top_waiter and determine if there are additional waiters.
1467	 * If the caller intends to requeue more than 1 waiter to pifutex,
1468	 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1469	 * as we have means to handle the possible fault.  If not, don't set
1470	 * the bit unecessarily as it will force the subsequent unlock to enter
1471	 * the kernel.
1472	 */
1473	top_waiter = futex_top_waiter(hb1, key1);
1474
1475	/* There are no waiters, nothing for us to do. */
1476	if (!top_waiter)
1477		return 0;
1478
1479	/* Ensure we requeue to the expected futex. */
1480	if (!match_futex(top_waiter->requeue_pi_key, key2))
1481		return -EINVAL;
1482
1483	/*
1484	 * Try to take the lock for top_waiter.  Set the FUTEX_WAITERS bit in
1485	 * the contended case or if set_waiters is 1.  The pi_state is returned
1486	 * in ps in contended cases.
1487	 */
1488	vpid = task_pid_vnr(top_waiter->task);
1489	ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1490				   set_waiters);
1491	if (ret == 1) {
1492		requeue_pi_wake_futex(top_waiter, key2, hb2);
1493		return vpid;
1494	}
1495	return ret;
1496}
1497
1498/**
1499 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1500 * @uaddr1:	source futex user address
1501 * @flags:	futex flags (FLAGS_SHARED, etc.)
1502 * @uaddr2:	target futex user address
1503 * @nr_wake:	number of waiters to wake (must be 1 for requeue_pi)
1504 * @nr_requeue:	number of waiters to requeue (0-INT_MAX)
1505 * @cmpval:	@uaddr1 expected value (or %NULL)
1506 * @requeue_pi:	if we are attempting to requeue from a non-pi futex to a
1507 *		pi futex (pi to pi requeue is not supported)
1508 *
1509 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1510 * uaddr2 atomically on behalf of the top waiter.
1511 *
1512 * Return:
1513 * >=0 - on success, the number of tasks requeued or woken;
1514 *  <0 - on error
1515 */
1516static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1517			 u32 __user *uaddr2, int nr_wake, int nr_requeue,
1518			 u32 *cmpval, int requeue_pi)
1519{
1520	union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1521	int drop_count = 0, task_count = 0, ret;
1522	struct futex_pi_state *pi_state = NULL;
1523	struct futex_hash_bucket *hb1, *hb2;
1524	struct futex_q *this, *next;
 
1525
1526	if (requeue_pi) {
1527		/*
1528		 * Requeue PI only works on two distinct uaddrs. This
1529		 * check is only valid for private futexes. See below.
1530		 */
1531		if (uaddr1 == uaddr2)
1532			return -EINVAL;
1533
1534		/*
1535		 * requeue_pi requires a pi_state, try to allocate it now
1536		 * without any locks in case it fails.
1537		 */
1538		if (refill_pi_state_cache())
1539			return -ENOMEM;
1540		/*
1541		 * requeue_pi must wake as many tasks as it can, up to nr_wake
1542		 * + nr_requeue, since it acquires the rt_mutex prior to
1543		 * returning to userspace, so as to not leave the rt_mutex with
1544		 * waiters and no owner.  However, second and third wake-ups
1545		 * cannot be predicted as they involve race conditions with the
1546		 * first wake and a fault while looking up the pi_state.  Both
1547		 * pthread_cond_signal() and pthread_cond_broadcast() should
1548		 * use nr_wake=1.
1549		 */
1550		if (nr_wake != 1)
1551			return -EINVAL;
1552	}
1553
1554retry:
1555	if (pi_state != NULL) {
1556		/*
1557		 * We will have to lookup the pi_state again, so free this one
1558		 * to keep the accounting correct.
1559		 */
1560		free_pi_state(pi_state);
1561		pi_state = NULL;
1562	}
1563
1564	ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1565	if (unlikely(ret != 0))
1566		goto out;
1567	ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1568			    requeue_pi ? VERIFY_WRITE : VERIFY_READ);
1569	if (unlikely(ret != 0))
1570		goto out_put_key1;
1571
1572	/*
1573	 * The check above which compares uaddrs is not sufficient for
1574	 * shared futexes. We need to compare the keys:
1575	 */
1576	if (requeue_pi && match_futex(&key1, &key2)) {
1577		ret = -EINVAL;
1578		goto out_put_keys;
1579	}
1580
1581	hb1 = hash_futex(&key1);
1582	hb2 = hash_futex(&key2);
1583
1584retry_private:
1585	hb_waiters_inc(hb2);
1586	double_lock_hb(hb1, hb2);
1587
1588	if (likely(cmpval != NULL)) {
1589		u32 curval;
1590
1591		ret = get_futex_value_locked(&curval, uaddr1);
1592
1593		if (unlikely(ret)) {
1594			double_unlock_hb(hb1, hb2);
1595			hb_waiters_dec(hb2);
1596
1597			ret = get_user(curval, uaddr1);
1598			if (ret)
1599				goto out_put_keys;
1600
1601			if (!(flags & FLAGS_SHARED))
1602				goto retry_private;
1603
1604			put_futex_key(&key2);
1605			put_futex_key(&key1);
1606			goto retry;
1607		}
1608		if (curval != *cmpval) {
1609			ret = -EAGAIN;
1610			goto out_unlock;
1611		}
1612	}
1613
1614	if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
1615		/*
1616		 * Attempt to acquire uaddr2 and wake the top waiter. If we
1617		 * intend to requeue waiters, force setting the FUTEX_WAITERS
1618		 * bit.  We force this here where we are able to easily handle
1619		 * faults rather in the requeue loop below.
1620		 */
1621		ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
1622						 &key2, &pi_state, nr_requeue);
1623
1624		/*
1625		 * At this point the top_waiter has either taken uaddr2 or is
1626		 * waiting on it.  If the former, then the pi_state will not
1627		 * exist yet, look it up one more time to ensure we have a
1628		 * reference to it. If the lock was taken, ret contains the
1629		 * vpid of the top waiter task.
 
 
1630		 */
1631		if (ret > 0) {
1632			WARN_ON(pi_state);
1633			drop_count++;
1634			task_count++;
1635			/*
1636			 * If we acquired the lock, then the user
1637			 * space value of uaddr2 should be vpid. It
1638			 * cannot be changed by the top waiter as it
1639			 * is blocked on hb2 lock if it tries to do
1640			 * so. If something fiddled with it behind our
1641			 * back the pi state lookup might unearth
1642			 * it. So we rather use the known value than
1643			 * rereading and handing potential crap to
1644			 * lookup_pi_state.
 
1645			 */
1646			ret = lookup_pi_state(ret, hb2, &key2, &pi_state);
1647		}
1648
1649		switch (ret) {
1650		case 0:
 
1651			break;
 
 
1652		case -EFAULT:
1653			double_unlock_hb(hb1, hb2);
1654			hb_waiters_dec(hb2);
1655			put_futex_key(&key2);
1656			put_futex_key(&key1);
1657			ret = fault_in_user_writeable(uaddr2);
1658			if (!ret)
1659				goto retry;
1660			goto out;
1661		case -EAGAIN:
1662			/* The owner was exiting, try again. */
 
 
 
 
 
1663			double_unlock_hb(hb1, hb2);
1664			hb_waiters_dec(hb2);
1665			put_futex_key(&key2);
1666			put_futex_key(&key1);
1667			cond_resched();
1668			goto retry;
1669		default:
1670			goto out_unlock;
1671		}
1672	}
1673
1674	plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1675		if (task_count - nr_wake >= nr_requeue)
1676			break;
1677
1678		if (!match_futex(&this->key, &key1))
1679			continue;
1680
1681		/*
1682		 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
1683		 * be paired with each other and no other futex ops.
1684		 *
1685		 * We should never be requeueing a futex_q with a pi_state,
1686		 * which is awaiting a futex_unlock_pi().
1687		 */
1688		if ((requeue_pi && !this->rt_waiter) ||
1689		    (!requeue_pi && this->rt_waiter) ||
1690		    this->pi_state) {
1691			ret = -EINVAL;
1692			break;
1693		}
1694
1695		/*
1696		 * Wake nr_wake waiters.  For requeue_pi, if we acquired the
1697		 * lock, we already woke the top_waiter.  If not, it will be
1698		 * woken by futex_unlock_pi().
1699		 */
1700		if (++task_count <= nr_wake && !requeue_pi) {
1701			wake_futex(this);
1702			continue;
1703		}
1704
1705		/* Ensure we requeue to the expected futex for requeue_pi. */
1706		if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
1707			ret = -EINVAL;
1708			break;
1709		}
1710
1711		/*
1712		 * Requeue nr_requeue waiters and possibly one more in the case
1713		 * of requeue_pi if we couldn't acquire the lock atomically.
1714		 */
1715		if (requeue_pi) {
1716			/* Prepare the waiter to take the rt_mutex. */
 
 
 
 
1717			atomic_inc(&pi_state->refcount);
1718			this->pi_state = pi_state;
1719			ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
1720							this->rt_waiter,
1721							this->task, 1);
1722			if (ret == 1) {
1723				/* We got the lock. */
 
 
 
 
 
 
 
1724				requeue_pi_wake_futex(this, &key2, hb2);
1725				drop_count++;
1726				continue;
1727			} else if (ret) {
1728				/* -EDEADLK */
 
 
 
 
 
 
 
1729				this->pi_state = NULL;
1730				free_pi_state(pi_state);
1731				goto out_unlock;
 
 
 
 
1732			}
1733		}
1734		requeue_futex(this, hb1, hb2, &key2);
1735		drop_count++;
1736	}
1737
 
 
 
 
 
 
 
1738out_unlock:
1739	double_unlock_hb(hb1, hb2);
 
1740	hb_waiters_dec(hb2);
1741
1742	/*
1743	 * drop_futex_key_refs() must be called outside the spinlocks. During
1744	 * the requeue we moved futex_q's from the hash bucket at key1 to the
1745	 * one at key2 and updated their key pointer.  We no longer need to
1746	 * hold the references to key1.
1747	 */
1748	while (--drop_count >= 0)
1749		drop_futex_key_refs(&key1);
1750
1751out_put_keys:
1752	put_futex_key(&key2);
1753out_put_key1:
1754	put_futex_key(&key1);
1755out:
1756	if (pi_state != NULL)
1757		free_pi_state(pi_state);
1758	return ret ? ret : task_count;
1759}
1760
1761/* The key must be already stored in q->key. */
1762static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
1763	__acquires(&hb->lock)
1764{
1765	struct futex_hash_bucket *hb;
1766
1767	hb = hash_futex(&q->key);
1768
1769	/*
1770	 * Increment the counter before taking the lock so that
1771	 * a potential waker won't miss a to-be-slept task that is
1772	 * waiting for the spinlock. This is safe as all queue_lock()
1773	 * users end up calling queue_me(). Similarly, for housekeeping,
1774	 * decrement the counter at queue_unlock() when some error has
1775	 * occurred and we don't end up adding the task to the list.
1776	 */
1777	hb_waiters_inc(hb);
1778
1779	q->lock_ptr = &hb->lock;
1780
1781	spin_lock(&hb->lock); /* implies MB (A) */
1782	return hb;
1783}
1784
1785static inline void
1786queue_unlock(struct futex_hash_bucket *hb)
1787	__releases(&hb->lock)
1788{
1789	spin_unlock(&hb->lock);
1790	hb_waiters_dec(hb);
1791}
1792
1793/**
1794 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
1795 * @q:	The futex_q to enqueue
1796 * @hb:	The destination hash bucket
1797 *
1798 * The hb->lock must be held by the caller, and is released here. A call to
1799 * queue_me() is typically paired with exactly one call to unqueue_me().  The
1800 * exceptions involve the PI related operations, which may use unqueue_me_pi()
1801 * or nothing if the unqueue is done as part of the wake process and the unqueue
1802 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
1803 * an example).
1804 */
1805static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
1806	__releases(&hb->lock)
1807{
1808	int prio;
1809
1810	/*
1811	 * The priority used to register this element is
1812	 * - either the real thread-priority for the real-time threads
1813	 * (i.e. threads with a priority lower than MAX_RT_PRIO)
1814	 * - or MAX_RT_PRIO for non-RT threads.
1815	 * Thus, all RT-threads are woken first in priority order, and
1816	 * the others are woken last, in FIFO order.
1817	 */
1818	prio = min(current->normal_prio, MAX_RT_PRIO);
1819
1820	plist_node_init(&q->list, prio);
1821	plist_add(&q->list, &hb->chain);
1822	q->task = current;
1823	spin_unlock(&hb->lock);
1824}
1825
1826/**
1827 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
1828 * @q:	The futex_q to unqueue
1829 *
1830 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
1831 * be paired with exactly one earlier call to queue_me().
1832 *
1833 * Return:
1834 *   1 - if the futex_q was still queued (and we removed unqueued it);
1835 *   0 - if the futex_q was already removed by the waking thread
1836 */
1837static int unqueue_me(struct futex_q *q)
1838{
1839	spinlock_t *lock_ptr;
1840	int ret = 0;
1841
1842	/* In the common case we don't take the spinlock, which is nice. */
1843retry:
1844	lock_ptr = q->lock_ptr;
1845	barrier();
 
 
 
 
1846	if (lock_ptr != NULL) {
1847		spin_lock(lock_ptr);
1848		/*
1849		 * q->lock_ptr can change between reading it and
1850		 * spin_lock(), causing us to take the wrong lock.  This
1851		 * corrects the race condition.
1852		 *
1853		 * Reasoning goes like this: if we have the wrong lock,
1854		 * q->lock_ptr must have changed (maybe several times)
1855		 * between reading it and the spin_lock().  It can
1856		 * change again after the spin_lock() but only if it was
1857		 * already changed before the spin_lock().  It cannot,
1858		 * however, change back to the original value.  Therefore
1859		 * we can detect whether we acquired the correct lock.
1860		 */
1861		if (unlikely(lock_ptr != q->lock_ptr)) {
1862			spin_unlock(lock_ptr);
1863			goto retry;
1864		}
1865		__unqueue_futex(q);
1866
1867		BUG_ON(q->pi_state);
1868
1869		spin_unlock(lock_ptr);
1870		ret = 1;
1871	}
1872
1873	drop_futex_key_refs(&q->key);
1874	return ret;
1875}
1876
1877/*
1878 * PI futexes can not be requeued and must remove themself from the
1879 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
1880 * and dropped here.
1881 */
1882static void unqueue_me_pi(struct futex_q *q)
1883	__releases(q->lock_ptr)
1884{
1885	__unqueue_futex(q);
1886
1887	BUG_ON(!q->pi_state);
1888	free_pi_state(q->pi_state);
1889	q->pi_state = NULL;
1890
1891	spin_unlock(q->lock_ptr);
1892}
1893
1894/*
1895 * Fixup the pi_state owner with the new owner.
1896 *
1897 * Must be called with hash bucket lock held and mm->sem held for non
1898 * private futexes.
1899 */
1900static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
1901				struct task_struct *newowner)
1902{
1903	u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
1904	struct futex_pi_state *pi_state = q->pi_state;
1905	struct task_struct *oldowner = pi_state->owner;
1906	u32 uval, uninitialized_var(curval), newval;
1907	int ret;
1908
1909	/* Owner died? */
1910	if (!pi_state->owner)
1911		newtid |= FUTEX_OWNER_DIED;
1912
1913	/*
1914	 * We are here either because we stole the rtmutex from the
1915	 * previous highest priority waiter or we are the highest priority
1916	 * waiter but failed to get the rtmutex the first time.
1917	 * We have to replace the newowner TID in the user space variable.
1918	 * This must be atomic as we have to preserve the owner died bit here.
1919	 *
1920	 * Note: We write the user space value _before_ changing the pi_state
1921	 * because we can fault here. Imagine swapped out pages or a fork
1922	 * that marked all the anonymous memory readonly for cow.
1923	 *
1924	 * Modifying pi_state _before_ the user space value would
1925	 * leave the pi_state in an inconsistent state when we fault
1926	 * here, because we need to drop the hash bucket lock to
1927	 * handle the fault. This might be observed in the PID check
1928	 * in lookup_pi_state.
1929	 */
1930retry:
1931	if (get_futex_value_locked(&uval, uaddr))
1932		goto handle_fault;
1933
1934	while (1) {
1935		newval = (uval & FUTEX_OWNER_DIED) | newtid;
1936
1937		if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
1938			goto handle_fault;
1939		if (curval == uval)
1940			break;
1941		uval = curval;
1942	}
1943
1944	/*
1945	 * We fixed up user space. Now we need to fix the pi_state
1946	 * itself.
1947	 */
1948	if (pi_state->owner != NULL) {
1949		raw_spin_lock_irq(&pi_state->owner->pi_lock);
1950		WARN_ON(list_empty(&pi_state->list));
1951		list_del_init(&pi_state->list);
1952		raw_spin_unlock_irq(&pi_state->owner->pi_lock);
1953	}
1954
1955	pi_state->owner = newowner;
1956
1957	raw_spin_lock_irq(&newowner->pi_lock);
1958	WARN_ON(!list_empty(&pi_state->list));
1959	list_add(&pi_state->list, &newowner->pi_state_list);
1960	raw_spin_unlock_irq(&newowner->pi_lock);
1961	return 0;
1962
1963	/*
1964	 * To handle the page fault we need to drop the hash bucket
1965	 * lock here. That gives the other task (either the highest priority
1966	 * waiter itself or the task which stole the rtmutex) the
1967	 * chance to try the fixup of the pi_state. So once we are
1968	 * back from handling the fault we need to check the pi_state
1969	 * after reacquiring the hash bucket lock and before trying to
1970	 * do another fixup. When the fixup has been done already we
1971	 * simply return.
1972	 */
1973handle_fault:
1974	spin_unlock(q->lock_ptr);
1975
1976	ret = fault_in_user_writeable(uaddr);
1977
1978	spin_lock(q->lock_ptr);
1979
1980	/*
1981	 * Check if someone else fixed it for us:
1982	 */
1983	if (pi_state->owner != oldowner)
1984		return 0;
1985
1986	if (ret)
1987		return ret;
1988
1989	goto retry;
1990}
1991
1992static long futex_wait_restart(struct restart_block *restart);
1993
1994/**
1995 * fixup_owner() - Post lock pi_state and corner case management
1996 * @uaddr:	user address of the futex
1997 * @q:		futex_q (contains pi_state and access to the rt_mutex)
1998 * @locked:	if the attempt to take the rt_mutex succeeded (1) or not (0)
1999 *
2000 * After attempting to lock an rt_mutex, this function is called to cleanup
2001 * the pi_state owner as well as handle race conditions that may allow us to
2002 * acquire the lock. Must be called with the hb lock held.
2003 *
2004 * Return:
2005 *  1 - success, lock taken;
2006 *  0 - success, lock not taken;
2007 * <0 - on error (-EFAULT)
2008 */
2009static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
2010{
2011	struct task_struct *owner;
2012	int ret = 0;
2013
2014	if (locked) {
2015		/*
2016		 * Got the lock. We might not be the anticipated owner if we
2017		 * did a lock-steal - fix up the PI-state in that case:
2018		 */
2019		if (q->pi_state->owner != current)
2020			ret = fixup_pi_state_owner(uaddr, q, current);
2021		goto out;
2022	}
2023
2024	/*
2025	 * Catch the rare case, where the lock was released when we were on the
2026	 * way back before we locked the hash bucket.
2027	 */
2028	if (q->pi_state->owner == current) {
2029		/*
2030		 * Try to get the rt_mutex now. This might fail as some other
2031		 * task acquired the rt_mutex after we removed ourself from the
2032		 * rt_mutex waiters list.
2033		 */
2034		if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
2035			locked = 1;
2036			goto out;
2037		}
2038
2039		/*
2040		 * pi_state is incorrect, some other task did a lock steal and
2041		 * we returned due to timeout or signal without taking the
2042		 * rt_mutex. Too late.
2043		 */
2044		raw_spin_lock(&q->pi_state->pi_mutex.wait_lock);
2045		owner = rt_mutex_owner(&q->pi_state->pi_mutex);
2046		if (!owner)
2047			owner = rt_mutex_next_owner(&q->pi_state->pi_mutex);
2048		raw_spin_unlock(&q->pi_state->pi_mutex.wait_lock);
2049		ret = fixup_pi_state_owner(uaddr, q, owner);
2050		goto out;
2051	}
2052
2053	/*
2054	 * Paranoia check. If we did not take the lock, then we should not be
2055	 * the owner of the rt_mutex.
2056	 */
2057	if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
2058		printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
2059				"pi-state %p\n", ret,
2060				q->pi_state->pi_mutex.owner,
2061				q->pi_state->owner);
2062
2063out:
2064	return ret ? ret : locked;
2065}
2066
2067/**
2068 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
2069 * @hb:		the futex hash bucket, must be locked by the caller
2070 * @q:		the futex_q to queue up on
2071 * @timeout:	the prepared hrtimer_sleeper, or null for no timeout
2072 */
2073static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
2074				struct hrtimer_sleeper *timeout)
2075{
2076	/*
2077	 * The task state is guaranteed to be set before another task can
2078	 * wake it. set_current_state() is implemented using set_mb() and
2079	 * queue_me() calls spin_unlock() upon completion, both serializing
2080	 * access to the hash list and forcing another memory barrier.
2081	 */
2082	set_current_state(TASK_INTERRUPTIBLE);
2083	queue_me(q, hb);
2084
2085	/* Arm the timer */
2086	if (timeout) {
2087		hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
2088		if (!hrtimer_active(&timeout->timer))
2089			timeout->task = NULL;
2090	}
2091
2092	/*
2093	 * If we have been removed from the hash list, then another task
2094	 * has tried to wake us, and we can skip the call to schedule().
2095	 */
2096	if (likely(!plist_node_empty(&q->list))) {
2097		/*
2098		 * If the timer has already expired, current will already be
2099		 * flagged for rescheduling. Only call schedule if there
2100		 * is no timeout, or if it has yet to expire.
2101		 */
2102		if (!timeout || timeout->task)
2103			freezable_schedule();
2104	}
2105	__set_current_state(TASK_RUNNING);
2106}
2107
2108/**
2109 * futex_wait_setup() - Prepare to wait on a futex
2110 * @uaddr:	the futex userspace address
2111 * @val:	the expected value
2112 * @flags:	futex flags (FLAGS_SHARED, etc.)
2113 * @q:		the associated futex_q
2114 * @hb:		storage for hash_bucket pointer to be returned to caller
2115 *
2116 * Setup the futex_q and locate the hash_bucket.  Get the futex value and
2117 * compare it with the expected value.  Handle atomic faults internally.
2118 * Return with the hb lock held and a q.key reference on success, and unlocked
2119 * with no q.key reference on failure.
2120 *
2121 * Return:
2122 *  0 - uaddr contains val and hb has been locked;
2123 * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
2124 */
2125static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
2126			   struct futex_q *q, struct futex_hash_bucket **hb)
2127{
2128	u32 uval;
2129	int ret;
2130
2131	/*
2132	 * Access the page AFTER the hash-bucket is locked.
2133	 * Order is important:
2134	 *
2135	 *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
2136	 *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
2137	 *
2138	 * The basic logical guarantee of a futex is that it blocks ONLY
2139	 * if cond(var) is known to be true at the time of blocking, for
2140	 * any cond.  If we locked the hash-bucket after testing *uaddr, that
2141	 * would open a race condition where we could block indefinitely with
2142	 * cond(var) false, which would violate the guarantee.
2143	 *
2144	 * On the other hand, we insert q and release the hash-bucket only
2145	 * after testing *uaddr.  This guarantees that futex_wait() will NOT
2146	 * absorb a wakeup if *uaddr does not match the desired values
2147	 * while the syscall executes.
2148	 */
2149retry:
2150	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
2151	if (unlikely(ret != 0))
2152		return ret;
2153
2154retry_private:
2155	*hb = queue_lock(q);
2156
2157	ret = get_futex_value_locked(&uval, uaddr);
2158
2159	if (ret) {
2160		queue_unlock(*hb);
2161
2162		ret = get_user(uval, uaddr);
2163		if (ret)
2164			goto out;
2165
2166		if (!(flags & FLAGS_SHARED))
2167			goto retry_private;
2168
2169		put_futex_key(&q->key);
2170		goto retry;
2171	}
2172
2173	if (uval != val) {
2174		queue_unlock(*hb);
2175		ret = -EWOULDBLOCK;
2176	}
2177
2178out:
2179	if (ret)
2180		put_futex_key(&q->key);
2181	return ret;
2182}
2183
2184static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2185		      ktime_t *abs_time, u32 bitset)
2186{
2187	struct hrtimer_sleeper timeout, *to = NULL;
2188	struct restart_block *restart;
2189	struct futex_hash_bucket *hb;
2190	struct futex_q q = futex_q_init;
2191	int ret;
2192
2193	if (!bitset)
2194		return -EINVAL;
2195	q.bitset = bitset;
2196
2197	if (abs_time) {
2198		to = &timeout;
2199
2200		hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2201				      CLOCK_REALTIME : CLOCK_MONOTONIC,
2202				      HRTIMER_MODE_ABS);
2203		hrtimer_init_sleeper(to, current);
2204		hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2205					     current->timer_slack_ns);
2206	}
2207
2208retry:
2209	/*
2210	 * Prepare to wait on uaddr. On success, holds hb lock and increments
2211	 * q.key refs.
2212	 */
2213	ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2214	if (ret)
2215		goto out;
2216
2217	/* queue_me and wait for wakeup, timeout, or a signal. */
2218	futex_wait_queue_me(hb, &q, to);
2219
2220	/* If we were woken (and unqueued), we succeeded, whatever. */
2221	ret = 0;
2222	/* unqueue_me() drops q.key ref */
2223	if (!unqueue_me(&q))
2224		goto out;
2225	ret = -ETIMEDOUT;
2226	if (to && !to->task)
2227		goto out;
2228
2229	/*
2230	 * We expect signal_pending(current), but we might be the
2231	 * victim of a spurious wakeup as well.
2232	 */
2233	if (!signal_pending(current))
2234		goto retry;
2235
2236	ret = -ERESTARTSYS;
2237	if (!abs_time)
2238		goto out;
2239
2240	restart = &current_thread_info()->restart_block;
2241	restart->fn = futex_wait_restart;
2242	restart->futex.uaddr = uaddr;
2243	restart->futex.val = val;
2244	restart->futex.time = abs_time->tv64;
2245	restart->futex.bitset = bitset;
2246	restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
2247
2248	ret = -ERESTART_RESTARTBLOCK;
2249
2250out:
2251	if (to) {
2252		hrtimer_cancel(&to->timer);
2253		destroy_hrtimer_on_stack(&to->timer);
2254	}
2255	return ret;
2256}
2257
2258
2259static long futex_wait_restart(struct restart_block *restart)
2260{
2261	u32 __user *uaddr = restart->futex.uaddr;
2262	ktime_t t, *tp = NULL;
2263
2264	if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2265		t.tv64 = restart->futex.time;
2266		tp = &t;
2267	}
2268	restart->fn = do_no_restart_syscall;
2269
2270	return (long)futex_wait(uaddr, restart->futex.flags,
2271				restart->futex.val, tp, restart->futex.bitset);
2272}
2273
2274
2275/*
2276 * Userspace tried a 0 -> TID atomic transition of the futex value
2277 * and failed. The kernel side here does the whole locking operation:
2278 * if there are waiters then it will block, it does PI, etc. (Due to
2279 * races the kernel might see a 0 value of the futex too.)
 
 
 
2280 */
2281static int futex_lock_pi(u32 __user *uaddr, unsigned int flags, int detect,
2282			 ktime_t *time, int trylock)
2283{
2284	struct hrtimer_sleeper timeout, *to = NULL;
2285	struct futex_hash_bucket *hb;
2286	struct futex_q q = futex_q_init;
2287	int res, ret;
2288
2289	if (refill_pi_state_cache())
2290		return -ENOMEM;
2291
2292	if (time) {
2293		to = &timeout;
2294		hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
2295				      HRTIMER_MODE_ABS);
2296		hrtimer_init_sleeper(to, current);
2297		hrtimer_set_expires(&to->timer, *time);
2298	}
2299
2300retry:
2301	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
2302	if (unlikely(ret != 0))
2303		goto out;
2304
2305retry_private:
2306	hb = queue_lock(&q);
2307
2308	ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
2309	if (unlikely(ret)) {
 
 
 
 
2310		switch (ret) {
2311		case 1:
2312			/* We got the lock. */
2313			ret = 0;
2314			goto out_unlock_put_key;
2315		case -EFAULT:
2316			goto uaddr_faulted;
2317		case -EAGAIN:
2318			/*
2319			 * Task is exiting and we just wait for the
2320			 * exit to complete.
 
 
2321			 */
2322			queue_unlock(hb);
2323			put_futex_key(&q.key);
2324			cond_resched();
2325			goto retry;
2326		default:
2327			goto out_unlock_put_key;
2328		}
2329	}
2330
2331	/*
2332	 * Only actually queue now that the atomic ops are done:
2333	 */
2334	queue_me(&q, hb);
2335
2336	WARN_ON(!q.pi_state);
2337	/*
2338	 * Block on the PI mutex:
2339	 */
2340	if (!trylock)
2341		ret = rt_mutex_timed_lock(&q.pi_state->pi_mutex, to, 1);
2342	else {
2343		ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
2344		/* Fixup the trylock return value: */
2345		ret = ret ? 0 : -EWOULDBLOCK;
2346	}
2347
2348	spin_lock(q.lock_ptr);
2349	/*
2350	 * Fixup the pi_state owner and possibly acquire the lock if we
2351	 * haven't already.
2352	 */
2353	res = fixup_owner(uaddr, &q, !ret);
2354	/*
2355	 * If fixup_owner() returned an error, proprogate that.  If it acquired
2356	 * the lock, clear our -ETIMEDOUT or -EINTR.
2357	 */
2358	if (res)
2359		ret = (res < 0) ? res : 0;
2360
2361	/*
2362	 * If fixup_owner() faulted and was unable to handle the fault, unlock
2363	 * it and return the fault to userspace.
2364	 */
2365	if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
2366		rt_mutex_unlock(&q.pi_state->pi_mutex);
2367
2368	/* Unqueue and drop the lock */
2369	unqueue_me_pi(&q);
2370
2371	goto out_put_key;
2372
2373out_unlock_put_key:
2374	queue_unlock(hb);
2375
2376out_put_key:
2377	put_futex_key(&q.key);
2378out:
2379	if (to)
2380		destroy_hrtimer_on_stack(&to->timer);
2381	return ret != -EINTR ? ret : -ERESTARTNOINTR;
2382
2383uaddr_faulted:
2384	queue_unlock(hb);
2385
2386	ret = fault_in_user_writeable(uaddr);
2387	if (ret)
2388		goto out_put_key;
2389
2390	if (!(flags & FLAGS_SHARED))
2391		goto retry_private;
2392
2393	put_futex_key(&q.key);
2394	goto retry;
2395}
2396
2397/*
2398 * Userspace attempted a TID -> 0 atomic transition, and failed.
2399 * This is the in-kernel slowpath: we look up the PI state (if any),
2400 * and do the rt-mutex unlock.
2401 */
2402static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2403{
2404	struct futex_hash_bucket *hb;
2405	struct futex_q *this, *next;
2406	union futex_key key = FUTEX_KEY_INIT;
2407	u32 uval, vpid = task_pid_vnr(current);
 
2408	int ret;
2409
2410retry:
2411	if (get_user(uval, uaddr))
2412		return -EFAULT;
2413	/*
2414	 * We release only a lock we actually own:
2415	 */
2416	if ((uval & FUTEX_TID_MASK) != vpid)
2417		return -EPERM;
2418
2419	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
2420	if (unlikely(ret != 0))
2421		goto out;
2422
2423	hb = hash_futex(&key);
2424	spin_lock(&hb->lock);
2425
2426	/*
2427	 * To avoid races, try to do the TID -> 0 atomic transition
2428	 * again. If it succeeds then we can return without waking
2429	 * anyone else up. We only try this if neither the waiters nor
2430	 * the owner died bit are set.
2431	 */
2432	if (!(uval & ~FUTEX_TID_MASK) &&
2433	    cmpxchg_futex_value_locked(&uval, uaddr, vpid, 0))
2434		goto pi_faulted;
2435	/*
2436	 * Rare case: we managed to release the lock atomically,
2437	 * no need to wake anyone else up:
2438	 */
2439	if (unlikely(uval == vpid))
2440		goto out_unlock;
2441
2442	/*
2443	 * Ok, other tasks may need to be woken up - check waiters
2444	 * and do the wakeup if necessary:
2445	 */
2446	plist_for_each_entry_safe(this, next, &hb->chain, list) {
2447		if (!match_futex (&this->key, &key))
2448			continue;
2449		ret = wake_futex_pi(uaddr, uval, this);
2450		/*
2451		 * The atomic access to the futex value
2452		 * generated a pagefault, so retry the
2453		 * user-access and the wakeup:
 
 
 
 
 
2454		 */
2455		if (ret == -EFAULT)
2456			goto pi_faulted;
 
 
 
 
 
 
 
 
 
 
 
 
 
2457		goto out_unlock;
2458	}
 
2459	/*
2460	 * No waiters - kernel unlocks the futex:
 
 
 
 
2461	 */
2462	ret = unlock_futex_pi(uaddr, uval);
2463	if (ret == -EFAULT)
2464		goto pi_faulted;
2465
 
 
 
 
 
2466out_unlock:
2467	spin_unlock(&hb->lock);
 
2468	put_futex_key(&key);
2469
2470out:
2471	return ret;
2472
2473pi_faulted:
2474	spin_unlock(&hb->lock);
2475	put_futex_key(&key);
2476
2477	ret = fault_in_user_writeable(uaddr);
2478	if (!ret)
2479		goto retry;
2480
2481	return ret;
2482}
2483
2484/**
2485 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
2486 * @hb:		the hash_bucket futex_q was original enqueued on
2487 * @q:		the futex_q woken while waiting to be requeued
2488 * @key2:	the futex_key of the requeue target futex
2489 * @timeout:	the timeout associated with the wait (NULL if none)
2490 *
2491 * Detect if the task was woken on the initial futex as opposed to the requeue
2492 * target futex.  If so, determine if it was a timeout or a signal that caused
2493 * the wakeup and return the appropriate error code to the caller.  Must be
2494 * called with the hb lock held.
2495 *
2496 * Return:
2497 *  0 = no early wakeup detected;
2498 * <0 = -ETIMEDOUT or -ERESTARTNOINTR
2499 */
2500static inline
2501int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
2502				   struct futex_q *q, union futex_key *key2,
2503				   struct hrtimer_sleeper *timeout)
2504{
2505	int ret = 0;
2506
2507	/*
2508	 * With the hb lock held, we avoid races while we process the wakeup.
2509	 * We only need to hold hb (and not hb2) to ensure atomicity as the
2510	 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
2511	 * It can't be requeued from uaddr2 to something else since we don't
2512	 * support a PI aware source futex for requeue.
2513	 */
2514	if (!match_futex(&q->key, key2)) {
2515		WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
2516		/*
2517		 * We were woken prior to requeue by a timeout or a signal.
2518		 * Unqueue the futex_q and determine which it was.
2519		 */
2520		plist_del(&q->list, &hb->chain);
2521		hb_waiters_dec(hb);
2522
2523		/* Handle spurious wakeups gracefully */
2524		ret = -EWOULDBLOCK;
2525		if (timeout && !timeout->task)
2526			ret = -ETIMEDOUT;
2527		else if (signal_pending(current))
2528			ret = -ERESTARTNOINTR;
2529	}
2530	return ret;
2531}
2532
2533/**
2534 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
2535 * @uaddr:	the futex we initially wait on (non-pi)
2536 * @flags:	futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
2537 * 		the same type, no requeueing from private to shared, etc.
2538 * @val:	the expected value of uaddr
2539 * @abs_time:	absolute timeout
2540 * @bitset:	32 bit wakeup bitset set by userspace, defaults to all
2541 * @uaddr2:	the pi futex we will take prior to returning to user-space
2542 *
2543 * The caller will wait on uaddr and will be requeued by futex_requeue() to
2544 * uaddr2 which must be PI aware and unique from uaddr.  Normal wakeup will wake
2545 * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
2546 * userspace.  This ensures the rt_mutex maintains an owner when it has waiters;
2547 * without one, the pi logic would not know which task to boost/deboost, if
2548 * there was a need to.
2549 *
2550 * We call schedule in futex_wait_queue_me() when we enqueue and return there
2551 * via the following--
2552 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
2553 * 2) wakeup on uaddr2 after a requeue
2554 * 3) signal
2555 * 4) timeout
2556 *
2557 * If 3, cleanup and return -ERESTARTNOINTR.
2558 *
2559 * If 2, we may then block on trying to take the rt_mutex and return via:
2560 * 5) successful lock
2561 * 6) signal
2562 * 7) timeout
2563 * 8) other lock acquisition failure
2564 *
2565 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
2566 *
2567 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
2568 *
2569 * Return:
2570 *  0 - On success;
2571 * <0 - On error
2572 */
2573static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
2574				 u32 val, ktime_t *abs_time, u32 bitset,
2575				 u32 __user *uaddr2)
2576{
2577	struct hrtimer_sleeper timeout, *to = NULL;
2578	struct rt_mutex_waiter rt_waiter;
2579	struct rt_mutex *pi_mutex = NULL;
2580	struct futex_hash_bucket *hb;
2581	union futex_key key2 = FUTEX_KEY_INIT;
2582	struct futex_q q = futex_q_init;
2583	int res, ret;
2584
2585	if (uaddr == uaddr2)
2586		return -EINVAL;
2587
2588	if (!bitset)
2589		return -EINVAL;
2590
2591	if (abs_time) {
2592		to = &timeout;
2593		hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2594				      CLOCK_REALTIME : CLOCK_MONOTONIC,
2595				      HRTIMER_MODE_ABS);
2596		hrtimer_init_sleeper(to, current);
2597		hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2598					     current->timer_slack_ns);
2599	}
2600
2601	/*
2602	 * The waiter is allocated on our stack, manipulated by the requeue
2603	 * code while we sleep on uaddr.
2604	 */
2605	debug_rt_mutex_init_waiter(&rt_waiter);
2606	RB_CLEAR_NODE(&rt_waiter.pi_tree_entry);
2607	RB_CLEAR_NODE(&rt_waiter.tree_entry);
2608	rt_waiter.task = NULL;
2609
2610	ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
2611	if (unlikely(ret != 0))
2612		goto out;
2613
2614	q.bitset = bitset;
2615	q.rt_waiter = &rt_waiter;
2616	q.requeue_pi_key = &key2;
2617
2618	/*
2619	 * Prepare to wait on uaddr. On success, increments q.key (key1) ref
2620	 * count.
2621	 */
2622	ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2623	if (ret)
2624		goto out_key2;
2625
2626	/*
2627	 * The check above which compares uaddrs is not sufficient for
2628	 * shared futexes. We need to compare the keys:
2629	 */
2630	if (match_futex(&q.key, &key2)) {
 
2631		ret = -EINVAL;
2632		goto out_put_keys;
2633	}
2634
2635	/* Queue the futex_q, drop the hb lock, wait for wakeup. */
2636	futex_wait_queue_me(hb, &q, to);
2637
2638	spin_lock(&hb->lock);
2639	ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
2640	spin_unlock(&hb->lock);
2641	if (ret)
2642		goto out_put_keys;
2643
2644	/*
2645	 * In order for us to be here, we know our q.key == key2, and since
2646	 * we took the hb->lock above, we also know that futex_requeue() has
2647	 * completed and we no longer have to concern ourselves with a wakeup
2648	 * race with the atomic proxy lock acquisition by the requeue code. The
2649	 * futex_requeue dropped our key1 reference and incremented our key2
2650	 * reference count.
2651	 */
2652
2653	/* Check if the requeue code acquired the second futex for us. */
2654	if (!q.rt_waiter) {
2655		/*
2656		 * Got the lock. We might not be the anticipated owner if we
2657		 * did a lock-steal - fix up the PI-state in that case.
2658		 */
2659		if (q.pi_state && (q.pi_state->owner != current)) {
2660			spin_lock(q.lock_ptr);
2661			ret = fixup_pi_state_owner(uaddr2, &q, current);
 
 
 
 
 
 
 
2662			spin_unlock(q.lock_ptr);
2663		}
2664	} else {
 
 
2665		/*
2666		 * We have been woken up by futex_unlock_pi(), a timeout, or a
2667		 * signal.  futex_unlock_pi() will not destroy the lock_ptr nor
2668		 * the pi_state.
2669		 */
2670		WARN_ON(!q.pi_state);
2671		pi_mutex = &q.pi_state->pi_mutex;
2672		ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter, 1);
2673		debug_rt_mutex_free_waiter(&rt_waiter);
2674
2675		spin_lock(q.lock_ptr);
2676		/*
2677		 * Fixup the pi_state owner and possibly acquire the lock if we
2678		 * haven't already.
2679		 */
2680		res = fixup_owner(uaddr2, &q, !ret);
2681		/*
2682		 * If fixup_owner() returned an error, proprogate that.  If it
2683		 * acquired the lock, clear -ETIMEDOUT or -EINTR.
2684		 */
2685		if (res)
2686			ret = (res < 0) ? res : 0;
2687
 
 
 
 
 
 
 
 
2688		/* Unqueue and drop the lock. */
2689		unqueue_me_pi(&q);
2690	}
2691
2692	/*
2693	 * If fixup_pi_state_owner() faulted and was unable to handle the
2694	 * fault, unlock the rt_mutex and return the fault to userspace.
2695	 */
2696	if (ret == -EFAULT) {
2697		if (pi_mutex && rt_mutex_owner(pi_mutex) == current)
2698			rt_mutex_unlock(pi_mutex);
2699	} else if (ret == -EINTR) {
2700		/*
2701		 * We've already been requeued, but cannot restart by calling
2702		 * futex_lock_pi() directly. We could restart this syscall, but
2703		 * it would detect that the user space "val" changed and return
2704		 * -EWOULDBLOCK.  Save the overhead of the restart and return
2705		 * -EWOULDBLOCK directly.
2706		 */
2707		ret = -EWOULDBLOCK;
2708	}
2709
2710out_put_keys:
2711	put_futex_key(&q.key);
2712out_key2:
2713	put_futex_key(&key2);
2714
2715out:
2716	if (to) {
2717		hrtimer_cancel(&to->timer);
2718		destroy_hrtimer_on_stack(&to->timer);
2719	}
2720	return ret;
2721}
2722
2723/*
2724 * Support for robust futexes: the kernel cleans up held futexes at
2725 * thread exit time.
2726 *
2727 * Implementation: user-space maintains a per-thread list of locks it
2728 * is holding. Upon do_exit(), the kernel carefully walks this list,
2729 * and marks all locks that are owned by this thread with the
2730 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
2731 * always manipulated with the lock held, so the list is private and
2732 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
2733 * field, to allow the kernel to clean up if the thread dies after
2734 * acquiring the lock, but just before it could have added itself to
2735 * the list. There can only be one such pending lock.
2736 */
2737
2738/**
2739 * sys_set_robust_list() - Set the robust-futex list head of a task
2740 * @head:	pointer to the list-head
2741 * @len:	length of the list-head, as userspace expects
2742 */
2743SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
2744		size_t, len)
2745{
2746	if (!futex_cmpxchg_enabled)
2747		return -ENOSYS;
2748	/*
2749	 * The kernel knows only one size for now:
2750	 */
2751	if (unlikely(len != sizeof(*head)))
2752		return -EINVAL;
2753
2754	current->robust_list = head;
2755
2756	return 0;
2757}
2758
2759/**
2760 * sys_get_robust_list() - Get the robust-futex list head of a task
2761 * @pid:	pid of the process [zero for current task]
2762 * @head_ptr:	pointer to a list-head pointer, the kernel fills it in
2763 * @len_ptr:	pointer to a length field, the kernel fills in the header size
2764 */
2765SYSCALL_DEFINE3(get_robust_list, int, pid,
2766		struct robust_list_head __user * __user *, head_ptr,
2767		size_t __user *, len_ptr)
2768{
2769	struct robust_list_head __user *head;
2770	unsigned long ret;
2771	struct task_struct *p;
2772
2773	if (!futex_cmpxchg_enabled)
2774		return -ENOSYS;
2775
2776	rcu_read_lock();
2777
2778	ret = -ESRCH;
2779	if (!pid)
2780		p = current;
2781	else {
2782		p = find_task_by_vpid(pid);
2783		if (!p)
2784			goto err_unlock;
2785	}
2786
2787	ret = -EPERM;
2788	if (!ptrace_may_access(p, PTRACE_MODE_READ))
2789		goto err_unlock;
2790
2791	head = p->robust_list;
2792	rcu_read_unlock();
2793
2794	if (put_user(sizeof(*head), len_ptr))
2795		return -EFAULT;
2796	return put_user(head, head_ptr);
2797
2798err_unlock:
2799	rcu_read_unlock();
2800
2801	return ret;
2802}
2803
2804/*
2805 * Process a futex-list entry, check whether it's owned by the
2806 * dying task, and do notification if so:
2807 */
2808int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
2809{
2810	u32 uval, uninitialized_var(nval), mval;
2811
2812retry:
2813	if (get_user(uval, uaddr))
2814		return -1;
2815
2816	if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
2817		/*
2818		 * Ok, this dying thread is truly holding a futex
2819		 * of interest. Set the OWNER_DIED bit atomically
2820		 * via cmpxchg, and if the value had FUTEX_WAITERS
2821		 * set, wake up a waiter (if any). (We have to do a
2822		 * futex_wake() even if OWNER_DIED is already set -
2823		 * to handle the rare but possible case of recursive
2824		 * thread-death.) The rest of the cleanup is done in
2825		 * userspace.
2826		 */
2827		mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
2828		/*
2829		 * We are not holding a lock here, but we want to have
2830		 * the pagefault_disable/enable() protection because
2831		 * we want to handle the fault gracefully. If the
2832		 * access fails we try to fault in the futex with R/W
2833		 * verification via get_user_pages. get_user() above
2834		 * does not guarantee R/W access. If that fails we
2835		 * give up and leave the futex locked.
2836		 */
2837		if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
2838			if (fault_in_user_writeable(uaddr))
2839				return -1;
2840			goto retry;
2841		}
2842		if (nval != uval)
2843			goto retry;
2844
2845		/*
2846		 * Wake robust non-PI futexes here. The wakeup of
2847		 * PI futexes happens in exit_pi_state():
2848		 */
2849		if (!pi && (uval & FUTEX_WAITERS))
2850			futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
2851	}
2852	return 0;
2853}
2854
2855/*
2856 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
2857 */
2858static inline int fetch_robust_entry(struct robust_list __user **entry,
2859				     struct robust_list __user * __user *head,
2860				     unsigned int *pi)
2861{
2862	unsigned long uentry;
2863
2864	if (get_user(uentry, (unsigned long __user *)head))
2865		return -EFAULT;
2866
2867	*entry = (void __user *)(uentry & ~1UL);
2868	*pi = uentry & 1;
2869
2870	return 0;
2871}
2872
2873/*
2874 * Walk curr->robust_list (very carefully, it's a userspace list!)
2875 * and mark any locks found there dead, and notify any waiters.
2876 *
2877 * We silently return on any sign of list-walking problem.
2878 */
2879void exit_robust_list(struct task_struct *curr)
2880{
2881	struct robust_list_head __user *head = curr->robust_list;
2882	struct robust_list __user *entry, *next_entry, *pending;
2883	unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
2884	unsigned int uninitialized_var(next_pi);
2885	unsigned long futex_offset;
2886	int rc;
2887
2888	if (!futex_cmpxchg_enabled)
2889		return;
2890
2891	/*
2892	 * Fetch the list head (which was registered earlier, via
2893	 * sys_set_robust_list()):
2894	 */
2895	if (fetch_robust_entry(&entry, &head->list.next, &pi))
2896		return;
2897	/*
2898	 * Fetch the relative futex offset:
2899	 */
2900	if (get_user(futex_offset, &head->futex_offset))
2901		return;
2902	/*
2903	 * Fetch any possibly pending lock-add first, and handle it
2904	 * if it exists:
2905	 */
2906	if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
2907		return;
2908
2909	next_entry = NULL;	/* avoid warning with gcc */
2910	while (entry != &head->list) {
2911		/*
2912		 * Fetch the next entry in the list before calling
2913		 * handle_futex_death:
2914		 */
2915		rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
2916		/*
2917		 * A pending lock might already be on the list, so
2918		 * don't process it twice:
2919		 */
2920		if (entry != pending)
2921			if (handle_futex_death((void __user *)entry + futex_offset,
2922						curr, pi))
2923				return;
2924		if (rc)
2925			return;
2926		entry = next_entry;
2927		pi = next_pi;
2928		/*
2929		 * Avoid excessively long or circular lists:
2930		 */
2931		if (!--limit)
2932			break;
2933
2934		cond_resched();
2935	}
2936
2937	if (pending)
2938		handle_futex_death((void __user *)pending + futex_offset,
2939				   curr, pip);
2940}
2941
2942long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
2943		u32 __user *uaddr2, u32 val2, u32 val3)
2944{
2945	int cmd = op & FUTEX_CMD_MASK;
2946	unsigned int flags = 0;
2947
2948	if (!(op & FUTEX_PRIVATE_FLAG))
2949		flags |= FLAGS_SHARED;
2950
2951	if (op & FUTEX_CLOCK_REALTIME) {
2952		flags |= FLAGS_CLOCKRT;
2953		if (cmd != FUTEX_WAIT_BITSET && cmd != FUTEX_WAIT_REQUEUE_PI)
 
2954			return -ENOSYS;
2955	}
2956
2957	switch (cmd) {
2958	case FUTEX_LOCK_PI:
2959	case FUTEX_UNLOCK_PI:
2960	case FUTEX_TRYLOCK_PI:
2961	case FUTEX_WAIT_REQUEUE_PI:
2962	case FUTEX_CMP_REQUEUE_PI:
2963		if (!futex_cmpxchg_enabled)
2964			return -ENOSYS;
2965	}
2966
2967	switch (cmd) {
2968	case FUTEX_WAIT:
2969		val3 = FUTEX_BITSET_MATCH_ANY;
2970	case FUTEX_WAIT_BITSET:
2971		return futex_wait(uaddr, flags, val, timeout, val3);
2972	case FUTEX_WAKE:
2973		val3 = FUTEX_BITSET_MATCH_ANY;
2974	case FUTEX_WAKE_BITSET:
2975		return futex_wake(uaddr, flags, val, val3);
2976	case FUTEX_REQUEUE:
2977		return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
2978	case FUTEX_CMP_REQUEUE:
2979		return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
2980	case FUTEX_WAKE_OP:
2981		return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
2982	case FUTEX_LOCK_PI:
2983		return futex_lock_pi(uaddr, flags, val, timeout, 0);
2984	case FUTEX_UNLOCK_PI:
2985		return futex_unlock_pi(uaddr, flags);
2986	case FUTEX_TRYLOCK_PI:
2987		return futex_lock_pi(uaddr, flags, 0, timeout, 1);
2988	case FUTEX_WAIT_REQUEUE_PI:
2989		val3 = FUTEX_BITSET_MATCH_ANY;
2990		return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
2991					     uaddr2);
2992	case FUTEX_CMP_REQUEUE_PI:
2993		return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
2994	}
2995	return -ENOSYS;
2996}
2997
2998
2999SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
3000		struct timespec __user *, utime, u32 __user *, uaddr2,
3001		u32, val3)
3002{
3003	struct timespec ts;
3004	ktime_t t, *tp = NULL;
3005	u32 val2 = 0;
3006	int cmd = op & FUTEX_CMD_MASK;
3007
3008	if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
3009		      cmd == FUTEX_WAIT_BITSET ||
3010		      cmd == FUTEX_WAIT_REQUEUE_PI)) {
 
 
3011		if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
3012			return -EFAULT;
3013		if (!timespec_valid(&ts))
3014			return -EINVAL;
3015
3016		t = timespec_to_ktime(ts);
3017		if (cmd == FUTEX_WAIT)
3018			t = ktime_add_safe(ktime_get(), t);
3019		tp = &t;
3020	}
3021	/*
3022	 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
3023	 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
3024	 */
3025	if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
3026	    cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
3027		val2 = (u32) (unsigned long) utime;
3028
3029	return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
3030}
3031
3032static void __init futex_detect_cmpxchg(void)
3033{
3034#ifndef CONFIG_HAVE_FUTEX_CMPXCHG
3035	u32 curval;
3036
3037	/*
3038	 * This will fail and we want it. Some arch implementations do
3039	 * runtime detection of the futex_atomic_cmpxchg_inatomic()
3040	 * functionality. We want to know that before we call in any
3041	 * of the complex code paths. Also we want to prevent
3042	 * registration of robust lists in that case. NULL is
3043	 * guaranteed to fault and we get -EFAULT on functional
3044	 * implementation, the non-functional ones will return
3045	 * -ENOSYS.
3046	 */
3047	if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
3048		futex_cmpxchg_enabled = 1;
3049#endif
3050}
3051
3052static int __init futex_init(void)
3053{
3054	unsigned int futex_shift;
3055	unsigned long i;
3056
3057#if CONFIG_BASE_SMALL
3058	futex_hashsize = 16;
3059#else
3060	futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
3061#endif
3062
3063	futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
3064					       futex_hashsize, 0,
3065					       futex_hashsize < 256 ? HASH_SMALL : 0,
3066					       &futex_shift, NULL,
3067					       futex_hashsize, futex_hashsize);
3068	futex_hashsize = 1UL << futex_shift;
3069
3070	futex_detect_cmpxchg();
3071
3072	for (i = 0; i < futex_hashsize; i++) {
3073		atomic_set(&futex_queues[i].waiters, 0);
3074		plist_head_init(&futex_queues[i].chain);
3075		spin_lock_init(&futex_queues[i].lock);
3076	}
3077
3078	return 0;
3079}
3080__initcall(futex_init);
v4.10.11
   1/*
   2 *  Fast Userspace Mutexes (which I call "Futexes!").
   3 *  (C) Rusty Russell, IBM 2002
   4 *
   5 *  Generalized futexes, futex requeueing, misc fixes by Ingo Molnar
   6 *  (C) Copyright 2003 Red Hat Inc, All Rights Reserved
   7 *
   8 *  Removed page pinning, fix privately mapped COW pages and other cleanups
   9 *  (C) Copyright 2003, 2004 Jamie Lokier
  10 *
  11 *  Robust futex support started by Ingo Molnar
  12 *  (C) Copyright 2006 Red Hat Inc, All Rights Reserved
  13 *  Thanks to Thomas Gleixner for suggestions, analysis and fixes.
  14 *
  15 *  PI-futex support started by Ingo Molnar and Thomas Gleixner
  16 *  Copyright (C) 2006 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
  17 *  Copyright (C) 2006 Timesys Corp., Thomas Gleixner <tglx@timesys.com>
  18 *
  19 *  PRIVATE futexes by Eric Dumazet
  20 *  Copyright (C) 2007 Eric Dumazet <dada1@cosmosbay.com>
  21 *
  22 *  Requeue-PI support by Darren Hart <dvhltc@us.ibm.com>
  23 *  Copyright (C) IBM Corporation, 2009
  24 *  Thanks to Thomas Gleixner for conceptual design and careful reviews.
  25 *
  26 *  Thanks to Ben LaHaise for yelling "hashed waitqueues" loudly
  27 *  enough at me, Linus for the original (flawed) idea, Matthew
  28 *  Kirkwood for proof-of-concept implementation.
  29 *
  30 *  "The futexes are also cursed."
  31 *  "But they come in a choice of three flavours!"
  32 *
  33 *  This program is free software; you can redistribute it and/or modify
  34 *  it under the terms of the GNU General Public License as published by
  35 *  the Free Software Foundation; either version 2 of the License, or
  36 *  (at your option) any later version.
  37 *
  38 *  This program is distributed in the hope that it will be useful,
  39 *  but WITHOUT ANY WARRANTY; without even the implied warranty of
  40 *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
  41 *  GNU General Public License for more details.
  42 *
  43 *  You should have received a copy of the GNU General Public License
  44 *  along with this program; if not, write to the Free Software
  45 *  Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA  02111-1307  USA
  46 */
  47#include <linux/slab.h>
  48#include <linux/poll.h>
  49#include <linux/fs.h>
  50#include <linux/file.h>
  51#include <linux/jhash.h>
  52#include <linux/init.h>
  53#include <linux/futex.h>
  54#include <linux/mount.h>
  55#include <linux/pagemap.h>
  56#include <linux/syscalls.h>
  57#include <linux/signal.h>
  58#include <linux/export.h>
  59#include <linux/magic.h>
  60#include <linux/pid.h>
  61#include <linux/nsproxy.h>
  62#include <linux/ptrace.h>
  63#include <linux/sched/rt.h>
  64#include <linux/hugetlb.h>
  65#include <linux/freezer.h>
  66#include <linux/bootmem.h>
  67#include <linux/fault-inject.h>
  68
  69#include <asm/futex.h>
  70
  71#include "locking/rtmutex_common.h"
  72
  73/*
  74 * READ this before attempting to hack on futexes!
  75 *
  76 * Basic futex operation and ordering guarantees
  77 * =============================================
  78 *
  79 * The waiter reads the futex value in user space and calls
  80 * futex_wait(). This function computes the hash bucket and acquires
  81 * the hash bucket lock. After that it reads the futex user space value
  82 * again and verifies that the data has not changed. If it has not changed
  83 * it enqueues itself into the hash bucket, releases the hash bucket lock
  84 * and schedules.
  85 *
  86 * The waker side modifies the user space value of the futex and calls
  87 * futex_wake(). This function computes the hash bucket and acquires the
  88 * hash bucket lock. Then it looks for waiters on that futex in the hash
  89 * bucket and wakes them.
  90 *
  91 * In futex wake up scenarios where no tasks are blocked on a futex, taking
  92 * the hb spinlock can be avoided and simply return. In order for this
  93 * optimization to work, ordering guarantees must exist so that the waiter
  94 * being added to the list is acknowledged when the list is concurrently being
  95 * checked by the waker, avoiding scenarios like the following:
  96 *
  97 * CPU 0                               CPU 1
  98 * val = *futex;
  99 * sys_futex(WAIT, futex, val);
 100 *   futex_wait(futex, val);
 101 *   uval = *futex;
 102 *                                     *futex = newval;
 103 *                                     sys_futex(WAKE, futex);
 104 *                                       futex_wake(futex);
 105 *                                       if (queue_empty())
 106 *                                         return;
 107 *   if (uval == val)
 108 *      lock(hash_bucket(futex));
 109 *      queue();
 110 *     unlock(hash_bucket(futex));
 111 *     schedule();
 112 *
 113 * This would cause the waiter on CPU 0 to wait forever because it
 114 * missed the transition of the user space value from val to newval
 115 * and the waker did not find the waiter in the hash bucket queue.
 116 *
 117 * The correct serialization ensures that a waiter either observes
 118 * the changed user space value before blocking or is woken by a
 119 * concurrent waker:
 120 *
 121 * CPU 0                                 CPU 1
 122 * val = *futex;
 123 * sys_futex(WAIT, futex, val);
 124 *   futex_wait(futex, val);
 125 *
 126 *   waiters++; (a)
 127 *   smp_mb(); (A) <-- paired with -.
 128 *                                  |
 129 *   lock(hash_bucket(futex));      |
 130 *                                  |
 131 *   uval = *futex;                 |
 132 *                                  |        *futex = newval;
 133 *                                  |        sys_futex(WAKE, futex);
 134 *                                  |          futex_wake(futex);
 135 *                                  |
 136 *                                  `--------> smp_mb(); (B)
 137 *   if (uval == val)
 138 *     queue();
 139 *     unlock(hash_bucket(futex));
 140 *     schedule();                         if (waiters)
 141 *                                           lock(hash_bucket(futex));
 142 *   else                                    wake_waiters(futex);
 143 *     waiters--; (b)                        unlock(hash_bucket(futex));
 144 *
 145 * Where (A) orders the waiters increment and the futex value read through
 146 * atomic operations (see hb_waiters_inc) and where (B) orders the write
 147 * to futex and the waiters read -- this is done by the barriers for both
 148 * shared and private futexes in get_futex_key_refs().
 
 149 *
 150 * This yields the following case (where X:=waiters, Y:=futex):
 151 *
 152 *	X = Y = 0
 153 *
 154 *	w[X]=1		w[Y]=1
 155 *	MB		MB
 156 *	r[Y]=y		r[X]=x
 157 *
 158 * Which guarantees that x==0 && y==0 is impossible; which translates back into
 159 * the guarantee that we cannot both miss the futex variable change and the
 160 * enqueue.
 161 *
 162 * Note that a new waiter is accounted for in (a) even when it is possible that
 163 * the wait call can return error, in which case we backtrack from it in (b).
 164 * Refer to the comment in queue_lock().
 165 *
 166 * Similarly, in order to account for waiters being requeued on another
 167 * address we always increment the waiters for the destination bucket before
 168 * acquiring the lock. It then decrements them again  after releasing it -
 169 * the code that actually moves the futex(es) between hash buckets (requeue_futex)
 170 * will do the additional required waiter count housekeeping. This is done for
 171 * double_lock_hb() and double_unlock_hb(), respectively.
 172 */
 173
 174#ifndef CONFIG_HAVE_FUTEX_CMPXCHG
 175int __read_mostly futex_cmpxchg_enabled;
 176#endif
 177
 178/*
 179 * Futex flags used to encode options to functions and preserve them across
 180 * restarts.
 181 */
 182#ifdef CONFIG_MMU
 183# define FLAGS_SHARED		0x01
 184#else
 185/*
 186 * NOMMU does not have per process address space. Let the compiler optimize
 187 * code away.
 188 */
 189# define FLAGS_SHARED		0x00
 190#endif
 191#define FLAGS_CLOCKRT		0x02
 192#define FLAGS_HAS_TIMEOUT	0x04
 193
 194/*
 195 * Priority Inheritance state:
 196 */
 197struct futex_pi_state {
 198	/*
 199	 * list of 'owned' pi_state instances - these have to be
 200	 * cleaned up in do_exit() if the task exits prematurely:
 201	 */
 202	struct list_head list;
 203
 204	/*
 205	 * The PI object:
 206	 */
 207	struct rt_mutex pi_mutex;
 208
 209	struct task_struct *owner;
 210	atomic_t refcount;
 211
 212	union futex_key key;
 213};
 214
 215/**
 216 * struct futex_q - The hashed futex queue entry, one per waiting task
 217 * @list:		priority-sorted list of tasks waiting on this futex
 218 * @task:		the task waiting on the futex
 219 * @lock_ptr:		the hash bucket lock
 220 * @key:		the key the futex is hashed on
 221 * @pi_state:		optional priority inheritance state
 222 * @rt_waiter:		rt_waiter storage for use with requeue_pi
 223 * @requeue_pi_key:	the requeue_pi target futex key
 224 * @bitset:		bitset for the optional bitmasked wakeup
 225 *
 226 * We use this hashed waitqueue, instead of a normal wait_queue_t, so
 227 * we can wake only the relevant ones (hashed queues may be shared).
 228 *
 229 * A futex_q has a woken state, just like tasks have TASK_RUNNING.
 230 * It is considered woken when plist_node_empty(&q->list) || q->lock_ptr == 0.
 231 * The order of wakeup is always to make the first condition true, then
 232 * the second.
 233 *
 234 * PI futexes are typically woken before they are removed from the hash list via
 235 * the rt_mutex code. See unqueue_me_pi().
 236 */
 237struct futex_q {
 238	struct plist_node list;
 239
 240	struct task_struct *task;
 241	spinlock_t *lock_ptr;
 242	union futex_key key;
 243	struct futex_pi_state *pi_state;
 244	struct rt_mutex_waiter *rt_waiter;
 245	union futex_key *requeue_pi_key;
 246	u32 bitset;
 247};
 248
 249static const struct futex_q futex_q_init = {
 250	/* list gets initialized in queue_me()*/
 251	.key = FUTEX_KEY_INIT,
 252	.bitset = FUTEX_BITSET_MATCH_ANY
 253};
 254
 255/*
 256 * Hash buckets are shared by all the futex_keys that hash to the same
 257 * location.  Each key may have multiple futex_q structures, one for each task
 258 * waiting on a futex.
 259 */
 260struct futex_hash_bucket {
 261	atomic_t waiters;
 262	spinlock_t lock;
 263	struct plist_head chain;
 264} ____cacheline_aligned_in_smp;
 265
 266/*
 267 * The base of the bucket array and its size are always used together
 268 * (after initialization only in hash_futex()), so ensure that they
 269 * reside in the same cacheline.
 270 */
 271static struct {
 272	struct futex_hash_bucket *queues;
 273	unsigned long            hashsize;
 274} __futex_data __read_mostly __aligned(2*sizeof(long));
 275#define futex_queues   (__futex_data.queues)
 276#define futex_hashsize (__futex_data.hashsize)
 277
 278
 279/*
 280 * Fault injections for futexes.
 281 */
 282#ifdef CONFIG_FAIL_FUTEX
 283
 284static struct {
 285	struct fault_attr attr;
 286
 287	bool ignore_private;
 288} fail_futex = {
 289	.attr = FAULT_ATTR_INITIALIZER,
 290	.ignore_private = false,
 291};
 292
 293static int __init setup_fail_futex(char *str)
 294{
 295	return setup_fault_attr(&fail_futex.attr, str);
 296}
 297__setup("fail_futex=", setup_fail_futex);
 298
 299static bool should_fail_futex(bool fshared)
 300{
 301	if (fail_futex.ignore_private && !fshared)
 302		return false;
 303
 304	return should_fail(&fail_futex.attr, 1);
 305}
 306
 307#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
 308
 309static int __init fail_futex_debugfs(void)
 310{
 311	umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
 312	struct dentry *dir;
 313
 314	dir = fault_create_debugfs_attr("fail_futex", NULL,
 315					&fail_futex.attr);
 316	if (IS_ERR(dir))
 317		return PTR_ERR(dir);
 318
 319	if (!debugfs_create_bool("ignore-private", mode, dir,
 320				 &fail_futex.ignore_private)) {
 321		debugfs_remove_recursive(dir);
 322		return -ENOMEM;
 323	}
 324
 325	return 0;
 326}
 327
 328late_initcall(fail_futex_debugfs);
 329
 330#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
 331
 332#else
 333static inline bool should_fail_futex(bool fshared)
 334{
 335	return false;
 336}
 337#endif /* CONFIG_FAIL_FUTEX */
 338
 339static inline void futex_get_mm(union futex_key *key)
 340{
 341	atomic_inc(&key->private.mm->mm_count);
 342	/*
 343	 * Ensure futex_get_mm() implies a full barrier such that
 344	 * get_futex_key() implies a full barrier. This is relied upon
 345	 * as smp_mb(); (B), see the ordering comment above.
 346	 */
 347	smp_mb__after_atomic();
 348}
 349
 350/*
 351 * Reflects a new waiter being added to the waitqueue.
 352 */
 353static inline void hb_waiters_inc(struct futex_hash_bucket *hb)
 354{
 355#ifdef CONFIG_SMP
 356	atomic_inc(&hb->waiters);
 357	/*
 358	 * Full barrier (A), see the ordering comment above.
 359	 */
 360	smp_mb__after_atomic();
 361#endif
 362}
 363
 364/*
 365 * Reflects a waiter being removed from the waitqueue by wakeup
 366 * paths.
 367 */
 368static inline void hb_waiters_dec(struct futex_hash_bucket *hb)
 369{
 370#ifdef CONFIG_SMP
 371	atomic_dec(&hb->waiters);
 372#endif
 373}
 374
 375static inline int hb_waiters_pending(struct futex_hash_bucket *hb)
 376{
 377#ifdef CONFIG_SMP
 378	return atomic_read(&hb->waiters);
 379#else
 380	return 1;
 381#endif
 382}
 383
 384/**
 385 * hash_futex - Return the hash bucket in the global hash
 386 * @key:	Pointer to the futex key for which the hash is calculated
 387 *
 388 * We hash on the keys returned from get_futex_key (see below) and return the
 389 * corresponding hash bucket in the global hash.
 390 */
 391static struct futex_hash_bucket *hash_futex(union futex_key *key)
 392{
 393	u32 hash = jhash2((u32*)&key->both.word,
 394			  (sizeof(key->both.word)+sizeof(key->both.ptr))/4,
 395			  key->both.offset);
 396	return &futex_queues[hash & (futex_hashsize - 1)];
 397}
 398
 399
 400/**
 401 * match_futex - Check whether two futex keys are equal
 402 * @key1:	Pointer to key1
 403 * @key2:	Pointer to key2
 404 *
 405 * Return 1 if two futex_keys are equal, 0 otherwise.
 406 */
 407static inline int match_futex(union futex_key *key1, union futex_key *key2)
 408{
 409	return (key1 && key2
 410		&& key1->both.word == key2->both.word
 411		&& key1->both.ptr == key2->both.ptr
 412		&& key1->both.offset == key2->both.offset);
 413}
 414
 415/*
 416 * Take a reference to the resource addressed by a key.
 417 * Can be called while holding spinlocks.
 418 *
 419 */
 420static void get_futex_key_refs(union futex_key *key)
 421{
 422	if (!key->both.ptr)
 423		return;
 424
 425	/*
 426	 * On MMU less systems futexes are always "private" as there is no per
 427	 * process address space. We need the smp wmb nevertheless - yes,
 428	 * arch/blackfin has MMU less SMP ...
 429	 */
 430	if (!IS_ENABLED(CONFIG_MMU)) {
 431		smp_mb(); /* explicit smp_mb(); (B) */
 432		return;
 433	}
 434
 435	switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
 436	case FUT_OFF_INODE:
 437		ihold(key->shared.inode); /* implies smp_mb(); (B) */
 438		break;
 439	case FUT_OFF_MMSHARED:
 440		futex_get_mm(key); /* implies smp_mb(); (B) */
 441		break;
 442	default:
 443		/*
 444		 * Private futexes do not hold reference on an inode or
 445		 * mm, therefore the only purpose of calling get_futex_key_refs
 446		 * is because we need the barrier for the lockless waiter check.
 447		 */
 448		smp_mb(); /* explicit smp_mb(); (B) */
 449	}
 450}
 451
 452/*
 453 * Drop a reference to the resource addressed by a key.
 454 * The hash bucket spinlock must not be held. This is
 455 * a no-op for private futexes, see comment in the get
 456 * counterpart.
 457 */
 458static void drop_futex_key_refs(union futex_key *key)
 459{
 460	if (!key->both.ptr) {
 461		/* If we're here then we tried to put a key we failed to get */
 462		WARN_ON_ONCE(1);
 463		return;
 464	}
 465
 466	if (!IS_ENABLED(CONFIG_MMU))
 467		return;
 468
 469	switch (key->both.offset & (FUT_OFF_INODE|FUT_OFF_MMSHARED)) {
 470	case FUT_OFF_INODE:
 471		iput(key->shared.inode);
 472		break;
 473	case FUT_OFF_MMSHARED:
 474		mmdrop(key->private.mm);
 475		break;
 476	}
 477}
 478
 479/**
 480 * get_futex_key() - Get parameters which are the keys for a futex
 481 * @uaddr:	virtual address of the futex
 482 * @fshared:	0 for a PROCESS_PRIVATE futex, 1 for PROCESS_SHARED
 483 * @key:	address where result is stored.
 484 * @rw:		mapping needs to be read/write (values: VERIFY_READ,
 485 *              VERIFY_WRITE)
 486 *
 487 * Return: a negative error code or 0
 488 *
 489 * The key words are stored in *key on success.
 490 *
 491 * For shared mappings, it's (page->index, file_inode(vma->vm_file),
 492 * offset_within_page).  For private mappings, it's (uaddr, current->mm).
 493 * We can usually work out the index without swapping in the page.
 494 *
 495 * lock_page() might sleep, the caller should not hold a spinlock.
 496 */
 497static int
 498get_futex_key(u32 __user *uaddr, int fshared, union futex_key *key, int rw)
 499{
 500	unsigned long address = (unsigned long)uaddr;
 501	struct mm_struct *mm = current->mm;
 502	struct page *page, *tail;
 503	struct address_space *mapping;
 504	int err, ro = 0;
 505
 506	/*
 507	 * The futex address must be "naturally" aligned.
 508	 */
 509	key->both.offset = address % PAGE_SIZE;
 510	if (unlikely((address % sizeof(u32)) != 0))
 511		return -EINVAL;
 512	address -= key->both.offset;
 513
 514	if (unlikely(!access_ok(rw, uaddr, sizeof(u32))))
 515		return -EFAULT;
 516
 517	if (unlikely(should_fail_futex(fshared)))
 518		return -EFAULT;
 519
 520	/*
 521	 * PROCESS_PRIVATE futexes are fast.
 522	 * As the mm cannot disappear under us and the 'key' only needs
 523	 * virtual address, we dont even have to find the underlying vma.
 524	 * Note : We do have to check 'uaddr' is a valid user address,
 525	 *        but access_ok() should be faster than find_vma()
 526	 */
 527	if (!fshared) {
 528		key->private.mm = mm;
 529		key->private.address = address;
 530		get_futex_key_refs(key);  /* implies smp_mb(); (B) */
 531		return 0;
 532	}
 533
 534again:
 535	/* Ignore any VERIFY_READ mapping (futex common case) */
 536	if (unlikely(should_fail_futex(fshared)))
 537		return -EFAULT;
 538
 539	err = get_user_pages_fast(address, 1, 1, &page);
 540	/*
 541	 * If write access is not required (eg. FUTEX_WAIT), try
 542	 * and get read-only access.
 543	 */
 544	if (err == -EFAULT && rw == VERIFY_READ) {
 545		err = get_user_pages_fast(address, 1, 0, &page);
 546		ro = 1;
 547	}
 548	if (err < 0)
 549		return err;
 550	else
 551		err = 0;
 552
 553	/*
 554	 * The treatment of mapping from this point on is critical. The page
 555	 * lock protects many things but in this context the page lock
 556	 * stabilizes mapping, prevents inode freeing in the shared
 557	 * file-backed region case and guards against movement to swap cache.
 558	 *
 559	 * Strictly speaking the page lock is not needed in all cases being
 560	 * considered here and page lock forces unnecessarily serialization
 561	 * From this point on, mapping will be re-verified if necessary and
 562	 * page lock will be acquired only if it is unavoidable
 563	 *
 564	 * Mapping checks require the head page for any compound page so the
 565	 * head page and mapping is looked up now. For anonymous pages, it
 566	 * does not matter if the page splits in the future as the key is
 567	 * based on the address. For filesystem-backed pages, the tail is
 568	 * required as the index of the page determines the key. For
 569	 * base pages, there is no tail page and tail == page.
 570	 */
 571	tail = page;
 572	page = compound_head(page);
 573	mapping = READ_ONCE(page->mapping);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 574
 575	/*
 576	 * If page->mapping is NULL, then it cannot be a PageAnon
 577	 * page; but it might be the ZERO_PAGE or in the gate area or
 578	 * in a special mapping (all cases which we are happy to fail);
 579	 * or it may have been a good file page when get_user_pages_fast
 580	 * found it, but truncated or holepunched or subjected to
 581	 * invalidate_complete_page2 before we got the page lock (also
 582	 * cases which we are happy to fail).  And we hold a reference,
 583	 * so refcount care in invalidate_complete_page's remove_mapping
 584	 * prevents drop_caches from setting mapping to NULL beneath us.
 585	 *
 586	 * The case we do have to guard against is when memory pressure made
 587	 * shmem_writepage move it from filecache to swapcache beneath us:
 588	 * an unlikely race, but we do need to retry for page->mapping.
 589	 */
 590	if (unlikely(!mapping)) {
 591		int shmem_swizzled;
 592
 593		/*
 594		 * Page lock is required to identify which special case above
 595		 * applies. If this is really a shmem page then the page lock
 596		 * will prevent unexpected transitions.
 597		 */
 598		lock_page(page);
 599		shmem_swizzled = PageSwapCache(page) || page->mapping;
 600		unlock_page(page);
 601		put_page(page);
 602
 603		if (shmem_swizzled)
 604			goto again;
 605
 606		return -EFAULT;
 607	}
 608
 609	/*
 610	 * Private mappings are handled in a simple way.
 611	 *
 612	 * If the futex key is stored on an anonymous page, then the associated
 613	 * object is the mm which is implicitly pinned by the calling process.
 614	 *
 615	 * NOTE: When userspace waits on a MAP_SHARED mapping, even if
 616	 * it's a read-only handle, it's expected that futexes attach to
 617	 * the object not the particular process.
 618	 */
 619	if (PageAnon(page)) {
 620		/*
 621		 * A RO anonymous page will never change and thus doesn't make
 622		 * sense for futex operations.
 623		 */
 624		if (unlikely(should_fail_futex(fshared)) || ro) {
 625			err = -EFAULT;
 626			goto out;
 627		}
 628
 629		key->both.offset |= FUT_OFF_MMSHARED; /* ref taken on mm */
 630		key->private.mm = mm;
 631		key->private.address = address;
 632
 633		get_futex_key_refs(key); /* implies smp_mb(); (B) */
 634
 635	} else {
 636		struct inode *inode;
 637
 638		/*
 639		 * The associated futex object in this case is the inode and
 640		 * the page->mapping must be traversed. Ordinarily this should
 641		 * be stabilised under page lock but it's not strictly
 642		 * necessary in this case as we just want to pin the inode, not
 643		 * update the radix tree or anything like that.
 644		 *
 645		 * The RCU read lock is taken as the inode is finally freed
 646		 * under RCU. If the mapping still matches expectations then the
 647		 * mapping->host can be safely accessed as being a valid inode.
 648		 */
 649		rcu_read_lock();
 650
 651		if (READ_ONCE(page->mapping) != mapping) {
 652			rcu_read_unlock();
 653			put_page(page);
 654
 655			goto again;
 656		}
 657
 658		inode = READ_ONCE(mapping->host);
 659		if (!inode) {
 660			rcu_read_unlock();
 661			put_page(page);
 662
 663			goto again;
 664		}
 665
 666		/*
 667		 * Take a reference unless it is about to be freed. Previously
 668		 * this reference was taken by ihold under the page lock
 669		 * pinning the inode in place so i_lock was unnecessary. The
 670		 * only way for this check to fail is if the inode was
 671		 * truncated in parallel so warn for now if this happens.
 672		 *
 673		 * We are not calling into get_futex_key_refs() in file-backed
 674		 * cases, therefore a successful atomic_inc return below will
 675		 * guarantee that get_futex_key() will still imply smp_mb(); (B).
 676		 */
 677		if (WARN_ON_ONCE(!atomic_inc_not_zero(&inode->i_count))) {
 678			rcu_read_unlock();
 679			put_page(page);
 680
 681			goto again;
 682		}
 683
 684		/* Should be impossible but lets be paranoid for now */
 685		if (WARN_ON_ONCE(inode->i_mapping != mapping)) {
 686			err = -EFAULT;
 687			rcu_read_unlock();
 688			iput(inode);
 689
 690			goto out;
 691		}
 692
 693		key->both.offset |= FUT_OFF_INODE; /* inode-based key */
 694		key->shared.inode = inode;
 695		key->shared.pgoff = basepage_index(tail);
 696		rcu_read_unlock();
 697	}
 698
 
 
 699out:
 700	put_page(page);
 
 701	return err;
 702}
 703
 704static inline void put_futex_key(union futex_key *key)
 705{
 706	drop_futex_key_refs(key);
 707}
 708
 709/**
 710 * fault_in_user_writeable() - Fault in user address and verify RW access
 711 * @uaddr:	pointer to faulting user space address
 712 *
 713 * Slow path to fixup the fault we just took in the atomic write
 714 * access to @uaddr.
 715 *
 716 * We have no generic implementation of a non-destructive write to the
 717 * user address. We know that we faulted in the atomic pagefault
 718 * disabled section so we can as well avoid the #PF overhead by
 719 * calling get_user_pages() right away.
 720 */
 721static int fault_in_user_writeable(u32 __user *uaddr)
 722{
 723	struct mm_struct *mm = current->mm;
 724	int ret;
 725
 726	down_read(&mm->mmap_sem);
 727	ret = fixup_user_fault(current, mm, (unsigned long)uaddr,
 728			       FAULT_FLAG_WRITE, NULL);
 729	up_read(&mm->mmap_sem);
 730
 731	return ret < 0 ? ret : 0;
 732}
 733
 734/**
 735 * futex_top_waiter() - Return the highest priority waiter on a futex
 736 * @hb:		the hash bucket the futex_q's reside in
 737 * @key:	the futex key (to distinguish it from other futex futex_q's)
 738 *
 739 * Must be called with the hb lock held.
 740 */
 741static struct futex_q *futex_top_waiter(struct futex_hash_bucket *hb,
 742					union futex_key *key)
 743{
 744	struct futex_q *this;
 745
 746	plist_for_each_entry(this, &hb->chain, list) {
 747		if (match_futex(&this->key, key))
 748			return this;
 749	}
 750	return NULL;
 751}
 752
 753static int cmpxchg_futex_value_locked(u32 *curval, u32 __user *uaddr,
 754				      u32 uval, u32 newval)
 755{
 756	int ret;
 757
 758	pagefault_disable();
 759	ret = futex_atomic_cmpxchg_inatomic(curval, uaddr, uval, newval);
 760	pagefault_enable();
 761
 762	return ret;
 763}
 764
 765static int get_futex_value_locked(u32 *dest, u32 __user *from)
 766{
 767	int ret;
 768
 769	pagefault_disable();
 770	ret = __get_user(*dest, from);
 771	pagefault_enable();
 772
 773	return ret ? -EFAULT : 0;
 774}
 775
 776
 777/*
 778 * PI code:
 779 */
 780static int refill_pi_state_cache(void)
 781{
 782	struct futex_pi_state *pi_state;
 783
 784	if (likely(current->pi_state_cache))
 785		return 0;
 786
 787	pi_state = kzalloc(sizeof(*pi_state), GFP_KERNEL);
 788
 789	if (!pi_state)
 790		return -ENOMEM;
 791
 792	INIT_LIST_HEAD(&pi_state->list);
 793	/* pi_mutex gets initialized later */
 794	pi_state->owner = NULL;
 795	atomic_set(&pi_state->refcount, 1);
 796	pi_state->key = FUTEX_KEY_INIT;
 797
 798	current->pi_state_cache = pi_state;
 799
 800	return 0;
 801}
 802
 803static struct futex_pi_state * alloc_pi_state(void)
 804{
 805	struct futex_pi_state *pi_state = current->pi_state_cache;
 806
 807	WARN_ON(!pi_state);
 808	current->pi_state_cache = NULL;
 809
 810	return pi_state;
 811}
 812
 813/*
 814 * Drops a reference to the pi_state object and frees or caches it
 815 * when the last reference is gone.
 816 *
 817 * Must be called with the hb lock held.
 818 */
 819static void put_pi_state(struct futex_pi_state *pi_state)
 820{
 821	if (!pi_state)
 822		return;
 823
 824	if (!atomic_dec_and_test(&pi_state->refcount))
 825		return;
 826
 827	/*
 828	 * If pi_state->owner is NULL, the owner is most probably dying
 829	 * and has cleaned up the pi_state already
 830	 */
 831	if (pi_state->owner) {
 832		raw_spin_lock_irq(&pi_state->owner->pi_lock);
 833		list_del_init(&pi_state->list);
 834		raw_spin_unlock_irq(&pi_state->owner->pi_lock);
 835
 836		rt_mutex_proxy_unlock(&pi_state->pi_mutex, pi_state->owner);
 837	}
 838
 839	if (current->pi_state_cache)
 840		kfree(pi_state);
 841	else {
 842		/*
 843		 * pi_state->list is already empty.
 844		 * clear pi_state->owner.
 845		 * refcount is at 0 - put it back to 1.
 846		 */
 847		pi_state->owner = NULL;
 848		atomic_set(&pi_state->refcount, 1);
 849		current->pi_state_cache = pi_state;
 850	}
 851}
 852
 853/*
 854 * Look up the task based on what TID userspace gave us.
 855 * We dont trust it.
 856 */
 857static struct task_struct * futex_find_get_task(pid_t pid)
 858{
 859	struct task_struct *p;
 860
 861	rcu_read_lock();
 862	p = find_task_by_vpid(pid);
 863	if (p)
 864		get_task_struct(p);
 865
 866	rcu_read_unlock();
 867
 868	return p;
 869}
 870
 871/*
 872 * This task is holding PI mutexes at exit time => bad.
 873 * Kernel cleans up PI-state, but userspace is likely hosed.
 874 * (Robust-futex cleanup is separate and might save the day for userspace.)
 875 */
 876void exit_pi_state_list(struct task_struct *curr)
 877{
 878	struct list_head *next, *head = &curr->pi_state_list;
 879	struct futex_pi_state *pi_state;
 880	struct futex_hash_bucket *hb;
 881	union futex_key key = FUTEX_KEY_INIT;
 882
 883	if (!futex_cmpxchg_enabled)
 884		return;
 885	/*
 886	 * We are a ZOMBIE and nobody can enqueue itself on
 887	 * pi_state_list anymore, but we have to be careful
 888	 * versus waiters unqueueing themselves:
 889	 */
 890	raw_spin_lock_irq(&curr->pi_lock);
 891	while (!list_empty(head)) {
 892
 893		next = head->next;
 894		pi_state = list_entry(next, struct futex_pi_state, list);
 895		key = pi_state->key;
 896		hb = hash_futex(&key);
 897		raw_spin_unlock_irq(&curr->pi_lock);
 898
 899		spin_lock(&hb->lock);
 900
 901		raw_spin_lock_irq(&curr->pi_lock);
 902		/*
 903		 * We dropped the pi-lock, so re-check whether this
 904		 * task still owns the PI-state:
 905		 */
 906		if (head->next != next) {
 907			spin_unlock(&hb->lock);
 908			continue;
 909		}
 910
 911		WARN_ON(pi_state->owner != curr);
 912		WARN_ON(list_empty(&pi_state->list));
 913		list_del_init(&pi_state->list);
 914		pi_state->owner = NULL;
 915		raw_spin_unlock_irq(&curr->pi_lock);
 916
 917		rt_mutex_unlock(&pi_state->pi_mutex);
 918
 919		spin_unlock(&hb->lock);
 920
 921		raw_spin_lock_irq(&curr->pi_lock);
 922	}
 923	raw_spin_unlock_irq(&curr->pi_lock);
 924}
 925
 926/*
 927 * We need to check the following states:
 928 *
 929 *      Waiter | pi_state | pi->owner | uTID      | uODIED | ?
 930 *
 931 * [1]  NULL   | ---      | ---       | 0         | 0/1    | Valid
 932 * [2]  NULL   | ---      | ---       | >0        | 0/1    | Valid
 933 *
 934 * [3]  Found  | NULL     | --        | Any       | 0/1    | Invalid
 935 *
 936 * [4]  Found  | Found    | NULL      | 0         | 1      | Valid
 937 * [5]  Found  | Found    | NULL      | >0        | 1      | Invalid
 938 *
 939 * [6]  Found  | Found    | task      | 0         | 1      | Valid
 940 *
 941 * [7]  Found  | Found    | NULL      | Any       | 0      | Invalid
 942 *
 943 * [8]  Found  | Found    | task      | ==taskTID | 0/1    | Valid
 944 * [9]  Found  | Found    | task      | 0         | 0      | Invalid
 945 * [10] Found  | Found    | task      | !=taskTID | 0/1    | Invalid
 946 *
 947 * [1]	Indicates that the kernel can acquire the futex atomically. We
 948 *	came came here due to a stale FUTEX_WAITERS/FUTEX_OWNER_DIED bit.
 949 *
 950 * [2]	Valid, if TID does not belong to a kernel thread. If no matching
 951 *      thread is found then it indicates that the owner TID has died.
 952 *
 953 * [3]	Invalid. The waiter is queued on a non PI futex
 954 *
 955 * [4]	Valid state after exit_robust_list(), which sets the user space
 956 *	value to FUTEX_WAITERS | FUTEX_OWNER_DIED.
 957 *
 958 * [5]	The user space value got manipulated between exit_robust_list()
 959 *	and exit_pi_state_list()
 960 *
 961 * [6]	Valid state after exit_pi_state_list() which sets the new owner in
 962 *	the pi_state but cannot access the user space value.
 963 *
 964 * [7]	pi_state->owner can only be NULL when the OWNER_DIED bit is set.
 965 *
 966 * [8]	Owner and user space value match
 967 *
 968 * [9]	There is no transient state which sets the user space TID to 0
 969 *	except exit_robust_list(), but this is indicated by the
 970 *	FUTEX_OWNER_DIED bit. See [4]
 971 *
 972 * [10] There is no transient state which leaves owner and user space
 973 *	TID out of sync.
 974 */
 975
 976/*
 977 * Validate that the existing waiter has a pi_state and sanity check
 978 * the pi_state against the user space value. If correct, attach to
 979 * it.
 980 */
 981static int attach_to_pi_state(u32 uval, struct futex_pi_state *pi_state,
 982			      struct futex_pi_state **ps)
 983{
 
 
 
 984	pid_t pid = uval & FUTEX_TID_MASK;
 985
 986	/*
 987	 * Userspace might have messed up non-PI and PI futexes [3]
 988	 */
 989	if (unlikely(!pi_state))
 990		return -EINVAL;
 
 
 
 
 
 
 
 
 991
 992	WARN_ON(!atomic_read(&pi_state->refcount));
 993
 994	/*
 995	 * Handle the owner died case:
 996	 */
 997	if (uval & FUTEX_OWNER_DIED) {
 998		/*
 999		 * exit_pi_state_list sets owner to NULL and wakes the
1000		 * topmost waiter. The task which acquires the
1001		 * pi_state->rt_mutex will fixup owner.
1002		 */
1003		if (!pi_state->owner) {
1004			/*
1005			 * No pi state owner, but the user space TID
1006			 * is not 0. Inconsistent state. [5]
1007			 */
1008			if (pid)
1009				return -EINVAL;
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1010			/*
1011			 * Take a ref on the state and return success. [4]
 
 
 
1012			 */
1013			goto out_state;
 
 
 
 
 
 
1014		}
1015
1016		/*
1017		 * If TID is 0, then either the dying owner has not
1018		 * yet executed exit_pi_state_list() or some waiter
1019		 * acquired the rtmutex in the pi state, but did not
1020		 * yet fixup the TID in user space.
1021		 *
1022		 * Take a ref on the state and return success. [6]
1023		 */
1024		if (!pid)
1025			goto out_state;
1026	} else {
1027		/*
1028		 * If the owner died bit is not set, then the pi_state
1029		 * must have an owner. [7]
1030		 */
1031		if (!pi_state->owner)
1032			return -EINVAL;
1033	}
1034
1035	/*
1036	 * Bail out if user space manipulated the futex value. If pi
1037	 * state exists then the owner TID must be the same as the
1038	 * user space TID. [9/10]
1039	 */
1040	if (pid != task_pid_vnr(pi_state->owner))
1041		return -EINVAL;
1042out_state:
1043	atomic_inc(&pi_state->refcount);
1044	*ps = pi_state;
1045	return 0;
1046}
1047
1048/*
1049 * Lookup the task for the TID provided from user space and attach to
1050 * it after doing proper sanity checks.
1051 */
1052static int attach_to_pi_owner(u32 uval, union futex_key *key,
1053			      struct futex_pi_state **ps)
1054{
1055	pid_t pid = uval & FUTEX_TID_MASK;
1056	struct futex_pi_state *pi_state;
1057	struct task_struct *p;
1058
1059	/*
1060	 * We are the first waiter - try to look up the real owner and attach
1061	 * the new pi_state to it, but bail out when TID = 0 [1]
1062	 */
1063	if (!pid)
1064		return -ESRCH;
1065	p = futex_find_get_task(pid);
1066	if (!p)
1067		return -ESRCH;
1068
1069	if (unlikely(p->flags & PF_KTHREAD)) {
1070		put_task_struct(p);
1071		return -EPERM;
1072	}
1073
1074	/*
1075	 * We need to look at the task state flags to figure out,
1076	 * whether the task is exiting. To protect against the do_exit
1077	 * change of the task flags, we do this protected by
1078	 * p->pi_lock:
1079	 */
1080	raw_spin_lock_irq(&p->pi_lock);
1081	if (unlikely(p->flags & PF_EXITING)) {
1082		/*
1083		 * The task is on the way out. When PF_EXITPIDONE is
1084		 * set, we know that the task has finished the
1085		 * cleanup:
1086		 */
1087		int ret = (p->flags & PF_EXITPIDONE) ? -ESRCH : -EAGAIN;
1088
1089		raw_spin_unlock_irq(&p->pi_lock);
1090		put_task_struct(p);
1091		return ret;
1092	}
1093
1094	/*
1095	 * No existing pi state. First waiter. [2]
1096	 */
1097	pi_state = alloc_pi_state();
1098
1099	/*
1100	 * Initialize the pi_mutex in locked state and make @p
1101	 * the owner of it:
1102	 */
1103	rt_mutex_init_proxy_locked(&pi_state->pi_mutex, p);
1104
1105	/* Store the key for possible exit cleanups: */
1106	pi_state->key = *key;
1107
1108	WARN_ON(!list_empty(&pi_state->list));
1109	list_add(&pi_state->list, &p->pi_state_list);
1110	pi_state->owner = p;
1111	raw_spin_unlock_irq(&p->pi_lock);
1112
1113	put_task_struct(p);
1114
1115	*ps = pi_state;
1116
1117	return 0;
1118}
1119
1120static int lookup_pi_state(u32 uval, struct futex_hash_bucket *hb,
1121			   union futex_key *key, struct futex_pi_state **ps)
1122{
1123	struct futex_q *match = futex_top_waiter(hb, key);
1124
1125	/*
1126	 * If there is a waiter on that futex, validate it and
1127	 * attach to the pi_state when the validation succeeds.
1128	 */
1129	if (match)
1130		return attach_to_pi_state(uval, match->pi_state, ps);
1131
1132	/*
1133	 * We are the first waiter - try to look up the owner based on
1134	 * @uval and attach to it.
1135	 */
1136	return attach_to_pi_owner(uval, key, ps);
1137}
1138
1139static int lock_pi_update_atomic(u32 __user *uaddr, u32 uval, u32 newval)
1140{
1141	u32 uninitialized_var(curval);
1142
1143	if (unlikely(should_fail_futex(true)))
1144		return -EFAULT;
1145
1146	if (unlikely(cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)))
1147		return -EFAULT;
1148
1149	/*If user space value changed, let the caller retry */
1150	return curval != uval ? -EAGAIN : 0;
1151}
1152
1153/**
1154 * futex_lock_pi_atomic() - Atomic work required to acquire a pi aware futex
1155 * @uaddr:		the pi futex user address
1156 * @hb:			the pi futex hash bucket
1157 * @key:		the futex key associated with uaddr and hb
1158 * @ps:			the pi_state pointer where we store the result of the
1159 *			lookup
1160 * @task:		the task to perform the atomic lock work for.  This will
1161 *			be "current" except in the case of requeue pi.
1162 * @set_waiters:	force setting the FUTEX_WAITERS bit (1) or not (0)
1163 *
1164 * Return:
1165 *  0 - ready to wait;
1166 *  1 - acquired the lock;
1167 * <0 - error
1168 *
1169 * The hb->lock and futex_key refs shall be held by the caller.
1170 */
1171static int futex_lock_pi_atomic(u32 __user *uaddr, struct futex_hash_bucket *hb,
1172				union futex_key *key,
1173				struct futex_pi_state **ps,
1174				struct task_struct *task, int set_waiters)
1175{
1176	u32 uval, newval, vpid = task_pid_vnr(task);
1177	struct futex_q *match;
1178	int ret;
 
 
1179
1180	/*
1181	 * Read the user space value first so we can validate a few
1182	 * things before proceeding further.
 
1183	 */
1184	if (get_futex_value_locked(&uval, uaddr))
1185		return -EFAULT;
 
1186
1187	if (unlikely(should_fail_futex(true)))
1188		return -EFAULT;
1189
1190	/*
1191	 * Detect deadlocks.
1192	 */
1193	if ((unlikely((uval & FUTEX_TID_MASK) == vpid)))
1194		return -EDEADLK;
1195
1196	if ((unlikely(should_fail_futex(true))))
1197		return -EDEADLK;
 
 
 
 
 
 
 
 
 
 
 
 
 
1198
1199	/*
1200	 * Lookup existing state first. If it exists, try to attach to
1201	 * its pi_state.
1202	 */
1203	match = futex_top_waiter(hb, key);
1204	if (match)
1205		return attach_to_pi_state(uval, match->pi_state, ps);
1206
1207	/*
1208	 * No waiter and user TID is 0. We are here because the
1209	 * waiters or the owner died bit is set or called from
1210	 * requeue_cmp_pi or for whatever reason something took the
1211	 * syscall.
1212	 */
1213	if (!(uval & FUTEX_TID_MASK)) {
1214		/*
1215		 * We take over the futex. No other waiters and the user space
1216		 * TID is 0. We preserve the owner died bit.
1217		 */
1218		newval = uval & FUTEX_OWNER_DIED;
1219		newval |= vpid;
 
 
1220
1221		/* The futex requeue_pi code can enforce the waiters bit */
1222		if (set_waiters)
1223			newval |= FUTEX_WAITERS;
1224
1225		ret = lock_pi_update_atomic(uaddr, uval, newval);
1226		/* If the take over worked, return 1 */
1227		return ret < 0 ? ret : 1;
1228	}
1229
1230	/*
1231	 * First waiter. Set the waiters bit before attaching ourself to
1232	 * the owner. If owner tries to unlock, it will be forced into
1233	 * the kernel and blocked on hb->lock.
1234	 */
1235	newval = uval | FUTEX_WAITERS;
1236	ret = lock_pi_update_atomic(uaddr, uval, newval);
1237	if (ret)
1238		return ret;
1239	/*
1240	 * If the update of the user space value succeeded, we try to
1241	 * attach to the owner. If that fails, no harm done, we only
1242	 * set the FUTEX_WAITERS bit in the user space variable.
1243	 */
1244	return attach_to_pi_owner(uval, key, ps);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1245}
1246
1247/**
1248 * __unqueue_futex() - Remove the futex_q from its futex_hash_bucket
1249 * @q:	The futex_q to unqueue
1250 *
1251 * The q->lock_ptr must not be NULL and must be held by the caller.
1252 */
1253static void __unqueue_futex(struct futex_q *q)
1254{
1255	struct futex_hash_bucket *hb;
1256
1257	if (WARN_ON_SMP(!q->lock_ptr || !spin_is_locked(q->lock_ptr))
1258	    || WARN_ON(plist_node_empty(&q->list)))
1259		return;
1260
1261	hb = container_of(q->lock_ptr, struct futex_hash_bucket, lock);
1262	plist_del(&q->list, &hb->chain);
1263	hb_waiters_dec(hb);
1264}
1265
1266/*
1267 * The hash bucket lock must be held when this is called.
1268 * Afterwards, the futex_q must not be accessed. Callers
1269 * must ensure to later call wake_up_q() for the actual
1270 * wakeups to occur.
1271 */
1272static void mark_wake_futex(struct wake_q_head *wake_q, struct futex_q *q)
1273{
1274	struct task_struct *p = q->task;
1275
1276	if (WARN(q->pi_state || q->rt_waiter, "refusing to wake PI futex\n"))
1277		return;
1278
1279	/*
1280	 * Queue the task for later wakeup for after we've released
1281	 * the hb->lock. wake_q_add() grabs reference to p.
 
 
 
1282	 */
1283	wake_q_add(wake_q, p);
 
1284	__unqueue_futex(q);
1285	/*
1286	 * The waiting task can free the futex_q as soon as
1287	 * q->lock_ptr = NULL is written, without taking any locks. A
1288	 * memory barrier is required here to prevent the following
1289	 * store to lock_ptr from getting ahead of the plist_del.
1290	 */
1291	smp_wmb();
1292	q->lock_ptr = NULL;
 
 
 
1293}
1294
1295static int wake_futex_pi(u32 __user *uaddr, u32 uval, struct futex_q *this,
1296			 struct futex_hash_bucket *hb)
1297{
1298	struct task_struct *new_owner;
1299	struct futex_pi_state *pi_state = this->pi_state;
1300	u32 uninitialized_var(curval), newval;
1301	DEFINE_WAKE_Q(wake_q);
1302	bool deboost;
1303	int ret = 0;
1304
1305	if (!pi_state)
1306		return -EINVAL;
1307
1308	/*
1309	 * If current does not own the pi_state then the futex is
1310	 * inconsistent and user space fiddled with the futex value.
1311	 */
1312	if (pi_state->owner != current)
1313		return -EINVAL;
1314
1315	raw_spin_lock_irq(&pi_state->pi_mutex.wait_lock);
1316	new_owner = rt_mutex_next_owner(&pi_state->pi_mutex);
1317
1318	/*
1319	 * It is possible that the next waiter (the one that brought
1320	 * this owner to the kernel) timed out and is no longer
1321	 * waiting on the lock.
1322	 */
1323	if (!new_owner)
1324		new_owner = this->task;
1325
1326	/*
1327	 * We pass it to the next owner. The WAITERS bit is always
1328	 * kept enabled while there is PI state around. We cleanup the
1329	 * owner died bit, because we are the owner.
1330	 */
1331	newval = FUTEX_WAITERS | task_pid_vnr(new_owner);
1332
1333	if (unlikely(should_fail_futex(true)))
1334		ret = -EFAULT;
1335
1336	if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval)) {
1337		ret = -EFAULT;
1338	} else if (curval != uval) {
1339		/*
1340		 * If a unconditional UNLOCK_PI operation (user space did not
1341		 * try the TID->0 transition) raced with a waiter setting the
1342		 * FUTEX_WAITERS flag between get_user() and locking the hash
1343		 * bucket lock, retry the operation.
1344		 */
1345		if ((FUTEX_TID_MASK & curval) == uval)
1346			ret = -EAGAIN;
1347		else
1348			ret = -EINVAL;
1349	}
1350	if (ret) {
1351		raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
1352		return ret;
1353	}
1354
1355	raw_spin_lock(&pi_state->owner->pi_lock);
1356	WARN_ON(list_empty(&pi_state->list));
1357	list_del_init(&pi_state->list);
1358	raw_spin_unlock(&pi_state->owner->pi_lock);
1359
1360	raw_spin_lock(&new_owner->pi_lock);
1361	WARN_ON(!list_empty(&pi_state->list));
1362	list_add(&pi_state->list, &new_owner->pi_state_list);
1363	pi_state->owner = new_owner;
1364	raw_spin_unlock(&new_owner->pi_lock);
1365
1366	raw_spin_unlock_irq(&pi_state->pi_mutex.wait_lock);
 
1367
1368	deboost = rt_mutex_futex_unlock(&pi_state->pi_mutex, &wake_q);
 
 
 
 
 
1369
1370	/*
1371	 * First unlock HB so the waiter does not spin on it once he got woken
1372	 * up. Second wake up the waiter before the priority is adjusted. If we
1373	 * deboost first (and lose our higher priority), then the task might get
1374	 * scheduled away before the wake up can take place.
1375	 */
1376	spin_unlock(&hb->lock);
1377	wake_up_q(&wake_q);
1378	if (deboost)
1379		rt_mutex_adjust_prio(current);
1380
1381	return 0;
1382}
1383
1384/*
1385 * Express the locking dependencies for lockdep:
1386 */
1387static inline void
1388double_lock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1389{
1390	if (hb1 <= hb2) {
1391		spin_lock(&hb1->lock);
1392		if (hb1 < hb2)
1393			spin_lock_nested(&hb2->lock, SINGLE_DEPTH_NESTING);
1394	} else { /* hb1 > hb2 */
1395		spin_lock(&hb2->lock);
1396		spin_lock_nested(&hb1->lock, SINGLE_DEPTH_NESTING);
1397	}
1398}
1399
1400static inline void
1401double_unlock_hb(struct futex_hash_bucket *hb1, struct futex_hash_bucket *hb2)
1402{
1403	spin_unlock(&hb1->lock);
1404	if (hb1 != hb2)
1405		spin_unlock(&hb2->lock);
1406}
1407
1408/*
1409 * Wake up waiters matching bitset queued on this futex (uaddr).
1410 */
1411static int
1412futex_wake(u32 __user *uaddr, unsigned int flags, int nr_wake, u32 bitset)
1413{
1414	struct futex_hash_bucket *hb;
1415	struct futex_q *this, *next;
1416	union futex_key key = FUTEX_KEY_INIT;
1417	int ret;
1418	DEFINE_WAKE_Q(wake_q);
1419
1420	if (!bitset)
1421		return -EINVAL;
1422
1423	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_READ);
1424	if (unlikely(ret != 0))
1425		goto out;
1426
1427	hb = hash_futex(&key);
1428
1429	/* Make sure we really have tasks to wakeup */
1430	if (!hb_waiters_pending(hb))
1431		goto out_put_key;
1432
1433	spin_lock(&hb->lock);
1434
1435	plist_for_each_entry_safe(this, next, &hb->chain, list) {
1436		if (match_futex (&this->key, &key)) {
1437			if (this->pi_state || this->rt_waiter) {
1438				ret = -EINVAL;
1439				break;
1440			}
1441
1442			/* Check if one of the bits is set in both bitsets */
1443			if (!(this->bitset & bitset))
1444				continue;
1445
1446			mark_wake_futex(&wake_q, this);
1447			if (++ret >= nr_wake)
1448				break;
1449		}
1450	}
1451
1452	spin_unlock(&hb->lock);
1453	wake_up_q(&wake_q);
1454out_put_key:
1455	put_futex_key(&key);
1456out:
1457	return ret;
1458}
1459
1460/*
1461 * Wake up all waiters hashed on the physical page that is mapped
1462 * to this virtual address:
1463 */
1464static int
1465futex_wake_op(u32 __user *uaddr1, unsigned int flags, u32 __user *uaddr2,
1466	      int nr_wake, int nr_wake2, int op)
1467{
1468	union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1469	struct futex_hash_bucket *hb1, *hb2;
1470	struct futex_q *this, *next;
1471	int ret, op_ret;
1472	DEFINE_WAKE_Q(wake_q);
1473
1474retry:
1475	ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1476	if (unlikely(ret != 0))
1477		goto out;
1478	ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
1479	if (unlikely(ret != 0))
1480		goto out_put_key1;
1481
1482	hb1 = hash_futex(&key1);
1483	hb2 = hash_futex(&key2);
1484
1485retry_private:
1486	double_lock_hb(hb1, hb2);
1487	op_ret = futex_atomic_op_inuser(op, uaddr2);
1488	if (unlikely(op_ret < 0)) {
1489
1490		double_unlock_hb(hb1, hb2);
1491
1492#ifndef CONFIG_MMU
1493		/*
1494		 * we don't get EFAULT from MMU faults if we don't have an MMU,
1495		 * but we might get them from range checking
1496		 */
1497		ret = op_ret;
1498		goto out_put_keys;
1499#endif
1500
1501		if (unlikely(op_ret != -EFAULT)) {
1502			ret = op_ret;
1503			goto out_put_keys;
1504		}
1505
1506		ret = fault_in_user_writeable(uaddr2);
1507		if (ret)
1508			goto out_put_keys;
1509
1510		if (!(flags & FLAGS_SHARED))
1511			goto retry_private;
1512
1513		put_futex_key(&key2);
1514		put_futex_key(&key1);
1515		goto retry;
1516	}
1517
1518	plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1519		if (match_futex (&this->key, &key1)) {
1520			if (this->pi_state || this->rt_waiter) {
1521				ret = -EINVAL;
1522				goto out_unlock;
1523			}
1524			mark_wake_futex(&wake_q, this);
1525			if (++ret >= nr_wake)
1526				break;
1527		}
1528	}
1529
1530	if (op_ret > 0) {
1531		op_ret = 0;
1532		plist_for_each_entry_safe(this, next, &hb2->chain, list) {
1533			if (match_futex (&this->key, &key2)) {
1534				if (this->pi_state || this->rt_waiter) {
1535					ret = -EINVAL;
1536					goto out_unlock;
1537				}
1538				mark_wake_futex(&wake_q, this);
1539				if (++op_ret >= nr_wake2)
1540					break;
1541			}
1542		}
1543		ret += op_ret;
1544	}
1545
1546out_unlock:
1547	double_unlock_hb(hb1, hb2);
1548	wake_up_q(&wake_q);
1549out_put_keys:
1550	put_futex_key(&key2);
1551out_put_key1:
1552	put_futex_key(&key1);
1553out:
1554	return ret;
1555}
1556
1557/**
1558 * requeue_futex() - Requeue a futex_q from one hb to another
1559 * @q:		the futex_q to requeue
1560 * @hb1:	the source hash_bucket
1561 * @hb2:	the target hash_bucket
1562 * @key2:	the new key for the requeued futex_q
1563 */
1564static inline
1565void requeue_futex(struct futex_q *q, struct futex_hash_bucket *hb1,
1566		   struct futex_hash_bucket *hb2, union futex_key *key2)
1567{
1568
1569	/*
1570	 * If key1 and key2 hash to the same bucket, no need to
1571	 * requeue.
1572	 */
1573	if (likely(&hb1->chain != &hb2->chain)) {
1574		plist_del(&q->list, &hb1->chain);
1575		hb_waiters_dec(hb1);
 
1576		hb_waiters_inc(hb2);
1577		plist_add(&q->list, &hb2->chain);
1578		q->lock_ptr = &hb2->lock;
1579	}
1580	get_futex_key_refs(key2);
1581	q->key = *key2;
1582}
1583
1584/**
1585 * requeue_pi_wake_futex() - Wake a task that acquired the lock during requeue
1586 * @q:		the futex_q
1587 * @key:	the key of the requeue target futex
1588 * @hb:		the hash_bucket of the requeue target futex
1589 *
1590 * During futex_requeue, with requeue_pi=1, it is possible to acquire the
1591 * target futex if it is uncontended or via a lock steal.  Set the futex_q key
1592 * to the requeue target futex so the waiter can detect the wakeup on the right
1593 * futex, but remove it from the hb and NULL the rt_waiter so it can detect
1594 * atomic lock acquisition.  Set the q->lock_ptr to the requeue target hb->lock
1595 * to protect access to the pi_state to fixup the owner later.  Must be called
1596 * with both q->lock_ptr and hb->lock held.
1597 */
1598static inline
1599void requeue_pi_wake_futex(struct futex_q *q, union futex_key *key,
1600			   struct futex_hash_bucket *hb)
1601{
1602	get_futex_key_refs(key);
1603	q->key = *key;
1604
1605	__unqueue_futex(q);
1606
1607	WARN_ON(!q->rt_waiter);
1608	q->rt_waiter = NULL;
1609
1610	q->lock_ptr = &hb->lock;
1611
1612	wake_up_state(q->task, TASK_NORMAL);
1613}
1614
1615/**
1616 * futex_proxy_trylock_atomic() - Attempt an atomic lock for the top waiter
1617 * @pifutex:		the user address of the to futex
1618 * @hb1:		the from futex hash bucket, must be locked by the caller
1619 * @hb2:		the to futex hash bucket, must be locked by the caller
1620 * @key1:		the from futex key
1621 * @key2:		the to futex key
1622 * @ps:			address to store the pi_state pointer
1623 * @set_waiters:	force setting the FUTEX_WAITERS bit (1) or not (0)
1624 *
1625 * Try and get the lock on behalf of the top waiter if we can do it atomically.
1626 * Wake the top waiter if we succeed.  If the caller specified set_waiters,
1627 * then direct futex_lock_pi_atomic() to force setting the FUTEX_WAITERS bit.
1628 * hb1 and hb2 must be held by the caller.
1629 *
1630 * Return:
1631 *  0 - failed to acquire the lock atomically;
1632 * >0 - acquired the lock, return value is vpid of the top_waiter
1633 * <0 - error
1634 */
1635static int futex_proxy_trylock_atomic(u32 __user *pifutex,
1636				 struct futex_hash_bucket *hb1,
1637				 struct futex_hash_bucket *hb2,
1638				 union futex_key *key1, union futex_key *key2,
1639				 struct futex_pi_state **ps, int set_waiters)
1640{
1641	struct futex_q *top_waiter = NULL;
1642	u32 curval;
1643	int ret, vpid;
1644
1645	if (get_futex_value_locked(&curval, pifutex))
1646		return -EFAULT;
1647
1648	if (unlikely(should_fail_futex(true)))
1649		return -EFAULT;
1650
1651	/*
1652	 * Find the top_waiter and determine if there are additional waiters.
1653	 * If the caller intends to requeue more than 1 waiter to pifutex,
1654	 * force futex_lock_pi_atomic() to set the FUTEX_WAITERS bit now,
1655	 * as we have means to handle the possible fault.  If not, don't set
1656	 * the bit unecessarily as it will force the subsequent unlock to enter
1657	 * the kernel.
1658	 */
1659	top_waiter = futex_top_waiter(hb1, key1);
1660
1661	/* There are no waiters, nothing for us to do. */
1662	if (!top_waiter)
1663		return 0;
1664
1665	/* Ensure we requeue to the expected futex. */
1666	if (!match_futex(top_waiter->requeue_pi_key, key2))
1667		return -EINVAL;
1668
1669	/*
1670	 * Try to take the lock for top_waiter.  Set the FUTEX_WAITERS bit in
1671	 * the contended case or if set_waiters is 1.  The pi_state is returned
1672	 * in ps in contended cases.
1673	 */
1674	vpid = task_pid_vnr(top_waiter->task);
1675	ret = futex_lock_pi_atomic(pifutex, hb2, key2, ps, top_waiter->task,
1676				   set_waiters);
1677	if (ret == 1) {
1678		requeue_pi_wake_futex(top_waiter, key2, hb2);
1679		return vpid;
1680	}
1681	return ret;
1682}
1683
1684/**
1685 * futex_requeue() - Requeue waiters from uaddr1 to uaddr2
1686 * @uaddr1:	source futex user address
1687 * @flags:	futex flags (FLAGS_SHARED, etc.)
1688 * @uaddr2:	target futex user address
1689 * @nr_wake:	number of waiters to wake (must be 1 for requeue_pi)
1690 * @nr_requeue:	number of waiters to requeue (0-INT_MAX)
1691 * @cmpval:	@uaddr1 expected value (or %NULL)
1692 * @requeue_pi:	if we are attempting to requeue from a non-pi futex to a
1693 *		pi futex (pi to pi requeue is not supported)
1694 *
1695 * Requeue waiters on uaddr1 to uaddr2. In the requeue_pi case, try to acquire
1696 * uaddr2 atomically on behalf of the top waiter.
1697 *
1698 * Return:
1699 * >=0 - on success, the number of tasks requeued or woken;
1700 *  <0 - on error
1701 */
1702static int futex_requeue(u32 __user *uaddr1, unsigned int flags,
1703			 u32 __user *uaddr2, int nr_wake, int nr_requeue,
1704			 u32 *cmpval, int requeue_pi)
1705{
1706	union futex_key key1 = FUTEX_KEY_INIT, key2 = FUTEX_KEY_INIT;
1707	int drop_count = 0, task_count = 0, ret;
1708	struct futex_pi_state *pi_state = NULL;
1709	struct futex_hash_bucket *hb1, *hb2;
1710	struct futex_q *this, *next;
1711	DEFINE_WAKE_Q(wake_q);
1712
1713	if (requeue_pi) {
1714		/*
1715		 * Requeue PI only works on two distinct uaddrs. This
1716		 * check is only valid for private futexes. See below.
1717		 */
1718		if (uaddr1 == uaddr2)
1719			return -EINVAL;
1720
1721		/*
1722		 * requeue_pi requires a pi_state, try to allocate it now
1723		 * without any locks in case it fails.
1724		 */
1725		if (refill_pi_state_cache())
1726			return -ENOMEM;
1727		/*
1728		 * requeue_pi must wake as many tasks as it can, up to nr_wake
1729		 * + nr_requeue, since it acquires the rt_mutex prior to
1730		 * returning to userspace, so as to not leave the rt_mutex with
1731		 * waiters and no owner.  However, second and third wake-ups
1732		 * cannot be predicted as they involve race conditions with the
1733		 * first wake and a fault while looking up the pi_state.  Both
1734		 * pthread_cond_signal() and pthread_cond_broadcast() should
1735		 * use nr_wake=1.
1736		 */
1737		if (nr_wake != 1)
1738			return -EINVAL;
1739	}
1740
1741retry:
 
 
 
 
 
 
 
 
 
1742	ret = get_futex_key(uaddr1, flags & FLAGS_SHARED, &key1, VERIFY_READ);
1743	if (unlikely(ret != 0))
1744		goto out;
1745	ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2,
1746			    requeue_pi ? VERIFY_WRITE : VERIFY_READ);
1747	if (unlikely(ret != 0))
1748		goto out_put_key1;
1749
1750	/*
1751	 * The check above which compares uaddrs is not sufficient for
1752	 * shared futexes. We need to compare the keys:
1753	 */
1754	if (requeue_pi && match_futex(&key1, &key2)) {
1755		ret = -EINVAL;
1756		goto out_put_keys;
1757	}
1758
1759	hb1 = hash_futex(&key1);
1760	hb2 = hash_futex(&key2);
1761
1762retry_private:
1763	hb_waiters_inc(hb2);
1764	double_lock_hb(hb1, hb2);
1765
1766	if (likely(cmpval != NULL)) {
1767		u32 curval;
1768
1769		ret = get_futex_value_locked(&curval, uaddr1);
1770
1771		if (unlikely(ret)) {
1772			double_unlock_hb(hb1, hb2);
1773			hb_waiters_dec(hb2);
1774
1775			ret = get_user(curval, uaddr1);
1776			if (ret)
1777				goto out_put_keys;
1778
1779			if (!(flags & FLAGS_SHARED))
1780				goto retry_private;
1781
1782			put_futex_key(&key2);
1783			put_futex_key(&key1);
1784			goto retry;
1785		}
1786		if (curval != *cmpval) {
1787			ret = -EAGAIN;
1788			goto out_unlock;
1789		}
1790	}
1791
1792	if (requeue_pi && (task_count - nr_wake < nr_requeue)) {
1793		/*
1794		 * Attempt to acquire uaddr2 and wake the top waiter. If we
1795		 * intend to requeue waiters, force setting the FUTEX_WAITERS
1796		 * bit.  We force this here where we are able to easily handle
1797		 * faults rather in the requeue loop below.
1798		 */
1799		ret = futex_proxy_trylock_atomic(uaddr2, hb1, hb2, &key1,
1800						 &key2, &pi_state, nr_requeue);
1801
1802		/*
1803		 * At this point the top_waiter has either taken uaddr2 or is
1804		 * waiting on it.  If the former, then the pi_state will not
1805		 * exist yet, look it up one more time to ensure we have a
1806		 * reference to it. If the lock was taken, ret contains the
1807		 * vpid of the top waiter task.
1808		 * If the lock was not taken, we have pi_state and an initial
1809		 * refcount on it. In case of an error we have nothing.
1810		 */
1811		if (ret > 0) {
1812			WARN_ON(pi_state);
1813			drop_count++;
1814			task_count++;
1815			/*
1816			 * If we acquired the lock, then the user space value
1817			 * of uaddr2 should be vpid. It cannot be changed by
1818			 * the top waiter as it is blocked on hb2 lock if it
1819			 * tries to do so. If something fiddled with it behind
1820			 * our back the pi state lookup might unearth it. So
1821			 * we rather use the known value than rereading and
1822			 * handing potential crap to lookup_pi_state.
1823			 *
1824			 * If that call succeeds then we have pi_state and an
1825			 * initial refcount on it.
1826			 */
1827			ret = lookup_pi_state(ret, hb2, &key2, &pi_state);
1828		}
1829
1830		switch (ret) {
1831		case 0:
1832			/* We hold a reference on the pi state. */
1833			break;
1834
1835			/* If the above failed, then pi_state is NULL */
1836		case -EFAULT:
1837			double_unlock_hb(hb1, hb2);
1838			hb_waiters_dec(hb2);
1839			put_futex_key(&key2);
1840			put_futex_key(&key1);
1841			ret = fault_in_user_writeable(uaddr2);
1842			if (!ret)
1843				goto retry;
1844			goto out;
1845		case -EAGAIN:
1846			/*
1847			 * Two reasons for this:
1848			 * - Owner is exiting and we just wait for the
1849			 *   exit to complete.
1850			 * - The user space value changed.
1851			 */
1852			double_unlock_hb(hb1, hb2);
1853			hb_waiters_dec(hb2);
1854			put_futex_key(&key2);
1855			put_futex_key(&key1);
1856			cond_resched();
1857			goto retry;
1858		default:
1859			goto out_unlock;
1860		}
1861	}
1862
1863	plist_for_each_entry_safe(this, next, &hb1->chain, list) {
1864		if (task_count - nr_wake >= nr_requeue)
1865			break;
1866
1867		if (!match_futex(&this->key, &key1))
1868			continue;
1869
1870		/*
1871		 * FUTEX_WAIT_REQEUE_PI and FUTEX_CMP_REQUEUE_PI should always
1872		 * be paired with each other and no other futex ops.
1873		 *
1874		 * We should never be requeueing a futex_q with a pi_state,
1875		 * which is awaiting a futex_unlock_pi().
1876		 */
1877		if ((requeue_pi && !this->rt_waiter) ||
1878		    (!requeue_pi && this->rt_waiter) ||
1879		    this->pi_state) {
1880			ret = -EINVAL;
1881			break;
1882		}
1883
1884		/*
1885		 * Wake nr_wake waiters.  For requeue_pi, if we acquired the
1886		 * lock, we already woke the top_waiter.  If not, it will be
1887		 * woken by futex_unlock_pi().
1888		 */
1889		if (++task_count <= nr_wake && !requeue_pi) {
1890			mark_wake_futex(&wake_q, this);
1891			continue;
1892		}
1893
1894		/* Ensure we requeue to the expected futex for requeue_pi. */
1895		if (requeue_pi && !match_futex(this->requeue_pi_key, &key2)) {
1896			ret = -EINVAL;
1897			break;
1898		}
1899
1900		/*
1901		 * Requeue nr_requeue waiters and possibly one more in the case
1902		 * of requeue_pi if we couldn't acquire the lock atomically.
1903		 */
1904		if (requeue_pi) {
1905			/*
1906			 * Prepare the waiter to take the rt_mutex. Take a
1907			 * refcount on the pi_state and store the pointer in
1908			 * the futex_q object of the waiter.
1909			 */
1910			atomic_inc(&pi_state->refcount);
1911			this->pi_state = pi_state;
1912			ret = rt_mutex_start_proxy_lock(&pi_state->pi_mutex,
1913							this->rt_waiter,
1914							this->task);
1915			if (ret == 1) {
1916				/*
1917				 * We got the lock. We do neither drop the
1918				 * refcount on pi_state nor clear
1919				 * this->pi_state because the waiter needs the
1920				 * pi_state for cleaning up the user space
1921				 * value. It will drop the refcount after
1922				 * doing so.
1923				 */
1924				requeue_pi_wake_futex(this, &key2, hb2);
1925				drop_count++;
1926				continue;
1927			} else if (ret) {
1928				/*
1929				 * rt_mutex_start_proxy_lock() detected a
1930				 * potential deadlock when we tried to queue
1931				 * that waiter. Drop the pi_state reference
1932				 * which we took above and remove the pointer
1933				 * to the state from the waiters futex_q
1934				 * object.
1935				 */
1936				this->pi_state = NULL;
1937				put_pi_state(pi_state);
1938				/*
1939				 * We stop queueing more waiters and let user
1940				 * space deal with the mess.
1941				 */
1942				break;
1943			}
1944		}
1945		requeue_futex(this, hb1, hb2, &key2);
1946		drop_count++;
1947	}
1948
1949	/*
1950	 * We took an extra initial reference to the pi_state either
1951	 * in futex_proxy_trylock_atomic() or in lookup_pi_state(). We
1952	 * need to drop it here again.
1953	 */
1954	put_pi_state(pi_state);
1955
1956out_unlock:
1957	double_unlock_hb(hb1, hb2);
1958	wake_up_q(&wake_q);
1959	hb_waiters_dec(hb2);
1960
1961	/*
1962	 * drop_futex_key_refs() must be called outside the spinlocks. During
1963	 * the requeue we moved futex_q's from the hash bucket at key1 to the
1964	 * one at key2 and updated their key pointer.  We no longer need to
1965	 * hold the references to key1.
1966	 */
1967	while (--drop_count >= 0)
1968		drop_futex_key_refs(&key1);
1969
1970out_put_keys:
1971	put_futex_key(&key2);
1972out_put_key1:
1973	put_futex_key(&key1);
1974out:
 
 
1975	return ret ? ret : task_count;
1976}
1977
1978/* The key must be already stored in q->key. */
1979static inline struct futex_hash_bucket *queue_lock(struct futex_q *q)
1980	__acquires(&hb->lock)
1981{
1982	struct futex_hash_bucket *hb;
1983
1984	hb = hash_futex(&q->key);
1985
1986	/*
1987	 * Increment the counter before taking the lock so that
1988	 * a potential waker won't miss a to-be-slept task that is
1989	 * waiting for the spinlock. This is safe as all queue_lock()
1990	 * users end up calling queue_me(). Similarly, for housekeeping,
1991	 * decrement the counter at queue_unlock() when some error has
1992	 * occurred and we don't end up adding the task to the list.
1993	 */
1994	hb_waiters_inc(hb);
1995
1996	q->lock_ptr = &hb->lock;
1997
1998	spin_lock(&hb->lock); /* implies smp_mb(); (A) */
1999	return hb;
2000}
2001
2002static inline void
2003queue_unlock(struct futex_hash_bucket *hb)
2004	__releases(&hb->lock)
2005{
2006	spin_unlock(&hb->lock);
2007	hb_waiters_dec(hb);
2008}
2009
2010/**
2011 * queue_me() - Enqueue the futex_q on the futex_hash_bucket
2012 * @q:	The futex_q to enqueue
2013 * @hb:	The destination hash bucket
2014 *
2015 * The hb->lock must be held by the caller, and is released here. A call to
2016 * queue_me() is typically paired with exactly one call to unqueue_me().  The
2017 * exceptions involve the PI related operations, which may use unqueue_me_pi()
2018 * or nothing if the unqueue is done as part of the wake process and the unqueue
2019 * state is implicit in the state of woken task (see futex_wait_requeue_pi() for
2020 * an example).
2021 */
2022static inline void queue_me(struct futex_q *q, struct futex_hash_bucket *hb)
2023	__releases(&hb->lock)
2024{
2025	int prio;
2026
2027	/*
2028	 * The priority used to register this element is
2029	 * - either the real thread-priority for the real-time threads
2030	 * (i.e. threads with a priority lower than MAX_RT_PRIO)
2031	 * - or MAX_RT_PRIO for non-RT threads.
2032	 * Thus, all RT-threads are woken first in priority order, and
2033	 * the others are woken last, in FIFO order.
2034	 */
2035	prio = min(current->normal_prio, MAX_RT_PRIO);
2036
2037	plist_node_init(&q->list, prio);
2038	plist_add(&q->list, &hb->chain);
2039	q->task = current;
2040	spin_unlock(&hb->lock);
2041}
2042
2043/**
2044 * unqueue_me() - Remove the futex_q from its futex_hash_bucket
2045 * @q:	The futex_q to unqueue
2046 *
2047 * The q->lock_ptr must not be held by the caller. A call to unqueue_me() must
2048 * be paired with exactly one earlier call to queue_me().
2049 *
2050 * Return:
2051 *   1 - if the futex_q was still queued (and we removed unqueued it);
2052 *   0 - if the futex_q was already removed by the waking thread
2053 */
2054static int unqueue_me(struct futex_q *q)
2055{
2056	spinlock_t *lock_ptr;
2057	int ret = 0;
2058
2059	/* In the common case we don't take the spinlock, which is nice. */
2060retry:
2061	/*
2062	 * q->lock_ptr can change between this read and the following spin_lock.
2063	 * Use READ_ONCE to forbid the compiler from reloading q->lock_ptr and
2064	 * optimizing lock_ptr out of the logic below.
2065	 */
2066	lock_ptr = READ_ONCE(q->lock_ptr);
2067	if (lock_ptr != NULL) {
2068		spin_lock(lock_ptr);
2069		/*
2070		 * q->lock_ptr can change between reading it and
2071		 * spin_lock(), causing us to take the wrong lock.  This
2072		 * corrects the race condition.
2073		 *
2074		 * Reasoning goes like this: if we have the wrong lock,
2075		 * q->lock_ptr must have changed (maybe several times)
2076		 * between reading it and the spin_lock().  It can
2077		 * change again after the spin_lock() but only if it was
2078		 * already changed before the spin_lock().  It cannot,
2079		 * however, change back to the original value.  Therefore
2080		 * we can detect whether we acquired the correct lock.
2081		 */
2082		if (unlikely(lock_ptr != q->lock_ptr)) {
2083			spin_unlock(lock_ptr);
2084			goto retry;
2085		}
2086		__unqueue_futex(q);
2087
2088		BUG_ON(q->pi_state);
2089
2090		spin_unlock(lock_ptr);
2091		ret = 1;
2092	}
2093
2094	drop_futex_key_refs(&q->key);
2095	return ret;
2096}
2097
2098/*
2099 * PI futexes can not be requeued and must remove themself from the
2100 * hash bucket. The hash bucket lock (i.e. lock_ptr) is held on entry
2101 * and dropped here.
2102 */
2103static void unqueue_me_pi(struct futex_q *q)
2104	__releases(q->lock_ptr)
2105{
2106	__unqueue_futex(q);
2107
2108	BUG_ON(!q->pi_state);
2109	put_pi_state(q->pi_state);
2110	q->pi_state = NULL;
2111
2112	spin_unlock(q->lock_ptr);
2113}
2114
2115/*
2116 * Fixup the pi_state owner with the new owner.
2117 *
2118 * Must be called with hash bucket lock held and mm->sem held for non
2119 * private futexes.
2120 */
2121static int fixup_pi_state_owner(u32 __user *uaddr, struct futex_q *q,
2122				struct task_struct *newowner)
2123{
2124	u32 newtid = task_pid_vnr(newowner) | FUTEX_WAITERS;
2125	struct futex_pi_state *pi_state = q->pi_state;
2126	struct task_struct *oldowner = pi_state->owner;
2127	u32 uval, uninitialized_var(curval), newval;
2128	int ret;
2129
2130	/* Owner died? */
2131	if (!pi_state->owner)
2132		newtid |= FUTEX_OWNER_DIED;
2133
2134	/*
2135	 * We are here either because we stole the rtmutex from the
2136	 * previous highest priority waiter or we are the highest priority
2137	 * waiter but failed to get the rtmutex the first time.
2138	 * We have to replace the newowner TID in the user space variable.
2139	 * This must be atomic as we have to preserve the owner died bit here.
2140	 *
2141	 * Note: We write the user space value _before_ changing the pi_state
2142	 * because we can fault here. Imagine swapped out pages or a fork
2143	 * that marked all the anonymous memory readonly for cow.
2144	 *
2145	 * Modifying pi_state _before_ the user space value would
2146	 * leave the pi_state in an inconsistent state when we fault
2147	 * here, because we need to drop the hash bucket lock to
2148	 * handle the fault. This might be observed in the PID check
2149	 * in lookup_pi_state.
2150	 */
2151retry:
2152	if (get_futex_value_locked(&uval, uaddr))
2153		goto handle_fault;
2154
2155	while (1) {
2156		newval = (uval & FUTEX_OWNER_DIED) | newtid;
2157
2158		if (cmpxchg_futex_value_locked(&curval, uaddr, uval, newval))
2159			goto handle_fault;
2160		if (curval == uval)
2161			break;
2162		uval = curval;
2163	}
2164
2165	/*
2166	 * We fixed up user space. Now we need to fix the pi_state
2167	 * itself.
2168	 */
2169	if (pi_state->owner != NULL) {
2170		raw_spin_lock_irq(&pi_state->owner->pi_lock);
2171		WARN_ON(list_empty(&pi_state->list));
2172		list_del_init(&pi_state->list);
2173		raw_spin_unlock_irq(&pi_state->owner->pi_lock);
2174	}
2175
2176	pi_state->owner = newowner;
2177
2178	raw_spin_lock_irq(&newowner->pi_lock);
2179	WARN_ON(!list_empty(&pi_state->list));
2180	list_add(&pi_state->list, &newowner->pi_state_list);
2181	raw_spin_unlock_irq(&newowner->pi_lock);
2182	return 0;
2183
2184	/*
2185	 * To handle the page fault we need to drop the hash bucket
2186	 * lock here. That gives the other task (either the highest priority
2187	 * waiter itself or the task which stole the rtmutex) the
2188	 * chance to try the fixup of the pi_state. So once we are
2189	 * back from handling the fault we need to check the pi_state
2190	 * after reacquiring the hash bucket lock and before trying to
2191	 * do another fixup. When the fixup has been done already we
2192	 * simply return.
2193	 */
2194handle_fault:
2195	spin_unlock(q->lock_ptr);
2196
2197	ret = fault_in_user_writeable(uaddr);
2198
2199	spin_lock(q->lock_ptr);
2200
2201	/*
2202	 * Check if someone else fixed it for us:
2203	 */
2204	if (pi_state->owner != oldowner)
2205		return 0;
2206
2207	if (ret)
2208		return ret;
2209
2210	goto retry;
2211}
2212
2213static long futex_wait_restart(struct restart_block *restart);
2214
2215/**
2216 * fixup_owner() - Post lock pi_state and corner case management
2217 * @uaddr:	user address of the futex
2218 * @q:		futex_q (contains pi_state and access to the rt_mutex)
2219 * @locked:	if the attempt to take the rt_mutex succeeded (1) or not (0)
2220 *
2221 * After attempting to lock an rt_mutex, this function is called to cleanup
2222 * the pi_state owner as well as handle race conditions that may allow us to
2223 * acquire the lock. Must be called with the hb lock held.
2224 *
2225 * Return:
2226 *  1 - success, lock taken;
2227 *  0 - success, lock not taken;
2228 * <0 - on error (-EFAULT)
2229 */
2230static int fixup_owner(u32 __user *uaddr, struct futex_q *q, int locked)
2231{
2232	struct task_struct *owner;
2233	int ret = 0;
2234
2235	if (locked) {
2236		/*
2237		 * Got the lock. We might not be the anticipated owner if we
2238		 * did a lock-steal - fix up the PI-state in that case:
2239		 */
2240		if (q->pi_state->owner != current)
2241			ret = fixup_pi_state_owner(uaddr, q, current);
2242		goto out;
2243	}
2244
2245	/*
2246	 * Catch the rare case, where the lock was released when we were on the
2247	 * way back before we locked the hash bucket.
2248	 */
2249	if (q->pi_state->owner == current) {
2250		/*
2251		 * Try to get the rt_mutex now. This might fail as some other
2252		 * task acquired the rt_mutex after we removed ourself from the
2253		 * rt_mutex waiters list.
2254		 */
2255		if (rt_mutex_trylock(&q->pi_state->pi_mutex)) {
2256			locked = 1;
2257			goto out;
2258		}
2259
2260		/*
2261		 * pi_state is incorrect, some other task did a lock steal and
2262		 * we returned due to timeout or signal without taking the
2263		 * rt_mutex. Too late.
2264		 */
2265		raw_spin_lock_irq(&q->pi_state->pi_mutex.wait_lock);
2266		owner = rt_mutex_owner(&q->pi_state->pi_mutex);
2267		if (!owner)
2268			owner = rt_mutex_next_owner(&q->pi_state->pi_mutex);
2269		raw_spin_unlock_irq(&q->pi_state->pi_mutex.wait_lock);
2270		ret = fixup_pi_state_owner(uaddr, q, owner);
2271		goto out;
2272	}
2273
2274	/*
2275	 * Paranoia check. If we did not take the lock, then we should not be
2276	 * the owner of the rt_mutex.
2277	 */
2278	if (rt_mutex_owner(&q->pi_state->pi_mutex) == current)
2279		printk(KERN_ERR "fixup_owner: ret = %d pi-mutex: %p "
2280				"pi-state %p\n", ret,
2281				q->pi_state->pi_mutex.owner,
2282				q->pi_state->owner);
2283
2284out:
2285	return ret ? ret : locked;
2286}
2287
2288/**
2289 * futex_wait_queue_me() - queue_me() and wait for wakeup, timeout, or signal
2290 * @hb:		the futex hash bucket, must be locked by the caller
2291 * @q:		the futex_q to queue up on
2292 * @timeout:	the prepared hrtimer_sleeper, or null for no timeout
2293 */
2294static void futex_wait_queue_me(struct futex_hash_bucket *hb, struct futex_q *q,
2295				struct hrtimer_sleeper *timeout)
2296{
2297	/*
2298	 * The task state is guaranteed to be set before another task can
2299	 * wake it. set_current_state() is implemented using smp_store_mb() and
2300	 * queue_me() calls spin_unlock() upon completion, both serializing
2301	 * access to the hash list and forcing another memory barrier.
2302	 */
2303	set_current_state(TASK_INTERRUPTIBLE);
2304	queue_me(q, hb);
2305
2306	/* Arm the timer */
2307	if (timeout)
2308		hrtimer_start_expires(&timeout->timer, HRTIMER_MODE_ABS);
 
 
 
2309
2310	/*
2311	 * If we have been removed from the hash list, then another task
2312	 * has tried to wake us, and we can skip the call to schedule().
2313	 */
2314	if (likely(!plist_node_empty(&q->list))) {
2315		/*
2316		 * If the timer has already expired, current will already be
2317		 * flagged for rescheduling. Only call schedule if there
2318		 * is no timeout, or if it has yet to expire.
2319		 */
2320		if (!timeout || timeout->task)
2321			freezable_schedule();
2322	}
2323	__set_current_state(TASK_RUNNING);
2324}
2325
2326/**
2327 * futex_wait_setup() - Prepare to wait on a futex
2328 * @uaddr:	the futex userspace address
2329 * @val:	the expected value
2330 * @flags:	futex flags (FLAGS_SHARED, etc.)
2331 * @q:		the associated futex_q
2332 * @hb:		storage for hash_bucket pointer to be returned to caller
2333 *
2334 * Setup the futex_q and locate the hash_bucket.  Get the futex value and
2335 * compare it with the expected value.  Handle atomic faults internally.
2336 * Return with the hb lock held and a q.key reference on success, and unlocked
2337 * with no q.key reference on failure.
2338 *
2339 * Return:
2340 *  0 - uaddr contains val and hb has been locked;
2341 * <1 - -EFAULT or -EWOULDBLOCK (uaddr does not contain val) and hb is unlocked
2342 */
2343static int futex_wait_setup(u32 __user *uaddr, u32 val, unsigned int flags,
2344			   struct futex_q *q, struct futex_hash_bucket **hb)
2345{
2346	u32 uval;
2347	int ret;
2348
2349	/*
2350	 * Access the page AFTER the hash-bucket is locked.
2351	 * Order is important:
2352	 *
2353	 *   Userspace waiter: val = var; if (cond(val)) futex_wait(&var, val);
2354	 *   Userspace waker:  if (cond(var)) { var = new; futex_wake(&var); }
2355	 *
2356	 * The basic logical guarantee of a futex is that it blocks ONLY
2357	 * if cond(var) is known to be true at the time of blocking, for
2358	 * any cond.  If we locked the hash-bucket after testing *uaddr, that
2359	 * would open a race condition where we could block indefinitely with
2360	 * cond(var) false, which would violate the guarantee.
2361	 *
2362	 * On the other hand, we insert q and release the hash-bucket only
2363	 * after testing *uaddr.  This guarantees that futex_wait() will NOT
2364	 * absorb a wakeup if *uaddr does not match the desired values
2365	 * while the syscall executes.
2366	 */
2367retry:
2368	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q->key, VERIFY_READ);
2369	if (unlikely(ret != 0))
2370		return ret;
2371
2372retry_private:
2373	*hb = queue_lock(q);
2374
2375	ret = get_futex_value_locked(&uval, uaddr);
2376
2377	if (ret) {
2378		queue_unlock(*hb);
2379
2380		ret = get_user(uval, uaddr);
2381		if (ret)
2382			goto out;
2383
2384		if (!(flags & FLAGS_SHARED))
2385			goto retry_private;
2386
2387		put_futex_key(&q->key);
2388		goto retry;
2389	}
2390
2391	if (uval != val) {
2392		queue_unlock(*hb);
2393		ret = -EWOULDBLOCK;
2394	}
2395
2396out:
2397	if (ret)
2398		put_futex_key(&q->key);
2399	return ret;
2400}
2401
2402static int futex_wait(u32 __user *uaddr, unsigned int flags, u32 val,
2403		      ktime_t *abs_time, u32 bitset)
2404{
2405	struct hrtimer_sleeper timeout, *to = NULL;
2406	struct restart_block *restart;
2407	struct futex_hash_bucket *hb;
2408	struct futex_q q = futex_q_init;
2409	int ret;
2410
2411	if (!bitset)
2412		return -EINVAL;
2413	q.bitset = bitset;
2414
2415	if (abs_time) {
2416		to = &timeout;
2417
2418		hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2419				      CLOCK_REALTIME : CLOCK_MONOTONIC,
2420				      HRTIMER_MODE_ABS);
2421		hrtimer_init_sleeper(to, current);
2422		hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2423					     current->timer_slack_ns);
2424	}
2425
2426retry:
2427	/*
2428	 * Prepare to wait on uaddr. On success, holds hb lock and increments
2429	 * q.key refs.
2430	 */
2431	ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2432	if (ret)
2433		goto out;
2434
2435	/* queue_me and wait for wakeup, timeout, or a signal. */
2436	futex_wait_queue_me(hb, &q, to);
2437
2438	/* If we were woken (and unqueued), we succeeded, whatever. */
2439	ret = 0;
2440	/* unqueue_me() drops q.key ref */
2441	if (!unqueue_me(&q))
2442		goto out;
2443	ret = -ETIMEDOUT;
2444	if (to && !to->task)
2445		goto out;
2446
2447	/*
2448	 * We expect signal_pending(current), but we might be the
2449	 * victim of a spurious wakeup as well.
2450	 */
2451	if (!signal_pending(current))
2452		goto retry;
2453
2454	ret = -ERESTARTSYS;
2455	if (!abs_time)
2456		goto out;
2457
2458	restart = &current->restart_block;
2459	restart->fn = futex_wait_restart;
2460	restart->futex.uaddr = uaddr;
2461	restart->futex.val = val;
2462	restart->futex.time = *abs_time;
2463	restart->futex.bitset = bitset;
2464	restart->futex.flags = flags | FLAGS_HAS_TIMEOUT;
2465
2466	ret = -ERESTART_RESTARTBLOCK;
2467
2468out:
2469	if (to) {
2470		hrtimer_cancel(&to->timer);
2471		destroy_hrtimer_on_stack(&to->timer);
2472	}
2473	return ret;
2474}
2475
2476
2477static long futex_wait_restart(struct restart_block *restart)
2478{
2479	u32 __user *uaddr = restart->futex.uaddr;
2480	ktime_t t, *tp = NULL;
2481
2482	if (restart->futex.flags & FLAGS_HAS_TIMEOUT) {
2483		t = restart->futex.time;
2484		tp = &t;
2485	}
2486	restart->fn = do_no_restart_syscall;
2487
2488	return (long)futex_wait(uaddr, restart->futex.flags,
2489				restart->futex.val, tp, restart->futex.bitset);
2490}
2491
2492
2493/*
2494 * Userspace tried a 0 -> TID atomic transition of the futex value
2495 * and failed. The kernel side here does the whole locking operation:
2496 * if there are waiters then it will block as a consequence of relying
2497 * on rt-mutexes, it does PI, etc. (Due to races the kernel might see
2498 * a 0 value of the futex too.).
2499 *
2500 * Also serves as futex trylock_pi()'ing, and due semantics.
2501 */
2502static int futex_lock_pi(u32 __user *uaddr, unsigned int flags,
2503			 ktime_t *time, int trylock)
2504{
2505	struct hrtimer_sleeper timeout, *to = NULL;
2506	struct futex_hash_bucket *hb;
2507	struct futex_q q = futex_q_init;
2508	int res, ret;
2509
2510	if (refill_pi_state_cache())
2511		return -ENOMEM;
2512
2513	if (time) {
2514		to = &timeout;
2515		hrtimer_init_on_stack(&to->timer, CLOCK_REALTIME,
2516				      HRTIMER_MODE_ABS);
2517		hrtimer_init_sleeper(to, current);
2518		hrtimer_set_expires(&to->timer, *time);
2519	}
2520
2521retry:
2522	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &q.key, VERIFY_WRITE);
2523	if (unlikely(ret != 0))
2524		goto out;
2525
2526retry_private:
2527	hb = queue_lock(&q);
2528
2529	ret = futex_lock_pi_atomic(uaddr, hb, &q.key, &q.pi_state, current, 0);
2530	if (unlikely(ret)) {
2531		/*
2532		 * Atomic work succeeded and we got the lock,
2533		 * or failed. Either way, we do _not_ block.
2534		 */
2535		switch (ret) {
2536		case 1:
2537			/* We got the lock. */
2538			ret = 0;
2539			goto out_unlock_put_key;
2540		case -EFAULT:
2541			goto uaddr_faulted;
2542		case -EAGAIN:
2543			/*
2544			 * Two reasons for this:
2545			 * - Task is exiting and we just wait for the
2546			 *   exit to complete.
2547			 * - The user space value changed.
2548			 */
2549			queue_unlock(hb);
2550			put_futex_key(&q.key);
2551			cond_resched();
2552			goto retry;
2553		default:
2554			goto out_unlock_put_key;
2555		}
2556	}
2557
2558	/*
2559	 * Only actually queue now that the atomic ops are done:
2560	 */
2561	queue_me(&q, hb);
2562
2563	WARN_ON(!q.pi_state);
2564	/*
2565	 * Block on the PI mutex:
2566	 */
2567	if (!trylock) {
2568		ret = rt_mutex_timed_futex_lock(&q.pi_state->pi_mutex, to);
2569	} else {
2570		ret = rt_mutex_trylock(&q.pi_state->pi_mutex);
2571		/* Fixup the trylock return value: */
2572		ret = ret ? 0 : -EWOULDBLOCK;
2573	}
2574
2575	spin_lock(q.lock_ptr);
2576	/*
2577	 * Fixup the pi_state owner and possibly acquire the lock if we
2578	 * haven't already.
2579	 */
2580	res = fixup_owner(uaddr, &q, !ret);
2581	/*
2582	 * If fixup_owner() returned an error, proprogate that.  If it acquired
2583	 * the lock, clear our -ETIMEDOUT or -EINTR.
2584	 */
2585	if (res)
2586		ret = (res < 0) ? res : 0;
2587
2588	/*
2589	 * If fixup_owner() faulted and was unable to handle the fault, unlock
2590	 * it and return the fault to userspace.
2591	 */
2592	if (ret && (rt_mutex_owner(&q.pi_state->pi_mutex) == current))
2593		rt_mutex_unlock(&q.pi_state->pi_mutex);
2594
2595	/* Unqueue and drop the lock */
2596	unqueue_me_pi(&q);
2597
2598	goto out_put_key;
2599
2600out_unlock_put_key:
2601	queue_unlock(hb);
2602
2603out_put_key:
2604	put_futex_key(&q.key);
2605out:
2606	if (to)
2607		destroy_hrtimer_on_stack(&to->timer);
2608	return ret != -EINTR ? ret : -ERESTARTNOINTR;
2609
2610uaddr_faulted:
2611	queue_unlock(hb);
2612
2613	ret = fault_in_user_writeable(uaddr);
2614	if (ret)
2615		goto out_put_key;
2616
2617	if (!(flags & FLAGS_SHARED))
2618		goto retry_private;
2619
2620	put_futex_key(&q.key);
2621	goto retry;
2622}
2623
2624/*
2625 * Userspace attempted a TID -> 0 atomic transition, and failed.
2626 * This is the in-kernel slowpath: we look up the PI state (if any),
2627 * and do the rt-mutex unlock.
2628 */
2629static int futex_unlock_pi(u32 __user *uaddr, unsigned int flags)
2630{
2631	u32 uninitialized_var(curval), uval, vpid = task_pid_vnr(current);
 
2632	union futex_key key = FUTEX_KEY_INIT;
2633	struct futex_hash_bucket *hb;
2634	struct futex_q *match;
2635	int ret;
2636
2637retry:
2638	if (get_user(uval, uaddr))
2639		return -EFAULT;
2640	/*
2641	 * We release only a lock we actually own:
2642	 */
2643	if ((uval & FUTEX_TID_MASK) != vpid)
2644		return -EPERM;
2645
2646	ret = get_futex_key(uaddr, flags & FLAGS_SHARED, &key, VERIFY_WRITE);
2647	if (ret)
2648		return ret;
2649
2650	hb = hash_futex(&key);
2651	spin_lock(&hb->lock);
2652
2653	/*
2654	 * Check waiters first. We do not trust user space values at
2655	 * all and we at least want to know if user space fiddled
2656	 * with the futex value instead of blindly unlocking.
2657	 */
2658	match = futex_top_waiter(hb, &key);
2659	if (match) {
2660		ret = wake_futex_pi(uaddr, uval, match, hb);
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2661		/*
2662		 * In case of success wake_futex_pi dropped the hash
2663		 * bucket lock.
2664		 */
2665		if (!ret)
2666			goto out_putkey;
2667		/*
2668		 * The atomic access to the futex value generated a
2669		 * pagefault, so retry the user-access and the wakeup:
2670		 */
2671		if (ret == -EFAULT)
2672			goto pi_faulted;
2673		/*
2674		 * A unconditional UNLOCK_PI op raced against a waiter
2675		 * setting the FUTEX_WAITERS bit. Try again.
2676		 */
2677		if (ret == -EAGAIN) {
2678			spin_unlock(&hb->lock);
2679			put_futex_key(&key);
2680			goto retry;
2681		}
2682		/*
2683		 * wake_futex_pi has detected invalid state. Tell user
2684		 * space.
2685		 */
2686		goto out_unlock;
2687	}
2688
2689	/*
2690	 * We have no kernel internal state, i.e. no waiters in the
2691	 * kernel. Waiters which are about to queue themselves are stuck
2692	 * on hb->lock. So we can safely ignore them. We do neither
2693	 * preserve the WAITERS bit not the OWNER_DIED one. We are the
2694	 * owner.
2695	 */
2696	if (cmpxchg_futex_value_locked(&curval, uaddr, uval, 0))
 
2697		goto pi_faulted;
2698
2699	/*
2700	 * If uval has changed, let user space handle it.
2701	 */
2702	ret = (curval == uval) ? 0 : -EAGAIN;
2703
2704out_unlock:
2705	spin_unlock(&hb->lock);
2706out_putkey:
2707	put_futex_key(&key);
 
 
2708	return ret;
2709
2710pi_faulted:
2711	spin_unlock(&hb->lock);
2712	put_futex_key(&key);
2713
2714	ret = fault_in_user_writeable(uaddr);
2715	if (!ret)
2716		goto retry;
2717
2718	return ret;
2719}
2720
2721/**
2722 * handle_early_requeue_pi_wakeup() - Detect early wakeup on the initial futex
2723 * @hb:		the hash_bucket futex_q was original enqueued on
2724 * @q:		the futex_q woken while waiting to be requeued
2725 * @key2:	the futex_key of the requeue target futex
2726 * @timeout:	the timeout associated with the wait (NULL if none)
2727 *
2728 * Detect if the task was woken on the initial futex as opposed to the requeue
2729 * target futex.  If so, determine if it was a timeout or a signal that caused
2730 * the wakeup and return the appropriate error code to the caller.  Must be
2731 * called with the hb lock held.
2732 *
2733 * Return:
2734 *  0 = no early wakeup detected;
2735 * <0 = -ETIMEDOUT or -ERESTARTNOINTR
2736 */
2737static inline
2738int handle_early_requeue_pi_wakeup(struct futex_hash_bucket *hb,
2739				   struct futex_q *q, union futex_key *key2,
2740				   struct hrtimer_sleeper *timeout)
2741{
2742	int ret = 0;
2743
2744	/*
2745	 * With the hb lock held, we avoid races while we process the wakeup.
2746	 * We only need to hold hb (and not hb2) to ensure atomicity as the
2747	 * wakeup code can't change q.key from uaddr to uaddr2 if we hold hb.
2748	 * It can't be requeued from uaddr2 to something else since we don't
2749	 * support a PI aware source futex for requeue.
2750	 */
2751	if (!match_futex(&q->key, key2)) {
2752		WARN_ON(q->lock_ptr && (&hb->lock != q->lock_ptr));
2753		/*
2754		 * We were woken prior to requeue by a timeout or a signal.
2755		 * Unqueue the futex_q and determine which it was.
2756		 */
2757		plist_del(&q->list, &hb->chain);
2758		hb_waiters_dec(hb);
2759
2760		/* Handle spurious wakeups gracefully */
2761		ret = -EWOULDBLOCK;
2762		if (timeout && !timeout->task)
2763			ret = -ETIMEDOUT;
2764		else if (signal_pending(current))
2765			ret = -ERESTARTNOINTR;
2766	}
2767	return ret;
2768}
2769
2770/**
2771 * futex_wait_requeue_pi() - Wait on uaddr and take uaddr2
2772 * @uaddr:	the futex we initially wait on (non-pi)
2773 * @flags:	futex flags (FLAGS_SHARED, FLAGS_CLOCKRT, etc.), they must be
2774 *		the same type, no requeueing from private to shared, etc.
2775 * @val:	the expected value of uaddr
2776 * @abs_time:	absolute timeout
2777 * @bitset:	32 bit wakeup bitset set by userspace, defaults to all
2778 * @uaddr2:	the pi futex we will take prior to returning to user-space
2779 *
2780 * The caller will wait on uaddr and will be requeued by futex_requeue() to
2781 * uaddr2 which must be PI aware and unique from uaddr.  Normal wakeup will wake
2782 * on uaddr2 and complete the acquisition of the rt_mutex prior to returning to
2783 * userspace.  This ensures the rt_mutex maintains an owner when it has waiters;
2784 * without one, the pi logic would not know which task to boost/deboost, if
2785 * there was a need to.
2786 *
2787 * We call schedule in futex_wait_queue_me() when we enqueue and return there
2788 * via the following--
2789 * 1) wakeup on uaddr2 after an atomic lock acquisition by futex_requeue()
2790 * 2) wakeup on uaddr2 after a requeue
2791 * 3) signal
2792 * 4) timeout
2793 *
2794 * If 3, cleanup and return -ERESTARTNOINTR.
2795 *
2796 * If 2, we may then block on trying to take the rt_mutex and return via:
2797 * 5) successful lock
2798 * 6) signal
2799 * 7) timeout
2800 * 8) other lock acquisition failure
2801 *
2802 * If 6, return -EWOULDBLOCK (restarting the syscall would do the same).
2803 *
2804 * If 4 or 7, we cleanup and return with -ETIMEDOUT.
2805 *
2806 * Return:
2807 *  0 - On success;
2808 * <0 - On error
2809 */
2810static int futex_wait_requeue_pi(u32 __user *uaddr, unsigned int flags,
2811				 u32 val, ktime_t *abs_time, u32 bitset,
2812				 u32 __user *uaddr2)
2813{
2814	struct hrtimer_sleeper timeout, *to = NULL;
2815	struct rt_mutex_waiter rt_waiter;
 
2816	struct futex_hash_bucket *hb;
2817	union futex_key key2 = FUTEX_KEY_INIT;
2818	struct futex_q q = futex_q_init;
2819	int res, ret;
2820
2821	if (uaddr == uaddr2)
2822		return -EINVAL;
2823
2824	if (!bitset)
2825		return -EINVAL;
2826
2827	if (abs_time) {
2828		to = &timeout;
2829		hrtimer_init_on_stack(&to->timer, (flags & FLAGS_CLOCKRT) ?
2830				      CLOCK_REALTIME : CLOCK_MONOTONIC,
2831				      HRTIMER_MODE_ABS);
2832		hrtimer_init_sleeper(to, current);
2833		hrtimer_set_expires_range_ns(&to->timer, *abs_time,
2834					     current->timer_slack_ns);
2835	}
2836
2837	/*
2838	 * The waiter is allocated on our stack, manipulated by the requeue
2839	 * code while we sleep on uaddr.
2840	 */
2841	debug_rt_mutex_init_waiter(&rt_waiter);
2842	RB_CLEAR_NODE(&rt_waiter.pi_tree_entry);
2843	RB_CLEAR_NODE(&rt_waiter.tree_entry);
2844	rt_waiter.task = NULL;
2845
2846	ret = get_futex_key(uaddr2, flags & FLAGS_SHARED, &key2, VERIFY_WRITE);
2847	if (unlikely(ret != 0))
2848		goto out;
2849
2850	q.bitset = bitset;
2851	q.rt_waiter = &rt_waiter;
2852	q.requeue_pi_key = &key2;
2853
2854	/*
2855	 * Prepare to wait on uaddr. On success, increments q.key (key1) ref
2856	 * count.
2857	 */
2858	ret = futex_wait_setup(uaddr, val, flags, &q, &hb);
2859	if (ret)
2860		goto out_key2;
2861
2862	/*
2863	 * The check above which compares uaddrs is not sufficient for
2864	 * shared futexes. We need to compare the keys:
2865	 */
2866	if (match_futex(&q.key, &key2)) {
2867		queue_unlock(hb);
2868		ret = -EINVAL;
2869		goto out_put_keys;
2870	}
2871
2872	/* Queue the futex_q, drop the hb lock, wait for wakeup. */
2873	futex_wait_queue_me(hb, &q, to);
2874
2875	spin_lock(&hb->lock);
2876	ret = handle_early_requeue_pi_wakeup(hb, &q, &key2, to);
2877	spin_unlock(&hb->lock);
2878	if (ret)
2879		goto out_put_keys;
2880
2881	/*
2882	 * In order for us to be here, we know our q.key == key2, and since
2883	 * we took the hb->lock above, we also know that futex_requeue() has
2884	 * completed and we no longer have to concern ourselves with a wakeup
2885	 * race with the atomic proxy lock acquisition by the requeue code. The
2886	 * futex_requeue dropped our key1 reference and incremented our key2
2887	 * reference count.
2888	 */
2889
2890	/* Check if the requeue code acquired the second futex for us. */
2891	if (!q.rt_waiter) {
2892		/*
2893		 * Got the lock. We might not be the anticipated owner if we
2894		 * did a lock-steal - fix up the PI-state in that case.
2895		 */
2896		if (q.pi_state && (q.pi_state->owner != current)) {
2897			spin_lock(q.lock_ptr);
2898			ret = fixup_pi_state_owner(uaddr2, &q, current);
2899			if (ret && rt_mutex_owner(&q.pi_state->pi_mutex) == current)
2900				rt_mutex_unlock(&q.pi_state->pi_mutex);
2901			/*
2902			 * Drop the reference to the pi state which
2903			 * the requeue_pi() code acquired for us.
2904			 */
2905			put_pi_state(q.pi_state);
2906			spin_unlock(q.lock_ptr);
2907		}
2908	} else {
2909		struct rt_mutex *pi_mutex;
2910
2911		/*
2912		 * We have been woken up by futex_unlock_pi(), a timeout, or a
2913		 * signal.  futex_unlock_pi() will not destroy the lock_ptr nor
2914		 * the pi_state.
2915		 */
2916		WARN_ON(!q.pi_state);
2917		pi_mutex = &q.pi_state->pi_mutex;
2918		ret = rt_mutex_finish_proxy_lock(pi_mutex, to, &rt_waiter);
2919		debug_rt_mutex_free_waiter(&rt_waiter);
2920
2921		spin_lock(q.lock_ptr);
2922		/*
2923		 * Fixup the pi_state owner and possibly acquire the lock if we
2924		 * haven't already.
2925		 */
2926		res = fixup_owner(uaddr2, &q, !ret);
2927		/*
2928		 * If fixup_owner() returned an error, proprogate that.  If it
2929		 * acquired the lock, clear -ETIMEDOUT or -EINTR.
2930		 */
2931		if (res)
2932			ret = (res < 0) ? res : 0;
2933
2934		/*
2935		 * If fixup_pi_state_owner() faulted and was unable to handle
2936		 * the fault, unlock the rt_mutex and return the fault to
2937		 * userspace.
2938		 */
2939		if (ret && rt_mutex_owner(pi_mutex) == current)
2940			rt_mutex_unlock(pi_mutex);
2941
2942		/* Unqueue and drop the lock. */
2943		unqueue_me_pi(&q);
2944	}
2945
2946	if (ret == -EINTR) {
 
 
 
 
 
 
 
2947		/*
2948		 * We've already been requeued, but cannot restart by calling
2949		 * futex_lock_pi() directly. We could restart this syscall, but
2950		 * it would detect that the user space "val" changed and return
2951		 * -EWOULDBLOCK.  Save the overhead of the restart and return
2952		 * -EWOULDBLOCK directly.
2953		 */
2954		ret = -EWOULDBLOCK;
2955	}
2956
2957out_put_keys:
2958	put_futex_key(&q.key);
2959out_key2:
2960	put_futex_key(&key2);
2961
2962out:
2963	if (to) {
2964		hrtimer_cancel(&to->timer);
2965		destroy_hrtimer_on_stack(&to->timer);
2966	}
2967	return ret;
2968}
2969
2970/*
2971 * Support for robust futexes: the kernel cleans up held futexes at
2972 * thread exit time.
2973 *
2974 * Implementation: user-space maintains a per-thread list of locks it
2975 * is holding. Upon do_exit(), the kernel carefully walks this list,
2976 * and marks all locks that are owned by this thread with the
2977 * FUTEX_OWNER_DIED bit, and wakes up a waiter (if any). The list is
2978 * always manipulated with the lock held, so the list is private and
2979 * per-thread. Userspace also maintains a per-thread 'list_op_pending'
2980 * field, to allow the kernel to clean up if the thread dies after
2981 * acquiring the lock, but just before it could have added itself to
2982 * the list. There can only be one such pending lock.
2983 */
2984
2985/**
2986 * sys_set_robust_list() - Set the robust-futex list head of a task
2987 * @head:	pointer to the list-head
2988 * @len:	length of the list-head, as userspace expects
2989 */
2990SYSCALL_DEFINE2(set_robust_list, struct robust_list_head __user *, head,
2991		size_t, len)
2992{
2993	if (!futex_cmpxchg_enabled)
2994		return -ENOSYS;
2995	/*
2996	 * The kernel knows only one size for now:
2997	 */
2998	if (unlikely(len != sizeof(*head)))
2999		return -EINVAL;
3000
3001	current->robust_list = head;
3002
3003	return 0;
3004}
3005
3006/**
3007 * sys_get_robust_list() - Get the robust-futex list head of a task
3008 * @pid:	pid of the process [zero for current task]
3009 * @head_ptr:	pointer to a list-head pointer, the kernel fills it in
3010 * @len_ptr:	pointer to a length field, the kernel fills in the header size
3011 */
3012SYSCALL_DEFINE3(get_robust_list, int, pid,
3013		struct robust_list_head __user * __user *, head_ptr,
3014		size_t __user *, len_ptr)
3015{
3016	struct robust_list_head __user *head;
3017	unsigned long ret;
3018	struct task_struct *p;
3019
3020	if (!futex_cmpxchg_enabled)
3021		return -ENOSYS;
3022
3023	rcu_read_lock();
3024
3025	ret = -ESRCH;
3026	if (!pid)
3027		p = current;
3028	else {
3029		p = find_task_by_vpid(pid);
3030		if (!p)
3031			goto err_unlock;
3032	}
3033
3034	ret = -EPERM;
3035	if (!ptrace_may_access(p, PTRACE_MODE_READ_REALCREDS))
3036		goto err_unlock;
3037
3038	head = p->robust_list;
3039	rcu_read_unlock();
3040
3041	if (put_user(sizeof(*head), len_ptr))
3042		return -EFAULT;
3043	return put_user(head, head_ptr);
3044
3045err_unlock:
3046	rcu_read_unlock();
3047
3048	return ret;
3049}
3050
3051/*
3052 * Process a futex-list entry, check whether it's owned by the
3053 * dying task, and do notification if so:
3054 */
3055int handle_futex_death(u32 __user *uaddr, struct task_struct *curr, int pi)
3056{
3057	u32 uval, uninitialized_var(nval), mval;
3058
3059retry:
3060	if (get_user(uval, uaddr))
3061		return -1;
3062
3063	if ((uval & FUTEX_TID_MASK) == task_pid_vnr(curr)) {
3064		/*
3065		 * Ok, this dying thread is truly holding a futex
3066		 * of interest. Set the OWNER_DIED bit atomically
3067		 * via cmpxchg, and if the value had FUTEX_WAITERS
3068		 * set, wake up a waiter (if any). (We have to do a
3069		 * futex_wake() even if OWNER_DIED is already set -
3070		 * to handle the rare but possible case of recursive
3071		 * thread-death.) The rest of the cleanup is done in
3072		 * userspace.
3073		 */
3074		mval = (uval & FUTEX_WAITERS) | FUTEX_OWNER_DIED;
3075		/*
3076		 * We are not holding a lock here, but we want to have
3077		 * the pagefault_disable/enable() protection because
3078		 * we want to handle the fault gracefully. If the
3079		 * access fails we try to fault in the futex with R/W
3080		 * verification via get_user_pages. get_user() above
3081		 * does not guarantee R/W access. If that fails we
3082		 * give up and leave the futex locked.
3083		 */
3084		if (cmpxchg_futex_value_locked(&nval, uaddr, uval, mval)) {
3085			if (fault_in_user_writeable(uaddr))
3086				return -1;
3087			goto retry;
3088		}
3089		if (nval != uval)
3090			goto retry;
3091
3092		/*
3093		 * Wake robust non-PI futexes here. The wakeup of
3094		 * PI futexes happens in exit_pi_state():
3095		 */
3096		if (!pi && (uval & FUTEX_WAITERS))
3097			futex_wake(uaddr, 1, 1, FUTEX_BITSET_MATCH_ANY);
3098	}
3099	return 0;
3100}
3101
3102/*
3103 * Fetch a robust-list pointer. Bit 0 signals PI futexes:
3104 */
3105static inline int fetch_robust_entry(struct robust_list __user **entry,
3106				     struct robust_list __user * __user *head,
3107				     unsigned int *pi)
3108{
3109	unsigned long uentry;
3110
3111	if (get_user(uentry, (unsigned long __user *)head))
3112		return -EFAULT;
3113
3114	*entry = (void __user *)(uentry & ~1UL);
3115	*pi = uentry & 1;
3116
3117	return 0;
3118}
3119
3120/*
3121 * Walk curr->robust_list (very carefully, it's a userspace list!)
3122 * and mark any locks found there dead, and notify any waiters.
3123 *
3124 * We silently return on any sign of list-walking problem.
3125 */
3126void exit_robust_list(struct task_struct *curr)
3127{
3128	struct robust_list_head __user *head = curr->robust_list;
3129	struct robust_list __user *entry, *next_entry, *pending;
3130	unsigned int limit = ROBUST_LIST_LIMIT, pi, pip;
3131	unsigned int uninitialized_var(next_pi);
3132	unsigned long futex_offset;
3133	int rc;
3134
3135	if (!futex_cmpxchg_enabled)
3136		return;
3137
3138	/*
3139	 * Fetch the list head (which was registered earlier, via
3140	 * sys_set_robust_list()):
3141	 */
3142	if (fetch_robust_entry(&entry, &head->list.next, &pi))
3143		return;
3144	/*
3145	 * Fetch the relative futex offset:
3146	 */
3147	if (get_user(futex_offset, &head->futex_offset))
3148		return;
3149	/*
3150	 * Fetch any possibly pending lock-add first, and handle it
3151	 * if it exists:
3152	 */
3153	if (fetch_robust_entry(&pending, &head->list_op_pending, &pip))
3154		return;
3155
3156	next_entry = NULL;	/* avoid warning with gcc */
3157	while (entry != &head->list) {
3158		/*
3159		 * Fetch the next entry in the list before calling
3160		 * handle_futex_death:
3161		 */
3162		rc = fetch_robust_entry(&next_entry, &entry->next, &next_pi);
3163		/*
3164		 * A pending lock might already be on the list, so
3165		 * don't process it twice:
3166		 */
3167		if (entry != pending)
3168			if (handle_futex_death((void __user *)entry + futex_offset,
3169						curr, pi))
3170				return;
3171		if (rc)
3172			return;
3173		entry = next_entry;
3174		pi = next_pi;
3175		/*
3176		 * Avoid excessively long or circular lists:
3177		 */
3178		if (!--limit)
3179			break;
3180
3181		cond_resched();
3182	}
3183
3184	if (pending)
3185		handle_futex_death((void __user *)pending + futex_offset,
3186				   curr, pip);
3187}
3188
3189long do_futex(u32 __user *uaddr, int op, u32 val, ktime_t *timeout,
3190		u32 __user *uaddr2, u32 val2, u32 val3)
3191{
3192	int cmd = op & FUTEX_CMD_MASK;
3193	unsigned int flags = 0;
3194
3195	if (!(op & FUTEX_PRIVATE_FLAG))
3196		flags |= FLAGS_SHARED;
3197
3198	if (op & FUTEX_CLOCK_REALTIME) {
3199		flags |= FLAGS_CLOCKRT;
3200		if (cmd != FUTEX_WAIT && cmd != FUTEX_WAIT_BITSET && \
3201		    cmd != FUTEX_WAIT_REQUEUE_PI)
3202			return -ENOSYS;
3203	}
3204
3205	switch (cmd) {
3206	case FUTEX_LOCK_PI:
3207	case FUTEX_UNLOCK_PI:
3208	case FUTEX_TRYLOCK_PI:
3209	case FUTEX_WAIT_REQUEUE_PI:
3210	case FUTEX_CMP_REQUEUE_PI:
3211		if (!futex_cmpxchg_enabled)
3212			return -ENOSYS;
3213	}
3214
3215	switch (cmd) {
3216	case FUTEX_WAIT:
3217		val3 = FUTEX_BITSET_MATCH_ANY;
3218	case FUTEX_WAIT_BITSET:
3219		return futex_wait(uaddr, flags, val, timeout, val3);
3220	case FUTEX_WAKE:
3221		val3 = FUTEX_BITSET_MATCH_ANY;
3222	case FUTEX_WAKE_BITSET:
3223		return futex_wake(uaddr, flags, val, val3);
3224	case FUTEX_REQUEUE:
3225		return futex_requeue(uaddr, flags, uaddr2, val, val2, NULL, 0);
3226	case FUTEX_CMP_REQUEUE:
3227		return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 0);
3228	case FUTEX_WAKE_OP:
3229		return futex_wake_op(uaddr, flags, uaddr2, val, val2, val3);
3230	case FUTEX_LOCK_PI:
3231		return futex_lock_pi(uaddr, flags, timeout, 0);
3232	case FUTEX_UNLOCK_PI:
3233		return futex_unlock_pi(uaddr, flags);
3234	case FUTEX_TRYLOCK_PI:
3235		return futex_lock_pi(uaddr, flags, NULL, 1);
3236	case FUTEX_WAIT_REQUEUE_PI:
3237		val3 = FUTEX_BITSET_MATCH_ANY;
3238		return futex_wait_requeue_pi(uaddr, flags, val, timeout, val3,
3239					     uaddr2);
3240	case FUTEX_CMP_REQUEUE_PI:
3241		return futex_requeue(uaddr, flags, uaddr2, val, val2, &val3, 1);
3242	}
3243	return -ENOSYS;
3244}
3245
3246
3247SYSCALL_DEFINE6(futex, u32 __user *, uaddr, int, op, u32, val,
3248		struct timespec __user *, utime, u32 __user *, uaddr2,
3249		u32, val3)
3250{
3251	struct timespec ts;
3252	ktime_t t, *tp = NULL;
3253	u32 val2 = 0;
3254	int cmd = op & FUTEX_CMD_MASK;
3255
3256	if (utime && (cmd == FUTEX_WAIT || cmd == FUTEX_LOCK_PI ||
3257		      cmd == FUTEX_WAIT_BITSET ||
3258		      cmd == FUTEX_WAIT_REQUEUE_PI)) {
3259		if (unlikely(should_fail_futex(!(op & FUTEX_PRIVATE_FLAG))))
3260			return -EFAULT;
3261		if (copy_from_user(&ts, utime, sizeof(ts)) != 0)
3262			return -EFAULT;
3263		if (!timespec_valid(&ts))
3264			return -EINVAL;
3265
3266		t = timespec_to_ktime(ts);
3267		if (cmd == FUTEX_WAIT)
3268			t = ktime_add_safe(ktime_get(), t);
3269		tp = &t;
3270	}
3271	/*
3272	 * requeue parameter in 'utime' if cmd == FUTEX_*_REQUEUE_*.
3273	 * number of waiters to wake in 'utime' if cmd == FUTEX_WAKE_OP.
3274	 */
3275	if (cmd == FUTEX_REQUEUE || cmd == FUTEX_CMP_REQUEUE ||
3276	    cmd == FUTEX_CMP_REQUEUE_PI || cmd == FUTEX_WAKE_OP)
3277		val2 = (u32) (unsigned long) utime;
3278
3279	return do_futex(uaddr, op, val, tp, uaddr2, val2, val3);
3280}
3281
3282static void __init futex_detect_cmpxchg(void)
3283{
3284#ifndef CONFIG_HAVE_FUTEX_CMPXCHG
3285	u32 curval;
3286
3287	/*
3288	 * This will fail and we want it. Some arch implementations do
3289	 * runtime detection of the futex_atomic_cmpxchg_inatomic()
3290	 * functionality. We want to know that before we call in any
3291	 * of the complex code paths. Also we want to prevent
3292	 * registration of robust lists in that case. NULL is
3293	 * guaranteed to fault and we get -EFAULT on functional
3294	 * implementation, the non-functional ones will return
3295	 * -ENOSYS.
3296	 */
3297	if (cmpxchg_futex_value_locked(&curval, NULL, 0, 0) == -EFAULT)
3298		futex_cmpxchg_enabled = 1;
3299#endif
3300}
3301
3302static int __init futex_init(void)
3303{
3304	unsigned int futex_shift;
3305	unsigned long i;
3306
3307#if CONFIG_BASE_SMALL
3308	futex_hashsize = 16;
3309#else
3310	futex_hashsize = roundup_pow_of_two(256 * num_possible_cpus());
3311#endif
3312
3313	futex_queues = alloc_large_system_hash("futex", sizeof(*futex_queues),
3314					       futex_hashsize, 0,
3315					       futex_hashsize < 256 ? HASH_SMALL : 0,
3316					       &futex_shift, NULL,
3317					       futex_hashsize, futex_hashsize);
3318	futex_hashsize = 1UL << futex_shift;
3319
3320	futex_detect_cmpxchg();
3321
3322	for (i = 0; i < futex_hashsize; i++) {
3323		atomic_set(&futex_queues[i].waiters, 0);
3324		plist_head_init(&futex_queues[i].chain);
3325		spin_lock_init(&futex_queues[i].lock);
3326	}
3327
3328	return 0;
3329}
3330core_initcall(futex_init);